1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
7288
7289
7290
7291
7292
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
7347
7348
7349
7350
7351
7352
7353
7354
7355
7356
7357
7358
7359
7360
7361
7362
7363
7364
7365
7366
7367
7368
7369
7370
7371
7372
7373
7374
7375
7376
7377
7378
7379
7380
7381
7382
7383
7384
7385
7386
7387
7388
7389
7390
7391
7392
7393
7394
7395
7396
7397
7398
7399
7400
7401
7402
7403
7404
7405
7406
7407
7408
7409
7410
7411
7412
7413
7414
7415
7416
7417
7418
7419
7420
7421
7422
7423
7424
7425
7426
7427
7428
7429
7430
7431
7432
7433
7434
7435
7436
7437
7438
7439
7440
7441
7442
7443
7444
7445
7446
7447
7448
7449
7450
7451
7452
7453
7454
7455
7456
7457
7458
7459
7460
7461
7462
7463
7464
7465
7466
7467
7468
7469
7470
7471
7472
7473
7474
7475
7476
7477
7478
7479
7480
7481
7482
7483
7484
7485
7486
7487
7488
7489
7490
7491
7492
7493
7494
7495
7496
7497
7498
7499
7500
7501
7502
7503
7504
7505
7506
7507
7508
7509
7510
7511
7512
7513
7514
7515
7516
7517
7518
7519
7520
7521
7522
7523
7524
7525
7526
7527
7528
7529
7530
7531
7532
7533
7534
7535
7536
7537
7538
7539
7540
7541
7542
7543
7544
7545
7546
7547
7548
7549
7550
7551
7552
7553
7554
7555
7556
7557
7558
7559
7560
7561
7562
7563
7564
7565
7566
7567
7568
7569
7570
7571
7572
7573
7574
7575
7576
7577
7578
7579
7580
7581
7582
7583
7584
7585
7586
7587
7588
7589
7590
7591
7592
7593
7594
7595
7596
7597
7598
7599
7600
7601
7602
7603
7604
7605
7606
7607
7608
7609
7610
7611
7612
7613
7614
7615
7616
7617
7618
7619
7620
7621
7622
7623
7624
7625
7626
7627
7628
7629
7630
7631
7632
7633
7634
7635
7636
7637
7638
7639
7640
7641
7642
7643
7644
7645
7646
7647
7648
7649
7650
7651
7652
7653
7654
7655
7656
7657
7658
7659
7660
7661
7662
7663
7664
7665
7666
7667
7668
7669
7670
7671
7672
7673
7674
7675
7676
7677
7678
7679
7680
7681
7682
7683
7684
7685
7686
7687
7688
7689
7690
7691
7692
7693
7694
7695
7696
7697
7698
7699
7700
7701
7702
7703
7704
7705
7706
7707
7708
7709
7710
7711
7712
7713
7714
7715
7716
7717
7718
7719
7720
7721
7722
7723
7724
7725
7726
7727
7728
7729
7730
7731
7732
7733
7734
7735
7736
7737
7738
7739
7740
7741
7742
7743
7744
7745
7746
7747
7748
7749
7750
7751
7752
7753
7754
7755
7756
7757
7758
7759
7760
7761
7762
7763
7764
7765
7766
7767
7768
7769
7770
7771
7772
7773
7774
7775
7776
7777
7778
7779
7780
7781
7782
7783
7784
7785
7786
7787
7788
7789
7790
7791
7792
7793
7794
7795
7796
7797
7798
7799
7800
7801
7802
7803
7804
7805
7806
7807
7808
7809
7810
7811
7812
7813
7814
7815
7816
7817
7818
7819
7820
7821
7822
7823
7824
7825
7826
7827
7828
7829
7830
7831
7832
7833
7834
7835
7836
7837
7838
7839
7840
7841
7842
7843
7844
7845
7846
7847
7848
7849
7850
7851
7852
7853
7854
7855
7856
7857
7858
7859
7860
7861
7862
7863
7864
7865
7866
7867
7868
7869
7870
7871
7872
7873
7874
7875
7876
7877
7878
7879
7880
7881
7882
7883
7884
7885
7886
7887
7888
7889
7890
7891
7892
7893
7894
7895
7896
7897
7898
7899
7900
7901
7902
7903
7904
7905
7906
7907
7908
7909
7910
7911
7912
7913
7914
7915
7916
7917
7918
7919
7920
7921
7922
7923
7924
7925
7926
7927
7928
7929
7930
7931
7932
7933
7934
7935
7936
7937
7938
7939
7940
7941
7942
7943
7944
7945
7946
7947
7948
7949
7950
7951
7952
7953
7954
7955
7956
7957
7958
7959
7960
7961
7962
7963
7964
7965
7966
7967
7968
7969
7970
7971
7972
7973
7974
7975
7976
7977
7978
7979
7980
7981
7982
7983
7984
7985
7986
7987
7988
7989
7990
7991
7992
7993
7994
7995
7996
7997
7998
7999
8000
8001
8002
8003
8004
8005
8006
8007
8008
8009
8010
8011
8012
8013
8014
8015
8016
8017
8018
8019
8020
8021
8022
8023
8024
8025
8026
8027
8028
8029
8030
8031
8032
8033
8034
8035
8036
8037
8038
8039
8040
8041
8042
8043
8044
8045
8046
8047
8048
8049
8050
8051
8052
8053
8054
8055
8056
8057
8058
8059
8060
8061
8062
8063
8064
8065
8066
8067
8068
8069
8070
8071
8072
8073
8074
8075
8076
8077
8078
8079
8080
8081
8082
8083
8084
8085
8086
8087
8088
8089
8090
8091
8092
8093
8094
8095
8096
8097
8098
8099
8100
8101
8102
8103
8104
8105
8106
8107
8108
8109
8110
8111
8112
8113
8114
8115
8116
8117
8118
8119
8120
8121
8122
8123
8124
8125
8126
8127
8128
8129
8130
8131
8132
8133
8134
8135
8136
8137
8138
8139
8140
8141
8142
8143
8144
8145
8146
8147
8148
8149
8150
8151
8152
8153
8154
8155
8156
8157
8158
8159
8160
8161
8162
8163
8164
8165
8166
8167
8168
8169
8170
8171
8172
8173
8174
8175
8176
8177
8178
8179
8180
8181
8182
8183
8184
8185
8186
8187
8188
8189
8190
8191
8192
8193
8194
8195
8196
8197
8198
8199
8200
8201
8202
8203
8204
8205
8206
8207
8208
8209
8210
8211
8212
8213
8214
8215
8216
8217
8218
8219
8220
8221
8222
8223
8224
8225
8226
8227
8228
8229
8230
8231
8232
8233
8234
8235
8236
8237
8238
8239
8240
8241
8242
8243
8244
8245
8246
8247
8248
8249
8250
8251
8252
8253
8254
8255
8256
8257
8258
8259
8260
8261
8262
8263
8264
8265
8266
8267
8268
8269
8270
8271
8272
8273
8274
8275
8276
8277
8278
8279
8280
8281
8282
8283
8284
8285
8286
8287
8288
8289
8290
8291
8292
8293
8294
8295
8296
8297
8298
8299
8300
8301
8302
8303
8304
8305
8306
8307
8308
8309
8310
8311
8312
8313
8314
8315
8316
8317
8318
8319
8320
8321
8322
8323
8324
8325
8326
8327
8328
8329
8330
8331
8332
8333
8334
8335
8336
8337
8338
8339
8340
8341
8342
8343
8344
8345
8346
8347
8348
8349
8350
8351
8352
8353
8354
8355
8356
8357
8358
8359
8360
8361
8362
8363
8364
8365
8366
8367
8368
8369
8370
8371
8372
8373
8374
8375
8376
8377
8378
8379
8380
8381
8382
8383
8384
8385
8386
8387
8388
8389
8390
8391
8392
8393
8394
8395
8396
8397
8398
8399
8400
8401
8402
8403
8404
8405
8406
8407
8408
8409
8410
8411
8412
8413
8414
8415
8416
8417
8418
8419
8420
8421
8422
8423
8424
8425
8426
8427
8428
8429
8430
8431
8432
8433
8434
8435
8436
8437
8438
8439
8440
8441
8442
8443
8444
8445
8446
8447
8448
8449
8450
8451
8452
8453
8454
8455
8456
8457
8458
8459
8460
8461
8462
8463
8464
8465
8466
8467
8468
8469
8470
8471
8472
8473
8474
8475
8476
8477
8478
8479
8480
8481
8482
8483
8484
8485
8486
8487
8488
8489
8490
8491
8492
8493
8494
8495
8496
8497
8498
8499
8500
8501
8502
8503
8504
8505
8506
8507
8508
8509
8510
8511
8512
8513
8514
8515
8516
8517
8518
8519
8520
8521
8522
8523
8524
8525
8526
8527
8528
8529
8530
8531
8532
8533
8534
8535
8536
8537
8538
8539
8540
8541
8542
8543
8544
8545
8546
8547
8548
8549
8550
8551
8552
8553
8554
8555
8556
8557
8558
8559
8560
8561
8562
8563
8564
8565
8566
8567
8568
8569
8570
8571
8572
8573
8574
8575
8576
8577
8578
8579
8580
8581
8582
8583
8584
8585
8586
8587
8588
8589
8590
8591
8592
8593
8594
8595
8596
8597
8598
8599
8600
8601
8602
8603
8604
8605
8606
8607
8608
8609
8610
8611
8612
8613
8614
8615
8616
8617
8618
8619
8620
8621
8622
8623
8624
8625
8626
8627
8628
8629
8630
8631
8632
8633
8634
8635
8636
8637
8638
8639
8640
8641
8642
8643
8644
8645
8646
8647
8648
8649
8650
8651
8652
8653
8654
8655
8656
8657
8658
8659
8660
8661
8662
8663
8664
8665
8666
8667
8668
8669
8670
8671
8672
8673
8674
8675
8676
8677
8678
8679
8680
8681
8682
8683
8684
8685
8686
8687
8688
8689
8690
8691
8692
8693
8694
8695
8696
8697
8698
8699
8700
8701
8702
8703
8704
8705
8706
8707
8708
8709
8710
8711
8712
8713
8714
8715
8716
8717
8718
8719
8720
8721
8722
8723
8724
8725
8726
8727
8728
8729
8730
8731
8732
8733
8734
8735
8736
8737
8738
8739
8740
8741
8742
8743
8744
8745
8746
8747
8748
8749
8750
8751
8752
8753
8754
8755
8756
8757
8758
8759
8760
8761
8762
8763
8764
8765
8766
8767
8768
8769
8770
8771
8772
8773
8774
8775
8776
8777
8778
8779
8780
8781
8782
8783
8784
8785
8786
8787
8788
8789
8790
8791
8792
8793
8794
8795
8796
8797
8798
8799
8800
8801
8802
8803
8804
8805
8806
8807
8808
8809
8810
8811
8812
8813
8814
8815
8816
8817
8818
8819
8820
8821
8822
8823
8824
8825
8826
8827
8828
8829
8830
8831
8832
8833
8834
8835
8836
8837
8838
8839
8840
8841
8842
8843
8844
8845
8846
8847
8848
8849
8850
8851
8852
8853
8854
8855
8856
8857
8858
8859
8860
8861
8862
8863
8864
8865
8866
8867
8868
8869
8870
8871
8872
8873
8874
8875
8876
8877
8878
8879
8880
8881
8882
8883
8884
8885
8886
8887
8888
8889
8890
8891
8892
8893
8894
8895
8896
8897
8898
8899
8900
8901
8902
8903
8904
8905
8906
8907
8908
8909
8910
8911
8912
8913
8914
8915
8916
8917
8918
8919
8920
8921
8922
8923
8924
8925
8926
8927
8928
8929
8930
8931
8932
8933
8934
8935
8936
8937
8938
8939
8940
8941
8942
8943
8944
8945
8946
8947
8948
8949
8950
8951
8952
8953
8954
8955
8956
8957
8958
8959
8960
8961
8962
8963
8964
8965
8966
8967
8968
8969
8970
8971
8972
8973
8974
8975
8976
8977
8978
8979
8980
8981
8982
8983
8984
8985
8986
8987
8988
8989
8990
8991
8992
8993
8994
8995
8996
8997
8998
8999
9000
9001
9002
9003
9004
9005
9006
9007
9008
9009
9010
9011
9012
9013
9014
9015
9016
9017
9018
9019
9020
9021
9022
9023
9024
9025
9026
9027
9028
9029
9030
9031
9032
9033
9034
9035
9036
9037
9038
9039
9040
9041
9042
9043
9044
9045
9046
9047
9048
9049
9050
9051
9052
9053
9054
9055
9056
9057
9058
9059
9060
9061
9062
9063
9064
9065
9066
9067
9068
9069
9070
9071
9072
9073
9074
9075
9076
9077
9078
9079
9080
9081
9082
9083
9084
9085
9086
9087
9088
9089
9090
9091
9092
9093
9094
9095
9096
9097
9098
9099
9100
9101
9102
9103
9104
9105
9106
9107
9108
9109
9110
9111
9112
9113
9114
9115
9116
9117
9118
9119
9120
9121
9122
9123
9124
9125
9126
9127
9128
9129
9130
9131
9132
9133
9134
9135
9136
9137
9138
9139
9140
9141
9142
9143
9144
9145
9146
9147
9148
9149
9150
9151
9152
9153
9154
9155
9156
9157
9158
9159
9160
9161
9162
9163
9164
9165
9166
9167
9168
9169
9170
9171
9172
9173
9174
9175
9176
9177
9178
9179
9180
9181
9182
9183
9184
9185
9186
9187
9188
9189
9190
9191
9192
9193
9194
9195
9196
9197
9198
9199
9200
9201
9202
9203
9204
9205
9206
9207
9208
9209
9210
9211
9212
9213
9214
9215
9216
9217
9218
9219
9220
9221
9222
9223
9224
9225
9226
9227
9228
9229
9230
9231
9232
9233
9234
9235
9236
9237
9238
9239
9240
9241
9242
9243
9244
9245
9246
9247
9248
9249
9250
9251
9252
9253
9254
9255
9256
9257
9258
9259
9260
9261
9262
9263
9264
9265
9266
9267
9268
9269
9270
9271
9272
9273
9274
9275
9276
9277
9278
9279
9280
9281
9282
9283
9284
9285
9286
9287
9288
9289
9290
9291
9292
9293
9294
9295
9296
9297
9298
9299
9300
9301
9302
9303
9304
9305
9306
9307
9308
9309
9310
9311
9312
9313
9314
9315
9316
9317
9318
9319
9320
9321
9322
9323
9324
9325
9326
9327
9328
9329
9330
9331
9332
9333
9334
|
/* Subroutines used for code generation on the Synopsys DesignWare ARC cpu.
Copyright (C) 1994-2016 Free Software Foundation, Inc.
Sources derived from work done by Sankhya Technologies (www.sankhya.com) on
behalf of Synopsys Inc.
Position Independent Code support added,Code cleaned up,
Comments and Support For ARC700 instructions added by
Saurabh Verma (saurabh.verma@codito.com)
Ramana Radhakrishnan(ramana.radhakrishnan@codito.com)
Fixing ABI inconsistencies, optimizations for ARC600 / ARC700 pipelines,
profiling support added by Joern Rennecke <joern.rennecke@embecosm.com>
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3, or (at your option)
any later version.
GCC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "backend.h"
#include "target.h"
#include "rtl.h"
#include "tree.h"
#include "cfghooks.h"
#include "df.h"
#include "tm_p.h"
#include "stringpool.h"
#include "optabs.h"
#include "regs.h"
#include "emit-rtl.h"
#include "recog.h"
#include "diagnostic.h"
#include "fold-const.h"
#include "varasm.h"
#include "stor-layout.h"
#include "calls.h"
#include "output.h"
#include "insn-attr.h"
#include "flags.h"
#include "explow.h"
#include "expr.h"
#include "langhooks.h"
#include "tm-constrs.h"
#include "reload.h" /* For operands_match_p */
#include "cfgrtl.h"
#include "tree-pass.h"
#include "context.h"
#include "builtins.h"
#include "rtl-iter.h"
#include "alias.h"
/* Which cpu we're compiling for (ARC600, ARC601, ARC700). */
static const char *arc_cpu_string = "";
/* ??? Loads can handle any constant, stores can only handle small ones. */
/* OTOH, LIMMs cost extra, so their usefulness is limited. */
#define RTX_OK_FOR_OFFSET_P(MODE, X) \
(GET_CODE (X) == CONST_INT \
&& SMALL_INT_RANGE (INTVAL (X), (GET_MODE_SIZE (MODE) - 1) & -4, \
(INTVAL (X) & (GET_MODE_SIZE (MODE) - 1) & 3 \
? 0 \
: -(-GET_MODE_SIZE (MODE) | -4) >> 1)))
#define LEGITIMATE_OFFSET_ADDRESS_P(MODE, X, INDEX, STRICT) \
(GET_CODE (X) == PLUS \
&& RTX_OK_FOR_BASE_P (XEXP (X, 0), (STRICT)) \
&& ((INDEX && RTX_OK_FOR_INDEX_P (XEXP (X, 1), (STRICT)) \
&& GET_MODE_SIZE ((MODE)) <= 4) \
|| RTX_OK_FOR_OFFSET_P (MODE, XEXP (X, 1))))
#define LEGITIMATE_SCALED_ADDRESS_P(MODE, X, STRICT) \
(GET_CODE (X) == PLUS \
&& GET_CODE (XEXP (X, 0)) == MULT \
&& RTX_OK_FOR_INDEX_P (XEXP (XEXP (X, 0), 0), (STRICT)) \
&& GET_CODE (XEXP (XEXP (X, 0), 1)) == CONST_INT \
&& ((GET_MODE_SIZE (MODE) == 2 && INTVAL (XEXP (XEXP (X, 0), 1)) == 2) \
|| (GET_MODE_SIZE (MODE) == 4 && INTVAL (XEXP (XEXP (X, 0), 1)) == 4)) \
&& (RTX_OK_FOR_BASE_P (XEXP (X, 1), (STRICT)) \
|| (flag_pic ? CONST_INT_P (XEXP (X, 1)) : CONSTANT_P (XEXP (X, 1)))))
#define LEGITIMATE_SMALL_DATA_ADDRESS_P(X) \
(GET_CODE (X) == PLUS \
&& (REG_P (XEXP ((X), 0)) && REGNO (XEXP ((X), 0)) == SDATA_BASE_REGNUM) \
&& ((GET_CODE (XEXP((X),1)) == SYMBOL_REF \
&& SYMBOL_REF_SMALL_P (XEXP ((X), 1))) \
|| (GET_CODE (XEXP ((X), 1)) == CONST \
&& GET_CODE (XEXP (XEXP ((X), 1), 0)) == PLUS \
&& GET_CODE (XEXP (XEXP (XEXP ((X), 1), 0), 0)) == SYMBOL_REF \
&& SYMBOL_REF_SMALL_P (XEXP (XEXP (XEXP ((X), 1), 0), 0)) \
&& GET_CODE (XEXP(XEXP (XEXP ((X), 1), 0), 1)) == CONST_INT)))
/* Array of valid operand punctuation characters. */
char arc_punct_chars[256];
/* State used by arc_ccfsm_advance to implement conditional execution. */
struct GTY (()) arc_ccfsm
{
int state;
int cc;
rtx cond;
rtx_insn *target_insn;
int target_label;
};
#define arc_ccfsm_current cfun->machine->ccfsm_current
#define ARC_CCFSM_BRANCH_DELETED_P(STATE) \
((STATE)->state == 1 || (STATE)->state == 2)
/* Indicate we're conditionalizing insns now. */
#define ARC_CCFSM_RECORD_BRANCH_DELETED(STATE) \
((STATE)->state += 2)
#define ARC_CCFSM_COND_EXEC_P(STATE) \
((STATE)->state == 3 || (STATE)->state == 4 || (STATE)->state == 5 \
|| current_insn_predicate)
/* Check if INSN has a 16 bit opcode considering struct arc_ccfsm *STATE. */
#define CCFSM_ISCOMPACT(INSN,STATE) \
(ARC_CCFSM_COND_EXEC_P (STATE) \
? (get_attr_iscompact (INSN) == ISCOMPACT_TRUE \
|| get_attr_iscompact (INSN) == ISCOMPACT_TRUE_LIMM) \
: get_attr_iscompact (INSN) != ISCOMPACT_FALSE)
/* Likewise, but also consider that INSN might be in a delay slot of JUMP. */
#define CCFSM_DBR_ISCOMPACT(INSN,JUMP,STATE) \
((ARC_CCFSM_COND_EXEC_P (STATE) \
|| (JUMP_P (JUMP) \
&& INSN_ANNULLED_BRANCH_P (JUMP) \
&& (TARGET_AT_DBR_CONDEXEC || INSN_FROM_TARGET_P (INSN)))) \
? (get_attr_iscompact (INSN) == ISCOMPACT_TRUE \
|| get_attr_iscompact (INSN) == ISCOMPACT_TRUE_LIMM) \
: get_attr_iscompact (INSN) != ISCOMPACT_FALSE)
/* The maximum number of insns skipped which will be conditionalised if
possible. */
/* When optimizing for speed:
Let p be the probability that the potentially skipped insns need to
be executed, pn the cost of a correctly predicted non-taken branch,
mt the cost of a mis/non-predicted taken branch,
mn mispredicted non-taken, pt correctly predicted taken ;
costs expressed in numbers of instructions like the ones considered
skipping.
Unfortunately we don't have a measure of predictability - this
is linked to probability only in that in the no-eviction-scenario
there is a lower bound 1 - 2 * min (p, 1-p), and a somewhat larger
value that can be assumed *if* the distribution is perfectly random.
A predictability of 1 is perfectly plausible not matter what p is,
because the decision could be dependent on an invocation parameter
of the program.
For large p, we want MAX_INSNS_SKIPPED == pn/(1-p) + mt - pn
For small p, we want MAX_INSNS_SKIPPED == pt
When optimizing for size:
We want to skip insn unless we could use 16 opcodes for the
non-conditionalized insn to balance the branch length or more.
Performance can be tie-breaker. */
/* If the potentially-skipped insns are likely to be executed, we'll
generally save one non-taken branch
o
this to be no less than the 1/p */
#define MAX_INSNS_SKIPPED 3
/* A nop is needed between a 4 byte insn that sets the condition codes and
a branch that uses them (the same isn't true for an 8 byte insn that sets
the condition codes). Set by arc_ccfsm_advance. Used by
arc_print_operand. */
static int get_arc_condition_code (rtx);
static tree arc_handle_interrupt_attribute (tree *, tree, tree, int, bool *);
/* Initialized arc_attribute_table to NULL since arc doesnot have any
machine specific supported attributes. */
const struct attribute_spec arc_attribute_table[] =
{
/* { name, min_len, max_len, decl_req, type_req, fn_type_req, handler,
affects_type_identity } */
{ "interrupt", 1, 1, true, false, false, arc_handle_interrupt_attribute, true },
/* Function calls made to this symbol must be done indirectly, because
it may lie outside of the 21/25 bit addressing range of a normal function
call. */
{ "long_call", 0, 0, false, true, true, NULL, false },
/* Whereas these functions are always known to reside within the 25 bit
addressing range of unconditionalized bl. */
{ "medium_call", 0, 0, false, true, true, NULL, false },
/* And these functions are always known to reside within the 21 bit
addressing range of blcc. */
{ "short_call", 0, 0, false, true, true, NULL, false },
{ NULL, 0, 0, false, false, false, NULL, false }
};
static int arc_comp_type_attributes (const_tree, const_tree);
static void arc_file_start (void);
static void arc_internal_label (FILE *, const char *, unsigned long);
static void arc_output_mi_thunk (FILE *, tree, HOST_WIDE_INT, HOST_WIDE_INT,
tree);
static int arc_address_cost (rtx, machine_mode, addr_space_t, bool);
static void arc_encode_section_info (tree decl, rtx rtl, int first);
static void arc_init_builtins (void);
static rtx arc_expand_builtin (tree, rtx, rtx, machine_mode, int);
static int branch_dest (rtx);
static void arc_output_pic_addr_const (FILE *, rtx, int);
void emit_pic_move (rtx *, machine_mode);
bool arc_legitimate_pic_operand_p (rtx);
static bool arc_function_ok_for_sibcall (tree, tree);
static rtx arc_function_value (const_tree, const_tree, bool);
const char * output_shift (rtx *);
static void arc_reorg (void);
static bool arc_in_small_data_p (const_tree);
static void arc_init_reg_tables (void);
static bool arc_return_in_memory (const_tree, const_tree);
static bool arc_vector_mode_supported_p (machine_mode);
static bool arc_can_use_doloop_p (const widest_int &, const widest_int &,
unsigned int, bool);
static const char *arc_invalid_within_doloop (const rtx_insn *);
static void output_short_suffix (FILE *file);
static bool arc_frame_pointer_required (void);
static bool arc_use_by_pieces_infrastructure_p (unsigned HOST_WIDE_INT,
unsigned int,
enum by_pieces_operation op,
bool);
/* Implements target hook vector_mode_supported_p. */
static bool
arc_vector_mode_supported_p (machine_mode mode)
{
if (!TARGET_SIMD_SET)
return false;
if ((mode == V4SImode)
|| (mode == V8HImode))
return true;
return false;
}
/* TARGET_PRESERVE_RELOAD_P is still awaiting patch re-evaluation / review. */
static bool arc_preserve_reload_p (rtx in) ATTRIBUTE_UNUSED;
static rtx arc_delegitimize_address (rtx);
static bool arc_can_follow_jump (const rtx_insn *follower,
const rtx_insn *followee);
static rtx frame_insn (rtx);
static void arc_function_arg_advance (cumulative_args_t, machine_mode,
const_tree, bool);
static rtx arc_legitimize_address_0 (rtx, rtx, machine_mode mode);
static void arc_finalize_pic (void);
/* initialize the GCC target structure. */
#undef TARGET_COMP_TYPE_ATTRIBUTES
#define TARGET_COMP_TYPE_ATTRIBUTES arc_comp_type_attributes
#undef TARGET_ASM_FILE_START
#define TARGET_ASM_FILE_START arc_file_start
#undef TARGET_ATTRIBUTE_TABLE
#define TARGET_ATTRIBUTE_TABLE arc_attribute_table
#undef TARGET_ASM_INTERNAL_LABEL
#define TARGET_ASM_INTERNAL_LABEL arc_internal_label
#undef TARGET_RTX_COSTS
#define TARGET_RTX_COSTS arc_rtx_costs
#undef TARGET_ADDRESS_COST
#define TARGET_ADDRESS_COST arc_address_cost
#undef TARGET_ENCODE_SECTION_INFO
#define TARGET_ENCODE_SECTION_INFO arc_encode_section_info
#undef TARGET_CANNOT_FORCE_CONST_MEM
#define TARGET_CANNOT_FORCE_CONST_MEM arc_cannot_force_const_mem
#undef TARGET_INIT_BUILTINS
#define TARGET_INIT_BUILTINS arc_init_builtins
#undef TARGET_EXPAND_BUILTIN
#define TARGET_EXPAND_BUILTIN arc_expand_builtin
#undef TARGET_BUILTIN_DECL
#define TARGET_BUILTIN_DECL arc_builtin_decl
#undef TARGET_ASM_OUTPUT_MI_THUNK
#define TARGET_ASM_OUTPUT_MI_THUNK arc_output_mi_thunk
#undef TARGET_ASM_CAN_OUTPUT_MI_THUNK
#define TARGET_ASM_CAN_OUTPUT_MI_THUNK hook_bool_const_tree_hwi_hwi_const_tree_true
#undef TARGET_FUNCTION_OK_FOR_SIBCALL
#define TARGET_FUNCTION_OK_FOR_SIBCALL arc_function_ok_for_sibcall
#undef TARGET_MACHINE_DEPENDENT_REORG
#define TARGET_MACHINE_DEPENDENT_REORG arc_reorg
#undef TARGET_IN_SMALL_DATA_P
#define TARGET_IN_SMALL_DATA_P arc_in_small_data_p
#undef TARGET_PROMOTE_FUNCTION_MODE
#define TARGET_PROMOTE_FUNCTION_MODE \
default_promote_function_mode_always_promote
#undef TARGET_PROMOTE_PROTOTYPES
#define TARGET_PROMOTE_PROTOTYPES hook_bool_const_tree_true
#undef TARGET_RETURN_IN_MEMORY
#define TARGET_RETURN_IN_MEMORY arc_return_in_memory
#undef TARGET_PASS_BY_REFERENCE
#define TARGET_PASS_BY_REFERENCE arc_pass_by_reference
#undef TARGET_SETUP_INCOMING_VARARGS
#define TARGET_SETUP_INCOMING_VARARGS arc_setup_incoming_varargs
#undef TARGET_ARG_PARTIAL_BYTES
#define TARGET_ARG_PARTIAL_BYTES arc_arg_partial_bytes
#undef TARGET_MUST_PASS_IN_STACK
#define TARGET_MUST_PASS_IN_STACK must_pass_in_stack_var_size
#undef TARGET_FUNCTION_VALUE
#define TARGET_FUNCTION_VALUE arc_function_value
#undef TARGET_SCHED_ADJUST_PRIORITY
#define TARGET_SCHED_ADJUST_PRIORITY arc_sched_adjust_priority
#undef TARGET_VECTOR_MODE_SUPPORTED_P
#define TARGET_VECTOR_MODE_SUPPORTED_P arc_vector_mode_supported_p
#undef TARGET_CAN_USE_DOLOOP_P
#define TARGET_CAN_USE_DOLOOP_P arc_can_use_doloop_p
#undef TARGET_INVALID_WITHIN_DOLOOP
#define TARGET_INVALID_WITHIN_DOLOOP arc_invalid_within_doloop
#undef TARGET_PRESERVE_RELOAD_P
#define TARGET_PRESERVE_RELOAD_P arc_preserve_reload_p
#undef TARGET_CAN_FOLLOW_JUMP
#define TARGET_CAN_FOLLOW_JUMP arc_can_follow_jump
#undef TARGET_DELEGITIMIZE_ADDRESS
#define TARGET_DELEGITIMIZE_ADDRESS arc_delegitimize_address
#undef TARGET_USE_BY_PIECES_INFRASTRUCTURE_P
#define TARGET_USE_BY_PIECES_INFRASTRUCTURE_P \
arc_use_by_pieces_infrastructure_p
/* Usually, we will be able to scale anchor offsets.
When this fails, we want LEGITIMIZE_ADDRESS to kick in. */
#undef TARGET_MIN_ANCHOR_OFFSET
#define TARGET_MIN_ANCHOR_OFFSET (-1024)
#undef TARGET_MAX_ANCHOR_OFFSET
#define TARGET_MAX_ANCHOR_OFFSET (1020)
#undef TARGET_SECONDARY_RELOAD
#define TARGET_SECONDARY_RELOAD arc_secondary_reload
#define TARGET_OPTION_OVERRIDE arc_override_options
#define TARGET_CONDITIONAL_REGISTER_USAGE arc_conditional_register_usage
#define TARGET_TRAMPOLINE_INIT arc_initialize_trampoline
#define TARGET_TRAMPOLINE_ADJUST_ADDRESS arc_trampoline_adjust_address
#define TARGET_CAN_ELIMINATE arc_can_eliminate
#define TARGET_FRAME_POINTER_REQUIRED arc_frame_pointer_required
#define TARGET_FUNCTION_ARG arc_function_arg
#define TARGET_FUNCTION_ARG_ADVANCE arc_function_arg_advance
#define TARGET_LEGITIMATE_CONSTANT_P arc_legitimate_constant_p
#define TARGET_LEGITIMATE_ADDRESS_P arc_legitimate_address_p
#define TARGET_MODE_DEPENDENT_ADDRESS_P arc_mode_dependent_address_p
#define TARGET_LEGITIMIZE_ADDRESS arc_legitimize_address
#define TARGET_ADJUST_INSN_LENGTH arc_adjust_insn_length
#define TARGET_INSN_LENGTH_PARAMETERS arc_insn_length_parameters
#undef TARGET_NO_SPECULATION_IN_DELAY_SLOTS_P
#define TARGET_NO_SPECULATION_IN_DELAY_SLOTS_P \
arc_no_speculation_in_delay_slots_p
#undef TARGET_LRA_P
#define TARGET_LRA_P arc_lra_p
#define TARGET_REGISTER_PRIORITY arc_register_priority
/* Stores with scaled offsets have different displacement ranges. */
#define TARGET_DIFFERENT_ADDR_DISPLACEMENT_P hook_bool_void_true
#define TARGET_SPILL_CLASS arc_spill_class
#include "target-def.h"
#undef TARGET_ASM_ALIGNED_HI_OP
#define TARGET_ASM_ALIGNED_HI_OP "\t.hword\t"
#undef TARGET_ASM_ALIGNED_SI_OP
#define TARGET_ASM_ALIGNED_SI_OP "\t.word\t"
/* Try to keep the (mov:DF _, reg) as early as possible so
that the d<add/sub/mul>h-lr insns appear together and can
use the peephole2 pattern. */
static int
arc_sched_adjust_priority (rtx_insn *insn, int priority)
{
rtx set = single_set (insn);
if (set
&& GET_MODE (SET_SRC(set)) == DFmode
&& GET_CODE (SET_SRC(set)) == REG)
{
/* Incrementing priority by 20 (empirically derived). */
return priority + 20;
}
return priority;
}
/* For ARC base register + offset addressing, the validity of the
address is mode-dependent for most of the offset range, as the
offset can be scaled by the access size.
We don't expose these as mode-dependent addresses in the
mode_dependent_address_p target hook, because that would disable
lots of optimizations, and most uses of these addresses are for 32
or 64 bit accesses anyways, which are fine.
However, that leaves some addresses for 8 / 16 bit values not
properly reloaded by the generic code, which is why we have to
schedule secondary reloads for these. */
static reg_class_t
arc_secondary_reload (bool in_p,
rtx x,
reg_class_t cl,
machine_mode mode,
secondary_reload_info *sri)
{
enum rtx_code code = GET_CODE (x);
if (cl == DOUBLE_REGS)
return GENERAL_REGS;
/* The loop counter register can be stored, but not loaded directly. */
if ((cl == LPCOUNT_REG || cl == WRITABLE_CORE_REGS)
&& in_p && MEM_P (x))
return GENERAL_REGS;
/* If we have a subreg (reg), where reg is a pseudo (that will end in
a memory location), then we may need a scratch register to handle
the fp/sp+largeoffset address. */
if (code == SUBREG)
{
rtx addr = NULL_RTX;
x = SUBREG_REG (x);
if (REG_P (x))
{
int regno = REGNO (x);
if (regno >= FIRST_PSEUDO_REGISTER)
regno = reg_renumber[regno];
if (regno != -1)
return NO_REGS;
/* It is a pseudo that ends in a stack location. */
if (reg_equiv_mem (REGNO (x)))
{
/* Get the equivalent address and check the range of the
offset. */
rtx mem = reg_equiv_mem (REGNO (x));
addr = find_replacement (&XEXP (mem, 0));
}
}
else
{
gcc_assert (MEM_P (x));
addr = XEXP (x, 0);
addr = simplify_rtx (addr);
}
if (addr && GET_CODE (addr) == PLUS
&& CONST_INT_P (XEXP (addr, 1))
&& (!RTX_OK_FOR_OFFSET_P (mode, XEXP (addr, 1))))
{
switch (mode)
{
case QImode:
sri->icode =
in_p ? CODE_FOR_reload_qi_load : CODE_FOR_reload_qi_store;
break;
case HImode:
sri->icode =
in_p ? CODE_FOR_reload_hi_load : CODE_FOR_reload_hi_store;
break;
default:
break;
}
}
}
return NO_REGS;
}
/* Convert reloads using offsets that are too large to use indirect
addressing. */
void
arc_secondary_reload_conv (rtx reg, rtx mem, rtx scratch, bool store_p)
{
rtx addr;
gcc_assert (GET_CODE (mem) == MEM);
addr = XEXP (mem, 0);
/* Large offset: use a move. FIXME: ld ops accepts limms as
offsets. Hence, the following move insn is not required. */
emit_move_insn (scratch, addr);
mem = replace_equiv_address_nv (mem, scratch);
/* Now create the move. */
if (store_p)
emit_insn (gen_rtx_SET (mem, reg));
else
emit_insn (gen_rtx_SET (reg, mem));
return;
}
static unsigned arc_ifcvt (void);
namespace {
const pass_data pass_data_arc_ifcvt =
{
RTL_PASS,
"arc_ifcvt", /* name */
OPTGROUP_NONE, /* optinfo_flags */
TV_IFCVT2, /* tv_id */
0, /* properties_required */
0, /* properties_provided */
0, /* properties_destroyed */
0, /* todo_flags_start */
TODO_df_finish /* todo_flags_finish */
};
class pass_arc_ifcvt : public rtl_opt_pass
{
public:
pass_arc_ifcvt(gcc::context *ctxt)
: rtl_opt_pass(pass_data_arc_ifcvt, ctxt)
{}
/* opt_pass methods: */
opt_pass * clone () { return new pass_arc_ifcvt (m_ctxt); }
virtual unsigned int execute (function *) { return arc_ifcvt (); }
};
} // anon namespace
rtl_opt_pass *
make_pass_arc_ifcvt (gcc::context *ctxt)
{
return new pass_arc_ifcvt (ctxt);
}
static unsigned arc_predicate_delay_insns (void);
namespace {
const pass_data pass_data_arc_predicate_delay_insns =
{
RTL_PASS,
"arc_predicate_delay_insns", /* name */
OPTGROUP_NONE, /* optinfo_flags */
TV_IFCVT2, /* tv_id */
0, /* properties_required */
0, /* properties_provided */
0, /* properties_destroyed */
0, /* todo_flags_start */
TODO_df_finish /* todo_flags_finish */
};
class pass_arc_predicate_delay_insns : public rtl_opt_pass
{
public:
pass_arc_predicate_delay_insns(gcc::context *ctxt)
: rtl_opt_pass(pass_data_arc_predicate_delay_insns, ctxt)
{}
/* opt_pass methods: */
virtual unsigned int execute (function *)
{
return arc_predicate_delay_insns ();
}
};
} // anon namespace
rtl_opt_pass *
make_pass_arc_predicate_delay_insns (gcc::context *ctxt)
{
return new pass_arc_predicate_delay_insns (ctxt);
}
/* Called by OVERRIDE_OPTIONS to initialize various things. */
void
arc_init (void)
{
enum attr_tune tune_dflt = TUNE_NONE;
switch (arc_cpu)
{
case PROCESSOR_ARC600:
arc_cpu_string = "ARC600";
tune_dflt = TUNE_ARC600;
break;
case PROCESSOR_ARC601:
arc_cpu_string = "ARC601";
tune_dflt = TUNE_ARC600;
break;
case PROCESSOR_ARC700:
arc_cpu_string = "ARC700";
tune_dflt = TUNE_ARC700_4_2_STD;
break;
case PROCESSOR_ARCEM:
arc_cpu_string = "EM";
break;
case PROCESSOR_ARCHS:
arc_cpu_string = "HS";
break;
default:
gcc_unreachable ();
}
if (arc_tune == TUNE_NONE)
arc_tune = tune_dflt;
/* Note: arc_multcost is only used in rtx_cost if speed is true. */
if (arc_multcost < 0)
switch (arc_tune)
{
case TUNE_ARC700_4_2_STD:
/* latency 7;
max throughput (1 multiply + 4 other insns) / 5 cycles. */
arc_multcost = COSTS_N_INSNS (4);
if (TARGET_NOMPY_SET)
arc_multcost = COSTS_N_INSNS (30);
break;
case TUNE_ARC700_4_2_XMAC:
/* latency 5;
max throughput (1 multiply + 2 other insns) / 3 cycles. */
arc_multcost = COSTS_N_INSNS (3);
if (TARGET_NOMPY_SET)
arc_multcost = COSTS_N_INSNS (30);
break;
case TUNE_ARC600:
if (TARGET_MUL64_SET)
{
arc_multcost = COSTS_N_INSNS (4);
break;
}
/* Fall through. */
default:
arc_multcost = COSTS_N_INSNS (30);
break;
}
/* Support mul64 generation only for ARC600. */
if (TARGET_MUL64_SET && (!TARGET_ARC600_FAMILY))
error ("-mmul64 not supported for ARC700 or ARCv2");
/* MPY instructions valid only for ARC700 or ARCv2. */
if (TARGET_NOMPY_SET && TARGET_ARC600_FAMILY)
error ("-mno-mpy supported only for ARC700 or ARCv2");
/* mul/mac instructions only for ARC600. */
if (TARGET_MULMAC_32BY16_SET && (!TARGET_ARC600_FAMILY))
error ("-mmul32x16 supported only for ARC600 or ARC601");
if (!TARGET_DPFP && TARGET_DPFP_DISABLE_LRSR)
error ("-mno-dpfp-lrsr supported only with -mdpfp");
/* FPX-1. No fast and compact together. */
if ((TARGET_DPFP_FAST_SET && TARGET_DPFP_COMPACT_SET)
|| (TARGET_SPFP_FAST_SET && TARGET_SPFP_COMPACT_SET))
error ("FPX fast and compact options cannot be specified together");
/* FPX-2. No fast-spfp for arc600 or arc601. */
if (TARGET_SPFP_FAST_SET && TARGET_ARC600_FAMILY)
error ("-mspfp_fast not available on ARC600 or ARC601");
/* FPX-3. No FPX extensions on pre-ARC600 cores. */
if ((TARGET_DPFP || TARGET_SPFP)
&& !TARGET_ARCOMPACT_FAMILY)
error ("FPX extensions not available on pre-ARC600 cores");
/* Only selected multiplier configurations are available for HS. */
if (TARGET_HS && ((arc_mpy_option > 2 && arc_mpy_option < 7)
|| (arc_mpy_option == 1)))
error ("This multiplier configuration is not available for HS cores");
/* Warn for unimplemented PIC in pre-ARC700 cores, and disable flag_pic. */
if (flag_pic && TARGET_ARC600_FAMILY)
{
warning (DK_WARNING,
"PIC is not supported for %s. Generating non-PIC code only..",
arc_cpu_string);
flag_pic = 0;
}
if (TARGET_ATOMIC && !(TARGET_ARC700 || TARGET_HS))
error ("-matomic is only supported for ARC700 or ARC HS cores");
arc_init_reg_tables ();
/* Initialize array for PRINT_OPERAND_PUNCT_VALID_P. */
memset (arc_punct_chars, 0, sizeof (arc_punct_chars));
arc_punct_chars['#'] = 1;
arc_punct_chars['*'] = 1;
arc_punct_chars['?'] = 1;
arc_punct_chars['!'] = 1;
arc_punct_chars['^'] = 1;
arc_punct_chars['&'] = 1;
arc_punct_chars['+'] = 1;
arc_punct_chars['_'] = 1;
if (optimize > 1 && !TARGET_NO_COND_EXEC)
{
/* There are two target-independent ifcvt passes, and arc_reorg may do
one or more arc_ifcvt calls. */
opt_pass *pass_arc_ifcvt_4 = make_pass_arc_ifcvt (g);
struct register_pass_info arc_ifcvt4_info
= { pass_arc_ifcvt_4, "dbr", 1, PASS_POS_INSERT_AFTER };
struct register_pass_info arc_ifcvt5_info
= { pass_arc_ifcvt_4->clone (), "shorten", 1, PASS_POS_INSERT_BEFORE };
register_pass (&arc_ifcvt4_info);
register_pass (&arc_ifcvt5_info);
}
if (flag_delayed_branch)
{
opt_pass *pass_arc_predicate_delay_insns
= make_pass_arc_predicate_delay_insns (g);
struct register_pass_info arc_predicate_delay_info
= { pass_arc_predicate_delay_insns, "dbr", 1, PASS_POS_INSERT_AFTER };
register_pass (&arc_predicate_delay_info);
}
}
/* Check ARC options, generate derived target attributes. */
static void
arc_override_options (void)
{
if (arc_cpu == PROCESSOR_NONE)
arc_cpu = PROCESSOR_ARC700;
if (arc_size_opt_level == 3)
optimize_size = 1;
if (flag_pic)
target_flags |= MASK_NO_SDATA_SET;
if (flag_no_common == 255)
flag_no_common = !TARGET_NO_SDATA_SET;
/* TARGET_COMPACT_CASESI needs the "q" register class. */
if (TARGET_MIXED_CODE)
TARGET_Q_CLASS = 1;
if (!TARGET_Q_CLASS)
TARGET_COMPACT_CASESI = 0;
if (TARGET_COMPACT_CASESI)
TARGET_CASE_VECTOR_PC_RELATIVE = 1;
/* These need to be done at start up. It's convenient to do them here. */
arc_init ();
}
/* The condition codes of the ARC, and the inverse function. */
/* For short branches, the "c" / "nc" names are not defined in the ARC
Programmers manual, so we have to use "lo" / "hs"" instead. */
static const char *arc_condition_codes[] =
{
"al", 0, "eq", "ne", "p", "n", "lo", "hs", "v", "nv",
"gt", "le", "ge", "lt", "hi", "ls", "pnz", 0
};
enum arc_cc_code_index
{
ARC_CC_AL, ARC_CC_EQ = ARC_CC_AL+2, ARC_CC_NE, ARC_CC_P, ARC_CC_N,
ARC_CC_C, ARC_CC_NC, ARC_CC_V, ARC_CC_NV,
ARC_CC_GT, ARC_CC_LE, ARC_CC_GE, ARC_CC_LT, ARC_CC_HI, ARC_CC_LS, ARC_CC_PNZ,
ARC_CC_LO = ARC_CC_C, ARC_CC_HS = ARC_CC_NC
};
#define ARC_INVERSE_CONDITION_CODE(X) ((X) ^ 1)
/* Returns the index of the ARC condition code string in
`arc_condition_codes'. COMPARISON should be an rtx like
`(eq (...) (...))'. */
static int
get_arc_condition_code (rtx comparison)
{
switch (GET_MODE (XEXP (comparison, 0)))
{
case CCmode:
case SImode: /* For BRcc. */
switch (GET_CODE (comparison))
{
case EQ : return ARC_CC_EQ;
case NE : return ARC_CC_NE;
case GT : return ARC_CC_GT;
case LE : return ARC_CC_LE;
case GE : return ARC_CC_GE;
case LT : return ARC_CC_LT;
case GTU : return ARC_CC_HI;
case LEU : return ARC_CC_LS;
case LTU : return ARC_CC_LO;
case GEU : return ARC_CC_HS;
default : gcc_unreachable ();
}
case CC_ZNmode:
switch (GET_CODE (comparison))
{
case EQ : return ARC_CC_EQ;
case NE : return ARC_CC_NE;
case GE: return ARC_CC_P;
case LT: return ARC_CC_N;
case GT : return ARC_CC_PNZ;
default : gcc_unreachable ();
}
case CC_Zmode:
switch (GET_CODE (comparison))
{
case EQ : return ARC_CC_EQ;
case NE : return ARC_CC_NE;
default : gcc_unreachable ();
}
case CC_Cmode:
switch (GET_CODE (comparison))
{
case LTU : return ARC_CC_C;
case GEU : return ARC_CC_NC;
default : gcc_unreachable ();
}
case CC_FP_GTmode:
if (TARGET_ARGONAUT_SET && TARGET_SPFP)
switch (GET_CODE (comparison))
{
case GT : return ARC_CC_N;
case UNLE: return ARC_CC_P;
default : gcc_unreachable ();
}
else
switch (GET_CODE (comparison))
{
case GT : return ARC_CC_HI;
case UNLE : return ARC_CC_LS;
default : gcc_unreachable ();
}
case CC_FP_GEmode:
/* Same for FPX and non-FPX. */
switch (GET_CODE (comparison))
{
case GE : return ARC_CC_HS;
case UNLT : return ARC_CC_LO;
default : gcc_unreachable ();
}
case CC_FP_UNEQmode:
switch (GET_CODE (comparison))
{
case UNEQ : return ARC_CC_EQ;
case LTGT : return ARC_CC_NE;
default : gcc_unreachable ();
}
case CC_FP_ORDmode:
switch (GET_CODE (comparison))
{
case UNORDERED : return ARC_CC_C;
case ORDERED : return ARC_CC_NC;
default : gcc_unreachable ();
}
case CC_FPXmode:
switch (GET_CODE (comparison))
{
case EQ : return ARC_CC_EQ;
case NE : return ARC_CC_NE;
case UNORDERED : return ARC_CC_C;
case ORDERED : return ARC_CC_NC;
case LTGT : return ARC_CC_HI;
case UNEQ : return ARC_CC_LS;
default : gcc_unreachable ();
}
default : gcc_unreachable ();
}
/*NOTREACHED*/
return (42);
}
/* Return true if COMPARISON has a short form that can accomodate OFFSET. */
bool
arc_short_comparison_p (rtx comparison, int offset)
{
gcc_assert (ARC_CC_NC == ARC_CC_HS);
gcc_assert (ARC_CC_C == ARC_CC_LO);
switch (get_arc_condition_code (comparison))
{
case ARC_CC_EQ: case ARC_CC_NE:
return offset >= -512 && offset <= 506;
case ARC_CC_GT: case ARC_CC_LE: case ARC_CC_GE: case ARC_CC_LT:
case ARC_CC_HI: case ARC_CC_LS: case ARC_CC_LO: case ARC_CC_HS:
return offset >= -64 && offset <= 58;
default:
return false;
}
}
/* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
return the mode to be used for the comparison. */
machine_mode
arc_select_cc_mode (enum rtx_code op, rtx x, rtx y)
{
machine_mode mode = GET_MODE (x);
rtx x1;
/* For an operation that sets the condition codes as a side-effect, the
C and V flags is not set as for cmp, so we can only use comparisons where
this doesn't matter. (For LT and GE we can use "mi" and "pl"
instead.) */
/* ??? We could use "pnz" for greater than zero, however, we could then
get into trouble because the comparison could not be reversed. */
if (GET_MODE_CLASS (mode) == MODE_INT
&& y == const0_rtx
&& (op == EQ || op == NE
|| ((op == LT || op == GE) && GET_MODE_SIZE (GET_MODE (x)) <= 4)))
return CC_ZNmode;
/* add.f for if (a+b) */
if (mode == SImode
&& GET_CODE (y) == NEG
&& (op == EQ || op == NE))
return CC_ZNmode;
/* Check if this is a test suitable for bxor.f . */
if (mode == SImode && (op == EQ || op == NE) && CONST_INT_P (y)
&& ((INTVAL (y) - 1) & INTVAL (y)) == 0
&& INTVAL (y))
return CC_Zmode;
/* Check if this is a test suitable for add / bmsk.f . */
if (mode == SImode && (op == EQ || op == NE) && CONST_INT_P (y)
&& GET_CODE (x) == AND && CONST_INT_P ((x1 = XEXP (x, 1)))
&& ((INTVAL (x1) + 1) & INTVAL (x1)) == 0
&& (~INTVAL (x1) | INTVAL (y)) < 0
&& (~INTVAL (x1) | INTVAL (y)) > -0x800)
return CC_Zmode;
if (GET_MODE (x) == SImode && (op == LTU || op == GEU)
&& GET_CODE (x) == PLUS
&& (rtx_equal_p (XEXP (x, 0), y) || rtx_equal_p (XEXP (x, 1), y)))
return CC_Cmode;
if (TARGET_ARGONAUT_SET
&& ((mode == SFmode && TARGET_SPFP) || (mode == DFmode && TARGET_DPFP)))
switch (op)
{
case EQ: case NE: case UNEQ: case LTGT: case ORDERED: case UNORDERED:
return CC_FPXmode;
case LT: case UNGE: case GT: case UNLE:
return CC_FP_GTmode;
case LE: case UNGT: case GE: case UNLT:
return CC_FP_GEmode;
default: gcc_unreachable ();
}
else if (GET_MODE_CLASS (mode) == MODE_FLOAT && TARGET_OPTFPE)
switch (op)
{
case EQ: case NE: return CC_Zmode;
case LT: case UNGE:
case GT: case UNLE: return CC_FP_GTmode;
case LE: case UNGT:
case GE: case UNLT: return CC_FP_GEmode;
case UNEQ: case LTGT: return CC_FP_UNEQmode;
case ORDERED: case UNORDERED: return CC_FP_ORDmode;
default: gcc_unreachable ();
}
return CCmode;
}
/* Vectors to keep interesting information about registers where it can easily
be got. We use to use the actual mode value as the bit number, but there
is (or may be) more than 32 modes now. Instead we use two tables: one
indexed by hard register number, and one indexed by mode. */
/* The purpose of arc_mode_class is to shrink the range of modes so that
they all fit (as bit numbers) in a 32-bit word (again). Each real mode is
mapped into one arc_mode_class mode. */
enum arc_mode_class {
C_MODE,
S_MODE, D_MODE, T_MODE, O_MODE,
SF_MODE, DF_MODE, TF_MODE, OF_MODE,
V_MODE
};
/* Modes for condition codes. */
#define C_MODES (1 << (int) C_MODE)
/* Modes for single-word and smaller quantities. */
#define S_MODES ((1 << (int) S_MODE) | (1 << (int) SF_MODE))
/* Modes for double-word and smaller quantities. */
#define D_MODES (S_MODES | (1 << (int) D_MODE) | (1 << DF_MODE))
/* Mode for 8-byte DF values only. */
#define DF_MODES (1 << DF_MODE)
/* Modes for quad-word and smaller quantities. */
#define T_MODES (D_MODES | (1 << (int) T_MODE) | (1 << (int) TF_MODE))
/* Modes for 128-bit vectors. */
#define V_MODES (1 << (int) V_MODE)
/* Value is 1 if register/mode pair is acceptable on arc. */
unsigned int arc_hard_regno_mode_ok[] = {
T_MODES, T_MODES, T_MODES, T_MODES, T_MODES, T_MODES, T_MODES, T_MODES,
T_MODES, T_MODES, T_MODES, T_MODES, T_MODES, T_MODES, T_MODES, T_MODES,
T_MODES, T_MODES, T_MODES, T_MODES, T_MODES, T_MODES, T_MODES, D_MODES,
D_MODES, S_MODES, S_MODES, S_MODES, S_MODES, S_MODES, S_MODES, S_MODES,
/* ??? Leave these as S_MODES for now. */
S_MODES, S_MODES, S_MODES, S_MODES, S_MODES, S_MODES, S_MODES, S_MODES,
DF_MODES, 0, DF_MODES, 0, S_MODES, S_MODES, S_MODES, S_MODES,
S_MODES, S_MODES, S_MODES, S_MODES, S_MODES, S_MODES, S_MODES, S_MODES,
S_MODES, S_MODES, S_MODES, S_MODES, S_MODES, C_MODES, S_MODES,
V_MODES, V_MODES, V_MODES, V_MODES, V_MODES, V_MODES, V_MODES, V_MODES,
V_MODES, V_MODES, V_MODES, V_MODES, V_MODES, V_MODES, V_MODES, V_MODES,
V_MODES, V_MODES, V_MODES, V_MODES, V_MODES, V_MODES, V_MODES, V_MODES,
V_MODES, V_MODES, V_MODES, V_MODES, V_MODES, V_MODES, V_MODES, V_MODES,
V_MODES, V_MODES, V_MODES, V_MODES, V_MODES, V_MODES, V_MODES, V_MODES,
V_MODES, V_MODES, V_MODES, V_MODES, V_MODES, V_MODES, V_MODES, V_MODES,
V_MODES, V_MODES, V_MODES, V_MODES, V_MODES, V_MODES, V_MODES, V_MODES,
V_MODES, V_MODES, V_MODES, V_MODES, V_MODES, V_MODES, V_MODES, V_MODES,
S_MODES, S_MODES, S_MODES, S_MODES, S_MODES, S_MODES, S_MODES, S_MODES,
S_MODES, S_MODES, S_MODES, S_MODES, S_MODES, S_MODES, S_MODES, S_MODES
};
unsigned int arc_mode_class [NUM_MACHINE_MODES];
enum reg_class arc_regno_reg_class[FIRST_PSEUDO_REGISTER];
enum reg_class
arc_preferred_reload_class (rtx, enum reg_class cl)
{
if ((cl) == CHEAP_CORE_REGS || (cl) == WRITABLE_CORE_REGS)
return GENERAL_REGS;
return cl;
}
/* Initialize the arc_mode_class array. */
static void
arc_init_reg_tables (void)
{
int i;
for (i = 0; i < NUM_MACHINE_MODES; i++)
{
machine_mode m = (machine_mode) i;
switch (GET_MODE_CLASS (m))
{
case MODE_INT:
case MODE_PARTIAL_INT:
case MODE_COMPLEX_INT:
if (GET_MODE_SIZE (m) <= 4)
arc_mode_class[i] = 1 << (int) S_MODE;
else if (GET_MODE_SIZE (m) == 8)
arc_mode_class[i] = 1 << (int) D_MODE;
else if (GET_MODE_SIZE (m) == 16)
arc_mode_class[i] = 1 << (int) T_MODE;
else if (GET_MODE_SIZE (m) == 32)
arc_mode_class[i] = 1 << (int) O_MODE;
else
arc_mode_class[i] = 0;
break;
case MODE_FLOAT:
case MODE_COMPLEX_FLOAT:
if (GET_MODE_SIZE (m) <= 4)
arc_mode_class[i] = 1 << (int) SF_MODE;
else if (GET_MODE_SIZE (m) == 8)
arc_mode_class[i] = 1 << (int) DF_MODE;
else if (GET_MODE_SIZE (m) == 16)
arc_mode_class[i] = 1 << (int) TF_MODE;
else if (GET_MODE_SIZE (m) == 32)
arc_mode_class[i] = 1 << (int) OF_MODE;
else
arc_mode_class[i] = 0;
break;
case MODE_VECTOR_INT:
arc_mode_class [i] = (1<< (int) V_MODE);
break;
case MODE_CC:
default:
/* mode_class hasn't been initialized yet for EXTRA_CC_MODES, so
we must explicitly check for them here. */
if (i == (int) CCmode || i == (int) CC_ZNmode || i == (int) CC_Zmode
|| i == (int) CC_Cmode
|| i == CC_FP_GTmode || i == CC_FP_GEmode || i == CC_FP_ORDmode)
arc_mode_class[i] = 1 << (int) C_MODE;
else
arc_mode_class[i] = 0;
break;
}
}
}
/* Core registers 56..59 are used for multiply extension options.
The dsp option uses r56 and r57, these are then named acc1 and acc2.
acc1 is the highpart, and acc2 the lowpart, so which register gets which
number depends on endianness.
The mul64 multiplier options use r57 for mlo, r58 for mmid and r59 for mhi.
Because mlo / mhi form a 64 bit value, we use different gcc internal
register numbers to make them form a register pair as the gcc internals
know it. mmid gets number 57, if still available, and mlo / mhi get
number 58 and 59, depending on endianness. We use DBX_REGISTER_NUMBER
to map this back. */
char rname56[5] = "r56";
char rname57[5] = "r57";
char rname58[5] = "r58";
char rname59[5] = "r59";
char rname29[7] = "ilink1";
char rname30[7] = "ilink2";
static void
arc_conditional_register_usage (void)
{
int regno;
int i;
int fix_start = 60, fix_end = 55;
if (TARGET_V2)
{
/* For ARCv2 the core register set is changed. */
strcpy (rname29, "ilink");
strcpy (rname30, "r30");
fixed_regs[30] = call_used_regs[30] = 1;
}
if (TARGET_MUL64_SET)
{
fix_start = 57;
fix_end = 59;
/* We don't provide a name for mmed. In rtl / assembly resource lists,
you are supposed to refer to it as mlo & mhi, e.g
(zero_extract:SI (reg:DI 58) (const_int 32) (16)) .
In an actual asm instruction, you are of course use mmed.
The point of avoiding having a separate register for mmed is that
this way, we don't have to carry clobbers of that reg around in every
isntruction that modifies mlo and/or mhi. */
strcpy (rname57, "");
strcpy (rname58, TARGET_BIG_ENDIAN ? "mhi" : "mlo");
strcpy (rname59, TARGET_BIG_ENDIAN ? "mlo" : "mhi");
}
if (TARGET_MULMAC_32BY16_SET)
{
fix_start = 56;
fix_end = fix_end > 57 ? fix_end : 57;
strcpy (rname56, TARGET_BIG_ENDIAN ? "acc1" : "acc2");
strcpy (rname57, TARGET_BIG_ENDIAN ? "acc2" : "acc1");
}
for (regno = fix_start; regno <= fix_end; regno++)
{
if (!fixed_regs[regno])
warning (0, "multiply option implies r%d is fixed", regno);
fixed_regs [regno] = call_used_regs[regno] = 1;
}
if (TARGET_Q_CLASS)
{
reg_alloc_order[2] = 12;
reg_alloc_order[3] = 13;
reg_alloc_order[4] = 14;
reg_alloc_order[5] = 15;
reg_alloc_order[6] = 1;
reg_alloc_order[7] = 0;
reg_alloc_order[8] = 4;
reg_alloc_order[9] = 5;
reg_alloc_order[10] = 6;
reg_alloc_order[11] = 7;
reg_alloc_order[12] = 8;
reg_alloc_order[13] = 9;
reg_alloc_order[14] = 10;
reg_alloc_order[15] = 11;
}
if (TARGET_SIMD_SET)
{
int i;
for (i = ARC_FIRST_SIMD_VR_REG; i <= ARC_LAST_SIMD_VR_REG; i++)
reg_alloc_order [i] = i;
for (i = ARC_FIRST_SIMD_DMA_CONFIG_REG;
i <= ARC_LAST_SIMD_DMA_CONFIG_REG; i++)
reg_alloc_order [i] = i;
}
/* For ARC600, lp_count may not be read in an instruction
following immediately after another one setting it to a new value.
There was some discussion on how to enforce scheduling constraints for
processors with missing interlocks on the gcc mailing list:
http://gcc.gnu.org/ml/gcc/2008-05/msg00021.html .
However, we can't actually use this approach, because for ARC the
delay slot scheduling pass is active, which runs after
machine_dependent_reorg. */
if (TARGET_ARC600)
CLEAR_HARD_REG_BIT (reg_class_contents[SIBCALL_REGS], LP_COUNT);
else if (!TARGET_LP_WR_INTERLOCK)
fixed_regs[LP_COUNT] = 1;
for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
if (!call_used_regs[regno])
CLEAR_HARD_REG_BIT (reg_class_contents[SIBCALL_REGS], regno);
for (regno = 32; regno < 60; regno++)
if (!fixed_regs[regno])
SET_HARD_REG_BIT (reg_class_contents[WRITABLE_CORE_REGS], regno);
if (!TARGET_ARC600_FAMILY)
{
for (regno = 32; regno <= 60; regno++)
CLEAR_HARD_REG_BIT (reg_class_contents[CHEAP_CORE_REGS], regno);
/* If they have used -ffixed-lp_count, make sure it takes
effect. */
if (fixed_regs[LP_COUNT])
{
CLEAR_HARD_REG_BIT (reg_class_contents[LPCOUNT_REG], LP_COUNT);
CLEAR_HARD_REG_BIT (reg_class_contents[SIBCALL_REGS], LP_COUNT);
CLEAR_HARD_REG_BIT (reg_class_contents[WRITABLE_CORE_REGS], LP_COUNT);
/* Instead of taking out SF_MODE like below, forbid it outright. */
arc_hard_regno_mode_ok[60] = 0;
}
else
arc_hard_regno_mode_ok[60] = 1 << (int) S_MODE;
}
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
{
if (i < 29)
{
if (TARGET_Q_CLASS && ((i <= 3) || ((i >= 12) && (i <= 15))))
arc_regno_reg_class[i] = ARCOMPACT16_REGS;
else
arc_regno_reg_class[i] = GENERAL_REGS;
}
else if (i < 60)
arc_regno_reg_class[i]
= (fixed_regs[i]
? (TEST_HARD_REG_BIT (reg_class_contents[CHEAP_CORE_REGS], i)
? CHEAP_CORE_REGS : ALL_CORE_REGS)
: (((!TARGET_ARC600_FAMILY)
&& TEST_HARD_REG_BIT (reg_class_contents[CHEAP_CORE_REGS], i))
? CHEAP_CORE_REGS : WRITABLE_CORE_REGS));
else
arc_regno_reg_class[i] = NO_REGS;
}
/* ARCOMPACT16_REGS is empty, if TARGET_Q_CLASS has not been activated. */
if (!TARGET_Q_CLASS)
{
CLEAR_HARD_REG_SET(reg_class_contents [ARCOMPACT16_REGS]);
CLEAR_HARD_REG_SET(reg_class_contents [AC16_BASE_REGS]);
}
gcc_assert (FIRST_PSEUDO_REGISTER >= 144);
/* Handle Special Registers. */
arc_regno_reg_class[29] = LINK_REGS; /* ilink1 register. */
if (!TARGET_V2)
arc_regno_reg_class[30] = LINK_REGS; /* ilink2 register. */
arc_regno_reg_class[31] = LINK_REGS; /* blink register. */
arc_regno_reg_class[60] = LPCOUNT_REG;
arc_regno_reg_class[61] = NO_REGS; /* CC_REG: must be NO_REGS. */
arc_regno_reg_class[62] = GENERAL_REGS;
if (TARGET_DPFP)
{
for (i = 40; i < 44; ++i)
{
arc_regno_reg_class[i] = DOUBLE_REGS;
/* Unless they want us to do 'mov d1, 0x00000000' make sure
no attempt is made to use such a register as a destination
operand in *movdf_insn. */
if (!TARGET_ARGONAUT_SET)
{
/* Make sure no 'c', 'w', 'W', or 'Rac' constraint is
interpreted to mean they can use D1 or D2 in their insn. */
CLEAR_HARD_REG_BIT(reg_class_contents[CHEAP_CORE_REGS ], i);
CLEAR_HARD_REG_BIT(reg_class_contents[ALL_CORE_REGS ], i);
CLEAR_HARD_REG_BIT(reg_class_contents[WRITABLE_CORE_REGS ], i);
CLEAR_HARD_REG_BIT(reg_class_contents[MPY_WRITABLE_CORE_REGS], i);
}
}
}
else
{
/* Disable all DOUBLE_REGISTER settings,
if not generating DPFP code. */
arc_regno_reg_class[40] = ALL_REGS;
arc_regno_reg_class[41] = ALL_REGS;
arc_regno_reg_class[42] = ALL_REGS;
arc_regno_reg_class[43] = ALL_REGS;
arc_hard_regno_mode_ok[40] = 0;
arc_hard_regno_mode_ok[42] = 0;
CLEAR_HARD_REG_SET(reg_class_contents [DOUBLE_REGS]);
}
if (TARGET_SIMD_SET)
{
gcc_assert (ARC_FIRST_SIMD_VR_REG == 64);
gcc_assert (ARC_LAST_SIMD_VR_REG == 127);
for (i = ARC_FIRST_SIMD_VR_REG; i <= ARC_LAST_SIMD_VR_REG; i++)
arc_regno_reg_class [i] = SIMD_VR_REGS;
gcc_assert (ARC_FIRST_SIMD_DMA_CONFIG_REG == 128);
gcc_assert (ARC_FIRST_SIMD_DMA_CONFIG_IN_REG == 128);
gcc_assert (ARC_FIRST_SIMD_DMA_CONFIG_OUT_REG == 136);
gcc_assert (ARC_LAST_SIMD_DMA_CONFIG_REG == 143);
for (i = ARC_FIRST_SIMD_DMA_CONFIG_REG;
i <= ARC_LAST_SIMD_DMA_CONFIG_REG; i++)
arc_regno_reg_class [i] = SIMD_DMA_CONFIG_REGS;
}
/* pc : r63 */
arc_regno_reg_class[PROGRAM_COUNTER_REGNO] = GENERAL_REGS;
}
/* Handle an "interrupt" attribute; arguments as in
struct attribute_spec.handler. */
static tree
arc_handle_interrupt_attribute (tree *, tree name, tree args, int,
bool *no_add_attrs)
{
gcc_assert (args);
tree value = TREE_VALUE (args);
if (TREE_CODE (value) != STRING_CST)
{
warning (OPT_Wattributes,
"argument of %qE attribute is not a string constant",
name);
*no_add_attrs = true;
}
else if (strcmp (TREE_STRING_POINTER (value), "ilink1")
&& strcmp (TREE_STRING_POINTER (value), "ilink2")
&& !TARGET_V2)
{
warning (OPT_Wattributes,
"argument of %qE attribute is not \"ilink1\" or \"ilink2\"",
name);
*no_add_attrs = true;
}
else if (TARGET_V2
&& strcmp (TREE_STRING_POINTER (value), "ilink"))
{
warning (OPT_Wattributes,
"argument of %qE attribute is not \"ilink\"",
name);
*no_add_attrs = true;
}
return NULL_TREE;
}
/* Return zero if TYPE1 and TYPE are incompatible, one if they are compatible,
and two if they are nearly compatible (which causes a warning to be
generated). */
static int
arc_comp_type_attributes (const_tree type1,
const_tree type2)
{
int l1, l2, m1, m2, s1, s2;
/* Check for mismatch of non-default calling convention. */
if (TREE_CODE (type1) != FUNCTION_TYPE)
return 1;
/* Check for mismatched call attributes. */
l1 = lookup_attribute ("long_call", TYPE_ATTRIBUTES (type1)) != NULL;
l2 = lookup_attribute ("long_call", TYPE_ATTRIBUTES (type2)) != NULL;
m1 = lookup_attribute ("medium_call", TYPE_ATTRIBUTES (type1)) != NULL;
m2 = lookup_attribute ("medium_call", TYPE_ATTRIBUTES (type2)) != NULL;
s1 = lookup_attribute ("short_call", TYPE_ATTRIBUTES (type1)) != NULL;
s2 = lookup_attribute ("short_call", TYPE_ATTRIBUTES (type2)) != NULL;
/* Only bother to check if an attribute is defined. */
if (l1 | l2 | m1 | m2 | s1 | s2)
{
/* If one type has an attribute, the other must have the same attribute. */
if ((l1 != l2) || (m1 != m2) || (s1 != s2))
return 0;
/* Disallow mixed attributes. */
if (l1 + m1 + s1 > 1)
return 0;
}
return 1;
}
/* Set the default attributes for TYPE. */
void
arc_set_default_type_attributes (tree type ATTRIBUTE_UNUSED)
{
gcc_unreachable();
}
/* Misc. utilities. */
/* X and Y are two things to compare using CODE. Emit the compare insn and
return the rtx for the cc reg in the proper mode. */
rtx
gen_compare_reg (rtx comparison, machine_mode omode)
{
enum rtx_code code = GET_CODE (comparison);
rtx x = XEXP (comparison, 0);
rtx y = XEXP (comparison, 1);
rtx tmp, cc_reg;
machine_mode mode, cmode;
cmode = GET_MODE (x);
if (cmode == VOIDmode)
cmode = GET_MODE (y);
gcc_assert (cmode == SImode || cmode == SFmode || cmode == DFmode);
if (cmode == SImode)
{
if (!register_operand (x, SImode))
{
if (register_operand (y, SImode))
{
tmp = x;
x = y;
y = tmp;
code = swap_condition (code);
}
else
x = copy_to_mode_reg (SImode, x);
}
if (GET_CODE (y) == SYMBOL_REF && flag_pic)
y = copy_to_mode_reg (SImode, y);
}
else
{
x = force_reg (cmode, x);
y = force_reg (cmode, y);
}
mode = SELECT_CC_MODE (code, x, y);
cc_reg = gen_rtx_REG (mode, CC_REG);
/* ??? FIXME (x-y)==0, as done by both cmpsfpx_raw and
cmpdfpx_raw, is not a correct comparison for floats:
http://www.cygnus-software.com/papers/comparingfloats/comparingfloats.htm
*/
if (TARGET_ARGONAUT_SET
&& ((cmode == SFmode && TARGET_SPFP) || (cmode == DFmode && TARGET_DPFP)))
{
switch (code)
{
case NE: case EQ: case LT: case UNGE: case LE: case UNGT:
case UNEQ: case LTGT: case ORDERED: case UNORDERED:
break;
case GT: case UNLE: case GE: case UNLT:
code = swap_condition (code);
tmp = x;
x = y;
y = tmp;
break;
default:
gcc_unreachable ();
}
if (cmode == SFmode)
{
emit_insn (gen_cmpsfpx_raw (x, y));
}
else /* DFmode */
{
/* Accepts Dx regs directly by insns. */
emit_insn (gen_cmpdfpx_raw (x, y));
}
if (mode != CC_FPXmode)
emit_insn (gen_rtx_SET (cc_reg,
gen_rtx_COMPARE (mode,
gen_rtx_REG (CC_FPXmode, 61),
const0_rtx)));
}
else if (GET_MODE_CLASS (cmode) == MODE_FLOAT && TARGET_OPTFPE)
{
rtx op0 = gen_rtx_REG (cmode, 0);
rtx op1 = gen_rtx_REG (cmode, GET_MODE_SIZE (cmode) / UNITS_PER_WORD);
bool swap = false;
switch (code)
{
case NE: case EQ: case GT: case UNLE: case GE: case UNLT:
case UNEQ: case LTGT: case ORDERED: case UNORDERED:
break;
case LT: case UNGE: case LE: case UNGT:
code = swap_condition (code);
swap = true;
break;
default:
gcc_unreachable ();
}
if (currently_expanding_to_rtl)
{
if (swap)
{
tmp = x;
x = y;
y = tmp;
}
emit_move_insn (op0, x);
emit_move_insn (op1, y);
}
else
{
gcc_assert (rtx_equal_p (op0, x));
gcc_assert (rtx_equal_p (op1, y));
if (swap)
{
op0 = y;
op1 = x;
}
}
emit_insn (gen_cmp_float (cc_reg, gen_rtx_COMPARE (mode, op0, op1)));
}
else
emit_insn (gen_rtx_SET (cc_reg, gen_rtx_COMPARE (mode, x, y)));
return gen_rtx_fmt_ee (code, omode, cc_reg, const0_rtx);
}
/* Return true if VALUE, a const_double, will fit in a limm (4 byte number).
We assume the value can be either signed or unsigned. */
bool
arc_double_limm_p (rtx value)
{
HOST_WIDE_INT low, high;
gcc_assert (GET_CODE (value) == CONST_DOUBLE);
if (TARGET_DPFP)
return true;
low = CONST_DOUBLE_LOW (value);
high = CONST_DOUBLE_HIGH (value);
if (low & 0x80000000)
{
return (((unsigned HOST_WIDE_INT) low <= 0xffffffff && high == 0)
|| (((low & - (unsigned HOST_WIDE_INT) 0x80000000)
== - (unsigned HOST_WIDE_INT) 0x80000000)
&& high == -1));
}
else
{
return (unsigned HOST_WIDE_INT) low <= 0x7fffffff && high == 0;
}
}
/* Do any needed setup for a variadic function. For the ARC, we must
create a register parameter block, and then copy any anonymous arguments
in registers to memory.
CUM has not been updated for the last named argument which has type TYPE
and mode MODE, and we rely on this fact. */
static void
arc_setup_incoming_varargs (cumulative_args_t args_so_far,
machine_mode mode, tree type,
int *pretend_size, int no_rtl)
{
int first_anon_arg;
CUMULATIVE_ARGS next_cum;
/* We must treat `__builtin_va_alist' as an anonymous arg. */
next_cum = *get_cumulative_args (args_so_far);
arc_function_arg_advance (pack_cumulative_args (&next_cum), mode, type, 1);
first_anon_arg = next_cum;
if (first_anon_arg < MAX_ARC_PARM_REGS)
{
/* First anonymous (unnamed) argument is in a reg. */
/* Note that first_reg_offset < MAX_ARC_PARM_REGS. */
int first_reg_offset = first_anon_arg;
if (!no_rtl)
{
rtx regblock
= gen_rtx_MEM (BLKmode, plus_constant (Pmode, arg_pointer_rtx,
FIRST_PARM_OFFSET (0)));
move_block_from_reg (first_reg_offset, regblock,
MAX_ARC_PARM_REGS - first_reg_offset);
}
*pretend_size
= ((MAX_ARC_PARM_REGS - first_reg_offset ) * UNITS_PER_WORD);
}
}
/* Cost functions. */
/* Provide the costs of an addressing mode that contains ADDR.
If ADDR is not a valid address, its cost is irrelevant. */
int
arc_address_cost (rtx addr, machine_mode, addr_space_t, bool speed)
{
switch (GET_CODE (addr))
{
case REG :
return speed || satisfies_constraint_Rcq (addr) ? 0 : 1;
case PRE_INC: case PRE_DEC: case POST_INC: case POST_DEC:
case PRE_MODIFY: case POST_MODIFY:
return !speed;
case LABEL_REF :
case SYMBOL_REF :
case CONST :
/* Most likely needs a LIMM. */
return COSTS_N_INSNS (1);
case PLUS :
{
register rtx plus0 = XEXP (addr, 0);
register rtx plus1 = XEXP (addr, 1);
if (GET_CODE (plus0) != REG
&& (GET_CODE (plus0) != MULT
|| !CONST_INT_P (XEXP (plus0, 1))
|| (INTVAL (XEXP (plus0, 1)) != 2
&& INTVAL (XEXP (plus0, 1)) != 4)))
break;
switch (GET_CODE (plus1))
{
case CONST_INT :
return (!RTX_OK_FOR_OFFSET_P (SImode, plus1)
? COSTS_N_INSNS (1)
: speed
? 0
: (satisfies_constraint_Rcq (plus0)
&& satisfies_constraint_O (plus1))
? 0
: 1);
case REG:
return (speed < 1 ? 0
: (satisfies_constraint_Rcq (plus0)
&& satisfies_constraint_Rcq (plus1))
? 0 : 1);
case CONST :
case SYMBOL_REF :
case LABEL_REF :
return COSTS_N_INSNS (1);
default:
break;
}
break;
}
default:
break;
}
return 4;
}
/* Emit instruction X with the frame related bit set. */
static rtx
frame_insn (rtx x)
{
x = emit_insn (x);
RTX_FRAME_RELATED_P (x) = 1;
return x;
}
/* Emit a frame insn to move SRC to DST. */
static rtx
frame_move (rtx dst, rtx src)
{
rtx tmp = gen_rtx_SET (dst, src);
RTX_FRAME_RELATED_P (tmp) = 1;
return frame_insn (tmp);
}
/* Like frame_move, but add a REG_INC note for REG if ADDR contains an
auto increment address, or is zero. */
static rtx
frame_move_inc (rtx dst, rtx src, rtx reg, rtx addr)
{
rtx insn = frame_move (dst, src);
if (!addr
|| GET_CODE (addr) == PRE_DEC || GET_CODE (addr) == POST_INC
|| GET_CODE (addr) == PRE_MODIFY || GET_CODE (addr) == POST_MODIFY)
add_reg_note (insn, REG_INC, reg);
return insn;
}
/* Emit a frame insn which adjusts a frame address register REG by OFFSET. */
static rtx
frame_add (rtx reg, HOST_WIDE_INT offset)
{
gcc_assert ((offset & 0x3) == 0);
if (!offset)
return NULL_RTX;
return frame_move (reg, plus_constant (Pmode, reg, offset));
}
/* Emit a frame insn which adjusts stack pointer by OFFSET. */
static rtx
frame_stack_add (HOST_WIDE_INT offset)
{
return frame_add (stack_pointer_rtx, offset);
}
/* Traditionally, we push saved registers first in the prologue,
then we allocate the rest of the frame - and reverse in the epilogue.
This has still its merits for ease of debugging, or saving code size
or even execution time if the stack frame is so large that some accesses
can't be encoded anymore with offsets in the instruction code when using
a different scheme.
Also, it would be a good starting point if we got instructions to help
with register save/restore.
However, often stack frames are small, and the pushing / popping has
some costs:
- the stack modification prevents a lot of scheduling.
- frame allocation / deallocation needs extra instructions.
- unless we know that we compile ARC700 user code, we need to put
a memory barrier after frame allocation / before deallocation to
prevent interrupts clobbering our data in the frame.
In particular, we don't have any such guarantees for library functions,
which tend to, on the other hand, to have small frames.
Thus, for small frames, we'd like to use a different scheme:
- The frame is allocated in full with the first prologue instruction,
and deallocated in full with the last epilogue instruction.
Thus, the instructions in-betwen can be freely scheduled.
- If the function has no outgoing arguments on the stack, we can allocate
one register save slot at the top of the stack. This register can then
be saved simultanously with frame allocation, and restored with
frame deallocation.
This register can be picked depending on scheduling considerations,
although same though should go into having some set of registers
to be potentially lingering after a call, and others to be available
immediately - i.e. in the absence of interprocedual optimization, we
can use an ABI-like convention for register allocation to reduce
stalls after function return. */
/* Function prologue/epilogue handlers. */
/* ARCompact stack frames look like:
Before call After call
high +-----------------------+ +-----------------------+
mem | reg parm save area | | reg parm save area |
| only created for | | only created for |
| variable arg fns | | variable arg fns |
AP +-----------------------+ +-----------------------+
| return addr register | | return addr register |
| (if required) | | (if required) |
+-----------------------+ +-----------------------+
| | | |
| reg save area | | reg save area |
| | | |
+-----------------------+ +-----------------------+
| frame pointer | | frame pointer |
| (if required) | | (if required) |
FP +-----------------------+ +-----------------------+
| | | |
| local/temp variables | | local/temp variables |
| | | |
+-----------------------+ +-----------------------+
| | | |
| arguments on stack | | arguments on stack |
| | | |
SP +-----------------------+ +-----------------------+
| reg parm save area |
| only created for |
| variable arg fns |
AP +-----------------------+
| return addr register |
| (if required) |
+-----------------------+
| |
| reg save area |
| |
+-----------------------+
| frame pointer |
| (if required) |
FP +-----------------------+
| |
| local/temp variables |
| |
+-----------------------+
| |
| arguments on stack |
low | |
mem SP +-----------------------+
Notes:
1) The "reg parm save area" does not exist for non variable argument fns.
The "reg parm save area" can be eliminated completely if we created our
own va-arc.h, but that has tradeoffs as well (so it's not done). */
/* Structure to be filled in by arc_compute_frame_size with register
save masks, and offsets for the current function. */
struct GTY (()) arc_frame_info
{
unsigned int total_size; /* # bytes that the entire frame takes up. */
unsigned int extra_size; /* # bytes of extra stuff. */
unsigned int pretend_size; /* # bytes we push and pretend caller did. */
unsigned int args_size; /* # bytes that outgoing arguments take up. */
unsigned int reg_size; /* # bytes needed to store regs. */
unsigned int var_size; /* # bytes that variables take up. */
unsigned int reg_offset; /* Offset from new sp to store regs. */
unsigned int gmask; /* Mask of saved gp registers. */
int initialized; /* Nonzero if frame size already calculated. */
short millicode_start_reg;
short millicode_end_reg;
bool save_return_addr;
};
/* Defining data structures for per-function information. */
typedef struct GTY (()) machine_function
{
enum arc_function_type fn_type;
struct arc_frame_info frame_info;
/* To keep track of unalignment caused by short insns. */
int unalign;
int force_short_suffix; /* Used when disgorging return delay slot insns. */
const char *size_reason;
struct arc_ccfsm ccfsm_current;
/* Map from uid to ccfsm state during branch shortening. */
rtx ccfsm_current_insn;
char arc_reorg_started;
char prescan_initialized;
} machine_function;
/* Type of function DECL.
The result is cached. To reset the cache at the end of a function,
call with DECL = NULL_TREE. */
enum arc_function_type
arc_compute_function_type (struct function *fun)
{
tree decl = fun->decl;
tree a;
enum arc_function_type fn_type = fun->machine->fn_type;
if (fn_type != ARC_FUNCTION_UNKNOWN)
return fn_type;
/* Assume we have a normal function (not an interrupt handler). */
fn_type = ARC_FUNCTION_NORMAL;
/* Now see if this is an interrupt handler. */
for (a = DECL_ATTRIBUTES (decl);
a;
a = TREE_CHAIN (a))
{
tree name = TREE_PURPOSE (a), args = TREE_VALUE (a);
if (name == get_identifier ("interrupt")
&& list_length (args) == 1
&& TREE_CODE (TREE_VALUE (args)) == STRING_CST)
{
tree value = TREE_VALUE (args);
if (!strcmp (TREE_STRING_POINTER (value), "ilink1")
|| !strcmp (TREE_STRING_POINTER (value), "ilink"))
fn_type = ARC_FUNCTION_ILINK1;
else if (!strcmp (TREE_STRING_POINTER (value), "ilink2"))
fn_type = ARC_FUNCTION_ILINK2;
else
gcc_unreachable ();
break;
}
}
return fun->machine->fn_type = fn_type;
}
#define FRAME_POINTER_MASK (1 << (FRAME_POINTER_REGNUM))
#define RETURN_ADDR_MASK (1 << (RETURN_ADDR_REGNUM))
/* Tell prologue and epilogue if register REGNO should be saved / restored.
The return address and frame pointer are treated separately.
Don't consider them here.
Addition for pic: The gp register needs to be saved if the current
function changes it to access gotoff variables.
FIXME: This will not be needed if we used some arbitrary register
instead of r26.
*/
#define MUST_SAVE_REGISTER(regno, interrupt_p) \
(((regno) != RETURN_ADDR_REGNUM && (regno) != FRAME_POINTER_REGNUM \
&& (df_regs_ever_live_p (regno) && (!call_used_regs[regno] || interrupt_p))) \
|| (flag_pic && crtl->uses_pic_offset_table \
&& regno == PIC_OFFSET_TABLE_REGNUM) )
#define MUST_SAVE_RETURN_ADDR \
(cfun->machine->frame_info.save_return_addr)
/* Return non-zero if there are registers to be saved or loaded using
millicode thunks. We can only use consecutive sequences starting
with r13, and not going beyond r25.
GMASK is a bitmask of registers to save. This function sets
FRAME->millicod_start_reg .. FRAME->millicode_end_reg to the range
of registers to be saved / restored with a millicode call. */
static int
arc_compute_millicode_save_restore_regs (unsigned int gmask,
struct arc_frame_info *frame)
{
int regno;
int start_reg = 13, end_reg = 25;
for (regno = start_reg; regno <= end_reg && (gmask & (1L << regno));)
regno++;
end_reg = regno - 1;
/* There is no point in using millicode thunks if we don't save/restore
at least three registers. For non-leaf functions we also have the
blink restore. */
if (regno - start_reg >= 3 - (crtl->is_leaf == 0))
{
frame->millicode_start_reg = 13;
frame->millicode_end_reg = regno - 1;
return 1;
}
return 0;
}
/* Return the bytes needed to compute the frame pointer from the current
stack pointer.
SIZE is the size needed for local variables. */
unsigned int
arc_compute_frame_size (int size) /* size = # of var. bytes allocated. */
{
int regno;
unsigned int total_size, var_size, args_size, pretend_size, extra_size;
unsigned int reg_size, reg_offset;
unsigned int gmask;
enum arc_function_type fn_type;
int interrupt_p;
struct arc_frame_info *frame_info = &cfun->machine->frame_info;
size = ARC_STACK_ALIGN (size);
/* 1) Size of locals and temporaries */
var_size = size;
/* 2) Size of outgoing arguments */
args_size = crtl->outgoing_args_size;
/* 3) Calculate space needed for saved registers.
??? We ignore the extension registers for now. */
/* See if this is an interrupt handler. Call used registers must be saved
for them too. */
reg_size = 0;
gmask = 0;
fn_type = arc_compute_function_type (cfun);
interrupt_p = ARC_INTERRUPT_P (fn_type);
for (regno = 0; regno <= 31; regno++)
{
if (MUST_SAVE_REGISTER (regno, interrupt_p))
{
reg_size += UNITS_PER_WORD;
gmask |= 1 << regno;
}
}
/* 4) Space for back trace data structure.
<return addr reg size> (if required) + <fp size> (if required). */
frame_info->save_return_addr
= (!crtl->is_leaf || df_regs_ever_live_p (RETURN_ADDR_REGNUM));
/* Saving blink reg in case of leaf function for millicode thunk calls. */
if (optimize_size && !TARGET_NO_MILLICODE_THUNK_SET)
{
if (arc_compute_millicode_save_restore_regs (gmask, frame_info))
frame_info->save_return_addr = true;
}
extra_size = 0;
if (MUST_SAVE_RETURN_ADDR)
extra_size = 4;
if (frame_pointer_needed)
extra_size += 4;
/* 5) Space for variable arguments passed in registers */
pretend_size = crtl->args.pretend_args_size;
/* Ensure everything before the locals is aligned appropriately. */
{
unsigned int extra_plus_reg_size;
unsigned int extra_plus_reg_size_aligned;
extra_plus_reg_size = extra_size + reg_size;
extra_plus_reg_size_aligned = ARC_STACK_ALIGN(extra_plus_reg_size);
reg_size = extra_plus_reg_size_aligned - extra_size;
}
/* Compute total frame size. */
total_size = var_size + args_size + extra_size + pretend_size + reg_size;
total_size = ARC_STACK_ALIGN (total_size);
/* Compute offset of register save area from stack pointer:
Frame: pretend_size <blink> reg_size <fp> var_size args_size <--sp
*/
reg_offset = (total_size - (pretend_size + reg_size + extra_size)
+ (frame_pointer_needed ? 4 : 0));
/* Save computed information. */
frame_info->total_size = total_size;
frame_info->extra_size = extra_size;
frame_info->pretend_size = pretend_size;
frame_info->var_size = var_size;
frame_info->args_size = args_size;
frame_info->reg_size = reg_size;
frame_info->reg_offset = reg_offset;
frame_info->gmask = gmask;
frame_info->initialized = reload_completed;
/* Ok, we're done. */
return total_size;
}
/* Common code to save/restore registers. */
/* BASE_REG is the base register to use for addressing and to adjust.
GMASK is a bitmask of general purpose registers to save/restore.
epilogue_p 0: prologue 1:epilogue 2:epilogue, sibling thunk
If *FIRST_OFFSET is non-zero, add it first to BASE_REG - preferably
using a pre-modify for the first memory access. *FIRST_OFFSET is then
zeroed. */
static void
arc_save_restore (rtx base_reg,
unsigned int gmask, int epilogue_p, int *first_offset)
{
unsigned int offset = 0;
int regno;
struct arc_frame_info *frame = &cfun->machine->frame_info;
rtx sibthunk_insn = NULL_RTX;
if (gmask)
{
/* Millicode thunks implementation:
Generates calls to millicodes for registers starting from r13 to r25
Present Limitations:
- Only one range supported. The remaining regs will have the ordinary
st and ld instructions for store and loads. Hence a gmask asking
to store r13-14, r16-r25 will only generate calls to store and
load r13 to r14 while store and load insns will be generated for
r16 to r25 in the prologue and epilogue respectively.
- Presently library only supports register ranges starting from r13.
*/
if (epilogue_p == 2 || frame->millicode_end_reg > 14)
{
int start_call = frame->millicode_start_reg;
int end_call = frame->millicode_end_reg;
int n_regs = end_call - start_call + 1;
int i = 0, r, off = 0;
rtx insn;
rtx ret_addr = gen_rtx_REG (Pmode, RETURN_ADDR_REGNUM);
if (*first_offset)
{
/* "reg_size" won't be more than 127 . */
gcc_assert (epilogue_p || abs (*first_offset) <= 127);
frame_add (base_reg, *first_offset);
*first_offset = 0;
}
insn = gen_rtx_PARALLEL
(VOIDmode, rtvec_alloc ((epilogue_p == 2) + n_regs + 1));
if (epilogue_p == 2)
i += 2;
else
XVECEXP (insn, 0, n_regs) = gen_rtx_CLOBBER (VOIDmode, ret_addr);
for (r = start_call; r <= end_call; r++, off += UNITS_PER_WORD, i++)
{
rtx reg = gen_rtx_REG (SImode, r);
rtx mem
= gen_frame_mem (SImode, plus_constant (Pmode, base_reg, off));
if (epilogue_p)
XVECEXP (insn, 0, i) = gen_rtx_SET (reg, mem);
else
XVECEXP (insn, 0, i) = gen_rtx_SET (mem, reg);
gmask = gmask & ~(1L << r);
}
if (epilogue_p == 2)
sibthunk_insn = insn;
else
{
insn = frame_insn (insn);
if (epilogue_p)
for (r = start_call; r <= end_call; r++)
{
rtx reg = gen_rtx_REG (SImode, r);
add_reg_note (insn, REG_CFA_RESTORE, reg);
}
}
offset += off;
}
for (regno = 0; regno <= 31; regno++)
{
if ((gmask & (1L << regno)) != 0)
{
rtx reg = gen_rtx_REG (SImode, regno);
rtx addr, mem;
int cfa_adjust = *first_offset;
if (*first_offset)
{
gcc_assert (!offset);
addr = plus_constant (Pmode, base_reg, *first_offset);
addr = gen_rtx_PRE_MODIFY (Pmode, base_reg, addr);
*first_offset = 0;
}
else
{
gcc_assert (SMALL_INT (offset));
addr = plus_constant (Pmode, base_reg, offset);
}
mem = gen_frame_mem (SImode, addr);
if (epilogue_p)
{
rtx insn =
frame_move_inc (reg, mem, base_reg, addr);
add_reg_note (insn, REG_CFA_RESTORE, reg);
if (cfa_adjust)
{
enum reg_note note = REG_CFA_ADJUST_CFA;
add_reg_note (insn, note,
gen_rtx_SET (stack_pointer_rtx,
plus_constant (Pmode,
stack_pointer_rtx,
cfa_adjust)));
}
}
else
frame_move_inc (mem, reg, base_reg, addr);
offset += UNITS_PER_WORD;
} /* if */
} /* for */
}/* if */
if (sibthunk_insn)
{
int start_call = frame->millicode_start_reg;
int end_call = frame->millicode_end_reg;
int r;
rtx r12 = gen_rtx_REG (Pmode, 12);
frame_insn (gen_rtx_SET (r12, GEN_INT (offset)));
XVECEXP (sibthunk_insn, 0, 0) = ret_rtx;
XVECEXP (sibthunk_insn, 0, 1)
= gen_rtx_SET (stack_pointer_rtx,
gen_rtx_PLUS (Pmode, stack_pointer_rtx, r12));
sibthunk_insn = emit_jump_insn (sibthunk_insn);
RTX_FRAME_RELATED_P (sibthunk_insn) = 1;
/* Would be nice if we could do this earlier, when the PARALLEL
is populated, but these need to be attached after the
emit. */
for (r = start_call; r <= end_call; r++)
{
rtx reg = gen_rtx_REG (SImode, r);
add_reg_note (sibthunk_insn, REG_CFA_RESTORE, reg);
}
}
} /* arc_save_restore */
int arc_return_address_regs[4]
= {0, RETURN_ADDR_REGNUM, ILINK1_REGNUM, ILINK2_REGNUM};
/* Set up the stack and frame pointer (if desired) for the function. */
void
arc_expand_prologue (void)
{
int size = get_frame_size ();
unsigned int gmask = cfun->machine->frame_info.gmask;
/* unsigned int frame_pointer_offset;*/
unsigned int frame_size_to_allocate;
/* (FIXME: The first store will use a PRE_MODIFY; this will usually be r13.
Change the stack layout so that we rather store a high register with the
PRE_MODIFY, thus enabling more short insn generation.) */
int first_offset = 0;
size = ARC_STACK_ALIGN (size);
/* Compute/get total frame size. */
size = (!cfun->machine->frame_info.initialized
? arc_compute_frame_size (size)
: cfun->machine->frame_info.total_size);
if (flag_stack_usage_info)
current_function_static_stack_size = size;
/* Keep track of frame size to be allocated. */
frame_size_to_allocate = size;
/* These cases shouldn't happen. Catch them now. */
gcc_assert (!(size == 0 && gmask));
/* Allocate space for register arguments if this is a variadic function. */
if (cfun->machine->frame_info.pretend_size != 0)
{
/* Ensure pretend_size is maximum of 8 * word_size. */
gcc_assert (cfun->machine->frame_info.pretend_size <= 32);
frame_stack_add (-(HOST_WIDE_INT)cfun->machine->frame_info.pretend_size);
frame_size_to_allocate -= cfun->machine->frame_info.pretend_size;
}
/* The home-grown ABI says link register is saved first. */
if (MUST_SAVE_RETURN_ADDR)
{
rtx ra = gen_rtx_REG (SImode, RETURN_ADDR_REGNUM);
rtx mem = gen_frame_mem (Pmode, gen_rtx_PRE_DEC (Pmode, stack_pointer_rtx));
frame_move_inc (mem, ra, stack_pointer_rtx, 0);
frame_size_to_allocate -= UNITS_PER_WORD;
} /* MUST_SAVE_RETURN_ADDR */
/* Save any needed call-saved regs (and call-used if this is an
interrupt handler) for ARCompact ISA. */
if (cfun->machine->frame_info.reg_size)
{
first_offset = -cfun->machine->frame_info.reg_size;
/* N.B. FRAME_POINTER_MASK and RETURN_ADDR_MASK are cleared in gmask. */
arc_save_restore (stack_pointer_rtx, gmask, 0, &first_offset);
frame_size_to_allocate -= cfun->machine->frame_info.reg_size;
}
/* Save frame pointer if needed. */
if (frame_pointer_needed)
{
rtx addr = gen_rtx_PLUS (Pmode, stack_pointer_rtx,
GEN_INT (-UNITS_PER_WORD + first_offset));
rtx mem = gen_frame_mem (Pmode, gen_rtx_PRE_MODIFY (Pmode,
stack_pointer_rtx,
addr));
frame_move_inc (mem, frame_pointer_rtx, stack_pointer_rtx, 0);
frame_size_to_allocate -= UNITS_PER_WORD;
first_offset = 0;
frame_move (frame_pointer_rtx, stack_pointer_rtx);
}
/* ??? We don't handle the case where the saved regs are more than 252
bytes away from sp. This can be handled by decrementing sp once, saving
the regs, and then decrementing it again. The epilogue doesn't have this
problem as the `ld' insn takes reg+limm values (though it would be more
efficient to avoid reg+limm). */
frame_size_to_allocate -= first_offset;
/* Allocate the stack frame. */
if (frame_size_to_allocate > 0)
frame_stack_add ((HOST_WIDE_INT) 0 - frame_size_to_allocate);
/* Setup the gp register, if needed. */
if (crtl->uses_pic_offset_table)
arc_finalize_pic ();
}
/* Do any necessary cleanup after a function to restore stack, frame,
and regs. */
void
arc_expand_epilogue (int sibcall_p)
{
int size = get_frame_size ();
enum arc_function_type fn_type = arc_compute_function_type (cfun);
size = ARC_STACK_ALIGN (size);
size = (!cfun->machine->frame_info.initialized
? arc_compute_frame_size (size)
: cfun->machine->frame_info.total_size);
unsigned int pretend_size = cfun->machine->frame_info.pretend_size;
unsigned int frame_size;
unsigned int size_to_deallocate;
int restored;
int can_trust_sp_p = !cfun->calls_alloca;
int first_offset = 0;
int millicode_p = cfun->machine->frame_info.millicode_end_reg > 0;
rtx insn;
size_to_deallocate = size;
frame_size = size - (pretend_size +
cfun->machine->frame_info.reg_size +
cfun->machine->frame_info.extra_size);
/* ??? There are lots of optimizations that can be done here.
EG: Use fp to restore regs if it's closer.
Maybe in time we'll do them all. For now, always restore regs from
sp, but don't restore sp if we don't have to. */
if (!can_trust_sp_p)
gcc_assert (frame_pointer_needed);
/* Restore stack pointer to the beginning of saved register area for
ARCompact ISA. */
if (frame_size)
{
if (frame_pointer_needed)
frame_move (stack_pointer_rtx, frame_pointer_rtx);
else
first_offset = frame_size;
size_to_deallocate -= frame_size;
}
else if (!can_trust_sp_p)
frame_stack_add (-frame_size);
/* Restore any saved registers. */
if (frame_pointer_needed)
{
rtx addr = gen_rtx_POST_INC (Pmode, stack_pointer_rtx);
insn = frame_move_inc (frame_pointer_rtx, gen_frame_mem (Pmode, addr),
stack_pointer_rtx, 0);
add_reg_note (insn, REG_CFA_RESTORE, frame_pointer_rtx);
add_reg_note (insn, REG_CFA_DEF_CFA,
plus_constant (SImode, stack_pointer_rtx,
4));
size_to_deallocate -= UNITS_PER_WORD;
}
/* Load blink after the calls to thunk calls in case of optimize size. */
if (millicode_p)
{
int sibthunk_p = (!sibcall_p
&& fn_type == ARC_FUNCTION_NORMAL
&& !cfun->machine->frame_info.pretend_size);
gcc_assert (!(cfun->machine->frame_info.gmask
& (FRAME_POINTER_MASK | RETURN_ADDR_MASK)));
arc_save_restore (stack_pointer_rtx,
cfun->machine->frame_info.gmask,
1 + sibthunk_p, &first_offset);
if (sibthunk_p)
return;
}
/* If we are to restore registers, and first_offset would require
a limm to be encoded in a PRE_MODIFY, yet we can add it with a
fast add to the stack pointer, do this now. */
if ((!SMALL_INT (first_offset)
&& cfun->machine->frame_info.gmask
&& ((TARGET_ARC700 && !optimize_size)
? first_offset <= 0x800
: satisfies_constraint_C2a (GEN_INT (first_offset))))
/* Also do this if we have both gprs and return
address to restore, and they both would need a LIMM. */
|| (MUST_SAVE_RETURN_ADDR
&& !SMALL_INT ((cfun->machine->frame_info.reg_size + first_offset) >> 2)
&& cfun->machine->frame_info.gmask))
{
frame_stack_add (first_offset);
first_offset = 0;
}
if (MUST_SAVE_RETURN_ADDR)
{
rtx ra = gen_rtx_REG (Pmode, RETURN_ADDR_REGNUM);
int ra_offs = cfun->machine->frame_info.reg_size + first_offset;
rtx addr = plus_constant (Pmode, stack_pointer_rtx, ra_offs);
HOST_WIDE_INT cfa_adjust = 0;
/* If the load of blink would need a LIMM, but we can add
the offset quickly to sp, do the latter. */
if (!SMALL_INT (ra_offs >> 2)
&& !cfun->machine->frame_info.gmask
&& ((TARGET_ARC700 && !optimize_size)
? ra_offs <= 0x800
: satisfies_constraint_C2a (GEN_INT (ra_offs))))
{
size_to_deallocate -= ra_offs - first_offset;
first_offset = 0;
frame_stack_add (ra_offs);
ra_offs = 0;
addr = stack_pointer_rtx;
}
/* See if we can combine the load of the return address with the
final stack adjustment.
We need a separate load if there are still registers to
restore. We also want a separate load if the combined insn
would need a limm, but a separate load doesn't. */
if (ra_offs
&& !cfun->machine->frame_info.gmask
&& (SMALL_INT (ra_offs) || !SMALL_INT (ra_offs >> 2)))
{
addr = gen_rtx_PRE_MODIFY (Pmode, stack_pointer_rtx, addr);
cfa_adjust = ra_offs;
first_offset = 0;
size_to_deallocate -= cfun->machine->frame_info.reg_size;
}
else if (!ra_offs && size_to_deallocate == UNITS_PER_WORD)
{
addr = gen_rtx_POST_INC (Pmode, addr);
cfa_adjust = GET_MODE_SIZE (Pmode);
size_to_deallocate = 0;
}
insn = frame_move_inc (ra, gen_frame_mem (Pmode, addr),
stack_pointer_rtx, addr);
if (cfa_adjust)
{
enum reg_note note = REG_CFA_ADJUST_CFA;
add_reg_note (insn, note,
gen_rtx_SET (stack_pointer_rtx,
plus_constant (SImode, stack_pointer_rtx,
cfa_adjust)));
}
add_reg_note (insn, REG_CFA_RESTORE, ra);
}
if (!millicode_p)
{
if (cfun->machine->frame_info.reg_size)
arc_save_restore (stack_pointer_rtx,
/* The zeroing of these two bits is unnecessary, but leave this in for clarity. */
cfun->machine->frame_info.gmask
& ~(FRAME_POINTER_MASK | RETURN_ADDR_MASK), 1, &first_offset);
}
/* The rest of this function does the following:
ARCompact : handle epilogue_delay, restore sp (phase-2), return
*/
/* Keep track of how much of the stack pointer we've restored.
It makes the following a lot more readable. */
size_to_deallocate += first_offset;
restored = size - size_to_deallocate;
if (size > restored)
frame_stack_add (size - restored);
/* Emit the return instruction. */
if (sibcall_p == FALSE)
emit_jump_insn (gen_simple_return ());
}
/* Return the offset relative to the stack pointer where the return address
is stored, or -1 if it is not stored. */
int
arc_return_slot_offset ()
{
struct arc_frame_info *afi = &cfun->machine->frame_info;
return (afi->save_return_addr
? afi->total_size - afi->pretend_size - afi->extra_size : -1);
}
/* PIC */
/* Emit special PIC prologues and epilogues. */
/* If the function has any GOTOFF relocations, then the GOTBASE
register has to be setup in the prologue
The instruction needed at the function start for setting up the
GOTBASE register is
add rdest, pc,
----------------------------------------------------------
The rtl to be emitted for this should be:
set (reg basereg)
(plus (reg pc)
(const (unspec (symref _DYNAMIC) 3)))
---------------------------------------------------------- */
static void
arc_finalize_pic (void)
{
rtx pat;
rtx baseptr_rtx = gen_rtx_REG (Pmode, PIC_OFFSET_TABLE_REGNUM);
if (crtl->uses_pic_offset_table == 0)
return;
gcc_assert (flag_pic != 0);
pat = gen_rtx_SYMBOL_REF (Pmode, "_DYNAMIC");
pat = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, pat), ARC_UNSPEC_GOT);
pat = gen_rtx_CONST (Pmode, pat);
pat = gen_rtx_SET (baseptr_rtx, pat);
emit_insn (pat);
}
/* !TARGET_BARREL_SHIFTER support. */
/* Emit a shift insn to set OP0 to OP1 shifted by OP2; CODE specifies what
kind of shift. */
void
emit_shift (enum rtx_code code, rtx op0, rtx op1, rtx op2)
{
rtx shift = gen_rtx_fmt_ee (code, SImode, op1, op2);
rtx pat
= ((shift4_operator (shift, SImode) ? gen_shift_si3 : gen_shift_si3_loop)
(op0, op1, op2, shift));
emit_insn (pat);
}
/* Output the assembler code for doing a shift.
We go to a bit of trouble to generate efficient code as the ARC601 only has
single bit shifts. This is taken from the h8300 port. We only have one
mode of shifting and can't access individual bytes like the h8300 can, so
this is greatly simplified (at the expense of not generating hyper-
efficient code).
This function is not used if the variable shift insns are present. */
/* FIXME: This probably can be done using a define_split in arc.md.
Alternately, generate rtx rather than output instructions. */
const char *
output_shift (rtx *operands)
{
/* static int loopend_lab;*/
rtx shift = operands[3];
machine_mode mode = GET_MODE (shift);
enum rtx_code code = GET_CODE (shift);
const char *shift_one;
gcc_assert (mode == SImode);
switch (code)
{
case ASHIFT: shift_one = "add %0,%1,%1"; break;
case ASHIFTRT: shift_one = "asr %0,%1"; break;
case LSHIFTRT: shift_one = "lsr %0,%1"; break;
default: gcc_unreachable ();
}
if (GET_CODE (operands[2]) != CONST_INT)
{
output_asm_insn ("and.f lp_count,%2, 0x1f", operands);
goto shiftloop;
}
else
{
int n;
n = INTVAL (operands[2]);
/* Only consider the lower 5 bits of the shift count. */
n = n & 0x1f;
/* First see if we can do them inline. */
/* ??? We could get better scheduling & shorter code (using short insns)
by using splitters. Alas, that'd be even more verbose. */
if (code == ASHIFT && n <= 9 && n > 2
&& dest_reg_operand (operands[4], SImode))
{
output_asm_insn ("mov %4,0\n\tadd3 %0,%4,%1", operands);
for (n -=3 ; n >= 3; n -= 3)
output_asm_insn ("add3 %0,%4,%0", operands);
if (n == 2)
output_asm_insn ("add2 %0,%4,%0", operands);
else if (n)
output_asm_insn ("add %0,%0,%0", operands);
}
else if (n <= 4)
{
while (--n >= 0)
{
output_asm_insn (shift_one, operands);
operands[1] = operands[0];
}
}
/* See if we can use a rotate/and. */
else if (n == BITS_PER_WORD - 1)
{
switch (code)
{
case ASHIFT :
output_asm_insn ("and %0,%1,1\n\tror %0,%0", operands);
break;
case ASHIFTRT :
/* The ARC doesn't have a rol insn. Use something else. */
output_asm_insn ("add.f 0,%1,%1\n\tsbc %0,%0,%0", operands);
break;
case LSHIFTRT :
/* The ARC doesn't have a rol insn. Use something else. */
output_asm_insn ("add.f 0,%1,%1\n\trlc %0,0", operands);
break;
default:
break;
}
}
else if (n == BITS_PER_WORD - 2 && dest_reg_operand (operands[4], SImode))
{
switch (code)
{
case ASHIFT :
output_asm_insn ("and %0,%1,3\n\tror %0,%0\n\tror %0,%0", operands);
break;
case ASHIFTRT :
#if 1 /* Need some scheduling comparisons. */
output_asm_insn ("add.f %4,%1,%1\n\tsbc %0,%0,%0\n\t"
"add.f 0,%4,%4\n\trlc %0,%0", operands);
#else
output_asm_insn ("add.f %4,%1,%1\n\tbxor %0,%4,31\n\t"
"sbc.f %0,%0,%4\n\trlc %0,%0", operands);
#endif
break;
case LSHIFTRT :
#if 1
output_asm_insn ("add.f %4,%1,%1\n\trlc %0,0\n\t"
"add.f 0,%4,%4\n\trlc %0,%0", operands);
#else
output_asm_insn ("add.f %0,%1,%1\n\trlc.f %0,0\n\t"
"and %0,%0,1\n\trlc %0,%0", operands);
#endif
break;
default:
break;
}
}
else if (n == BITS_PER_WORD - 3 && code == ASHIFT)
output_asm_insn ("and %0,%1,7\n\tror %0,%0\n\tror %0,%0\n\tror %0,%0",
operands);
/* Must loop. */
else
{
operands[2] = GEN_INT (n);
output_asm_insn ("mov.f lp_count, %2", operands);
shiftloop:
{
output_asm_insn ("lpnz\t2f", operands);
output_asm_insn (shift_one, operands);
output_asm_insn ("nop", operands);
fprintf (asm_out_file, "2:\t%s end single insn loop\n",
ASM_COMMENT_START);
}
}
}
return "";
}
/* Nested function support. */
/* Directly store VALUE into memory object BLOCK at OFFSET. */
static void
emit_store_direct (rtx block, int offset, int value)
{
emit_insn (gen_store_direct (adjust_address (block, SImode, offset),
force_reg (SImode,
gen_int_mode (value, SImode))));
}
/* Emit RTL insns to initialize the variable parts of a trampoline.
FNADDR is an RTX for the address of the function's pure code.
CXT is an RTX for the static chain value for the function. */
/* With potentially multiple shared objects loaded, and multiple stacks
present for multiple thereds where trampolines might reside, a simple
range check will likely not suffice for the profiler to tell if a callee
is a trampoline. We a speedier check by making the trampoline start at
an address that is not 4-byte aligned.
A trampoline looks like this:
nop_s 0x78e0
entry:
ld_s r12,[pcl,12] 0xd403
ld r11,[pcl,12] 0x170c 700b
j_s [r12] 0x7c00
nop_s 0x78e0
The fastest trampoline to execute for trampolines within +-8KB of CTX
would be:
add2 r11,pcl,s12
j [limm] 0x20200f80 limm
and that would also be faster to write to the stack by computing the offset
from CTX to TRAMP at compile time. However, it would really be better to
get rid of the high cost of cache invalidation when generating trampolines,
which requires that the code part of trampolines stays constant, and
additionally either
- making sure that no executable code but trampolines is on the stack,
no icache entries linger for the area of the stack from when before the
stack was allocated, and allocating trampolines in trampoline-only
cache lines
or
- allocate trampolines fram a special pool of pre-allocated trampolines. */
static void
arc_initialize_trampoline (rtx tramp, tree fndecl, rtx cxt)
{
rtx fnaddr = XEXP (DECL_RTL (fndecl), 0);
emit_store_direct (tramp, 0, TARGET_BIG_ENDIAN ? 0x78e0d403 : 0xd40378e0);
emit_store_direct (tramp, 4, TARGET_BIG_ENDIAN ? 0x170c700b : 0x700b170c);
emit_store_direct (tramp, 8, TARGET_BIG_ENDIAN ? 0x7c0078e0 : 0x78e07c00);
emit_move_insn (adjust_address (tramp, SImode, 12), fnaddr);
emit_move_insn (adjust_address (tramp, SImode, 16), cxt);
emit_insn (gen_flush_icache (adjust_address (tramp, SImode, 0)));
}
/* Allow the profiler to easily distinguish trampolines from normal
functions. */
static rtx
arc_trampoline_adjust_address (rtx addr)
{
return plus_constant (Pmode, addr, 2);
}
/* This is set briefly to 1 when we output a ".as" address modifer, and then
reset when we output the scaled address. */
static int output_scaled = 0;
/* Print operand X (an rtx) in assembler syntax to file FILE.
CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
For `%' followed by punctuation, CODE is the punctuation and X is null. */
/* In final.c:output_asm_insn:
'l' : label
'a' : address
'c' : constant address if CONSTANT_ADDRESS_P
'n' : negative
Here:
'Z': log2(x+1)-1
'z': log2
'M': log2(~x)
'#': condbranch delay slot suffix
'*': jump delay slot suffix
'?' : nonjump-insn suffix for conditional execution or short instruction
'!' : jump / call suffix for conditional execution or short instruction
'`': fold constant inside unary o-perator, re-recognize, and emit.
'd'
'D'
'R': Second word
'S'
'B': Branch comparison operand - suppress sda reference
'H': Most significant word
'L': Least significant word
'A': ASCII decimal representation of floating point value
'U': Load/store update or scaling indicator
'V': cache bypass indicator for volatile
'P'
'F'
'^'
'O': Operator
'o': original symbol - no @ prepending. */
void
arc_print_operand (FILE *file, rtx x, int code)
{
switch (code)
{
case 'Z':
if (GET_CODE (x) == CONST_INT)
fprintf (file, "%d",exact_log2(INTVAL (x) + 1) - 1 );
else
output_operand_lossage ("invalid operand to %%Z code");
return;
case 'z':
if (GET_CODE (x) == CONST_INT)
fprintf (file, "%d",exact_log2(INTVAL (x)) );
else
output_operand_lossage ("invalid operand to %%z code");
return;
case 'M':
if (GET_CODE (x) == CONST_INT)
fprintf (file, "%d",exact_log2(~INTVAL (x)) );
else
output_operand_lossage ("invalid operand to %%M code");
return;
case '#' :
/* Conditional branches depending on condition codes.
Note that this is only for branches that were known to depend on
condition codes before delay slot scheduling;
out-of-range brcc / bbit expansions should use '*'.
This distinction is important because of the different
allowable delay slot insns and the output of the delay suffix
for TARGET_AT_DBR_COND_EXEC. */
case '*' :
/* Unconditional branches / branches not depending on condition codes.
This could also be a CALL_INSN.
Output the appropriate delay slot suffix. */
if (final_sequence && final_sequence->len () != 1)
{
rtx_insn *jump = final_sequence->insn (0);
rtx_insn *delay = final_sequence->insn (1);
/* For TARGET_PAD_RETURN we might have grabbed the delay insn. */
if (delay->deleted ())
return;
if (JUMP_P (jump) && INSN_ANNULLED_BRANCH_P (jump))
fputs (INSN_FROM_TARGET_P (delay) ? ".d"
: TARGET_AT_DBR_CONDEXEC && code == '#' ? ".d"
: get_attr_type (jump) == TYPE_RETURN && code == '#' ? ""
: ".nd",
file);
else
fputs (".d", file);
}
return;
case '?' : /* with leading "." */
case '!' : /* without leading "." */
/* This insn can be conditionally executed. See if the ccfsm machinery
says it should be conditionalized.
If it shouldn't, we'll check the compact attribute if this insn
has a short variant, which may be used depending on code size and
alignment considerations. */
if (current_insn_predicate)
arc_ccfsm_current.cc
= get_arc_condition_code (current_insn_predicate);
if (ARC_CCFSM_COND_EXEC_P (&arc_ccfsm_current))
{
/* Is this insn in a delay slot sequence? */
if (!final_sequence || XVECLEN (final_sequence, 0) < 2
|| current_insn_predicate
|| CALL_P (final_sequence->insn (0))
|| simplejump_p (final_sequence->insn (0)))
{
/* This insn isn't in a delay slot sequence, or conditionalized
independently of its position in a delay slot. */
fprintf (file, "%s%s",
code == '?' ? "." : "",
arc_condition_codes[arc_ccfsm_current.cc]);
/* If this is a jump, there are still short variants. However,
only beq_s / bne_s have the same offset range as b_s,
and the only short conditional returns are jeq_s and jne_s. */
if (code == '!'
&& (arc_ccfsm_current.cc == ARC_CC_EQ
|| arc_ccfsm_current.cc == ARC_CC_NE
|| 0 /* FIXME: check if branch in 7 bit range. */))
output_short_suffix (file);
}
else if (code == '!') /* Jump with delay slot. */
fputs (arc_condition_codes[arc_ccfsm_current.cc], file);
else /* An Instruction in a delay slot of a jump or call. */
{
rtx jump = XVECEXP (final_sequence, 0, 0);
rtx insn = XVECEXP (final_sequence, 0, 1);
/* If the insn is annulled and is from the target path, we need
to inverse the condition test. */
if (JUMP_P (jump) && INSN_ANNULLED_BRANCH_P (jump))
{
if (INSN_FROM_TARGET_P (insn))
fprintf (file, "%s%s",
code == '?' ? "." : "",
arc_condition_codes[ARC_INVERSE_CONDITION_CODE (arc_ccfsm_current.cc)]);
else
fprintf (file, "%s%s",
code == '?' ? "." : "",
arc_condition_codes[arc_ccfsm_current.cc]);
if (arc_ccfsm_current.state == 5)
arc_ccfsm_current.state = 0;
}
else
/* This insn is executed for either path, so don't
conditionalize it at all. */
output_short_suffix (file);
}
}
else
output_short_suffix (file);
return;
case'`':
/* FIXME: fold constant inside unary operator, re-recognize, and emit. */
gcc_unreachable ();
case 'd' :
fputs (arc_condition_codes[get_arc_condition_code (x)], file);
return;
case 'D' :
fputs (arc_condition_codes[ARC_INVERSE_CONDITION_CODE
(get_arc_condition_code (x))],
file);
return;
case 'R' :
/* Write second word of DImode or DFmode reference,
register or memory. */
if (GET_CODE (x) == REG)
fputs (reg_names[REGNO (x)+1], file);
else if (GET_CODE (x) == MEM)
{
fputc ('[', file);
/* Handle possible auto-increment. For PRE_INC / PRE_DEC /
PRE_MODIFY, we will have handled the first word already;
For POST_INC / POST_DEC / POST_MODIFY, the access to the
first word will be done later. In either case, the access
to the first word will do the modify, and we only have
to add an offset of four here. */
if (GET_CODE (XEXP (x, 0)) == PRE_INC
|| GET_CODE (XEXP (x, 0)) == PRE_DEC
|| GET_CODE (XEXP (x, 0)) == PRE_MODIFY
|| GET_CODE (XEXP (x, 0)) == POST_INC
|| GET_CODE (XEXP (x, 0)) == POST_DEC
|| GET_CODE (XEXP (x, 0)) == POST_MODIFY)
output_address (VOIDmode,
plus_constant (Pmode, XEXP (XEXP (x, 0), 0), 4));
else if (output_scaled)
{
rtx addr = XEXP (x, 0);
int size = GET_MODE_SIZE (GET_MODE (x));
output_address (VOIDmode,
plus_constant (Pmode, XEXP (addr, 0),
((INTVAL (XEXP (addr, 1)) + 4)
>> (size == 2 ? 1 : 2))));
output_scaled = 0;
}
else
output_address (VOIDmode,
plus_constant (Pmode, XEXP (x, 0), 4));
fputc (']', file);
}
else
output_operand_lossage ("invalid operand to %%R code");
return;
case 'S' :
/* FIXME: remove %S option. */
break;
case 'B' /* Branch or other LIMM ref - must not use sda references. */ :
if (CONSTANT_P (x))
{
output_addr_const (file, x);
return;
}
break;
case 'H' :
case 'L' :
if (GET_CODE (x) == REG)
{
/* L = least significant word, H = most significant word. */
if ((WORDS_BIG_ENDIAN != 0) ^ (code == 'L'))
fputs (reg_names[REGNO (x)], file);
else
fputs (reg_names[REGNO (x)+1], file);
}
else if (GET_CODE (x) == CONST_INT
|| GET_CODE (x) == CONST_DOUBLE)
{
rtx first, second;
split_double (x, &first, &second);
if((WORDS_BIG_ENDIAN) == 0)
fprintf (file, "0x%08" PRIx64,
code == 'L' ? INTVAL (first) : INTVAL (second));
else
fprintf (file, "0x%08" PRIx64,
code == 'L' ? INTVAL (second) : INTVAL (first));
}
else
output_operand_lossage ("invalid operand to %%H/%%L code");
return;
case 'A' :
{
char str[30];
gcc_assert (GET_CODE (x) == CONST_DOUBLE
&& GET_MODE_CLASS (GET_MODE (x)) == MODE_FLOAT);
real_to_decimal (str, CONST_DOUBLE_REAL_VALUE (x), sizeof (str), 0, 1);
fprintf (file, "%s", str);
return;
}
case 'U' :
/* Output a load/store with update indicator if appropriate. */
if (GET_CODE (x) == MEM)
{
rtx addr = XEXP (x, 0);
switch (GET_CODE (addr))
{
case PRE_INC: case PRE_DEC: case PRE_MODIFY:
fputs (".a", file); break;
case POST_INC: case POST_DEC: case POST_MODIFY:
fputs (".ab", file); break;
case PLUS:
/* Are we using a scaled index? */
if (GET_CODE (XEXP (addr, 0)) == MULT)
fputs (".as", file);
/* Can we use a scaled offset? */
else if (CONST_INT_P (XEXP (addr, 1))
&& GET_MODE_SIZE (GET_MODE (x)) > 1
&& (!(INTVAL (XEXP (addr, 1))
& (GET_MODE_SIZE (GET_MODE (x)) - 1) & 3))
/* Does it make a difference? */
&& !SMALL_INT_RANGE(INTVAL (XEXP (addr, 1)),
GET_MODE_SIZE (GET_MODE (x)) - 2, 0))
{
fputs (".as", file);
output_scaled = 1;
}
break;
case REG:
break;
default:
gcc_assert (CONSTANT_P (addr)); break;
}
}
else
output_operand_lossage ("invalid operand to %%U code");
return;
case 'V' :
/* Output cache bypass indicator for a load/store insn. Volatile memory
refs are defined to use the cache bypass mechanism. */
if (GET_CODE (x) == MEM)
{
if (MEM_VOLATILE_P (x) && !TARGET_VOLATILE_CACHE_SET )
fputs (".di", file);
}
else
output_operand_lossage ("invalid operand to %%V code");
return;
/* plt code. */
case 'P':
case 0 :
/* Do nothing special. */
break;
case 'F':
fputs (reg_names[REGNO (x)]+1, file);
return;
case '^':
/* This punctuation character is needed because label references are
printed in the output template using %l. This is a front end
character, and when we want to emit a '@' before it, we have to use
this '^'. */
fputc('@',file);
return;
case 'O':
/* Output an operator. */
switch (GET_CODE (x))
{
case PLUS: fputs ("add", file); return;
case SS_PLUS: fputs ("adds", file); return;
case AND: fputs ("and", file); return;
case IOR: fputs ("or", file); return;
case XOR: fputs ("xor", file); return;
case MINUS: fputs ("sub", file); return;
case SS_MINUS: fputs ("subs", file); return;
case ASHIFT: fputs ("asl", file); return;
case ASHIFTRT: fputs ("asr", file); return;
case LSHIFTRT: fputs ("lsr", file); return;
case ROTATERT: fputs ("ror", file); return;
case MULT: fputs ("mpy", file); return;
case ABS: fputs ("abs", file); return; /* Unconditional. */
case NEG: fputs ("neg", file); return;
case SS_NEG: fputs ("negs", file); return;
case NOT: fputs ("not", file); return; /* Unconditional. */
case ZERO_EXTEND:
fputs ("ext", file); /* bmsk allows predication. */
goto size_suffix;
case SIGN_EXTEND: /* Unconditional. */
fputs ("sex", file);
size_suffix:
switch (GET_MODE (XEXP (x, 0)))
{
case QImode: fputs ("b", file); return;
case HImode: fputs ("w", file); return;
default: break;
}
break;
case SS_TRUNCATE:
if (GET_MODE (x) != HImode)
break;
fputs ("sat16", file);
default: break;
}
output_operand_lossage ("invalid operand to %%O code"); return;
case 'o':
if (GET_CODE (x) == SYMBOL_REF)
{
assemble_name (file, XSTR (x, 0));
return;
}
break;
case '&':
if (TARGET_ANNOTATE_ALIGN && cfun->machine->size_reason)
fprintf (file, "; unalign: %d", cfun->machine->unalign);
return;
case '+':
if (TARGET_V2)
fputs ("m", file);
else
fputs ("h", file);
return;
case '_':
if (TARGET_V2)
fputs ("h", file);
else
fputs ("w", file);
return;
default :
/* Unknown flag. */
output_operand_lossage ("invalid operand output code");
}
switch (GET_CODE (x))
{
case REG :
fputs (reg_names[REGNO (x)], file);
break;
case MEM :
{
rtx addr = XEXP (x, 0);
int size = GET_MODE_SIZE (GET_MODE (x));
fputc ('[', file);
switch (GET_CODE (addr))
{
case PRE_INC: case POST_INC:
output_address (VOIDmode,
plus_constant (Pmode, XEXP (addr, 0), size)); break;
case PRE_DEC: case POST_DEC:
output_address (VOIDmode,
plus_constant (Pmode, XEXP (addr, 0), -size));
break;
case PRE_MODIFY: case POST_MODIFY:
output_address (VOIDmode, XEXP (addr, 1)); break;
case PLUS:
if (output_scaled)
{
output_address (VOIDmode,
plus_constant (Pmode, XEXP (addr, 0),
(INTVAL (XEXP (addr, 1))
>> (size == 2 ? 1 : 2))));
output_scaled = 0;
}
else
output_address (VOIDmode, addr);
break;
default:
if (flag_pic && CONSTANT_ADDRESS_P (addr))
arc_output_pic_addr_const (file, addr, code);
else
output_address (VOIDmode, addr);
break;
}
fputc (']', file);
break;
}
case CONST_DOUBLE :
/* We handle SFmode constants here as output_addr_const doesn't. */
if (GET_MODE (x) == SFmode)
{
long l;
REAL_VALUE_TO_TARGET_SINGLE (*CONST_DOUBLE_REAL_VALUE (x), l);
fprintf (file, "0x%08lx", l);
break;
}
/* Fall through. Let output_addr_const deal with it. */
default :
if (flag_pic)
arc_output_pic_addr_const (file, x, code);
else
{
/* FIXME: Dirty way to handle @var@sda+const. Shd be handled
with asm_output_symbol_ref */
if (GET_CODE (x) == CONST && GET_CODE (XEXP (x, 0)) == PLUS)
{
x = XEXP (x, 0);
output_addr_const (file, XEXP (x, 0));
if (GET_CODE (XEXP (x, 0)) == SYMBOL_REF && SYMBOL_REF_SMALL_P (XEXP (x, 0)))
fprintf (file, "@sda");
if (GET_CODE (XEXP (x, 1)) != CONST_INT
|| INTVAL (XEXP (x, 1)) >= 0)
fprintf (file, "+");
output_addr_const (file, XEXP (x, 1));
}
else
output_addr_const (file, x);
}
if (GET_CODE (x) == SYMBOL_REF && SYMBOL_REF_SMALL_P (x))
fprintf (file, "@sda");
break;
}
}
/* Print a memory address as an operand to reference that memory location. */
void
arc_print_operand_address (FILE *file , rtx addr)
{
register rtx base, index = 0;
switch (GET_CODE (addr))
{
case REG :
fputs (reg_names[REGNO (addr)], file);
break;
case SYMBOL_REF :
output_addr_const (file, addr);
if (SYMBOL_REF_SMALL_P (addr))
fprintf (file, "@sda");
break;
case PLUS :
if (GET_CODE (XEXP (addr, 0)) == MULT)
index = XEXP (XEXP (addr, 0), 0), base = XEXP (addr, 1);
else if (CONST_INT_P (XEXP (addr, 0)))
index = XEXP (addr, 0), base = XEXP (addr, 1);
else
base = XEXP (addr, 0), index = XEXP (addr, 1);
gcc_assert (OBJECT_P (base));
arc_print_operand_address (file, base);
if (CONSTANT_P (base) && CONST_INT_P (index))
fputc ('+', file);
else
fputc (',', file);
gcc_assert (OBJECT_P (index));
arc_print_operand_address (file, index);
break;
case CONST:
{
rtx c = XEXP (addr, 0);
gcc_assert (GET_CODE (XEXP (c, 0)) == SYMBOL_REF);
gcc_assert (GET_CODE (XEXP (c, 1)) == CONST_INT);
output_address (VOIDmode, XEXP (addr, 0));
break;
}
case PRE_INC :
case PRE_DEC :
/* We shouldn't get here as we've lost the mode of the memory object
(which says how much to inc/dec by. */
gcc_unreachable ();
break;
default :
if (flag_pic)
arc_output_pic_addr_const (file, addr, 0);
else
output_addr_const (file, addr);
break;
}
}
/* Called via walk_stores. DATA points to a hash table we can use to
establish a unique SYMBOL_REF for each counter, which corresponds to
a caller-callee pair.
X is a store which we want to examine for an UNSPEC_PROF, which
would be an address loaded into a register, or directly used in a MEM.
If we found an UNSPEC_PROF, if we encounter a new counter the first time,
write out a description and a data allocation for a 32 bit counter.
Also, fill in the appropriate symbol_ref into each UNSPEC_PROF instance. */
static void
write_profile_sections (rtx dest ATTRIBUTE_UNUSED, rtx x, void *data)
{
rtx *srcp, src;
htab_t htab = (htab_t) data;
rtx *slot;
if (GET_CODE (x) != SET)
return;
srcp = &SET_SRC (x);
if (MEM_P (*srcp))
srcp = &XEXP (*srcp, 0);
else if (MEM_P (SET_DEST (x)))
srcp = &XEXP (SET_DEST (x), 0);
src = *srcp;
if (GET_CODE (src) != CONST)
return;
src = XEXP (src, 0);
if (GET_CODE (src) != UNSPEC || XINT (src, 1) != UNSPEC_PROF)
return;
gcc_assert (XVECLEN (src, 0) == 3);
if (!htab_elements (htab))
{
output_asm_insn (".section .__arc_profile_desc, \"a\"\n"
"\t.long %0 + 1\n",
&XVECEXP (src, 0, 0));
}
slot = (rtx *) htab_find_slot (htab, src, INSERT);
if (*slot == HTAB_EMPTY_ENTRY)
{
static int count_nr;
char buf[24];
rtx count;
*slot = src;
sprintf (buf, "__prof_count%d", count_nr++);
count = gen_rtx_SYMBOL_REF (Pmode, xstrdup (buf));
XVECEXP (src, 0, 2) = count;
output_asm_insn (".section\t.__arc_profile_desc, \"a\"\n"
"\t.long\t%1\n"
"\t.section\t.__arc_profile_counters, \"aw\"\n"
"\t.type\t%o2, @object\n"
"\t.size\t%o2, 4\n"
"%o2:\t.zero 4",
&XVECEXP (src, 0, 0));
*srcp = count;
}
else
*srcp = XVECEXP (*slot, 0, 2);
}
/* Hash function for UNSPEC_PROF htab. Use both the caller's name and
the callee's name (if known). */
static hashval_t
unspec_prof_hash (const void *x)
{
const_rtx u = (const_rtx) x;
const_rtx s1 = XVECEXP (u, 0, 1);
return (htab_hash_string (XSTR (XVECEXP (u, 0, 0), 0))
^ (s1->code == SYMBOL_REF ? htab_hash_string (XSTR (s1, 0)) : 0));
}
/* Equality function for UNSPEC_PROF htab. Two pieces of UNSPEC_PROF rtl
shall refer to the same counter if both caller name and callee rtl
are identical. */
static int
unspec_prof_htab_eq (const void *x, const void *y)
{
const_rtx u0 = (const_rtx) x;
const_rtx u1 = (const_rtx) y;
const_rtx s01 = XVECEXP (u0, 0, 1);
const_rtx s11 = XVECEXP (u1, 0, 1);
return (!strcmp (XSTR (XVECEXP (u0, 0, 0), 0),
XSTR (XVECEXP (u1, 0, 0), 0))
&& rtx_equal_p (s01, s11));
}
/* Conditional execution support.
This is based on the ARM port but for now is much simpler.
A finite state machine takes care of noticing whether or not instructions
can be conditionally executed, and thus decrease execution time and code
size by deleting branch instructions. The fsm is controlled by
arc_ccfsm_advance (called by arc_final_prescan_insn), and controls the
actions of PRINT_OPERAND. The patterns in the .md file for the branch
insns also have a hand in this. */
/* The way we leave dealing with non-anulled or annull-false delay slot
insns to the consumer is awkward. */
/* The state of the fsm controlling condition codes are:
0: normal, do nothing special
1: don't output this insn
2: don't output this insn
3: make insns conditional
4: make insns conditional
5: make insn conditional (only for outputting anulled delay slot insns)
special value for cfun->machine->uid_ccfsm_state:
6: return with but one insn before it since function start / call
State transitions (state->state by whom, under what condition):
0 -> 1 arc_ccfsm_advance, if insn is a conditional branch skipping over
some instructions.
0 -> 2 arc_ccfsm_advance, if insn is a conditional branch followed
by zero or more non-jump insns and an unconditional branch with
the same target label as the condbranch.
1 -> 3 branch patterns, after having not output the conditional branch
2 -> 4 branch patterns, after having not output the conditional branch
0 -> 5 branch patterns, for anulled delay slot insn.
3 -> 0 ASM_OUTPUT_INTERNAL_LABEL, if the `target' label is reached
(the target label has CODE_LABEL_NUMBER equal to
arc_ccfsm_target_label).
4 -> 0 arc_ccfsm_advance, if `target' unconditional branch is reached
3 -> 1 arc_ccfsm_advance, finding an 'else' jump skipping over some insns.
5 -> 0 when outputting the delay slot insn
If the jump clobbers the conditions then we use states 2 and 4.
A similar thing can be done with conditional return insns.
We also handle separating branches from sets of the condition code.
This is done here because knowledge of the ccfsm state is required,
we may not be outputting the branch. */
/* arc_final_prescan_insn calls arc_ccfsm_advance to adjust arc_ccfsm_current,
before letting final output INSN. */
static void
arc_ccfsm_advance (rtx_insn *insn, struct arc_ccfsm *state)
{
/* BODY will hold the body of INSN. */
register rtx body;
/* This will be 1 if trying to repeat the trick (ie: do the `else' part of
an if/then/else), and things need to be reversed. */
int reverse = 0;
/* If we start with a return insn, we only succeed if we find another one. */
int seeking_return = 0;
/* START_INSN will hold the insn from where we start looking. This is the
first insn after the following code_label if REVERSE is true. */
rtx_insn *start_insn = insn;
/* Type of the jump_insn. Brcc insns don't affect ccfsm changes,
since they don't rely on a cmp preceding the. */
enum attr_type jump_insn_type;
/* Allow -mdebug-ccfsm to turn this off so we can see how well it does.
We can't do this in macro FINAL_PRESCAN_INSN because its called from
final_scan_insn which has `optimize' as a local. */
if (optimize < 2 || TARGET_NO_COND_EXEC)
return;
/* Ignore notes and labels. */
if (!INSN_P (insn))
return;
body = PATTERN (insn);
/* If in state 4, check if the target branch is reached, in order to
change back to state 0. */
if (state->state == 4)
{
if (insn == state->target_insn)
{
state->target_insn = NULL;
state->state = 0;
}
return;
}
/* If in state 3, it is possible to repeat the trick, if this insn is an
unconditional branch to a label, and immediately following this branch
is the previous target label which is only used once, and the label this
branch jumps to is not too far off. Or in other words "we've done the
`then' part, see if we can do the `else' part." */
if (state->state == 3)
{
if (simplejump_p (insn))
{
start_insn = next_nonnote_insn (start_insn);
if (GET_CODE (start_insn) == BARRIER)
{
/* ??? Isn't this always a barrier? */
start_insn = next_nonnote_insn (start_insn);
}
if (GET_CODE (start_insn) == CODE_LABEL
&& CODE_LABEL_NUMBER (start_insn) == state->target_label
&& LABEL_NUSES (start_insn) == 1)
reverse = TRUE;
else
return;
}
else if (GET_CODE (body) == SIMPLE_RETURN)
{
start_insn = next_nonnote_insn (start_insn);
if (GET_CODE (start_insn) == BARRIER)
start_insn = next_nonnote_insn (start_insn);
if (GET_CODE (start_insn) == CODE_LABEL
&& CODE_LABEL_NUMBER (start_insn) == state->target_label
&& LABEL_NUSES (start_insn) == 1)
{
reverse = TRUE;
seeking_return = 1;
}
else
return;
}
else
return;
}
if (GET_CODE (insn) != JUMP_INSN
|| GET_CODE (PATTERN (insn)) == ADDR_VEC
|| GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC)
return;
/* We can't predicate BRCC or loop ends.
Also, when generating PIC code, and considering a medium range call,
we can't predicate the call. */
jump_insn_type = get_attr_type (insn);
if (jump_insn_type == TYPE_BRCC
|| jump_insn_type == TYPE_BRCC_NO_DELAY_SLOT
|| jump_insn_type == TYPE_LOOP_END
|| (jump_insn_type == TYPE_CALL && !get_attr_predicable (insn)))
return;
/* This jump might be paralleled with a clobber of the condition codes,
the jump should always come first. */
if (GET_CODE (body) == PARALLEL && XVECLEN (body, 0) > 0)
body = XVECEXP (body, 0, 0);
if (reverse
|| (GET_CODE (body) == SET && GET_CODE (SET_DEST (body)) == PC
&& GET_CODE (SET_SRC (body)) == IF_THEN_ELSE))
{
int insns_skipped = 0, fail = FALSE, succeed = FALSE;
/* Flag which part of the IF_THEN_ELSE is the LABEL_REF. */
int then_not_else = TRUE;
/* Nonzero if next insn must be the target label. */
int next_must_be_target_label_p;
rtx_insn *this_insn = start_insn;
rtx label = 0;
/* Register the insn jumped to. */
if (reverse)
{
if (!seeking_return)
label = XEXP (SET_SRC (body), 0);
}
else if (GET_CODE (XEXP (SET_SRC (body), 1)) == LABEL_REF)
label = XEXP (XEXP (SET_SRC (body), 1), 0);
else if (GET_CODE (XEXP (SET_SRC (body), 2)) == LABEL_REF)
{
label = XEXP (XEXP (SET_SRC (body), 2), 0);
then_not_else = FALSE;
}
else if (GET_CODE (XEXP (SET_SRC (body), 1)) == SIMPLE_RETURN)
seeking_return = 1;
else if (GET_CODE (XEXP (SET_SRC (body), 2)) == SIMPLE_RETURN)
{
seeking_return = 1;
then_not_else = FALSE;
}
else
gcc_unreachable ();
/* If this is a non-annulled branch with a delay slot, there is
no need to conditionalize the delay slot. */
if (NEXT_INSN (PREV_INSN (insn)) != insn
&& state->state == 0 && !INSN_ANNULLED_BRANCH_P (insn))
{
this_insn = NEXT_INSN (this_insn);
gcc_assert (NEXT_INSN (NEXT_INSN (PREV_INSN (start_insn)))
== NEXT_INSN (this_insn));
}
/* See how many insns this branch skips, and what kind of insns. If all
insns are okay, and the label or unconditional branch to the same
label is not too far away, succeed. */
for (insns_skipped = 0, next_must_be_target_label_p = FALSE;
!fail && !succeed && insns_skipped < MAX_INSNS_SKIPPED;
insns_skipped++)
{
rtx scanbody;
this_insn = next_nonnote_insn (this_insn);
if (!this_insn)
break;
if (next_must_be_target_label_p)
{
if (GET_CODE (this_insn) == BARRIER)
continue;
if (GET_CODE (this_insn) == CODE_LABEL
&& this_insn == label)
{
state->state = 1;
succeed = TRUE;
}
else
fail = TRUE;
break;
}
scanbody = PATTERN (this_insn);
switch (GET_CODE (this_insn))
{
case CODE_LABEL:
/* Succeed if it is the target label, otherwise fail since
control falls in from somewhere else. */
if (this_insn == label)
{
state->state = 1;
succeed = TRUE;
}
else
fail = TRUE;
break;
case BARRIER:
/* Succeed if the following insn is the target label.
Otherwise fail.
If return insns are used then the last insn in a function
will be a barrier. */
next_must_be_target_label_p = TRUE;
break;
case CALL_INSN:
/* Can handle a call insn if there are no insns after it.
IE: The next "insn" is the target label. We don't have to
worry about delay slots as such insns are SEQUENCE's inside
INSN's. ??? It is possible to handle such insns though. */
if (get_attr_cond (this_insn) == COND_CANUSE)
next_must_be_target_label_p = TRUE;
else
fail = TRUE;
break;
case JUMP_INSN:
/* If this is an unconditional branch to the same label, succeed.
If it is to another label, do nothing. If it is conditional,
fail. */
/* ??? Probably, the test for the SET and the PC are
unnecessary. */
if (GET_CODE (scanbody) == SET
&& GET_CODE (SET_DEST (scanbody)) == PC)
{
if (GET_CODE (SET_SRC (scanbody)) == LABEL_REF
&& XEXP (SET_SRC (scanbody), 0) == label && !reverse)
{
state->state = 2;
succeed = TRUE;
}
else if (GET_CODE (SET_SRC (scanbody)) == IF_THEN_ELSE)
fail = TRUE;
else if (get_attr_cond (this_insn) != COND_CANUSE)
fail = TRUE;
}
else if (GET_CODE (scanbody) == SIMPLE_RETURN
&& seeking_return)
{
state->state = 2;
succeed = TRUE;
}
else if (GET_CODE (scanbody) == PARALLEL)
{
if (get_attr_cond (this_insn) != COND_CANUSE)
fail = TRUE;
}
break;
case INSN:
/* We can only do this with insns that can use the condition
codes (and don't set them). */
if (GET_CODE (scanbody) == SET
|| GET_CODE (scanbody) == PARALLEL)
{
if (get_attr_cond (this_insn) != COND_CANUSE)
fail = TRUE;
}
/* We can't handle other insns like sequences. */
else
fail = TRUE;
break;
default:
break;
}
}
if (succeed)
{
if ((!seeking_return) && (state->state == 1 || reverse))
state->target_label = CODE_LABEL_NUMBER (label);
else if (seeking_return || state->state == 2)
{
while (this_insn && GET_CODE (PATTERN (this_insn)) == USE)
{
this_insn = next_nonnote_insn (this_insn);
gcc_assert (!this_insn ||
(GET_CODE (this_insn) != BARRIER
&& GET_CODE (this_insn) != CODE_LABEL));
}
if (!this_insn)
{
/* Oh dear! we ran off the end, give up. */
extract_insn_cached (insn);
state->state = 0;
state->target_insn = NULL;
return;
}
state->target_insn = this_insn;
}
else
gcc_unreachable ();
/* If REVERSE is true, ARM_CURRENT_CC needs to be inverted from
what it was. */
if (!reverse)
{
state->cond = XEXP (SET_SRC (body), 0);
state->cc = get_arc_condition_code (XEXP (SET_SRC (body), 0));
}
if (reverse || then_not_else)
state->cc = ARC_INVERSE_CONDITION_CODE (state->cc);
}
/* Restore recog_operand. Getting the attributes of other insns can
destroy this array, but final.c assumes that it remains intact
across this call; since the insn has been recognized already we
call insn_extract direct. */
extract_insn_cached (insn);
}
}
/* Record that we are currently outputting label NUM with prefix PREFIX.
It it's the label we're looking for, reset the ccfsm machinery.
Called from ASM_OUTPUT_INTERNAL_LABEL. */
static void
arc_ccfsm_at_label (const char *prefix, int num, struct arc_ccfsm *state)
{
if (state->state == 3 && state->target_label == num
&& !strcmp (prefix, "L"))
{
state->state = 0;
state->target_insn = NULL;
}
}
/* We are considering a conditional branch with the condition COND.
Check if we want to conditionalize a delay slot insn, and if so modify
the ccfsm state accordingly.
REVERSE says branch will branch when the condition is false. */
void
arc_ccfsm_record_condition (rtx cond, bool reverse, rtx_insn *jump,
struct arc_ccfsm *state)
{
rtx_insn *seq_insn = NEXT_INSN (PREV_INSN (jump));
if (!state)
state = &arc_ccfsm_current;
gcc_assert (state->state == 0);
if (seq_insn != jump)
{
rtx insn = XVECEXP (PATTERN (seq_insn), 0, 1);
if (!as_a<rtx_insn *> (insn)->deleted ()
&& INSN_ANNULLED_BRANCH_P (jump)
&& (TARGET_AT_DBR_CONDEXEC || INSN_FROM_TARGET_P (insn)))
{
state->cond = cond;
state->cc = get_arc_condition_code (cond);
if (!reverse)
arc_ccfsm_current.cc
= ARC_INVERSE_CONDITION_CODE (state->cc);
rtx pat = PATTERN (insn);
if (GET_CODE (pat) == COND_EXEC)
gcc_assert ((INSN_FROM_TARGET_P (insn)
? ARC_INVERSE_CONDITION_CODE (state->cc) : state->cc)
== get_arc_condition_code (XEXP (pat, 0)));
else
state->state = 5;
}
}
}
/* Update *STATE as we would when we emit INSN. */
static void
arc_ccfsm_post_advance (rtx_insn *insn, struct arc_ccfsm *state)
{
enum attr_type type;
if (LABEL_P (insn))
arc_ccfsm_at_label ("L", CODE_LABEL_NUMBER (insn), state);
else if (JUMP_P (insn)
&& GET_CODE (PATTERN (insn)) != ADDR_VEC
&& GET_CODE (PATTERN (insn)) != ADDR_DIFF_VEC
&& ((type = get_attr_type (insn)) == TYPE_BRANCH
|| (type == TYPE_UNCOND_BRANCH
/* ??? Maybe should also handle TYPE_RETURN here,
but we don't have a testcase for that. */
&& ARC_CCFSM_BRANCH_DELETED_P (state))))
{
if (ARC_CCFSM_BRANCH_DELETED_P (state))
ARC_CCFSM_RECORD_BRANCH_DELETED (state);
else
{
rtx src = SET_SRC (PATTERN (insn));
arc_ccfsm_record_condition (XEXP (src, 0), XEXP (src, 1) == pc_rtx,
insn, state);
}
}
else if (arc_ccfsm_current.state == 5)
arc_ccfsm_current.state = 0;
}
/* Return true if the current insn, which is a conditional branch, is to be
deleted. */
bool
arc_ccfsm_branch_deleted_p (void)
{
return ARC_CCFSM_BRANCH_DELETED_P (&arc_ccfsm_current);
}
/* Record a branch isn't output because subsequent insns can be
conditionalized. */
void
arc_ccfsm_record_branch_deleted (void)
{
ARC_CCFSM_RECORD_BRANCH_DELETED (&arc_ccfsm_current);
}
/* During insn output, indicate if the current insn is predicated. */
bool
arc_ccfsm_cond_exec_p (void)
{
return (cfun->machine->prescan_initialized
&& ARC_CCFSM_COND_EXEC_P (&arc_ccfsm_current));
}
/* Like next_active_insn, but return NULL if we find an ADDR_(DIFF_)VEC,
and look inside SEQUENCEs. */
static rtx_insn *
arc_next_active_insn (rtx_insn *insn, struct arc_ccfsm *statep)
{
rtx pat;
do
{
if (statep)
arc_ccfsm_post_advance (insn, statep);
insn = NEXT_INSN (insn);
if (!insn || BARRIER_P (insn))
return NULL;
if (statep)
arc_ccfsm_advance (insn, statep);
}
while (NOTE_P (insn)
|| (cfun->machine->arc_reorg_started
&& LABEL_P (insn) && !label_to_alignment (insn))
|| (NONJUMP_INSN_P (insn)
&& (GET_CODE (PATTERN (insn)) == USE
|| GET_CODE (PATTERN (insn)) == CLOBBER)));
if (!LABEL_P (insn))
{
gcc_assert (INSN_P (insn));
pat = PATTERN (insn);
if (GET_CODE (pat) == ADDR_VEC || GET_CODE (pat) == ADDR_DIFF_VEC)
return NULL;
if (GET_CODE (pat) == SEQUENCE)
return as_a <rtx_insn *> (XVECEXP (pat, 0, 0));
}
return insn;
}
/* When deciding if an insn should be output short, we want to know something
about the following insns:
- if another insn follows which we know we can output as a short insn
before an alignment-sensitive point, we can output this insn short:
the decision about the eventual alignment can be postponed.
- if a to-be-aligned label comes next, we should output this insn such
as to get / preserve 4-byte alignment.
- if a likely branch without delay slot insn, or a call with an immediately
following short insn comes next, we should out output this insn such as to
get / preserve 2 mod 4 unalignment.
- do the same for a not completely unlikely branch with a short insn
following before any other branch / label.
- in order to decide if we are actually looking at a branch, we need to
call arc_ccfsm_advance.
- in order to decide if we are looking at a short insn, we should know
if it is conditionalized. To a first order of approximation this is
the case if the state from arc_ccfsm_advance from before this insn
indicates the insn is conditionalized. However, a further refinement
could be to not conditionalize an insn if the destination register(s)
is/are dead in the non-executed case. */
/* Return non-zero if INSN should be output as a short insn. UNALIGN is
zero if the current insn is aligned to a 4-byte-boundary, two otherwise.
If CHECK_ATTR is greater than 0, check the iscompact attribute first. */
int
arc_verify_short (rtx_insn *insn, int, int check_attr)
{
enum attr_iscompact iscompact;
struct machine_function *machine;
if (check_attr > 0)
{
iscompact = get_attr_iscompact (insn);
if (iscompact == ISCOMPACT_FALSE)
return 0;
}
machine = cfun->machine;
if (machine->force_short_suffix >= 0)
return machine->force_short_suffix;
return (get_attr_length (insn) & 2) != 0;
}
/* When outputting an instruction (alternative) that can potentially be short,
output the short suffix if the insn is in fact short, and update
cfun->machine->unalign accordingly. */
static void
output_short_suffix (FILE *file)
{
rtx_insn *insn = current_output_insn;
if (arc_verify_short (insn, cfun->machine->unalign, 1))
{
fprintf (file, "_s");
cfun->machine->unalign ^= 2;
}
/* Restore recog_operand. */
extract_insn_cached (insn);
}
/* Implement FINAL_PRESCAN_INSN. */
void
arc_final_prescan_insn (rtx_insn *insn, rtx *opvec ATTRIBUTE_UNUSED,
int noperands ATTRIBUTE_UNUSED)
{
if (TARGET_DUMPISIZE)
fprintf (asm_out_file, "\n; at %04x\n", INSN_ADDRESSES (INSN_UID (insn)));
/* Output a nop if necessary to prevent a hazard.
Don't do this for delay slots: inserting a nop would
alter semantics, and the only time we would find a hazard is for a
call function result - and in that case, the hazard is spurious to
start with. */
if (PREV_INSN (insn)
&& PREV_INSN (NEXT_INSN (insn)) == insn
&& arc_hazard (prev_real_insn (insn), insn))
{
current_output_insn =
emit_insn_before (gen_nop (), NEXT_INSN (PREV_INSN (insn)));
final_scan_insn (current_output_insn, asm_out_file, optimize, 1, NULL);
current_output_insn = insn;
}
/* Restore extraction data which might have been clobbered by arc_hazard. */
extract_constrain_insn_cached (insn);
if (!cfun->machine->prescan_initialized)
{
/* Clear lingering state from branch shortening. */
memset (&arc_ccfsm_current, 0, sizeof arc_ccfsm_current);
cfun->machine->prescan_initialized = 1;
}
arc_ccfsm_advance (insn, &arc_ccfsm_current);
cfun->machine->size_reason = 0;
}
/* Given FROM and TO register numbers, say whether this elimination is allowed.
Frame pointer elimination is automatically handled.
All eliminations are permissible. If we need a frame
pointer, we must eliminate ARG_POINTER_REGNUM into
FRAME_POINTER_REGNUM and not into STACK_POINTER_REGNUM. */
static bool
arc_can_eliminate (const int from ATTRIBUTE_UNUSED, const int to)
{
return to == FRAME_POINTER_REGNUM || !arc_frame_pointer_required ();
}
/* Define the offset between two registers, one to be eliminated, and
the other its replacement, at the start of a routine. */
int
arc_initial_elimination_offset (int from, int to)
{
if (! cfun->machine->frame_info.initialized)
arc_compute_frame_size (get_frame_size ());
if (from == ARG_POINTER_REGNUM && to == FRAME_POINTER_REGNUM)
{
return (cfun->machine->frame_info.extra_size
+ cfun->machine->frame_info.reg_size);
}
if (from == ARG_POINTER_REGNUM && to == STACK_POINTER_REGNUM)
{
return (cfun->machine->frame_info.total_size
- cfun->machine->frame_info.pretend_size);
}
if ((from == FRAME_POINTER_REGNUM) && (to == STACK_POINTER_REGNUM))
{
return (cfun->machine->frame_info.total_size
- (cfun->machine->frame_info.pretend_size
+ cfun->machine->frame_info.extra_size
+ cfun->machine->frame_info.reg_size));
}
gcc_unreachable ();
}
static bool
arc_frame_pointer_required (void)
{
return cfun->calls_alloca;
}
/* Return the destination address of a branch. */
int
branch_dest (rtx branch)
{
rtx pat = PATTERN (branch);
rtx dest = (GET_CODE (pat) == PARALLEL
? SET_SRC (XVECEXP (pat, 0, 0)) : SET_SRC (pat));
int dest_uid;
if (GET_CODE (dest) == IF_THEN_ELSE)
dest = XEXP (dest, XEXP (dest, 1) == pc_rtx ? 2 : 1);
dest = XEXP (dest, 0);
dest_uid = INSN_UID (dest);
return INSN_ADDRESSES (dest_uid);
}
/* Implement TARGET_ENCODE_SECTION_INFO hook. */
static void
arc_encode_section_info (tree decl, rtx rtl, int first)
{
/* For sdata, SYMBOL_FLAG_LOCAL and SYMBOL_FLAG_FUNCTION.
This clears machine specific flags, so has to come first. */
default_encode_section_info (decl, rtl, first);
/* Check if it is a function, and whether it has the
[long/medium/short]_call attribute specified. */
if (TREE_CODE (decl) == FUNCTION_DECL)
{
rtx symbol = XEXP (rtl, 0);
int flags = SYMBOL_REF_FLAGS (symbol);
tree attr = (TREE_TYPE (decl) != error_mark_node
? TYPE_ATTRIBUTES (TREE_TYPE (decl)) : NULL_TREE);
tree long_call_attr = lookup_attribute ("long_call", attr);
tree medium_call_attr = lookup_attribute ("medium_call", attr);
tree short_call_attr = lookup_attribute ("short_call", attr);
if (long_call_attr != NULL_TREE)
flags |= SYMBOL_FLAG_LONG_CALL;
else if (medium_call_attr != NULL_TREE)
flags |= SYMBOL_FLAG_MEDIUM_CALL;
else if (short_call_attr != NULL_TREE)
flags |= SYMBOL_FLAG_SHORT_CALL;
SYMBOL_REF_FLAGS (symbol) = flags;
}
}
/* This is how to output a definition of an internal numbered label where
PREFIX is the class of label and NUM is the number within the class. */
static void arc_internal_label (FILE *stream, const char *prefix, unsigned long labelno)
{
if (cfun)
arc_ccfsm_at_label (prefix, labelno, &arc_ccfsm_current);
default_internal_label (stream, prefix, labelno);
}
/* Set the cpu type and print out other fancy things,
at the top of the file. */
static void arc_file_start (void)
{
default_file_start ();
fprintf (asm_out_file, "\t.cpu %s\n", arc_cpu_string);
}
/* Cost functions. */
/* Compute a (partial) cost for rtx X. Return true if the complete
cost has been computed, and false if subexpressions should be
scanned. In either case, *TOTAL contains the cost result. */
static bool
arc_rtx_costs (rtx x, machine_mode mode, int outer_code,
int opno ATTRIBUTE_UNUSED, int *total, bool speed)
{
int code = GET_CODE (x);
switch (code)
{
/* Small integers are as cheap as registers. */
case CONST_INT:
{
bool nolimm = false; /* Can we do without long immediate? */
bool fast = false; /* Is the result available immediately? */
bool condexec = false; /* Does this allow conditiobnal execution? */
bool compact = false; /* Is a 16 bit opcode available? */
/* CONDEXEC also implies that we can have an unconditional
3-address operation. */
nolimm = compact = condexec = false;
if (UNSIGNED_INT6 (INTVAL (x)))
nolimm = condexec = compact = true;
else
{
if (SMALL_INT (INTVAL (x)))
nolimm = fast = true;
switch (outer_code)
{
case AND: /* bclr, bmsk, ext[bw] */
if (satisfies_constraint_Ccp (x) /* bclr */
|| satisfies_constraint_C1p (x) /* bmsk */)
nolimm = fast = condexec = compact = true;
break;
case IOR: /* bset */
if (satisfies_constraint_C0p (x)) /* bset */
nolimm = fast = condexec = compact = true;
break;
case XOR:
if (satisfies_constraint_C0p (x)) /* bxor */
nolimm = fast = condexec = true;
break;
case SET:
if (satisfies_constraint_Crr (x)) /* ror b,u6 */
nolimm = true;
default:
break;
}
}
/* FIXME: Add target options to attach a small cost if
condexec / compact is not true. */
if (nolimm)
{
*total = 0;
return true;
}
}
/* FALLTHRU */
/* 4 byte values can be fetched as immediate constants -
let's give that the cost of an extra insn. */
case CONST:
case LABEL_REF:
case SYMBOL_REF:
*total = COSTS_N_INSNS (1);
return true;
case CONST_DOUBLE:
{
rtx high, low;
if (TARGET_DPFP)
{
*total = COSTS_N_INSNS (1);
return true;
}
/* FIXME: correct the order of high,low */
split_double (x, &high, &low);
*total = COSTS_N_INSNS (!SMALL_INT (INTVAL (high))
+ !SMALL_INT (INTVAL (low)));
return true;
}
/* Encourage synth_mult to find a synthetic multiply when reasonable.
If we need more than 12 insns to do a multiply, then go out-of-line,
since the call overhead will be < 10% of the cost of the multiply. */
case ASHIFT:
case ASHIFTRT:
case LSHIFTRT:
if (TARGET_BARREL_SHIFTER)
{
/* If we want to shift a constant, we need a LIMM. */
/* ??? when the optimizers want to know if a constant should be
hoisted, they ask for the cost of the constant. OUTER_CODE is
insufficient context for shifts since we don't know which operand
we are looking at. */
if (CONSTANT_P (XEXP (x, 0)))
{
*total += (COSTS_N_INSNS (2)
+ rtx_cost (XEXP (x, 1), mode, (enum rtx_code) code,
0, speed));
return true;
}
*total = COSTS_N_INSNS (1);
}
else if (GET_CODE (XEXP (x, 1)) != CONST_INT)
*total = COSTS_N_INSNS (16);
else
{
*total = COSTS_N_INSNS (INTVAL (XEXP ((x), 1)));
/* ??? want_to_gcse_p can throw negative shift counts at us,
and then panics when it gets a negative cost as result.
Seen for gcc.c-torture/compile/20020710-1.c -Os . */
if (*total < 0)
*total = 0;
}
return false;
case DIV:
case UDIV:
if (speed)
*total = COSTS_N_INSNS(30);
else
*total = COSTS_N_INSNS(1);
return false;
case MULT:
if ((TARGET_DPFP && GET_MODE (x) == DFmode))
*total = COSTS_N_INSNS (1);
else if (speed)
*total= arc_multcost;
/* We do not want synth_mult sequences when optimizing
for size. */
else if (TARGET_MUL64_SET || TARGET_ARC700_MPY)
*total = COSTS_N_INSNS (1);
else
*total = COSTS_N_INSNS (2);
return false;
case PLUS:
if (GET_CODE (XEXP (x, 0)) == MULT
&& _2_4_8_operand (XEXP (XEXP (x, 0), 1), VOIDmode))
{
*total += (rtx_cost (XEXP (x, 1), mode, PLUS, 0, speed)
+ rtx_cost (XEXP (XEXP (x, 0), 0), mode, PLUS, 1, speed));
return true;
}
return false;
case MINUS:
if (GET_CODE (XEXP (x, 1)) == MULT
&& _2_4_8_operand (XEXP (XEXP (x, 1), 1), VOIDmode))
{
*total += (rtx_cost (XEXP (x, 0), mode, PLUS, 0, speed)
+ rtx_cost (XEXP (XEXP (x, 1), 0), mode, PLUS, 1, speed));
return true;
}
return false;
case COMPARE:
{
rtx op0 = XEXP (x, 0);
rtx op1 = XEXP (x, 1);
if (GET_CODE (op0) == ZERO_EXTRACT && op1 == const0_rtx
&& XEXP (op0, 1) == const1_rtx)
{
/* btst / bbit0 / bbit1:
Small integers and registers are free; everything else can
be put in a register. */
mode = GET_MODE (XEXP (op0, 0));
*total = (rtx_cost (XEXP (op0, 0), mode, SET, 1, speed)
+ rtx_cost (XEXP (op0, 2), mode, SET, 1, speed));
return true;
}
if (GET_CODE (op0) == AND && op1 == const0_rtx
&& satisfies_constraint_C1p (XEXP (op0, 1)))
{
/* bmsk.f */
*total = rtx_cost (XEXP (op0, 0), VOIDmode, SET, 1, speed);
return true;
}
/* add.f */
if (GET_CODE (op1) == NEG)
{
/* op0 might be constant, the inside of op1 is rather
unlikely to be so. So swapping the operands might lower
the cost. */
mode = GET_MODE (op0);
*total = (rtx_cost (op0, mode, PLUS, 1, speed)
+ rtx_cost (XEXP (op1, 0), mode, PLUS, 0, speed));
}
return false;
}
case EQ: case NE:
if (outer_code == IF_THEN_ELSE
&& GET_CODE (XEXP (x, 0)) == ZERO_EXTRACT
&& XEXP (x, 1) == const0_rtx
&& XEXP (XEXP (x, 0), 1) == const1_rtx)
{
/* btst / bbit0 / bbit1:
Small integers and registers are free; everything else can
be put in a register. */
rtx op0 = XEXP (x, 0);
mode = GET_MODE (XEXP (op0, 0));
*total = (rtx_cost (XEXP (op0, 0), mode, SET, 1, speed)
+ rtx_cost (XEXP (op0, 2), mode, SET, 1, speed));
return true;
}
/* Fall through. */
/* scc_insn expands into two insns. */
case GTU: case GEU: case LEU:
if (mode == SImode)
*total += COSTS_N_INSNS (1);
return false;
case LTU: /* might use adc. */
if (mode == SImode)
*total += COSTS_N_INSNS (1) - 1;
return false;
default:
return false;
}
}
/* Return true if ADDR is an address that needs to be expressed as an
explicit sum of pcl + offset. */
bool
arc_legitimate_pc_offset_p (rtx addr)
{
if (GET_CODE (addr) != CONST)
return false;
addr = XEXP (addr, 0);
if (GET_CODE (addr) == PLUS)
{
if (GET_CODE (XEXP (addr, 1)) != CONST_INT)
return false;
addr = XEXP (addr, 0);
}
return (GET_CODE (addr) == UNSPEC
&& XVECLEN (addr, 0) == 1
&& XINT (addr, 1) == ARC_UNSPEC_GOT
&& GET_CODE (XVECEXP (addr, 0, 0)) == SYMBOL_REF);
}
/* Return true if ADDR is a valid pic address.
A valid pic address on arc should look like
const (unspec (SYMBOL_REF/LABEL) (ARC_UNSPEC_GOTOFF/ARC_UNSPEC_GOT)) */
bool
arc_legitimate_pic_addr_p (rtx addr)
{
if (GET_CODE (addr) == LABEL_REF)
return true;
if (GET_CODE (addr) != CONST)
return false;
addr = XEXP (addr, 0);
if (GET_CODE (addr) == PLUS)
{
if (GET_CODE (XEXP (addr, 1)) != CONST_INT)
return false;
addr = XEXP (addr, 0);
}
if (GET_CODE (addr) != UNSPEC
|| XVECLEN (addr, 0) != 1)
return false;
/* Must be @GOT or @GOTOFF. */
if (XINT (addr, 1) != ARC_UNSPEC_GOT
&& XINT (addr, 1) != ARC_UNSPEC_GOTOFF)
return false;
if (GET_CODE (XVECEXP (addr, 0, 0)) != SYMBOL_REF
&& GET_CODE (XVECEXP (addr, 0, 0)) != LABEL_REF)
return false;
return true;
}
/* Return true if OP contains a symbol reference. */
static bool
symbolic_reference_mentioned_p (rtx op)
{
register const char *fmt;
register int i;
if (GET_CODE (op) == SYMBOL_REF || GET_CODE (op) == LABEL_REF)
return true;
fmt = GET_RTX_FORMAT (GET_CODE (op));
for (i = GET_RTX_LENGTH (GET_CODE (op)) - 1; i >= 0; i--)
{
if (fmt[i] == 'E')
{
register int j;
for (j = XVECLEN (op, i) - 1; j >= 0; j--)
if (symbolic_reference_mentioned_p (XVECEXP (op, i, j)))
return true;
}
else if (fmt[i] == 'e' && symbolic_reference_mentioned_p (XEXP (op, i)))
return true;
}
return false;
}
/* Return true if OP contains a SYMBOL_REF that is not wrapped in an unspec.
If SKIP_LOCAL is true, skip symbols that bind locally.
This is used further down in this file, and, without SKIP_LOCAL,
in the addsi3 / subsi3 expanders when generating PIC code. */
bool
arc_raw_symbolic_reference_mentioned_p (rtx op, bool skip_local)
{
register const char *fmt;
register int i;
if (GET_CODE(op) == UNSPEC)
return false;
if (GET_CODE (op) == SYMBOL_REF)
{
tree decl = SYMBOL_REF_DECL (op);
return !skip_local || !decl || !default_binds_local_p (decl);
}
fmt = GET_RTX_FORMAT (GET_CODE (op));
for (i = GET_RTX_LENGTH (GET_CODE (op)) - 1; i >= 0; i--)
{
if (fmt[i] == 'E')
{
register int j;
for (j = XVECLEN (op, i) - 1; j >= 0; j--)
if (arc_raw_symbolic_reference_mentioned_p (XVECEXP (op, i, j),
skip_local))
return true;
}
else if (fmt[i] == 'e'
&& arc_raw_symbolic_reference_mentioned_p (XEXP (op, i),
skip_local))
return true;
}
return false;
}
/* Legitimize a pic address reference in ORIG.
The return value is the legitimated address.
If OLDX is non-zero, it is the target to assign the address to first. */
rtx
arc_legitimize_pic_address (rtx orig, rtx oldx)
{
rtx addr = orig;
rtx pat = orig;
rtx base;
if (oldx == orig)
oldx = NULL;
if (GET_CODE (addr) == LABEL_REF)
; /* Do nothing. */
else if (GET_CODE (addr) == SYMBOL_REF
&& (CONSTANT_POOL_ADDRESS_P (addr)
|| SYMBOL_REF_LOCAL_P (addr)))
{
/* This symbol may be referenced via a displacement from the PIC
base address (@GOTOFF). */
/* FIXME: if we had a way to emit pc-relative adds that don't
create a GOT entry, we could do without the use of the gp register. */
crtl->uses_pic_offset_table = 1;
pat = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, addr), ARC_UNSPEC_GOTOFF);
pat = gen_rtx_CONST (Pmode, pat);
pat = gen_rtx_PLUS (Pmode, pic_offset_table_rtx, pat);
if (oldx == NULL)
oldx = gen_reg_rtx (Pmode);
if (oldx != 0)
{
emit_move_insn (oldx, pat);
pat = oldx;
}
}
else if (GET_CODE (addr) == SYMBOL_REF)
{
/* This symbol must be referenced via a load from the
Global Offset Table (@GOTPC). */
pat = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, addr), ARC_UNSPEC_GOT);
pat = gen_rtx_CONST (Pmode, pat);
pat = gen_const_mem (Pmode, pat);
if (oldx == 0)
oldx = gen_reg_rtx (Pmode);
emit_move_insn (oldx, pat);
pat = oldx;
}
else
{
if (GET_CODE (addr) == CONST)
{
addr = XEXP (addr, 0);
if (GET_CODE (addr) == UNSPEC)
{
/* Check that the unspec is one of the ones we generate? */
}
else
gcc_assert (GET_CODE (addr) == PLUS);
}
if (GET_CODE (addr) == PLUS)
{
rtx op0 = XEXP (addr, 0), op1 = XEXP (addr, 1);
/* Check first to see if this is a constant offset from a @GOTOFF
symbol reference. */
if ((GET_CODE (op0) == LABEL_REF
|| (GET_CODE (op0) == SYMBOL_REF
&& (CONSTANT_POOL_ADDRESS_P (op0)
|| SYMBOL_REF_LOCAL_P (op0))))
&& GET_CODE (op1) == CONST_INT)
{
/* FIXME: like above, could do without gp reference. */
crtl->uses_pic_offset_table = 1;
pat
= gen_rtx_UNSPEC (Pmode, gen_rtvec (1, op0), ARC_UNSPEC_GOTOFF);
pat = gen_rtx_PLUS (Pmode, pat, op1);
pat = gen_rtx_CONST (Pmode, pat);
pat = gen_rtx_PLUS (Pmode, pic_offset_table_rtx, pat);
if (oldx != 0)
{
emit_move_insn (oldx, pat);
pat = oldx;
}
}
else
{
base = arc_legitimize_pic_address (XEXP (addr, 0), oldx);
pat = arc_legitimize_pic_address (XEXP (addr, 1),
base == oldx ? NULL_RTX : oldx);
if (GET_CODE (pat) == CONST_INT)
pat = plus_constant (Pmode, base, INTVAL (pat));
else
{
if (GET_CODE (pat) == PLUS && CONSTANT_P (XEXP (pat, 1)))
{
base = gen_rtx_PLUS (Pmode, base, XEXP (pat, 0));
pat = XEXP (pat, 1);
}
pat = gen_rtx_PLUS (Pmode, base, pat);
}
}
}
}
return pat;
}
/* Output address constant X to FILE, taking PIC into account. */
void
arc_output_pic_addr_const (FILE * file, rtx x, int code)
{
char buf[256];
restart:
switch (GET_CODE (x))
{
case PC:
if (flag_pic)
putc ('.', file);
else
gcc_unreachable ();
break;
case SYMBOL_REF:
output_addr_const (file, x);
/* Local functions do not get references through the PLT. */
if (code == 'P' && ! SYMBOL_REF_LOCAL_P (x))
fputs ("@plt", file);
break;
case LABEL_REF:
ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (XEXP (x, 0)));
assemble_name (file, buf);
break;
case CODE_LABEL:
ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (x));
assemble_name (file, buf);
break;
case CONST_INT:
fprintf (file, HOST_WIDE_INT_PRINT_DEC, INTVAL (x));
break;
case CONST:
arc_output_pic_addr_const (file, XEXP (x, 0), code);
break;
case CONST_DOUBLE:
if (GET_MODE (x) == VOIDmode)
{
/* We can use %d if the number is one word and positive. */
if (CONST_DOUBLE_HIGH (x))
fprintf (file, HOST_WIDE_INT_PRINT_DOUBLE_HEX,
CONST_DOUBLE_HIGH (x), CONST_DOUBLE_LOW (x));
else if (CONST_DOUBLE_LOW (x) < 0)
fprintf (file, HOST_WIDE_INT_PRINT_HEX, CONST_DOUBLE_LOW (x));
else
fprintf (file, HOST_WIDE_INT_PRINT_DEC, CONST_DOUBLE_LOW (x));
}
else
/* We can't handle floating point constants;
PRINT_OPERAND must handle them. */
output_operand_lossage ("floating constant misused");
break;
case PLUS:
/* FIXME: Not needed here. */
/* Some assemblers need integer constants to appear last (eg masm). */
if (GET_CODE (XEXP (x, 0)) == CONST_INT)
{
arc_output_pic_addr_const (file, XEXP (x, 1), code);
fprintf (file, "+");
arc_output_pic_addr_const (file, XEXP (x, 0), code);
}
else if (GET_CODE (XEXP (x, 1)) == CONST_INT)
{
arc_output_pic_addr_const (file, XEXP (x, 0), code);
if (INTVAL (XEXP (x, 1)) >= 0)
fprintf (file, "+");
arc_output_pic_addr_const (file, XEXP (x, 1), code);
}
else
gcc_unreachable();
break;
case MINUS:
/* Avoid outputting things like x-x or x+5-x,
since some assemblers can't handle that. */
x = simplify_subtraction (x);
if (GET_CODE (x) != MINUS)
goto restart;
arc_output_pic_addr_const (file, XEXP (x, 0), code);
fprintf (file, "-");
if (GET_CODE (XEXP (x, 1)) == CONST_INT
&& INTVAL (XEXP (x, 1)) < 0)
{
fprintf (file, "(");
arc_output_pic_addr_const (file, XEXP (x, 1), code);
fprintf (file, ")");
}
else
arc_output_pic_addr_const (file, XEXP (x, 1), code);
break;
case ZERO_EXTEND:
case SIGN_EXTEND:
arc_output_pic_addr_const (file, XEXP (x, 0), code);
break;
case UNSPEC:
gcc_assert (XVECLEN (x, 0) == 1);
if (XINT (x, 1) == ARC_UNSPEC_GOT)
fputs ("pcl,", file);
arc_output_pic_addr_const (file, XVECEXP (x, 0, 0), code);
switch (XINT (x, 1))
{
case ARC_UNSPEC_GOT:
fputs ("@gotpc", file);
break;
case ARC_UNSPEC_GOTOFF:
fputs ("@gotoff", file);
break;
case ARC_UNSPEC_PLT:
fputs ("@plt", file);
break;
default:
output_operand_lossage ("invalid UNSPEC as operand: %d", XINT (x,1));
break;
}
break;
default:
output_operand_lossage ("invalid expression as operand");
}
}
#define SYMBOLIC_CONST(X) \
(GET_CODE (X) == SYMBOL_REF \
|| GET_CODE (X) == LABEL_REF \
|| (GET_CODE (X) == CONST && symbolic_reference_mentioned_p (X)))
/* Emit insns to move operands[1] into operands[0]. */
void
emit_pic_move (rtx *operands, machine_mode)
{
rtx temp = reload_in_progress ? operands[0] : gen_reg_rtx (Pmode);
if (GET_CODE (operands[0]) == MEM && SYMBOLIC_CONST (operands[1]))
operands[1] = force_reg (Pmode, operands[1]);
else
operands[1] = arc_legitimize_pic_address (operands[1], temp);
}
/* The function returning the number of words, at the beginning of an
argument, must be put in registers. The returned value must be
zero for arguments that are passed entirely in registers or that
are entirely pushed on the stack.
On some machines, certain arguments must be passed partially in
registers and partially in memory. On these machines, typically
the first N words of arguments are passed in registers, and the
rest on the stack. If a multi-word argument (a `double' or a
structure) crosses that boundary, its first few words must be
passed in registers and the rest must be pushed. This function
tells the compiler when this occurs, and how many of the words
should go in registers.
`FUNCTION_ARG' for these arguments should return the first register
to be used by the caller for this argument; likewise
`FUNCTION_INCOMING_ARG', for the called function.
The function is used to implement macro FUNCTION_ARG_PARTIAL_NREGS. */
/* If REGNO is the least arg reg available then what is the total number of arg
regs available. */
#define GPR_REST_ARG_REGS(REGNO) \
((REGNO) <= MAX_ARC_PARM_REGS ? MAX_ARC_PARM_REGS - (REGNO) : 0 )
/* Since arc parm regs are contiguous. */
#define ARC_NEXT_ARG_REG(REGNO) ( (REGNO) + 1 )
/* Implement TARGET_ARG_PARTIAL_BYTES. */
static int
arc_arg_partial_bytes (cumulative_args_t cum_v, machine_mode mode,
tree type, bool named ATTRIBUTE_UNUSED)
{
CUMULATIVE_ARGS *cum = get_cumulative_args (cum_v);
int bytes = (mode == BLKmode
? int_size_in_bytes (type) : (int) GET_MODE_SIZE (mode));
int words = (bytes + UNITS_PER_WORD - 1) / UNITS_PER_WORD;
int arg_num = *cum;
int ret;
arg_num = ROUND_ADVANCE_CUM (arg_num, mode, type);
ret = GPR_REST_ARG_REGS (arg_num);
/* ICEd at function.c:2361, and ret is copied to data->partial */
ret = (ret >= words ? 0 : ret * UNITS_PER_WORD);
return ret;
}
/* This function is used to control a function argument is passed in a
register, and which register.
The arguments are CUM, of type CUMULATIVE_ARGS, which summarizes
(in a way defined by INIT_CUMULATIVE_ARGS and FUNCTION_ARG_ADVANCE)
all of the previous arguments so far passed in registers; MODE, the
machine mode of the argument; TYPE, the data type of the argument
as a tree node or 0 if that is not known (which happens for C
support library functions); and NAMED, which is 1 for an ordinary
argument and 0 for nameless arguments that correspond to `...' in
the called function's prototype.
The returned value should either be a `reg' RTX for the hard
register in which to pass the argument, or zero to pass the
argument on the stack.
For machines like the Vax and 68000, where normally all arguments
are pushed, zero suffices as a definition.
The usual way to make the ANSI library `stdarg.h' work on a machine
where some arguments are usually passed in registers, is to cause
nameless arguments to be passed on the stack instead. This is done
by making the function return 0 whenever NAMED is 0.
You may use the macro `MUST_PASS_IN_STACK (MODE, TYPE)' in the
definition of this function to determine if this argument is of a
type that must be passed in the stack. If `REG_PARM_STACK_SPACE'
is not defined and the function returns non-zero for such an
argument, the compiler will abort. If `REG_PARM_STACK_SPACE' is
defined, the argument will be computed in the stack and then loaded
into a register.
The function is used to implement macro FUNCTION_ARG. */
/* On the ARC the first MAX_ARC_PARM_REGS args are normally in registers
and the rest are pushed. */
static rtx
arc_function_arg (cumulative_args_t cum_v, machine_mode mode,
const_tree type ATTRIBUTE_UNUSED, bool named ATTRIBUTE_UNUSED)
{
CUMULATIVE_ARGS *cum = get_cumulative_args (cum_v);
int arg_num = *cum;
rtx ret;
const char *debstr ATTRIBUTE_UNUSED;
arg_num = ROUND_ADVANCE_CUM (arg_num, mode, type);
/* Return a marker for use in the call instruction. */
if (mode == VOIDmode)
{
ret = const0_rtx;
debstr = "<0>";
}
else if (GPR_REST_ARG_REGS (arg_num) > 0)
{
ret = gen_rtx_REG (mode, arg_num);
debstr = reg_names [arg_num];
}
else
{
ret = NULL_RTX;
debstr = "memory";
}
return ret;
}
/* The function to update the summarizer variable *CUM to advance past
an argument in the argument list. The values MODE, TYPE and NAMED
describe that argument. Once this is done, the variable *CUM is
suitable for analyzing the *following* argument with
`FUNCTION_ARG', etc.
This function need not do anything if the argument in question was
passed on the stack. The compiler knows how to track the amount of
stack space used for arguments without any special help.
The function is used to implement macro FUNCTION_ARG_ADVANCE. */
/* For the ARC: the cum set here is passed on to function_arg where we
look at its value and say which reg to use. Strategy: advance the
regnumber here till we run out of arg regs, then set *cum to last
reg. In function_arg, since *cum > last arg reg we would return 0
and thus the arg will end up on the stack. For straddling args of
course function_arg_partial_nregs will come into play. */
static void
arc_function_arg_advance (cumulative_args_t cum_v, machine_mode mode,
const_tree type, bool named ATTRIBUTE_UNUSED)
{
CUMULATIVE_ARGS *cum = get_cumulative_args (cum_v);
int bytes = (mode == BLKmode
? int_size_in_bytes (type) : (int) GET_MODE_SIZE (mode));
int words = (bytes + UNITS_PER_WORD - 1) / UNITS_PER_WORD;
int i;
if (words)
*cum = ROUND_ADVANCE_CUM (*cum, mode, type);
for (i = 0; i < words; i++)
*cum = ARC_NEXT_ARG_REG (*cum);
}
/* Define how to find the value returned by a function.
VALTYPE is the data type of the value (as a tree).
If the precise function being called is known, FN_DECL_OR_TYPE is its
FUNCTION_DECL; otherwise, FN_DECL_OR_TYPE is its type. */
static rtx
arc_function_value (const_tree valtype,
const_tree fn_decl_or_type ATTRIBUTE_UNUSED,
bool outgoing ATTRIBUTE_UNUSED)
{
machine_mode mode = TYPE_MODE (valtype);
int unsignedp ATTRIBUTE_UNUSED;
unsignedp = TYPE_UNSIGNED (valtype);
if (INTEGRAL_TYPE_P (valtype) || TREE_CODE (valtype) == OFFSET_TYPE)
PROMOTE_MODE (mode, unsignedp, valtype);
return gen_rtx_REG (mode, 0);
}
/* Returns the return address that is used by builtin_return_address. */
rtx
arc_return_addr_rtx (int count, ATTRIBUTE_UNUSED rtx frame)
{
if (count != 0)
return const0_rtx;
return get_hard_reg_initial_val (Pmode , RETURN_ADDR_REGNUM);
}
/* Nonzero if the constant value X is a legitimate general operand
when generating PIC code. It is given that flag_pic is on and
that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
bool
arc_legitimate_pic_operand_p (rtx x)
{
return !arc_raw_symbolic_reference_mentioned_p (x, true);
}
/* Determine if a given RTX is a valid constant. We already know this
satisfies CONSTANT_P. */
bool
arc_legitimate_constant_p (machine_mode, rtx x)
{
if (!flag_pic)
return true;
switch (GET_CODE (x))
{
case CONST:
x = XEXP (x, 0);
if (GET_CODE (x) == PLUS)
{
if (GET_CODE (XEXP (x, 1)) != CONST_INT)
return false;
x = XEXP (x, 0);
}
/* Only some unspecs are valid as "constants". */
if (GET_CODE (x) == UNSPEC)
switch (XINT (x, 1))
{
case ARC_UNSPEC_PLT:
case ARC_UNSPEC_GOTOFF:
case ARC_UNSPEC_GOT:
case UNSPEC_PROF:
return true;
default:
gcc_unreachable ();
}
/* We must have drilled down to a symbol. */
if (arc_raw_symbolic_reference_mentioned_p (x, false))
return false;
/* Return true. */
break;
case LABEL_REF:
case SYMBOL_REF:
return false;
default:
break;
}
/* Otherwise we handle everything else in the move patterns. */
return true;
}
static bool
arc_legitimate_address_p (machine_mode mode, rtx x, bool strict)
{
if (RTX_OK_FOR_BASE_P (x, strict))
return true;
if (LEGITIMATE_OFFSET_ADDRESS_P (mode, x, TARGET_INDEXED_LOADS, strict))
return true;
if (LEGITIMATE_SCALED_ADDRESS_P (mode, x, strict))
return true;
if (LEGITIMATE_SMALL_DATA_ADDRESS_P (x))
return true;
if (GET_CODE (x) == CONST_INT && LARGE_INT (INTVAL (x)))
return true;
if ((GET_MODE_SIZE (mode) != 16)
&& (GET_CODE (x) == SYMBOL_REF
|| GET_CODE (x) == LABEL_REF
|| GET_CODE (x) == CONST))
{
if (!flag_pic || arc_legitimate_pic_addr_p (x))
return true;
}
if ((GET_CODE (x) == PRE_DEC || GET_CODE (x) == PRE_INC
|| GET_CODE (x) == POST_DEC || GET_CODE (x) == POST_INC)
&& RTX_OK_FOR_BASE_P (XEXP (x, 0), strict))
return true;
/* We're restricted here by the `st' insn. */
if ((GET_CODE (x) == PRE_MODIFY || GET_CODE (x) == POST_MODIFY)
&& GET_CODE (XEXP ((x), 1)) == PLUS
&& rtx_equal_p (XEXP ((x), 0), XEXP (XEXP (x, 1), 0))
&& LEGITIMATE_OFFSET_ADDRESS_P (QImode, XEXP (x, 1),
TARGET_AUTO_MODIFY_REG, strict))
return true;
return false;
}
/* Return true iff ADDR (a legitimate address expression)
has an effect that depends on the machine mode it is used for. */
static bool
arc_mode_dependent_address_p (const_rtx addr, addr_space_t)
{
/* SYMBOL_REF is not mode dependent: it is either a small data reference,
which is valid for loads and stores, or a limm offset, which is valid for
loads. */
/* Scaled indices are scaled by the access mode; likewise for scaled
offsets, which are needed for maximum offset stores. */
if (GET_CODE (addr) == PLUS
&& (GET_CODE (XEXP ((addr), 0)) == MULT
|| (CONST_INT_P (XEXP ((addr), 1))
&& !SMALL_INT (INTVAL (XEXP ((addr), 1))))))
return true;
return false;
}
/* Determine if it's legal to put X into the constant pool. */
static bool
arc_cannot_force_const_mem (machine_mode mode, rtx x)
{
return !arc_legitimate_constant_p (mode, x);
}
/* IDs for all the ARC builtins. */
enum arc_builtin_id
{
#define DEF_BUILTIN(NAME, N_ARGS, TYPE, ICODE, MASK) \
ARC_BUILTIN_ ## NAME,
#include "builtins.def"
#undef DEF_BUILTIN
ARC_BUILTIN_COUNT
};
struct GTY(()) arc_builtin_description
{
enum insn_code icode;
int n_args;
tree fndecl;
};
static GTY(()) struct arc_builtin_description
arc_bdesc[ARC_BUILTIN_COUNT] =
{
#define DEF_BUILTIN(NAME, N_ARGS, TYPE, ICODE, MASK) \
{ (enum insn_code) CODE_FOR_ ## ICODE, N_ARGS, NULL_TREE },
#include "builtins.def"
#undef DEF_BUILTIN
};
/* Transform UP into lowercase and write the result to LO.
You must provide enough space for LO. Return LO. */
static char*
arc_tolower (char *lo, const char *up)
{
char *lo0 = lo;
for (; *up; up++, lo++)
*lo = TOLOWER (*up);
*lo = '\0';
return lo0;
}
/* Implement `TARGET_BUILTIN_DECL'. */
static tree
arc_builtin_decl (unsigned id, bool initialize_p ATTRIBUTE_UNUSED)
{
if (id < ARC_BUILTIN_COUNT)
return arc_bdesc[id].fndecl;
return error_mark_node;
}
static void
arc_init_builtins (void)
{
tree pcvoid_type_node
= build_pointer_type (build_qualified_type (void_type_node,
TYPE_QUAL_CONST));
tree V8HI_type_node = build_vector_type_for_mode (intHI_type_node,
V8HImode);
tree void_ftype_void
= build_function_type_list (void_type_node, NULL_TREE);
tree int_ftype_int
= build_function_type_list (integer_type_node, integer_type_node,
NULL_TREE);
tree int_ftype_pcvoid_int
= build_function_type_list (integer_type_node, pcvoid_type_node,
integer_type_node, NULL_TREE);
tree void_ftype_usint_usint
= build_function_type_list (void_type_node, long_unsigned_type_node,
long_unsigned_type_node, NULL_TREE);
tree int_ftype_int_int
= build_function_type_list (integer_type_node, integer_type_node,
integer_type_node, NULL_TREE);
tree usint_ftype_usint
= build_function_type_list (long_unsigned_type_node,
long_unsigned_type_node, NULL_TREE);
tree void_ftype_usint
= build_function_type_list (void_type_node, long_unsigned_type_node,
NULL_TREE);
tree int_ftype_void
= build_function_type_list (integer_type_node, void_type_node,
NULL_TREE);
tree void_ftype_int
= build_function_type_list (void_type_node, integer_type_node,
NULL_TREE);
tree int_ftype_short
= build_function_type_list (integer_type_node, short_integer_type_node,
NULL_TREE);
/* Old ARC SIMD types. */
tree v8hi_ftype_v8hi_v8hi
= build_function_type_list (V8HI_type_node, V8HI_type_node,
V8HI_type_node, NULL_TREE);
tree v8hi_ftype_v8hi_int
= build_function_type_list (V8HI_type_node, V8HI_type_node,
integer_type_node, NULL_TREE);
tree v8hi_ftype_v8hi_int_int
= build_function_type_list (V8HI_type_node, V8HI_type_node,
integer_type_node, integer_type_node,
NULL_TREE);
tree void_ftype_v8hi_int_int
= build_function_type_list (void_type_node, V8HI_type_node,
integer_type_node, integer_type_node,
NULL_TREE);
tree void_ftype_v8hi_int_int_int
= build_function_type_list (void_type_node, V8HI_type_node,
integer_type_node, integer_type_node,
integer_type_node, NULL_TREE);
tree v8hi_ftype_int_int
= build_function_type_list (V8HI_type_node, integer_type_node,
integer_type_node, NULL_TREE);
tree void_ftype_int_int
= build_function_type_list (void_type_node, integer_type_node,
integer_type_node, NULL_TREE);
tree v8hi_ftype_v8hi
= build_function_type_list (V8HI_type_node, V8HI_type_node,
NULL_TREE);
/* Add the builtins. */
#define DEF_BUILTIN(NAME, N_ARGS, TYPE, ICODE, MASK) \
{ \
int id = ARC_BUILTIN_ ## NAME; \
const char *Name = "__builtin_arc_" #NAME; \
char *name = (char*) alloca (1 + strlen (Name)); \
\
gcc_assert (id < ARC_BUILTIN_COUNT); \
if (MASK) \
arc_bdesc[id].fndecl \
= add_builtin_function (arc_tolower(name, Name), TYPE, id, \
BUILT_IN_MD, NULL, NULL_TREE); \
}
#include "builtins.def"
#undef DEF_BUILTIN
}
/* Helper to expand __builtin_arc_aligned (void* val, int
alignval). */
static rtx
arc_expand_builtin_aligned (tree exp)
{
tree arg0 = CALL_EXPR_ARG (exp, 0);
tree arg1 = CALL_EXPR_ARG (exp, 1);
fold (arg1);
rtx op0 = expand_expr (arg0, NULL_RTX, VOIDmode, EXPAND_NORMAL);
rtx op1 = expand_expr (arg1, NULL_RTX, VOIDmode, EXPAND_NORMAL);
if (!CONST_INT_P (op1))
{
/* If we can't fold the alignment to a constant integer
whilst optimizing, this is probably a user error. */
if (optimize)
warning (0, "__builtin_arc_aligned with non-constant alignment");
}
else
{
HOST_WIDE_INT alignTest = INTVAL (op1);
/* Check alignTest is positive, and a power of two. */
if (alignTest <= 0 || alignTest != (alignTest & -alignTest))
{
error ("invalid alignment value for __builtin_arc_aligned");
return NULL_RTX;
}
if (CONST_INT_P (op0))
{
HOST_WIDE_INT pnt = INTVAL (op0);
if ((pnt & (alignTest - 1)) == 0)
return const1_rtx;
}
else
{
unsigned align = get_pointer_alignment (arg0);
unsigned numBits = alignTest * BITS_PER_UNIT;
if (align && align >= numBits)
return const1_rtx;
/* Another attempt to ascertain alignment. Check the type
we are pointing to. */
if (POINTER_TYPE_P (TREE_TYPE (arg0))
&& TYPE_ALIGN (TREE_TYPE (TREE_TYPE (arg0))) >= numBits)
return const1_rtx;
}
}
/* Default to false. */
return const0_rtx;
}
/* Helper arc_expand_builtin, generates a pattern for the given icode
and arguments. */
static rtx_insn *
apply_GEN_FCN (enum insn_code icode, rtx *arg)
{
switch (insn_data[icode].n_generator_args)
{
case 0:
return GEN_FCN (icode) ();
case 1:
return GEN_FCN (icode) (arg[0]);
case 2:
return GEN_FCN (icode) (arg[0], arg[1]);
case 3:
return GEN_FCN (icode) (arg[0], arg[1], arg[2]);
case 4:
return GEN_FCN (icode) (arg[0], arg[1], arg[2], arg[3]);
case 5:
return GEN_FCN (icode) (arg[0], arg[1], arg[2], arg[3], arg[4]);
default:
gcc_unreachable ();
}
}
/* Expand an expression EXP that calls a built-in function,
with result going to TARGET if that's convenient
(and in mode MODE if that's convenient).
SUBTARGET may be used as the target for computing one of EXP's operands.
IGNORE is nonzero if the value is to be ignored. */
static rtx
arc_expand_builtin (tree exp,
rtx target,
rtx subtarget ATTRIBUTE_UNUSED,
machine_mode mode ATTRIBUTE_UNUSED,
int ignore ATTRIBUTE_UNUSED)
{
tree fndecl = TREE_OPERAND (CALL_EXPR_FN (exp), 0);
unsigned int id = DECL_FUNCTION_CODE (fndecl);
const struct arc_builtin_description *d = &arc_bdesc[id];
int i, j, n_args = call_expr_nargs (exp);
rtx pat = NULL_RTX;
rtx xop[5];
enum insn_code icode = d->icode;
machine_mode tmode = insn_data[icode].operand[0].mode;
int nonvoid;
tree arg0;
tree arg1;
tree arg2;
tree arg3;
rtx op0;
rtx op1;
rtx op2;
rtx op3;
rtx op4;
machine_mode mode0;
machine_mode mode1;
machine_mode mode2;
machine_mode mode3;
machine_mode mode4;
if (id >= ARC_BUILTIN_COUNT)
internal_error ("bad builtin fcode");
/* 1st part: Expand special builtins. */
switch (id)
{
case ARC_BUILTIN_NOP:
emit_insn (gen_nopv ());
return NULL_RTX;
case ARC_BUILTIN_RTIE:
case ARC_BUILTIN_SYNC:
case ARC_BUILTIN_BRK:
case ARC_BUILTIN_SWI:
case ARC_BUILTIN_UNIMP_S:
gcc_assert (icode != 0);
emit_insn (GEN_FCN (icode) (const1_rtx));
return NULL_RTX;
case ARC_BUILTIN_ALIGNED:
return arc_expand_builtin_aligned (exp);
case ARC_BUILTIN_CLRI:
target = gen_reg_rtx (SImode);
emit_insn (gen_clri (target, const1_rtx));
return target;
case ARC_BUILTIN_TRAP_S:
case ARC_BUILTIN_SLEEP:
arg0 = CALL_EXPR_ARG (exp, 0);
fold (arg0);
op0 = expand_expr (arg0, NULL_RTX, VOIDmode, EXPAND_NORMAL);
if (!CONST_INT_P (op0) || !satisfies_constraint_L (op0))
{
error ("builtin operand should be an unsigned 6-bit value");
return NULL_RTX;
}
gcc_assert (icode != 0);
emit_insn (GEN_FCN (icode) (op0));
return NULL_RTX;
case ARC_BUILTIN_VDORUN:
case ARC_BUILTIN_VDIRUN:
arg0 = CALL_EXPR_ARG (exp, 0);
arg1 = CALL_EXPR_ARG (exp, 1);
op0 = expand_expr (arg0, NULL_RTX, SImode, EXPAND_NORMAL);
op1 = expand_expr (arg1, NULL_RTX, SImode, EXPAND_NORMAL);
target = gen_rtx_REG (SImode, (id == ARC_BUILTIN_VDIRUN) ? 131 : 139);
mode0 = insn_data[icode].operand[1].mode;
mode1 = insn_data[icode].operand[2].mode;
if (!insn_data[icode].operand[1].predicate (op0, mode0))
op0 = copy_to_mode_reg (mode0, op0);
if (!insn_data[icode].operand[2].predicate (op1, mode1))
op1 = copy_to_mode_reg (mode1, op1);
pat = GEN_FCN (icode) (target, op0, op1);
if (!pat)
return NULL_RTX;
emit_insn (pat);
return NULL_RTX;
case ARC_BUILTIN_VDIWR:
case ARC_BUILTIN_VDOWR:
arg0 = CALL_EXPR_ARG (exp, 0);
arg1 = CALL_EXPR_ARG (exp, 1);
op0 = expand_expr (arg0, NULL_RTX, SImode, EXPAND_NORMAL);
op1 = expand_expr (arg1, NULL_RTX, SImode, EXPAND_NORMAL);
if (!CONST_INT_P (op0)
|| !(UNSIGNED_INT3 (INTVAL (op0))))
error ("operand 1 should be an unsigned 3-bit immediate");
mode1 = insn_data[icode].operand[1].mode;
if (icode == CODE_FOR_vdiwr_insn)
target = gen_rtx_REG (SImode,
ARC_FIRST_SIMD_DMA_CONFIG_IN_REG + INTVAL (op0));
else if (icode == CODE_FOR_vdowr_insn)
target = gen_rtx_REG (SImode,
ARC_FIRST_SIMD_DMA_CONFIG_OUT_REG + INTVAL (op0));
else
gcc_unreachable ();
if (!insn_data[icode].operand[2].predicate (op1, mode1))
op1 = copy_to_mode_reg (mode1, op1);
pat = GEN_FCN (icode) (target, op1);
if (!pat)
return NULL_RTX;
emit_insn (pat);
return NULL_RTX;
case ARC_BUILTIN_VASRW:
case ARC_BUILTIN_VSR8:
case ARC_BUILTIN_VSR8AW:
arg0 = CALL_EXPR_ARG (exp, 0);
arg1 = CALL_EXPR_ARG (exp, 1);
op0 = expand_expr (arg0, NULL_RTX, V8HImode, EXPAND_NORMAL);
op1 = expand_expr (arg1, NULL_RTX, SImode, EXPAND_NORMAL);
op2 = gen_rtx_REG (V8HImode, ARC_FIRST_SIMD_VR_REG);
target = gen_reg_rtx (V8HImode);
mode0 = insn_data[icode].operand[1].mode;
mode1 = insn_data[icode].operand[2].mode;
if (!insn_data[icode].operand[1].predicate (op0, mode0))
op0 = copy_to_mode_reg (mode0, op0);
if ((!insn_data[icode].operand[2].predicate (op1, mode1))
|| !(UNSIGNED_INT3 (INTVAL (op1))))
error ("operand 2 should be an unsigned 3-bit value (I0-I7)");
pat = GEN_FCN (icode) (target, op0, op1, op2);
if (!pat)
return NULL_RTX;
emit_insn (pat);
return target;
case ARC_BUILTIN_VLD32WH:
case ARC_BUILTIN_VLD32WL:
case ARC_BUILTIN_VLD64:
case ARC_BUILTIN_VLD32:
rtx src_vreg;
icode = d->icode;
arg0 = CALL_EXPR_ARG (exp, 0); /* source vreg. */
arg1 = CALL_EXPR_ARG (exp, 1); /* [I]0-7. */
arg2 = CALL_EXPR_ARG (exp, 2); /* u8. */
src_vreg = expand_expr (arg0, NULL_RTX, V8HImode, EXPAND_NORMAL);
op0 = expand_expr (arg1, NULL_RTX, SImode, EXPAND_NORMAL);
op1 = expand_expr (arg2, NULL_RTX, SImode, EXPAND_NORMAL);
op2 = gen_rtx_REG (V8HImode, ARC_FIRST_SIMD_VR_REG);
/* target <- src vreg. */
emit_insn (gen_move_insn (target, src_vreg));
/* target <- vec_concat: target, mem (Ib, u8). */
mode0 = insn_data[icode].operand[3].mode;
mode1 = insn_data[icode].operand[1].mode;
if ((!insn_data[icode].operand[3].predicate (op0, mode0))
|| !(UNSIGNED_INT3 (INTVAL (op0))))
error ("operand 1 should be an unsigned 3-bit value (I0-I7)");
if ((!insn_data[icode].operand[1].predicate (op1, mode1))
|| !(UNSIGNED_INT8 (INTVAL (op1))))
error ("operand 2 should be an unsigned 8-bit value");
pat = GEN_FCN (icode) (target, op1, op2, op0);
if (!pat)
return NULL_RTX;
emit_insn (pat);
return target;
case ARC_BUILTIN_VLD64W:
case ARC_BUILTIN_VLD128:
arg0 = CALL_EXPR_ARG (exp, 0); /* dest vreg. */
arg1 = CALL_EXPR_ARG (exp, 1); /* [I]0-7. */
op0 = gen_rtx_REG (V8HImode, ARC_FIRST_SIMD_VR_REG);
op1 = expand_expr (arg0, NULL_RTX, SImode, EXPAND_NORMAL);
op2 = expand_expr (arg1, NULL_RTX, SImode, EXPAND_NORMAL);
/* target <- src vreg. */
target = gen_reg_rtx (V8HImode);
/* target <- vec_concat: target, mem (Ib, u8). */
mode0 = insn_data[icode].operand[1].mode;
mode1 = insn_data[icode].operand[2].mode;
mode2 = insn_data[icode].operand[3].mode;
if ((!insn_data[icode].operand[2].predicate (op1, mode1))
|| !(UNSIGNED_INT3 (INTVAL (op1))))
error ("operand 1 should be an unsigned 3-bit value (I0-I7)");
if ((!insn_data[icode].operand[3].predicate (op2, mode2))
|| !(UNSIGNED_INT8 (INTVAL (op2))))
error ("operand 2 should be an unsigned 8-bit value");
pat = GEN_FCN (icode) (target, op0, op1, op2);
if (!pat)
return NULL_RTX;
emit_insn (pat);
return target;
case ARC_BUILTIN_VST128:
case ARC_BUILTIN_VST64:
arg0 = CALL_EXPR_ARG (exp, 0); /* src vreg. */
arg1 = CALL_EXPR_ARG (exp, 1); /* [I]0-7. */
arg2 = CALL_EXPR_ARG (exp, 2); /* u8. */
op0 = gen_rtx_REG (V8HImode, ARC_FIRST_SIMD_VR_REG);
op1 = expand_expr (arg1, NULL_RTX, SImode, EXPAND_NORMAL);
op2 = expand_expr (arg2, NULL_RTX, SImode, EXPAND_NORMAL);
op3 = expand_expr (arg0, NULL_RTX, V8HImode, EXPAND_NORMAL);
mode0 = insn_data[icode].operand[0].mode;
mode1 = insn_data[icode].operand[1].mode;
mode2 = insn_data[icode].operand[2].mode;
mode3 = insn_data[icode].operand[3].mode;
if ((!insn_data[icode].operand[1].predicate (op1, mode1))
|| !(UNSIGNED_INT3 (INTVAL (op1))))
error ("operand 2 should be an unsigned 3-bit value (I0-I7)");
if ((!insn_data[icode].operand[2].predicate (op2, mode2))
|| !(UNSIGNED_INT8 (INTVAL (op2))))
error ("operand 3 should be an unsigned 8-bit value");
if (!insn_data[icode].operand[3].predicate (op3, mode3))
op3 = copy_to_mode_reg (mode3, op3);
pat = GEN_FCN (icode) (op0, op1, op2, op3);
if (!pat)
return NULL_RTX;
emit_insn (pat);
return NULL_RTX;
case ARC_BUILTIN_VST16_N:
case ARC_BUILTIN_VST32_N:
arg0 = CALL_EXPR_ARG (exp, 0); /* source vreg. */
arg1 = CALL_EXPR_ARG (exp, 1); /* u3. */
arg2 = CALL_EXPR_ARG (exp, 2); /* [I]0-7. */
arg3 = CALL_EXPR_ARG (exp, 3); /* u8. */
op0 = expand_expr (arg3, NULL_RTX, SImode, EXPAND_NORMAL);
op1 = gen_rtx_REG (V8HImode, ARC_FIRST_SIMD_VR_REG);
op2 = expand_expr (arg2, NULL_RTX, SImode, EXPAND_NORMAL);
op3 = expand_expr (arg0, NULL_RTX, V8HImode, EXPAND_NORMAL);
op4 = expand_expr (arg1, NULL_RTX, SImode, EXPAND_NORMAL);
mode0 = insn_data[icode].operand[0].mode;
mode2 = insn_data[icode].operand[2].mode;
mode3 = insn_data[icode].operand[3].mode;
mode4 = insn_data[icode].operand[4].mode;
/* Do some correctness checks for the operands. */
if ((!insn_data[icode].operand[0].predicate (op0, mode0))
|| !(UNSIGNED_INT8 (INTVAL (op0))))
error ("operand 4 should be an unsigned 8-bit value (0-255)");
if ((!insn_data[icode].operand[2].predicate (op2, mode2))
|| !(UNSIGNED_INT3 (INTVAL (op2))))
error ("operand 3 should be an unsigned 3-bit value (I0-I7)");
if (!insn_data[icode].operand[3].predicate (op3, mode3))
op3 = copy_to_mode_reg (mode3, op3);
if ((!insn_data[icode].operand[4].predicate (op4, mode4))
|| !(UNSIGNED_INT3 (INTVAL (op4))))
error ("operand 2 should be an unsigned 3-bit value (subreg 0-7)");
else if (icode == CODE_FOR_vst32_n_insn
&& ((INTVAL (op4) % 2) != 0))
error ("operand 2 should be an even 3-bit value (subreg 0,2,4,6)");
pat = GEN_FCN (icode) (op0, op1, op2, op3, op4);
if (!pat)
return NULL_RTX;
emit_insn (pat);
return NULL_RTX;
default:
break;
}
/* 2nd part: Expand regular builtins. */
if (icode == 0)
internal_error ("bad builtin fcode");
nonvoid = TREE_TYPE (TREE_TYPE (fndecl)) != void_type_node;
j = 0;
if (nonvoid)
{
if (target == NULL_RTX
|| GET_MODE (target) != tmode
|| !insn_data[icode].operand[0].predicate (target, tmode))
{
target = gen_reg_rtx (tmode);
}
xop[j++] = target;
}
gcc_assert (n_args <= 4);
for (i = 0; i < n_args; i++, j++)
{
tree arg = CALL_EXPR_ARG (exp, i);
machine_mode mode = insn_data[icode].operand[j].mode;
rtx op = expand_expr (arg, NULL_RTX, mode, EXPAND_NORMAL);
machine_mode opmode = GET_MODE (op);
char c = insn_data[icode].operand[j].constraint[0];
/* SIMD extension requires exact immediate operand match. */
if ((id > ARC_BUILTIN_SIMD_BEGIN)
&& (id < ARC_BUILTIN_SIMD_END)
&& (c != 'v')
&& (c != 'r'))
{
if (!CONST_INT_P (op))
error ("builtin requires an immediate for operand %d", j);
switch (c)
{
case 'L':
if (!satisfies_constraint_L (op))
error ("operand %d should be a 6 bit unsigned immediate", j);
break;
case 'P':
if (!satisfies_constraint_P (op))
error ("operand %d should be a 8 bit unsigned immediate", j);
break;
case 'K':
if (!satisfies_constraint_K (op))
error ("operand %d should be a 3 bit unsigned immediate", j);
break;
default:
error ("unknown builtin immediate operand type for operand %d",
j);
}
}
if (CONST_INT_P (op))
opmode = mode;
if ((opmode == SImode) && (mode == HImode))
{
opmode = HImode;
op = gen_lowpart (HImode, op);
}
/* In case the insn wants input operands in modes different from
the result, abort. */
gcc_assert (opmode == mode || opmode == VOIDmode);
if (!insn_data[icode].operand[i + nonvoid].predicate (op, mode))
op = copy_to_mode_reg (mode, op);
xop[j] = op;
}
pat = apply_GEN_FCN (icode, xop);
if (pat == NULL_RTX)
return NULL_RTX;
emit_insn (pat);
if (nonvoid)
return target;
else
return const0_rtx;
}
/* Returns true if the operands[opno] is a valid compile-time constant to be
used as register number in the code for builtins. Else it flags an error
and returns false. */
bool
check_if_valid_regno_const (rtx *operands, int opno)
{
switch (GET_CODE (operands[opno]))
{
case SYMBOL_REF :
case CONST :
case CONST_INT :
return true;
default:
error ("register number must be a compile-time constant. Try giving higher optimization levels");
break;
}
return false;
}
/* Check that after all the constant folding, whether the operand to
__builtin_arc_sleep is an unsigned int of 6 bits. If not, flag an error. */
bool
check_if_valid_sleep_operand (rtx *operands, int opno)
{
switch (GET_CODE (operands[opno]))
{
case CONST :
case CONST_INT :
if( UNSIGNED_INT6 (INTVAL (operands[opno])))
return true;
default:
fatal_error (input_location,
"operand for sleep instruction must be an unsigned 6 bit compile-time constant");
break;
}
return false;
}
/* Return true if it is ok to make a tail-call to DECL. */
static bool
arc_function_ok_for_sibcall (tree decl ATTRIBUTE_UNUSED,
tree exp ATTRIBUTE_UNUSED)
{
/* Never tailcall from an ISR routine - it needs a special exit sequence. */
if (ARC_INTERRUPT_P (arc_compute_function_type (cfun)))
return false;
/* Everything else is ok. */
return true;
}
/* Output code to add DELTA to the first argument, and then jump
to FUNCTION. Used for C++ multiple inheritance. */
static void
arc_output_mi_thunk (FILE *file, tree thunk ATTRIBUTE_UNUSED,
HOST_WIDE_INT delta,
HOST_WIDE_INT vcall_offset,
tree function)
{
int mi_delta = delta;
const char *const mi_op = mi_delta < 0 ? "sub" : "add";
int shift = 0;
int this_regno
= aggregate_value_p (TREE_TYPE (TREE_TYPE (function)), function) ? 1 : 0;
rtx fnaddr;
if (mi_delta < 0)
mi_delta = - mi_delta;
/* Add DELTA. When possible use a plain add, otherwise load it into
a register first. */
while (mi_delta != 0)
{
if ((mi_delta & (3 << shift)) == 0)
shift += 2;
else
{
asm_fprintf (file, "\t%s\t%s, %s, %d\n",
mi_op, reg_names[this_regno], reg_names[this_regno],
mi_delta & (0xff << shift));
mi_delta &= ~(0xff << shift);
shift += 8;
}
}
/* If needed, add *(*THIS + VCALL_OFFSET) to THIS. */
if (vcall_offset != 0)
{
/* ld r12,[this] --> temp = *this
add r12,r12,vcall_offset --> temp = *(*this + vcall_offset)
ld r12,[r12]
add this,this,r12 --> this+ = *(*this + vcall_offset) */
asm_fprintf (file, "\tld\t%s, [%s]\n",
ARC_TEMP_SCRATCH_REG, reg_names[this_regno]);
asm_fprintf (file, "\tadd\t%s, %s, " HOST_WIDE_INT_PRINT_DEC "\n",
ARC_TEMP_SCRATCH_REG, ARC_TEMP_SCRATCH_REG, vcall_offset);
asm_fprintf (file, "\tld\t%s, [%s]\n",
ARC_TEMP_SCRATCH_REG, ARC_TEMP_SCRATCH_REG);
asm_fprintf (file, "\tadd\t%s, %s, %s\n", reg_names[this_regno],
reg_names[this_regno], ARC_TEMP_SCRATCH_REG);
}
fnaddr = XEXP (DECL_RTL (function), 0);
if (arc_is_longcall_p (fnaddr))
fputs ("\tj\t", file);
else
fputs ("\tb\t", file);
assemble_name (file, XSTR (fnaddr, 0));
fputc ('\n', file);
}
/* Return true if a 32 bit "long_call" should be generated for
this calling SYM_REF. We generate a long_call if the function:
a. has an __attribute__((long call))
or b. the -mlong-calls command line switch has been specified
However we do not generate a long call if the function has an
__attribute__ ((short_call)) or __attribute__ ((medium_call))
This function will be called by C fragments contained in the machine
description file. */
bool
arc_is_longcall_p (rtx sym_ref)
{
if (GET_CODE (sym_ref) != SYMBOL_REF)
return false;
return (SYMBOL_REF_LONG_CALL_P (sym_ref)
|| (TARGET_LONG_CALLS_SET
&& !SYMBOL_REF_SHORT_CALL_P (sym_ref)
&& !SYMBOL_REF_MEDIUM_CALL_P (sym_ref)));
}
/* Likewise for short calls. */
bool
arc_is_shortcall_p (rtx sym_ref)
{
if (GET_CODE (sym_ref) != SYMBOL_REF)
return false;
return (SYMBOL_REF_SHORT_CALL_P (sym_ref)
|| (!TARGET_LONG_CALLS_SET && !TARGET_MEDIUM_CALLS
&& !SYMBOL_REF_LONG_CALL_P (sym_ref)
&& !SYMBOL_REF_MEDIUM_CALL_P (sym_ref)));
}
/* Emit profiling code for calling CALLEE. Return true if a special
call pattern needs to be generated. */
bool
arc_profile_call (rtx callee)
{
rtx from = XEXP (DECL_RTL (current_function_decl), 0);
if (TARGET_UCB_MCOUNT)
/* Profiling is done by instrumenting the callee. */
return false;
if (CONSTANT_P (callee))
{
rtx count_ptr
= gen_rtx_CONST (Pmode,
gen_rtx_UNSPEC (Pmode,
gen_rtvec (3, from, callee,
CONST0_RTX (Pmode)),
UNSPEC_PROF));
rtx counter = gen_rtx_MEM (SImode, count_ptr);
/* ??? The increment would better be done atomically, but as there is
no proper hardware support, that would be too expensive. */
emit_move_insn (counter,
force_reg (SImode, plus_constant (SImode, counter, 1)));
return false;
}
else
{
rtx count_list_ptr
= gen_rtx_CONST (Pmode,
gen_rtx_UNSPEC (Pmode,
gen_rtvec (3, from, CONST0_RTX (Pmode),
CONST0_RTX (Pmode)),
UNSPEC_PROF));
emit_move_insn (gen_rtx_REG (Pmode, 8), count_list_ptr);
emit_move_insn (gen_rtx_REG (Pmode, 9), callee);
return true;
}
}
/* Worker function for TARGET_RETURN_IN_MEMORY. */
static bool
arc_return_in_memory (const_tree type, const_tree fntype ATTRIBUTE_UNUSED)
{
if (AGGREGATE_TYPE_P (type) || TREE_ADDRESSABLE (type))
return true;
else
{
HOST_WIDE_INT size = int_size_in_bytes (type);
return (size == -1 || size > (TARGET_V2 ? 16 : 8));
}
}
/* This was in rtlanal.c, and can go in there when we decide we want
to submit the change for inclusion in the GCC tree. */
/* Like note_stores, but allow the callback to have side effects on the rtl
(like the note_stores of yore):
Call FUN on each register or MEM that is stored into or clobbered by X.
(X would be the pattern of an insn). DATA is an arbitrary pointer,
ignored by note_stores, but passed to FUN.
FUN may alter parts of the RTL.
FUN receives three arguments:
1. the REG, MEM, CC0 or PC being stored in or clobbered,
2. the SET or CLOBBER rtx that does the store,
3. the pointer DATA provided to note_stores.
If the item being stored in or clobbered is a SUBREG of a hard register,
the SUBREG will be passed. */
/* For now. */ static
void
walk_stores (rtx x, void (*fun) (rtx, rtx, void *), void *data)
{
int i;
if (GET_CODE (x) == COND_EXEC)
x = COND_EXEC_CODE (x);
if (GET_CODE (x) == SET || GET_CODE (x) == CLOBBER)
{
rtx dest = SET_DEST (x);
while ((GET_CODE (dest) == SUBREG
&& (!REG_P (SUBREG_REG (dest))
|| REGNO (SUBREG_REG (dest)) >= FIRST_PSEUDO_REGISTER))
|| GET_CODE (dest) == ZERO_EXTRACT
|| GET_CODE (dest) == STRICT_LOW_PART)
dest = XEXP (dest, 0);
/* If we have a PARALLEL, SET_DEST is a list of EXPR_LIST expressions,
each of whose first operand is a register. */
if (GET_CODE (dest) == PARALLEL)
{
for (i = XVECLEN (dest, 0) - 1; i >= 0; i--)
if (XEXP (XVECEXP (dest, 0, i), 0) != 0)
(*fun) (XEXP (XVECEXP (dest, 0, i), 0), x, data);
}
else
(*fun) (dest, x, data);
}
else if (GET_CODE (x) == PARALLEL)
for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
walk_stores (XVECEXP (x, 0, i), fun, data);
}
static bool
arc_pass_by_reference (cumulative_args_t ca_v ATTRIBUTE_UNUSED,
machine_mode mode ATTRIBUTE_UNUSED,
const_tree type,
bool named ATTRIBUTE_UNUSED)
{
return (type != 0
&& (TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST
|| TREE_ADDRESSABLE (type)));
}
/* Implement TARGET_CAN_USE_DOLOOP_P. */
static bool
arc_can_use_doloop_p (const widest_int &iterations, const widest_int &,
unsigned int loop_depth, bool entered_at_top)
{
if (loop_depth > 1)
return false;
/* Setting up the loop with two sr instructions costs 6 cycles. */
if (TARGET_ARC700
&& !entered_at_top
&& wi::gtu_p (iterations, 0)
&& wi::leu_p (iterations, flag_pic ? 6 : 3))
return false;
return true;
}
/* NULL if INSN insn is valid within a low-overhead loop.
Otherwise return why doloop cannot be applied. */
static const char *
arc_invalid_within_doloop (const rtx_insn *insn)
{
if (CALL_P (insn))
return "Function call in the loop.";
return NULL;
}
/* The same functionality as arc_hazard. It is called in machine
reorg before any other optimization. Hence, the NOP size is taken
into account when doing branch shortening. */
static void
workaround_arc_anomaly (void)
{
rtx_insn *insn, *succ0;
/* For any architecture: call arc_hazard here. */
for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
{
succ0 = next_real_insn (insn);
if (arc_hazard (insn, succ0))
{
emit_insn_before (gen_nopv (), succ0);
}
}
}
static int arc_reorg_in_progress = 0;
/* ARC's machince specific reorg function. */
static void
arc_reorg (void)
{
rtx_insn *insn;
rtx pattern;
rtx pc_target;
long offset;
int changed;
workaround_arc_anomaly ();
cfun->machine->arc_reorg_started = 1;
arc_reorg_in_progress = 1;
/* Emit special sections for profiling. */
if (crtl->profile)
{
section *save_text_section;
rtx_insn *insn;
int size = get_max_uid () >> 4;
htab_t htab = htab_create (size, unspec_prof_hash, unspec_prof_htab_eq,
NULL);
save_text_section = in_section;
for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
if (NONJUMP_INSN_P (insn))
walk_stores (PATTERN (insn), write_profile_sections, htab);
if (htab_elements (htab))
in_section = 0;
switch_to_section (save_text_section);
htab_delete (htab);
}
/* Link up loop ends with their loop start. */
{
for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
if (GET_CODE (insn) == JUMP_INSN
&& recog_memoized (insn) == CODE_FOR_doloop_end_i)
{
rtx_insn *top_label
= as_a <rtx_insn *> (XEXP (XEXP (SET_SRC (XVECEXP (PATTERN (insn), 0, 0)), 1), 0));
rtx num = GEN_INT (CODE_LABEL_NUMBER (top_label));
rtx_insn *lp, *prev = prev_nonnote_insn (top_label);
rtx_insn *lp_simple = NULL;
rtx_insn *next = NULL;
rtx op0 = XEXP (XVECEXP (PATTERN (insn), 0, 1), 0);
HOST_WIDE_INT loop_end_id
= -INTVAL (XEXP (XVECEXP (PATTERN (insn), 0, 4), 0));
int seen_label = 0;
for (lp = prev;
(lp && NONJUMP_INSN_P (lp)
&& recog_memoized (lp) != CODE_FOR_doloop_begin_i);
lp = prev_nonnote_insn (lp))
;
if (!lp || !NONJUMP_INSN_P (lp)
|| dead_or_set_regno_p (lp, LP_COUNT))
{
for (prev = next = insn, lp = NULL ; prev || next;)
{
if (prev)
{
if (NONJUMP_INSN_P (prev)
&& recog_memoized (prev) == CODE_FOR_doloop_begin_i
&& (INTVAL (XEXP (XVECEXP (PATTERN (prev), 0, 5), 0))
== loop_end_id))
{
lp = prev;
break;
}
else if (LABEL_P (prev))
seen_label = 1;
prev = prev_nonnote_insn (prev);
}
if (next)
{
if (NONJUMP_INSN_P (next)
&& recog_memoized (next) == CODE_FOR_doloop_begin_i
&& (INTVAL (XEXP (XVECEXP (PATTERN (next), 0, 5), 0))
== loop_end_id))
{
lp = next;
break;
}
next = next_nonnote_insn (next);
}
}
prev = NULL;
}
else
lp_simple = lp;
if (lp && !dead_or_set_regno_p (lp, LP_COUNT))
{
rtx begin_cnt = XEXP (XVECEXP (PATTERN (lp), 0 ,3), 0);
if (INTVAL (XEXP (XVECEXP (PATTERN (lp), 0, 4), 0)))
/* The loop end insn has been duplicated. That can happen
when there is a conditional block at the very end of
the loop. */
goto failure;
/* If Register allocation failed to allocate to the right
register, There is no point into teaching reload to
fix this up with reloads, as that would cost more
than using an ordinary core register with the
doloop_fallback pattern. */
if ((true_regnum (op0) != LP_COUNT || !REG_P (begin_cnt))
/* Likewise, if the loop setup is evidently inside the loop,
we loose. */
|| (!lp_simple && lp != next && !seen_label))
{
remove_insn (lp);
goto failure;
}
/* It is common that the optimizers copy the loop count from
another register, and doloop_begin_i is stuck with the
source of the move. Making doloop_begin_i only accept "l"
is nonsentical, as this then makes reload evict the pseudo
used for the loop end. The underlying cause is that the
optimizers don't understand that the register allocation for
doloop_begin_i should be treated as part of the loop.
Try to work around this problem by verifying the previous
move exists. */
if (true_regnum (begin_cnt) != LP_COUNT)
{
rtx_insn *mov;
rtx set, note;
for (mov = prev_nonnote_insn (lp); mov;
mov = prev_nonnote_insn (mov))
{
if (!NONJUMP_INSN_P (mov))
mov = 0;
else if ((set = single_set (mov))
&& rtx_equal_p (SET_SRC (set), begin_cnt)
&& rtx_equal_p (SET_DEST (set), op0))
break;
}
if (mov)
{
XEXP (XVECEXP (PATTERN (lp), 0 ,3), 0) = op0;
note = find_regno_note (lp, REG_DEAD, REGNO (begin_cnt));
if (note)
remove_note (lp, note);
}
else
{
remove_insn (lp);
goto failure;
}
}
XEXP (XVECEXP (PATTERN (insn), 0, 4), 0) = num;
XEXP (XVECEXP (PATTERN (lp), 0, 4), 0) = num;
if (next == lp)
XEXP (XVECEXP (PATTERN (lp), 0, 6), 0) = const2_rtx;
else if (!lp_simple)
XEXP (XVECEXP (PATTERN (lp), 0, 6), 0) = const1_rtx;
else if (prev != lp)
{
remove_insn (lp);
add_insn_after (lp, prev, NULL);
}
if (!lp_simple)
{
XEXP (XVECEXP (PATTERN (lp), 0, 7), 0)
= gen_rtx_LABEL_REF (Pmode, top_label);
add_reg_note (lp, REG_LABEL_OPERAND, top_label);
LABEL_NUSES (top_label)++;
}
/* We can avoid tedious loop start / end setting for empty loops
be merely setting the loop count to its final value. */
if (next_active_insn (top_label) == insn)
{
rtx lc_set
= gen_rtx_SET (XEXP (XVECEXP (PATTERN (lp), 0, 3), 0),
const0_rtx);
rtx_insn *lc_set_insn = emit_insn_before (lc_set, insn);
delete_insn (lp);
delete_insn (insn);
insn = lc_set_insn;
}
/* If the loop is non-empty with zero length, we can't make it
a zero-overhead loop. That can happen for empty asms. */
else
{
rtx_insn *scan;
for (scan = top_label;
(scan && scan != insn
&& (!NONJUMP_INSN_P (scan) || !get_attr_length (scan)));
scan = NEXT_INSN (scan));
if (scan == insn)
{
remove_insn (lp);
goto failure;
}
}
}
else
{
/* Sometimes the loop optimizer makes a complete hash of the
loop. If it were only that the loop is not entered at the
top, we could fix this up by setting LP_START with SR .
However, if we can't find the loop begin were it should be,
chances are that it does not even dominate the loop, but is
inside the loop instead. Using SR there would kill
performance.
We use the doloop_fallback pattern here, which executes
in two cycles on the ARC700 when predicted correctly. */
failure:
if (!REG_P (op0))
{
rtx op3 = XEXP (XVECEXP (PATTERN (insn), 0, 5), 0);
emit_insn_before (gen_move_insn (op3, op0), insn);
PATTERN (insn)
= gen_doloop_fallback_m (op3, JUMP_LABEL (insn), op0);
}
else
XVEC (PATTERN (insn), 0)
= gen_rtvec (2, XVECEXP (PATTERN (insn), 0, 0),
XVECEXP (PATTERN (insn), 0, 1));
INSN_CODE (insn) = -1;
}
}
}
/* FIXME: should anticipate ccfsm action, generate special patterns for
to-be-deleted branches that have no delay slot and have at least the
length of the size increase forced on other insns that are conditionalized.
This can also have an insn_list inside that enumerates insns which are
not actually conditionalized because the destinations are dead in the
not-execute case.
Could also tag branches that we want to be unaligned if they get no delay
slot, or even ones that we don't want to do delay slot sheduling for
because we can unalign them.
However, there are cases when conditional execution is only possible after
delay slot scheduling:
- If a delay slot is filled with a nocond/set insn from above, the previous
basic block can become elegible for conditional execution.
- If a delay slot is filled with a nocond insn from the fall-through path,
the branch with that delay slot can become eligble for conditional
execution (however, with the same sort of data flow analysis that dbr
does, we could have figured out before that we don't need to
conditionalize this insn.)
- If a delay slot insn is filled with an insn from the target, the
target label gets its uses decremented (even deleted if falling to zero),
thus possibly creating more condexec opportunities there.
Therefore, we should still be prepared to apply condexec optimization on
non-prepared branches if the size increase of conditionalized insns is no
more than the size saved from eliminating the branch. An invocation option
could also be used to reserve a bit of extra size for condbranches so that
this'll work more often (could also test in arc_reorg if the block is
'close enough' to be eligible for condexec to make this likely, and
estimate required size increase). */
/* Generate BRcc insns, by combining cmp and Bcc insns wherever possible. */
if (TARGET_NO_BRCC_SET)
return;
do
{
init_insn_lengths();
changed = 0;
if (optimize > 1 && !TARGET_NO_COND_EXEC)
{
arc_ifcvt ();
unsigned int flags = pass_data_arc_ifcvt.todo_flags_finish;
df_finish_pass ((flags & TODO_df_verify) != 0);
}
/* Call shorten_branches to calculate the insn lengths. */
shorten_branches (get_insns());
cfun->machine->ccfsm_current_insn = NULL_RTX;
if (!INSN_ADDRESSES_SET_P())
fatal_error (input_location, "Insn addresses not set after shorten_branches");
for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
{
rtx label;
enum attr_type insn_type;
/* If a non-jump insn (or a casesi jump table), continue. */
if (GET_CODE (insn) != JUMP_INSN ||
GET_CODE (PATTERN (insn)) == ADDR_VEC
|| GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC)
continue;
/* If we already have a brcc, note if it is suitable for brcc_s.
Be a bit generous with the brcc_s range so that we can take
advantage of any code shortening from delay slot scheduling. */
if (recog_memoized (insn) == CODE_FOR_cbranchsi4_scratch)
{
rtx pat = PATTERN (insn);
rtx op = XEXP (SET_SRC (XVECEXP (pat, 0, 0)), 0);
rtx *ccp = &XEXP (XVECEXP (pat, 0, 1), 0);
offset = branch_dest (insn) - INSN_ADDRESSES (INSN_UID (insn));
if ((offset >= -140 && offset < 140)
&& rtx_equal_p (XEXP (op, 1), const0_rtx)
&& compact_register_operand (XEXP (op, 0), VOIDmode)
&& equality_comparison_operator (op, VOIDmode))
PUT_MODE (*ccp, CC_Zmode);
else if (GET_MODE (*ccp) == CC_Zmode)
PUT_MODE (*ccp, CC_ZNmode);
continue;
}
if ((insn_type = get_attr_type (insn)) == TYPE_BRCC
|| insn_type == TYPE_BRCC_NO_DELAY_SLOT)
continue;
/* OK. so we have a jump insn. */
/* We need to check that it is a bcc. */
/* Bcc => set (pc) (if_then_else ) */
pattern = PATTERN (insn);
if (GET_CODE (pattern) != SET
|| GET_CODE (SET_SRC (pattern)) != IF_THEN_ELSE
|| ANY_RETURN_P (XEXP (SET_SRC (pattern), 1)))
continue;
/* Now check if the jump is beyond the s9 range. */
if (CROSSING_JUMP_P (insn))
continue;
offset = branch_dest (insn) - INSN_ADDRESSES (INSN_UID (insn));
if(offset > 253 || offset < -254)
continue;
pc_target = SET_SRC (pattern);
/* Now go back and search for the set cc insn. */
label = XEXP (pc_target, 1);
{
rtx pat;
rtx_insn *scan, *link_insn = NULL;
for (scan = PREV_INSN (insn);
scan && GET_CODE (scan) != CODE_LABEL;
scan = PREV_INSN (scan))
{
if (! INSN_P (scan))
continue;
pat = PATTERN (scan);
if (GET_CODE (pat) == SET
&& cc_register (SET_DEST (pat), VOIDmode))
{
link_insn = scan;
break;
}
}
if (! link_insn)
continue;
else
/* Check if this is a data dependency. */
{
rtx op, cc_clob_rtx, op0, op1, brcc_insn, note;
rtx cmp0, cmp1;
/* Ok this is the set cc. copy args here. */
op = XEXP (pc_target, 0);
op0 = cmp0 = XEXP (SET_SRC (pat), 0);
op1 = cmp1 = XEXP (SET_SRC (pat), 1);
if (GET_CODE (op0) == ZERO_EXTRACT
&& XEXP (op0, 1) == const1_rtx
&& (GET_CODE (op) == EQ
|| GET_CODE (op) == NE))
{
/* btst / b{eq,ne} -> bbit{0,1} */
op0 = XEXP (cmp0, 0);
op1 = XEXP (cmp0, 2);
}
else if (!register_operand (op0, VOIDmode)
|| !general_operand (op1, VOIDmode))
continue;
/* Be careful not to break what cmpsfpx_raw is
trying to create for checking equality of
single-precision floats. */
else if (TARGET_SPFP
&& GET_MODE (op0) == SFmode
&& GET_MODE (op1) == SFmode)
continue;
/* None of the two cmp operands should be set between the
cmp and the branch. */
if (reg_set_between_p (op0, link_insn, insn))
continue;
if (reg_set_between_p (op1, link_insn, insn))
continue;
/* Since the MODE check does not work, check that this is
CC reg's last set location before insn, and also no
instruction between the cmp and branch uses the
condition codes. */
if ((reg_set_between_p (SET_DEST (pat), link_insn, insn))
|| (reg_used_between_p (SET_DEST (pat), link_insn, insn)))
continue;
/* CC reg should be dead after insn. */
if (!find_regno_note (insn, REG_DEAD, CC_REG))
continue;
op = gen_rtx_fmt_ee (GET_CODE (op),
GET_MODE (op), cmp0, cmp1);
/* If we create a LIMM where there was none before,
we only benefit if we can avoid a scheduling bubble
for the ARC600. Otherwise, we'd only forgo chances
at short insn generation, and risk out-of-range
branches. */
if (!brcc_nolimm_operator (op, VOIDmode)
&& !long_immediate_operand (op1, VOIDmode)
&& (TARGET_ARC700
|| next_active_insn (link_insn) != insn))
continue;
/* Emit bbit / brcc (or brcc_s if possible).
CC_Zmode indicates that brcc_s is possible. */
if (op0 != cmp0)
cc_clob_rtx = gen_rtx_REG (CC_ZNmode, CC_REG);
else if ((offset >= -140 && offset < 140)
&& rtx_equal_p (op1, const0_rtx)
&& compact_register_operand (op0, VOIDmode)
&& (GET_CODE (op) == EQ
|| GET_CODE (op) == NE))
cc_clob_rtx = gen_rtx_REG (CC_Zmode, CC_REG);
else
cc_clob_rtx = gen_rtx_REG (CCmode, CC_REG);
brcc_insn
= gen_rtx_IF_THEN_ELSE (VOIDmode, op, label, pc_rtx);
brcc_insn = gen_rtx_SET (pc_rtx, brcc_insn);
cc_clob_rtx = gen_rtx_CLOBBER (VOIDmode, cc_clob_rtx);
brcc_insn
= gen_rtx_PARALLEL
(VOIDmode, gen_rtvec (2, brcc_insn, cc_clob_rtx));
brcc_insn = emit_jump_insn_before (brcc_insn, insn);
JUMP_LABEL (brcc_insn) = JUMP_LABEL (insn);
note = find_reg_note (insn, REG_BR_PROB, 0);
if (note)
{
XEXP (note, 1) = REG_NOTES (brcc_insn);
REG_NOTES (brcc_insn) = note;
}
note = find_reg_note (link_insn, REG_DEAD, op0);
if (note)
{
remove_note (link_insn, note);
XEXP (note, 1) = REG_NOTES (brcc_insn);
REG_NOTES (brcc_insn) = note;
}
note = find_reg_note (link_insn, REG_DEAD, op1);
if (note)
{
XEXP (note, 1) = REG_NOTES (brcc_insn);
REG_NOTES (brcc_insn) = note;
}
changed = 1;
/* Delete the bcc insn. */
set_insn_deleted (insn);
/* Delete the cmp insn. */
set_insn_deleted (link_insn);
}
}
}
/* Clear out insn_addresses. */
INSN_ADDRESSES_FREE ();
} while (changed);
if (INSN_ADDRESSES_SET_P())
fatal_error (input_location, "insn addresses not freed");
arc_reorg_in_progress = 0;
}
/* Check if the operands are valid for BRcc.d generation
Valid Brcc.d patterns are
Brcc.d b, c, s9
Brcc.d b, u6, s9
For cc={GT, LE, GTU, LEU}, u6=63 can not be allowed,
since they are encoded by the assembler as {GE, LT, HS, LS} 64, which
does not have a delay slot
Assumed precondition: Second operand is either a register or a u6 value. */
bool
valid_brcc_with_delay_p (rtx *operands)
{
if (optimize_size && GET_MODE (operands[4]) == CC_Zmode)
return false;
return brcc_nolimm_operator (operands[0], VOIDmode);
}
/* ??? Hack. This should no really be here. See PR32143. */
static bool
arc_decl_anon_ns_mem_p (const_tree decl)
{
while (1)
{
if (decl == NULL_TREE || decl == error_mark_node)
return false;
if (TREE_CODE (decl) == NAMESPACE_DECL
&& DECL_NAME (decl) == NULL_TREE)
return true;
/* Classes and namespaces inside anonymous namespaces have
TREE_PUBLIC == 0, so we can shortcut the search. */
else if (TYPE_P (decl))
return (TREE_PUBLIC (TYPE_NAME (decl)) == 0);
else if (TREE_CODE (decl) == NAMESPACE_DECL)
return (TREE_PUBLIC (decl) == 0);
else
decl = DECL_CONTEXT (decl);
}
}
/* Implement TARGET_IN_SMALL_DATA_P. Return true if it would be safe to
access DECL using %gp_rel(...)($gp). */
static bool
arc_in_small_data_p (const_tree decl)
{
HOST_WIDE_INT size;
if (TREE_CODE (decl) == STRING_CST || TREE_CODE (decl) == FUNCTION_DECL)
return false;
/* We don't yet generate small-data references for -mabicalls. See related
-G handling in override_options. */
if (TARGET_NO_SDATA_SET)
return false;
if (TREE_CODE (decl) == VAR_DECL && DECL_SECTION_NAME (decl) != 0)
{
const char *name;
/* Reject anything that isn't in a known small-data section. */
name = DECL_SECTION_NAME (decl);
if (strcmp (name, ".sdata") != 0 && strcmp (name, ".sbss") != 0)
return false;
/* If a symbol is defined externally, the assembler will use the
usual -G rules when deciding how to implement macros. */
if (!DECL_EXTERNAL (decl))
return true;
}
/* Only global variables go into sdata section for now. */
else if (1)
{
/* Don't put constants into the small data section: we want them
to be in ROM rather than RAM. */
if (TREE_CODE (decl) != VAR_DECL)
return false;
if (TREE_READONLY (decl)
&& !TREE_SIDE_EFFECTS (decl)
&& (!DECL_INITIAL (decl) || TREE_CONSTANT (DECL_INITIAL (decl))))
return false;
/* TREE_PUBLIC might change after the first call, because of the patch
for PR19238. */
if (default_binds_local_p_1 (decl, 1)
|| arc_decl_anon_ns_mem_p (decl))
return false;
/* To ensure -mvolatile-cache works
ld.di does not have a gp-relative variant. */
if (TREE_THIS_VOLATILE (decl))
return false;
}
/* Disable sdata references to weak variables. */
if (DECL_WEAK (decl))
return false;
size = int_size_in_bytes (TREE_TYPE (decl));
/* if (AGGREGATE_TYPE_P (TREE_TYPE (decl))) */
/* return false; */
/* Allow only <=4B long data types into sdata. */
return (size > 0 && size <= 4);
}
/* Return true if X is a small data address that can be rewritten
as a gp+symref. */
static bool
arc_rewrite_small_data_p (const_rtx x)
{
if (GET_CODE (x) == CONST)
x = XEXP (x, 0);
if (GET_CODE (x) == PLUS)
{
if (GET_CODE (XEXP (x, 1)) == CONST_INT)
x = XEXP (x, 0);
}
return (GET_CODE (x) == SYMBOL_REF
&& SYMBOL_REF_SMALL_P(x));
}
/* If possible, rewrite OP so that it refers to small data using
explicit relocations. */
rtx
arc_rewrite_small_data (rtx op)
{
op = copy_insn (op);
subrtx_ptr_iterator::array_type array;
FOR_EACH_SUBRTX_PTR (iter, array, &op, ALL)
{
rtx *loc = *iter;
if (arc_rewrite_small_data_p (*loc))
{
gcc_assert (SDATA_BASE_REGNUM == PIC_OFFSET_TABLE_REGNUM);
*loc = gen_rtx_PLUS (Pmode, pic_offset_table_rtx, *loc);
if (loc != &op)
{
if (GET_CODE (op) == MEM && &XEXP (op, 0) == loc)
; /* OK. */
else if (GET_CODE (op) == MEM
&& GET_CODE (XEXP (op, 0)) == PLUS
&& GET_CODE (XEXP (XEXP (op, 0), 0)) == MULT)
*loc = force_reg (Pmode, *loc);
else
gcc_unreachable ();
}
iter.skip_subrtxes ();
}
else if (GET_CODE (*loc) == PLUS
&& rtx_equal_p (XEXP (*loc, 0), pic_offset_table_rtx))
iter.skip_subrtxes ();
}
return op;
}
/* Return true if OP refers to small data symbols directly, not through
a PLUS. */
bool
small_data_pattern (rtx op, machine_mode)
{
if (GET_CODE (op) == SEQUENCE)
return false;
subrtx_iterator::array_type array;
FOR_EACH_SUBRTX (iter, array, op, ALL)
{
const_rtx x = *iter;
if (GET_CODE (x) == PLUS
&& rtx_equal_p (XEXP (x, 0), pic_offset_table_rtx))
iter.skip_subrtxes ();
else if (arc_rewrite_small_data_p (x))
return true;
}
return false;
}
/* Return true if OP is an acceptable memory operand for ARCompact
16-bit gp-relative load instructions.
op shd look like : [r26, symref@sda]
i.e. (mem (plus (reg 26) (symref with smalldata flag set))
*/
/* volatile cache option still to be handled. */
bool
compact_sda_memory_operand (rtx op, machine_mode mode)
{
rtx addr;
int size;
/* Eliminate non-memory operations. */
if (GET_CODE (op) != MEM)
return false;
if (mode == VOIDmode)
mode = GET_MODE (op);
size = GET_MODE_SIZE (mode);
/* dword operations really put out 2 instructions, so eliminate them. */
if (size > UNITS_PER_WORD)
return false;
/* Decode the address now. */
addr = XEXP (op, 0);
return LEGITIMATE_SMALL_DATA_ADDRESS_P (addr);
}
/* Implement ASM_OUTPUT_ALIGNED_DECL_LOCAL. */
void
arc_asm_output_aligned_decl_local (FILE * stream, tree decl, const char * name,
unsigned HOST_WIDE_INT size,
unsigned HOST_WIDE_INT align,
unsigned HOST_WIDE_INT globalize_p)
{
int in_small_data = arc_in_small_data_p (decl);
if (in_small_data)
switch_to_section (get_named_section (NULL, ".sbss", 0));
/* named_section (0,".sbss",0); */
else
switch_to_section (bss_section);
if (globalize_p)
(*targetm.asm_out.globalize_label) (stream, name);
ASM_OUTPUT_ALIGN (stream, floor_log2 ((align) / BITS_PER_UNIT));
ASM_OUTPUT_TYPE_DIRECTIVE (stream, name, "object");
ASM_OUTPUT_SIZE_DIRECTIVE (stream, name, size);
ASM_OUTPUT_LABEL (stream, name);
if (size != 0)
ASM_OUTPUT_SKIP (stream, size);
}
static bool
arc_preserve_reload_p (rtx in)
{
return (GET_CODE (in) == PLUS
&& RTX_OK_FOR_BASE_P (XEXP (in, 0), true)
&& CONST_INT_P (XEXP (in, 1))
&& !((INTVAL (XEXP (in, 1)) & 511)));
}
int
arc_register_move_cost (machine_mode,
enum reg_class from_class, enum reg_class to_class)
{
/* The ARC600 has no bypass for extension registers, hence a nop might be
needed to be inserted after a write so that reads are safe. */
if (TARGET_ARC600)
{
if (to_class == MPY_WRITABLE_CORE_REGS)
return 3;
/* Instructions modifying LP_COUNT need 4 additional cycles before
the register will actually contain the value. */
else if (to_class == LPCOUNT_REG)
return 6;
else if (to_class == WRITABLE_CORE_REGS)
return 6;
}
/* The ARC700 stalls for 3 cycles when *reading* from lp_count. */
if (TARGET_ARC700
&& (from_class == LPCOUNT_REG || from_class == ALL_CORE_REGS
|| from_class == WRITABLE_CORE_REGS))
return 8;
/* Force an attempt to 'mov Dy,Dx' to spill. */
if (TARGET_ARC700 && TARGET_DPFP
&& from_class == DOUBLE_REGS && to_class == DOUBLE_REGS)
return 100;
return 2;
}
/* Emit code for an addsi3 instruction with OPERANDS.
COND_P indicates if this will use conditional execution.
Return the length of the instruction.
If OUTPUT_P is false, don't actually output the instruction, just return
its length. */
int
arc_output_addsi (rtx *operands, bool cond_p, bool output_p)
{
char format[32];
int match = operands_match_p (operands[0], operands[1]);
int match2 = operands_match_p (operands[0], operands[2]);
int intval = (REG_P (operands[2]) ? 1
: CONST_INT_P (operands[2]) ? INTVAL (operands[2]) : 0xbadc057);
int neg_intval = -intval;
int short_0 = satisfies_constraint_Rcq (operands[0]);
int short_p = (!cond_p && short_0 && satisfies_constraint_Rcq (operands[1]));
int ret = 0;
#define ADDSI_OUTPUT1(FORMAT) do {\
if (output_p) \
output_asm_insn (FORMAT, operands);\
return ret; \
} while (0)
#define ADDSI_OUTPUT(LIST) do {\
if (output_p) \
sprintf LIST;\
ADDSI_OUTPUT1 (format);\
return ret; \
} while (0)
/* First try to emit a 16 bit insn. */
ret = 2;
if (!cond_p
/* If we are actually about to output this insn, don't try a 16 bit
variant if we already decided that we don't want that
(I.e. we upsized this insn to align some following insn.)
E.g. add_s r0,sp,70 is 16 bit, but add r0,sp,70 requires a LIMM -
but add1 r0,sp,35 doesn't. */
&& (!output_p || (get_attr_length (current_output_insn) & 2)))
{
if (short_p
&& (REG_P (operands[2])
? (match || satisfies_constraint_Rcq (operands[2]))
: (unsigned) intval <= (match ? 127 : 7)))
ADDSI_OUTPUT1 ("add%? %0,%1,%2");
if (short_0 && REG_P (operands[1]) && match2)
ADDSI_OUTPUT1 ("add%? %0,%2,%1");
if ((short_0 || REGNO (operands[0]) == STACK_POINTER_REGNUM)
&& REGNO (operands[1]) == STACK_POINTER_REGNUM && !(intval & ~124))
ADDSI_OUTPUT1 ("add%? %0,%1,%2");
if ((short_p && (unsigned) neg_intval <= (match ? 31 : 7))
|| (REGNO (operands[0]) == STACK_POINTER_REGNUM
&& match && !(neg_intval & ~124)))
ADDSI_OUTPUT1 ("sub%? %0,%1,%n2");
}
/* Now try to emit a 32 bit insn without long immediate. */
ret = 4;
if (!match && match2 && REG_P (operands[1]))
ADDSI_OUTPUT1 ("add%? %0,%2,%1");
if (match || !cond_p)
{
int limit = (match && !cond_p) ? 0x7ff : 0x3f;
int range_factor = neg_intval & intval;
int shift;
if (intval == (HOST_WIDE_INT) (HOST_WIDE_INT_M1U << 31))
ADDSI_OUTPUT1 ("bxor%? %0,%1,31");
/* If we can use a straight add / sub instead of a {add,sub}[123] of
same size, do, so - the insn latency is lower. */
/* -0x800 is a 12-bit constant for add /add3 / sub / sub3, but
0x800 is not. */
if ((intval >= 0 && intval <= limit)
|| (intval == -0x800 && limit == 0x7ff))
ADDSI_OUTPUT1 ("add%? %0,%1,%2");
else if ((intval < 0 && neg_intval <= limit)
|| (intval == 0x800 && limit == 0x7ff))
ADDSI_OUTPUT1 ("sub%? %0,%1,%n2");
shift = range_factor >= 8 ? 3 : (range_factor >> 1);
gcc_assert (shift == 0 || shift == 1 || shift == 2 || shift == 3);
gcc_assert ((((1 << shift) - 1) & intval) == 0);
if (((intval < 0 && intval != -0x4000)
/* sub[123] is slower than add_s / sub, only use it if it
avoids a long immediate. */
&& neg_intval <= limit << shift)
|| (intval == 0x4000 && limit == 0x7ff))
ADDSI_OUTPUT ((format, "sub%d%%? %%0,%%1,%d",
shift, neg_intval >> shift));
else if ((intval >= 0 && intval <= limit << shift)
|| (intval == -0x4000 && limit == 0x7ff))
ADDSI_OUTPUT ((format, "add%d%%? %%0,%%1,%d", shift, intval >> shift));
}
/* Try to emit a 16 bit opcode with long immediate. */
ret = 6;
if (short_p && match)
ADDSI_OUTPUT1 ("add%? %0,%1,%S2");
/* We have to use a 32 bit opcode, and with a long immediate. */
ret = 8;
ADDSI_OUTPUT1 (intval < 0 ? "sub%? %0,%1,%n2" : "add%? %0,%1,%S2");
}
/* Emit code for an commutative_cond_exec instruction with OPERANDS.
Return the length of the instruction.
If OUTPUT_P is false, don't actually output the instruction, just return
its length. */
int
arc_output_commutative_cond_exec (rtx *operands, bool output_p)
{
enum rtx_code commutative_op = GET_CODE (operands[3]);
const char *pat = NULL;
/* Canonical rtl should not have a constant in the first operand position. */
gcc_assert (!CONSTANT_P (operands[1]));
switch (commutative_op)
{
case AND:
if (satisfies_constraint_C1p (operands[2]))
pat = "bmsk%? %0,%1,%Z2";
else if (satisfies_constraint_Ccp (operands[2]))
pat = "bclr%? %0,%1,%M2";
else if (satisfies_constraint_CnL (operands[2]))
pat = "bic%? %0,%1,%n2-1";
break;
case IOR:
if (satisfies_constraint_C0p (operands[2]))
pat = "bset%? %0,%1,%z2";
break;
case XOR:
if (satisfies_constraint_C0p (operands[2]))
pat = "bxor%? %0,%1,%z2";
break;
case PLUS:
return arc_output_addsi (operands, true, output_p);
default: break;
}
if (output_p)
output_asm_insn (pat ? pat : "%O3.%d5 %0,%1,%2", operands);
if (pat || REG_P (operands[2]) || satisfies_constraint_L (operands[2]))
return 4;
return 8;
}
/* Helper function of arc_expand_movmem. ADDR points to a chunk of memory.
Emit code and return an potentially modified address such that offsets
up to SIZE are can be added to yield a legitimate address.
if REUSE is set, ADDR is a register that may be modified. */
static rtx
force_offsettable (rtx addr, HOST_WIDE_INT size, bool reuse)
{
rtx base = addr;
rtx offs = const0_rtx;
if (GET_CODE (base) == PLUS)
{
offs = XEXP (base, 1);
base = XEXP (base, 0);
}
if (!REG_P (base)
|| (REGNO (base) != STACK_POINTER_REGNUM
&& REGNO_PTR_FRAME_P (REGNO (addr)))
|| !CONST_INT_P (offs) || !SMALL_INT (INTVAL (offs))
|| !SMALL_INT (INTVAL (offs) + size))
{
if (reuse)
emit_insn (gen_add2_insn (addr, offs));
else
addr = copy_to_mode_reg (Pmode, addr);
}
return addr;
}
/* Like move_by_pieces, but take account of load latency,
and actual offset ranges.
Return true on success. */
bool
arc_expand_movmem (rtx *operands)
{
rtx dst = operands[0];
rtx src = operands[1];
rtx dst_addr, src_addr;
HOST_WIDE_INT size;
int align = INTVAL (operands[3]);
unsigned n_pieces;
int piece = align;
rtx store[2];
rtx tmpx[2];
int i;
if (!CONST_INT_P (operands[2]))
return false;
size = INTVAL (operands[2]);
/* move_by_pieces_ninsns is static, so we can't use it. */
if (align >= 4)
n_pieces = (size + 2) / 4U + (size & 1);
else if (align == 2)
n_pieces = (size + 1) / 2U;
else
n_pieces = size;
if (n_pieces >= (unsigned int) (optimize_size ? 3 : 15))
return false;
if (piece > 4)
piece = 4;
dst_addr = force_offsettable (XEXP (operands[0], 0), size, 0);
src_addr = force_offsettable (XEXP (operands[1], 0), size, 0);
store[0] = store[1] = NULL_RTX;
tmpx[0] = tmpx[1] = NULL_RTX;
for (i = 0; size > 0; i ^= 1, size -= piece)
{
rtx tmp;
machine_mode mode;
if (piece > size)
piece = size & -size;
mode = smallest_mode_for_size (piece * BITS_PER_UNIT, MODE_INT);
/* If we don't re-use temporaries, the scheduler gets carried away,
and the register pressure gets unnecessarily high. */
if (0 && tmpx[i] && GET_MODE (tmpx[i]) == mode)
tmp = tmpx[i];
else
tmpx[i] = tmp = gen_reg_rtx (mode);
dst_addr = force_offsettable (dst_addr, piece, 1);
src_addr = force_offsettable (src_addr, piece, 1);
if (store[i])
emit_insn (store[i]);
emit_move_insn (tmp, change_address (src, mode, src_addr));
store[i] = gen_move_insn (change_address (dst, mode, dst_addr), tmp);
dst_addr = plus_constant (Pmode, dst_addr, piece);
src_addr = plus_constant (Pmode, src_addr, piece);
}
if (store[i])
emit_insn (store[i]);
if (store[i^1])
emit_insn (store[i^1]);
return true;
}
/* Prepare operands for move in MODE. Return true iff the move has
been emitted. */
bool
prepare_move_operands (rtx *operands, machine_mode mode)
{
/* We used to do this only for MODE_INT Modes, but addresses to floating
point variables may well be in the small data section. */
if (1)
{
if (!TARGET_NO_SDATA_SET && small_data_pattern (operands[0], Pmode))
operands[0] = arc_rewrite_small_data (operands[0]);
else if (mode == SImode && flag_pic && SYMBOLIC_CONST (operands[1]))
{
emit_pic_move (operands, SImode);
/* Disable any REG_EQUALs associated with the symref
otherwise the optimization pass undoes the work done
here and references the variable directly. */
}
else if (GET_CODE (operands[0]) != MEM
&& !TARGET_NO_SDATA_SET
&& small_data_pattern (operands[1], Pmode))
{
/* This is to take care of address calculations involving sdata
variables. */
operands[1] = arc_rewrite_small_data (operands[1]);
emit_insn (gen_rtx_SET (operands[0],operands[1]));
/* ??? This note is useless, since it only restates the set itself.
We should rather use the original SYMBOL_REF. However, there is
the problem that we are lying to the compiler about these
SYMBOL_REFs to start with. symbol@sda should be encoded specially
so that we can tell it apart from an actual symbol. */
set_unique_reg_note (get_last_insn (), REG_EQUAL, operands[1]);
/* Take care of the REG_EQUAL note that will be attached to mark the
output reg equal to the initial symbol_ref after this code is
executed. */
emit_move_insn (operands[0], operands[0]);
return true;
}
}
if (MEM_P (operands[0])
&& !(reload_in_progress || reload_completed))
{
operands[1] = force_reg (mode, operands[1]);
if (!move_dest_operand (operands[0], mode))
{
rtx addr = copy_to_mode_reg (Pmode, XEXP (operands[0], 0));
/* This is like change_address_1 (operands[0], mode, 0, 1) ,
except that we can't use that function because it is static. */
rtx pat = change_address (operands[0], mode, addr);
MEM_COPY_ATTRIBUTES (pat, operands[0]);
operands[0] = pat;
}
if (!cse_not_expected)
{
rtx pat = XEXP (operands[0], 0);
pat = arc_legitimize_address_0 (pat, pat, mode);
if (pat)
{
pat = change_address (operands[0], mode, pat);
MEM_COPY_ATTRIBUTES (pat, operands[0]);
operands[0] = pat;
}
}
}
if (MEM_P (operands[1]) && !cse_not_expected)
{
rtx pat = XEXP (operands[1], 0);
pat = arc_legitimize_address_0 (pat, pat, mode);
if (pat)
{
pat = change_address (operands[1], mode, pat);
MEM_COPY_ATTRIBUTES (pat, operands[1]);
operands[1] = pat;
}
}
return false;
}
/* Prepare OPERANDS for an extension using CODE to OMODE.
Return true iff the move has been emitted. */
bool
prepare_extend_operands (rtx *operands, enum rtx_code code,
machine_mode omode)
{
if (!TARGET_NO_SDATA_SET && small_data_pattern (operands[1], Pmode))
{
/* This is to take care of address calculations involving sdata
variables. */
operands[1]
= gen_rtx_fmt_e (code, omode, arc_rewrite_small_data (operands[1]));
emit_insn (gen_rtx_SET (operands[0], operands[1]));
set_unique_reg_note (get_last_insn (), REG_EQUAL, operands[1]);
/* Take care of the REG_EQUAL note that will be attached to mark the
output reg equal to the initial extension after this code is
executed. */
emit_move_insn (operands[0], operands[0]);
return true;
}
return false;
}
/* Output a library call to a function called FNAME that has been arranged
to be local to any dso. */
const char *
arc_output_libcall (const char *fname)
{
unsigned len = strlen (fname);
static char buf[64];
gcc_assert (len < sizeof buf - 35);
if (TARGET_LONG_CALLS_SET
|| (TARGET_MEDIUM_CALLS && arc_ccfsm_cond_exec_p ()))
{
if (flag_pic)
sprintf (buf, "add r12,pcl,@%s-(.&-4)\n\tjl%%!%%* [r12]", fname);
else
sprintf (buf, "jl%%! @%s", fname);
}
else
sprintf (buf, "bl%%!%%* @%s", fname);
return buf;
}
/* Return the SImode highpart of the DImode value IN. */
rtx
disi_highpart (rtx in)
{
return simplify_gen_subreg (SImode, in, DImode, TARGET_BIG_ENDIAN ? 0 : 4);
}
/* Return length adjustment for INSN.
For ARC600:
A write to a core reg greater or equal to 32 must not be immediately
followed by a use. Anticipate the length requirement to insert a nop
between PRED and SUCC to prevent a hazard. */
static int
arc600_corereg_hazard (rtx_insn *pred, rtx_insn *succ)
{
if (!TARGET_ARC600)
return 0;
/* If SUCC is a doloop_end_i with a preceding label, we must output a nop
in front of SUCC anyway, so there will be separation between PRED and
SUCC. */
if (recog_memoized (succ) == CODE_FOR_doloop_end_i
&& LABEL_P (prev_nonnote_insn (succ)))
return 0;
if (recog_memoized (succ) == CODE_FOR_doloop_begin_i)
return 0;
if (GET_CODE (PATTERN (pred)) == SEQUENCE)
pred = as_a <rtx_sequence *> (PATTERN (pred))->insn (1);
if (GET_CODE (PATTERN (succ)) == SEQUENCE)
succ = as_a <rtx_sequence *> (PATTERN (succ))->insn (0);
if (recog_memoized (pred) == CODE_FOR_mulsi_600
|| recog_memoized (pred) == CODE_FOR_umul_600
|| recog_memoized (pred) == CODE_FOR_mac_600
|| recog_memoized (pred) == CODE_FOR_mul64_600
|| recog_memoized (pred) == CODE_FOR_mac64_600
|| recog_memoized (pred) == CODE_FOR_umul64_600
|| recog_memoized (pred) == CODE_FOR_umac64_600)
return 0;
subrtx_iterator::array_type array;
FOR_EACH_SUBRTX (iter, array, PATTERN (pred), NONCONST)
{
const_rtx x = *iter;
switch (GET_CODE (x))
{
case SET: case POST_INC: case POST_DEC: case PRE_INC: case PRE_DEC:
break;
default:
/* This is also fine for PRE/POST_MODIFY, because they
contain a SET. */
continue;
}
rtx dest = XEXP (x, 0);
/* Check if this sets a an extension register. N.B. we use 61 for the
condition codes, which is definitely not an extension register. */
if (REG_P (dest) && REGNO (dest) >= 32 && REGNO (dest) < 61
/* Check if the same register is used by the PAT. */
&& (refers_to_regno_p
(REGNO (dest),
REGNO (dest) + (GET_MODE_SIZE (GET_MODE (dest)) + 3) / 4U,
PATTERN (succ), 0)))
return 4;
}
return 0;
}
/* Given a rtx, check if it is an assembly instruction or not. */
static int
arc_asm_insn_p (rtx x)
{
int i, j;
if (x == 0)
return 0;
switch (GET_CODE (x))
{
case ASM_OPERANDS:
case ASM_INPUT:
return 1;
case SET:
return arc_asm_insn_p (SET_SRC (x));
case PARALLEL:
j = 0;
for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
j += arc_asm_insn_p (XVECEXP (x, 0, i));
if ( j > 0)
return 1;
break;
default:
break;
}
return 0;
}
/* We might have a CALL to a non-returning function before a loop end.
??? Although the manual says that's OK (the target is outside the
loop, and the loop counter unused there), the assembler barfs on
this for ARC600, so we must insert a nop before such a call too.
For ARC700, and ARCv2 is not allowed to have the last ZOL
instruction a jump to a location where lp_count is modified. */
static bool
arc_loop_hazard (rtx_insn *pred, rtx_insn *succ)
{
rtx_insn *jump = NULL;
rtx label_rtx = NULL_RTX;
rtx_insn *label = NULL;
basic_block succ_bb;
if (recog_memoized (succ) != CODE_FOR_doloop_end_i)
return false;
/* Phase 1: ARC600 and ARCv2HS doesn't allow any control instruction
(i.e., jump/call) as the last instruction of a ZOL. */
if (TARGET_ARC600 || TARGET_HS)
if (JUMP_P (pred) || CALL_P (pred)
|| arc_asm_insn_p (PATTERN (pred))
|| GET_CODE (PATTERN (pred)) == SEQUENCE)
return true;
/* Phase 2: Any architecture, it is not allowed to have the last ZOL
instruction a jump to a location where lp_count is modified. */
/* Phase 2a: Dig for the jump instruction. */
if (JUMP_P (pred))
jump = pred;
else if (GET_CODE (PATTERN (pred)) == SEQUENCE
&& JUMP_P (XVECEXP (PATTERN (pred), 0, 0)))
jump = as_a <rtx_insn *> XVECEXP (PATTERN (pred), 0, 0);
else
return false;
/* Phase 2b: Make sure is not a millicode jump. */
if ((GET_CODE (PATTERN (jump)) == PARALLEL)
&& (XVECEXP (PATTERN (jump), 0, 0) == ret_rtx))
return false;
label_rtx = JUMP_LABEL (jump);
if (!label_rtx)
return false;
/* Phase 2c: Make sure is not a return. */
if (ANY_RETURN_P (label_rtx))
return false;
/* Pahse 2d: Go to the target of the jump and check for aliveness of
LP_COUNT register. */
label = safe_as_a <rtx_insn *> (label_rtx);
succ_bb = BLOCK_FOR_INSN (label);
if (!succ_bb)
{
gcc_assert (NEXT_INSN (label));
if (NOTE_INSN_BASIC_BLOCK_P (NEXT_INSN (label)))
succ_bb = NOTE_BASIC_BLOCK (NEXT_INSN (label));
else
succ_bb = BLOCK_FOR_INSN (NEXT_INSN (label));
}
if (succ_bb && REGNO_REG_SET_P (df_get_live_out (succ_bb), LP_COUNT))
return true;
return false;
}
/* For ARC600:
A write to a core reg greater or equal to 32 must not be immediately
followed by a use. Anticipate the length requirement to insert a nop
between PRED and SUCC to prevent a hazard. */
int
arc_hazard (rtx_insn *pred, rtx_insn *succ)
{
if (!pred || !INSN_P (pred) || !succ || !INSN_P (succ))
return 0;
if (arc_loop_hazard (pred, succ))
return 4;
if (TARGET_ARC600)
return arc600_corereg_hazard (pred, succ);
return 0;
}
/* Return length adjustment for INSN. */
int
arc_adjust_insn_length (rtx_insn *insn, int len, bool)
{
if (!INSN_P (insn))
return len;
/* We already handle sequences by ignoring the delay sequence flag. */
if (GET_CODE (PATTERN (insn)) == SEQUENCE)
return len;
/* It is impossible to jump to the very end of a Zero-Overhead Loop, as
the ZOL mechanism only triggers when advancing to the end address,
so if there's a label at the end of a ZOL, we need to insert a nop.
The ARC600 ZOL also has extra restrictions on jumps at the end of a
loop. */
if (recog_memoized (insn) == CODE_FOR_doloop_end_i)
{
rtx_insn *prev = prev_nonnote_insn (insn);
return ((LABEL_P (prev)
|| (TARGET_ARC600
&& (JUMP_P (prev)
|| CALL_P (prev) /* Could be a noreturn call. */
|| (NONJUMP_INSN_P (prev)
&& GET_CODE (PATTERN (prev)) == SEQUENCE))))
? len + 4 : len);
}
/* Check for return with but one preceding insn since function
start / call. */
if (TARGET_PAD_RETURN
&& JUMP_P (insn)
&& GET_CODE (PATTERN (insn)) != ADDR_VEC
&& GET_CODE (PATTERN (insn)) != ADDR_DIFF_VEC
&& get_attr_type (insn) == TYPE_RETURN)
{
rtx_insn *prev = prev_active_insn (insn);
if (!prev || !(prev = prev_active_insn (prev))
|| ((NONJUMP_INSN_P (prev)
&& GET_CODE (PATTERN (prev)) == SEQUENCE)
? CALL_ATTR (as_a <rtx_sequence *> (PATTERN (prev))->insn (0),
NON_SIBCALL)
: CALL_ATTR (prev, NON_SIBCALL)))
return len + 4;
}
if (TARGET_ARC600)
{
rtx_insn *succ = next_real_insn (insn);
/* One the ARC600, a write to an extension register must be separated
from a read. */
if (succ && INSN_P (succ))
len += arc600_corereg_hazard (insn, succ);
}
/* Restore extracted operands - otherwise splitters like the addsi3_mixed one
can go awry. */
extract_constrain_insn_cached (insn);
return len;
}
/* Values for length_sensitive. */
enum
{
ARC_LS_NONE,// Jcc
ARC_LS_25, // 25 bit offset, B
ARC_LS_21, // 21 bit offset, Bcc
ARC_LS_U13,// 13 bit unsigned offset, LP
ARC_LS_10, // 10 bit offset, B_s, Beq_s, Bne_s
ARC_LS_9, // 9 bit offset, BRcc
ARC_LS_8, // 8 bit offset, BRcc_s
ARC_LS_U7, // 7 bit unsigned offset, LPcc
ARC_LS_7 // 7 bit offset, Bcc_s
};
/* While the infrastructure patch is waiting for review, duplicate the
struct definitions, to allow this file to compile. */
#if 1
typedef struct
{
unsigned align_set;
/* Cost as a branch / call target or call return address. */
int target_cost;
int fallthrough_cost;
int branch_cost;
int length;
/* 0 for not length sensitive, 1 for largest offset range,
* 2 for next smaller etc. */
unsigned length_sensitive : 8;
bool enabled;
} insn_length_variant_t;
typedef struct insn_length_parameters_s
{
int align_unit_log;
int align_base_log;
int max_variants;
int (*get_variants) (rtx_insn *, int, bool, bool, insn_length_variant_t *);
} insn_length_parameters_t;
static void
arc_insn_length_parameters (insn_length_parameters_t *ilp) ATTRIBUTE_UNUSED;
#endif
static int
arc_get_insn_variants (rtx_insn *insn, int len, bool, bool target_p,
insn_length_variant_t *ilv)
{
if (!NONDEBUG_INSN_P (insn))
return 0;
enum attr_type type;
/* shorten_branches doesn't take optimize_size into account yet for the
get_variants mechanism, so turn this off for now. */
if (optimize_size)
return 0;
if (rtx_sequence *pat = dyn_cast <rtx_sequence *> (PATTERN (insn)))
{
/* The interaction of a short delay slot insn with a short branch is
too weird for shorten_branches to piece together, so describe the
entire SEQUENCE. */
rtx_insn *inner;
if (TARGET_UPSIZE_DBR
&& get_attr_length (pat->insn (1)) <= 2
&& (((type = get_attr_type (inner = pat->insn (0)))
== TYPE_UNCOND_BRANCH)
|| type == TYPE_BRANCH)
&& get_attr_delay_slot_filled (inner) == DELAY_SLOT_FILLED_YES)
{
int n_variants
= arc_get_insn_variants (inner, get_attr_length (inner), true,
target_p, ilv+1);
/* The short variant gets split into a higher-cost aligned
and a lower cost unaligned variant. */
gcc_assert (n_variants);
gcc_assert (ilv[1].length_sensitive == ARC_LS_7
|| ilv[1].length_sensitive == ARC_LS_10);
gcc_assert (ilv[1].align_set == 3);
ilv[0] = ilv[1];
ilv[0].align_set = 1;
ilv[0].branch_cost += 1;
ilv[1].align_set = 2;
n_variants++;
for (int i = 0; i < n_variants; i++)
ilv[i].length += 2;
/* In case an instruction with aligned size is wanted, and
the short variants are unavailable / too expensive, add
versions of long branch + long delay slot. */
for (int i = 2, end = n_variants; i < end; i++, n_variants++)
{
ilv[n_variants] = ilv[i];
ilv[n_variants].length += 2;
}
return n_variants;
}
return 0;
}
insn_length_variant_t *first_ilv = ilv;
type = get_attr_type (insn);
bool delay_filled
= (get_attr_delay_slot_filled (insn) == DELAY_SLOT_FILLED_YES);
int branch_align_cost = delay_filled ? 0 : 1;
int branch_unalign_cost = delay_filled ? 0 : TARGET_UNALIGN_BRANCH ? 0 : 1;
/* If the previous instruction is an sfunc call, this insn is always
a target, even though the middle-end is unaware of this. */
bool force_target = false;
rtx_insn *prev = prev_active_insn (insn);
if (prev && arc_next_active_insn (prev, 0) == insn
&& ((NONJUMP_INSN_P (prev) && GET_CODE (PATTERN (prev)) == SEQUENCE)
? CALL_ATTR (as_a <rtx_sequence *> (PATTERN (prev))->insn (0),
NON_SIBCALL)
: (CALL_ATTR (prev, NON_SIBCALL)
&& NEXT_INSN (PREV_INSN (prev)) == prev)))
force_target = true;
switch (type)
{
case TYPE_BRCC:
/* Short BRCC only comes in no-delay-slot version, and without limm */
if (!delay_filled)
{
ilv->align_set = 3;
ilv->length = 2;
ilv->branch_cost = 1;
ilv->enabled = (len == 2);
ilv->length_sensitive = ARC_LS_8;
ilv++;
}
/* Fall through. */
case TYPE_BRCC_NO_DELAY_SLOT:
/* doloop_fallback* patterns are TYPE_BRCC_NO_DELAY_SLOT for
(delay slot) scheduling purposes, but they are longer. */
if (GET_CODE (PATTERN (insn)) == PARALLEL
&& GET_CODE (XVECEXP (PATTERN (insn), 0, 1)) == SET)
return 0;
/* Standard BRCC: 4 bytes, or 8 bytes with limm. */
ilv->length = ((type == TYPE_BRCC) ? 4 : 8);
ilv->align_set = 3;
ilv->branch_cost = branch_align_cost;
ilv->enabled = (len <= ilv->length);
ilv->length_sensitive = ARC_LS_9;
if ((target_p || force_target)
|| (!delay_filled && TARGET_UNALIGN_BRANCH))
{
ilv[1] = *ilv;
ilv->align_set = 1;
ilv++;
ilv->align_set = 2;
ilv->target_cost = 1;
ilv->branch_cost = branch_unalign_cost;
}
ilv++;
rtx op, op0;
op = XEXP (SET_SRC (XVECEXP (PATTERN (insn), 0, 0)), 0);
op0 = XEXP (op, 0);
if (GET_CODE (op0) == ZERO_EXTRACT
&& satisfies_constraint_L (XEXP (op0, 2)))
op0 = XEXP (op0, 0);
if (satisfies_constraint_Rcq (op0))
{
ilv->length = ((type == TYPE_BRCC) ? 6 : 10);
ilv->align_set = 3;
ilv->branch_cost = 1 + branch_align_cost;
ilv->fallthrough_cost = 1;
ilv->enabled = true;
ilv->length_sensitive = ARC_LS_21;
if (!delay_filled && TARGET_UNALIGN_BRANCH)
{
ilv[1] = *ilv;
ilv->align_set = 1;
ilv++;
ilv->align_set = 2;
ilv->branch_cost = 1 + branch_unalign_cost;
}
ilv++;
}
ilv->length = ((type == TYPE_BRCC) ? 8 : 12);
ilv->align_set = 3;
ilv->branch_cost = 1 + branch_align_cost;
ilv->fallthrough_cost = 1;
ilv->enabled = true;
ilv->length_sensitive = ARC_LS_21;
if ((target_p || force_target)
|| (!delay_filled && TARGET_UNALIGN_BRANCH))
{
ilv[1] = *ilv;
ilv->align_set = 1;
ilv++;
ilv->align_set = 2;
ilv->target_cost = 1;
ilv->branch_cost = 1 + branch_unalign_cost;
}
ilv++;
break;
case TYPE_SFUNC:
ilv->length = 12;
goto do_call;
case TYPE_CALL_NO_DELAY_SLOT:
ilv->length = 8;
goto do_call;
case TYPE_CALL:
ilv->length = 4;
ilv->length_sensitive
= GET_CODE (PATTERN (insn)) == COND_EXEC ? ARC_LS_21 : ARC_LS_25;
do_call:
ilv->align_set = 3;
ilv->fallthrough_cost = branch_align_cost;
ilv->enabled = true;
if ((target_p || force_target)
|| (!delay_filled && TARGET_UNALIGN_BRANCH))
{
ilv[1] = *ilv;
ilv->align_set = 1;
ilv++;
ilv->align_set = 2;
ilv->target_cost = 1;
ilv->fallthrough_cost = branch_unalign_cost;
}
ilv++;
break;
case TYPE_UNCOND_BRANCH:
/* Strictly speaking, this should be ARC_LS_10 for equality comparisons,
but that makes no difference at the moment. */
ilv->length_sensitive = ARC_LS_7;
ilv[1].length_sensitive = ARC_LS_25;
goto do_branch;
case TYPE_BRANCH:
ilv->length_sensitive = ARC_LS_10;
ilv[1].length_sensitive = ARC_LS_21;
do_branch:
ilv->align_set = 3;
ilv->length = 2;
ilv->branch_cost = branch_align_cost;
ilv->enabled = (len == ilv->length);
ilv++;
ilv->length = 4;
ilv->align_set = 3;
ilv->branch_cost = branch_align_cost;
ilv->enabled = true;
if ((target_p || force_target)
|| (!delay_filled && TARGET_UNALIGN_BRANCH))
{
ilv[1] = *ilv;
ilv->align_set = 1;
ilv++;
ilv->align_set = 2;
ilv->target_cost = 1;
ilv->branch_cost = branch_unalign_cost;
}
ilv++;
break;
case TYPE_JUMP:
return 0;
default:
/* For every short insn, there is generally also a long insn.
trap_s is an exception. */
if ((len & 2) == 0 || recog_memoized (insn) == CODE_FOR_trap_s)
return 0;
ilv->align_set = 3;
ilv->length = len;
ilv->enabled = 1;
ilv++;
ilv->align_set = 3;
ilv->length = len + 2;
ilv->enabled = 1;
if (target_p || force_target)
{
ilv[1] = *ilv;
ilv->align_set = 1;
ilv++;
ilv->align_set = 2;
ilv->target_cost = 1;
}
ilv++;
}
/* If the previous instruction is an sfunc call, this insn is always
a target, even though the middle-end is unaware of this.
Therefore, if we have a call predecessor, transfer the target cost
to the fallthrough and branch costs. */
if (force_target)
{
for (insn_length_variant_t *p = first_ilv; p < ilv; p++)
{
p->fallthrough_cost += p->target_cost;
p->branch_cost += p->target_cost;
p->target_cost = 0;
}
}
return ilv - first_ilv;
}
static void
arc_insn_length_parameters (insn_length_parameters_t *ilp)
{
ilp->align_unit_log = 1;
ilp->align_base_log = 1;
ilp->max_variants = 7;
ilp->get_variants = arc_get_insn_variants;
}
/* Return a copy of COND from *STATEP, inverted if that is indicated by the
CC field of *STATEP. */
static rtx
arc_get_ccfsm_cond (struct arc_ccfsm *statep, bool reverse)
{
rtx cond = statep->cond;
int raw_cc = get_arc_condition_code (cond);
if (reverse)
raw_cc = ARC_INVERSE_CONDITION_CODE (raw_cc);
if (statep->cc == raw_cc)
return copy_rtx (cond);
gcc_assert (ARC_INVERSE_CONDITION_CODE (raw_cc) == statep->cc);
machine_mode ccm = GET_MODE (XEXP (cond, 0));
enum rtx_code code = reverse_condition (GET_CODE (cond));
if (code == UNKNOWN || ccm == CC_FP_GTmode || ccm == CC_FP_GEmode)
code = reverse_condition_maybe_unordered (GET_CODE (cond));
return gen_rtx_fmt_ee (code, GET_MODE (cond),
copy_rtx (XEXP (cond, 0)), copy_rtx (XEXP (cond, 1)));
}
/* Return version of PAT conditionalized with COND, which is part of INSN.
ANNULLED indicates if INSN is an annulled delay-slot insn.
Register further changes if necessary. */
static rtx
conditionalize_nonjump (rtx pat, rtx cond, rtx insn, bool annulled)
{
/* For commutative operators, we generally prefer to have
the first source match the destination. */
if (GET_CODE (pat) == SET)
{
rtx src = SET_SRC (pat);
if (COMMUTATIVE_P (src))
{
rtx src0 = XEXP (src, 0);
rtx src1 = XEXP (src, 1);
rtx dst = SET_DEST (pat);
if (rtx_equal_p (src1, dst) && !rtx_equal_p (src0, dst)
/* Leave add_n alone - the canonical form is to
have the complex summand first. */
&& REG_P (src0))
pat = gen_rtx_SET (dst,
gen_rtx_fmt_ee (GET_CODE (src), GET_MODE (src),
src1, src0));
}
}
/* dwarf2out.c:dwarf2out_frame_debug_expr doesn't know
what to do with COND_EXEC. */
if (RTX_FRAME_RELATED_P (insn))
{
/* If this is the delay slot insn of an anulled branch,
dwarf2out.c:scan_trace understands the anulling semantics
without the COND_EXEC. */
gcc_assert (annulled);
rtx note = alloc_reg_note (REG_FRAME_RELATED_EXPR, pat,
REG_NOTES (insn));
validate_change (insn, ®_NOTES (insn), note, 1);
}
pat = gen_rtx_COND_EXEC (VOIDmode, cond, pat);
return pat;
}
/* Use the ccfsm machinery to do if conversion. */
static unsigned
arc_ifcvt (void)
{
struct arc_ccfsm *statep = &cfun->machine->ccfsm_current;
basic_block merge_bb = 0;
memset (statep, 0, sizeof *statep);
for (rtx_insn *insn = get_insns (); insn; insn = next_insn (insn))
{
arc_ccfsm_advance (insn, statep);
switch (statep->state)
{
case 0:
if (JUMP_P (insn))
merge_bb = 0;
break;
case 1: case 2:
{
/* Deleted branch. */
gcc_assert (!merge_bb);
merge_bb = BLOCK_FOR_INSN (insn);
basic_block succ_bb
= BLOCK_FOR_INSN (NEXT_INSN (NEXT_INSN (PREV_INSN (insn))));
arc_ccfsm_post_advance (insn, statep);
gcc_assert (!IN_RANGE (statep->state, 1, 2));
rtx_insn *seq = NEXT_INSN (PREV_INSN (insn));
if (seq != insn)
{
rtx slot = XVECEXP (PATTERN (seq), 0, 1);
rtx pat = PATTERN (slot);
if (INSN_ANNULLED_BRANCH_P (insn))
{
rtx cond
= arc_get_ccfsm_cond (statep, INSN_FROM_TARGET_P (slot));
pat = gen_rtx_COND_EXEC (VOIDmode, cond, pat);
}
if (!validate_change (seq, &PATTERN (seq), pat, 0))
gcc_unreachable ();
PUT_CODE (slot, NOTE);
NOTE_KIND (slot) = NOTE_INSN_DELETED;
if (merge_bb && succ_bb)
merge_blocks (merge_bb, succ_bb);
}
else if (merge_bb && succ_bb)
{
set_insn_deleted (insn);
merge_blocks (merge_bb, succ_bb);
}
else
{
PUT_CODE (insn, NOTE);
NOTE_KIND (insn) = NOTE_INSN_DELETED;
}
continue;
}
case 3:
if (LABEL_P (insn)
&& statep->target_label == CODE_LABEL_NUMBER (insn))
{
arc_ccfsm_post_advance (insn, statep);
basic_block succ_bb = BLOCK_FOR_INSN (insn);
if (merge_bb && succ_bb)
merge_blocks (merge_bb, succ_bb);
else if (--LABEL_NUSES (insn) == 0)
{
const char *name = LABEL_NAME (insn);
PUT_CODE (insn, NOTE);
NOTE_KIND (insn) = NOTE_INSN_DELETED_LABEL;
NOTE_DELETED_LABEL_NAME (insn) = name;
}
merge_bb = 0;
continue;
}
/* Fall through. */
case 4: case 5:
if (!NONDEBUG_INSN_P (insn))
break;
/* Conditionalized insn. */
rtx_insn *prev, *pprev;
rtx *patp, pat, cond;
bool annulled; annulled = false;
/* If this is a delay slot insn in a non-annulled branch,
don't conditionalize it. N.B., this should be fine for
conditional return too. However, don't do this for
unconditional branches, as these would be encountered when
processing an 'else' part. */
prev = PREV_INSN (insn);
pprev = PREV_INSN (prev);
if (pprev && NEXT_INSN (NEXT_INSN (pprev)) == NEXT_INSN (insn)
&& JUMP_P (prev) && get_attr_cond (prev) == COND_USE)
{
if (!INSN_ANNULLED_BRANCH_P (prev))
break;
annulled = true;
}
patp = &PATTERN (insn);
pat = *patp;
cond = arc_get_ccfsm_cond (statep, INSN_FROM_TARGET_P (insn));
if (NONJUMP_INSN_P (insn) || CALL_P (insn))
{
/* ??? don't conditionalize if all side effects are dead
in the not-execute case. */
pat = conditionalize_nonjump (pat, cond, insn, annulled);
}
else if (simplejump_p (insn))
{
patp = &SET_SRC (pat);
pat = gen_rtx_IF_THEN_ELSE (VOIDmode, cond, *patp, pc_rtx);
}
else if (JUMP_P (insn) && ANY_RETURN_P (PATTERN (insn)))
{
pat = gen_rtx_IF_THEN_ELSE (VOIDmode, cond, pat, pc_rtx);
pat = gen_rtx_SET (pc_rtx, pat);
}
else
gcc_unreachable ();
validate_change (insn, patp, pat, 1);
if (!apply_change_group ())
gcc_unreachable ();
if (JUMP_P (insn))
{
rtx_insn *next = next_nonnote_insn (insn);
if (GET_CODE (next) == BARRIER)
delete_insn (next);
if (statep->state == 3)
continue;
}
break;
default:
gcc_unreachable ();
}
arc_ccfsm_post_advance (insn, statep);
}
return 0;
}
/* Find annulled delay insns and convert them to use the appropriate predicate.
This allows branch shortening to size up these insns properly. */
static unsigned
arc_predicate_delay_insns (void)
{
for (rtx_insn *insn = get_insns (); insn; insn = NEXT_INSN (insn))
{
rtx pat, jump, dlay, src, cond, *patp;
int reverse;
if (!NONJUMP_INSN_P (insn)
|| GET_CODE (pat = PATTERN (insn)) != SEQUENCE)
continue;
jump = XVECEXP (pat, 0, 0);
dlay = XVECEXP (pat, 0, 1);
if (!JUMP_P (jump) || !INSN_ANNULLED_BRANCH_P (jump))
continue;
/* If the branch insn does the annulling, leave the delay insn alone. */
if (!TARGET_AT_DBR_CONDEXEC && !INSN_FROM_TARGET_P (dlay))
continue;
/* ??? Could also leave DLAY un-conditionalized if its target is dead
on the other path. */
gcc_assert (GET_CODE (PATTERN (jump)) == SET);
gcc_assert (SET_DEST (PATTERN (jump)) == pc_rtx);
src = SET_SRC (PATTERN (jump));
gcc_assert (GET_CODE (src) == IF_THEN_ELSE);
cond = XEXP (src, 0);
if (XEXP (src, 2) == pc_rtx)
reverse = 0;
else if (XEXP (src, 1) == pc_rtx)
reverse = 1;
else
gcc_unreachable ();
if (reverse != !INSN_FROM_TARGET_P (dlay))
{
machine_mode ccm = GET_MODE (XEXP (cond, 0));
enum rtx_code code = reverse_condition (GET_CODE (cond));
if (code == UNKNOWN || ccm == CC_FP_GTmode || ccm == CC_FP_GEmode)
code = reverse_condition_maybe_unordered (GET_CODE (cond));
cond = gen_rtx_fmt_ee (code, GET_MODE (cond),
copy_rtx (XEXP (cond, 0)),
copy_rtx (XEXP (cond, 1)));
}
else
cond = copy_rtx (cond);
patp = &PATTERN (dlay);
pat = *patp;
pat = conditionalize_nonjump (pat, cond, dlay, true);
validate_change (dlay, patp, pat, 1);
if (!apply_change_group ())
gcc_unreachable ();
}
return 0;
}
/* For ARC600: If a write to a core reg >=32 appears in a delay slot
(other than of a forward brcc), it creates a hazard when there is a read
of the same register at the branch target. We can't know what is at the
branch target of calls, and for branches, we don't really know before the
end of delay slot scheduling, either. Not only can individual instruction
be hoisted out into a delay slot, a basic block can also be emptied this
way, and branch and/or fall through targets be redirected. Hence we don't
want such writes in a delay slot. */
/* Return nonzreo iff INSN writes to an extension core register. */
int
arc_write_ext_corereg (rtx insn)
{
subrtx_iterator::array_type array;
FOR_EACH_SUBRTX (iter, array, PATTERN (insn), NONCONST)
{
const_rtx x = *iter;
switch (GET_CODE (x))
{
case SET: case POST_INC: case POST_DEC: case PRE_INC: case PRE_DEC:
break;
default:
/* This is also fine for PRE/POST_MODIFY, because they
contain a SET. */
continue;
}
const_rtx dest = XEXP (x, 0);
if (REG_P (dest) && REGNO (dest) >= 32 && REGNO (dest) < 61)
return 1;
}
return 0;
}
/* This is like the hook, but returns NULL when it can't / won't generate
a legitimate address. */
static rtx
arc_legitimize_address_0 (rtx x, rtx oldx ATTRIBUTE_UNUSED,
machine_mode mode)
{
rtx addr, inner;
if (flag_pic && SYMBOLIC_CONST (x))
(x) = arc_legitimize_pic_address (x, 0);
addr = x;
if (GET_CODE (addr) == CONST)
addr = XEXP (addr, 0);
if (GET_CODE (addr) == PLUS
&& CONST_INT_P (XEXP (addr, 1))
&& ((GET_CODE (XEXP (addr, 0)) == SYMBOL_REF
&& !SYMBOL_REF_FUNCTION_P (XEXP (addr, 0)))
|| (REG_P (XEXP (addr, 0))
&& (INTVAL (XEXP (addr, 1)) & 252))))
{
HOST_WIDE_INT offs, upper;
int size = GET_MODE_SIZE (mode);
offs = INTVAL (XEXP (addr, 1));
upper = (offs + 256 * size) & ~511 * size;
inner = plus_constant (Pmode, XEXP (addr, 0), upper);
#if 0 /* ??? this produces worse code for EEMBC idctrn01 */
if (GET_CODE (x) == CONST)
inner = gen_rtx_CONST (Pmode, inner);
#endif
addr = plus_constant (Pmode, force_reg (Pmode, inner), offs - upper);
x = addr;
}
else if (GET_CODE (addr) == SYMBOL_REF && !SYMBOL_REF_FUNCTION_P (addr))
x = force_reg (Pmode, x);
if (memory_address_p ((machine_mode) mode, x))
return x;
return NULL_RTX;
}
static rtx
arc_legitimize_address (rtx orig_x, rtx oldx, machine_mode mode)
{
rtx new_x = arc_legitimize_address_0 (orig_x, oldx, mode);
if (new_x)
return new_x;
return orig_x;
}
static rtx
arc_delegitimize_address_0 (rtx x)
{
rtx u, gp;
if (GET_CODE (x) == CONST && GET_CODE (u = XEXP (x, 0)) == UNSPEC)
{
if (XINT (u, 1) == ARC_UNSPEC_GOT)
return XVECEXP (u, 0, 0);
}
else if (GET_CODE (x) == PLUS
&& ((REG_P (gp = XEXP (x, 0))
&& REGNO (gp) == PIC_OFFSET_TABLE_REGNUM)
|| (GET_CODE (gp) == CONST
&& GET_CODE (u = XEXP (gp, 0)) == UNSPEC
&& XINT (u, 1) == ARC_UNSPEC_GOT
&& GET_CODE (XVECEXP (u, 0, 0)) == SYMBOL_REF
&& !strcmp (XSTR (XVECEXP (u, 0, 0), 0), "_DYNAMIC")))
&& GET_CODE (XEXP (x, 1)) == CONST
&& GET_CODE (u = XEXP (XEXP (x, 1), 0)) == UNSPEC
&& XINT (u, 1) == ARC_UNSPEC_GOTOFF)
return XVECEXP (u, 0, 0);
else if (GET_CODE (x) == PLUS && GET_CODE (XEXP (x, 0)) == PLUS
&& ((REG_P (gp = XEXP (XEXP (x, 0), 1))
&& REGNO (gp) == PIC_OFFSET_TABLE_REGNUM)
|| (GET_CODE (gp) == CONST
&& GET_CODE (u = XEXP (gp, 0)) == UNSPEC
&& XINT (u, 1) == ARC_UNSPEC_GOT
&& GET_CODE (XVECEXP (u, 0, 0)) == SYMBOL_REF
&& !strcmp (XSTR (XVECEXP (u, 0, 0), 0), "_DYNAMIC")))
&& GET_CODE (XEXP (x, 1)) == CONST
&& GET_CODE (u = XEXP (XEXP (x, 1), 0)) == UNSPEC
&& XINT (u, 1) == ARC_UNSPEC_GOTOFF)
return gen_rtx_PLUS (GET_MODE (x), XEXP (XEXP (x, 0), 0),
XVECEXP (u, 0, 0));
else if (GET_CODE (x) == PLUS
&& (u = arc_delegitimize_address_0 (XEXP (x, 1))))
return gen_rtx_PLUS (GET_MODE (x), XEXP (x, 0), u);
return NULL_RTX;
}
static rtx
arc_delegitimize_address (rtx x)
{
rtx orig_x = x = delegitimize_mem_from_attrs (x);
if (GET_CODE (x) == MEM)
x = XEXP (x, 0);
x = arc_delegitimize_address_0 (x);
if (x)
{
if (MEM_P (orig_x))
x = replace_equiv_address_nv (orig_x, x);
return x;
}
return orig_x;
}
/* Return a REG rtx for acc1. N.B. the gcc-internal representation may
differ from the hardware register number in order to allow the generic
code to correctly split the concatenation of acc1 and acc2. */
rtx
gen_acc1 (void)
{
return gen_rtx_REG (SImode, TARGET_BIG_ENDIAN ? 56: 57);
}
/* Return a REG rtx for acc2. N.B. the gcc-internal representation may
differ from the hardware register number in order to allow the generic
code to correctly split the concatenation of acc1 and acc2. */
rtx
gen_acc2 (void)
{
return gen_rtx_REG (SImode, TARGET_BIG_ENDIAN ? 57: 56);
}
/* Return a REG rtx for mlo. N.B. the gcc-internal representation may
differ from the hardware register number in order to allow the generic
code to correctly split the concatenation of mhi and mlo. */
rtx
gen_mlo (void)
{
return gen_rtx_REG (SImode, TARGET_BIG_ENDIAN ? 59: 58);
}
/* Return a REG rtx for mhi. N.B. the gcc-internal representation may
differ from the hardware register number in order to allow the generic
code to correctly split the concatenation of mhi and mlo. */
rtx
gen_mhi (void)
{
return gen_rtx_REG (SImode, TARGET_BIG_ENDIAN ? 58: 59);
}
/* FIXME: a parameter should be added, and code added to final.c,
to reproduce this functionality in shorten_branches. */
#if 0
/* Return nonzero iff BRANCH should be unaligned if possible by upsizing
a previous instruction. */
int
arc_unalign_branch_p (rtx branch)
{
rtx note;
if (!TARGET_UNALIGN_BRANCH)
return 0;
/* Do not do this if we have a filled delay slot. */
if (get_attr_delay_slot_filled (branch) == DELAY_SLOT_FILLED_YES
&& !NEXT_INSN (branch)->deleted ())
return 0;
note = find_reg_note (branch, REG_BR_PROB, 0);
return (!note
|| (arc_unalign_prob_threshold && !br_prob_note_reliable_p (note))
|| INTVAL (XEXP (note, 0)) < arc_unalign_prob_threshold);
}
#endif
/* When estimating sizes during arc_reorg, when optimizing for speed, there
are three reasons why we need to consider branches to be length 6:
- annull-false delay slot insns are implemented using conditional execution,
thus preventing short insn formation where used.
- for ARC600: annul-true delay slot insns are implemented where possible
using conditional execution, preventing short insn formation where used.
- for ARC700: likely or somewhat likely taken branches are made long and
unaligned if possible to avoid branch penalty. */
bool
arc_branch_size_unknown_p (void)
{
return !optimize_size && arc_reorg_in_progress;
}
/* We are about to output a return insn. Add padding if necessary to avoid
a mispredict. A return could happen immediately after the function
start, but after a call we know that there will be at least a blink
restore. */
void
arc_pad_return (void)
{
rtx_insn *insn = current_output_insn;
rtx_insn *prev = prev_active_insn (insn);
int want_long;
if (!prev)
{
fputs ("\tnop_s\n", asm_out_file);
cfun->machine->unalign ^= 2;
want_long = 1;
}
/* If PREV is a sequence, we know it must be a branch / jump or a tailcall,
because after a call, we'd have to restore blink first. */
else if (GET_CODE (PATTERN (prev)) == SEQUENCE)
return;
else
{
want_long = (get_attr_length (prev) == 2);
prev = prev_active_insn (prev);
}
if (!prev
|| ((NONJUMP_INSN_P (prev) && GET_CODE (PATTERN (prev)) == SEQUENCE)
? CALL_ATTR (as_a <rtx_sequence *> (PATTERN (prev))->insn (0),
NON_SIBCALL)
: CALL_ATTR (prev, NON_SIBCALL)))
{
if (want_long)
cfun->machine->size_reason
= "call/return and return/return must be 6 bytes apart to avoid mispredict";
else if (TARGET_UNALIGN_BRANCH && cfun->machine->unalign)
{
cfun->machine->size_reason
= "Long unaligned jump avoids non-delay slot penalty";
want_long = 1;
}
/* Disgorge delay insn, if there is any, and it may be moved. */
if (final_sequence
/* ??? Annulled would be OK if we can and do conditionalize
the delay slot insn accordingly. */
&& !INSN_ANNULLED_BRANCH_P (insn)
&& (get_attr_cond (insn) != COND_USE
|| !reg_set_p (gen_rtx_REG (CCmode, CC_REG),
XVECEXP (final_sequence, 0, 1))))
{
prev = as_a <rtx_insn *> (XVECEXP (final_sequence, 0, 1));
gcc_assert (!prev_real_insn (insn)
|| !arc_hazard (prev_real_insn (insn), prev));
cfun->machine->force_short_suffix = !want_long;
rtx save_pred = current_insn_predicate;
final_scan_insn (prev, asm_out_file, optimize, 1, NULL);
cfun->machine->force_short_suffix = -1;
prev->set_deleted ();
current_output_insn = insn;
current_insn_predicate = save_pred;
}
else if (want_long)
fputs ("\tnop\n", asm_out_file);
else
{
fputs ("\tnop_s\n", asm_out_file);
cfun->machine->unalign ^= 2;
}
}
return;
}
/* The usual; we set up our machine_function data. */
static struct machine_function *
arc_init_machine_status (void)
{
struct machine_function *machine;
machine = ggc_cleared_alloc<machine_function> ();
machine->fn_type = ARC_FUNCTION_UNKNOWN;
machine->force_short_suffix = -1;
return machine;
}
/* Implements INIT_EXPANDERS. We just set up to call the above
function. */
void
arc_init_expanders (void)
{
init_machine_status = arc_init_machine_status;
}
/* Check if OP is a proper parallel of a millicode call pattern. OFFSET
indicates a number of elements to ignore - that allows to have a
sibcall pattern that starts with (return). LOAD_P is zero for store
multiple (for prologues), and one for load multiples (for epilogues),
and two for load multiples where no final clobber of blink is required.
We also skip the first load / store element since this is supposed to
be checked in the instruction pattern. */
int
arc_check_millicode (rtx op, int offset, int load_p)
{
int len = XVECLEN (op, 0) - offset;
int i;
if (load_p == 2)
{
if (len < 2 || len > 13)
return 0;
load_p = 1;
}
else
{
rtx elt = XVECEXP (op, 0, --len);
if (GET_CODE (elt) != CLOBBER
|| !REG_P (XEXP (elt, 0))
|| REGNO (XEXP (elt, 0)) != RETURN_ADDR_REGNUM
|| len < 3 || len > 13)
return 0;
}
for (i = 1; i < len; i++)
{
rtx elt = XVECEXP (op, 0, i + offset);
rtx reg, mem, addr;
if (GET_CODE (elt) != SET)
return 0;
mem = XEXP (elt, load_p);
reg = XEXP (elt, 1-load_p);
if (!REG_P (reg) || REGNO (reg) != 13U+i || !MEM_P (mem))
return 0;
addr = XEXP (mem, 0);
if (GET_CODE (addr) != PLUS
|| !rtx_equal_p (stack_pointer_rtx, XEXP (addr, 0))
|| !CONST_INT_P (XEXP (addr, 1)) || INTVAL (XEXP (addr, 1)) != i*4)
return 0;
}
return 1;
}
/* Accessor functions for cfun->machine->unalign. */
int
arc_get_unalign (void)
{
return cfun->machine->unalign;
}
void
arc_clear_unalign (void)
{
if (cfun)
cfun->machine->unalign = 0;
}
void
arc_toggle_unalign (void)
{
cfun->machine->unalign ^= 2;
}
/* Operands 0..2 are the operands of a addsi which uses a 12 bit
constant in operand 2, but which would require a LIMM because of
operand mismatch.
operands 3 and 4 are new SET_SRCs for operands 0. */
void
split_addsi (rtx *operands)
{
int val = INTVAL (operands[2]);
/* Try for two short insns first. Lengths being equal, we prefer
expansions with shorter register lifetimes. */
if (val > 127 && val <= 255
&& satisfies_constraint_Rcq (operands[0]))
{
operands[3] = operands[2];
operands[4] = gen_rtx_PLUS (SImode, operands[0], operands[1]);
}
else
{
operands[3] = operands[1];
operands[4] = gen_rtx_PLUS (SImode, operands[0], operands[2]);
}
}
/* Operands 0..2 are the operands of a subsi which uses a 12 bit
constant in operand 1, but which would require a LIMM because of
operand mismatch.
operands 3 and 4 are new SET_SRCs for operands 0. */
void
split_subsi (rtx *operands)
{
int val = INTVAL (operands[1]);
/* Try for two short insns first. Lengths being equal, we prefer
expansions with shorter register lifetimes. */
if (satisfies_constraint_Rcq (operands[0])
&& satisfies_constraint_Rcq (operands[2]))
{
if (val >= -31 && val <= 127)
{
operands[3] = gen_rtx_NEG (SImode, operands[2]);
operands[4] = gen_rtx_PLUS (SImode, operands[0], operands[1]);
return;
}
else if (val >= 0 && val < 255)
{
operands[3] = operands[1];
operands[4] = gen_rtx_MINUS (SImode, operands[0], operands[2]);
return;
}
}
/* If the destination is not an ARCompact16 register, we might
still have a chance to make a short insn if the source is;
we need to start with a reg-reg move for this. */
operands[3] = operands[2];
operands[4] = gen_rtx_MINUS (SImode, operands[1], operands[0]);
}
/* Handle DOUBLE_REGS uses.
Operand 0: destination register
Operand 1: source register */
static rtx
arc_process_double_reg_moves (rtx *operands)
{
rtx dest = operands[0];
rtx src = operands[1];
rtx val;
enum usesDxState { none, srcDx, destDx, maxDx };
enum usesDxState state = none;
if (refers_to_regno_p (40, 44, src, 0))
state = srcDx;
if (refers_to_regno_p (40, 44, dest, 0))
{
/* Via arc_register_move_cost, we should never see D,D moves. */
gcc_assert (state == none);
state = destDx;
}
if (state == none)
return NULL_RTX;
start_sequence ();
if (state == srcDx)
{
/* Without the LR insn, we need to split this into a
sequence of insns which will use the DEXCLx and DADDHxy
insns to be able to read the Dx register in question. */
if (TARGET_DPFP_DISABLE_LRSR)
{
/* gen *movdf_insn_nolrsr */
rtx set = gen_rtx_SET (dest, src);
rtx use1 = gen_rtx_USE (VOIDmode, const1_rtx);
emit_insn (gen_rtx_PARALLEL (VOIDmode, gen_rtvec (2, set, use1)));
}
else
{
/* When we have 'mov D, r' or 'mov D, D' then get the target
register pair for use with LR insn. */
rtx destHigh = simplify_gen_subreg(SImode, dest, DFmode, 4);
rtx destLow = simplify_gen_subreg(SImode, dest, DFmode, 0);
/* Produce the two LR insns to get the high and low parts. */
emit_insn (gen_rtx_SET (destHigh,
gen_rtx_UNSPEC_VOLATILE (Pmode,
gen_rtvec (1, src),
VUNSPEC_ARC_LR_HIGH)));
emit_insn (gen_rtx_SET (destLow,
gen_rtx_UNSPEC_VOLATILE (Pmode,
gen_rtvec (1, src),
VUNSPEC_ARC_LR)));
}
}
else if (state == destDx)
{
/* When we have 'mov r, D' or 'mov D, D' and we have access to the
LR insn get the target register pair. */
rtx srcHigh = simplify_gen_subreg(SImode, src, DFmode, 4);
rtx srcLow = simplify_gen_subreg(SImode, src, DFmode, 0);
emit_insn (gen_rtx_UNSPEC_VOLATILE (Pmode,
gen_rtvec (3, dest, srcHigh, srcLow),
VUNSPEC_ARC_DEXCL_NORES));
}
else
gcc_unreachable ();
val = get_insns ();
end_sequence ();
return val;
}
/* operands 0..1 are the operands of a 64 bit move instruction.
split it into two moves with operands 2/3 and 4/5. */
rtx
arc_split_move (rtx *operands)
{
machine_mode mode = GET_MODE (operands[0]);
int i;
int swap = 0;
rtx xop[4];
rtx val;
if (TARGET_DPFP)
{
val = arc_process_double_reg_moves (operands);
if (val)
return val;
}
for (i = 0; i < 2; i++)
{
if (MEM_P (operands[i]) && auto_inc_p (XEXP (operands[i], 0)))
{
rtx addr = XEXP (operands[i], 0);
rtx r, o;
enum rtx_code code;
gcc_assert (!reg_overlap_mentioned_p (operands[0], addr));
switch (GET_CODE (addr))
{
case PRE_DEC: o = GEN_INT (-8); goto pre_modify;
case PRE_INC: o = GEN_INT (8); goto pre_modify;
case PRE_MODIFY: o = XEXP (XEXP (addr, 1), 1);
pre_modify:
code = PRE_MODIFY;
break;
case POST_DEC: o = GEN_INT (-8); goto post_modify;
case POST_INC: o = GEN_INT (8); goto post_modify;
case POST_MODIFY: o = XEXP (XEXP (addr, 1), 1);
post_modify:
code = POST_MODIFY;
swap = 2;
break;
default:
gcc_unreachable ();
}
r = XEXP (addr, 0);
xop[0+i] = adjust_automodify_address_nv
(operands[i], SImode,
gen_rtx_fmt_ee (code, Pmode, r,
gen_rtx_PLUS (Pmode, r, o)),
0);
xop[2+i] = adjust_automodify_address_nv
(operands[i], SImode, plus_constant (Pmode, r, 4), 4);
}
else
{
xop[0+i] = operand_subword (operands[i], 0, 0, mode);
xop[2+i] = operand_subword (operands[i], 1, 0, mode);
}
}
if (reg_overlap_mentioned_p (xop[0], xop[3]))
{
swap = 2;
gcc_assert (!reg_overlap_mentioned_p (xop[2], xop[1]));
}
operands[2+swap] = xop[0];
operands[3+swap] = xop[1];
operands[4-swap] = xop[2];
operands[5-swap] = xop[3];
start_sequence ();
emit_insn (gen_rtx_SET (operands[2], operands[3]));
emit_insn (gen_rtx_SET (operands[4], operands[5]));
val = get_insns ();
end_sequence ();
return val;
}
/* Select between the instruction output templates s_tmpl (for short INSNs)
and l_tmpl (for long INSNs). */
const char *
arc_short_long (rtx_insn *insn, const char *s_tmpl, const char *l_tmpl)
{
int is_short = arc_verify_short (insn, cfun->machine->unalign, -1);
extract_constrain_insn_cached (insn);
return is_short ? s_tmpl : l_tmpl;
}
/* Searches X for any reference to REGNO, returning the rtx of the
reference found if any. Otherwise, returns NULL_RTX. */
rtx
arc_regno_use_in (unsigned int regno, rtx x)
{
const char *fmt;
int i, j;
rtx tem;
if (REG_P (x) && refers_to_regno_p (regno, x))
return x;
fmt = GET_RTX_FORMAT (GET_CODE (x));
for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
{
if (fmt[i] == 'e')
{
if ((tem = regno_use_in (regno, XEXP (x, i))))
return tem;
}
else if (fmt[i] == 'E')
for (j = XVECLEN (x, i) - 1; j >= 0; j--)
if ((tem = regno_use_in (regno , XVECEXP (x, i, j))))
return tem;
}
return NULL_RTX;
}
/* Return the integer value of the "type" attribute for INSN, or -1 if
INSN can't have attributes. */
int
arc_attr_type (rtx_insn *insn)
{
if (NONJUMP_INSN_P (insn)
? (GET_CODE (PATTERN (insn)) == USE
|| GET_CODE (PATTERN (insn)) == CLOBBER)
: JUMP_P (insn)
? (GET_CODE (PATTERN (insn)) == ADDR_VEC
|| GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC)
: !CALL_P (insn))
return -1;
return get_attr_type (insn);
}
/* Return true if insn sets the condition codes. */
bool
arc_sets_cc_p (rtx_insn *insn)
{
if (NONJUMP_INSN_P (insn))
if (rtx_sequence *seq = dyn_cast <rtx_sequence *> (PATTERN (insn)))
insn = seq->insn (seq->len () - 1);
return arc_attr_type (insn) == TYPE_COMPARE;
}
/* Return true if INSN is an instruction with a delay slot we may want
to fill. */
bool
arc_need_delay (rtx_insn *insn)
{
rtx_insn *next;
if (!flag_delayed_branch)
return false;
/* The return at the end of a function needs a delay slot. */
if (NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == USE
&& (!(next = next_active_insn (insn))
|| ((!NONJUMP_INSN_P (next) || GET_CODE (PATTERN (next)) != SEQUENCE)
&& arc_attr_type (next) == TYPE_RETURN))
&& (!TARGET_PAD_RETURN
|| (prev_active_insn (insn)
&& prev_active_insn (prev_active_insn (insn))
&& prev_active_insn (prev_active_insn (prev_active_insn (insn))))))
return true;
if (NONJUMP_INSN_P (insn)
? (GET_CODE (PATTERN (insn)) == USE
|| GET_CODE (PATTERN (insn)) == CLOBBER
|| GET_CODE (PATTERN (insn)) == SEQUENCE)
: JUMP_P (insn)
? (GET_CODE (PATTERN (insn)) == ADDR_VEC
|| GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC)
: !CALL_P (insn))
return false;
return num_delay_slots (insn) != 0;
}
/* Return true if the scheduling pass(es) has/have already run,
i.e. where possible, we should try to mitigate high latencies
by different instruction selection. */
bool
arc_scheduling_not_expected (void)
{
return cfun->machine->arc_reorg_started;
}
/* Oddly enough, sometimes we get a zero overhead loop that branch
shortening doesn't think is a loop - observed with compile/pr24883.c
-O3 -fomit-frame-pointer -funroll-loops. Make sure to include the
alignment visible for branch shortening (we actually align the loop
insn before it, but that is equivalent since the loop insn is 4 byte
long.) */
int
arc_label_align (rtx label)
{
int loop_align = LOOP_ALIGN (LABEL);
if (loop_align > align_labels_log)
{
rtx_insn *prev = prev_nonnote_insn (label);
if (prev && NONJUMP_INSN_P (prev)
&& GET_CODE (PATTERN (prev)) == PARALLEL
&& recog_memoized (prev) == CODE_FOR_doloop_begin_i)
return loop_align;
}
/* Code has a minimum p2 alignment of 1, which we must restore after an
ADDR_DIFF_VEC. */
if (align_labels_log < 1)
{
rtx_insn *next = next_nonnote_nondebug_insn (label);
if (INSN_P (next) && recog_memoized (next) >= 0)
return 1;
}
return align_labels_log;
}
/* Return true if LABEL is in executable code. */
bool
arc_text_label (rtx_insn *label)
{
rtx_insn *next;
/* ??? We use deleted labels like they were still there, see
gcc.c-torture/compile/20000326-2.c . */
gcc_assert (GET_CODE (label) == CODE_LABEL
|| (GET_CODE (label) == NOTE
&& NOTE_KIND (label) == NOTE_INSN_DELETED_LABEL));
next = next_nonnote_insn (label);
if (next)
return (!JUMP_TABLE_DATA_P (next)
|| GET_CODE (PATTERN (next)) != ADDR_VEC);
else if (!PREV_INSN (label))
/* ??? sometimes text labels get inserted very late, see
gcc.dg/torture/stackalign/comp-goto-1.c */
return true;
return false;
}
/* Return the size of the pretend args for DECL. */
int
arc_decl_pretend_args (tree decl)
{
/* struct function is in DECL_STRUCT_FUNCTION (decl), but no
pretend_args there... See PR38391. */
gcc_assert (decl == current_function_decl);
return crtl->args.pretend_args_size;
}
/* Without this, gcc.dg/tree-prof/bb-reorg.c fails to assemble
when compiling with -O2 -freorder-blocks-and-partition -fprofile-use
-D_PROFILE_USE; delay branch scheduling then follows a crossing jump
to redirect two breqs. */
static bool
arc_can_follow_jump (const rtx_insn *follower, const rtx_insn *followee)
{
/* ??? get_attr_type is declared to take an rtx. */
union { const rtx_insn *c; rtx_insn *r; } u;
u.c = follower;
if (CROSSING_JUMP_P (followee))
switch (get_attr_type (u.r))
{
case TYPE_BRCC:
case TYPE_BRCC_NO_DELAY_SLOT:
return false;
default:
return true;
}
return true;
}
/* Implement EPILOGUE__USES.
Return true if REGNO should be added to the deemed uses of the epilogue.
We use the return address
arc_return_address_regs[arc_compute_function_type (cfun)] .
But also, we have to make sure all the register restore instructions
are known to be live in interrupt functions. */
bool
arc_epilogue_uses (int regno)
{
if (reload_completed)
{
if (ARC_INTERRUPT_P (cfun->machine->fn_type))
{
if (!fixed_regs[regno])
return true;
return regno == arc_return_address_regs[cfun->machine->fn_type];
}
else
return regno == RETURN_ADDR_REGNUM;
}
else
return regno == arc_return_address_regs[arc_compute_function_type (cfun)];
}
#ifndef TARGET_NO_LRA
#define TARGET_NO_LRA !TARGET_LRA
#endif
static bool
arc_lra_p (void)
{
return !TARGET_NO_LRA;
}
/* ??? Should we define TARGET_REGISTER_PRIORITY? We might perfer to use
Rcq registers, because some insn are shorter with them. OTOH we already
have separate alternatives for this purpose, and other insns don't
mind, so maybe we should rather prefer the other registers?
We need more data, and we can only get that if we allow people to
try all options. */
static int
arc_register_priority (int r)
{
switch (arc_lra_priority_tag)
{
case ARC_LRA_PRIORITY_NONE:
return 0;
case ARC_LRA_PRIORITY_NONCOMPACT:
return ((((r & 7) ^ 4) - 4) & 15) != r;
case ARC_LRA_PRIORITY_COMPACT:
return ((((r & 7) ^ 4) - 4) & 15) == r;
default:
gcc_unreachable ();
}
}
static reg_class_t
arc_spill_class (reg_class_t /* orig_class */, machine_mode)
{
return GENERAL_REGS;
}
bool
arc_legitimize_reload_address (rtx *p, machine_mode mode, int opnum,
int itype)
{
rtx x = *p;
enum reload_type type = (enum reload_type) itype;
if (GET_CODE (x) == PLUS
&& CONST_INT_P (XEXP (x, 1))
&& (RTX_OK_FOR_BASE_P (XEXP (x, 0), true)
|| (REG_P (XEXP (x, 0))
&& reg_equiv_constant (REGNO (XEXP (x, 0))))))
{
int scale = GET_MODE_SIZE (mode);
int shift;
rtx index_rtx = XEXP (x, 1);
HOST_WIDE_INT offset = INTVAL (index_rtx), offset_base;
rtx reg, sum, sum2;
if (scale > 4)
scale = 4;
if ((scale-1) & offset)
scale = 1;
shift = scale >> 1;
offset_base
= ((offset + (256 << shift))
& ((HOST_WIDE_INT)((unsigned HOST_WIDE_INT) -512 << shift)));
/* Sometimes the normal form does not suit DImode. We
could avoid that by using smaller ranges, but that
would give less optimized code when SImode is
prevalent. */
if (GET_MODE_SIZE (mode) + offset - offset_base <= (256 << shift))
{
int regno;
reg = XEXP (x, 0);
regno = REGNO (reg);
sum2 = sum = plus_constant (Pmode, reg, offset_base);
if (reg_equiv_constant (regno))
{
sum2 = plus_constant (Pmode, reg_equiv_constant (regno),
offset_base);
if (GET_CODE (sum2) == PLUS)
sum2 = gen_rtx_CONST (Pmode, sum2);
}
*p = gen_rtx_PLUS (Pmode, sum, GEN_INT (offset - offset_base));
push_reload (sum2, NULL_RTX, &XEXP (*p, 0), NULL,
BASE_REG_CLASS, Pmode, VOIDmode, 0, 0, opnum,
type);
return true;
}
}
/* We must re-recognize what we created before. */
else if (GET_CODE (x) == PLUS
&& GET_CODE (XEXP (x, 0)) == PLUS
&& CONST_INT_P (XEXP (XEXP (x, 0), 1))
&& REG_P (XEXP (XEXP (x, 0), 0))
&& CONST_INT_P (XEXP (x, 1)))
{
/* Because this address is so complex, we know it must have
been created by LEGITIMIZE_RELOAD_ADDRESS before; thus,
it is already unshared, and needs no further unsharing. */
push_reload (XEXP (x, 0), NULL_RTX, &XEXP (x, 0), NULL,
BASE_REG_CLASS, Pmode, VOIDmode, 0, 0, opnum, type);
return true;
}
return false;
}
/* Implement TARGET_USE_BY_PIECES_INFRASTRUCTURE_P. */
static bool
arc_use_by_pieces_infrastructure_p (unsigned HOST_WIDE_INT size,
unsigned int align,
enum by_pieces_operation op,
bool speed_p)
{
/* Let the movmem expander handle small block moves. */
if (op == MOVE_BY_PIECES)
return false;
return default_use_by_pieces_infrastructure_p (size, align, op, speed_p);
}
/* Emit a (pre) memory barrier around an atomic sequence according to
MODEL. */
static void
arc_pre_atomic_barrier (enum memmodel model)
{
if (need_atomic_barrier_p (model, true))
emit_insn (gen_memory_barrier ());
}
/* Emit a (post) memory barrier around an atomic sequence according to
MODEL. */
static void
arc_post_atomic_barrier (enum memmodel model)
{
if (need_atomic_barrier_p (model, false))
emit_insn (gen_memory_barrier ());
}
/* Expand a compare and swap pattern. */
static void
emit_unlikely_jump (rtx insn)
{
int very_unlikely = REG_BR_PROB_BASE / 100 - 1;
insn = emit_jump_insn (insn);
add_int_reg_note (insn, REG_BR_PROB, very_unlikely);
}
/* Expand code to perform a 8 or 16-bit compare and swap by doing
32-bit compare and swap on the word containing the byte or
half-word. The difference between a weak and a strong CAS is that
the weak version may simply fail. The strong version relies on two
loops, one checks if the SCOND op is succsfully or not, the other
checks if the 32 bit accessed location which contains the 8 or 16
bit datum is not changed by other thread. The first loop is
implemented by the atomic_compare_and_swapsi_1 pattern. The second
loops is implemented by this routine. */
static void
arc_expand_compare_and_swap_qh (rtx bool_result, rtx result, rtx mem,
rtx oldval, rtx newval, rtx weak,
rtx mod_s, rtx mod_f)
{
rtx addr1 = force_reg (Pmode, XEXP (mem, 0));
rtx addr = gen_reg_rtx (Pmode);
rtx off = gen_reg_rtx (SImode);
rtx oldv = gen_reg_rtx (SImode);
rtx newv = gen_reg_rtx (SImode);
rtx oldvalue = gen_reg_rtx (SImode);
rtx newvalue = gen_reg_rtx (SImode);
rtx res = gen_reg_rtx (SImode);
rtx resv = gen_reg_rtx (SImode);
rtx memsi, val, mask, end_label, loop_label, cc, x;
machine_mode mode;
bool is_weak = (weak != const0_rtx);
/* Truncate the address. */
emit_insn (gen_rtx_SET (addr,
gen_rtx_AND (Pmode, addr1, GEN_INT (-4))));
/* Compute the datum offset. */
emit_insn (gen_rtx_SET (off,
gen_rtx_AND (SImode, addr1, GEN_INT (3))));
if (TARGET_BIG_ENDIAN)
emit_insn (gen_rtx_SET (off,
gen_rtx_MINUS (SImode,
(GET_MODE (mem) == QImode) ?
GEN_INT (3) : GEN_INT (2), off)));
/* Normal read from truncated address. */
memsi = gen_rtx_MEM (SImode, addr);
set_mem_alias_set (memsi, ALIAS_SET_MEMORY_BARRIER);
MEM_VOLATILE_P (memsi) = MEM_VOLATILE_P (mem);
val = copy_to_reg (memsi);
/* Convert the offset in bits. */
emit_insn (gen_rtx_SET (off,
gen_rtx_ASHIFT (SImode, off, GEN_INT (3))));
/* Get the proper mask. */
if (GET_MODE (mem) == QImode)
mask = force_reg (SImode, GEN_INT (0xff));
else
mask = force_reg (SImode, GEN_INT (0xffff));
emit_insn (gen_rtx_SET (mask,
gen_rtx_ASHIFT (SImode, mask, off)));
/* Prepare the old and new values. */
emit_insn (gen_rtx_SET (val,
gen_rtx_AND (SImode, gen_rtx_NOT (SImode, mask),
val)));
oldval = gen_lowpart (SImode, oldval);
emit_insn (gen_rtx_SET (oldv,
gen_rtx_ASHIFT (SImode, oldval, off)));
newval = gen_lowpart_common (SImode, newval);
emit_insn (gen_rtx_SET (newv,
gen_rtx_ASHIFT (SImode, newval, off)));
emit_insn (gen_rtx_SET (oldv,
gen_rtx_AND (SImode, oldv, mask)));
emit_insn (gen_rtx_SET (newv,
gen_rtx_AND (SImode, newv, mask)));
if (!is_weak)
{
end_label = gen_label_rtx ();
loop_label = gen_label_rtx ();
emit_label (loop_label);
}
/* Make the old and new values. */
emit_insn (gen_rtx_SET (oldvalue,
gen_rtx_IOR (SImode, oldv, val)));
emit_insn (gen_rtx_SET (newvalue,
gen_rtx_IOR (SImode, newv, val)));
/* Try an 32bit atomic compare and swap. It clobbers the CC
register. */
emit_insn (gen_atomic_compare_and_swapsi_1 (res, memsi, oldvalue, newvalue,
weak, mod_s, mod_f));
/* Regardless of the weakness of the operation, a proper boolean
result needs to be provided. */
x = gen_rtx_REG (CC_Zmode, CC_REG);
x = gen_rtx_EQ (SImode, x, const0_rtx);
emit_insn (gen_rtx_SET (bool_result, x));
if (!is_weak)
{
/* Check the results: if the atomic op is successfully the goto
to end label. */
x = gen_rtx_REG (CC_Zmode, CC_REG);
x = gen_rtx_EQ (VOIDmode, x, const0_rtx);
x = gen_rtx_IF_THEN_ELSE (VOIDmode, x,
gen_rtx_LABEL_REF (Pmode, end_label), pc_rtx);
emit_jump_insn (gen_rtx_SET (pc_rtx, x));
/* Wait for the right moment when the accessed 32-bit location
is stable. */
emit_insn (gen_rtx_SET (resv,
gen_rtx_AND (SImode, gen_rtx_NOT (SImode, mask),
res)));
mode = SELECT_CC_MODE (NE, resv, val);
cc = gen_rtx_REG (mode, CC_REG);
emit_insn (gen_rtx_SET (cc, gen_rtx_COMPARE (mode, resv, val)));
/* Set the new value of the 32 bit location, proper masked. */
emit_insn (gen_rtx_SET (val, resv));
/* Try again if location is unstable. Fall through if only
scond op failed. */
x = gen_rtx_NE (VOIDmode, cc, const0_rtx);
x = gen_rtx_IF_THEN_ELSE (VOIDmode, x,
gen_rtx_LABEL_REF (Pmode, loop_label), pc_rtx);
emit_unlikely_jump (gen_rtx_SET (pc_rtx, x));
emit_label (end_label);
}
/* End: proper return the result for the given mode. */
emit_insn (gen_rtx_SET (res,
gen_rtx_AND (SImode, res, mask)));
emit_insn (gen_rtx_SET (res,
gen_rtx_LSHIFTRT (SImode, res, off)));
emit_move_insn (result, gen_lowpart (GET_MODE (result), res));
}
/* Helper function used by "atomic_compare_and_swap" expand
pattern. */
void
arc_expand_compare_and_swap (rtx operands[])
{
rtx bval, rval, mem, oldval, newval, is_weak, mod_s, mod_f, x;
machine_mode mode;
bval = operands[0];
rval = operands[1];
mem = operands[2];
oldval = operands[3];
newval = operands[4];
is_weak = operands[5];
mod_s = operands[6];
mod_f = operands[7];
mode = GET_MODE (mem);
if (reg_overlap_mentioned_p (rval, oldval))
oldval = copy_to_reg (oldval);
if (mode == SImode)
{
emit_insn (gen_atomic_compare_and_swapsi_1 (rval, mem, oldval, newval,
is_weak, mod_s, mod_f));
x = gen_rtx_REG (CC_Zmode, CC_REG);
x = gen_rtx_EQ (SImode, x, const0_rtx);
emit_insn (gen_rtx_SET (bval, x));
}
else
{
arc_expand_compare_and_swap_qh (bval, rval, mem, oldval, newval,
is_weak, mod_s, mod_f);
}
}
/* Helper function used by the "atomic_compare_and_swapsi_1"
pattern. */
void
arc_split_compare_and_swap (rtx operands[])
{
rtx rval, mem, oldval, newval;
machine_mode mode;
enum memmodel mod_s, mod_f;
bool is_weak;
rtx label1, label2, x, cond;
rval = operands[0];
mem = operands[1];
oldval = operands[2];
newval = operands[3];
is_weak = (operands[4] != const0_rtx);
mod_s = (enum memmodel) INTVAL (operands[5]);
mod_f = (enum memmodel) INTVAL (operands[6]);
mode = GET_MODE (mem);
/* ARC atomic ops work only with 32-bit aligned memories. */
gcc_assert (mode == SImode);
arc_pre_atomic_barrier (mod_s);
label1 = NULL_RTX;
if (!is_weak)
{
label1 = gen_label_rtx ();
emit_label (label1);
}
label2 = gen_label_rtx ();
/* Load exclusive. */
emit_insn (gen_arc_load_exclusivesi (rval, mem));
/* Check if it is oldval. */
mode = SELECT_CC_MODE (NE, rval, oldval);
cond = gen_rtx_REG (mode, CC_REG);
emit_insn (gen_rtx_SET (cond, gen_rtx_COMPARE (mode, rval, oldval)));
x = gen_rtx_NE (VOIDmode, cond, const0_rtx);
x = gen_rtx_IF_THEN_ELSE (VOIDmode, x,
gen_rtx_LABEL_REF (Pmode, label2), pc_rtx);
emit_unlikely_jump (gen_rtx_SET (pc_rtx, x));
/* Exclusively store new item. Store clobbers CC reg. */
emit_insn (gen_arc_store_exclusivesi (mem, newval));
if (!is_weak)
{
/* Check the result of the store. */
cond = gen_rtx_REG (CC_Zmode, CC_REG);
x = gen_rtx_NE (VOIDmode, cond, const0_rtx);
x = gen_rtx_IF_THEN_ELSE (VOIDmode, x,
gen_rtx_LABEL_REF (Pmode, label1), pc_rtx);
emit_unlikely_jump (gen_rtx_SET (pc_rtx, x));
}
if (mod_f != MEMMODEL_RELAXED)
emit_label (label2);
arc_post_atomic_barrier (mod_s);
if (mod_f == MEMMODEL_RELAXED)
emit_label (label2);
}
/* Expand an atomic fetch-and-operate pattern. CODE is the binary operation
to perform. MEM is the memory on which to operate. VAL is the second
operand of the binary operator. BEFORE and AFTER are optional locations to
return the value of MEM either before of after the operation. MODEL_RTX
is a CONST_INT containing the memory model to use. */
void
arc_expand_atomic_op (enum rtx_code code, rtx mem, rtx val,
rtx orig_before, rtx orig_after, rtx model_rtx)
{
enum memmodel model = (enum memmodel) INTVAL (model_rtx);
machine_mode mode = GET_MODE (mem);
rtx label, x, cond;
rtx before = orig_before, after = orig_after;
/* ARC atomic ops work only with 32-bit aligned memories. */
gcc_assert (mode == SImode);
arc_pre_atomic_barrier (model);
label = gen_label_rtx ();
emit_label (label);
label = gen_rtx_LABEL_REF (VOIDmode, label);
if (before == NULL_RTX)
before = gen_reg_rtx (mode);
if (after == NULL_RTX)
after = gen_reg_rtx (mode);
/* Load exclusive. */
emit_insn (gen_arc_load_exclusivesi (before, mem));
switch (code)
{
case NOT:
x = gen_rtx_AND (mode, before, val);
emit_insn (gen_rtx_SET (after, x));
x = gen_rtx_NOT (mode, after);
emit_insn (gen_rtx_SET (after, x));
break;
case MINUS:
if (CONST_INT_P (val))
{
val = GEN_INT (-INTVAL (val));
code = PLUS;
}
/* FALLTHRU. */
default:
x = gen_rtx_fmt_ee (code, mode, before, val);
emit_insn (gen_rtx_SET (after, x));
break;
}
/* Exclusively store new item. Store clobbers CC reg. */
emit_insn (gen_arc_store_exclusivesi (mem, after));
/* Check the result of the store. */
cond = gen_rtx_REG (CC_Zmode, CC_REG);
x = gen_rtx_NE (VOIDmode, cond, const0_rtx);
x = gen_rtx_IF_THEN_ELSE (VOIDmode, x,
label, pc_rtx);
emit_unlikely_jump (gen_rtx_SET (pc_rtx, x));
arc_post_atomic_barrier (model);
}
/* Implement TARGET_NO_SPECULATION_IN_DELAY_SLOTS_P. */
static bool
arc_no_speculation_in_delay_slots_p ()
{
return true;
}
struct gcc_target targetm = TARGET_INITIALIZER;
#include "gt-arc.h"
|