summaryrefslogtreecommitdiff
path: root/gcc/config/bfin/bfin.c
blob: 23bd179616043430b32875fd4ac183caf0ceb423 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
/* The Blackfin code generation auxiliary output file.
   Copyright (C) 2005, 2006, 2007, 2008, 2009, 2010
   Free Software Foundation, Inc.
   Contributed by Analog Devices.

   This file is part of GCC.

   GCC is free software; you can redistribute it and/or modify it
   under the terms of the GNU General Public License as published
   by the Free Software Foundation; either version 3, or (at your
   option) any later version.

   GCC is distributed in the hope that it will be useful, but WITHOUT
   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
   or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public
   License for more details.

   You should have received a copy of the GNU General Public License
   along with GCC; see the file COPYING3.  If not see
   <http://www.gnu.org/licenses/>.  */

#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "rtl.h"
#include "regs.h"
#include "hard-reg-set.h"
#include "insn-config.h"
#include "insn-codes.h"
#include "conditions.h"
#include "insn-flags.h"
#include "output.h"
#include "insn-attr.h"
#include "tree.h"
#include "flags.h"
#include "except.h"
#include "function.h"
#include "input.h"
#include "target.h"
#include "target-def.h"
#include "expr.h"
#include "diagnostic-core.h"
#include "toplev.h"
#include "recog.h"
#include "optabs.h"
#include "ggc.h"
#include "integrate.h"
#include "cgraph.h"
#include "langhooks.h"
#include "bfin-protos.h"
#include "tm-preds.h"
#include "tm-constrs.h"
#include "gt-bfin.h"
#include "basic-block.h"
#include "cfglayout.h"
#include "timevar.h"
#include "df.h"

/* A C structure for machine-specific, per-function data.
   This is added to the cfun structure.  */
struct GTY(()) machine_function
{
  /* Set if we are notified by the doloop pass that a hardware loop
     was created.  */
  int has_hardware_loops;

  /* Set if we create a memcpy pattern that uses loop registers.  */
  int has_loopreg_clobber;
};

/* RTX for condition code flag register and RETS register */
extern GTY(()) rtx bfin_cc_rtx;
extern GTY(()) rtx bfin_rets_rtx;
rtx bfin_cc_rtx, bfin_rets_rtx;

int max_arg_registers = 0;

/* Arrays used when emitting register names.  */
const char *short_reg_names[]  =  SHORT_REGISTER_NAMES;
const char *high_reg_names[]   =  HIGH_REGISTER_NAMES;
const char *dregs_pair_names[] =  DREGS_PAIR_NAMES;
const char *byte_reg_names[]   =  BYTE_REGISTER_NAMES;

static int arg_regs[] = FUNCTION_ARG_REGISTERS;
static int ret_regs[] = FUNCTION_RETURN_REGISTERS;

/* Nonzero if -mshared-library-id was given.  */
static int bfin_lib_id_given;

/* Nonzero if -fschedule-insns2 was given.  We override it and
   call the scheduler ourselves during reorg.  */
static int bfin_flag_schedule_insns2;

/* Determines whether we run variable tracking in machine dependent
   reorganization.  */
static int bfin_flag_var_tracking;

/* -mcpu support */
bfin_cpu_t bfin_cpu_type = BFIN_CPU_UNKNOWN;

/* -msi-revision support. There are three special values:
   -1      -msi-revision=none.
   0xffff  -msi-revision=any.  */
int bfin_si_revision;

/* The workarounds enabled */
unsigned int bfin_workarounds = 0;

struct bfin_cpu
{
  const char *name;
  bfin_cpu_t type;
  int si_revision;
  unsigned int workarounds;
};

struct bfin_cpu bfin_cpus[] =
{
  {"bf512", BFIN_CPU_BF512, 0x0000,
   WA_SPECULATIVE_LOADS | WA_05000074},

  {"bf514", BFIN_CPU_BF514, 0x0000,
   WA_SPECULATIVE_LOADS | WA_05000074},

  {"bf516", BFIN_CPU_BF516, 0x0000,
   WA_SPECULATIVE_LOADS | WA_05000074},

  {"bf518", BFIN_CPU_BF518, 0x0000,
   WA_SPECULATIVE_LOADS | WA_05000074},

  {"bf522", BFIN_CPU_BF522, 0x0002,
   WA_SPECULATIVE_LOADS | WA_05000074},
  {"bf522", BFIN_CPU_BF522, 0x0001,
   WA_SPECULATIVE_LOADS | WA_RETS | WA_05000074},
  {"bf522", BFIN_CPU_BF522, 0x0000,
   WA_SPECULATIVE_LOADS | WA_RETS | WA_05000074},

  {"bf523", BFIN_CPU_BF523, 0x0002,
   WA_SPECULATIVE_LOADS | WA_05000074},
  {"bf523", BFIN_CPU_BF523, 0x0001,
   WA_SPECULATIVE_LOADS | WA_RETS | WA_05000074},
  {"bf523", BFIN_CPU_BF523, 0x0000,
   WA_SPECULATIVE_LOADS | WA_RETS | WA_05000074},

  {"bf524", BFIN_CPU_BF524, 0x0002,
   WA_SPECULATIVE_LOADS | WA_05000074},
  {"bf524", BFIN_CPU_BF524, 0x0001,
   WA_SPECULATIVE_LOADS | WA_RETS | WA_05000074},
  {"bf524", BFIN_CPU_BF524, 0x0000,
   WA_SPECULATIVE_LOADS | WA_RETS | WA_05000074},

  {"bf525", BFIN_CPU_BF525, 0x0002,
   WA_SPECULATIVE_LOADS | WA_05000074},
  {"bf525", BFIN_CPU_BF525, 0x0001,
   WA_SPECULATIVE_LOADS | WA_RETS | WA_05000074},
  {"bf525", BFIN_CPU_BF525, 0x0000,
   WA_SPECULATIVE_LOADS | WA_RETS | WA_05000074},

  {"bf526", BFIN_CPU_BF526, 0x0002,
   WA_SPECULATIVE_LOADS | WA_05000074},
  {"bf526", BFIN_CPU_BF526, 0x0001,
   WA_SPECULATIVE_LOADS | WA_RETS | WA_05000074},
  {"bf526", BFIN_CPU_BF526, 0x0000,
   WA_SPECULATIVE_LOADS | WA_RETS | WA_05000074},

  {"bf527", BFIN_CPU_BF527, 0x0002,
   WA_SPECULATIVE_LOADS | WA_05000074},
  {"bf527", BFIN_CPU_BF527, 0x0001,
   WA_SPECULATIVE_LOADS | WA_RETS | WA_05000074},
  {"bf527", BFIN_CPU_BF527, 0x0000,
   WA_SPECULATIVE_LOADS | WA_RETS | WA_05000074},

  {"bf531", BFIN_CPU_BF531, 0x0006,
   WA_SPECULATIVE_LOADS | WA_LOAD_LCREGS | WA_05000074},
  {"bf531", BFIN_CPU_BF531, 0x0005,
   WA_SPECULATIVE_LOADS | WA_RETS | WA_05000283 | WA_05000315
   | WA_LOAD_LCREGS | WA_05000074},
  {"bf531", BFIN_CPU_BF531, 0x0004,
   WA_SPECULATIVE_LOADS | WA_SPECULATIVE_SYNCS | WA_RETS
   | WA_05000283 | WA_05000257 | WA_05000315 | WA_LOAD_LCREGS
   | WA_05000074},
  {"bf531", BFIN_CPU_BF531, 0x0003,
   WA_SPECULATIVE_LOADS | WA_SPECULATIVE_SYNCS | WA_RETS
   | WA_05000283 | WA_05000257 | WA_05000315 | WA_LOAD_LCREGS
   | WA_05000074},

  {"bf532", BFIN_CPU_BF532, 0x0006,
   WA_SPECULATIVE_LOADS | WA_LOAD_LCREGS | WA_05000074},
  {"bf532", BFIN_CPU_BF532, 0x0005,
   WA_SPECULATIVE_LOADS | WA_RETS | WA_05000283 | WA_05000315
   | WA_LOAD_LCREGS | WA_05000074},
  {"bf532", BFIN_CPU_BF532, 0x0004,
   WA_SPECULATIVE_LOADS | WA_SPECULATIVE_SYNCS | WA_RETS
   | WA_05000283 | WA_05000257 | WA_05000315 | WA_LOAD_LCREGS
   | WA_05000074},
  {"bf532", BFIN_CPU_BF532, 0x0003,
   WA_SPECULATIVE_LOADS | WA_SPECULATIVE_SYNCS | WA_RETS
   | WA_05000283 | WA_05000257 | WA_05000315 | WA_LOAD_LCREGS
   | WA_05000074},

  {"bf533", BFIN_CPU_BF533, 0x0006,
   WA_SPECULATIVE_LOADS | WA_LOAD_LCREGS | WA_05000074},
  {"bf533", BFIN_CPU_BF533, 0x0005,
   WA_SPECULATIVE_LOADS | WA_RETS | WA_05000283 | WA_05000315
   | WA_LOAD_LCREGS | WA_05000074},
  {"bf533", BFIN_CPU_BF533, 0x0004,
   WA_SPECULATIVE_LOADS | WA_SPECULATIVE_SYNCS | WA_RETS
   | WA_05000283 | WA_05000257 | WA_05000315 | WA_LOAD_LCREGS
   | WA_05000074},
  {"bf533", BFIN_CPU_BF533, 0x0003,
   WA_SPECULATIVE_LOADS | WA_SPECULATIVE_SYNCS | WA_RETS
   | WA_05000283 | WA_05000257 | WA_05000315 | WA_LOAD_LCREGS
   | WA_05000074},

  {"bf534", BFIN_CPU_BF534, 0x0003,
   WA_SPECULATIVE_LOADS | WA_RETS | WA_LOAD_LCREGS | WA_05000074},
  {"bf534", BFIN_CPU_BF534, 0x0002,
   WA_SPECULATIVE_LOADS | WA_SPECULATIVE_SYNCS | WA_RETS
   | WA_05000283 | WA_05000257 | WA_05000315 | WA_LOAD_LCREGS
   | WA_05000074},
  {"bf534", BFIN_CPU_BF534, 0x0001,
   WA_SPECULATIVE_LOADS | WA_SPECULATIVE_SYNCS | WA_RETS
   | WA_05000283 | WA_05000257 | WA_05000315 | WA_LOAD_LCREGS
   | WA_05000074},

  {"bf536", BFIN_CPU_BF536, 0x0003,
   WA_SPECULATIVE_LOADS | WA_RETS | WA_LOAD_LCREGS | WA_05000074},
  {"bf536", BFIN_CPU_BF536, 0x0002,
   WA_SPECULATIVE_LOADS | WA_SPECULATIVE_SYNCS | WA_RETS
   | WA_05000283 | WA_05000257 | WA_05000315 | WA_LOAD_LCREGS
   | WA_05000074},
  {"bf536", BFIN_CPU_BF536, 0x0001,
   WA_SPECULATIVE_LOADS | WA_SPECULATIVE_SYNCS | WA_RETS
   | WA_05000283 | WA_05000257 | WA_05000315 | WA_LOAD_LCREGS
   | WA_05000074},

  {"bf537", BFIN_CPU_BF537, 0x0003,
   WA_SPECULATIVE_LOADS | WA_RETS | WA_LOAD_LCREGS | WA_05000074},
  {"bf537", BFIN_CPU_BF537, 0x0002,
   WA_SPECULATIVE_LOADS | WA_SPECULATIVE_SYNCS | WA_RETS
   | WA_05000283 | WA_05000257 | WA_05000315 | WA_LOAD_LCREGS
   | WA_05000074},
  {"bf537", BFIN_CPU_BF537, 0x0001,
   WA_SPECULATIVE_LOADS | WA_SPECULATIVE_SYNCS | WA_RETS
   | WA_05000283 | WA_05000257 | WA_05000315 | WA_LOAD_LCREGS
   | WA_05000074},

  {"bf538", BFIN_CPU_BF538, 0x0005,
   WA_SPECULATIVE_LOADS | WA_LOAD_LCREGS | WA_05000074},
  {"bf538", BFIN_CPU_BF538, 0x0004,
   WA_SPECULATIVE_LOADS | WA_RETS | WA_LOAD_LCREGS | WA_05000074},
  {"bf538", BFIN_CPU_BF538, 0x0003,
   WA_SPECULATIVE_LOADS | WA_RETS
   | WA_05000283 | WA_05000315 | WA_LOAD_LCREGS | WA_05000074},
  {"bf538", BFIN_CPU_BF538, 0x0002,
   WA_SPECULATIVE_LOADS | WA_RETS
   | WA_05000283 | WA_05000257 | WA_05000315 | WA_LOAD_LCREGS
   | WA_05000074},

  {"bf539", BFIN_CPU_BF539, 0x0005,
   WA_SPECULATIVE_LOADS | WA_LOAD_LCREGS | WA_05000074},
  {"bf539", BFIN_CPU_BF539, 0x0004,
   WA_SPECULATIVE_LOADS | WA_RETS | WA_LOAD_LCREGS | WA_05000074},
  {"bf539", BFIN_CPU_BF539, 0x0003,
   WA_SPECULATIVE_LOADS | WA_RETS
   | WA_05000283 | WA_05000315 | WA_LOAD_LCREGS | WA_05000074},
  {"bf539", BFIN_CPU_BF539, 0x0002,
   WA_SPECULATIVE_LOADS | WA_RETS
   | WA_05000283 | WA_05000257 | WA_05000315 | WA_LOAD_LCREGS
   | WA_05000074},

  {"bf542m", BFIN_CPU_BF542M, 0x0003,
   WA_SPECULATIVE_LOADS | WA_INDIRECT_CALLS | WA_05000074},

  {"bf542", BFIN_CPU_BF542, 0x0002,
   WA_SPECULATIVE_LOADS | WA_INDIRECT_CALLS | WA_05000074},
  {"bf542", BFIN_CPU_BF542, 0x0001,
   WA_SPECULATIVE_LOADS | WA_RETS | WA_INDIRECT_CALLS | WA_05000074},
  {"bf542", BFIN_CPU_BF542, 0x0000,
   WA_SPECULATIVE_LOADS | WA_RETS | WA_INDIRECT_CALLS | WA_LOAD_LCREGS
   | WA_05000074},

  {"bf544m", BFIN_CPU_BF544M, 0x0003,
   WA_SPECULATIVE_LOADS | WA_INDIRECT_CALLS | WA_05000074},

  {"bf544", BFIN_CPU_BF544, 0x0002,
   WA_SPECULATIVE_LOADS | WA_INDIRECT_CALLS | WA_05000074},
  {"bf544", BFIN_CPU_BF544, 0x0001,
   WA_SPECULATIVE_LOADS | WA_RETS | WA_INDIRECT_CALLS | WA_05000074},
  {"bf544", BFIN_CPU_BF544, 0x0000,
   WA_SPECULATIVE_LOADS | WA_RETS | WA_INDIRECT_CALLS | WA_LOAD_LCREGS
   | WA_05000074},

  {"bf547m", BFIN_CPU_BF547M, 0x0003,
   WA_SPECULATIVE_LOADS | WA_INDIRECT_CALLS | WA_05000074},

  {"bf547", BFIN_CPU_BF547, 0x0002,
   WA_SPECULATIVE_LOADS | WA_INDIRECT_CALLS | WA_05000074},
  {"bf547", BFIN_CPU_BF547, 0x0001,
   WA_SPECULATIVE_LOADS | WA_RETS | WA_INDIRECT_CALLS | WA_05000074},
  {"bf547", BFIN_CPU_BF547, 0x0000,
   WA_SPECULATIVE_LOADS | WA_RETS | WA_INDIRECT_CALLS | WA_LOAD_LCREGS
   | WA_05000074},

  {"bf548m", BFIN_CPU_BF548M, 0x0003,
   WA_SPECULATIVE_LOADS | WA_INDIRECT_CALLS | WA_05000074},

  {"bf548", BFIN_CPU_BF548, 0x0002,
   WA_SPECULATIVE_LOADS | WA_INDIRECT_CALLS | WA_05000074},
  {"bf548", BFIN_CPU_BF548, 0x0001,
   WA_SPECULATIVE_LOADS | WA_RETS | WA_INDIRECT_CALLS | WA_05000074},
  {"bf548", BFIN_CPU_BF548, 0x0000,
   WA_SPECULATIVE_LOADS | WA_RETS | WA_INDIRECT_CALLS | WA_LOAD_LCREGS
   | WA_05000074},

  {"bf549m", BFIN_CPU_BF549M, 0x0003,
   WA_SPECULATIVE_LOADS | WA_INDIRECT_CALLS | WA_05000074},

  {"bf549", BFIN_CPU_BF549, 0x0002,
   WA_SPECULATIVE_LOADS | WA_INDIRECT_CALLS | WA_05000074},
  {"bf549", BFIN_CPU_BF549, 0x0001,
   WA_SPECULATIVE_LOADS | WA_RETS | WA_INDIRECT_CALLS | WA_05000074},
  {"bf549", BFIN_CPU_BF549, 0x0000,
   WA_SPECULATIVE_LOADS | WA_RETS | WA_INDIRECT_CALLS | WA_LOAD_LCREGS
   | WA_05000074},

  {"bf561", BFIN_CPU_BF561, 0x0005, WA_RETS
   | WA_05000283 | WA_05000315 | WA_LOAD_LCREGS | WA_05000074},
  {"bf561", BFIN_CPU_BF561, 0x0003,
   WA_SPECULATIVE_LOADS | WA_SPECULATIVE_SYNCS | WA_RETS
   | WA_05000283 | WA_05000257 | WA_05000315 | WA_LOAD_LCREGS
   | WA_05000074},
  {"bf561", BFIN_CPU_BF561, 0x0002,
   WA_SPECULATIVE_LOADS | WA_SPECULATIVE_SYNCS | WA_RETS
   | WA_05000283 | WA_05000257 | WA_05000315 | WA_LOAD_LCREGS
   | WA_05000074},

  {NULL, 0, 0, 0}
};

int splitting_for_sched, splitting_loops;

static void
bfin_globalize_label (FILE *stream, const char *name)
{
  fputs (".global ", stream);
  assemble_name (stream, name);
  fputc (';',stream);
  fputc ('\n',stream);
}

static void 
output_file_start (void) 
{
  FILE *file = asm_out_file;
  int i;

  /* Variable tracking should be run after all optimizations which change order
     of insns.  It also needs a valid CFG.  This can't be done in
     override_options, because flag_var_tracking is finalized after
     that.  */
  bfin_flag_var_tracking = flag_var_tracking;
  flag_var_tracking = 0;

  fprintf (file, ".file \"%s\";\n", input_filename);
  
  for (i = 0; arg_regs[i] >= 0; i++)
    ;
  max_arg_registers = i;	/* how many arg reg used  */
}

/* Called early in the compilation to conditionally modify
   fixed_regs/call_used_regs.  */

void 
conditional_register_usage (void)
{
  /* initialize condition code flag register rtx */
  bfin_cc_rtx = gen_rtx_REG (BImode, REG_CC);
  bfin_rets_rtx = gen_rtx_REG (Pmode, REG_RETS);
}

/* Examine machine-dependent attributes of function type FUNTYPE and return its
   type.  See the definition of E_FUNKIND.  */

static e_funkind
funkind (const_tree funtype)
{
  tree attrs = TYPE_ATTRIBUTES (funtype);
  if (lookup_attribute ("interrupt_handler", attrs))
    return INTERRUPT_HANDLER;
  else if (lookup_attribute ("exception_handler", attrs))
    return EXCPT_HANDLER;
  else if (lookup_attribute ("nmi_handler", attrs))
    return NMI_HANDLER;
  else
    return SUBROUTINE;
}

/* Legitimize PIC addresses.  If the address is already position-independent,
   we return ORIG.  Newly generated position-independent addresses go into a
   reg.  This is REG if nonzero, otherwise we allocate register(s) as
   necessary.  PICREG is the register holding the pointer to the PIC offset
   table.  */

static rtx
legitimize_pic_address (rtx orig, rtx reg, rtx picreg)
{
  rtx addr = orig;
  rtx new_rtx = orig;

  if (GET_CODE (addr) == SYMBOL_REF || GET_CODE (addr) == LABEL_REF)
    {
      int unspec;
      rtx tmp;

      if (TARGET_ID_SHARED_LIBRARY)
	unspec = UNSPEC_MOVE_PIC;
      else if (GET_CODE (addr) == SYMBOL_REF
	       && SYMBOL_REF_FUNCTION_P (addr))
	unspec = UNSPEC_FUNCDESC_GOT17M4;
      else
	unspec = UNSPEC_MOVE_FDPIC;

      if (reg == 0)
	{
	  gcc_assert (can_create_pseudo_p ());
	  reg = gen_reg_rtx (Pmode);
	}

      tmp = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, addr), unspec);
      new_rtx = gen_const_mem (Pmode, gen_rtx_PLUS (Pmode, picreg, tmp));

      emit_move_insn (reg, new_rtx);
      if (picreg == pic_offset_table_rtx)
	crtl->uses_pic_offset_table = 1;
      return reg;
    }

  else if (GET_CODE (addr) == CONST || GET_CODE (addr) == PLUS)
    {
      rtx base;

      if (GET_CODE (addr) == CONST)
	{
	  addr = XEXP (addr, 0);
	  gcc_assert (GET_CODE (addr) == PLUS);
	}

      if (XEXP (addr, 0) == picreg)
	return orig;

      if (reg == 0)
	{
	  gcc_assert (can_create_pseudo_p ());
	  reg = gen_reg_rtx (Pmode);
	}

      base = legitimize_pic_address (XEXP (addr, 0), reg, picreg);
      addr = legitimize_pic_address (XEXP (addr, 1),
				     base == reg ? NULL_RTX : reg,
				     picreg);

      if (GET_CODE (addr) == CONST_INT)
	{
	  gcc_assert (! reload_in_progress && ! reload_completed);
	  addr = force_reg (Pmode, addr);
	}

      if (GET_CODE (addr) == PLUS && CONSTANT_P (XEXP (addr, 1)))
	{
	  base = gen_rtx_PLUS (Pmode, base, XEXP (addr, 0));
	  addr = XEXP (addr, 1);
	}

      return gen_rtx_PLUS (Pmode, base, addr);
    }

  return new_rtx;
}

/* Stack frame layout. */

/* For a given REGNO, determine whether it must be saved in the function
   prologue.  IS_INTHANDLER specifies whether we're generating a normal
   prologue or an interrupt/exception one.  */
static bool
must_save_p (bool is_inthandler, unsigned regno)
{
  if (D_REGNO_P (regno))
    {
      bool is_eh_return_reg = false;
      if (crtl->calls_eh_return)
	{
	  unsigned j;
	  for (j = 0; ; j++)
	    {
	      unsigned test = EH_RETURN_DATA_REGNO (j);
	      if (test == INVALID_REGNUM)
		break;
	      if (test == regno)
		is_eh_return_reg = true;
	    }
	}

      return (is_eh_return_reg
	      || (df_regs_ever_live_p (regno)
		  && !fixed_regs[regno]
		  && (is_inthandler || !call_used_regs[regno])));
    }
  else if (P_REGNO_P (regno))
    {
      return ((df_regs_ever_live_p (regno)
	       && !fixed_regs[regno]
	       && (is_inthandler || !call_used_regs[regno]))
	      || (is_inthandler
		  && (ENABLE_WA_05000283 || ENABLE_WA_05000315)
		  && regno == REG_P5)
	      || (!TARGET_FDPIC
		  && regno == PIC_OFFSET_TABLE_REGNUM
		  && (crtl->uses_pic_offset_table
		      || (TARGET_ID_SHARED_LIBRARY && !current_function_is_leaf))));
    }
  else
    return ((is_inthandler || !call_used_regs[regno])
	    && (df_regs_ever_live_p (regno)
		|| (!leaf_function_p () && call_used_regs[regno])));

}

/* Compute the number of DREGS to save with a push_multiple operation.
   This could include registers that aren't modified in the function,
   since push_multiple only takes a range of registers.
   If IS_INTHANDLER, then everything that is live must be saved, even
   if normally call-clobbered.
   If CONSECUTIVE, return the number of registers we can save in one
   instruction with a push/pop multiple instruction.  */

static int
n_dregs_to_save (bool is_inthandler, bool consecutive)
{
  int count = 0;
  unsigned i;

  for (i = REG_R7 + 1; i-- != REG_R0;)
    {
      if (must_save_p (is_inthandler, i))
	count++;
      else if (consecutive)
	return count;
    }
  return count;
}

/* Like n_dregs_to_save, but compute number of PREGS to save.  */

static int
n_pregs_to_save (bool is_inthandler, bool consecutive)
{
  int count = 0;
  unsigned i;

  for (i = REG_P5 + 1; i-- != REG_P0;)
    if (must_save_p (is_inthandler, i))
      count++;
    else if (consecutive)
      return count;
  return count;
}

/* Determine if we are going to save the frame pointer in the prologue.  */

static bool
must_save_fp_p (void)
{
  return df_regs_ever_live_p (REG_FP);
}

/* Determine if we are going to save the RETS register.  */
static bool
must_save_rets_p (void)
{
  return df_regs_ever_live_p (REG_RETS);
}

static bool
stack_frame_needed_p (void)
{
  /* EH return puts a new return address into the frame using an
     address relative to the frame pointer.  */
  if (crtl->calls_eh_return)
    return true;
  return frame_pointer_needed;
}

/* Emit code to save registers in the prologue.  SAVEALL is nonzero if we
   must save all registers; this is used for interrupt handlers.
   SPREG contains (reg:SI REG_SP).  IS_INTHANDLER is true if we're doing
   this for an interrupt (or exception) handler.  */

static void
expand_prologue_reg_save (rtx spreg, int saveall, bool is_inthandler)
{
  rtx predec1 = gen_rtx_PRE_DEC (SImode, spreg);
  rtx predec = gen_rtx_MEM (SImode, predec1);
  int ndregs = saveall ? 8 : n_dregs_to_save (is_inthandler, false);
  int npregs = saveall ? 6 : n_pregs_to_save (is_inthandler, false);
  int ndregs_consec = saveall ? 8 : n_dregs_to_save (is_inthandler, true);
  int npregs_consec = saveall ? 6 : n_pregs_to_save (is_inthandler, true);
  int dregno, pregno;
  int total_consec = ndregs_consec + npregs_consec;
  int i, d_to_save;

  if (saveall || is_inthandler)
    {
      rtx insn = emit_move_insn (predec, gen_rtx_REG (SImode, REG_ASTAT));

      RTX_FRAME_RELATED_P (insn) = 1;
      for (dregno = REG_LT0; dregno <= REG_LB1; dregno++)
	if (! current_function_is_leaf
	    || cfun->machine->has_hardware_loops
	    || cfun->machine->has_loopreg_clobber
	    || (ENABLE_WA_05000257
		&& (dregno == REG_LC0 || dregno == REG_LC1)))
	  {
	    insn = emit_move_insn (predec, gen_rtx_REG (SImode, dregno));
	    RTX_FRAME_RELATED_P (insn) = 1;
	  }
    }

  if (total_consec != 0)
    {
      rtx insn;
      rtx val = GEN_INT (-total_consec * 4);
      rtx pat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_consec + 2));

      XVECEXP (pat, 0, 0) = gen_rtx_UNSPEC (VOIDmode, gen_rtvec (1, val),
					    UNSPEC_PUSH_MULTIPLE);
      XVECEXP (pat, 0, total_consec + 1) = gen_rtx_SET (VOIDmode, spreg,
							gen_rtx_PLUS (Pmode,
								      spreg,
								      val));
      RTX_FRAME_RELATED_P (XVECEXP (pat, 0, total_consec + 1)) = 1;
      d_to_save = ndregs_consec;
      dregno = REG_R7 + 1 - ndregs_consec;
      pregno = REG_P5 + 1 - npregs_consec;
      for (i = 0; i < total_consec; i++)
	{
	  rtx memref = gen_rtx_MEM (word_mode,
				    gen_rtx_PLUS (Pmode, spreg,
						  GEN_INT (- i * 4 - 4)));
	  rtx subpat;
	  if (d_to_save > 0)
	    {
	      subpat = gen_rtx_SET (VOIDmode, memref, gen_rtx_REG (word_mode,
								   dregno++));
	      d_to_save--;
	    }
	  else
	    {
	      subpat = gen_rtx_SET (VOIDmode, memref, gen_rtx_REG (word_mode,
								   pregno++));
	    }
	  XVECEXP (pat, 0, i + 1) = subpat;
	  RTX_FRAME_RELATED_P (subpat) = 1;
	}
      insn = emit_insn (pat);
      RTX_FRAME_RELATED_P (insn) = 1;
    }

  for (dregno = REG_R0; ndregs != ndregs_consec; dregno++)
    {
      if (must_save_p (is_inthandler, dregno))
	{
	  rtx insn = emit_move_insn (predec, gen_rtx_REG (word_mode, dregno));
	  RTX_FRAME_RELATED_P (insn) = 1;
	  ndregs--;
	}
    }
  for (pregno = REG_P0; npregs != npregs_consec; pregno++)
    {
      if (must_save_p (is_inthandler, pregno))
	{
	  rtx insn = emit_move_insn (predec, gen_rtx_REG (word_mode, pregno));
	  RTX_FRAME_RELATED_P (insn) = 1;
	  npregs--;
	}
    }
  for (i = REG_P7 + 1; i < REG_CC; i++)
    if (saveall 
	|| (is_inthandler
	    && (df_regs_ever_live_p (i)
		|| (!leaf_function_p () && call_used_regs[i]))))
      {
	rtx insn;
	if (i == REG_A0 || i == REG_A1)
	  insn = emit_move_insn (gen_rtx_MEM (PDImode, predec1),
				 gen_rtx_REG (PDImode, i));
	else
	  insn = emit_move_insn (predec, gen_rtx_REG (SImode, i));
	RTX_FRAME_RELATED_P (insn) = 1;
      }
}

/* Emit code to restore registers in the epilogue.  SAVEALL is nonzero if we
   must save all registers; this is used for interrupt handlers.
   SPREG contains (reg:SI REG_SP).  IS_INTHANDLER is true if we're doing
   this for an interrupt (or exception) handler.  */

static void
expand_epilogue_reg_restore (rtx spreg, bool saveall, bool is_inthandler)
{
  rtx postinc1 = gen_rtx_POST_INC (SImode, spreg);
  rtx postinc = gen_rtx_MEM (SImode, postinc1);

  int ndregs = saveall ? 8 : n_dregs_to_save (is_inthandler, false);
  int npregs = saveall ? 6 : n_pregs_to_save (is_inthandler, false);
  int ndregs_consec = saveall ? 8 : n_dregs_to_save (is_inthandler, true);
  int npregs_consec = saveall ? 6 : n_pregs_to_save (is_inthandler, true);
  int total_consec = ndregs_consec + npregs_consec;
  int i, regno;
  rtx insn;

  /* A slightly crude technique to stop flow from trying to delete "dead"
     insns.  */
  MEM_VOLATILE_P (postinc) = 1;

  for (i = REG_CC - 1; i > REG_P7; i--)
    if (saveall
	|| (is_inthandler
	    && (df_regs_ever_live_p (i)
		|| (!leaf_function_p () && call_used_regs[i]))))
      {
	if (i == REG_A0 || i == REG_A1)
	  {
	    rtx mem = gen_rtx_MEM (PDImode, postinc1);
	    MEM_VOLATILE_P (mem) = 1;
	    emit_move_insn (gen_rtx_REG (PDImode, i), mem);
	  }
	else
	  emit_move_insn (gen_rtx_REG (SImode, i), postinc);
      }

  regno = REG_P5 - npregs_consec;
  for (; npregs != npregs_consec; regno--)
    {
      if (must_save_p (is_inthandler, regno))
	{
	  emit_move_insn (gen_rtx_REG (word_mode, regno), postinc);
	  npregs--;
	}
    }
  regno = REG_R7 - ndregs_consec;
  for (; ndregs != ndregs_consec; regno--)
    {
      if (must_save_p (is_inthandler, regno))
	{
	  emit_move_insn (gen_rtx_REG (word_mode, regno), postinc);
	  ndregs--;
	}
    }

  if (total_consec != 0)
    {
      rtx pat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_consec + 1));
      XVECEXP (pat, 0, 0)
	= gen_rtx_SET (VOIDmode, spreg,
		       gen_rtx_PLUS (Pmode, spreg,
				     GEN_INT (total_consec * 4)));

      if (npregs_consec > 0)
	regno = REG_P5 + 1;
      else
	regno = REG_R7 + 1;

      for (i = 0; i < total_consec; i++)
	{
	  rtx addr = (i > 0
		      ? gen_rtx_PLUS (Pmode, spreg, GEN_INT (i * 4))
		      : spreg);
	  rtx memref = gen_rtx_MEM (word_mode, addr);

	  regno--;
	  XVECEXP (pat, 0, i + 1)
	    = gen_rtx_SET (VOIDmode, gen_rtx_REG (word_mode, regno), memref);

	  if (npregs_consec > 0)
	    {
	      if (--npregs_consec == 0)
		regno = REG_R7 + 1;
	    }
	}

      insn = emit_insn (pat);
      RTX_FRAME_RELATED_P (insn) = 1;
    }
  if (saveall || is_inthandler)
    {
      for (regno = REG_LB1; regno >= REG_LT0; regno--)
	if (! current_function_is_leaf
	    || cfun->machine->has_hardware_loops
	    || cfun->machine->has_loopreg_clobber
	    || (ENABLE_WA_05000257 && (regno == REG_LC0 || regno == REG_LC1)))
	  emit_move_insn (gen_rtx_REG (SImode, regno), postinc);

      emit_move_insn (gen_rtx_REG (SImode, REG_ASTAT), postinc);
    }
}

/* Perform any needed actions needed for a function that is receiving a
   variable number of arguments.

   CUM is as above.

   MODE and TYPE are the mode and type of the current parameter.

   PRETEND_SIZE is a variable that should be set to the amount of stack
   that must be pushed by the prolog to pretend that our caller pushed
   it.

   Normally, this macro will push all remaining incoming registers on the
   stack and set PRETEND_SIZE to the length of the registers pushed.  

   Blackfin specific :
   - VDSP C compiler manual (our ABI) says that a variable args function
     should save the R0, R1 and R2 registers in the stack.
   - The caller will always leave space on the stack for the
     arguments that are passed in registers, so we dont have
     to leave any extra space.
   - now, the vastart pointer can access all arguments from the stack.  */

static void
setup_incoming_varargs (CUMULATIVE_ARGS *cum,
			enum machine_mode mode ATTRIBUTE_UNUSED,
			tree type ATTRIBUTE_UNUSED, int *pretend_size,
			int no_rtl)
{
  rtx mem;
  int i;

  if (no_rtl)
    return;

  /* The move for named arguments will be generated automatically by the
     compiler.  We need to generate the move rtx for the unnamed arguments
     if they are in the first 3 words.  We assume at least 1 named argument
     exists, so we never generate [ARGP] = R0 here.  */

  for (i = cum->words + 1; i < max_arg_registers; i++)
    {
      mem = gen_rtx_MEM (Pmode,
			 plus_constant (arg_pointer_rtx, (i * UNITS_PER_WORD)));
      emit_move_insn (mem, gen_rtx_REG (Pmode, i));
    }

  *pretend_size = 0;
}

/* Value should be nonzero if functions must have frame pointers.
   Zero means the frame pointer need not be set up (and parms may
   be accessed via the stack pointer) in functions that seem suitable.  */

static bool
bfin_frame_pointer_required (void) 
{
  e_funkind fkind = funkind (TREE_TYPE (current_function_decl));

  if (fkind != SUBROUTINE)
    return true;

  /* We turn on -fomit-frame-pointer if -momit-leaf-frame-pointer is used,
     so we have to override it for non-leaf functions.  */
  if (TARGET_OMIT_LEAF_FRAME_POINTER && ! current_function_is_leaf)
    return true;

  return false;
}

/* Return the number of registers pushed during the prologue.  */

static int
n_regs_saved_by_prologue (void)
{
  e_funkind fkind = funkind (TREE_TYPE (current_function_decl));
  bool is_inthandler = fkind != SUBROUTINE;
  tree attrs = TYPE_ATTRIBUTES (TREE_TYPE (current_function_decl));
  bool all = (lookup_attribute ("saveall", attrs) != NULL_TREE
	      || (is_inthandler && !current_function_is_leaf));
  int ndregs = all ? 8 : n_dregs_to_save (is_inthandler, false);
  int npregs = all ? 6 : n_pregs_to_save (is_inthandler, false);
  int n = ndregs + npregs;
  int i;

  if (all || stack_frame_needed_p ())
    n += 2;
  else
    {
      if (must_save_fp_p ())
	n++;
      if (must_save_rets_p ())
	n++;
    }

  if (fkind != SUBROUTINE || all)
    {
      /* Increment once for ASTAT.  */
      n++;
      if (! current_function_is_leaf
	  || cfun->machine->has_hardware_loops
	  || cfun->machine->has_loopreg_clobber)
	{
	  n += 6;
	}
    }

  if (fkind != SUBROUTINE)
    {
      /* RETE/X/N.  */
      if (lookup_attribute ("nesting", attrs))
	n++;
    }

  for (i = REG_P7 + 1; i < REG_CC; i++)
    if (all
	|| (fkind != SUBROUTINE
	    && (df_regs_ever_live_p (i)
		|| (!leaf_function_p () && call_used_regs[i]))))
      n += i == REG_A0 || i == REG_A1 ? 2 : 1;

  return n;
}

/* Given FROM and TO register numbers, say whether this elimination is
   allowed.  Frame pointer elimination is automatically handled.

   All other eliminations are valid.  */

static bool
bfin_can_eliminate (const int from ATTRIBUTE_UNUSED, const int to)
{
  return (to == STACK_POINTER_REGNUM ? ! frame_pointer_needed : true);
}

/* Return the offset between two registers, one to be eliminated, and the other
   its replacement, at the start of a routine.  */

HOST_WIDE_INT
bfin_initial_elimination_offset (int from, int to)
{
  HOST_WIDE_INT offset = 0;

  if (from == ARG_POINTER_REGNUM)
    offset = n_regs_saved_by_prologue () * 4;

  if (to == STACK_POINTER_REGNUM)
    {
      if (crtl->outgoing_args_size >= FIXED_STACK_AREA)
	offset += crtl->outgoing_args_size;
      else if (crtl->outgoing_args_size)
	offset += FIXED_STACK_AREA;

      offset += get_frame_size ();
    }

  return offset;
}

/* Emit code to load a constant CONSTANT into register REG; setting
   RTX_FRAME_RELATED_P on all insns we generate if RELATED is true.
   Make sure that the insns we generate need not be split.  */

static void
frame_related_constant_load (rtx reg, HOST_WIDE_INT constant, bool related)
{
  rtx insn;
  rtx cst = GEN_INT (constant);

  if (constant >= -32768 && constant < 65536)
    insn = emit_move_insn (reg, cst);
  else
    {
      /* We don't call split_load_immediate here, since dwarf2out.c can get
	 confused about some of the more clever sequences it can generate.  */
      insn = emit_insn (gen_movsi_high (reg, cst));
      if (related)
	RTX_FRAME_RELATED_P (insn) = 1;
      insn = emit_insn (gen_movsi_low (reg, reg, cst));
    }
  if (related)
    RTX_FRAME_RELATED_P (insn) = 1;
}

/* Generate efficient code to add a value to a P register.
   Set RTX_FRAME_RELATED_P on the generated insns if FRAME is nonzero.
   EPILOGUE_P is zero if this function is called for prologue,
   otherwise it's nonzero. And it's less than zero if this is for
   sibcall epilogue.  */

static void
add_to_reg (rtx reg, HOST_WIDE_INT value, int frame, int epilogue_p)
{
  if (value == 0)
    return;

  /* Choose whether to use a sequence using a temporary register, or
     a sequence with multiple adds.  We can add a signed 7-bit value
     in one instruction.  */
  if (value > 120 || value < -120)
    {
      rtx tmpreg;
      rtx tmpreg2;
      rtx insn;

      tmpreg2 = NULL_RTX;

      /* For prologue or normal epilogue, P1 can be safely used
	 as the temporary register. For sibcall epilogue, we try to find
	 a call used P register, which will be restored in epilogue.
	 If we cannot find such a P register, we have to use one I register
	 to help us.  */

      if (epilogue_p >= 0)
	tmpreg = gen_rtx_REG (SImode, REG_P1);
      else
	{
	  int i;
	  for (i = REG_P0; i <= REG_P5; i++)
	    if ((df_regs_ever_live_p (i) && ! call_used_regs[i])
		|| (!TARGET_FDPIC
		    && i == PIC_OFFSET_TABLE_REGNUM
		    && (crtl->uses_pic_offset_table
			|| (TARGET_ID_SHARED_LIBRARY
			    && ! current_function_is_leaf))))
	      break;
	  if (i <= REG_P5)
	    tmpreg = gen_rtx_REG (SImode, i);
	  else
	    {
	      tmpreg = gen_rtx_REG (SImode, REG_P1);
	      tmpreg2 = gen_rtx_REG (SImode, REG_I0);
	      emit_move_insn (tmpreg2, tmpreg);
	    }
	}

      if (frame)
	frame_related_constant_load (tmpreg, value, TRUE);
      else
	insn = emit_move_insn (tmpreg, GEN_INT (value));

      insn = emit_insn (gen_addsi3 (reg, reg, tmpreg));
      if (frame)
	RTX_FRAME_RELATED_P (insn) = 1;

      if (tmpreg2 != NULL_RTX)
	emit_move_insn (tmpreg, tmpreg2);
    }
  else
    do
      {
	int size = value;
	rtx insn;

	if (size > 60)
	  size = 60;
	else if (size < -60)
	  /* We could use -62, but that would leave the stack unaligned, so
	     it's no good.  */
	  size = -60;

	insn = emit_insn (gen_addsi3 (reg, reg, GEN_INT (size)));
	if (frame)
	  RTX_FRAME_RELATED_P (insn) = 1;
	value -= size;
      }
    while (value != 0);
}

/* Generate a LINK insn for a frame sized FRAME_SIZE.  If this constant
   is too large, generate a sequence of insns that has the same effect.
   SPREG contains (reg:SI REG_SP).  */

static void
emit_link_insn (rtx spreg, HOST_WIDE_INT frame_size)
{
  HOST_WIDE_INT link_size = frame_size;
  rtx insn;
  int i;

  if (link_size > 262140)
    link_size = 262140;

  /* Use a LINK insn with as big a constant as possible, then subtract
     any remaining size from the SP.  */
  insn = emit_insn (gen_link (GEN_INT (-8 - link_size)));
  RTX_FRAME_RELATED_P (insn) = 1;

  for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
    {
      rtx set = XVECEXP (PATTERN (insn), 0, i);
      gcc_assert (GET_CODE (set) == SET);
      RTX_FRAME_RELATED_P (set) = 1;
    }

  frame_size -= link_size;

  if (frame_size > 0)
    {
      /* Must use a call-clobbered PREG that isn't the static chain.  */
      rtx tmpreg = gen_rtx_REG (Pmode, REG_P1);

      frame_related_constant_load (tmpreg, -frame_size, TRUE);
      insn = emit_insn (gen_addsi3 (spreg, spreg, tmpreg));
      RTX_FRAME_RELATED_P (insn) = 1;
    }
}

/* Return the number of bytes we must reserve for outgoing arguments
   in the current function's stack frame.  */

static HOST_WIDE_INT
arg_area_size (void)
{
  if (crtl->outgoing_args_size)
    {
      if (crtl->outgoing_args_size >= FIXED_STACK_AREA)
	return crtl->outgoing_args_size;
      else
	return FIXED_STACK_AREA;
    }
  return 0;
}

/* Save RETS and FP, and allocate a stack frame.  ALL is true if the
   function must save all its registers (true only for certain interrupt
   handlers).  */

static void
do_link (rtx spreg, HOST_WIDE_INT frame_size, bool all)
{
  frame_size += arg_area_size ();

  if (all
      || stack_frame_needed_p ()
      || (must_save_rets_p () && must_save_fp_p ()))
    emit_link_insn (spreg, frame_size);
  else
    {
      if (must_save_rets_p ())
	{
	  rtx pat = gen_movsi (gen_rtx_MEM (Pmode,
					    gen_rtx_PRE_DEC (Pmode, spreg)),
			       bfin_rets_rtx);
	  rtx insn = emit_insn (pat);
	  RTX_FRAME_RELATED_P (insn) = 1;
	}
      if (must_save_fp_p ())
	{
	  rtx pat = gen_movsi (gen_rtx_MEM (Pmode,
					    gen_rtx_PRE_DEC (Pmode, spreg)),
			       gen_rtx_REG (Pmode, REG_FP));
	  rtx insn = emit_insn (pat);
	  RTX_FRAME_RELATED_P (insn) = 1;
	}
      add_to_reg (spreg, -frame_size, 1, 0);
    }
}

/* Like do_link, but used for epilogues to deallocate the stack frame.
   EPILOGUE_P is zero if this function is called for prologue,
   otherwise it's nonzero. And it's less than zero if this is for
   sibcall epilogue.  */

static void
do_unlink (rtx spreg, HOST_WIDE_INT frame_size, bool all, int epilogue_p)
{
  frame_size += arg_area_size ();

  if (stack_frame_needed_p ())
    emit_insn (gen_unlink ());
  else 
    {
      rtx postinc = gen_rtx_MEM (Pmode, gen_rtx_POST_INC (Pmode, spreg));

      add_to_reg (spreg, frame_size, 0, epilogue_p);
      if (all || must_save_fp_p ())
	{
	  rtx fpreg = gen_rtx_REG (Pmode, REG_FP);
	  emit_move_insn (fpreg, postinc);
	  emit_use (fpreg);
	}
      if (all || must_save_rets_p ())
	{
	  emit_move_insn (bfin_rets_rtx, postinc);
	  emit_use (bfin_rets_rtx);
	}
    }
}

/* Generate a prologue suitable for a function of kind FKIND.  This is
   called for interrupt and exception handler prologues.
   SPREG contains (reg:SI REG_SP).  */

static void
expand_interrupt_handler_prologue (rtx spreg, e_funkind fkind, bool all)
{
  HOST_WIDE_INT frame_size = get_frame_size ();
  rtx predec1 = gen_rtx_PRE_DEC (SImode, spreg);
  rtx predec = gen_rtx_MEM (SImode, predec1);
  rtx insn;
  tree attrs = TYPE_ATTRIBUTES (TREE_TYPE (current_function_decl));
  tree kspisusp = lookup_attribute ("kspisusp", attrs);

  if (kspisusp)
    {
      insn = emit_move_insn (spreg, gen_rtx_REG (Pmode, REG_USP));
      RTX_FRAME_RELATED_P (insn) = 1;
    }

  /* We need space on the stack in case we need to save the argument
     registers.  */
  if (fkind == EXCPT_HANDLER)
    {
      insn = emit_insn (gen_addsi3 (spreg, spreg, GEN_INT (-12)));
      RTX_FRAME_RELATED_P (insn) = 1;
    }

  /* If we're calling other functions, they won't save their call-clobbered
     registers, so we must save everything here.  */
  if (!current_function_is_leaf)
    all = true;
  expand_prologue_reg_save (spreg, all, true);

  if (ENABLE_WA_05000283 || ENABLE_WA_05000315)
    {
      rtx chipid = GEN_INT (trunc_int_for_mode (0xFFC00014, SImode));
      rtx p5reg = gen_rtx_REG (Pmode, REG_P5);
      emit_insn (gen_movbi (bfin_cc_rtx, const1_rtx));
      emit_insn (gen_movsi_high (p5reg, chipid));
      emit_insn (gen_movsi_low (p5reg, p5reg, chipid));
      emit_insn (gen_dummy_load (p5reg, bfin_cc_rtx));
    }
  
  if (lookup_attribute ("nesting", attrs))
    {
      rtx srcreg = gen_rtx_REG (Pmode, ret_regs[fkind]);
      insn = emit_move_insn (predec, srcreg);
      RTX_FRAME_RELATED_P (insn) = 1;
    }

  do_link (spreg, frame_size, all);

  if (fkind == EXCPT_HANDLER)
    {
      rtx r0reg = gen_rtx_REG (SImode, REG_R0);
      rtx r1reg = gen_rtx_REG (SImode, REG_R1);
      rtx r2reg = gen_rtx_REG (SImode, REG_R2);
      rtx insn;

      insn = emit_move_insn (r0reg, gen_rtx_REG (SImode, REG_SEQSTAT));
      insn = emit_insn (gen_ashrsi3 (r0reg, r0reg, GEN_INT (26)));
      insn = emit_insn (gen_ashlsi3 (r0reg, r0reg, GEN_INT (26)));
      insn = emit_move_insn (r1reg, spreg);
      insn = emit_move_insn (r2reg, gen_rtx_REG (Pmode, REG_FP));
      insn = emit_insn (gen_addsi3 (r2reg, r2reg, GEN_INT (8)));
    }
}

/* Generate an epilogue suitable for a function of kind FKIND.  This is
   called for interrupt and exception handler epilogues.
   SPREG contains (reg:SI REG_SP).  */

static void
expand_interrupt_handler_epilogue (rtx spreg, e_funkind fkind, bool all)
{
  tree attrs = TYPE_ATTRIBUTES (TREE_TYPE (current_function_decl));
  rtx postinc1 = gen_rtx_POST_INC (SImode, spreg);
  rtx postinc = gen_rtx_MEM (SImode, postinc1);

  /* A slightly crude technique to stop flow from trying to delete "dead"
     insns.  */
  MEM_VOLATILE_P (postinc) = 1;

  do_unlink (spreg, get_frame_size (), all, 1);

  if (lookup_attribute ("nesting", attrs))
    {
      rtx srcreg = gen_rtx_REG (Pmode, ret_regs[fkind]);
      emit_move_insn (srcreg, postinc);
    }

  /* If we're calling other functions, they won't save their call-clobbered
     registers, so we must save (and restore) everything here.  */
  if (!current_function_is_leaf)
    all = true;

  expand_epilogue_reg_restore (spreg, all, true);

  /* Deallocate any space we left on the stack in case we needed to save the
     argument registers.  */
  if (fkind == EXCPT_HANDLER)
    emit_insn (gen_addsi3 (spreg, spreg, GEN_INT (12)));

  emit_jump_insn (gen_return_internal (gen_rtx_REG (Pmode, ret_regs[fkind])));
}

/* Used while emitting the prologue to generate code to load the correct value
   into the PIC register, which is passed in DEST.  */

static rtx
bfin_load_pic_reg (rtx dest)
{
  struct cgraph_local_info *i = NULL;
  rtx addr, insn;
 
  i = cgraph_local_info (current_function_decl);
 
  /* Functions local to the translation unit don't need to reload the
     pic reg, since the caller always passes a usable one.  */
  if (i && i->local)
    return pic_offset_table_rtx;
      
  if (bfin_lib_id_given)
    addr = plus_constant (pic_offset_table_rtx, -4 - bfin_library_id * 4);
  else
    addr = gen_rtx_PLUS (Pmode, pic_offset_table_rtx,
			 gen_rtx_UNSPEC (Pmode, gen_rtvec (1, const0_rtx),
					 UNSPEC_LIBRARY_OFFSET));
  insn = emit_insn (gen_movsi (dest, gen_rtx_MEM (Pmode, addr)));
  return dest;
}

/* Generate RTL for the prologue of the current function.  */

void
bfin_expand_prologue (void)
{
  HOST_WIDE_INT frame_size = get_frame_size ();
  rtx spreg = gen_rtx_REG (Pmode, REG_SP);
  e_funkind fkind = funkind (TREE_TYPE (current_function_decl));
  rtx pic_reg_loaded = NULL_RTX;
  tree attrs = TYPE_ATTRIBUTES (TREE_TYPE (current_function_decl));
  bool all = lookup_attribute ("saveall", attrs) != NULL_TREE;

  if (fkind != SUBROUTINE)
    {
      expand_interrupt_handler_prologue (spreg, fkind, all);
      return;
    }

  if (crtl->limit_stack
      || (TARGET_STACK_CHECK_L1
	  && !DECL_NO_LIMIT_STACK (current_function_decl)))
    {
      HOST_WIDE_INT offset
	= bfin_initial_elimination_offset (ARG_POINTER_REGNUM,
					   STACK_POINTER_REGNUM);
      rtx lim = crtl->limit_stack ? stack_limit_rtx : NULL_RTX;
      rtx p2reg = gen_rtx_REG (Pmode, REG_P2);

      if (!lim)
	{
	  emit_move_insn (p2reg, gen_int_mode (0xFFB00000, SImode));
	  emit_move_insn (p2reg, gen_rtx_MEM (Pmode, p2reg));
	  lim = p2reg;
	}
      if (GET_CODE (lim) == SYMBOL_REF)
	{
	  if (TARGET_ID_SHARED_LIBRARY)
	    {
	      rtx p1reg = gen_rtx_REG (Pmode, REG_P1);
	      rtx val;
	      pic_reg_loaded = bfin_load_pic_reg (p2reg);
	      val = legitimize_pic_address (stack_limit_rtx, p1reg,
					    pic_reg_loaded);
	      emit_move_insn (p1reg, val);
	      frame_related_constant_load (p2reg, offset, FALSE);
	      emit_insn (gen_addsi3 (p2reg, p2reg, p1reg));
	      lim = p2reg;
	    }
	  else
	    {
	      rtx limit = plus_constant (lim, offset);
	      emit_move_insn (p2reg, limit);
	      lim = p2reg;
	    }
	}
      else
	{
	  if (lim != p2reg)
	    emit_move_insn (p2reg, lim);
	  add_to_reg (p2reg, offset, 0, 0);
	  lim = p2reg;
	}
      emit_insn (gen_compare_lt (bfin_cc_rtx, spreg, lim));
      emit_insn (gen_trapifcc ());
    }
  expand_prologue_reg_save (spreg, all, false);

  do_link (spreg, frame_size, all);

  if (TARGET_ID_SHARED_LIBRARY
      && !TARGET_SEP_DATA
      && (crtl->uses_pic_offset_table
	  || !current_function_is_leaf))
    bfin_load_pic_reg (pic_offset_table_rtx);
}

/* Generate RTL for the epilogue of the current function.  NEED_RETURN is zero
   if this is for a sibcall.  EH_RETURN is nonzero if we're expanding an
   eh_return pattern. SIBCALL_P is true if this is a sibcall epilogue,
   false otherwise.  */

void
bfin_expand_epilogue (int need_return, int eh_return, bool sibcall_p)
{
  rtx spreg = gen_rtx_REG (Pmode, REG_SP);
  e_funkind fkind = funkind (TREE_TYPE (current_function_decl));
  int e = sibcall_p ? -1 : 1;
  tree attrs = TYPE_ATTRIBUTES (TREE_TYPE (current_function_decl));
  bool all = lookup_attribute ("saveall", attrs) != NULL_TREE;

  if (fkind != SUBROUTINE)
    {
      expand_interrupt_handler_epilogue (spreg, fkind, all);
      return;
    }

  do_unlink (spreg, get_frame_size (), all, e);

  expand_epilogue_reg_restore (spreg, all, false);

  /* Omit the return insn if this is for a sibcall.  */
  if (! need_return)
    return;

  if (eh_return)
    emit_insn (gen_addsi3 (spreg, spreg, gen_rtx_REG (Pmode, REG_P2)));

  emit_jump_insn (gen_return_internal (gen_rtx_REG (Pmode, REG_RETS)));
}

/* Return nonzero if register OLD_REG can be renamed to register NEW_REG.  */

int
bfin_hard_regno_rename_ok (unsigned int old_reg ATTRIBUTE_UNUSED,
			   unsigned int new_reg)
{
  /* Interrupt functions can only use registers that have already been
     saved by the prologue, even if they would normally be
     call-clobbered.  */

  if (funkind (TREE_TYPE (current_function_decl)) != SUBROUTINE
      && !df_regs_ever_live_p (new_reg))
    return 0;

  return 1;
}

/* Return the value of the return address for the frame COUNT steps up
   from the current frame, after the prologue.
   We punt for everything but the current frame by returning const0_rtx.  */

rtx
bfin_return_addr_rtx (int count)
{
  if (count != 0)
    return const0_rtx;

  return get_hard_reg_initial_val (Pmode, REG_RETS);
}

static rtx
bfin_delegitimize_address (rtx orig_x)
{
  rtx x = orig_x;

  if (GET_CODE (x) != MEM)
    return orig_x;

  x = XEXP (x, 0);
  if (GET_CODE (x) == PLUS
      && GET_CODE (XEXP (x, 1)) == UNSPEC
      && XINT (XEXP (x, 1), 1) == UNSPEC_MOVE_PIC
      && GET_CODE (XEXP (x, 0)) == REG
      && REGNO (XEXP (x, 0)) == PIC_OFFSET_TABLE_REGNUM)
    return XVECEXP (XEXP (x, 1), 0, 0);

  return orig_x;
}

/* This predicate is used to compute the length of a load/store insn.
   OP is a MEM rtx, we return nonzero if its addressing mode requires a
   32-bit instruction.  */

int
effective_address_32bit_p (rtx op, enum machine_mode mode) 
{
  HOST_WIDE_INT offset;

  mode = GET_MODE (op);
  op = XEXP (op, 0);

  if (GET_CODE (op) != PLUS)
    {
      gcc_assert (REG_P (op) || GET_CODE (op) == POST_INC
		  || GET_CODE (op) == PRE_DEC || GET_CODE (op) == POST_DEC);
      return 0;
    }

  if (GET_CODE (XEXP (op, 1)) == UNSPEC)
    return 1;

  offset = INTVAL (XEXP (op, 1));

  /* All byte loads use a 16-bit offset.  */
  if (GET_MODE_SIZE (mode) == 1)
    return 1;

  if (GET_MODE_SIZE (mode) == 4)
    {
      /* Frame pointer relative loads can use a negative offset, all others
	 are restricted to a small positive one.  */
      if (XEXP (op, 0) == frame_pointer_rtx)
	return offset < -128 || offset > 60;
      return offset < 0 || offset > 60;
    }

  /* Must be HImode now.  */
  return offset < 0 || offset > 30;
}

/* Returns true if X is a memory reference using an I register.  */
bool
bfin_dsp_memref_p (rtx x)
{
  if (! MEM_P (x))
    return false;
  x = XEXP (x, 0);
  if (GET_CODE (x) == POST_INC || GET_CODE (x) == PRE_INC
      || GET_CODE (x) == POST_DEC || GET_CODE (x) == PRE_DEC)
    x = XEXP (x, 0);
  return IREG_P (x);
}

/* Return cost of the memory address ADDR.
   All addressing modes are equally cheap on the Blackfin.  */

static int
bfin_address_cost (rtx addr ATTRIBUTE_UNUSED, bool speed ATTRIBUTE_UNUSED)
{
  return 1;
}

/* Subroutine of print_operand; used to print a memory reference X to FILE.  */

void
print_address_operand (FILE *file, rtx x)
{
  switch (GET_CODE (x))
    {
    case PLUS:
      output_address (XEXP (x, 0));
      fprintf (file, "+");
      output_address (XEXP (x, 1));
      break;

    case PRE_DEC:
      fprintf (file, "--");
      output_address (XEXP (x, 0));    
      break;
    case POST_INC:
      output_address (XEXP (x, 0));
      fprintf (file, "++");
      break;
    case POST_DEC:
      output_address (XEXP (x, 0));
      fprintf (file, "--");
      break;

    default:
      gcc_assert (GET_CODE (x) != MEM);
      print_operand (file, x, 0);
      break;
    }
}

/* Adding intp DImode support by Tony
 * -- Q: (low  word)
 * -- R: (high word)
 */

void
print_operand (FILE *file, rtx x, char code)
{
  enum machine_mode mode;

  if (code == '!')
    {
      if (GET_MODE (current_output_insn) == SImode)
	fprintf (file, " ||");
      else
	fprintf (file, ";");
      return;
    }

  mode = GET_MODE (x);

  switch (code)
    {
    case 'j':
      switch (GET_CODE (x))
	{
	case EQ:
	  fprintf (file, "e");
	  break;
	case NE:
	  fprintf (file, "ne");
	  break;
	case GT:
	  fprintf (file, "g");
	  break;
	case LT:
	  fprintf (file, "l");
	  break;
	case GE:
	  fprintf (file, "ge");
	  break;
	case LE:
	  fprintf (file, "le");
	  break;
	case GTU:
	  fprintf (file, "g");
	  break;
	case LTU:
	  fprintf (file, "l");
	  break;
	case GEU:
	  fprintf (file, "ge");
	  break;
	case LEU:
	  fprintf (file, "le");
	  break;
	default:
	  output_operand_lossage ("invalid %%j value");
	}
      break;
    
    case 'J':					 /* reverse logic */
      switch (GET_CODE(x))
	{
	case EQ:
	  fprintf (file, "ne");
	  break;
	case NE:
	  fprintf (file, "e");
	  break;
	case GT:
	  fprintf (file, "le");
	  break;
	case LT:
	  fprintf (file, "ge");
	  break;
	case GE:
	  fprintf (file, "l");
	  break;
	case LE:
	  fprintf (file, "g");
	  break;
	case GTU:
	  fprintf (file, "le");
	  break;
	case LTU:
	  fprintf (file, "ge");
	  break;
	case GEU:
	  fprintf (file, "l");
	  break;
	case LEU:
	  fprintf (file, "g");
	  break;
	default:
	  output_operand_lossage ("invalid %%J value");
	}
      break;

    default:
      switch (GET_CODE (x))
	{
	case REG:
	  if (code == 'h')
	    {
	      if (REGNO (x) < 32)
		fprintf (file, "%s", short_reg_names[REGNO (x)]);
	      else
		output_operand_lossage ("invalid operand for code '%c'", code);
	    }
	  else if (code == 'd')
	    {
	      if (REGNO (x) < 32)
		fprintf (file, "%s", high_reg_names[REGNO (x)]);
	      else
		output_operand_lossage ("invalid operand for code '%c'", code);
	    }
	  else if (code == 'w')
	    {
	      if (REGNO (x) == REG_A0 || REGNO (x) == REG_A1)
		fprintf (file, "%s.w", reg_names[REGNO (x)]);
	      else
		output_operand_lossage ("invalid operand for code '%c'", code);
	    }
	  else if (code == 'x')
	    {
	      if (REGNO (x) == REG_A0 || REGNO (x) == REG_A1)
		fprintf (file, "%s.x", reg_names[REGNO (x)]);
	      else
		output_operand_lossage ("invalid operand for code '%c'", code);
	    }
	  else if (code == 'v')
	    {
	      if (REGNO (x) == REG_A0)
		fprintf (file, "AV0");
	      else if (REGNO (x) == REG_A1)
		fprintf (file, "AV1");
	      else
		output_operand_lossage ("invalid operand for code '%c'", code);
	    }
	  else if (code == 'D')
	    {
	      if (D_REGNO_P (REGNO (x)))
		fprintf (file, "%s", dregs_pair_names[REGNO (x)]);
	      else
		output_operand_lossage ("invalid operand for code '%c'", code);
	    }
	  else if (code == 'H')
	    {
	      if ((mode == DImode || mode == DFmode) && REG_P (x))
		fprintf (file, "%s", reg_names[REGNO (x) + 1]);
	      else
		output_operand_lossage ("invalid operand for code '%c'", code);
	    }
	  else if (code == 'T')
	    {
	      if (D_REGNO_P (REGNO (x)))
		fprintf (file, "%s", byte_reg_names[REGNO (x)]);
	      else
		output_operand_lossage ("invalid operand for code '%c'", code);
	    }
	  else 
	    fprintf (file, "%s", reg_names[REGNO (x)]);
	  break;

	case MEM:
	  fputc ('[', file);
	  x = XEXP (x,0);
	  print_address_operand (file, x);
	  fputc (']', file);
	  break;

	case CONST_INT:
	  if (code == 'M')
	    {
	      switch (INTVAL (x))
		{
		case MACFLAG_NONE:
		  break;
		case MACFLAG_FU:
		  fputs ("(FU)", file);
		  break;
		case MACFLAG_T:
		  fputs ("(T)", file);
		  break;
		case MACFLAG_TFU:
		  fputs ("(TFU)", file);
		  break;
		case MACFLAG_W32:
		  fputs ("(W32)", file);
		  break;
		case MACFLAG_IS:
		  fputs ("(IS)", file);
		  break;
		case MACFLAG_IU:
		  fputs ("(IU)", file);
		  break;
		case MACFLAG_IH:
		  fputs ("(IH)", file);
		  break;
		case MACFLAG_M:
		  fputs ("(M)", file);
		  break;
		case MACFLAG_IS_M:
		  fputs ("(IS,M)", file);
		  break;
		case MACFLAG_ISS2:
		  fputs ("(ISS2)", file);
		  break;
		case MACFLAG_S2RND:
		  fputs ("(S2RND)", file);
		  break;
		default:
		  gcc_unreachable ();
		}
	      break;
	    }
	  else if (code == 'b')
	    {
	      if (INTVAL (x) == 0)
		fputs ("+=", file);
	      else if (INTVAL (x) == 1)
		fputs ("-=", file);
	      else
		gcc_unreachable ();
	      break;
	    }
	  /* Moves to half registers with d or h modifiers always use unsigned
	     constants.  */
	  else if (code == 'd')
	    x = GEN_INT ((INTVAL (x) >> 16) & 0xffff);
	  else if (code == 'h')
	    x = GEN_INT (INTVAL (x) & 0xffff);
	  else if (code == 'N')
	    x = GEN_INT (-INTVAL (x));
	  else if (code == 'X')
	    x = GEN_INT (exact_log2 (0xffffffff & INTVAL (x)));
	  else if (code == 'Y')
	    x = GEN_INT (exact_log2 (0xffffffff & ~INTVAL (x)));
	  else if (code == 'Z')
	    /* Used for LINK insns.  */
	    x = GEN_INT (-8 - INTVAL (x));

	  /* fall through */

	case SYMBOL_REF:
	  output_addr_const (file, x);
	  break;

	case CONST_DOUBLE:
	  output_operand_lossage ("invalid const_double operand");
	  break;

	case UNSPEC:
	  switch (XINT (x, 1))
	    {
	    case UNSPEC_MOVE_PIC:
	      output_addr_const (file, XVECEXP (x, 0, 0));
	      fprintf (file, "@GOT");
	      break;

	    case UNSPEC_MOVE_FDPIC:
	      output_addr_const (file, XVECEXP (x, 0, 0));
	      fprintf (file, "@GOT17M4");
	      break;

	    case UNSPEC_FUNCDESC_GOT17M4:
	      output_addr_const (file, XVECEXP (x, 0, 0));
	      fprintf (file, "@FUNCDESC_GOT17M4");
	      break;

	    case UNSPEC_LIBRARY_OFFSET:
	      fprintf (file, "_current_shared_library_p5_offset_");
	      break;

	    default:
	      gcc_unreachable ();
	    }
	  break;

	default:
	  output_addr_const (file, x);
	}
    }
}

/* Argument support functions.  */

/* Initialize a variable CUM of type CUMULATIVE_ARGS
   for a call to a function whose data type is FNTYPE.
   For a library call, FNTYPE is 0.  
   VDSP C Compiler manual, our ABI says that
   first 3 words of arguments will use R0, R1 and R2.
*/

void
init_cumulative_args (CUMULATIVE_ARGS *cum, tree fntype,
		      rtx libname ATTRIBUTE_UNUSED)
{
  static CUMULATIVE_ARGS zero_cum;

  *cum = zero_cum;

  /* Set up the number of registers to use for passing arguments.  */

  cum->nregs = max_arg_registers;
  cum->arg_regs = arg_regs;

  cum->call_cookie = CALL_NORMAL;
  /* Check for a longcall attribute.  */
  if (fntype && lookup_attribute ("shortcall", TYPE_ATTRIBUTES (fntype)))
    cum->call_cookie |= CALL_SHORT;
  else if (fntype && lookup_attribute ("longcall", TYPE_ATTRIBUTES (fntype)))
    cum->call_cookie |= CALL_LONG;

  return;
}

/* Update the data in CUM to advance over an argument
   of mode MODE and data type TYPE.
   (TYPE is null for libcalls where that information may not be available.)  */

void
function_arg_advance (CUMULATIVE_ARGS *cum, enum machine_mode mode, tree type,
		      int named ATTRIBUTE_UNUSED)
{
  int count, bytes, words;

  bytes = (mode == BLKmode) ? int_size_in_bytes (type) : GET_MODE_SIZE (mode);
  words = (bytes + UNITS_PER_WORD - 1) / UNITS_PER_WORD;

  cum->words += words;
  cum->nregs -= words;

  if (cum->nregs <= 0)
    {
      cum->nregs = 0;
      cum->arg_regs = NULL;
    }
  else
    {
      for (count = 1; count <= words; count++)
        cum->arg_regs++;
    }

  return;
}

/* Define where to put the arguments to a function.
   Value is zero to push the argument on the stack,
   or a hard register in which to store the argument.

   MODE is the argument's machine mode.
   TYPE is the data type of the argument (as a tree).
    This is null for libcalls where that information may
    not be available.
   CUM is a variable of type CUMULATIVE_ARGS which gives info about
    the preceding args and about the function being called.
   NAMED is nonzero if this argument is a named parameter
    (otherwise it is an extra parameter matching an ellipsis).  */

struct rtx_def *
function_arg (CUMULATIVE_ARGS *cum, enum machine_mode mode, tree type,
	      int named ATTRIBUTE_UNUSED)
{
  int bytes
    = (mode == BLKmode) ? int_size_in_bytes (type) : GET_MODE_SIZE (mode);

  if (mode == VOIDmode)
    /* Compute operand 2 of the call insn.  */
    return GEN_INT (cum->call_cookie);

  if (bytes == -1)
    return NULL_RTX;

  if (cum->nregs)
    return gen_rtx_REG (mode, *(cum->arg_regs));

  return NULL_RTX;
}

/* For an arg passed partly in registers and partly in memory,
   this is the number of bytes passed in registers.
   For args passed entirely in registers or entirely in memory, zero.

   Refer VDSP C Compiler manual, our ABI.
   First 3 words are in registers. So, if an argument is larger
   than the registers available, it will span the register and
   stack.   */

static int
bfin_arg_partial_bytes (CUMULATIVE_ARGS *cum, enum machine_mode mode,
			tree type ATTRIBUTE_UNUSED,
			bool named ATTRIBUTE_UNUSED)
{
  int bytes
    = (mode == BLKmode) ? int_size_in_bytes (type) : GET_MODE_SIZE (mode);
  int bytes_left = cum->nregs * UNITS_PER_WORD;
  
  if (bytes == -1)
    return 0;

  if (bytes_left == 0)
    return 0;
  if (bytes > bytes_left)
    return bytes_left;
  return 0;
}

/* Variable sized types are passed by reference.  */

static bool
bfin_pass_by_reference (CUMULATIVE_ARGS *cum ATTRIBUTE_UNUSED,
			enum machine_mode mode ATTRIBUTE_UNUSED,
			const_tree type, bool named ATTRIBUTE_UNUSED)
{
  return type && TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST;
}

/* Decide whether a type should be returned in memory (true)
   or in a register (false).  This is called by the macro
   TARGET_RETURN_IN_MEMORY.  */

static bool
bfin_return_in_memory (const_tree type, const_tree fntype ATTRIBUTE_UNUSED)
{
  int size = int_size_in_bytes (type);
  return size > 2 * UNITS_PER_WORD || size == -1;
}

/* Register in which address to store a structure value
   is passed to a function.  */
static rtx
bfin_struct_value_rtx (tree fntype ATTRIBUTE_UNUSED,
		      int incoming ATTRIBUTE_UNUSED)
{
  return gen_rtx_REG (Pmode, REG_P0);
}

/* Return true when register may be used to pass function parameters.  */

bool 
function_arg_regno_p (int n)
{
  int i;
  for (i = 0; arg_regs[i] != -1; i++)
    if (n == arg_regs[i])
      return true;
  return false;
}

/* Returns 1 if OP contains a symbol reference */

int
symbolic_reference_mentioned_p (rtx op)
{
  register const char *fmt;
  register int i;

  if (GET_CODE (op) == SYMBOL_REF || GET_CODE (op) == LABEL_REF)
    return 1;

  fmt = GET_RTX_FORMAT (GET_CODE (op));
  for (i = GET_RTX_LENGTH (GET_CODE (op)) - 1; i >= 0; i--)
    {
      if (fmt[i] == 'E')
	{
	  register int j;

	  for (j = XVECLEN (op, i) - 1; j >= 0; j--)
	    if (symbolic_reference_mentioned_p (XVECEXP (op, i, j)))
	      return 1;
	}

      else if (fmt[i] == 'e' && symbolic_reference_mentioned_p (XEXP (op, i)))
	return 1;
    }

  return 0;
}

/* Decide whether we can make a sibling call to a function.  DECL is the
   declaration of the function being targeted by the call and EXP is the
   CALL_EXPR representing the call.  */

static bool
bfin_function_ok_for_sibcall (tree decl ATTRIBUTE_UNUSED,
			      tree exp ATTRIBUTE_UNUSED)
{
  struct cgraph_local_info *this_func, *called_func;
  e_funkind fkind = funkind (TREE_TYPE (current_function_decl));
  if (fkind != SUBROUTINE)
    return false;
  if (!TARGET_ID_SHARED_LIBRARY || TARGET_SEP_DATA)
    return true;

  /* When compiling for ID shared libraries, can't sibcall a local function
     from a non-local function, because the local function thinks it does
     not need to reload P5 in the prologue, but the sibcall wil pop P5 in the
     sibcall epilogue, and we end up with the wrong value in P5.  */

  if (!decl)
    /* Not enough information.  */
    return false;
 
  this_func = cgraph_local_info (current_function_decl);
  called_func = cgraph_local_info (decl);
  return !called_func->local || this_func->local;
}

/* Write a template for a trampoline to F.  */

static void
bfin_asm_trampoline_template (FILE *f)
{
  if (TARGET_FDPIC)
    {
      fprintf (f, "\t.dd\t0x00000000\n");	/* 0 */
      fprintf (f, "\t.dd\t0x00000000\n");	/* 0 */
      fprintf (f, "\t.dd\t0x0000e109\n");	/* p1.l = fn low */
      fprintf (f, "\t.dd\t0x0000e149\n");	/* p1.h = fn high */
      fprintf (f, "\t.dd\t0x0000e10a\n");	/* p2.l = sc low */
      fprintf (f, "\t.dd\t0x0000e14a\n");	/* p2.h = sc high */
      fprintf (f, "\t.dw\t0xac4b\n");		/* p3 = [p1 + 4] */
      fprintf (f, "\t.dw\t0x9149\n");		/* p1 = [p1] */
      fprintf (f, "\t.dw\t0x0051\n");		/* jump (p1)*/
    }
  else
    {
      fprintf (f, "\t.dd\t0x0000e109\n");	/* p1.l = fn low */
      fprintf (f, "\t.dd\t0x0000e149\n");	/* p1.h = fn high */
      fprintf (f, "\t.dd\t0x0000e10a\n");	/* p2.l = sc low */
      fprintf (f, "\t.dd\t0x0000e14a\n");	/* p2.h = sc high */
      fprintf (f, "\t.dw\t0x0051\n");		/* jump (p1)*/
    }
}

/* Emit RTL insns to initialize the variable parts of a trampoline at
   M_TRAMP. FNDECL is the target function.  CHAIN_VALUE is an RTX for
   the static chain value for the function.  */

static void
bfin_trampoline_init (rtx m_tramp, tree fndecl, rtx chain_value)
{
  rtx t1 = copy_to_reg (XEXP (DECL_RTL (fndecl), 0));
  rtx t2 = copy_to_reg (chain_value);
  rtx mem;
  int i = 0;

  emit_block_move (m_tramp, assemble_trampoline_template (),
		   GEN_INT (TRAMPOLINE_SIZE), BLOCK_OP_NORMAL);

  if (TARGET_FDPIC)
    {
      rtx a = force_reg (Pmode, plus_constant (XEXP (m_tramp, 0), 8));
      mem = adjust_address (m_tramp, Pmode, 0);
      emit_move_insn (mem, a);
      i = 8;
    }

  mem = adjust_address (m_tramp, HImode, i + 2);
  emit_move_insn (mem, gen_lowpart (HImode, t1));
  emit_insn (gen_ashrsi3 (t1, t1, GEN_INT (16)));
  mem = adjust_address (m_tramp, HImode, i + 6);
  emit_move_insn (mem, gen_lowpart (HImode, t1));

  mem = adjust_address (m_tramp, HImode, i + 10);
  emit_move_insn (mem, gen_lowpart (HImode, t2));
  emit_insn (gen_ashrsi3 (t2, t2, GEN_INT (16)));
  mem = adjust_address (m_tramp, HImode, i + 14);
  emit_move_insn (mem, gen_lowpart (HImode, t2));
}

/* Emit insns to move operands[1] into operands[0].  */

void
emit_pic_move (rtx *operands, enum machine_mode mode ATTRIBUTE_UNUSED)
{
  rtx temp = reload_in_progress ? operands[0] : gen_reg_rtx (Pmode);

  gcc_assert (!TARGET_FDPIC || !(reload_in_progress || reload_completed));
  if (GET_CODE (operands[0]) == MEM && SYMBOLIC_CONST (operands[1]))
    operands[1] = force_reg (SImode, operands[1]);
  else
    operands[1] = legitimize_pic_address (operands[1], temp,
					  TARGET_FDPIC ? OUR_FDPIC_REG
					  : pic_offset_table_rtx);
}

/* Expand a move operation in mode MODE.  The operands are in OPERANDS.
   Returns true if no further code must be generated, false if the caller
   should generate an insn to move OPERANDS[1] to OPERANDS[0].  */

bool
expand_move (rtx *operands, enum machine_mode mode)
{
  rtx op = operands[1];
  if ((TARGET_ID_SHARED_LIBRARY || TARGET_FDPIC)
      && SYMBOLIC_CONST (op))
    emit_pic_move (operands, mode);
  else if (mode == SImode && GET_CODE (op) == CONST
	   && GET_CODE (XEXP (op, 0)) == PLUS
	   && GET_CODE (XEXP (XEXP (op, 0), 0)) == SYMBOL_REF
	   && !bfin_legitimate_constant_p (op))
    {
      rtx dest = operands[0];
      rtx op0, op1;
      gcc_assert (!reload_in_progress && !reload_completed);
      op = XEXP (op, 0);
      op0 = force_reg (mode, XEXP (op, 0));
      op1 = XEXP (op, 1);
      if (!insn_data[CODE_FOR_addsi3].operand[2].predicate (op1, mode))
	op1 = force_reg (mode, op1);
      if (GET_CODE (dest) == MEM)
	dest = gen_reg_rtx (mode);
      emit_insn (gen_addsi3 (dest, op0, op1));
      if (dest == operands[0])
	return true;
      operands[1] = dest;
    }
  /* Don't generate memory->memory or constant->memory moves, go through a
     register */
  else if ((reload_in_progress | reload_completed) == 0
	   && GET_CODE (operands[0]) == MEM
    	   && GET_CODE (operands[1]) != REG)
    operands[1] = force_reg (mode, operands[1]);
  return false;
}

/* Split one or more DImode RTL references into pairs of SImode
   references.  The RTL can be REG, offsettable MEM, integer constant, or
   CONST_DOUBLE.  "operands" is a pointer to an array of DImode RTL to
   split and "num" is its length.  lo_half and hi_half are output arrays
   that parallel "operands".  */

void
split_di (rtx operands[], int num, rtx lo_half[], rtx hi_half[])
{
  while (num--)
    {
      rtx op = operands[num];

      /* simplify_subreg refuse to split volatile memory addresses,
         but we still have to handle it.  */
      if (GET_CODE (op) == MEM)
	{
	  lo_half[num] = adjust_address (op, SImode, 0);
	  hi_half[num] = adjust_address (op, SImode, 4);
	}
      else
	{
	  lo_half[num] = simplify_gen_subreg (SImode, op,
					      GET_MODE (op) == VOIDmode
					      ? DImode : GET_MODE (op), 0);
	  hi_half[num] = simplify_gen_subreg (SImode, op,
					      GET_MODE (op) == VOIDmode
					      ? DImode : GET_MODE (op), 4);
	}
    }
}

bool
bfin_longcall_p (rtx op, int call_cookie)
{
  gcc_assert (GET_CODE (op) == SYMBOL_REF);
  if (SYMBOL_REF_WEAK (op))
    return 1;
  if (call_cookie & CALL_SHORT)
    return 0;
  if (call_cookie & CALL_LONG)
    return 1;
  if (TARGET_LONG_CALLS)
    return 1;
  return 0;
}

/* Expand a call instruction.  FNADDR is the call target, RETVAL the return value.
   COOKIE is a CONST_INT holding the call_cookie prepared init_cumulative_args.
   SIBCALL is nonzero if this is a sibling call.  */

void
bfin_expand_call (rtx retval, rtx fnaddr, rtx callarg1, rtx cookie, int sibcall)
{
  rtx use = NULL, call;
  rtx callee = XEXP (fnaddr, 0);
  int nelts = 3;
  rtx pat;
  rtx picreg = get_hard_reg_initial_val (SImode, FDPIC_REGNO);
  rtx retsreg = gen_rtx_REG (Pmode, REG_RETS);
  int n;

  /* In an untyped call, we can get NULL for operand 2.  */
  if (cookie == NULL_RTX)
    cookie = const0_rtx;

  /* Static functions and indirect calls don't need the pic register.  */
  if (!TARGET_FDPIC && flag_pic
      && GET_CODE (callee) == SYMBOL_REF
      && !SYMBOL_REF_LOCAL_P (callee))
    use_reg (&use, pic_offset_table_rtx);

  if (TARGET_FDPIC)
    {
      int caller_in_sram, callee_in_sram;

      /* 0 is not in sram, 1 is in L1 sram, 2 is in L2 sram.  */
      caller_in_sram = callee_in_sram = 0;

      if (lookup_attribute ("l1_text",
			    DECL_ATTRIBUTES (cfun->decl)) != NULL_TREE)
	caller_in_sram = 1;
      else if (lookup_attribute ("l2",
				 DECL_ATTRIBUTES (cfun->decl)) != NULL_TREE)
	caller_in_sram = 2;

      if (GET_CODE (callee) == SYMBOL_REF
	  && SYMBOL_REF_DECL (callee) && DECL_P (SYMBOL_REF_DECL (callee)))
	{
	  if (lookup_attribute
	      ("l1_text",
	       DECL_ATTRIBUTES (SYMBOL_REF_DECL (callee))) != NULL_TREE)
	    callee_in_sram = 1;
	  else if (lookup_attribute
		   ("l2",
		    DECL_ATTRIBUTES (SYMBOL_REF_DECL (callee))) != NULL_TREE)
	    callee_in_sram = 2;
	}

      if (GET_CODE (callee) != SYMBOL_REF
	  || bfin_longcall_p (callee, INTVAL (cookie))
	  || (GET_CODE (callee) == SYMBOL_REF
	      && !SYMBOL_REF_LOCAL_P (callee)
	      && TARGET_INLINE_PLT)
	  || caller_in_sram != callee_in_sram
	  || (caller_in_sram && callee_in_sram
	      && (GET_CODE (callee) != SYMBOL_REF
		  || !SYMBOL_REF_LOCAL_P (callee))))
	{
	  rtx addr = callee;
	  if (! address_operand (addr, Pmode))
	    addr = force_reg (Pmode, addr);

	  fnaddr = gen_reg_rtx (SImode);
	  emit_insn (gen_load_funcdescsi (fnaddr, addr));
	  fnaddr = gen_rtx_MEM (Pmode, fnaddr);

	  picreg = gen_reg_rtx (SImode);
	  emit_insn (gen_load_funcdescsi (picreg,
					  plus_constant (addr, 4)));
	}

      nelts++;
    }
  else if ((!register_no_elim_operand (callee, Pmode)
	    && GET_CODE (callee) != SYMBOL_REF)
	   || (GET_CODE (callee) == SYMBOL_REF
	       && ((TARGET_ID_SHARED_LIBRARY && !TARGET_LEAF_ID_SHARED_LIBRARY)
		   || bfin_longcall_p (callee, INTVAL (cookie)))))
    {
      callee = copy_to_mode_reg (Pmode, callee);
      fnaddr = gen_rtx_MEM (Pmode, callee);
    }
  call = gen_rtx_CALL (VOIDmode, fnaddr, callarg1);

  if (retval)
    call = gen_rtx_SET (VOIDmode, retval, call);

  pat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (nelts));
  n = 0;
  XVECEXP (pat, 0, n++) = call;
  if (TARGET_FDPIC)
    XVECEXP (pat, 0, n++) = gen_rtx_USE (VOIDmode, picreg);
  XVECEXP (pat, 0, n++) = gen_rtx_USE (VOIDmode, cookie);
  if (sibcall)
    XVECEXP (pat, 0, n++) = gen_rtx_RETURN (VOIDmode);
  else
    XVECEXP (pat, 0, n++) = gen_rtx_CLOBBER (VOIDmode, retsreg);
  call = emit_call_insn (pat);
  if (use)
    CALL_INSN_FUNCTION_USAGE (call) = use;
}

/* Return 1 if hard register REGNO can hold a value of machine-mode MODE.  */

int
hard_regno_mode_ok (int regno, enum machine_mode mode)
{
  /* Allow only dregs to store value of mode HI or QI */
  enum reg_class rclass = REGNO_REG_CLASS (regno);

  if (mode == CCmode)
    return 0;

  if (mode == V2HImode)
    return D_REGNO_P (regno);
  if (rclass == CCREGS)
    return mode == BImode;
  if (mode == PDImode || mode == V2PDImode)
    return regno == REG_A0 || regno == REG_A1;

  /* Allow all normal 32-bit regs, except REG_M3, in case regclass ever comes
     up with a bad register class (such as ALL_REGS) for DImode.  */
  if (mode == DImode)
    return regno < REG_M3;

  if (mode == SImode
      && TEST_HARD_REG_BIT (reg_class_contents[PROLOGUE_REGS], regno))
    return 1;

  return TEST_HARD_REG_BIT (reg_class_contents[MOST_REGS], regno);
}

/* Implements target hook vector_mode_supported_p.  */

static bool
bfin_vector_mode_supported_p (enum machine_mode mode)
{
  return mode == V2HImode;
}

/* Return the cost of moving data from a register in class CLASS1 to
   one in class CLASS2.  A cost of 2 is the default.  */

int
bfin_register_move_cost (enum machine_mode mode,
			 enum reg_class class1, enum reg_class class2)
{
  /* These need secondary reloads, so they're more expensive.  */
  if ((class1 == CCREGS && !reg_class_subset_p (class2, DREGS))
      || (class2 == CCREGS && !reg_class_subset_p (class1, DREGS)))
    return 4;

  /* If optimizing for size, always prefer reg-reg over reg-memory moves.  */
  if (optimize_size)
    return 2;

  if (GET_MODE_CLASS (mode) == MODE_INT)
    {
      /* Discourage trying to use the accumulators.  */
      if (TEST_HARD_REG_BIT (reg_class_contents[class1], REG_A0)
	  || TEST_HARD_REG_BIT (reg_class_contents[class1], REG_A1)
	  || TEST_HARD_REG_BIT (reg_class_contents[class2], REG_A0)
	  || TEST_HARD_REG_BIT (reg_class_contents[class2], REG_A1))
	return 20;
    }
  return 2;
}

/* Return the cost of moving data of mode M between a
   register and memory.  A value of 2 is the default; this cost is
   relative to those in `REGISTER_MOVE_COST'.

   ??? In theory L1 memory has single-cycle latency.  We should add a switch
   that tells the compiler whether we expect to use only L1 memory for the
   program; it'll make the costs more accurate.  */

int
bfin_memory_move_cost (enum machine_mode mode ATTRIBUTE_UNUSED,
		       enum reg_class rclass,
		       int in ATTRIBUTE_UNUSED)
{
  /* Make memory accesses slightly more expensive than any register-register
     move.  Also, penalize non-DP registers, since they need secondary
     reloads to load and store.  */
  if (! reg_class_subset_p (rclass, DPREGS))
    return 10;

  return 8;
}

/* Inform reload about cases where moving X with a mode MODE to a register in
   RCLASS requires an extra scratch register.  Return the class needed for the
   scratch register.  */

static reg_class_t
bfin_secondary_reload (bool in_p, rtx x, reg_class_t rclass_i,
		       enum machine_mode mode, secondary_reload_info *sri)
{
  /* If we have HImode or QImode, we can only use DREGS as secondary registers;
     in most other cases we can also use PREGS.  */
  enum reg_class default_class = GET_MODE_SIZE (mode) >= 4 ? DPREGS : DREGS;
  enum reg_class x_class = NO_REGS;
  enum rtx_code code = GET_CODE (x);
  enum reg_class rclass = (enum reg_class) rclass_i;

  if (code == SUBREG)
    x = SUBREG_REG (x), code = GET_CODE (x);
  if (REG_P (x))
    {
      int regno = REGNO (x);
      if (regno >= FIRST_PSEUDO_REGISTER)
	regno = reg_renumber[regno];

      if (regno == -1)
	code = MEM;
      else
	x_class = REGNO_REG_CLASS (regno);
    }

  /* We can be asked to reload (plus (FP) (large_constant)) into a DREG.
     This happens as a side effect of register elimination, and we need
     a scratch register to do it.  */
  if (fp_plus_const_operand (x, mode))
    {
      rtx op2 = XEXP (x, 1);
      int large_constant_p = ! satisfies_constraint_Ks7 (op2);

      if (rclass == PREGS || rclass == PREGS_CLOBBERED)
	return NO_REGS;
      /* If destination is a DREG, we can do this without a scratch register
	 if the constant is valid for an add instruction.  */
      if ((rclass == DREGS || rclass == DPREGS)
	  && ! large_constant_p)
	return NO_REGS;
      /* Reloading to anything other than a DREG?  Use a PREG scratch
	 register.  */
      sri->icode = CODE_FOR_reload_insi;
      return NO_REGS;
    }

  /* Data can usually be moved freely between registers of most classes.
     AREGS are an exception; they can only move to or from another register
     in AREGS or one in DREGS.  They can also be assigned the constant 0.  */
  if (x_class == AREGS || x_class == EVEN_AREGS || x_class == ODD_AREGS)
    return (rclass == DREGS || rclass == AREGS || rclass == EVEN_AREGS
	    || rclass == ODD_AREGS
	    ? NO_REGS : DREGS);

  if (rclass == AREGS || rclass == EVEN_AREGS || rclass == ODD_AREGS)
    {
      if (code == MEM)
	{
	  sri->icode = in_p ? CODE_FOR_reload_inpdi : CODE_FOR_reload_outpdi;
	  return NO_REGS;
	}

      if (x != const0_rtx && x_class != DREGS)
	{
	  return DREGS;
	}
      else
	return NO_REGS;
    }

  /* CCREGS can only be moved from/to DREGS.  */
  if (rclass == CCREGS && x_class != DREGS)
    return DREGS;
  if (x_class == CCREGS && rclass != DREGS)
    return DREGS;

  /* All registers other than AREGS can load arbitrary constants.  The only
     case that remains is MEM.  */
  if (code == MEM)
    if (! reg_class_subset_p (rclass, default_class))
      return default_class;

  return NO_REGS;
}

/* Implement TARGET_HANDLE_OPTION.  */

static bool
bfin_handle_option (size_t code, const char *arg, int value)
{
  switch (code)
    {
    case OPT_mshared_library_id_:
      if (value > MAX_LIBRARY_ID)
	error ("-mshared-library-id=%s is not between 0 and %d",
	       arg, MAX_LIBRARY_ID);
      bfin_lib_id_given = 1;
      return true;

    case OPT_mcpu_:
      {
	const char *p, *q;
	int i;

	i = 0;
	while ((p = bfin_cpus[i].name) != NULL)
	  {
	    if (strncmp (arg, p, strlen (p)) == 0)
	      break;
	    i++;
	  }

	if (p == NULL)
	  {
	    error ("-mcpu=%s is not valid", arg);
	    return false;
	  }

	bfin_cpu_type = bfin_cpus[i].type;

	q = arg + strlen (p);

	if (*q == '\0')
	  {
	    bfin_si_revision = bfin_cpus[i].si_revision;
	    bfin_workarounds |= bfin_cpus[i].workarounds;
	  }
	else if (strcmp (q, "-none") == 0)
	  bfin_si_revision = -1;
      	else if (strcmp (q, "-any") == 0)
	  {
	    bfin_si_revision = 0xffff;
	    while (bfin_cpus[i].type == bfin_cpu_type)
	      {
		bfin_workarounds |= bfin_cpus[i].workarounds;
		i++;
	      }
	  }
	else
	  {
	    unsigned int si_major, si_minor;
	    int rev_len, n;

	    rev_len = strlen (q);

	    if (sscanf (q, "-%u.%u%n", &si_major, &si_minor, &n) != 2
		|| n != rev_len
		|| si_major > 0xff || si_minor > 0xff)
	      {
	      invalid_silicon_revision:
		error ("-mcpu=%s has invalid silicon revision", arg);
		return false;
	      }

	    bfin_si_revision = (si_major << 8) | si_minor;

	    while (bfin_cpus[i].type == bfin_cpu_type
		   && bfin_cpus[i].si_revision != bfin_si_revision)
	      i++;

	    if (bfin_cpus[i].type != bfin_cpu_type)
	      goto invalid_silicon_revision;

	    bfin_workarounds |= bfin_cpus[i].workarounds;
	  }

	return true;
      }

    default:
      return true;
    }
}

static struct machine_function *
bfin_init_machine_status (void)
{
  return ggc_alloc_cleared_machine_function ();
}

/* Implement the macro OVERRIDE_OPTIONS.  */

void
override_options (void)
{
  /* If processor type is not specified, enable all workarounds.  */
  if (bfin_cpu_type == BFIN_CPU_UNKNOWN)
    {
      int i;

      for (i = 0; bfin_cpus[i].name != NULL; i++)
	bfin_workarounds |= bfin_cpus[i].workarounds;

      bfin_si_revision = 0xffff;
    }

  if (bfin_csync_anomaly == 1)
    bfin_workarounds |= WA_SPECULATIVE_SYNCS;
  else if (bfin_csync_anomaly == 0)
    bfin_workarounds &= ~WA_SPECULATIVE_SYNCS;

  if (bfin_specld_anomaly == 1)
    bfin_workarounds |= WA_SPECULATIVE_LOADS;
  else if (bfin_specld_anomaly == 0)
    bfin_workarounds &= ~WA_SPECULATIVE_LOADS;

  if (TARGET_OMIT_LEAF_FRAME_POINTER)
    flag_omit_frame_pointer = 1;

  /* Library identification */
  if (bfin_lib_id_given && ! TARGET_ID_SHARED_LIBRARY)
    error ("-mshared-library-id= specified without -mid-shared-library");

  if (stack_limit_rtx && TARGET_STACK_CHECK_L1)
    error ("Can't use multiple stack checking methods together.");

  if (TARGET_ID_SHARED_LIBRARY && TARGET_FDPIC)
    error ("ID shared libraries and FD-PIC mode can't be used together.");

  /* Don't allow the user to specify -mid-shared-library and -msep-data
     together, as it makes little sense from a user's point of view...  */
  if (TARGET_SEP_DATA && TARGET_ID_SHARED_LIBRARY)
    error ("cannot specify both -msep-data and -mid-shared-library");
  /* ... internally, however, it's nearly the same.  */
  if (TARGET_SEP_DATA)
    target_flags |= MASK_ID_SHARED_LIBRARY | MASK_LEAF_ID_SHARED_LIBRARY;

  if (TARGET_ID_SHARED_LIBRARY && flag_pic == 0)
    flag_pic = 1;

  /* There is no single unaligned SI op for PIC code.  Sometimes we
     need to use ".4byte" and sometimes we need to use ".picptr".
     See bfin_assemble_integer for details.  */
  if (TARGET_FDPIC)
    targetm.asm_out.unaligned_op.si = 0;

  /* Silently turn off flag_pic if not doing FDPIC or ID shared libraries,
     since we don't support it and it'll just break.  */
  if (flag_pic && !TARGET_FDPIC && !TARGET_ID_SHARED_LIBRARY)
    flag_pic = 0;

  if (TARGET_MULTICORE && bfin_cpu_type != BFIN_CPU_BF561)
    error ("-mmulticore can only be used with BF561");

  if (TARGET_COREA && !TARGET_MULTICORE)
    error ("-mcorea should be used with -mmulticore");

  if (TARGET_COREB && !TARGET_MULTICORE)
    error ("-mcoreb should be used with -mmulticore");

  if (TARGET_COREA && TARGET_COREB)
    error ("-mcorea and -mcoreb can't be used together");

  flag_schedule_insns = 0;

  /* Passes after sched2 can break the helpful TImode annotations that
     haifa-sched puts on every insn.  Just do scheduling in reorg.  */
  bfin_flag_schedule_insns2 = flag_schedule_insns_after_reload;
  flag_schedule_insns_after_reload = 0;

  init_machine_status = bfin_init_machine_status;
}

/* Return the destination address of BRANCH.
   We need to use this instead of get_attr_length, because the
   cbranch_with_nops pattern conservatively sets its length to 6, and
   we still prefer to use shorter sequences.  */

static int
branch_dest (rtx branch)
{
  rtx dest;
  int dest_uid;
  rtx pat = PATTERN (branch);
  if (GET_CODE (pat) == PARALLEL)
    pat = XVECEXP (pat, 0, 0);
  dest = SET_SRC (pat);
  if (GET_CODE (dest) == IF_THEN_ELSE)
    dest = XEXP (dest, 1);
  dest = XEXP (dest, 0);
  dest_uid = INSN_UID (dest);
  return INSN_ADDRESSES (dest_uid);
}

/* Return nonzero if INSN is annotated with a REG_BR_PROB note that indicates
   it's a branch that's predicted taken.  */

static int
cbranch_predicted_taken_p (rtx insn)
{
  rtx x = find_reg_note (insn, REG_BR_PROB, 0);

  if (x)
    {
      int pred_val = INTVAL (XEXP (x, 0));

      return pred_val >= REG_BR_PROB_BASE / 2;
    }

  return 0;
}

/* Templates for use by asm_conditional_branch.  */

static const char *ccbranch_templates[][3] = {
  { "if !cc jump %3;",  "if cc jump 4 (bp); jump.s %3;",  "if cc jump 6 (bp); jump.l %3;" },
  { "if cc jump %3;",   "if !cc jump 4 (bp); jump.s %3;", "if !cc jump 6 (bp); jump.l %3;" },
  { "if !cc jump %3 (bp);",  "if cc jump 4; jump.s %3;",  "if cc jump 6; jump.l %3;" },
  { "if cc jump %3 (bp);",  "if !cc jump 4; jump.s %3;",  "if !cc jump 6; jump.l %3;" },
};

/* Output INSN, which is a conditional branch instruction with operands
   OPERANDS.

   We deal with the various forms of conditional branches that can be generated
   by bfin_reorg to prevent the hardware from doing speculative loads, by
   - emitting a sufficient number of nops, if N_NOPS is nonzero, or
   - always emitting the branch as predicted taken, if PREDICT_TAKEN is true.
   Either of these is only necessary if the branch is short, otherwise the
   template we use ends in an unconditional jump which flushes the pipeline
   anyway.  */

void
asm_conditional_branch (rtx insn, rtx *operands, int n_nops, int predict_taken)
{
  int offset = branch_dest (insn) - INSN_ADDRESSES (INSN_UID (insn));
  /* Note : offset for instructions like if cc jmp; jump.[sl] offset
            is to be taken from start of if cc rather than jump.
            Range for jump.s is (-4094, 4096) instead of (-4096, 4094)
  */
  int len = (offset >= -1024 && offset <= 1022 ? 0
	     : offset >= -4094 && offset <= 4096 ? 1
	     : 2);
  int bp = predict_taken && len == 0 ? 1 : cbranch_predicted_taken_p (insn);
  int idx = (bp << 1) | (GET_CODE (operands[0]) == EQ ? BRF : BRT);
  output_asm_insn (ccbranch_templates[idx][len], operands);
  gcc_assert (n_nops == 0 || !bp);
  if (len == 0)
    while (n_nops-- > 0)
      output_asm_insn ("nop;", NULL);
}

/* Emit rtl for a comparison operation CMP in mode MODE.  Operands have been
   stored in bfin_compare_op0 and bfin_compare_op1 already.  */

rtx
bfin_gen_compare (rtx cmp, enum machine_mode mode ATTRIBUTE_UNUSED)
{
  enum rtx_code code1, code2;
  rtx op0 = XEXP (cmp, 0), op1 = XEXP (cmp, 1);
  rtx tem = bfin_cc_rtx;
  enum rtx_code code = GET_CODE (cmp);

  /* If we have a BImode input, then we already have a compare result, and
     do not need to emit another comparison.  */
  if (GET_MODE (op0) == BImode)
    {
      gcc_assert ((code == NE || code == EQ) && op1 == const0_rtx);
      tem = op0, code2 = code;
    }
  else
    {
      switch (code) {
	/* bfin has these conditions */
      case EQ:
      case LT:
      case LE:
      case LEU:
      case LTU:
	code1 = code;
	code2 = NE;
	break;
      default:
	code1 = reverse_condition (code);
	code2 = EQ;
	break;
      }
      emit_insn (gen_rtx_SET (VOIDmode, tem,
			      gen_rtx_fmt_ee (code1, BImode, op0, op1)));
    }

  return gen_rtx_fmt_ee (code2, BImode, tem, CONST0_RTX (BImode));
}

/* Return nonzero iff C has exactly one bit set if it is interpreted
   as a 32-bit constant.  */

int
log2constp (unsigned HOST_WIDE_INT c)
{
  c &= 0xFFFFFFFF;
  return c != 0 && (c & (c-1)) == 0;
}

/* Returns the number of consecutive least significant zeros in the binary
   representation of *V.
   We modify *V to contain the original value arithmetically shifted right by
   the number of zeroes.  */

static int
shiftr_zero (HOST_WIDE_INT *v)
{
  unsigned HOST_WIDE_INT tmp = *v;
  unsigned HOST_WIDE_INT sgn;
  int n = 0;

  if (tmp == 0)
    return 0;

  sgn = tmp & ((unsigned HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT - 1));
  while ((tmp & 0x1) == 0 && n <= 32)
    {
      tmp = (tmp >> 1) | sgn;
      n++;
    }
  *v = tmp;
  return n;
}

/* After reload, split the load of an immediate constant.  OPERANDS are the
   operands of the movsi_insn pattern which we are splitting.  We return
   nonzero if we emitted a sequence to load the constant, zero if we emitted
   nothing because we want to use the splitter's default sequence.  */

int
split_load_immediate (rtx operands[])
{
  HOST_WIDE_INT val = INTVAL (operands[1]);
  HOST_WIDE_INT tmp;
  HOST_WIDE_INT shifted = val;
  HOST_WIDE_INT shifted_compl = ~val;
  int num_zero = shiftr_zero (&shifted);
  int num_compl_zero = shiftr_zero (&shifted_compl);
  unsigned int regno = REGNO (operands[0]);

  /* This case takes care of single-bit set/clear constants, which we could
     also implement with BITSET/BITCLR.  */
  if (num_zero
      && shifted >= -32768 && shifted < 65536
      && (D_REGNO_P (regno)
	  || (regno >= REG_P0 && regno <= REG_P7 && num_zero <= 2)))
    {
      emit_insn (gen_movsi (operands[0], GEN_INT (shifted)));
      emit_insn (gen_ashlsi3 (operands[0], operands[0], GEN_INT (num_zero)));
      return 1;
    }

  tmp = val & 0xFFFF;
  tmp |= -(tmp & 0x8000);

  /* If high word has one bit set or clear, try to use a bit operation.  */
  if (D_REGNO_P (regno))
    {
      if (log2constp (val & 0xFFFF0000))
	{
	  emit_insn (gen_movsi (operands[0], GEN_INT (val & 0xFFFF)));
	  emit_insn (gen_iorsi3 (operands[0], operands[0], GEN_INT (val & 0xFFFF0000)));
	  return 1;
	}
      else if (log2constp (val | 0xFFFF) && (val & 0x8000) != 0)
	{
	  emit_insn (gen_movsi (operands[0], GEN_INT (tmp)));
	  emit_insn (gen_andsi3 (operands[0], operands[0], GEN_INT (val | 0xFFFF)));
	}
    }

  if (D_REGNO_P (regno))
    {
      if (tmp >= -64 && tmp <= 63)
	{
	  emit_insn (gen_movsi (operands[0], GEN_INT (tmp)));
	  emit_insn (gen_movstricthi_high (operands[0], GEN_INT (val & -65536)));
	  return 1;
	}

      if ((val & 0xFFFF0000) == 0)
	{
	  emit_insn (gen_movsi (operands[0], const0_rtx));
	  emit_insn (gen_movsi_low (operands[0], operands[0], operands[1]));
	  return 1;
	}

      if ((val & 0xFFFF0000) == 0xFFFF0000)
	{
	  emit_insn (gen_movsi (operands[0], constm1_rtx));
	  emit_insn (gen_movsi_low (operands[0], operands[0], operands[1]));
	  return 1;
	}
    }

  /* Need DREGs for the remaining case.  */
  if (regno > REG_R7)
    return 0;

  if (optimize_size
      && num_compl_zero && shifted_compl >= -64 && shifted_compl <= 63)
    {
      /* If optimizing for size, generate a sequence that has more instructions
	 but is shorter.  */
      emit_insn (gen_movsi (operands[0], GEN_INT (shifted_compl)));
      emit_insn (gen_ashlsi3 (operands[0], operands[0],
			      GEN_INT (num_compl_zero)));
      emit_insn (gen_one_cmplsi2 (operands[0], operands[0]));
      return 1;
    }
  return 0;
}

/* Return true if the legitimate memory address for a memory operand of mode
   MODE.  Return false if not.  */

static bool
bfin_valid_add (enum machine_mode mode, HOST_WIDE_INT value)
{
  unsigned HOST_WIDE_INT v = value > 0 ? value : -value;
  int sz = GET_MODE_SIZE (mode);
  int shift = sz == 1 ? 0 : sz == 2 ? 1 : 2;
  /* The usual offsettable_memref machinery doesn't work so well for this
     port, so we deal with the problem here.  */
  if (value > 0 && sz == 8)
    v += 4;
  return (v & ~(0x7fff << shift)) == 0;
}

static bool
bfin_valid_reg_p (unsigned int regno, int strict, enum machine_mode mode,
		  enum rtx_code outer_code)
{
  if (strict)
    return REGNO_OK_FOR_BASE_STRICT_P (regno, mode, outer_code, SCRATCH);
  else
    return REGNO_OK_FOR_BASE_NONSTRICT_P (regno, mode, outer_code, SCRATCH);
}

/* Recognize an RTL expression that is a valid memory address for an
   instruction.  The MODE argument is the machine mode for the MEM expression
   that wants to use this address. 

   Blackfin addressing modes are as follows:

      [preg]
      [preg + imm16]

      B [ Preg + uimm15 ]
      W [ Preg + uimm16m2 ]
      [ Preg + uimm17m4 ] 

      [preg++]
      [preg--]
      [--sp]
*/

static bool
bfin_legitimate_address_p (enum machine_mode mode, rtx x, bool strict)
{
  switch (GET_CODE (x)) {
  case REG:
    if (bfin_valid_reg_p (REGNO (x), strict, mode, MEM))
      return true;
    break;
  case PLUS:
    if (REG_P (XEXP (x, 0))
	&& bfin_valid_reg_p (REGNO (XEXP (x, 0)), strict, mode, PLUS)
	&& ((GET_CODE (XEXP (x, 1)) == UNSPEC && mode == SImode)
	    || (GET_CODE (XEXP (x, 1)) == CONST_INT
		&& bfin_valid_add (mode, INTVAL (XEXP (x, 1))))))
      return true;
    break;
  case POST_INC:
  case POST_DEC:
    if (LEGITIMATE_MODE_FOR_AUTOINC_P (mode)
	&& REG_P (XEXP (x, 0))
	&& bfin_valid_reg_p (REGNO (XEXP (x, 0)), strict, mode, POST_INC))
      return true;
  case PRE_DEC:
    if (LEGITIMATE_MODE_FOR_AUTOINC_P (mode)
	&& XEXP (x, 0) == stack_pointer_rtx
	&& REG_P (XEXP (x, 0))
	&& bfin_valid_reg_p (REGNO (XEXP (x, 0)), strict, mode, PRE_DEC))
      return true;
    break;
  default:
    break;
  }
  return false;
}

/* Decide whether we can force certain constants to memory.  If we
   decide we can't, the caller should be able to cope with it in
   another way.  */

static bool
bfin_cannot_force_const_mem (rtx x ATTRIBUTE_UNUSED)
{
  /* We have only one class of non-legitimate constants, and our movsi
     expander knows how to handle them.  Dropping these constants into the
     data section would only shift the problem - we'd still get relocs
     outside the object, in the data section rather than the text section.  */
  return true;
}

/* Ensure that for any constant of the form symbol + offset, the offset
   remains within the object.  Any other constants are ok.
   This ensures that flat binaries never have to deal with relocations
   crossing section boundaries.  */

bool
bfin_legitimate_constant_p (rtx x)
{
  rtx sym;
  HOST_WIDE_INT offset;

  if (GET_CODE (x) != CONST)
    return true;

  x = XEXP (x, 0);
  gcc_assert (GET_CODE (x) == PLUS);

  sym = XEXP (x, 0);
  x = XEXP (x, 1);
  if (GET_CODE (sym) != SYMBOL_REF
      || GET_CODE (x) != CONST_INT)
    return true;
  offset = INTVAL (x);

  if (SYMBOL_REF_DECL (sym) == 0)
    return true;
  if (offset < 0
      || offset >= int_size_in_bytes (TREE_TYPE (SYMBOL_REF_DECL (sym))))
    return false;

  return true;
}

static bool
bfin_rtx_costs (rtx x, int code, int outer_code, int *total, bool speed)
{
  int cost2 = COSTS_N_INSNS (1);
  rtx op0, op1;

  switch (code)
    {
    case CONST_INT:
      if (outer_code == SET || outer_code == PLUS)
        *total = satisfies_constraint_Ks7 (x) ? 0 : cost2;
      else if (outer_code == AND)
        *total = log2constp (~INTVAL (x)) ? 0 : cost2;
      else if (outer_code == LE || outer_code == LT || outer_code == EQ)
        *total = (INTVAL (x) >= -4 && INTVAL (x) <= 3) ? 0 : cost2;
      else if (outer_code == LEU || outer_code == LTU)
        *total = (INTVAL (x) >= 0 && INTVAL (x) <= 7) ? 0 : cost2;
      else if (outer_code == MULT)
        *total = (INTVAL (x) == 2 || INTVAL (x) == 4) ? 0 : cost2;
      else if (outer_code == ASHIFT && (INTVAL (x) == 1 || INTVAL (x) == 2))
        *total = 0;
      else if (outer_code == ASHIFT || outer_code == ASHIFTRT
	       || outer_code == LSHIFTRT)
        *total = (INTVAL (x) >= 0 && INTVAL (x) <= 31) ? 0 : cost2;
      else if (outer_code == IOR || outer_code == XOR)
        *total = (INTVAL (x) & (INTVAL (x) - 1)) == 0 ? 0 : cost2;
      else
	*total = cost2;
      return true;

    case CONST:
    case LABEL_REF:
    case SYMBOL_REF:
    case CONST_DOUBLE:
      *total = COSTS_N_INSNS (2);
      return true;

    case PLUS:
      op0 = XEXP (x, 0);
      op1 = XEXP (x, 1);
      if (GET_MODE (x) == SImode)
	{
	  if (GET_CODE (op0) == MULT
	      && GET_CODE (XEXP (op0, 1)) == CONST_INT)
	    {
	      HOST_WIDE_INT val = INTVAL (XEXP (op0, 1));
	      if (val == 2 || val == 4)
		{
		  *total = cost2;
		  *total += rtx_cost (XEXP (op0, 0), outer_code, speed);
		  *total += rtx_cost (op1, outer_code, speed);
		  return true;
		}
	    }
	  *total = cost2;
	  if (GET_CODE (op0) != REG
	      && (GET_CODE (op0) != SUBREG || GET_CODE (SUBREG_REG (op0)) != REG))
	    *total += rtx_cost (op0, SET, speed);
#if 0 /* We'd like to do this for accuracy, but it biases the loop optimizer
	 towards creating too many induction variables.  */
	  if (!reg_or_7bit_operand (op1, SImode))
	    *total += rtx_cost (op1, SET, speed);
#endif
	}
      else if (GET_MODE (x) == DImode)
	{
	  *total = 6 * cost2;
	  if (GET_CODE (op1) != CONST_INT
	      || !satisfies_constraint_Ks7 (op1))
	    *total += rtx_cost (op1, PLUS, speed);
	  if (GET_CODE (op0) != REG
	      && (GET_CODE (op0) != SUBREG || GET_CODE (SUBREG_REG (op0)) != REG))
	    *total += rtx_cost (op0, PLUS, speed);
	}
      return true;

    case MINUS:
      if (GET_MODE (x) == DImode)
	*total = 6 * cost2;
      else
	*total = cost2;
      return true;
      
    case ASHIFT: 
    case ASHIFTRT:
    case LSHIFTRT:
      if (GET_MODE (x) == DImode)
	*total = 6 * cost2;
      else
	*total = cost2;

      op0 = XEXP (x, 0);
      op1 = XEXP (x, 1);
      if (GET_CODE (op0) != REG
	  && (GET_CODE (op0) != SUBREG || GET_CODE (SUBREG_REG (op0)) != REG))
	*total += rtx_cost (op0, code, speed);

      return true;
	  
    case IOR:
    case AND:
    case XOR:
      op0 = XEXP (x, 0);
      op1 = XEXP (x, 1);

      /* Handle special cases of IOR: rotates, ALIGN insns, movstricthi_high.  */
      if (code == IOR)
	{
	  if ((GET_CODE (op0) == LSHIFTRT && GET_CODE (op1) == ASHIFT)
	      || (GET_CODE (op0) == ASHIFT && GET_CODE (op1) == ZERO_EXTEND)
	      || (GET_CODE (op0) == ASHIFT && GET_CODE (op1) == LSHIFTRT)
	      || (GET_CODE (op0) == AND && GET_CODE (op1) == CONST_INT))
	    {
	      *total = cost2;
	      return true;
	    }
	}

      if (GET_CODE (op0) != REG
	  && (GET_CODE (op0) != SUBREG || GET_CODE (SUBREG_REG (op0)) != REG))
	*total += rtx_cost (op0, code, speed);

      if (GET_MODE (x) == DImode)
	{
	  *total = 2 * cost2;
	  return true;
	}
      *total = cost2;
      if (GET_MODE (x) != SImode)
	return true;

      if (code == AND)
	{
	  if (! rhs_andsi3_operand (XEXP (x, 1), SImode))
	    *total += rtx_cost (XEXP (x, 1), code, speed);
	}
      else
	{
	  if (! regorlog2_operand (XEXP (x, 1), SImode))
	    *total += rtx_cost (XEXP (x, 1), code, speed);
	}

      return true;

    case ZERO_EXTRACT:
    case SIGN_EXTRACT:
      if (outer_code == SET
	  && XEXP (x, 1) == const1_rtx
	  && GET_CODE (XEXP (x, 2)) == CONST_INT)
	{
	  *total = 2 * cost2;
	  return true;
	}
      /* fall through */

    case SIGN_EXTEND:
    case ZERO_EXTEND:
      *total = cost2;
      return true;

    case MULT:
	{
	  op0 = XEXP (x, 0);
	  op1 = XEXP (x, 1);
	  if (GET_CODE (op0) == GET_CODE (op1)
	      && (GET_CODE (op0) == ZERO_EXTEND
		  || GET_CODE (op0) == SIGN_EXTEND))
	    {
	      *total = COSTS_N_INSNS (1);
	      op0 = XEXP (op0, 0);
	      op1 = XEXP (op1, 0);
	    }
	  else if (!speed)
	    *total = COSTS_N_INSNS (1);
	  else
	    *total = COSTS_N_INSNS (3);

	  if (GET_CODE (op0) != REG
	      && (GET_CODE (op0) != SUBREG || GET_CODE (SUBREG_REG (op0)) != REG))
	    *total += rtx_cost (op0, MULT, speed);
	  if (GET_CODE (op1) != REG
	      && (GET_CODE (op1) != SUBREG || GET_CODE (SUBREG_REG (op1)) != REG))
	    *total += rtx_cost (op1, MULT, speed);
	}
      return true;

    case UDIV:
    case UMOD:
      *total = COSTS_N_INSNS (32);
      return true;

    case VEC_CONCAT:
    case VEC_SELECT:
      if (outer_code == SET)
	*total = cost2;
      return true;

    default:
      return false;
    }
}

/* Used for communication between {push,pop}_multiple_operation (which
   we use not only as a predicate) and the corresponding output functions.  */
static int first_preg_to_save, first_dreg_to_save;
static int n_regs_to_save;

int
push_multiple_operation (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
{
  int lastdreg = 8, lastpreg = 6;
  int i, group;

  first_preg_to_save = lastpreg;
  first_dreg_to_save = lastdreg;
  for (i = 1, group = 0; i < XVECLEN (op, 0) - 1; i++)
    {
      rtx t = XVECEXP (op, 0, i);
      rtx src, dest;
      int regno;

      if (GET_CODE (t) != SET)
	return 0;

      src = SET_SRC (t);
      dest = SET_DEST (t);
      if (GET_CODE (dest) != MEM || ! REG_P (src))
	return 0;
      dest = XEXP (dest, 0);
      if (GET_CODE (dest) != PLUS
	  || ! REG_P (XEXP (dest, 0))
	  || REGNO (XEXP (dest, 0)) != REG_SP
	  || GET_CODE (XEXP (dest, 1)) != CONST_INT
	  || INTVAL (XEXP (dest, 1)) != -i * 4)
	return 0;

      regno = REGNO (src);
      if (group == 0)
	{
	  if (D_REGNO_P (regno))
	    {
	      group = 1;
	      first_dreg_to_save = lastdreg = regno - REG_R0;
	    }
	  else if (regno >= REG_P0 && regno <= REG_P7)
	    {
	      group = 2;
	      first_preg_to_save = lastpreg = regno - REG_P0;
	    }
	  else
	    return 0;

	  continue;
	}

      if (group == 1)
	{
	  if (regno >= REG_P0 && regno <= REG_P7)
	    {
	      group = 2;
	      first_preg_to_save = lastpreg = regno - REG_P0;
	    }
	  else if (regno != REG_R0 + lastdreg + 1)
	    return 0;
	  else
	    lastdreg++;
	}
      else if (group == 2)
	{
	  if (regno != REG_P0 + lastpreg + 1)
	    return 0;
	  lastpreg++;
	}
    }
  n_regs_to_save = 8 - first_dreg_to_save + 6 - first_preg_to_save;
  return 1;
}

int
pop_multiple_operation (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
{
  int lastdreg = 8, lastpreg = 6;
  int i, group;

  for (i = 1, group = 0; i < XVECLEN (op, 0); i++)
    {
      rtx t = XVECEXP (op, 0, i);
      rtx src, dest;
      int regno;

      if (GET_CODE (t) != SET)
	return 0;

      src = SET_SRC (t);
      dest = SET_DEST (t);
      if (GET_CODE (src) != MEM || ! REG_P (dest))
	return 0;
      src = XEXP (src, 0);

      if (i == 1)
	{
	  if (! REG_P (src) || REGNO (src) != REG_SP)
	    return 0;
	}
      else if (GET_CODE (src) != PLUS
	       || ! REG_P (XEXP (src, 0))
	       || REGNO (XEXP (src, 0)) != REG_SP
	       || GET_CODE (XEXP (src, 1)) != CONST_INT
	       || INTVAL (XEXP (src, 1)) != (i - 1) * 4)
	return 0;

      regno = REGNO (dest);
      if (group == 0)
	{
	  if (regno == REG_R7)
	    {
	      group = 1;
	      lastdreg = 7;
	    }
	  else if (regno != REG_P0 + lastpreg - 1)
	    return 0;
	  else
	    lastpreg--;
	}
      else if (group == 1)
	{
	  if (regno != REG_R0 + lastdreg - 1)
	    return 0;
	  else
	    lastdreg--;
	}
    }
  first_dreg_to_save = lastdreg;
  first_preg_to_save = lastpreg;
  n_regs_to_save = 8 - first_dreg_to_save + 6 - first_preg_to_save;
  return 1;
}

/* Emit assembly code for one multi-register push described by INSN, with
   operands in OPERANDS.  */

void
output_push_multiple (rtx insn, rtx *operands)
{
  char buf[80];
  int ok;
  
  /* Validate the insn again, and compute first_[dp]reg_to_save. */
  ok = push_multiple_operation (PATTERN (insn), VOIDmode);
  gcc_assert (ok);
  
  if (first_dreg_to_save == 8)
    sprintf (buf, "[--sp] = ( p5:%d );\n", first_preg_to_save);
  else if (first_preg_to_save == 6)
    sprintf (buf, "[--sp] = ( r7:%d );\n", first_dreg_to_save);
  else
    sprintf (buf, "[--sp] = ( r7:%d, p5:%d );\n",
	     first_dreg_to_save, first_preg_to_save);

  output_asm_insn (buf, operands);
}

/* Emit assembly code for one multi-register pop described by INSN, with
   operands in OPERANDS.  */

void
output_pop_multiple (rtx insn, rtx *operands)
{
  char buf[80];
  int ok;
  
  /* Validate the insn again, and compute first_[dp]reg_to_save. */
  ok = pop_multiple_operation (PATTERN (insn), VOIDmode);
  gcc_assert (ok);

  if (first_dreg_to_save == 8)
    sprintf (buf, "( p5:%d ) = [sp++];\n", first_preg_to_save);
  else if (first_preg_to_save == 6)
    sprintf (buf, "( r7:%d ) = [sp++];\n", first_dreg_to_save);
  else
    sprintf (buf, "( r7:%d, p5:%d ) = [sp++];\n",
	     first_dreg_to_save, first_preg_to_save);

  output_asm_insn (buf, operands);
}

/* Adjust DST and SRC by OFFSET bytes, and generate one move in mode MODE.  */

static void
single_move_for_movmem (rtx dst, rtx src, enum machine_mode mode, HOST_WIDE_INT offset)
{
  rtx scratch = gen_reg_rtx (mode);
  rtx srcmem, dstmem;

  srcmem = adjust_address_nv (src, mode, offset);
  dstmem = adjust_address_nv (dst, mode, offset);
  emit_move_insn (scratch, srcmem);
  emit_move_insn (dstmem, scratch);
}

/* Expand a string move operation of COUNT_EXP bytes from SRC to DST, with
   alignment ALIGN_EXP.  Return true if successful, false if we should fall
   back on a different method.  */

bool
bfin_expand_movmem (rtx dst, rtx src, rtx count_exp, rtx align_exp)
{
  rtx srcreg, destreg, countreg;
  HOST_WIDE_INT align = 0;
  unsigned HOST_WIDE_INT count = 0;

  if (GET_CODE (align_exp) == CONST_INT)
    align = INTVAL (align_exp);
  if (GET_CODE (count_exp) == CONST_INT)
    {
      count = INTVAL (count_exp);
#if 0
      if (!TARGET_INLINE_ALL_STRINGOPS && count > 64)
	return false;
#endif
    }

  /* If optimizing for size, only do single copies inline.  */
  if (optimize_size)
    {
      if (count == 2 && align < 2)
	return false;
      if (count == 4 && align < 4)
	return false;
      if (count != 1 && count != 2 && count != 4)
	return false;
    }
  if (align < 2 && count != 1)
    return false;

  destreg = copy_to_mode_reg (Pmode, XEXP (dst, 0));
  if (destreg != XEXP (dst, 0))
    dst = replace_equiv_address_nv (dst, destreg);
  srcreg = copy_to_mode_reg (Pmode, XEXP (src, 0));
  if (srcreg != XEXP (src, 0))
    src = replace_equiv_address_nv (src, srcreg);

  if (count != 0 && align >= 2)
    {
      unsigned HOST_WIDE_INT offset = 0;

      if (align >= 4)
	{
	  if ((count & ~3) == 4)
	    {
	      single_move_for_movmem (dst, src, SImode, offset);
	      offset = 4;
	    }
	  else if (count & ~3)
	    {
	      HOST_WIDE_INT new_count = ((count >> 2) & 0x3fffffff) - 1;
	      countreg = copy_to_mode_reg (Pmode, GEN_INT (new_count));

	      emit_insn (gen_rep_movsi (destreg, srcreg, countreg, destreg, srcreg));
	      cfun->machine->has_loopreg_clobber = true;
	    }
	  if (count & 2)
	    {
	      single_move_for_movmem (dst, src, HImode, offset);
	      offset += 2;
	    }
	}
      else
	{
	  if ((count & ~1) == 2)
	    {
	      single_move_for_movmem (dst, src, HImode, offset);
	      offset = 2;
	    }
	  else if (count & ~1)
	    {
	      HOST_WIDE_INT new_count = ((count >> 1) & 0x7fffffff) - 1;
	      countreg = copy_to_mode_reg (Pmode, GEN_INT (new_count));

	      emit_insn (gen_rep_movhi (destreg, srcreg, countreg, destreg, srcreg));
	      cfun->machine->has_loopreg_clobber = true;
	    }
	}
      if (count & 1)
	{
	  single_move_for_movmem (dst, src, QImode, offset);
	}
      return true;
    }
  return false;
}

/* Compute the alignment for a local variable.
   TYPE is the data type, and ALIGN is the alignment that
   the object would ordinarily have.  The value of this macro is used
   instead of that alignment to align the object.  */

int
bfin_local_alignment (tree type, int align)
{
  /* Increasing alignment for (relatively) big types allows the builtin
     memcpy can use 32 bit loads/stores.  */
  if (TYPE_SIZE (type)
      && TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST
      && (TREE_INT_CST_LOW (TYPE_SIZE (type)) > 8
	  || TREE_INT_CST_HIGH (TYPE_SIZE (type))) && align < 32)
    return 32;
  return align;
}

/* Implement TARGET_SCHED_ISSUE_RATE.  */

static int
bfin_issue_rate (void)
{
  return 3;
}

static int
bfin_adjust_cost (rtx insn, rtx link, rtx dep_insn, int cost)
{
  enum attr_type insn_type, dep_insn_type;
  int dep_insn_code_number;

  /* Anti and output dependencies have zero cost.  */
  if (REG_NOTE_KIND (link) != 0)
    return 0;

  dep_insn_code_number = recog_memoized (dep_insn);

  /* If we can't recognize the insns, we can't really do anything.  */
  if (dep_insn_code_number < 0 || recog_memoized (insn) < 0)
    return cost;

  insn_type = get_attr_type (insn);
  dep_insn_type = get_attr_type (dep_insn);

  if (dep_insn_type == TYPE_MOVE || dep_insn_type == TYPE_MCLD)
    {
      rtx pat = PATTERN (dep_insn);
      if (GET_CODE (pat) == PARALLEL)
	pat = XVECEXP (pat, 0, 0);
      rtx dest = SET_DEST (pat);
      rtx src = SET_SRC (pat);
      if (! ADDRESS_REGNO_P (REGNO (dest))
	  || ! (MEM_P (src) || D_REGNO_P (REGNO (src))))
	return cost;
      return cost + (dep_insn_type == TYPE_MOVE ? 4 : 3);
    }

  return cost;
}

/* This function acts like NEXT_INSN, but is aware of three-insn bundles and
   skips all subsequent parallel instructions if INSN is the start of such
   a group.  */
static rtx
find_next_insn_start (rtx insn)
{
  if (GET_MODE (insn) == SImode)
    {
      while (GET_MODE (insn) != QImode)
	insn = NEXT_INSN (insn);
    }
  return NEXT_INSN (insn);
}

/* This function acts like PREV_INSN, but is aware of three-insn bundles and
   skips all subsequent parallel instructions if INSN is the start of such
   a group.  */
static rtx
find_prev_insn_start (rtx insn)
{
  insn = PREV_INSN (insn);
  gcc_assert (GET_MODE (insn) != SImode);
  if (GET_MODE (insn) == QImode)
    {
      while (GET_MODE (PREV_INSN (insn)) == SImode)
	insn = PREV_INSN (insn);
    }
  return insn;
}

/* Increment the counter for the number of loop instructions in the
   current function.  */

void
bfin_hardware_loop (void)
{
  cfun->machine->has_hardware_loops++;
}

/* Maximum loop nesting depth.  */
#define MAX_LOOP_DEPTH 2

/* Maximum size of a loop.  */
#define MAX_LOOP_LENGTH 2042

/* Maximum distance of the LSETUP instruction from the loop start.  */
#define MAX_LSETUP_DISTANCE 30

/* We need to keep a vector of loops */
typedef struct loop_info *loop_info;
DEF_VEC_P (loop_info);
DEF_VEC_ALLOC_P (loop_info,heap);

/* Information about a loop we have found (or are in the process of
   finding).  */
struct GTY (()) loop_info
{
  /* loop number, for dumps */
  int loop_no;

  /* All edges that jump into and out of the loop.  */
  VEC(edge,gc) *incoming;

  /* We can handle two cases: all incoming edges have the same destination
     block, or all incoming edges have the same source block.  These two
     members are set to the common source or destination we found, or NULL
     if different blocks were found.  If both are NULL the loop can't be
     optimized.  */
  basic_block incoming_src;
  basic_block incoming_dest;

  /* First block in the loop.  This is the one branched to by the loop_end
     insn.  */
  basic_block head;

  /* Last block in the loop (the one with the loop_end insn).  */
  basic_block tail;

  /* The successor block of the loop.  This is the one the loop_end insn
     falls into.  */
  basic_block successor;

  /* The last instruction in the tail.  */
  rtx last_insn;

  /* The loop_end insn.  */
  rtx loop_end;

  /* The iteration register.  */
  rtx iter_reg;

  /* The new label placed at the beginning of the loop. */
  rtx start_label;

  /* The new label placed at the end of the loop. */
  rtx end_label;

  /* The length of the loop.  */
  int length;

  /* The nesting depth of the loop.  */
  int depth;

  /* Nonzero if we can't optimize this loop.  */
  int bad;

  /* True if we have visited this loop.  */
  int visited;

  /* True if this loop body clobbers any of LC0, LT0, or LB0.  */
  int clobber_loop0;

  /* True if this loop body clobbers any of LC1, LT1, or LB1.  */
  int clobber_loop1;

  /* Next loop in the graph. */
  struct loop_info *next;

  /* Immediate outer loop of this loop.  */
  struct loop_info *outer;

  /* Vector of blocks only within the loop, including those within
     inner loops.  */
  VEC (basic_block,heap) *blocks;

  /* Same information in a bitmap.  */
  bitmap block_bitmap;

  /* Vector of inner loops within this loop  */
  VEC (loop_info,heap) *loops;
};

static void
bfin_dump_loops (loop_info loops)
{
  loop_info loop;

  for (loop = loops; loop; loop = loop->next)
    {
      loop_info i;
      basic_block b;
      unsigned ix;

      fprintf (dump_file, ";; loop %d: ", loop->loop_no);
      if (loop->bad)
	fprintf (dump_file, "(bad) ");
      fprintf (dump_file, "{head:%d, depth:%d}", loop->head->index, loop->depth);

      fprintf (dump_file, " blocks: [ ");
      for (ix = 0; VEC_iterate (basic_block, loop->blocks, ix, b); ix++)
	fprintf (dump_file, "%d ", b->index);
      fprintf (dump_file, "] ");

      fprintf (dump_file, " inner loops: [ ");
      for (ix = 0; VEC_iterate (loop_info, loop->loops, ix, i); ix++)
	fprintf (dump_file, "%d ", i->loop_no);
      fprintf (dump_file, "]\n");
    }
  fprintf (dump_file, "\n");
}

/* Scan the blocks of LOOP (and its inferiors) looking for basic block
   BB. Return true, if we find it.  */

static bool
bfin_bb_in_loop (loop_info loop, basic_block bb)
{
  return bitmap_bit_p (loop->block_bitmap, bb->index);
}

/* Scan the blocks of LOOP (and its inferiors) looking for uses of
   REG.  Return true, if we find any.  Don't count the loop's loop_end
   insn if it matches LOOP_END.  */

static bool
bfin_scan_loop (loop_info loop, rtx reg, rtx loop_end)
{
  unsigned ix;
  basic_block bb;

  for (ix = 0; VEC_iterate (basic_block, loop->blocks, ix, bb); ix++)
    {
      rtx insn;

      for (insn = BB_HEAD (bb);
	   insn != NEXT_INSN (BB_END (bb));
	   insn = NEXT_INSN (insn))
	{
	  if (!INSN_P (insn))
	    continue;
	  if (insn == loop_end)
	    continue;
	  if (reg_mentioned_p (reg, PATTERN (insn)))
	    return true;
	}
    }
  return false;
}

/* Estimate the length of INSN conservatively.  */

static int
length_for_loop (rtx insn)
{
  int length = 0;
  if (JUMP_P (insn) && any_condjump_p (insn) && !optimize_size)
    {
      if (ENABLE_WA_SPECULATIVE_SYNCS)
	length = 8;
      else if (ENABLE_WA_SPECULATIVE_LOADS)
	length = 6;
    }
  else if (LABEL_P (insn))
    {
      if (ENABLE_WA_SPECULATIVE_SYNCS)
	length = 4;
    }

  if (NONDEBUG_INSN_P (insn))
    length += get_attr_length (insn);

  return length;
}

/* Optimize LOOP.  */

static void
bfin_optimize_loop (loop_info loop)
{
  basic_block bb;
  loop_info inner;
  rtx insn, last_insn;
  rtx loop_init, start_label, end_label;
  rtx reg_lc0, reg_lc1, reg_lt0, reg_lt1, reg_lb0, reg_lb1;
  rtx iter_reg, scratchreg, scratch_init, scratch_init_insn;
  rtx lc_reg, lt_reg, lb_reg;
  rtx seq, seq_end;
  int length;
  unsigned ix;
  int inner_depth = 0;

  if (loop->visited)
    return;

  loop->visited = 1;

  if (loop->bad)
    {
      if (dump_file)
	fprintf (dump_file, ";; loop %d bad when found\n", loop->loop_no);
      goto bad_loop;
    }

  /* Every loop contains in its list of inner loops every loop nested inside
     it, even if there are intermediate loops.  This works because we're doing
     a depth-first search here and never visit a loop more than once.  */
  for (ix = 0; VEC_iterate (loop_info, loop->loops, ix, inner); ix++)
    {
      bfin_optimize_loop (inner);

      if (!inner->bad && inner_depth < inner->depth)
	{
	  inner_depth = inner->depth;

	  loop->clobber_loop0 |= inner->clobber_loop0;
	  loop->clobber_loop1 |= inner->clobber_loop1;
	}
    }

  loop->depth = inner_depth + 1;
  if (loop->depth > MAX_LOOP_DEPTH)
    {
      if (dump_file)
	fprintf (dump_file, ";; loop %d too deep\n", loop->loop_no);
      goto bad_loop;
    }

  /* Get the loop iteration register.  */
  iter_reg = loop->iter_reg;

  if (!REG_P (iter_reg))
    {
      if (dump_file)
	fprintf (dump_file, ";; loop %d iteration count not in a register\n",
		 loop->loop_no);
      goto bad_loop;
    }
  scratchreg = NULL_RTX;
  scratch_init = iter_reg;
  scratch_init_insn = NULL_RTX;
  if (!PREG_P (iter_reg) && loop->incoming_src)
    {
      basic_block bb_in = loop->incoming_src;
      int i;
      for (i = REG_P0; i <= REG_P5; i++)
	if ((df_regs_ever_live_p (i)
	     || (funkind (TREE_TYPE (current_function_decl)) == SUBROUTINE
		 && call_used_regs[i]))
	    && !REGNO_REG_SET_P (df_get_live_out (bb_in), i))
	  {
	    scratchreg = gen_rtx_REG (SImode, i);
	    break;
	  }
      for (insn = BB_END (bb_in); insn != BB_HEAD (bb_in);
	   insn = PREV_INSN (insn))
	{
	  rtx set;
	  if (NOTE_P (insn) || BARRIER_P (insn))
	    continue;
	  set = single_set (insn);
	  if (set && rtx_equal_p (SET_DEST (set), iter_reg))
	    {
	      if (CONSTANT_P (SET_SRC (set)))
		{
		  scratch_init = SET_SRC (set);
		  scratch_init_insn = insn;
		}
	      break;
	    }
	  else if (reg_mentioned_p (iter_reg, PATTERN (insn)))
	    break;
	}
    }

  if (loop->incoming_src)
    {
      /* Make sure the predecessor is before the loop start label, as required by
	 the LSETUP instruction.  */
      length = 0;
      insn = BB_END (loop->incoming_src);
      /* If we have to insert the LSETUP before a jump, count that jump in the
	 length.  */
      if (VEC_length (edge, loop->incoming) > 1
	  || !(VEC_last (edge, loop->incoming)->flags & EDGE_FALLTHRU))
	{
	  gcc_assert (JUMP_P (insn));
	  insn = PREV_INSN (insn);
	}

      for (; insn && insn != loop->start_label; insn = NEXT_INSN (insn))
	length += length_for_loop (insn);

      if (!insn)
	{
	  if (dump_file)
	    fprintf (dump_file, ";; loop %d lsetup not before loop_start\n",
		     loop->loop_no);
	  goto bad_loop;
	}

      /* Account for the pop of a scratch register where necessary.  */
      if (!PREG_P (iter_reg) && scratchreg == NULL_RTX
	  && ENABLE_WA_LOAD_LCREGS)
	length += 2;

      if (length > MAX_LSETUP_DISTANCE)
	{
	  if (dump_file)
	    fprintf (dump_file, ";; loop %d lsetup too far away\n", loop->loop_no);
	  goto bad_loop;
	}
    }

  /* Check if start_label appears before loop_end and calculate the
     offset between them.  We calculate the length of instructions
     conservatively.  */
  length = 0;
  for (insn = loop->start_label;
       insn && insn != loop->loop_end;
       insn = NEXT_INSN (insn))
    length += length_for_loop (insn);

  if (!insn)
    {
      if (dump_file)
	fprintf (dump_file, ";; loop %d start_label not before loop_end\n",
		 loop->loop_no);
      goto bad_loop;
    }

  loop->length = length;
  if (loop->length > MAX_LOOP_LENGTH)
    {
      if (dump_file)
	fprintf (dump_file, ";; loop %d too long\n", loop->loop_no);
      goto bad_loop;
    }

  /* Scan all the blocks to make sure they don't use iter_reg.  */
  if (bfin_scan_loop (loop, iter_reg, loop->loop_end))
    {
      if (dump_file)
	fprintf (dump_file, ";; loop %d uses iterator\n", loop->loop_no);
      goto bad_loop;
    }

  /* Scan all the insns to see if the loop body clobber
     any hardware loop registers. */

  reg_lc0 = gen_rtx_REG (SImode, REG_LC0);
  reg_lc1 = gen_rtx_REG (SImode, REG_LC1);
  reg_lt0 = gen_rtx_REG (SImode, REG_LT0);
  reg_lt1 = gen_rtx_REG (SImode, REG_LT1);
  reg_lb0 = gen_rtx_REG (SImode, REG_LB0);
  reg_lb1 = gen_rtx_REG (SImode, REG_LB1);

  for (ix = 0; VEC_iterate (basic_block, loop->blocks, ix, bb); ix++)
    {
      rtx insn;

      for (insn = BB_HEAD (bb);
	   insn != NEXT_INSN (BB_END (bb));
	   insn = NEXT_INSN (insn))
	{
	  if (!INSN_P (insn))
	    continue;

	  if (reg_set_p (reg_lc0, insn)
	      || reg_set_p (reg_lt0, insn)
	      || reg_set_p (reg_lb0, insn))
	    loop->clobber_loop0 = 1;
	  
	  if (reg_set_p (reg_lc1, insn)
	      || reg_set_p (reg_lt1, insn)
	      || reg_set_p (reg_lb1, insn))
	    loop->clobber_loop1 |= 1;
	}
    }

  if ((loop->clobber_loop0 && loop->clobber_loop1)
      || (loop->depth == MAX_LOOP_DEPTH && loop->clobber_loop0))
    {
      loop->depth = MAX_LOOP_DEPTH + 1;
      if (dump_file)
	fprintf (dump_file, ";; loop %d no loop reg available\n",
		 loop->loop_no);
      goto bad_loop;
    }

  /* There should be an instruction before the loop_end instruction
     in the same basic block. And the instruction must not be
     - JUMP
     - CONDITIONAL BRANCH
     - CALL
     - CSYNC
     - SSYNC
     - Returns (RTS, RTN, etc.)  */

  bb = loop->tail;
  last_insn = find_prev_insn_start (loop->loop_end);

  while (1)
    {
      for (; last_insn != BB_HEAD (bb);
	   last_insn = find_prev_insn_start (last_insn))
	if (NONDEBUG_INSN_P (last_insn))
	  break;

      if (last_insn != BB_HEAD (bb))
	break;

      if (single_pred_p (bb)
	  && single_pred_edge (bb)->flags & EDGE_FALLTHRU
	  && single_pred (bb) != ENTRY_BLOCK_PTR)
	{
	  bb = single_pred (bb);
	  last_insn = BB_END (bb);
	  continue;
	}
      else
	{
	  last_insn = NULL_RTX;
	  break;
	}
    }

  if (!last_insn)
    {
      if (dump_file)
	fprintf (dump_file, ";; loop %d has no last instruction\n",
		 loop->loop_no);
      goto bad_loop;
    }

  if (JUMP_P (last_insn) && !any_condjump_p (last_insn))
    {
      if (dump_file)
	fprintf (dump_file, ";; loop %d has bad last instruction\n",
		 loop->loop_no);
      goto bad_loop;
    }
  /* In all other cases, try to replace a bad last insn with a nop.  */
  else if (JUMP_P (last_insn)
	   || CALL_P (last_insn)
	   || get_attr_type (last_insn) == TYPE_SYNC
	   || get_attr_type (last_insn) == TYPE_CALL
	   || get_attr_seq_insns (last_insn) == SEQ_INSNS_MULTI
	   || recog_memoized (last_insn) == CODE_FOR_return_internal
	   || GET_CODE (PATTERN (last_insn)) == ASM_INPUT
	   || asm_noperands (PATTERN (last_insn)) >= 0)
    {
      if (loop->length + 2 > MAX_LOOP_LENGTH)
	{
	  if (dump_file)
	    fprintf (dump_file, ";; loop %d too long\n", loop->loop_no);
	  goto bad_loop;
	}
      if (dump_file)
	fprintf (dump_file, ";; loop %d has bad last insn; replace with nop\n",
		 loop->loop_no);

      last_insn = emit_insn_after (gen_forced_nop (), last_insn);
    }

  loop->last_insn = last_insn;

  /* The loop is good for replacement.  */
  start_label = loop->start_label;
  end_label = gen_label_rtx ();
  iter_reg = loop->iter_reg;

  if (loop->depth == 1 && !loop->clobber_loop1)
    {
      lc_reg = reg_lc1;
      lt_reg = reg_lt1;
      lb_reg = reg_lb1;
      loop->clobber_loop1 = 1;
    }
  else
    {
      lc_reg = reg_lc0;
      lt_reg = reg_lt0;
      lb_reg = reg_lb0;
      loop->clobber_loop0 = 1;
    }

  loop->end_label = end_label;

  /* Create a sequence containing the loop setup.  */
  start_sequence ();

  /* LSETUP only accepts P registers.  If we have one, we can use it,
     otherwise there are several ways of working around the problem.
     If we're not affected by anomaly 312, we can load the LC register
     from any iteration register, and use LSETUP without initialization.
     If we've found a P scratch register that's not live here, we can
     instead copy the iter_reg into that and use an initializing LSETUP.
     If all else fails, push and pop P0 and use it as a scratch.  */
  if (P_REGNO_P (REGNO (iter_reg)))
    {
      loop_init = gen_lsetup_with_autoinit (lt_reg, start_label,
					    lb_reg, end_label,
					    lc_reg, iter_reg);
      seq_end = emit_insn (loop_init);
    }
  else if (!ENABLE_WA_LOAD_LCREGS && DPREG_P (iter_reg))
    {
      emit_insn (gen_movsi (lc_reg, iter_reg));
      loop_init = gen_lsetup_without_autoinit (lt_reg, start_label,
					       lb_reg, end_label,
					       lc_reg);
      seq_end = emit_insn (loop_init);
    }
  else if (scratchreg != NULL_RTX)
    {
      emit_insn (gen_movsi (scratchreg, scratch_init));
      loop_init = gen_lsetup_with_autoinit (lt_reg, start_label,
					    lb_reg, end_label,
					    lc_reg, scratchreg);
      seq_end = emit_insn (loop_init);
      if (scratch_init_insn != NULL_RTX)
	delete_insn (scratch_init_insn);
    }
  else
    {
      rtx p0reg = gen_rtx_REG (SImode, REG_P0);
      rtx push = gen_frame_mem (SImode,
				gen_rtx_PRE_DEC (SImode, stack_pointer_rtx));
      rtx pop = gen_frame_mem (SImode,
			       gen_rtx_POST_INC (SImode, stack_pointer_rtx));
      emit_insn (gen_movsi (push, p0reg));
      emit_insn (gen_movsi (p0reg, scratch_init));
      loop_init = gen_lsetup_with_autoinit (lt_reg, start_label,
					    lb_reg, end_label,
					    lc_reg, p0reg);
      emit_insn (loop_init);
      seq_end = emit_insn (gen_movsi (p0reg, pop));
      if (scratch_init_insn != NULL_RTX)
	delete_insn (scratch_init_insn);
    }

  if (dump_file)
    {
      fprintf (dump_file, ";; replacing loop %d initializer with\n",
	       loop->loop_no);
      print_rtl_single (dump_file, loop_init);
      fprintf (dump_file, ";; replacing loop %d terminator with\n",
	       loop->loop_no);
      print_rtl_single (dump_file, loop->loop_end);
    }

  /* If the loop isn't entered at the top, also create a jump to the entry
     point.  */
  if (!loop->incoming_src && loop->head != loop->incoming_dest)
    {
      rtx label = BB_HEAD (loop->incoming_dest);
      /* If we're jumping to the final basic block in the loop, and there's
	 only one cheap instruction before the end (typically an increment of
	 an induction variable), we can just emit a copy here instead of a
	 jump.  */
      if (loop->incoming_dest == loop->tail
	  && next_real_insn (label) == last_insn
	  && asm_noperands (last_insn) < 0
	  && GET_CODE (PATTERN (last_insn)) == SET)
	{
	  seq_end = emit_insn (copy_rtx (PATTERN (last_insn)));
	}
      else
	{
	  emit_jump_insn (gen_jump (label));
	  seq_end = emit_barrier ();
	}
    }

  seq = get_insns ();
  end_sequence ();

  if (loop->incoming_src)
    {
      rtx prev = BB_END (loop->incoming_src);
      if (VEC_length (edge, loop->incoming) > 1
	  || !(VEC_last (edge, loop->incoming)->flags & EDGE_FALLTHRU))
	{
	  gcc_assert (JUMP_P (prev));
	  prev = PREV_INSN (prev);
	}
      emit_insn_after (seq, prev);
    }
  else
    {
      basic_block new_bb;
      edge e;
      edge_iterator ei;

#ifdef ENABLE_CHECKING
      if (loop->head != loop->incoming_dest)
	{
	  /* We aren't entering the loop at the top.  Since we've established
	     that the loop is entered only at one point, this means there
	     can't be fallthru edges into the head.  Any such fallthru edges
	     would become invalid when we insert the new block, so verify
	     that this does not in fact happen.  */
	  FOR_EACH_EDGE (e, ei, loop->head->preds)
	    gcc_assert (!(e->flags & EDGE_FALLTHRU));
	}
#endif

      emit_insn_before (seq, BB_HEAD (loop->head));
      seq = emit_label_before (gen_label_rtx (), seq);

      new_bb = create_basic_block (seq, seq_end, loop->head->prev_bb);
      FOR_EACH_EDGE (e, ei, loop->incoming)
	{
	  if (!(e->flags & EDGE_FALLTHRU)
	      || e->dest != loop->head)
	    redirect_edge_and_branch_force (e, new_bb);
	  else
	    redirect_edge_succ (e, new_bb);
	}
      e = make_edge (new_bb, loop->head, 0);
    }

  delete_insn (loop->loop_end);
  /* Insert the loop end label before the last instruction of the loop.  */
  emit_label_before (loop->end_label, loop->last_insn);

  return;

 bad_loop:

  if (dump_file)
    fprintf (dump_file, ";; loop %d is bad\n", loop->loop_no);

  loop->bad = 1;

  if (DPREG_P (loop->iter_reg))
    {
      /* If loop->iter_reg is a DREG or PREG, we can split it here
	 without scratch register.  */
      rtx insn, test;

      emit_insn_before (gen_addsi3 (loop->iter_reg,
				    loop->iter_reg,
				    constm1_rtx),
			loop->loop_end);

      test = gen_rtx_NE (VOIDmode, loop->iter_reg, const0_rtx);
      insn = emit_jump_insn_before (gen_cbranchsi4 (test,
						    loop->iter_reg, const0_rtx,
						    loop->start_label),
				    loop->loop_end);

      JUMP_LABEL (insn) = loop->start_label;
      LABEL_NUSES (loop->start_label)++;
      delete_insn (loop->loop_end);
    }
}

/* Called from bfin_reorg_loops when a potential loop end is found.  LOOP is
   a newly set up structure describing the loop, it is this function's
   responsibility to fill most of it.  TAIL_BB and TAIL_INSN point to the
   loop_end insn and its enclosing basic block.  */

static void
bfin_discover_loop (loop_info loop, basic_block tail_bb, rtx tail_insn)
{
  unsigned dwork = 0;
  basic_block bb;
  VEC (basic_block,heap) *works = VEC_alloc (basic_block,heap,20);

  loop->tail = tail_bb;
  loop->head = BRANCH_EDGE (tail_bb)->dest;
  loop->successor = FALLTHRU_EDGE (tail_bb)->dest;
  loop->loop_end = tail_insn;
  loop->last_insn = NULL_RTX;
  loop->iter_reg = SET_DEST (XVECEXP (PATTERN (tail_insn), 0, 1));
  loop->depth = loop->length = 0;
  loop->visited = 0;
  loop->clobber_loop0 = loop->clobber_loop1 = 0;
  loop->outer = NULL;
  loop->loops = NULL;
  loop->incoming = VEC_alloc (edge, gc, 2);
  loop->start_label = XEXP (XEXP (SET_SRC (XVECEXP (PATTERN (tail_insn), 0, 0)), 1), 0);
  loop->end_label = NULL_RTX;
  loop->bad = 0;

  VEC_safe_push (basic_block, heap, works, loop->head);

  while (VEC_iterate (basic_block, works, dwork++, bb))
    {
      edge e;
      edge_iterator ei;
      if (bb == EXIT_BLOCK_PTR)
	{
	  /* We've reached the exit block.  The loop must be bad. */
	  if (dump_file)
	    fprintf (dump_file,
		     ";; Loop is bad - reached exit block while scanning\n");
	  loop->bad = 1;
	  break;
	}

      if (bitmap_bit_p (loop->block_bitmap, bb->index))
	continue;

      /* We've not seen this block before.  Add it to the loop's
	 list and then add each successor to the work list.  */

      VEC_safe_push (basic_block, heap, loop->blocks, bb);
      bitmap_set_bit (loop->block_bitmap, bb->index);

      if (bb != tail_bb)
	{
	  FOR_EACH_EDGE (e, ei, bb->succs)
	    {
	      basic_block succ = EDGE_SUCC (bb, ei.index)->dest;
	      if (!REGNO_REG_SET_P (df_get_live_in (succ),
				    REGNO (loop->iter_reg)))
		continue;
	      if (!VEC_space (basic_block, works, 1))
		{
		  if (dwork)
		    {
		      VEC_block_remove (basic_block, works, 0, dwork);
		      dwork = 0;
		    }
		  else
		    VEC_reserve (basic_block, heap, works, 1);
		}
	      VEC_quick_push (basic_block, works, succ);
	    }
	}
    }

  /* Find the predecessor, and make sure nothing else jumps into this loop.  */
  if (!loop->bad)
    {
      int pass, retry;
      for (dwork = 0; VEC_iterate (basic_block, loop->blocks, dwork, bb); dwork++)
	{
	  edge e;
	  edge_iterator ei;
	  FOR_EACH_EDGE (e, ei, bb->preds)
	    {
	      basic_block pred = e->src;

	      if (!bfin_bb_in_loop (loop, pred))
		{
		  if (dump_file)
		    fprintf (dump_file, ";; Loop %d: incoming edge %d -> %d\n",
			     loop->loop_no, pred->index,
			     e->dest->index);
		  VEC_safe_push (edge, gc, loop->incoming, e);
		}
	    }
	}

      for (pass = 0, retry = 1; retry && pass < 2; pass++)
	{
	  edge e;
	  edge_iterator ei;
	  bool first = true;
	  retry = 0;

	  FOR_EACH_EDGE (e, ei, loop->incoming)
	    {
	      if (first)
		{
		  loop->incoming_src = e->src;
		  loop->incoming_dest = e->dest;
		  first = false;
		}
	      else
		{
		  if (e->dest != loop->incoming_dest)
		    loop->incoming_dest = NULL;
		  if (e->src != loop->incoming_src)
		    loop->incoming_src = NULL;
		}
	      if (loop->incoming_src == NULL && loop->incoming_dest == NULL)
		{
		  if (pass == 0)
		    {
		      if (dump_file)
			fprintf (dump_file,
				 ";; retrying loop %d with forwarder blocks\n",
				 loop->loop_no);
		      retry = 1;
		      break;
		    }
		  loop->bad = 1;
		  if (dump_file)
		    fprintf (dump_file,
			     ";; can't find suitable entry for loop %d\n",
			     loop->loop_no);
		  goto out;
		}
	    }
	  if (retry)
	    {
	      retry = 0;
	      FOR_EACH_EDGE (e, ei, loop->incoming)
		{
		  if (forwarder_block_p (e->src))
		    {
		      edge e2;
		      edge_iterator ei2;

		      if (dump_file)
			fprintf (dump_file,
				 ";; Adding forwarder block %d to loop %d and retrying\n",
				 e->src->index, loop->loop_no);
		      VEC_safe_push (basic_block, heap, loop->blocks, e->src);
		      bitmap_set_bit (loop->block_bitmap, e->src->index);
		      FOR_EACH_EDGE (e2, ei2, e->src->preds)
			VEC_safe_push (edge, gc, loop->incoming, e2);
		      VEC_unordered_remove (edge, loop->incoming, ei.index);
		      retry = 1;
		      break;
		    }
		}
	      if (!retry)
		{
		  if (dump_file)
		    fprintf (dump_file, ";; No forwarder blocks found\n");
		  loop->bad = 1;
		}
	    }
	}
    }

 out:
  VEC_free (basic_block, heap, works);
}

/* Analyze the structure of the loops in the current function.  Use STACK
   for bitmap allocations.  Returns all the valid candidates for hardware
   loops found in this function.  */
static loop_info
bfin_discover_loops (bitmap_obstack *stack, FILE *dump_file)
{
  loop_info loops = NULL;
  loop_info loop;
  basic_block bb;
  bitmap tmp_bitmap;
  int nloops = 0;

  /* Find all the possible loop tails.  This means searching for every
     loop_end instruction.  For each one found, create a loop_info
     structure and add the head block to the work list. */
  FOR_EACH_BB (bb)
    {
      rtx tail = BB_END (bb);

      while (GET_CODE (tail) == NOTE)
	tail = PREV_INSN (tail);

      bb->aux = NULL;

      if (INSN_P (tail) && recog_memoized (tail) == CODE_FOR_loop_end)
	{
	  rtx insn;
	  /* A possible loop end */

	  /* There's a degenerate case we can handle - an empty loop consisting
	     of only a back branch.  Handle that by deleting the branch.  */
	  insn = BB_HEAD (BRANCH_EDGE (bb)->dest);
	  if (next_real_insn (insn) == tail)
	    {
	      if (dump_file)
		{
		  fprintf (dump_file, ";; degenerate loop ending at\n");
		  print_rtl_single (dump_file, tail);
		}
	      delete_insn_and_edges (tail);
	      continue;
	    }

	  loop = XNEW (struct loop_info);
	  loop->next = loops;
	  loops = loop;
	  loop->loop_no = nloops++;
	  loop->blocks = VEC_alloc (basic_block, heap, 20);
	  loop->block_bitmap = BITMAP_ALLOC (stack);
	  bb->aux = loop;

	  if (dump_file)
	    {
	      fprintf (dump_file, ";; potential loop %d ending at\n",
		       loop->loop_no);
	      print_rtl_single (dump_file, tail);
	    }

	  bfin_discover_loop (loop, bb, tail);
	}
    }

  tmp_bitmap = BITMAP_ALLOC (stack);
  /* Compute loop nestings.  */
  for (loop = loops; loop; loop = loop->next)
    {
      loop_info other;
      if (loop->bad)
	continue;

      for (other = loop->next; other; other = other->next)
	{
	  if (other->bad)
	    continue;

	  bitmap_and (tmp_bitmap, other->block_bitmap, loop->block_bitmap);
	  if (bitmap_empty_p (tmp_bitmap))
	    continue;
	  if (bitmap_equal_p (tmp_bitmap, other->block_bitmap))
	    {
	      other->outer = loop;
	      VEC_safe_push (loop_info, heap, loop->loops, other);
	    }
	  else if (bitmap_equal_p (tmp_bitmap, loop->block_bitmap))
	    {
	      loop->outer = other;
	      VEC_safe_push (loop_info, heap, other->loops, loop);
	    }
	  else
	    {
	      if (dump_file)
		fprintf (dump_file,
			 ";; can't find suitable nesting for loops %d and %d\n",
			 loop->loop_no, other->loop_no);
	      loop->bad = other->bad = 1;
	    }
	}
    }
  BITMAP_FREE (tmp_bitmap);

  return loops;
}

/* Free up the loop structures in LOOPS.  */
static void
free_loops (loop_info loops)
{
  while (loops)
    {
      loop_info loop = loops;
      loops = loop->next;
      VEC_free (loop_info, heap, loop->loops);
      VEC_free (basic_block, heap, loop->blocks);
      BITMAP_FREE (loop->block_bitmap);
      XDELETE (loop);
    }
}

#define BB_AUX_INDEX(BB) ((unsigned)(BB)->aux)

/* The taken-branch edge from the loop end can actually go forward.  Since the
   Blackfin's LSETUP instruction requires that the loop end be after the loop
   start, try to reorder a loop's basic blocks when we find such a case.  */
static void
bfin_reorder_loops (loop_info loops, FILE *dump_file)
{
  basic_block bb;
  loop_info loop;

  FOR_EACH_BB (bb)
    bb->aux = NULL;
  cfg_layout_initialize (0);

  for (loop = loops; loop; loop = loop->next)
    {
      unsigned index;
      basic_block bb;
      edge e;
      edge_iterator ei;

      if (loop->bad)
	continue;

      /* Recreate an index for basic blocks that represents their order.  */
      for (bb = ENTRY_BLOCK_PTR->next_bb, index = 0;
	   bb != EXIT_BLOCK_PTR;
	   bb = bb->next_bb, index++)
	bb->aux = (PTR) index;

      if (BB_AUX_INDEX (loop->head) < BB_AUX_INDEX (loop->tail))
	continue;

      FOR_EACH_EDGE (e, ei, loop->head->succs)
	{
	  if (bitmap_bit_p (loop->block_bitmap, e->dest->index)
	      && BB_AUX_INDEX (e->dest) < BB_AUX_INDEX (loop->tail))
	    {
	      basic_block start_bb = e->dest;
	      basic_block start_prev_bb = start_bb->prev_bb;

	      if (dump_file)
		fprintf (dump_file, ";; Moving block %d before block %d\n",
			 loop->head->index, start_bb->index);
	      loop->head->prev_bb->next_bb = loop->head->next_bb;
	      loop->head->next_bb->prev_bb = loop->head->prev_bb;

	      loop->head->prev_bb = start_prev_bb;
	      loop->head->next_bb = start_bb;
	      start_prev_bb->next_bb = start_bb->prev_bb = loop->head;
	      break;
	    }
	}
      loops = loops->next;
    }
  
  FOR_EACH_BB (bb)
    {
      if (bb->next_bb != EXIT_BLOCK_PTR)
	bb->aux = bb->next_bb;
      else
	bb->aux = NULL;
    }
  cfg_layout_finalize ();
  df_analyze ();
}

/* Run from machine_dependent_reorg, this pass looks for doloop_end insns
   and tries to rewrite the RTL of these loops so that proper Blackfin
   hardware loops are generated.  */

static void
bfin_reorg_loops (FILE *dump_file)
{
  loop_info loops = NULL;
  loop_info loop;
  basic_block bb;
  bitmap_obstack stack;

  bitmap_obstack_initialize (&stack);

  if (dump_file)
    fprintf (dump_file, ";; Find loops, first pass\n\n");

  loops = bfin_discover_loops (&stack, dump_file);

  if (dump_file)
    bfin_dump_loops (loops);

  bfin_reorder_loops (loops, dump_file);
  free_loops (loops);

  if (dump_file)
    fprintf (dump_file, ";; Find loops, second pass\n\n");

  loops = bfin_discover_loops (&stack, dump_file);
  if (dump_file)
    {
      fprintf (dump_file, ";; All loops found:\n\n");
      bfin_dump_loops (loops);
    }

  /* Now apply the optimizations.  */
  for (loop = loops; loop; loop = loop->next)
    bfin_optimize_loop (loop);

  if (dump_file)
    {
      fprintf (dump_file, ";; After hardware loops optimization:\n\n");
      bfin_dump_loops (loops);
    }

  free_loops (loops);

  if (dump_file)
    print_rtl (dump_file, get_insns ());

  FOR_EACH_BB (bb)
    bb->aux = NULL;

  splitting_loops = 1;
  FOR_EACH_BB (bb)
    {
      rtx insn = BB_END (bb);
      if (!JUMP_P (insn))
	continue;

      try_split (PATTERN (insn), insn, 1);
    }
  splitting_loops = 0;
}

/* Possibly generate a SEQUENCE out of three insns found in SLOT.
   Returns true if we modified the insn chain, false otherwise.  */
static bool
gen_one_bundle (rtx slot[3])
{
  gcc_assert (slot[1] != NULL_RTX);

  /* Don't add extra NOPs if optimizing for size.  */
  if (optimize_size
      && (slot[0] == NULL_RTX || slot[2] == NULL_RTX))
    return false;

  /* Verify that we really can do the multi-issue.  */
  if (slot[0])
    {
      rtx t = NEXT_INSN (slot[0]);
      while (t != slot[1])
	{
	  if (GET_CODE (t) != NOTE
	      || NOTE_KIND (t) != NOTE_INSN_DELETED)
	    return false;
	  t = NEXT_INSN (t);
	}
    }
  if (slot[2])
    {
      rtx t = NEXT_INSN (slot[1]);
      while (t != slot[2])
	{
	  if (GET_CODE (t) != NOTE
	      || NOTE_KIND (t) != NOTE_INSN_DELETED)
	    return false;
	  t = NEXT_INSN (t);
	}
    }

  if (slot[0] == NULL_RTX)
    {
      slot[0] = emit_insn_before (gen_mnop (), slot[1]);
      df_insn_rescan (slot[0]);
    }
  if (slot[2] == NULL_RTX)
    {
      slot[2] = emit_insn_after (gen_forced_nop (), slot[1]);
      df_insn_rescan (slot[2]);
    }

  /* Avoid line number information being printed inside one bundle.  */
  if (INSN_LOCATOR (slot[1])
      && INSN_LOCATOR (slot[1]) != INSN_LOCATOR (slot[0]))
    INSN_LOCATOR (slot[1]) = INSN_LOCATOR (slot[0]);
  if (INSN_LOCATOR (slot[2])
      && INSN_LOCATOR (slot[2]) != INSN_LOCATOR (slot[0]))
    INSN_LOCATOR (slot[2]) = INSN_LOCATOR (slot[0]);

  /* Terminate them with "|| " instead of ";" in the output.  */
  PUT_MODE (slot[0], SImode);
  PUT_MODE (slot[1], SImode);
  /* Terminate the bundle, for the benefit of reorder_var_tracking_notes.  */
  PUT_MODE (slot[2], QImode);
  return true;
}

/* Go through all insns, and use the information generated during scheduling
   to generate SEQUENCEs to represent bundles of instructions issued
   simultaneously.  */

static void
bfin_gen_bundles (void)
{
  basic_block bb;
  FOR_EACH_BB (bb)
    {
      rtx insn, next;
      rtx slot[3];
      int n_filled = 0;

      slot[0] = slot[1] = slot[2] = NULL_RTX;
      for (insn = BB_HEAD (bb);; insn = next)
	{
	  int at_end;
	  rtx delete_this = NULL_RTX;

	  if (NONDEBUG_INSN_P (insn))
	    {
	      enum attr_type type = get_attr_type (insn);

	      if (type == TYPE_STALL)
		{
		  gcc_assert (n_filled == 0);
		  delete_this = insn;
		}
	      else
		{
		  if (type == TYPE_DSP32 || type == TYPE_DSP32SHIFTIMM)
		    slot[0] = insn;
		  else if (slot[1] == NULL_RTX)
		    slot[1] = insn;
		  else
		    slot[2] = insn;
		  n_filled++;
		}
	    }

	  next = NEXT_INSN (insn);
	  while (next && insn != BB_END (bb)
		 && !(INSN_P (next)
		      && GET_CODE (PATTERN (next)) != USE
		      && GET_CODE (PATTERN (next)) != CLOBBER))
	    {
	      insn = next;
	      next = NEXT_INSN (insn);
	    }

	  /* BB_END can change due to emitting extra NOPs, so check here.  */
	  at_end = insn == BB_END (bb);
	  if (delete_this == NULL_RTX && (at_end || GET_MODE (next) == TImode))
	    {
	      if ((n_filled < 2
		   || !gen_one_bundle (slot))
		  && slot[0] != NULL_RTX)
		{
		  rtx pat = PATTERN (slot[0]);
		  if (GET_CODE (pat) == SET
		      && GET_CODE (SET_SRC (pat)) == UNSPEC
		      && XINT (SET_SRC (pat), 1) == UNSPEC_32BIT)
		    {
		      SET_SRC (pat) = XVECEXP (SET_SRC (pat), 0, 0);
		      INSN_CODE (slot[0]) = -1;
		      df_insn_rescan (slot[0]);
		    }
		}
	      n_filled = 0;
	      slot[0] = slot[1] = slot[2] = NULL_RTX;
	    }
	  if (delete_this != NULL_RTX)
	    delete_insn (delete_this);
	  if (at_end)
	    break;
	}
    }
}

/* Ensure that no var tracking notes are emitted in the middle of a
   three-instruction bundle.  */

static void
reorder_var_tracking_notes (void)
{
  basic_block bb;
  FOR_EACH_BB (bb)
    {
      rtx insn, next;
      rtx queue = NULL_RTX;
      bool in_bundle = false;

      for (insn = BB_HEAD (bb); insn != BB_END (bb); insn = next)
	{
	  next = NEXT_INSN (insn);

	  if (INSN_P (insn))
	    {
	      /* Emit queued up notes at the last instruction of a bundle.  */
	      if (GET_MODE (insn) == QImode)
		{
		  while (queue)
		    {
		      rtx next_queue = PREV_INSN (queue);
		      PREV_INSN (NEXT_INSN (insn)) = queue;
		      NEXT_INSN (queue) = NEXT_INSN (insn);
		      NEXT_INSN (insn) = queue;
		      PREV_INSN (queue) = insn;
		      queue = next_queue;
		    }
		  in_bundle = false;
		}
	      else if (GET_MODE (insn) == SImode)
		in_bundle = true;
	    }
	  else if (NOTE_P (insn) && NOTE_KIND (insn) == NOTE_INSN_VAR_LOCATION)
	    {
	      if (in_bundle)
		{
		  rtx prev = PREV_INSN (insn);
		  PREV_INSN (next) = prev;
		  NEXT_INSN (prev) = next;

		  PREV_INSN (insn) = queue;
		  queue = insn;
		}
	    }
	}
    }
}

/* On some silicon revisions, functions shorter than a certain number of cycles
   can cause unpredictable behaviour.  Work around this by adding NOPs as
   needed.  */
static void
workaround_rts_anomaly (void)
{
  rtx insn, first_insn = NULL_RTX;
  int cycles = 4;

  if (! ENABLE_WA_RETS)
    return;

  for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
    {
      rtx pat;

      if (BARRIER_P (insn))
	return;
      
      if (NOTE_P (insn) || LABEL_P (insn))
	continue;

      if (first_insn == NULL_RTX)
	first_insn = insn;
      pat = PATTERN (insn);
      if (GET_CODE (pat) == USE || GET_CODE (pat) == CLOBBER
	  || GET_CODE (pat) == ASM_INPUT || GET_CODE (pat) == ADDR_VEC
	  || GET_CODE (pat) == ADDR_DIFF_VEC || asm_noperands (pat) >= 0)
	continue;

      if (CALL_P (insn))
	return;

      if (JUMP_P (insn))
	{
	  if (recog_memoized (insn) == CODE_FOR_return_internal)
	    break;

	  /* Nothing to worry about for direct jumps.  */
	  if (!any_condjump_p (insn))
	    return;
	  if (cycles <= 1)
	    return;
	  cycles--;
	}
      else if (INSN_P (insn))
	{
	  rtx pat = PATTERN (insn);
	  int this_cycles = 1;

	  if (GET_CODE (pat) == PARALLEL)
	    {
	      if (push_multiple_operation (pat, VOIDmode)
		  || pop_multiple_operation (pat, VOIDmode))
		this_cycles = n_regs_to_save;
	    }
	  else
	    {
	      enum insn_code icode = recog_memoized (insn);
	      if (icode == CODE_FOR_link)
		this_cycles = 4;
	      else if (icode == CODE_FOR_unlink)
		this_cycles = 3;
	      else if (icode == CODE_FOR_mulsi3)
		this_cycles = 5;
	    }
	  if (this_cycles >= cycles)
	    return;

	  cycles -= this_cycles;
	}
    }
  while (cycles > 0)
    {
      emit_insn_before (gen_nop (), first_insn);
      cycles--;
    }
}

/* Return an insn type for INSN that can be used by the caller for anomaly
   workarounds.  This differs from plain get_attr_type in that it handles
   SEQUENCEs.  */

static enum attr_type
type_for_anomaly (rtx insn)
{
  rtx pat = PATTERN (insn);
  if (GET_CODE (pat) == SEQUENCE)
    {
      enum attr_type t;
      t = get_attr_type (XVECEXP (pat, 0, 1));
      if (t == TYPE_MCLD)
	return t;
      t = get_attr_type (XVECEXP (pat, 0, 2));
      if (t == TYPE_MCLD)
	return t;
      return TYPE_MCST;
    }
  else
    return get_attr_type (insn);
}

/* Return true iff the address found in MEM is based on the register
   NP_REG and optionally has a positive offset.  */
static bool
harmless_null_pointer_p (rtx mem, int np_reg)
{
  mem = XEXP (mem, 0);
  if (GET_CODE (mem) == POST_INC || GET_CODE (mem) == POST_DEC)
    mem = XEXP (mem, 0);
  if (REG_P (mem) && REGNO (mem) == np_reg)
    return true;
  if (GET_CODE (mem) == PLUS
      && REG_P (XEXP (mem, 0)) && REGNO (XEXP (mem, 0)) == np_reg)
    {
      mem = XEXP (mem, 1);
      if (GET_CODE (mem) == CONST_INT && INTVAL (mem) > 0)
	return true;
    }
  return false;
}

/* Return nonzero if INSN contains any loads that may trap.  */

static bool
trapping_loads_p (rtx insn, int np_reg, bool after_np_branch)
{
  rtx pat = PATTERN (insn);
  rtx mem = SET_SRC (single_set (insn));

  if (!after_np_branch)
    np_reg = -1;
  return ((np_reg == -1 || !harmless_null_pointer_p (mem, np_reg))
	  && may_trap_p (mem));
}

/* Return INSN if it is of TYPE_MCLD.  Alternatively, if INSN is the start of
   a three-insn bundle, see if one of them is a load and return that if so.
   Return NULL_RTX if the insn does not contain loads.  */
static rtx
find_load (rtx insn)
{
  if (!NONDEBUG_INSN_P (insn))
    return NULL_RTX;
  if (get_attr_type (insn) == TYPE_MCLD)
    return insn;
  if (GET_MODE (insn) != SImode)
    return NULL_RTX;
  do {
    insn = NEXT_INSN (insn);
    if ((GET_MODE (insn) == SImode || GET_MODE (insn) == QImode)
	&& get_attr_type (insn) == TYPE_MCLD)
      return insn;
  } while (GET_MODE (insn) != QImode);
  return NULL_RTX;
}

/* Determine whether PAT is an indirect call pattern.  */
static bool
indirect_call_p (rtx pat)
{
  if (GET_CODE (pat) == PARALLEL)
    pat = XVECEXP (pat, 0, 0);
  if (GET_CODE (pat) == SET)
    pat = SET_SRC (pat);
  gcc_assert (GET_CODE (pat) == CALL);
  pat = XEXP (pat, 0);
  gcc_assert (GET_CODE (pat) == MEM);
  pat = XEXP (pat, 0);
  
  return REG_P (pat);
}

/* During workaround_speculation, track whether we're in the shadow of a
   conditional branch that tests a P register for NULL.  If so, we can omit
   emitting NOPs if we see a load from that P register, since a speculative
   access at address 0 isn't a problem, and the load is executed in all other
   cases anyway.
   Global for communication with note_np_check_stores through note_stores.
   */
int np_check_regno = -1;
bool np_after_branch = false;

/* Subroutine of workaround_speculation, called through note_stores.  */
static void
note_np_check_stores (rtx x, const_rtx pat, void *data ATTRIBUTE_UNUSED)
{
  if (REG_P (x) && (REGNO (x) == REG_CC || REGNO (x) == np_check_regno))
    np_check_regno = -1;
}

static void
workaround_speculation (void)
{
  rtx insn, next;
  rtx last_condjump = NULL_RTX;
  int cycles_since_jump = INT_MAX;
  int delay_added = 0;

  if (! ENABLE_WA_SPECULATIVE_LOADS && ! ENABLE_WA_SPECULATIVE_SYNCS
      && ! ENABLE_WA_INDIRECT_CALLS)
    return;

  /* First pass: find predicted-false branches; if something after them
     needs nops, insert them or change the branch to predict true.  */
  for (insn = get_insns (); insn; insn = next)
    {
      rtx pat;
      int delay_needed = 0;

      next = find_next_insn_start (insn);
      
      if (NOTE_P (insn) || BARRIER_P (insn))
	continue;

      if (LABEL_P (insn))
	{
	  np_check_regno = -1;
	  continue;
	}

      pat = PATTERN (insn);
      if (GET_CODE (pat) == USE || GET_CODE (pat) == CLOBBER
	  || GET_CODE (pat) == ADDR_VEC || GET_CODE (pat) == ADDR_DIFF_VEC)
	continue;
      
      if (GET_CODE (pat) == ASM_INPUT || asm_noperands (pat) >= 0)
	{
	  np_check_regno = -1;
	  continue;
	}

      if (JUMP_P (insn))
	{
	  /* Is this a condjump based on a null pointer comparison we saw
	     earlier?  */
	  if (np_check_regno != -1
	      && recog_memoized (insn) == CODE_FOR_cbranchbi4)
	    {
	      rtx op = XEXP (SET_SRC (PATTERN (insn)), 0);
	      gcc_assert (GET_CODE (op) == EQ || GET_CODE (op) == NE);
	      if (GET_CODE (op) == NE)
		np_after_branch = true;
	    }
	  if (any_condjump_p (insn)
	      && ! cbranch_predicted_taken_p (insn))
	    {
	      last_condjump = insn;
	      delay_added = 0;
	      cycles_since_jump = 0;
	    }
	  else
	    cycles_since_jump = INT_MAX;
	}
      else if (CALL_P (insn))
	{
	  np_check_regno = -1;
	  if (cycles_since_jump < INT_MAX)
	    cycles_since_jump++;
	  if (indirect_call_p (pat) && ENABLE_WA_INDIRECT_CALLS)
	    {
	      delay_needed = 3;
	    }
	}
      else if (NONDEBUG_INSN_P (insn))
	{
	  rtx load_insn = find_load (insn);
	  enum attr_type type = type_for_anomaly (insn);

	  if (cycles_since_jump < INT_MAX)
	    cycles_since_jump++;

	  /* Detect a comparison of a P register with zero.  If we later
	     see a condjump based on it, we have found a null pointer
	     check.  */
	  if (recog_memoized (insn) == CODE_FOR_compare_eq)
	    {
	      rtx src = SET_SRC (PATTERN (insn));
	      if (REG_P (XEXP (src, 0))
		  && P_REGNO_P (REGNO (XEXP (src, 0)))
		  && XEXP (src, 1) == const0_rtx)
		{
		  np_check_regno = REGNO (XEXP (src, 0));
		  np_after_branch = false;
		}
	      else
		np_check_regno = -1;
	    }

	  if (load_insn && ENABLE_WA_SPECULATIVE_LOADS)
	    {
	      if (trapping_loads_p (load_insn, np_check_regno,
				    np_after_branch))
		delay_needed = 4;
	    }
	  else if (type == TYPE_SYNC && ENABLE_WA_SPECULATIVE_SYNCS)
	    delay_needed = 3;

	  /* See if we need to forget about a null pointer comparison
	     we found earlier.  */
	  if (recog_memoized (insn) != CODE_FOR_compare_eq)
	    {
	      note_stores (PATTERN (insn), note_np_check_stores, NULL);
	      if (np_check_regno != -1)
		{
		  if (find_regno_note (insn, REG_INC, np_check_regno))
		    np_check_regno = -1;
		}
	    }

	}

      if (delay_needed > cycles_since_jump
	  && (delay_needed - cycles_since_jump) > delay_added)
	{
	  rtx pat1;
	  int num_clobbers;
	  rtx *op = recog_data.operand;

	  delay_needed -= cycles_since_jump;

	  extract_insn (last_condjump);
	  if (optimize_size)
	    {
	      pat1 = gen_cbranch_predicted_taken (op[0], op[1], op[2],
						 op[3]);
	      cycles_since_jump = INT_MAX;
	    }
	  else
	    {
	      /* Do not adjust cycles_since_jump in this case, so that
		 we'll increase the number of NOPs for a subsequent insn
		 if necessary.  */
	      pat1 = gen_cbranch_with_nops (op[0], op[1], op[2], op[3],
					    GEN_INT (delay_needed));
	      delay_added = delay_needed;
	    }
	  PATTERN (last_condjump) = pat1;
	  INSN_CODE (last_condjump) = recog (pat1, insn, &num_clobbers);
	}
      if (CALL_P (insn))
	{
	  cycles_since_jump = INT_MAX;
	  delay_added = 0;
	}
    }

  /* Second pass: for predicted-true branches, see if anything at the
     branch destination needs extra nops.  */
  for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
    {
      int cycles_since_jump;
      if (JUMP_P (insn)
	  && any_condjump_p (insn)
	  && (INSN_CODE (insn) == CODE_FOR_cbranch_predicted_taken
	      || cbranch_predicted_taken_p (insn)))
	{
	  rtx target = JUMP_LABEL (insn);
	  rtx label = target;
	  rtx next_tgt;

	  cycles_since_jump = 0;
	  for (; target && cycles_since_jump < 3; target = next_tgt)
	    {
	      rtx pat;

	      next_tgt = find_next_insn_start (target);

	      if (NOTE_P (target) || BARRIER_P (target) || LABEL_P (target))
		continue;

	      pat = PATTERN (target);
	      if (GET_CODE (pat) == USE || GET_CODE (pat) == CLOBBER
		  || GET_CODE (pat) == ASM_INPUT || GET_CODE (pat) == ADDR_VEC
		  || GET_CODE (pat) == ADDR_DIFF_VEC || asm_noperands (pat) >= 0)
		continue;

	      if (NONDEBUG_INSN_P (target))
		{
		  rtx load_insn = find_load (target);
		  enum attr_type type = type_for_anomaly (target);
		  int delay_needed = 0;
		  if (cycles_since_jump < INT_MAX)
		    cycles_since_jump++;

		  if (load_insn && ENABLE_WA_SPECULATIVE_LOADS)
		    {
		      if (trapping_loads_p (load_insn, -1, false))
			delay_needed = 2;
		    }
		  else if (type == TYPE_SYNC && ENABLE_WA_SPECULATIVE_SYNCS)
		    delay_needed = 2;

		  if (delay_needed > cycles_since_jump)
		    {
		      rtx prev = prev_real_insn (label);
		      delay_needed -= cycles_since_jump;
		      if (dump_file)
			fprintf (dump_file, "Adding %d nops after %d\n",
				 delay_needed, INSN_UID (label));
		      if (JUMP_P (prev)
			  && INSN_CODE (prev) == CODE_FOR_cbranch_with_nops)
			{
			  rtx x;
			  HOST_WIDE_INT v;

			  if (dump_file)
			    fprintf (dump_file,
				     "Reducing nops on insn %d.\n",
				     INSN_UID (prev));
			  x = PATTERN (prev);
			  x = XVECEXP (x, 0, 1);
			  v = INTVAL (XVECEXP (x, 0, 0)) - delay_needed;
			  XVECEXP (x, 0, 0) = GEN_INT (v);
			}
		      while (delay_needed-- > 0)
			emit_insn_after (gen_nop (), label);
		      break;
		    }
		}
	    }
	}
    }
}

/* Called just before the final scheduling pass.  If we need to insert NOPs
   later on to work around speculative loads, insert special placeholder
   insns that cause loads to be delayed for as many cycles as necessary
   (and possible).  This reduces the number of NOPs we need to add.
   The dummy insns we generate are later removed by bfin_gen_bundles.  */
static void
add_sched_insns_for_speculation (void)
{
  rtx insn;

  if (! ENABLE_WA_SPECULATIVE_LOADS && ! ENABLE_WA_SPECULATIVE_SYNCS
      && ! ENABLE_WA_INDIRECT_CALLS)
    return;

  /* First pass: find predicted-false branches; if something after them
     needs nops, insert them or change the branch to predict true.  */
  for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
    {
      rtx pat;

      if (NOTE_P (insn) || BARRIER_P (insn) || LABEL_P (insn))
	continue;

      pat = PATTERN (insn);
      if (GET_CODE (pat) == USE || GET_CODE (pat) == CLOBBER
	  || GET_CODE (pat) == ASM_INPUT || GET_CODE (pat) == ADDR_VEC
	  || GET_CODE (pat) == ADDR_DIFF_VEC || asm_noperands (pat) >= 0)
	continue;

      if (JUMP_P (insn))
	{
	  if (any_condjump_p (insn)
	      && !cbranch_predicted_taken_p (insn))
	    {
	      rtx n = next_real_insn (insn);
	      emit_insn_before (gen_stall (GEN_INT (3)), n);
	    }
	}
    }

  /* Second pass: for predicted-true branches, see if anything at the
     branch destination needs extra nops.  */
  for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
    {
      if (JUMP_P (insn)
	  && any_condjump_p (insn)
	  && (cbranch_predicted_taken_p (insn)))
	{
	  rtx target = JUMP_LABEL (insn);
	  rtx next = next_real_insn (target);

	  if (GET_CODE (PATTERN (next)) == UNSPEC_VOLATILE
	      && get_attr_type (next) == TYPE_STALL)
	    continue;
	  emit_insn_before (gen_stall (GEN_INT (1)), next);	  
	}
    }
}

/* We use the machine specific reorg pass for emitting CSYNC instructions
   after conditional branches as needed.

   The Blackfin is unusual in that a code sequence like
     if cc jump label
     r0 = (p0)
   may speculatively perform the load even if the condition isn't true.  This
   happens for a branch that is predicted not taken, because the pipeline
   isn't flushed or stalled, so the early stages of the following instructions,
   which perform the memory reference, are allowed to execute before the
   jump condition is evaluated.
   Therefore, we must insert additional instructions in all places where this
   could lead to incorrect behavior.  The manual recommends CSYNC, while
   VDSP seems to use NOPs (even though its corresponding compiler option is
   named CSYNC).

   When optimizing for speed, we emit NOPs, which seems faster than a CSYNC.
   When optimizing for size, we turn the branch into a predicted taken one.
   This may be slower due to mispredicts, but saves code size.  */

static void
bfin_reorg (void)
{
  /* We are freeing block_for_insn in the toplev to keep compatibility
     with old MDEP_REORGS that are not CFG based.  Recompute it now.  */
  compute_bb_for_insn ();

  if (bfin_flag_schedule_insns2)
    {
      splitting_for_sched = 1;
      split_all_insns ();
      splitting_for_sched = 0;

      add_sched_insns_for_speculation ();

      timevar_push (TV_SCHED2);
      if (flag_selective_scheduling2
	  && !maybe_skip_selective_scheduling ())
        run_selective_scheduling ();
      else
	schedule_insns ();
      timevar_pop (TV_SCHED2);

      /* Examine the schedule and insert nops as necessary for 64-bit parallel
	 instructions.  */
      bfin_gen_bundles ();
    }

  df_analyze ();

  /* Doloop optimization */
  if (cfun->machine->has_hardware_loops)
    bfin_reorg_loops (dump_file);

  workaround_speculation ();

  if (bfin_flag_var_tracking)
    {
      timevar_push (TV_VAR_TRACKING);
      variable_tracking_main ();
      reorder_var_tracking_notes ();
      timevar_pop (TV_VAR_TRACKING);
    }

  df_finish_pass (false);

  workaround_rts_anomaly ();
}

/* Handle interrupt_handler, exception_handler and nmi_handler function
   attributes; arguments as in struct attribute_spec.handler.  */

static tree
handle_int_attribute (tree *node, tree name,
		      tree args ATTRIBUTE_UNUSED,
		      int flags ATTRIBUTE_UNUSED,
		      bool *no_add_attrs)
{
  tree x = *node;
  if (TREE_CODE (x) == FUNCTION_DECL)
    x = TREE_TYPE (x);

  if (TREE_CODE (x) != FUNCTION_TYPE)
    {
      warning (OPT_Wattributes, "%qE attribute only applies to functions",
	       name);
      *no_add_attrs = true;
    }
  else if (funkind (x) != SUBROUTINE)
    error ("multiple function type attributes specified");

  return NULL_TREE;
}

/* Return 0 if the attributes for two types are incompatible, 1 if they
   are compatible, and 2 if they are nearly compatible (which causes a
   warning to be generated).  */

static int
bfin_comp_type_attributes (const_tree type1, const_tree type2)
{
  e_funkind kind1, kind2;

  if (TREE_CODE (type1) != FUNCTION_TYPE)
    return 1;

  kind1 = funkind (type1);
  kind2 = funkind (type2);

  if (kind1 != kind2)
    return 0;
  
  /*  Check for mismatched modifiers */
  if (!lookup_attribute ("nesting", TYPE_ATTRIBUTES (type1))
      != !lookup_attribute ("nesting", TYPE_ATTRIBUTES (type2)))
    return 0;

  if (!lookup_attribute ("saveall", TYPE_ATTRIBUTES (type1))
      != !lookup_attribute ("saveall", TYPE_ATTRIBUTES (type2)))
    return 0;

  if (!lookup_attribute ("kspisusp", TYPE_ATTRIBUTES (type1))
      != !lookup_attribute ("kspisusp", TYPE_ATTRIBUTES (type2)))
    return 0;

  if (!lookup_attribute ("longcall", TYPE_ATTRIBUTES (type1))
      != !lookup_attribute ("longcall", TYPE_ATTRIBUTES (type2)))
    return 0;

  return 1;
}

/* Handle a "longcall" or "shortcall" attribute; arguments as in
   struct attribute_spec.handler.  */

static tree
bfin_handle_longcall_attribute (tree *node, tree name, 
				tree args ATTRIBUTE_UNUSED, 
				int flags ATTRIBUTE_UNUSED, 
				bool *no_add_attrs)
{
  if (TREE_CODE (*node) != FUNCTION_TYPE
      && TREE_CODE (*node) != FIELD_DECL
      && TREE_CODE (*node) != TYPE_DECL)
    {
      warning (OPT_Wattributes, "%qE attribute only applies to functions",
	       name);
      *no_add_attrs = true;
    }

  if ((strcmp (IDENTIFIER_POINTER (name), "longcall") == 0
       && lookup_attribute ("shortcall", TYPE_ATTRIBUTES (*node)))
      || (strcmp (IDENTIFIER_POINTER (name), "shortcall") == 0
	  && lookup_attribute ("longcall", TYPE_ATTRIBUTES (*node))))
    {
      warning (OPT_Wattributes,
	       "can't apply both longcall and shortcall attributes to the same function");
      *no_add_attrs = true;
    }

  return NULL_TREE;
}

/* Handle a "l1_text" attribute; arguments as in
   struct attribute_spec.handler.  */

static tree
bfin_handle_l1_text_attribute (tree *node, tree name, tree ARG_UNUSED (args),
			       int ARG_UNUSED (flags), bool *no_add_attrs)
{
  tree decl = *node;

  if (TREE_CODE (decl) != FUNCTION_DECL)
    {
      error ("%qE attribute only applies to functions",
	     name);
      *no_add_attrs = true;
    }

  /* The decl may have already been given a section attribute
     from a previous declaration. Ensure they match.  */
  else if (DECL_SECTION_NAME (decl) != NULL_TREE
	   && strcmp (TREE_STRING_POINTER (DECL_SECTION_NAME (decl)),
		      ".l1.text") != 0)
    {
      error ("section of %q+D conflicts with previous declaration",
	     decl);
      *no_add_attrs = true;
    }
  else
    DECL_SECTION_NAME (decl) = build_string (9, ".l1.text");

  return NULL_TREE;
}

/* Handle a "l1_data", "l1_data_A" or "l1_data_B" attribute;
   arguments as in struct attribute_spec.handler.  */

static tree
bfin_handle_l1_data_attribute (tree *node, tree name, tree ARG_UNUSED (args),
			       int ARG_UNUSED (flags), bool *no_add_attrs)
{
  tree decl = *node;

  if (TREE_CODE (decl) != VAR_DECL)
    {
      error ("%qE attribute only applies to variables",
	     name);
      *no_add_attrs = true;
    }
  else if (current_function_decl != NULL_TREE
	   && !TREE_STATIC (decl))
    {
      error ("%qE attribute cannot be specified for local variables",
	     name);
      *no_add_attrs = true;
    }
  else
    {
      const char *section_name;

      if (strcmp (IDENTIFIER_POINTER (name), "l1_data") == 0)
	section_name = ".l1.data";
      else if (strcmp (IDENTIFIER_POINTER (name), "l1_data_A") == 0)
	section_name = ".l1.data.A";
      else if (strcmp (IDENTIFIER_POINTER (name), "l1_data_B") == 0)
	section_name = ".l1.data.B";
      else
	gcc_unreachable ();

      /* The decl may have already been given a section attribute
	 from a previous declaration. Ensure they match.  */
      if (DECL_SECTION_NAME (decl) != NULL_TREE
	  && strcmp (TREE_STRING_POINTER (DECL_SECTION_NAME (decl)),
		     section_name) != 0)
	{
	  error ("section of %q+D conflicts with previous declaration",
		 decl);
	  *no_add_attrs = true;
	}
      else
	DECL_SECTION_NAME (decl)
	  = build_string (strlen (section_name) + 1, section_name);
    }

 return NULL_TREE;
}

/* Handle a "l2" attribute; arguments as in struct attribute_spec.handler.  */

static tree
bfin_handle_l2_attribute (tree *node, tree ARG_UNUSED (name),
			  tree ARG_UNUSED (args), int ARG_UNUSED (flags),
			  bool *no_add_attrs)
{
  tree decl = *node;

  if (TREE_CODE (decl) == FUNCTION_DECL)
    {
      if (DECL_SECTION_NAME (decl) != NULL_TREE
	  && strcmp (TREE_STRING_POINTER (DECL_SECTION_NAME (decl)),
		     ".l2.text") != 0)
	{
	  error ("section of %q+D conflicts with previous declaration",
		 decl);
	  *no_add_attrs = true;
	}
      else
	DECL_SECTION_NAME (decl) = build_string (9, ".l2.text");
    }
  else if (TREE_CODE (decl) == VAR_DECL)
    {
      if (DECL_SECTION_NAME (decl) != NULL_TREE
	  && strcmp (TREE_STRING_POINTER (DECL_SECTION_NAME (decl)),
		     ".l2.data") != 0)
	{
	  error ("section of %q+D conflicts with previous declaration",
		 decl);
	  *no_add_attrs = true;
	}
      else
	DECL_SECTION_NAME (decl) = build_string (9, ".l2.data");
    }

  return NULL_TREE;
}

/* Table of valid machine attributes.  */
static const struct attribute_spec bfin_attribute_table[] =
{
  /* { name, min_len, max_len, decl_req, type_req, fn_type_req, handler } */
  { "interrupt_handler", 0, 0, false, true,  true, handle_int_attribute },
  { "exception_handler", 0, 0, false, true,  true, handle_int_attribute },
  { "nmi_handler", 0, 0, false, true,  true, handle_int_attribute },
  { "nesting", 0, 0, false, true,  true, NULL },
  { "kspisusp", 0, 0, false, true,  true, NULL },
  { "saveall", 0, 0, false, true,  true, NULL },
  { "longcall",  0, 0, false, true,  true,  bfin_handle_longcall_attribute },
  { "shortcall", 0, 0, false, true,  true,  bfin_handle_longcall_attribute },
  { "l1_text", 0, 0, true, false, false,  bfin_handle_l1_text_attribute },
  { "l1_data", 0, 0, true, false, false,  bfin_handle_l1_data_attribute },
  { "l1_data_A", 0, 0, true, false, false, bfin_handle_l1_data_attribute },
  { "l1_data_B", 0, 0, true, false, false,  bfin_handle_l1_data_attribute },
  { "l2", 0, 0, true, false, false,  bfin_handle_l2_attribute },
  { NULL, 0, 0, false, false, false, NULL }
};

/* Implementation of TARGET_ASM_INTEGER.  When using FD-PIC, we need to
   tell the assembler to generate pointers to function descriptors in
   some cases.  */

static bool
bfin_assemble_integer (rtx value, unsigned int size, int aligned_p)
{
  if (TARGET_FDPIC && size == UNITS_PER_WORD)
    {
      if (GET_CODE (value) == SYMBOL_REF
	  && SYMBOL_REF_FUNCTION_P (value))
	{
	  fputs ("\t.picptr\tfuncdesc(", asm_out_file);
	  output_addr_const (asm_out_file, value);
	  fputs (")\n", asm_out_file);
	  return true;
	}
      if (!aligned_p)
	{
	  /* We've set the unaligned SI op to NULL, so we always have to
	     handle the unaligned case here.  */
	  assemble_integer_with_op ("\t.4byte\t", value);
	  return true;
	}
    }
  return default_assemble_integer (value, size, aligned_p);
}

/* Output the assembler code for a thunk function.  THUNK_DECL is the
   declaration for the thunk function itself, FUNCTION is the decl for
   the target function.  DELTA is an immediate constant offset to be
   added to THIS.  If VCALL_OFFSET is nonzero, the word at
   *(*this + vcall_offset) should be added to THIS.  */

static void
bfin_output_mi_thunk (FILE *file ATTRIBUTE_UNUSED,
		      tree thunk ATTRIBUTE_UNUSED, HOST_WIDE_INT delta,
		      HOST_WIDE_INT vcall_offset, tree function)
{
  rtx xops[3];
  /* The this parameter is passed as the first argument.  */
  rtx this_rtx = gen_rtx_REG (Pmode, REG_R0);

  /* Adjust the this parameter by a fixed constant.  */
  if (delta)
    {
      xops[1] = this_rtx;
      if (delta >= -64 && delta <= 63)
	{
	  xops[0] = GEN_INT (delta);
	  output_asm_insn ("%1 += %0;", xops);
	}
      else if (delta >= -128 && delta < -64)
	{
	  xops[0] = GEN_INT (delta + 64);
	  output_asm_insn ("%1 += -64; %1 += %0;", xops);
	}
      else if (delta > 63 && delta <= 126)
	{
	  xops[0] = GEN_INT (delta - 63);
	  output_asm_insn ("%1 += 63; %1 += %0;", xops);
	}
      else
	{
	  xops[0] = GEN_INT (delta);
	  output_asm_insn ("r3.l = %h0; r3.h = %d0; %1 = %1 + r3;", xops);
	}
    }

  /* Adjust the this parameter by a value stored in the vtable.  */
  if (vcall_offset)
    {
      rtx p2tmp = gen_rtx_REG (Pmode, REG_P2);
      rtx tmp = gen_rtx_REG (Pmode, REG_R3);

      xops[1] = tmp;
      xops[2] = p2tmp;
      output_asm_insn ("%2 = r0; %2 = [%2];", xops);

      /* Adjust the this parameter.  */
      xops[0] = gen_rtx_MEM (Pmode, plus_constant (p2tmp, vcall_offset));
      if (!memory_operand (xops[0], Pmode))
	{
	  rtx tmp2 = gen_rtx_REG (Pmode, REG_P1);
	  xops[0] = GEN_INT (vcall_offset);
	  xops[1] = tmp2;
	  output_asm_insn ("%h1 = %h0; %d1 = %d0; %2 = %2 + %1", xops);
	  xops[0] = gen_rtx_MEM (Pmode, p2tmp);
	}
      xops[2] = this_rtx;
      output_asm_insn ("%1 = %0; %2 = %2 + %1;", xops);
    }

  xops[0] = XEXP (DECL_RTL (function), 0);
  if (1 || !flag_pic || (*targetm.binds_local_p) (function))
    output_asm_insn ("jump.l\t%P0", xops);
}

/* Codes for all the Blackfin builtins.  */
enum bfin_builtins
{
  BFIN_BUILTIN_CSYNC,
  BFIN_BUILTIN_SSYNC,
  BFIN_BUILTIN_ONES,
  BFIN_BUILTIN_COMPOSE_2X16,
  BFIN_BUILTIN_EXTRACTLO,
  BFIN_BUILTIN_EXTRACTHI,

  BFIN_BUILTIN_SSADD_2X16,
  BFIN_BUILTIN_SSSUB_2X16,
  BFIN_BUILTIN_SSADDSUB_2X16,
  BFIN_BUILTIN_SSSUBADD_2X16,
  BFIN_BUILTIN_MULT_2X16,
  BFIN_BUILTIN_MULTR_2X16,
  BFIN_BUILTIN_NEG_2X16,
  BFIN_BUILTIN_ABS_2X16,
  BFIN_BUILTIN_MIN_2X16,
  BFIN_BUILTIN_MAX_2X16,

  BFIN_BUILTIN_SSADD_1X16,
  BFIN_BUILTIN_SSSUB_1X16,
  BFIN_BUILTIN_MULT_1X16,
  BFIN_BUILTIN_MULTR_1X16,
  BFIN_BUILTIN_NORM_1X16,
  BFIN_BUILTIN_NEG_1X16,
  BFIN_BUILTIN_ABS_1X16,
  BFIN_BUILTIN_MIN_1X16,
  BFIN_BUILTIN_MAX_1X16,

  BFIN_BUILTIN_SUM_2X16,
  BFIN_BUILTIN_DIFFHL_2X16,
  BFIN_BUILTIN_DIFFLH_2X16,

  BFIN_BUILTIN_SSADD_1X32,
  BFIN_BUILTIN_SSSUB_1X32,
  BFIN_BUILTIN_NORM_1X32,
  BFIN_BUILTIN_ROUND_1X32,
  BFIN_BUILTIN_NEG_1X32,
  BFIN_BUILTIN_ABS_1X32,
  BFIN_BUILTIN_MIN_1X32,
  BFIN_BUILTIN_MAX_1X32,
  BFIN_BUILTIN_MULT_1X32,
  BFIN_BUILTIN_MULT_1X32X32,
  BFIN_BUILTIN_MULT_1X32X32NS,

  BFIN_BUILTIN_MULHISILL,
  BFIN_BUILTIN_MULHISILH,
  BFIN_BUILTIN_MULHISIHL,
  BFIN_BUILTIN_MULHISIHH,

  BFIN_BUILTIN_LSHIFT_1X16,
  BFIN_BUILTIN_LSHIFT_2X16,
  BFIN_BUILTIN_SSASHIFT_1X16,
  BFIN_BUILTIN_SSASHIFT_2X16,
  BFIN_BUILTIN_SSASHIFT_1X32,

  BFIN_BUILTIN_CPLX_MUL_16,
  BFIN_BUILTIN_CPLX_MAC_16,
  BFIN_BUILTIN_CPLX_MSU_16,

  BFIN_BUILTIN_CPLX_MUL_16_S40,
  BFIN_BUILTIN_CPLX_MAC_16_S40,
  BFIN_BUILTIN_CPLX_MSU_16_S40,

  BFIN_BUILTIN_CPLX_SQU,

  BFIN_BUILTIN_LOADBYTES,

  BFIN_BUILTIN_MAX
};

#define def_builtin(NAME, TYPE, CODE)					\
do {									\
  add_builtin_function ((NAME), (TYPE), (CODE), BUILT_IN_MD,		\
		       NULL, NULL_TREE);				\
} while (0)

/* Set up all builtin functions for this target.  */
static void
bfin_init_builtins (void)
{
  tree V2HI_type_node = build_vector_type_for_mode (intHI_type_node, V2HImode);
  tree void_ftype_void
    = build_function_type (void_type_node, void_list_node);
  tree short_ftype_short
    = build_function_type_list (short_integer_type_node, short_integer_type_node,
				NULL_TREE);
  tree short_ftype_int_int
    = build_function_type_list (short_integer_type_node, integer_type_node,
				integer_type_node, NULL_TREE);
  tree int_ftype_int_int
    = build_function_type_list (integer_type_node, integer_type_node,
				integer_type_node, NULL_TREE);
  tree int_ftype_int
    = build_function_type_list (integer_type_node, integer_type_node,
				NULL_TREE);
  tree short_ftype_int
    = build_function_type_list (short_integer_type_node, integer_type_node,
				NULL_TREE);
  tree int_ftype_v2hi_v2hi
    = build_function_type_list (integer_type_node, V2HI_type_node,
				V2HI_type_node, NULL_TREE);
  tree v2hi_ftype_v2hi_v2hi
    = build_function_type_list (V2HI_type_node, V2HI_type_node,
				V2HI_type_node, NULL_TREE);
  tree v2hi_ftype_v2hi_v2hi_v2hi
    = build_function_type_list (V2HI_type_node, V2HI_type_node,
				V2HI_type_node, V2HI_type_node, NULL_TREE);
  tree v2hi_ftype_int_int
    = build_function_type_list (V2HI_type_node, integer_type_node,
				integer_type_node, NULL_TREE);
  tree v2hi_ftype_v2hi_int
    = build_function_type_list (V2HI_type_node, V2HI_type_node,
				integer_type_node, NULL_TREE);
  tree int_ftype_short_short
    = build_function_type_list (integer_type_node, short_integer_type_node,
				short_integer_type_node, NULL_TREE);
  tree v2hi_ftype_v2hi
    = build_function_type_list (V2HI_type_node, V2HI_type_node, NULL_TREE);
  tree short_ftype_v2hi
    = build_function_type_list (short_integer_type_node, V2HI_type_node,
				NULL_TREE);
  tree int_ftype_pint
    = build_function_type_list (integer_type_node,
				build_pointer_type (integer_type_node),
				NULL_TREE);
  
  /* Add the remaining MMX insns with somewhat more complicated types.  */
  def_builtin ("__builtin_bfin_csync", void_ftype_void, BFIN_BUILTIN_CSYNC);
  def_builtin ("__builtin_bfin_ssync", void_ftype_void, BFIN_BUILTIN_SSYNC);

  def_builtin ("__builtin_bfin_ones", short_ftype_int, BFIN_BUILTIN_ONES);

  def_builtin ("__builtin_bfin_compose_2x16", v2hi_ftype_int_int,
	       BFIN_BUILTIN_COMPOSE_2X16);
  def_builtin ("__builtin_bfin_extract_hi", short_ftype_v2hi,
	       BFIN_BUILTIN_EXTRACTHI);
  def_builtin ("__builtin_bfin_extract_lo", short_ftype_v2hi,
	       BFIN_BUILTIN_EXTRACTLO);

  def_builtin ("__builtin_bfin_min_fr2x16", v2hi_ftype_v2hi_v2hi,
	       BFIN_BUILTIN_MIN_2X16);
  def_builtin ("__builtin_bfin_max_fr2x16", v2hi_ftype_v2hi_v2hi,
	       BFIN_BUILTIN_MAX_2X16);

  def_builtin ("__builtin_bfin_add_fr2x16", v2hi_ftype_v2hi_v2hi,
	       BFIN_BUILTIN_SSADD_2X16);
  def_builtin ("__builtin_bfin_sub_fr2x16", v2hi_ftype_v2hi_v2hi,
	       BFIN_BUILTIN_SSSUB_2X16);
  def_builtin ("__builtin_bfin_dspaddsubsat", v2hi_ftype_v2hi_v2hi,
	       BFIN_BUILTIN_SSADDSUB_2X16);
  def_builtin ("__builtin_bfin_dspsubaddsat", v2hi_ftype_v2hi_v2hi,
	       BFIN_BUILTIN_SSSUBADD_2X16);
  def_builtin ("__builtin_bfin_mult_fr2x16", v2hi_ftype_v2hi_v2hi,
	       BFIN_BUILTIN_MULT_2X16);
  def_builtin ("__builtin_bfin_multr_fr2x16", v2hi_ftype_v2hi_v2hi,
	       BFIN_BUILTIN_MULTR_2X16);
  def_builtin ("__builtin_bfin_negate_fr2x16", v2hi_ftype_v2hi,
	       BFIN_BUILTIN_NEG_2X16);
  def_builtin ("__builtin_bfin_abs_fr2x16", v2hi_ftype_v2hi,
	       BFIN_BUILTIN_ABS_2X16);

  def_builtin ("__builtin_bfin_min_fr1x16", short_ftype_int_int,
	       BFIN_BUILTIN_MIN_1X16);
  def_builtin ("__builtin_bfin_max_fr1x16", short_ftype_int_int,
	       BFIN_BUILTIN_MAX_1X16);

  def_builtin ("__builtin_bfin_add_fr1x16", short_ftype_int_int,
	       BFIN_BUILTIN_SSADD_1X16);
  def_builtin ("__builtin_bfin_sub_fr1x16", short_ftype_int_int,
	       BFIN_BUILTIN_SSSUB_1X16);
  def_builtin ("__builtin_bfin_mult_fr1x16", short_ftype_int_int,
	       BFIN_BUILTIN_MULT_1X16);
  def_builtin ("__builtin_bfin_multr_fr1x16", short_ftype_int_int,
	       BFIN_BUILTIN_MULTR_1X16);
  def_builtin ("__builtin_bfin_negate_fr1x16", short_ftype_short,
	       BFIN_BUILTIN_NEG_1X16);
  def_builtin ("__builtin_bfin_abs_fr1x16", short_ftype_short,
	       BFIN_BUILTIN_ABS_1X16);
  def_builtin ("__builtin_bfin_norm_fr1x16", short_ftype_int,
	       BFIN_BUILTIN_NORM_1X16);

  def_builtin ("__builtin_bfin_sum_fr2x16", short_ftype_v2hi,
	       BFIN_BUILTIN_SUM_2X16);
  def_builtin ("__builtin_bfin_diff_hl_fr2x16", short_ftype_v2hi,
	       BFIN_BUILTIN_DIFFHL_2X16);
  def_builtin ("__builtin_bfin_diff_lh_fr2x16", short_ftype_v2hi,
	       BFIN_BUILTIN_DIFFLH_2X16);

  def_builtin ("__builtin_bfin_mulhisill", int_ftype_v2hi_v2hi,
	       BFIN_BUILTIN_MULHISILL);
  def_builtin ("__builtin_bfin_mulhisihl", int_ftype_v2hi_v2hi,
	       BFIN_BUILTIN_MULHISIHL);
  def_builtin ("__builtin_bfin_mulhisilh", int_ftype_v2hi_v2hi,
	       BFIN_BUILTIN_MULHISILH);
  def_builtin ("__builtin_bfin_mulhisihh", int_ftype_v2hi_v2hi,
	       BFIN_BUILTIN_MULHISIHH);

  def_builtin ("__builtin_bfin_min_fr1x32", int_ftype_int_int,
	       BFIN_BUILTIN_MIN_1X32);
  def_builtin ("__builtin_bfin_max_fr1x32", int_ftype_int_int,
	       BFIN_BUILTIN_MAX_1X32);

  def_builtin ("__builtin_bfin_add_fr1x32", int_ftype_int_int,
	       BFIN_BUILTIN_SSADD_1X32);
  def_builtin ("__builtin_bfin_sub_fr1x32", int_ftype_int_int,
	       BFIN_BUILTIN_SSSUB_1X32);
  def_builtin ("__builtin_bfin_negate_fr1x32", int_ftype_int,
	       BFIN_BUILTIN_NEG_1X32);
  def_builtin ("__builtin_bfin_abs_fr1x32", int_ftype_int,
	       BFIN_BUILTIN_ABS_1X32);
  def_builtin ("__builtin_bfin_norm_fr1x32", short_ftype_int,
	       BFIN_BUILTIN_NORM_1X32);
  def_builtin ("__builtin_bfin_round_fr1x32", short_ftype_int,
	       BFIN_BUILTIN_ROUND_1X32);
  def_builtin ("__builtin_bfin_mult_fr1x32", int_ftype_short_short,
	       BFIN_BUILTIN_MULT_1X32);
  def_builtin ("__builtin_bfin_mult_fr1x32x32", int_ftype_int_int,
	       BFIN_BUILTIN_MULT_1X32X32);
  def_builtin ("__builtin_bfin_mult_fr1x32x32NS", int_ftype_int_int,
	       BFIN_BUILTIN_MULT_1X32X32NS);

  /* Shifts.  */
  def_builtin ("__builtin_bfin_shl_fr1x16", short_ftype_int_int,
	       BFIN_BUILTIN_SSASHIFT_1X16);
  def_builtin ("__builtin_bfin_shl_fr2x16", v2hi_ftype_v2hi_int,
	       BFIN_BUILTIN_SSASHIFT_2X16);
  def_builtin ("__builtin_bfin_lshl_fr1x16", short_ftype_int_int,
	       BFIN_BUILTIN_LSHIFT_1X16);
  def_builtin ("__builtin_bfin_lshl_fr2x16", v2hi_ftype_v2hi_int,
	       BFIN_BUILTIN_LSHIFT_2X16);
  def_builtin ("__builtin_bfin_shl_fr1x32", int_ftype_int_int,
	       BFIN_BUILTIN_SSASHIFT_1X32);

  /* Complex numbers.  */
  def_builtin ("__builtin_bfin_cmplx_add", v2hi_ftype_v2hi_v2hi,
	       BFIN_BUILTIN_SSADD_2X16);
  def_builtin ("__builtin_bfin_cmplx_sub", v2hi_ftype_v2hi_v2hi,
	       BFIN_BUILTIN_SSSUB_2X16);
  def_builtin ("__builtin_bfin_cmplx_mul", v2hi_ftype_v2hi_v2hi,
	       BFIN_BUILTIN_CPLX_MUL_16);
  def_builtin ("__builtin_bfin_cmplx_mac", v2hi_ftype_v2hi_v2hi_v2hi,
	       BFIN_BUILTIN_CPLX_MAC_16);
  def_builtin ("__builtin_bfin_cmplx_msu", v2hi_ftype_v2hi_v2hi_v2hi,
	       BFIN_BUILTIN_CPLX_MSU_16);
  def_builtin ("__builtin_bfin_cmplx_mul_s40", v2hi_ftype_v2hi_v2hi,
	       BFIN_BUILTIN_CPLX_MUL_16_S40);
  def_builtin ("__builtin_bfin_cmplx_mac_s40", v2hi_ftype_v2hi_v2hi_v2hi,
	       BFIN_BUILTIN_CPLX_MAC_16_S40);
  def_builtin ("__builtin_bfin_cmplx_msu_s40", v2hi_ftype_v2hi_v2hi_v2hi,
	       BFIN_BUILTIN_CPLX_MSU_16_S40);
  def_builtin ("__builtin_bfin_csqu_fr16", v2hi_ftype_v2hi,
	       BFIN_BUILTIN_CPLX_SQU);

  /* "Unaligned" load.  */
  def_builtin ("__builtin_bfin_loadbytes", int_ftype_pint,
	       BFIN_BUILTIN_LOADBYTES);

}


struct builtin_description
{
  const enum insn_code icode;
  const char *const name;
  const enum bfin_builtins code;
  int macflag;
};

static const struct builtin_description bdesc_2arg[] =
{
  { CODE_FOR_composev2hi, "__builtin_bfin_compose_2x16", BFIN_BUILTIN_COMPOSE_2X16, -1 },

  { CODE_FOR_ssashiftv2hi3, "__builtin_bfin_shl_fr2x16", BFIN_BUILTIN_SSASHIFT_2X16, -1 },
  { CODE_FOR_ssashifthi3, "__builtin_bfin_shl_fr1x16", BFIN_BUILTIN_SSASHIFT_1X16, -1 },
  { CODE_FOR_lshiftv2hi3, "__builtin_bfin_lshl_fr2x16", BFIN_BUILTIN_LSHIFT_2X16, -1 },
  { CODE_FOR_lshifthi3, "__builtin_bfin_lshl_fr1x16", BFIN_BUILTIN_LSHIFT_1X16, -1 },
  { CODE_FOR_ssashiftsi3, "__builtin_bfin_shl_fr1x32", BFIN_BUILTIN_SSASHIFT_1X32, -1 },

  { CODE_FOR_sminhi3, "__builtin_bfin_min_fr1x16", BFIN_BUILTIN_MIN_1X16, -1 },
  { CODE_FOR_smaxhi3, "__builtin_bfin_max_fr1x16", BFIN_BUILTIN_MAX_1X16, -1 },
  { CODE_FOR_ssaddhi3, "__builtin_bfin_add_fr1x16", BFIN_BUILTIN_SSADD_1X16, -1 },
  { CODE_FOR_sssubhi3, "__builtin_bfin_sub_fr1x16", BFIN_BUILTIN_SSSUB_1X16, -1 },

  { CODE_FOR_sminsi3, "__builtin_bfin_min_fr1x32", BFIN_BUILTIN_MIN_1X32, -1 },
  { CODE_FOR_smaxsi3, "__builtin_bfin_max_fr1x32", BFIN_BUILTIN_MAX_1X32, -1 },
  { CODE_FOR_ssaddsi3, "__builtin_bfin_add_fr1x32", BFIN_BUILTIN_SSADD_1X32, -1 },
  { CODE_FOR_sssubsi3, "__builtin_bfin_sub_fr1x32", BFIN_BUILTIN_SSSUB_1X32, -1 },

  { CODE_FOR_sminv2hi3, "__builtin_bfin_min_fr2x16", BFIN_BUILTIN_MIN_2X16, -1 },
  { CODE_FOR_smaxv2hi3, "__builtin_bfin_max_fr2x16", BFIN_BUILTIN_MAX_2X16, -1 },
  { CODE_FOR_ssaddv2hi3, "__builtin_bfin_add_fr2x16", BFIN_BUILTIN_SSADD_2X16, -1 },
  { CODE_FOR_sssubv2hi3, "__builtin_bfin_sub_fr2x16", BFIN_BUILTIN_SSSUB_2X16, -1 },
  { CODE_FOR_ssaddsubv2hi3, "__builtin_bfin_dspaddsubsat", BFIN_BUILTIN_SSADDSUB_2X16, -1 },
  { CODE_FOR_sssubaddv2hi3, "__builtin_bfin_dspsubaddsat", BFIN_BUILTIN_SSSUBADD_2X16, -1 },

  { CODE_FOR_flag_mulhisi, "__builtin_bfin_mult_fr1x32", BFIN_BUILTIN_MULT_1X32, MACFLAG_NONE },
  { CODE_FOR_flag_mulhi, "__builtin_bfin_mult_fr1x16", BFIN_BUILTIN_MULT_1X16, MACFLAG_T },
  { CODE_FOR_flag_mulhi, "__builtin_bfin_multr_fr1x16", BFIN_BUILTIN_MULTR_1X16, MACFLAG_NONE },
  { CODE_FOR_flag_mulv2hi, "__builtin_bfin_mult_fr2x16", BFIN_BUILTIN_MULT_2X16, MACFLAG_T },
  { CODE_FOR_flag_mulv2hi, "__builtin_bfin_multr_fr2x16", BFIN_BUILTIN_MULTR_2X16, MACFLAG_NONE },

  { CODE_FOR_mulhisi_ll, "__builtin_bfin_mulhisill", BFIN_BUILTIN_MULHISILL, -1 },
  { CODE_FOR_mulhisi_lh, "__builtin_bfin_mulhisilh", BFIN_BUILTIN_MULHISILH, -1 },
  { CODE_FOR_mulhisi_hl, "__builtin_bfin_mulhisihl", BFIN_BUILTIN_MULHISIHL, -1 },
  { CODE_FOR_mulhisi_hh, "__builtin_bfin_mulhisihh", BFIN_BUILTIN_MULHISIHH, -1 }

};

static const struct builtin_description bdesc_1arg[] =
{
  { CODE_FOR_loadbytes, "__builtin_bfin_loadbytes", BFIN_BUILTIN_LOADBYTES, 0 },

  { CODE_FOR_ones, "__builtin_bfin_ones", BFIN_BUILTIN_ONES, 0 },

  { CODE_FOR_signbitshi2, "__builtin_bfin_norm_fr1x16", BFIN_BUILTIN_NORM_1X16, 0 },
  { CODE_FOR_ssneghi2, "__builtin_bfin_negate_fr1x16", BFIN_BUILTIN_NEG_1X16, 0 },
  { CODE_FOR_abshi2, "__builtin_bfin_abs_fr1x16", BFIN_BUILTIN_ABS_1X16, 0 },

  { CODE_FOR_signbitssi2, "__builtin_bfin_norm_fr1x32", BFIN_BUILTIN_NORM_1X32, 0 },
  { CODE_FOR_ssroundsi2, "__builtin_bfin_round_fr1x32", BFIN_BUILTIN_ROUND_1X32, 0 },
  { CODE_FOR_ssnegsi2, "__builtin_bfin_negate_fr1x32", BFIN_BUILTIN_NEG_1X32, 0 },
  { CODE_FOR_ssabssi2, "__builtin_bfin_abs_fr1x32", BFIN_BUILTIN_ABS_1X32, 0 },

  { CODE_FOR_movv2hi_hi_low, "__builtin_bfin_extract_lo", BFIN_BUILTIN_EXTRACTLO, 0 },
  { CODE_FOR_movv2hi_hi_high, "__builtin_bfin_extract_hi", BFIN_BUILTIN_EXTRACTHI, 0 },
  { CODE_FOR_ssnegv2hi2, "__builtin_bfin_negate_fr2x16", BFIN_BUILTIN_NEG_2X16, 0 },
  { CODE_FOR_ssabsv2hi2, "__builtin_bfin_abs_fr2x16", BFIN_BUILTIN_ABS_2X16, 0 }
};

/* Errors in the source file can cause expand_expr to return const0_rtx
   where we expect a vector.  To avoid crashing, use one of the vector
   clear instructions.  */
static rtx
safe_vector_operand (rtx x, enum machine_mode mode)
{
  if (x != const0_rtx)
    return x;
  x = gen_reg_rtx (SImode);

  emit_insn (gen_movsi (x, CONST0_RTX (SImode)));
  return gen_lowpart (mode, x);
}

/* Subroutine of bfin_expand_builtin to take care of binop insns.  MACFLAG is -1
   if this is a normal binary op, or one of the MACFLAG_xxx constants.  */

static rtx
bfin_expand_binop_builtin (enum insn_code icode, tree exp, rtx target,
			   int macflag)
{
  rtx pat;
  tree arg0 = CALL_EXPR_ARG (exp, 0);
  tree arg1 = CALL_EXPR_ARG (exp, 1);
  rtx op0 = expand_expr (arg0, NULL_RTX, VOIDmode, 0);
  rtx op1 = expand_expr (arg1, NULL_RTX, VOIDmode, 0);
  enum machine_mode op0mode = GET_MODE (op0);
  enum machine_mode op1mode = GET_MODE (op1);
  enum machine_mode tmode = insn_data[icode].operand[0].mode;
  enum machine_mode mode0 = insn_data[icode].operand[1].mode;
  enum machine_mode mode1 = insn_data[icode].operand[2].mode;

  if (VECTOR_MODE_P (mode0))
    op0 = safe_vector_operand (op0, mode0);
  if (VECTOR_MODE_P (mode1))
    op1 = safe_vector_operand (op1, mode1);

  if (! target
      || GET_MODE (target) != tmode
      || ! (*insn_data[icode].operand[0].predicate) (target, tmode))
    target = gen_reg_rtx (tmode);

  if ((op0mode == SImode || op0mode == VOIDmode) && mode0 == HImode)
    {
      op0mode = HImode;
      op0 = gen_lowpart (HImode, op0);
    }
  if ((op1mode == SImode || op1mode == VOIDmode) && mode1 == HImode)
    {
      op1mode = HImode;
      op1 = gen_lowpart (HImode, op1);
    }
  /* In case the insn wants input operands in modes different from
     the result, abort.  */
  gcc_assert ((op0mode == mode0 || op0mode == VOIDmode)
	      && (op1mode == mode1 || op1mode == VOIDmode));

  if (! (*insn_data[icode].operand[1].predicate) (op0, mode0))
    op0 = copy_to_mode_reg (mode0, op0);
  if (! (*insn_data[icode].operand[2].predicate) (op1, mode1))
    op1 = copy_to_mode_reg (mode1, op1);

  if (macflag == -1)
    pat = GEN_FCN (icode) (target, op0, op1);
  else
    pat = GEN_FCN (icode) (target, op0, op1, GEN_INT (macflag));
  if (! pat)
    return 0;

  emit_insn (pat);
  return target;
}

/* Subroutine of bfin_expand_builtin to take care of unop insns.  */

static rtx
bfin_expand_unop_builtin (enum insn_code icode, tree exp,
			  rtx target)
{
  rtx pat;
  tree arg0 = CALL_EXPR_ARG (exp, 0);
  rtx op0 = expand_expr (arg0, NULL_RTX, VOIDmode, 0);
  enum machine_mode op0mode = GET_MODE (op0);
  enum machine_mode tmode = insn_data[icode].operand[0].mode;
  enum machine_mode mode0 = insn_data[icode].operand[1].mode;

  if (! target
      || GET_MODE (target) != tmode
      || ! (*insn_data[icode].operand[0].predicate) (target, tmode))
    target = gen_reg_rtx (tmode);

  if (VECTOR_MODE_P (mode0))
    op0 = safe_vector_operand (op0, mode0);

  if (op0mode == SImode && mode0 == HImode)
    {
      op0mode = HImode;
      op0 = gen_lowpart (HImode, op0);
    }
  gcc_assert (op0mode == mode0 || op0mode == VOIDmode);

  if (! (*insn_data[icode].operand[1].predicate) (op0, mode0))
    op0 = copy_to_mode_reg (mode0, op0);

  pat = GEN_FCN (icode) (target, op0);
  if (! pat)
    return 0;
  emit_insn (pat);
  return target;
}

/* Expand an expression EXP that calls a built-in function,
   with result going to TARGET if that's convenient
   (and in mode MODE if that's convenient).
   SUBTARGET may be used as the target for computing one of EXP's operands.
   IGNORE is nonzero if the value is to be ignored.  */

static rtx
bfin_expand_builtin (tree exp, rtx target ATTRIBUTE_UNUSED,
		     rtx subtarget ATTRIBUTE_UNUSED,
		     enum machine_mode mode ATTRIBUTE_UNUSED,
		     int ignore ATTRIBUTE_UNUSED)
{
  size_t i;
  enum insn_code icode;
  const struct builtin_description *d;
  tree fndecl = TREE_OPERAND (CALL_EXPR_FN (exp), 0);
  unsigned int fcode = DECL_FUNCTION_CODE (fndecl);
  tree arg0, arg1, arg2;
  rtx op0, op1, op2, accvec, pat, tmp1, tmp2, a0reg, a1reg;
  enum machine_mode tmode, mode0;

  switch (fcode)
    {
    case BFIN_BUILTIN_CSYNC:
      emit_insn (gen_csync ());
      return 0;
    case BFIN_BUILTIN_SSYNC:
      emit_insn (gen_ssync ());
      return 0;

    case BFIN_BUILTIN_DIFFHL_2X16:
    case BFIN_BUILTIN_DIFFLH_2X16:
    case BFIN_BUILTIN_SUM_2X16:
      arg0 = CALL_EXPR_ARG (exp, 0);
      op0 = expand_expr (arg0, NULL_RTX, VOIDmode, 0);
      icode = (fcode == BFIN_BUILTIN_DIFFHL_2X16 ? CODE_FOR_subhilov2hi3
	       : fcode == BFIN_BUILTIN_DIFFLH_2X16 ? CODE_FOR_sublohiv2hi3
	       : CODE_FOR_ssaddhilov2hi3);
      tmode = insn_data[icode].operand[0].mode;
      mode0 = insn_data[icode].operand[1].mode;

      if (! target
	  || GET_MODE (target) != tmode
	  || ! (*insn_data[icode].operand[0].predicate) (target, tmode))
	target = gen_reg_rtx (tmode);

      if (VECTOR_MODE_P (mode0))
	op0 = safe_vector_operand (op0, mode0);

      if (! (*insn_data[icode].operand[1].predicate) (op0, mode0))
	op0 = copy_to_mode_reg (mode0, op0);

      pat = GEN_FCN (icode) (target, op0, op0);
      if (! pat)
	return 0;
      emit_insn (pat);
      return target;

    case BFIN_BUILTIN_MULT_1X32X32:
    case BFIN_BUILTIN_MULT_1X32X32NS:
      arg0 = CALL_EXPR_ARG (exp, 0);
      arg1 = CALL_EXPR_ARG (exp, 1);
      op0 = expand_expr (arg0, NULL_RTX, VOIDmode, 0);
      op1 = expand_expr (arg1, NULL_RTX, VOIDmode, 0);
      if (! target
	  || !register_operand (target, SImode))
	target = gen_reg_rtx (SImode);
      if (! register_operand (op0, SImode))
	op0 = copy_to_mode_reg (SImode, op0);
      if (! register_operand (op1, SImode))
	op1 = copy_to_mode_reg (SImode, op1);

      a1reg = gen_rtx_REG (PDImode, REG_A1);
      a0reg = gen_rtx_REG (PDImode, REG_A0);
      tmp1 = gen_lowpart (V2HImode, op0);
      tmp2 = gen_lowpart (V2HImode, op1);
      emit_insn (gen_flag_macinit1hi (a1reg,
				      gen_lowpart (HImode, op0),
				      gen_lowpart (HImode, op1),
				      GEN_INT (MACFLAG_FU)));
      emit_insn (gen_lshrpdi3 (a1reg, a1reg, GEN_INT (16)));

      if (fcode == BFIN_BUILTIN_MULT_1X32X32)
	emit_insn (gen_flag_mul_macv2hi_parts_acconly (a0reg, a1reg, tmp1, tmp2,
						       const1_rtx, const1_rtx,
						       const1_rtx, const0_rtx, a1reg,
						       const0_rtx, GEN_INT (MACFLAG_NONE),
						       GEN_INT (MACFLAG_M)));
      else
	{
	  /* For saturating multiplication, there's exactly one special case
	     to be handled: multiplying the smallest negative value with
	     itself.  Due to shift correction in fractional multiplies, this
	     can overflow.  Iff this happens, OP2 will contain 1, which, when
	     added in 32 bits to the smallest negative, wraps to the largest
	     positive, which is the result we want.  */
	  op2 = gen_reg_rtx (V2HImode);
	  emit_insn (gen_packv2hi (op2, tmp1, tmp2, const0_rtx, const0_rtx));
	  emit_insn (gen_movsibi (gen_rtx_REG (BImode, REG_CC),
				  gen_lowpart (SImode, op2)));
	  emit_insn (gen_flag_mul_macv2hi_parts_acconly_andcc0 (a0reg, a1reg, tmp1, tmp2,
								const1_rtx, const1_rtx,
								const1_rtx, const0_rtx, a1reg,
								const0_rtx, GEN_INT (MACFLAG_NONE),
								GEN_INT (MACFLAG_M)));
	  op2 = gen_reg_rtx (SImode);
	  emit_insn (gen_movbisi (op2, gen_rtx_REG (BImode, REG_CC)));
	}
      emit_insn (gen_flag_machi_parts_acconly (a1reg, tmp2, tmp1,
					       const1_rtx, const0_rtx,
					       a1reg, const0_rtx, GEN_INT (MACFLAG_M)));
      emit_insn (gen_ashrpdi3 (a1reg, a1reg, GEN_INT (15)));
      emit_insn (gen_sum_of_accumulators (target, a0reg, a0reg, a1reg));
      if (fcode == BFIN_BUILTIN_MULT_1X32X32NS)
	emit_insn (gen_addsi3 (target, target, op2));
      return target;

    case BFIN_BUILTIN_CPLX_MUL_16:
    case BFIN_BUILTIN_CPLX_MUL_16_S40:
      arg0 = CALL_EXPR_ARG (exp, 0);
      arg1 = CALL_EXPR_ARG (exp, 1);
      op0 = expand_expr (arg0, NULL_RTX, VOIDmode, 0);
      op1 = expand_expr (arg1, NULL_RTX, VOIDmode, 0);
      accvec = gen_reg_rtx (V2PDImode);
      icode = CODE_FOR_flag_macv2hi_parts;

      if (! target
	  || GET_MODE (target) != V2HImode
	  || ! (*insn_data[icode].operand[0].predicate) (target, V2HImode))
	target = gen_reg_rtx (tmode);
      if (! register_operand (op0, GET_MODE (op0)))
	op0 = copy_to_mode_reg (GET_MODE (op0), op0);
      if (! register_operand (op1, GET_MODE (op1)))
	op1 = copy_to_mode_reg (GET_MODE (op1), op1);

      if (fcode == BFIN_BUILTIN_CPLX_MUL_16)
	emit_insn (gen_flag_macinit1v2hi_parts (accvec, op0, op1, const0_rtx,
						const0_rtx, const0_rtx,
						const1_rtx, GEN_INT (MACFLAG_W32)));
      else
	emit_insn (gen_flag_macinit1v2hi_parts (accvec, op0, op1, const0_rtx,
						const0_rtx, const0_rtx,
						const1_rtx, GEN_INT (MACFLAG_NONE)));
      emit_insn (gen_flag_macv2hi_parts (target, op0, op1, const1_rtx,
					 const1_rtx, const1_rtx,
					 const0_rtx, accvec, const1_rtx, const0_rtx,
					 GEN_INT (MACFLAG_NONE), accvec));

      return target;

    case BFIN_BUILTIN_CPLX_MAC_16:
    case BFIN_BUILTIN_CPLX_MSU_16:
    case BFIN_BUILTIN_CPLX_MAC_16_S40:
    case BFIN_BUILTIN_CPLX_MSU_16_S40:
      arg0 = CALL_EXPR_ARG (exp, 0);
      arg1 = CALL_EXPR_ARG (exp, 1);
      arg2 = CALL_EXPR_ARG (exp, 2);
      op0 = expand_expr (arg0, NULL_RTX, VOIDmode, 0);
      op1 = expand_expr (arg1, NULL_RTX, VOIDmode, 0);
      op2 = expand_expr (arg2, NULL_RTX, VOIDmode, 0);
      accvec = gen_reg_rtx (V2PDImode);
      icode = CODE_FOR_flag_macv2hi_parts;

      if (! target
	  || GET_MODE (target) != V2HImode
	  || ! (*insn_data[icode].operand[0].predicate) (target, V2HImode))
	target = gen_reg_rtx (tmode);
      if (! register_operand (op1, GET_MODE (op1)))
	op1 = copy_to_mode_reg (GET_MODE (op1), op1);
      if (! register_operand (op2, GET_MODE (op2)))
	op2 = copy_to_mode_reg (GET_MODE (op2), op2);

      tmp1 = gen_reg_rtx (SImode);
      tmp2 = gen_reg_rtx (SImode);
      emit_insn (gen_ashlsi3 (tmp1, gen_lowpart (SImode, op0), GEN_INT (16)));
      emit_move_insn (tmp2, gen_lowpart (SImode, op0));
      emit_insn (gen_movstricthi_1 (gen_lowpart (HImode, tmp2), const0_rtx));
      emit_insn (gen_load_accumulator_pair (accvec, tmp1, tmp2));
      if (fcode == BFIN_BUILTIN_CPLX_MAC_16
	  || fcode == BFIN_BUILTIN_CPLX_MSU_16)
	emit_insn (gen_flag_macv2hi_parts_acconly (accvec, op1, op2, const0_rtx,
						   const0_rtx, const0_rtx,
						   const1_rtx, accvec, const0_rtx,
						   const0_rtx,
						   GEN_INT (MACFLAG_W32)));
      else
	emit_insn (gen_flag_macv2hi_parts_acconly (accvec, op1, op2, const0_rtx,
						   const0_rtx, const0_rtx,
						   const1_rtx, accvec, const0_rtx,
						   const0_rtx,
						   GEN_INT (MACFLAG_NONE)));
      if (fcode == BFIN_BUILTIN_CPLX_MAC_16
	  || fcode == BFIN_BUILTIN_CPLX_MAC_16_S40)
	{
	  tmp1 = const1_rtx;
	  tmp2 = const0_rtx;
	}
      else
	{
	  tmp1 = const0_rtx;
	  tmp2 = const1_rtx;
	}
      emit_insn (gen_flag_macv2hi_parts (target, op1, op2, const1_rtx,
					 const1_rtx, const1_rtx,
					 const0_rtx, accvec, tmp1, tmp2,
					 GEN_INT (MACFLAG_NONE), accvec));

      return target;

    case BFIN_BUILTIN_CPLX_SQU:
      arg0 = CALL_EXPR_ARG (exp, 0);
      op0 = expand_expr (arg0, NULL_RTX, VOIDmode, 0);
      accvec = gen_reg_rtx (V2PDImode);
      icode = CODE_FOR_flag_mulv2hi;
      tmp1 = gen_reg_rtx (V2HImode);
      tmp2 = gen_reg_rtx (V2HImode);

      if (! target
	  || GET_MODE (target) != V2HImode
	  || ! (*insn_data[icode].operand[0].predicate) (target, V2HImode))
	target = gen_reg_rtx (V2HImode);
      if (! register_operand (op0, GET_MODE (op0)))
	op0 = copy_to_mode_reg (GET_MODE (op0), op0);

      emit_insn (gen_flag_mulv2hi (tmp1, op0, op0, GEN_INT (MACFLAG_NONE)));

      emit_insn (gen_flag_mulhi_parts (gen_lowpart (HImode, tmp2), op0, op0,
				       const0_rtx, const1_rtx,
				       GEN_INT (MACFLAG_NONE)));

      emit_insn (gen_ssaddhi3_high_parts (target, tmp2, tmp2, tmp2, const0_rtx,
					  const0_rtx));
      emit_insn (gen_sssubhi3_low_parts (target, target, tmp1, tmp1,
					 const0_rtx, const1_rtx));

      return target;

    default:
      break;
    }

  for (i = 0, d = bdesc_2arg; i < ARRAY_SIZE (bdesc_2arg); i++, d++)
    if (d->code == fcode)
      return bfin_expand_binop_builtin (d->icode, exp, target,
					d->macflag);

  for (i = 0, d = bdesc_1arg; i < ARRAY_SIZE (bdesc_1arg); i++, d++)
    if (d->code == fcode)
      return bfin_expand_unop_builtin (d->icode, exp, target);

  gcc_unreachable ();
}

#undef TARGET_INIT_BUILTINS
#define TARGET_INIT_BUILTINS bfin_init_builtins

#undef TARGET_EXPAND_BUILTIN
#define TARGET_EXPAND_BUILTIN bfin_expand_builtin

#undef TARGET_ASM_GLOBALIZE_LABEL
#define TARGET_ASM_GLOBALIZE_LABEL bfin_globalize_label 

#undef TARGET_ASM_FILE_START
#define TARGET_ASM_FILE_START output_file_start

#undef TARGET_ATTRIBUTE_TABLE
#define TARGET_ATTRIBUTE_TABLE bfin_attribute_table

#undef TARGET_COMP_TYPE_ATTRIBUTES
#define TARGET_COMP_TYPE_ATTRIBUTES bfin_comp_type_attributes

#undef TARGET_RTX_COSTS
#define TARGET_RTX_COSTS bfin_rtx_costs

#undef  TARGET_ADDRESS_COST
#define TARGET_ADDRESS_COST bfin_address_cost

#undef  TARGET_ASM_INTEGER
#define TARGET_ASM_INTEGER bfin_assemble_integer

#undef TARGET_MACHINE_DEPENDENT_REORG
#define TARGET_MACHINE_DEPENDENT_REORG bfin_reorg

#undef TARGET_FUNCTION_OK_FOR_SIBCALL
#define TARGET_FUNCTION_OK_FOR_SIBCALL bfin_function_ok_for_sibcall

#undef TARGET_ASM_OUTPUT_MI_THUNK
#define TARGET_ASM_OUTPUT_MI_THUNK bfin_output_mi_thunk
#undef TARGET_ASM_CAN_OUTPUT_MI_THUNK
#define TARGET_ASM_CAN_OUTPUT_MI_THUNK hook_bool_const_tree_hwi_hwi_const_tree_true

#undef TARGET_SCHED_ADJUST_COST
#define TARGET_SCHED_ADJUST_COST bfin_adjust_cost

#undef TARGET_SCHED_ISSUE_RATE
#define TARGET_SCHED_ISSUE_RATE bfin_issue_rate

#undef TARGET_PROMOTE_FUNCTION_MODE
#define TARGET_PROMOTE_FUNCTION_MODE default_promote_function_mode_always_promote

#undef TARGET_ARG_PARTIAL_BYTES
#define TARGET_ARG_PARTIAL_BYTES bfin_arg_partial_bytes

#undef TARGET_PASS_BY_REFERENCE
#define TARGET_PASS_BY_REFERENCE bfin_pass_by_reference

#undef TARGET_SETUP_INCOMING_VARARGS
#define TARGET_SETUP_INCOMING_VARARGS setup_incoming_varargs

#undef TARGET_STRUCT_VALUE_RTX
#define TARGET_STRUCT_VALUE_RTX bfin_struct_value_rtx

#undef TARGET_VECTOR_MODE_SUPPORTED_P
#define TARGET_VECTOR_MODE_SUPPORTED_P bfin_vector_mode_supported_p

#undef TARGET_HANDLE_OPTION
#define TARGET_HANDLE_OPTION bfin_handle_option

#undef TARGET_DEFAULT_TARGET_FLAGS
#define TARGET_DEFAULT_TARGET_FLAGS TARGET_DEFAULT

#undef TARGET_SECONDARY_RELOAD
#define TARGET_SECONDARY_RELOAD bfin_secondary_reload

#undef TARGET_DELEGITIMIZE_ADDRESS
#define TARGET_DELEGITIMIZE_ADDRESS bfin_delegitimize_address

#undef TARGET_CANNOT_FORCE_CONST_MEM
#define TARGET_CANNOT_FORCE_CONST_MEM bfin_cannot_force_const_mem

#undef TARGET_RETURN_IN_MEMORY
#define TARGET_RETURN_IN_MEMORY bfin_return_in_memory

#undef TARGET_LEGITIMATE_ADDRESS_P
#define TARGET_LEGITIMATE_ADDRESS_P	bfin_legitimate_address_p

#undef TARGET_FRAME_POINTER_REQUIRED
#define TARGET_FRAME_POINTER_REQUIRED bfin_frame_pointer_required

#undef TARGET_CAN_ELIMINATE
#define TARGET_CAN_ELIMINATE bfin_can_eliminate

#undef TARGET_ASM_TRAMPOLINE_TEMPLATE
#define TARGET_ASM_TRAMPOLINE_TEMPLATE bfin_asm_trampoline_template
#undef TARGET_TRAMPOLINE_INIT
#define TARGET_TRAMPOLINE_INIT bfin_trampoline_init

struct gcc_target targetm = TARGET_INITIALIZER;