1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
|
/* The Blackfin code generation auxiliary output file.
Copyright (C) 2005 Free Software Foundation, Inc.
Contributed by Analog Devices.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published
by the Free Software Foundation; either version 2, or (at your
option) any later version.
GCC is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
License for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING. If not, write to
the Free Software Foundation, 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA. */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "rtl.h"
#include "regs.h"
#include "hard-reg-set.h"
#include "real.h"
#include "insn-config.h"
#include "conditions.h"
#include "insn-flags.h"
#include "output.h"
#include "insn-attr.h"
#include "tree.h"
#include "flags.h"
#include "except.h"
#include "function.h"
#include "input.h"
#include "target.h"
#include "target-def.h"
#include "expr.h"
#include "toplev.h"
#include "recog.h"
#include "ggc.h"
#include "integrate.h"
#include "bfin-protos.h"
#include "tm-preds.h"
#include "gt-bfin.h"
/* Test and compare insns in bfin.md store the information needed to
generate branch and scc insns here. */
rtx bfin_compare_op0, bfin_compare_op1;
/* RTX for condition code flag register and RETS register */
extern GTY(()) rtx bfin_cc_rtx;
extern GTY(()) rtx bfin_rets_rtx;
rtx bfin_cc_rtx, bfin_rets_rtx;
int max_arg_registers = 0;
/* Arrays used when emitting register names. */
const char *short_reg_names[] = SHORT_REGISTER_NAMES;
const char *high_reg_names[] = HIGH_REGISTER_NAMES;
const char *dregs_pair_names[] = DREGS_PAIR_NAMES;
const char *byte_reg_names[] = BYTE_REGISTER_NAMES;
static int arg_regs[] = FUNCTION_ARG_REGISTERS;
/* Nonzero if -mshared-library-id was given. */
static int bfin_lib_id_given;
static void
bfin_globalize_label (FILE *stream, const char *name)
{
fputs (".global ", stream);
assemble_name (stream, name);
fputc (';',stream);
fputc ('\n',stream);
}
static void
output_file_start (void)
{
FILE *file = asm_out_file;
int i;
fprintf (file, ".file \"%s\";\n", input_filename);
for (i = 0; arg_regs[i] >= 0; i++)
;
max_arg_registers = i; /* how many arg reg used */
}
/* Called early in the compilation to conditionally modify
fixed_regs/call_used_regs. */
void
conditional_register_usage (void)
{
/* initialize condition code flag register rtx */
bfin_cc_rtx = gen_rtx_REG (BImode, REG_CC);
bfin_rets_rtx = gen_rtx_REG (Pmode, REG_RETS);
}
/* Examine machine-dependent attributes of function type FUNTYPE and return its
type. See the definition of E_FUNKIND. */
static e_funkind funkind (tree funtype)
{
tree attrs = TYPE_ATTRIBUTES (funtype);
if (lookup_attribute ("interrupt_handler", attrs))
return INTERRUPT_HANDLER;
else if (lookup_attribute ("exception_handler", attrs))
return EXCPT_HANDLER;
else if (lookup_attribute ("nmi_handler", attrs))
return NMI_HANDLER;
else
return SUBROUTINE;
}
/* Stack frame layout. */
/* Compute the number of DREGS to save with a push_multiple operation.
This could include registers that aren't modified in the function,
since push_multiple only takes a range of registers. */
static int
n_dregs_to_save (void)
{
unsigned i;
for (i = REG_R0; i <= REG_R7; i++)
{
if (regs_ever_live[i] && ! call_used_regs[i])
return REG_R7 - i + 1;
if (current_function_calls_eh_return)
{
unsigned j;
for (j = 0; ; j++)
{
unsigned test = EH_RETURN_DATA_REGNO (j);
if (test == INVALID_REGNUM)
break;
if (test == i)
return REG_R7 - i + 1;
}
}
}
return 0;
}
/* Like n_dregs_to_save, but compute number of PREGS to save. */
static int
n_pregs_to_save (void)
{
unsigned i;
for (i = REG_P0; i <= REG_P5; i++)
if ((regs_ever_live[i] && ! call_used_regs[i])
|| (i == PIC_OFFSET_TABLE_REGNUM
&& (current_function_uses_pic_offset_table
|| (TARGET_ID_SHARED_LIBRARY && ! current_function_is_leaf))))
return REG_P5 - i + 1;
return 0;
}
/* Determine if we are going to save the frame pointer in the prologue. */
static bool
must_save_fp_p (void)
{
return (frame_pointer_needed || regs_ever_live[REG_FP]);
}
static bool
stack_frame_needed_p (void)
{
/* EH return puts a new return address into the frame using an
address relative to the frame pointer. */
if (current_function_calls_eh_return)
return true;
return frame_pointer_needed;
}
/* Emit code to save registers in the prologue. SAVEALL is nonzero if we
must save all registers; this is used for interrupt handlers.
SPREG contains (reg:SI REG_SP). */
static void
expand_prologue_reg_save (rtx spreg, int saveall)
{
int ndregs = saveall ? 8 : n_dregs_to_save ();
int npregs = saveall ? 6 : n_pregs_to_save ();
int dregno = REG_R7 + 1 - ndregs;
int pregno = REG_P5 + 1 - npregs;
int total = ndregs + npregs;
int i;
rtx pat, insn, val;
if (total == 0)
return;
val = GEN_INT (-total * 4);
pat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total + 2));
XVECEXP (pat, 0, 0) = gen_rtx_UNSPEC (VOIDmode, gen_rtvec (1, val),
UNSPEC_PUSH_MULTIPLE);
XVECEXP (pat, 0, total + 1) = gen_rtx_SET (VOIDmode, spreg,
gen_rtx_PLUS (Pmode, spreg,
val));
RTX_FRAME_RELATED_P (XVECEXP (pat, 0, total + 1)) = 1;
for (i = 0; i < total; i++)
{
rtx memref = gen_rtx_MEM (word_mode,
gen_rtx_PLUS (Pmode, spreg,
GEN_INT (- i * 4 - 4)));
rtx subpat;
if (ndregs > 0)
{
subpat = gen_rtx_SET (VOIDmode, memref, gen_rtx_REG (word_mode,
dregno++));
ndregs--;
}
else
{
subpat = gen_rtx_SET (VOIDmode, memref, gen_rtx_REG (word_mode,
pregno++));
npregs++;
}
XVECEXP (pat, 0, i + 1) = subpat;
RTX_FRAME_RELATED_P (subpat) = 1;
}
insn = emit_insn (pat);
RTX_FRAME_RELATED_P (insn) = 1;
}
/* Emit code to restore registers in the epilogue. SAVEALL is nonzero if we
must save all registers; this is used for interrupt handlers.
SPREG contains (reg:SI REG_SP). */
static void
expand_epilogue_reg_restore (rtx spreg, int saveall)
{
int ndregs = saveall ? 8 : n_dregs_to_save ();
int npregs = saveall ? 6 : n_pregs_to_save ();
int total = ndregs + npregs;
int i, regno;
rtx pat, insn;
if (total == 0)
return;
pat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total + 1));
XVECEXP (pat, 0, 0) = gen_rtx_SET (VOIDmode, spreg,
gen_rtx_PLUS (Pmode, spreg,
GEN_INT (total * 4)));
if (npregs > 0)
regno = REG_P5 + 1;
else
regno = REG_R7 + 1;
for (i = 0; i < total; i++)
{
rtx addr = (i > 0
? gen_rtx_PLUS (Pmode, spreg, GEN_INT (i * 4))
: spreg);
rtx memref = gen_rtx_MEM (word_mode, addr);
regno--;
XVECEXP (pat, 0, i + 1)
= gen_rtx_SET (VOIDmode, gen_rtx_REG (word_mode, regno), memref);
if (npregs > 0)
{
if (--npregs == 0)
regno = REG_R7 + 1;
}
}
insn = emit_insn (pat);
RTX_FRAME_RELATED_P (insn) = 1;
}
/* Perform any needed actions needed for a function that is receiving a
variable number of arguments.
CUM is as above.
MODE and TYPE are the mode and type of the current parameter.
PRETEND_SIZE is a variable that should be set to the amount of stack
that must be pushed by the prolog to pretend that our caller pushed
it.
Normally, this macro will push all remaining incoming registers on the
stack and set PRETEND_SIZE to the length of the registers pushed.
Blackfin specific :
- VDSP C compiler manual (our ABI) says that a variable args function
should save the R0, R1 and R2 registers in the stack.
- The caller will always leave space on the stack for the
arguments that are passed in registers, so we dont have
to leave any extra space.
- now, the vastart pointer can access all arguments from the stack. */
static void
setup_incoming_varargs (CUMULATIVE_ARGS *cum,
enum machine_mode mode ATTRIBUTE_UNUSED,
tree type ATTRIBUTE_UNUSED, int *pretend_size,
int no_rtl)
{
rtx mem;
int i;
if (no_rtl)
return;
/* The move for named arguments will be generated automatically by the
compiler. We need to generate the move rtx for the unnamed arguments
if they are in the first 3 words. We assume at least 1 named argument
exists, so we never generate [ARGP] = R0 here. */
for (i = cum->words + 1; i < max_arg_registers; i++)
{
mem = gen_rtx_MEM (Pmode,
plus_constant (arg_pointer_rtx, (i * UNITS_PER_WORD)));
emit_move_insn (mem, gen_rtx_REG (Pmode, i));
}
*pretend_size = 0;
}
/* Value should be nonzero if functions must have frame pointers.
Zero means the frame pointer need not be set up (and parms may
be accessed via the stack pointer) in functions that seem suitable. */
int
bfin_frame_pointer_required (void)
{
e_funkind fkind = funkind (TREE_TYPE (current_function_decl));
if (fkind != SUBROUTINE)
return 1;
/* We turn on on -fomit-frame-pointer if -momit-leaf-frame-pointer is used,
so we have to override it for non-leaf functions. */
if (TARGET_OMIT_LEAF_FRAME_POINTER && ! current_function_is_leaf)
return 1;
return 0;
}
/* Return the number of registers pushed during the prologue. */
static int
n_regs_saved_by_prologue (void)
{
e_funkind fkind = funkind (TREE_TYPE (current_function_decl));
int n = n_dregs_to_save () + n_pregs_to_save ();
if (stack_frame_needed_p ())
/* We use a LINK instruction in this case. */
n += 2;
else
{
if (must_save_fp_p ())
n++;
if (! current_function_is_leaf)
n++;
}
if (fkind != SUBROUTINE)
{
tree attrs = TYPE_ATTRIBUTES (TREE_TYPE (current_function_decl));
tree all = lookup_attribute ("saveall", attrs);
int i;
/* Increment once for ASTAT. */
n++;
/* RETE/X/N. */
if (lookup_attribute ("nesting", attrs))
n++;
for (i = REG_P7 + 1; i < REG_CC; i++)
if (all
|| regs_ever_live[i]
|| (!leaf_function_p () && call_used_regs[i]))
n += i == REG_A0 || i == REG_A1 ? 2 : 1;
}
return n;
}
/* Return the offset between two registers, one to be eliminated, and the other
its replacement, at the start of a routine. */
HOST_WIDE_INT
bfin_initial_elimination_offset (int from, int to)
{
HOST_WIDE_INT offset = 0;
if (from == ARG_POINTER_REGNUM)
offset = n_regs_saved_by_prologue () * 4;
if (to == STACK_POINTER_REGNUM)
{
if (current_function_outgoing_args_size >= FIXED_STACK_AREA)
offset += current_function_outgoing_args_size;
else if (current_function_outgoing_args_size)
offset += FIXED_STACK_AREA;
offset += get_frame_size ();
}
return offset;
}
/* Emit code to load a constant CONSTANT into register REG; setting
RTX_FRAME_RELATED_P on all insns we generate. Make sure that the insns
we generate need not be split. */
static void
frame_related_constant_load (rtx reg, HOST_WIDE_INT constant)
{
rtx insn;
rtx cst = GEN_INT (constant);
if (constant >= -32768 && constant < 65536)
insn = emit_move_insn (reg, cst);
else
{
/* We don't call split_load_immediate here, since dwarf2out.c can get
confused about some of the more clever sequences it can generate. */
insn = emit_insn (gen_movsi_high (reg, cst));
RTX_FRAME_RELATED_P (insn) = 1;
insn = emit_insn (gen_movsi_low (reg, reg, cst));
}
RTX_FRAME_RELATED_P (insn) = 1;
}
/* Generate efficient code to add a value to the frame pointer. We
can use P1 as a scratch register. Set RTX_FRAME_RELATED_P on the
generated insns if FRAME is nonzero. */
static void
add_to_sp (rtx spreg, HOST_WIDE_INT value, int frame)
{
if (value == 0)
return;
/* Choose whether to use a sequence using a temporary register, or
a sequence with multiple adds. We can add a signed 7 bit value
in one instruction. */
if (value > 120 || value < -120)
{
rtx tmpreg = gen_rtx_REG (SImode, REG_P1);
rtx insn;
if (frame)
frame_related_constant_load (tmpreg, value);
else
{
insn = emit_move_insn (tmpreg, GEN_INT (value));
if (frame)
RTX_FRAME_RELATED_P (insn) = 1;
}
insn = emit_insn (gen_addsi3 (spreg, spreg, tmpreg));
if (frame)
RTX_FRAME_RELATED_P (insn) = 1;
}
else
do
{
int size = value;
rtx insn;
if (size > 60)
size = 60;
else if (size < -60)
/* We could use -62, but that would leave the stack unaligned, so
it's no good. */
size = -60;
insn = emit_insn (gen_addsi3 (spreg, spreg, GEN_INT (size)));
if (frame)
RTX_FRAME_RELATED_P (insn) = 1;
value -= size;
}
while (value != 0);
}
/* Generate a LINK insn for a frame sized FRAME_SIZE. If this constant
is too large, generate a sequence of insns that has the same effect.
SPREG contains (reg:SI REG_SP). */
static void
emit_link_insn (rtx spreg, HOST_WIDE_INT frame_size)
{
HOST_WIDE_INT link_size = frame_size;
rtx insn;
int i;
if (link_size > 262140)
link_size = 262140;
/* Use a LINK insn with as big a constant as possible, then subtract
any remaining size from the SP. */
insn = emit_insn (gen_link (GEN_INT (-8 - link_size)));
RTX_FRAME_RELATED_P (insn) = 1;
for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
{
rtx set = XVECEXP (PATTERN (insn), 0, i);
gcc_assert (GET_CODE (set) == SET);
RTX_FRAME_RELATED_P (set) = 1;
}
frame_size -= link_size;
if (frame_size > 0)
{
/* Must use a call-clobbered PREG that isn't the static chain. */
rtx tmpreg = gen_rtx_REG (Pmode, REG_P1);
frame_related_constant_load (tmpreg, -frame_size);
insn = emit_insn (gen_addsi3 (spreg, spreg, tmpreg));
RTX_FRAME_RELATED_P (insn) = 1;
}
}
/* Return the number of bytes we must reserve for outgoing arguments
in the current function's stack frame. */
static HOST_WIDE_INT
arg_area_size (void)
{
if (current_function_outgoing_args_size)
{
if (current_function_outgoing_args_size >= FIXED_STACK_AREA)
return current_function_outgoing_args_size;
else
return FIXED_STACK_AREA;
}
return 0;
}
/* Save RETS and FP, and allocate a stack frame. */
static void
do_link (rtx spreg, HOST_WIDE_INT frame_size)
{
frame_size += arg_area_size ();
if (stack_frame_needed_p ()
|| (must_save_fp_p () && ! current_function_is_leaf))
emit_link_insn (spreg, frame_size);
else
{
if (! current_function_is_leaf)
{
rtx pat = gen_movsi (gen_rtx_MEM (Pmode,
gen_rtx_PRE_DEC (Pmode, spreg)),
bfin_rets_rtx);
rtx insn = emit_insn (pat);
RTX_FRAME_RELATED_P (insn) = 1;
}
if (must_save_fp_p ())
{
rtx pat = gen_movsi (gen_rtx_MEM (Pmode,
gen_rtx_PRE_DEC (Pmode, spreg)),
gen_rtx_REG (Pmode, REG_FP));
rtx insn = emit_insn (pat);
RTX_FRAME_RELATED_P (insn) = 1;
}
add_to_sp (spreg, -frame_size, 1);
}
}
/* Like do_link, but used for epilogues to deallocate the stack frame. */
static void
do_unlink (rtx spreg, HOST_WIDE_INT frame_size)
{
frame_size += arg_area_size ();
if (stack_frame_needed_p ())
emit_insn (gen_unlink ());
else
{
rtx postinc = gen_rtx_MEM (Pmode, gen_rtx_POST_INC (Pmode, spreg));
add_to_sp (spreg, frame_size, 0);
if (must_save_fp_p ())
{
rtx fpreg = gen_rtx_REG (Pmode, REG_FP);
emit_move_insn (fpreg, postinc);
emit_insn (gen_rtx_USE (VOIDmode, fpreg));
}
if (! current_function_is_leaf)
{
emit_move_insn (bfin_rets_rtx, postinc);
emit_insn (gen_rtx_USE (VOIDmode, bfin_rets_rtx));
}
}
}
/* Generate a prologue suitable for a function of kind FKIND. This is
called for interrupt and exception handler prologues.
SPREG contains (reg:SI REG_SP). */
static void
expand_interrupt_handler_prologue (rtx spreg, e_funkind fkind)
{
int i;
HOST_WIDE_INT frame_size = get_frame_size ();
rtx predec1 = gen_rtx_PRE_DEC (SImode, spreg);
rtx predec = gen_rtx_MEM (SImode, predec1);
rtx insn;
tree attrs = TYPE_ATTRIBUTES (TREE_TYPE (current_function_decl));
tree all = lookup_attribute ("saveall", attrs);
tree kspisusp = lookup_attribute ("kspisusp", attrs);
if (kspisusp)
{
insn = emit_move_insn (spreg, gen_rtx_REG (Pmode, REG_USP));
RTX_FRAME_RELATED_P (insn) = 1;
}
/* We need space on the stack in case we need to save the argument
registers. */
if (fkind == EXCPT_HANDLER)
{
insn = emit_insn (gen_addsi3 (spreg, spreg, GEN_INT (-12)));
RTX_FRAME_RELATED_P (insn) = 1;
}
insn = emit_move_insn (predec, gen_rtx_REG (SImode, REG_ASTAT));
RTX_FRAME_RELATED_P (insn) = 1;
expand_prologue_reg_save (spreg, all != NULL_TREE);
for (i = REG_P7 + 1; i < REG_CC; i++)
if (all
|| regs_ever_live[i]
|| (!leaf_function_p () && call_used_regs[i]))
{
if (i == REG_A0 || i == REG_A1)
insn = emit_move_insn (gen_rtx_MEM (PDImode, predec1),
gen_rtx_REG (PDImode, i));
else
insn = emit_move_insn (predec, gen_rtx_REG (SImode, i));
RTX_FRAME_RELATED_P (insn) = 1;
}
if (lookup_attribute ("nesting", attrs))
{
rtx srcreg = gen_rtx_REG (Pmode, (fkind == EXCPT_HANDLER ? REG_RETX
: fkind == NMI_HANDLER ? REG_RETN
: REG_RETI));
insn = emit_move_insn (predec, srcreg);
RTX_FRAME_RELATED_P (insn) = 1;
}
do_link (spreg, frame_size);
if (fkind == EXCPT_HANDLER)
{
rtx r0reg = gen_rtx_REG (SImode, REG_R0);
rtx r1reg = gen_rtx_REG (SImode, REG_R1);
rtx r2reg = gen_rtx_REG (SImode, REG_R2);
rtx insn;
insn = emit_move_insn (r0reg, gen_rtx_REG (SImode, REG_SEQSTAT));
REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_MAYBE_DEAD, const0_rtx,
NULL_RTX);
insn = emit_insn (gen_ashrsi3 (r0reg, r0reg, GEN_INT (26)));
REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_MAYBE_DEAD, const0_rtx,
NULL_RTX);
insn = emit_insn (gen_ashlsi3 (r0reg, r0reg, GEN_INT (26)));
REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_MAYBE_DEAD, const0_rtx,
NULL_RTX);
insn = emit_move_insn (r1reg, spreg);
REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_MAYBE_DEAD, const0_rtx,
NULL_RTX);
insn = emit_move_insn (r2reg, gen_rtx_REG (Pmode, REG_FP));
REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_MAYBE_DEAD, const0_rtx,
NULL_RTX);
insn = emit_insn (gen_addsi3 (r2reg, r2reg, GEN_INT (8)));
REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_MAYBE_DEAD, const0_rtx,
NULL_RTX);
}
}
/* Generate an epilogue suitable for a function of kind FKIND. This is
called for interrupt and exception handler epilogues.
SPREG contains (reg:SI REG_SP). */
static void
expand_interrupt_handler_epilogue (rtx spreg, e_funkind fkind)
{
int i;
rtx postinc1 = gen_rtx_POST_INC (SImode, spreg);
rtx postinc = gen_rtx_MEM (SImode, postinc1);
tree attrs = TYPE_ATTRIBUTES (TREE_TYPE (current_function_decl));
tree all = lookup_attribute ("saveall", attrs);
/* A slightly crude technique to stop flow from trying to delete "dead"
insns. */
MEM_VOLATILE_P (postinc) = 1;
do_unlink (spreg, get_frame_size ());
if (lookup_attribute ("nesting", attrs))
{
rtx srcreg = gen_rtx_REG (Pmode, (fkind == EXCPT_HANDLER ? REG_RETX
: fkind == NMI_HANDLER ? REG_RETN
: REG_RETI));
emit_move_insn (srcreg, postinc);
}
for (i = REG_CC - 1; i > REG_P7; i--)
if (all
|| regs_ever_live[i]
|| (!leaf_function_p () && call_used_regs[i]))
{
if (i == REG_A0 || i == REG_A1)
{
rtx mem = gen_rtx_MEM (PDImode, postinc1);
MEM_VOLATILE_P (mem) = 1;
emit_move_insn (gen_rtx_REG (PDImode, i), mem);
}
else
emit_move_insn (gen_rtx_REG (SImode, i), postinc);
}
expand_epilogue_reg_restore (spreg, all != NULL_TREE);
emit_move_insn (gen_rtx_REG (SImode, REG_ASTAT), postinc);
/* Deallocate any space we left on the stack in case we needed to save the
argument registers. */
if (fkind == EXCPT_HANDLER)
emit_insn (gen_addsi3 (spreg, spreg, GEN_INT (12)));
emit_jump_insn (gen_return_internal (GEN_INT (fkind)));
}
/* Generate RTL for the prologue of the current function. */
void
bfin_expand_prologue (void)
{
rtx insn;
HOST_WIDE_INT frame_size = get_frame_size ();
rtx spreg = gen_rtx_REG (Pmode, REG_SP);
e_funkind fkind = funkind (TREE_TYPE (current_function_decl));
if (fkind != SUBROUTINE)
{
expand_interrupt_handler_prologue (spreg, fkind);
return;
}
expand_prologue_reg_save (spreg, 0);
do_link (spreg, frame_size);
if (TARGET_ID_SHARED_LIBRARY
&& (current_function_uses_pic_offset_table
|| !current_function_is_leaf))
{
rtx addr;
if (bfin_lib_id_given)
addr = plus_constant (pic_offset_table_rtx, -4 - bfin_library_id * 4);
else
addr = gen_rtx_PLUS (Pmode, pic_offset_table_rtx,
gen_rtx_UNSPEC (Pmode, gen_rtvec (1, const0_rtx),
UNSPEC_LIBRARY_OFFSET));
insn = emit_insn (gen_movsi (pic_offset_table_rtx,
gen_rtx_MEM (Pmode, addr)));
REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_MAYBE_DEAD, const0_rtx, NULL);
}
}
/* Generate RTL for the epilogue of the current function. NEED_RETURN is zero
if this is for a sibcall. EH_RETURN is nonzero if we're expanding an
eh_return pattern. */
void
bfin_expand_epilogue (int need_return, int eh_return)
{
rtx spreg = gen_rtx_REG (Pmode, REG_SP);
e_funkind fkind = funkind (TREE_TYPE (current_function_decl));
if (fkind != SUBROUTINE)
{
expand_interrupt_handler_epilogue (spreg, fkind);
return;
}
do_unlink (spreg, get_frame_size ());
expand_epilogue_reg_restore (spreg, 0);
/* Omit the return insn if this is for a sibcall. */
if (! need_return)
return;
if (eh_return)
emit_insn (gen_addsi3 (spreg, spreg, gen_rtx_REG (Pmode, REG_P2)));
emit_jump_insn (gen_return_internal (GEN_INT (SUBROUTINE)));
}
/* Return nonzero if register OLD_REG can be renamed to register NEW_REG. */
int
bfin_hard_regno_rename_ok (unsigned int old_reg ATTRIBUTE_UNUSED,
unsigned int new_reg)
{
/* Interrupt functions can only use registers that have already been
saved by the prologue, even if they would normally be
call-clobbered. */
if (funkind (TREE_TYPE (current_function_decl)) != SUBROUTINE
&& !regs_ever_live[new_reg])
return 0;
return 1;
}
/* Return the value of the return address for the frame COUNT steps up
from the current frame, after the prologue.
We punt for everything but the current frame by returning const0_rtx. */
rtx
bfin_return_addr_rtx (int count)
{
if (count != 0)
return const0_rtx;
return get_hard_reg_initial_val (Pmode, REG_RETS);
}
/* Try machine-dependent ways of modifying an illegitimate address X
to be legitimate. If we find one, return the new, valid address,
otherwise return NULL_RTX.
OLDX is the address as it was before break_out_memory_refs was called.
In some cases it is useful to look at this to decide what needs to be done.
MODE is the mode of the memory reference. */
rtx
legitimize_address (rtx x ATTRIBUTE_UNUSED, rtx oldx ATTRIBUTE_UNUSED,
enum machine_mode mode ATTRIBUTE_UNUSED)
{
return NULL_RTX;
}
/* This predicate is used to compute the length of a load/store insn.
OP is a MEM rtx, we return nonzero if its addressing mode requires a
32 bit instruction. */
int
effective_address_32bit_p (rtx op, enum machine_mode mode)
{
HOST_WIDE_INT offset;
mode = GET_MODE (op);
op = XEXP (op, 0);
if (GET_CODE (op) != PLUS)
{
gcc_assert (REG_P (op) || GET_CODE (op) == POST_INC
|| GET_CODE (op) == PRE_DEC || GET_CODE (op) == POST_DEC);
return 0;
}
offset = INTVAL (XEXP (op, 1));
/* All byte loads use a 16 bit offset. */
if (GET_MODE_SIZE (mode) == 1)
return 1;
if (GET_MODE_SIZE (mode) == 4)
{
/* Frame pointer relative loads can use a negative offset, all others
are restricted to a small positive one. */
if (XEXP (op, 0) == frame_pointer_rtx)
return offset < -128 || offset > 60;
return offset < 0 || offset > 60;
}
/* Must be HImode now. */
return offset < 0 || offset > 30;
}
/* Return cost of the memory address ADDR.
All addressing modes are equally cheap on the Blackfin. */
static int
bfin_address_cost (rtx addr ATTRIBUTE_UNUSED)
{
return 1;
}
/* Subroutine of print_operand; used to print a memory reference X to FILE. */
void
print_address_operand (FILE *file, rtx x)
{
switch (GET_CODE (x))
{
case PLUS:
output_address (XEXP (x, 0));
fprintf (file, "+");
output_address (XEXP (x, 1));
break;
case PRE_DEC:
fprintf (file, "--");
output_address (XEXP (x, 0));
break;
case POST_INC:
output_address (XEXP (x, 0));
fprintf (file, "++");
break;
case POST_DEC:
output_address (XEXP (x, 0));
fprintf (file, "--");
break;
default:
gcc_assert (GET_CODE (x) != MEM);
print_operand (file, x, 0);
break;
}
}
/* Adding intp DImode support by Tony
* -- Q: (low word)
* -- R: (high word)
*/
void
print_operand (FILE *file, rtx x, char code)
{
enum machine_mode mode = GET_MODE (x);
switch (code)
{
case 'j':
switch (GET_CODE (x))
{
case EQ:
fprintf (file, "e");
break;
case NE:
fprintf (file, "ne");
break;
case GT:
fprintf (file, "g");
break;
case LT:
fprintf (file, "l");
break;
case GE:
fprintf (file, "ge");
break;
case LE:
fprintf (file, "le");
break;
case GTU:
fprintf (file, "g");
break;
case LTU:
fprintf (file, "l");
break;
case GEU:
fprintf (file, "ge");
break;
case LEU:
fprintf (file, "le");
break;
default:
output_operand_lossage ("invalid %%j value");
}
break;
case 'J': /* reverse logic */
switch (GET_CODE(x))
{
case EQ:
fprintf (file, "ne");
break;
case NE:
fprintf (file, "e");
break;
case GT:
fprintf (file, "le");
break;
case LT:
fprintf (file, "ge");
break;
case GE:
fprintf (file, "l");
break;
case LE:
fprintf (file, "g");
break;
case GTU:
fprintf (file, "le");
break;
case LTU:
fprintf (file, "ge");
break;
case GEU:
fprintf (file, "l");
break;
case LEU:
fprintf (file, "g");
break;
default:
output_operand_lossage ("invalid %%J value");
}
break;
default:
switch (GET_CODE (x))
{
case REG:
if (code == 'h')
{
gcc_assert (REGNO (x) < 32);
fprintf (file, "%s", short_reg_names[REGNO (x)]);
/*fprintf (file, "\n%d\n ", REGNO (x));*/
break;
}
else if (code == 'd')
{
gcc_assert (REGNO (x) < 32);
fprintf (file, "%s", high_reg_names[REGNO (x)]);
break;
}
else if (code == 'w')
{
gcc_assert (REGNO (x) == REG_A0 || REGNO (x) == REG_A1);
fprintf (file, "%s.w", reg_names[REGNO (x)]);
}
else if (code == 'x')
{
gcc_assert (REGNO (x) == REG_A0 || REGNO (x) == REG_A1);
fprintf (file, "%s.x", reg_names[REGNO (x)]);
}
else if (code == 'D')
{
fprintf (file, "%s", dregs_pair_names[REGNO (x)]);
}
else if (code == 'H')
{
gcc_assert (mode == DImode || mode == DFmode);
gcc_assert (REG_P (x));
fprintf (file, "%s", reg_names[REGNO (x) + 1]);
}
else if (code == 'T')
{
gcc_assert (D_REGNO_P (REGNO (x)));
fprintf (file, "%s", byte_reg_names[REGNO (x)]);
}
else
fprintf (file, "%s", reg_names[REGNO (x)]);
break;
case MEM:
fputc ('[', file);
x = XEXP (x,0);
print_address_operand (file, x);
fputc (']', file);
break;
case CONST_INT:
/* Moves to half registers with d or h modifiers always use unsigned
constants. */
if (code == 'd')
x = GEN_INT ((INTVAL (x) >> 16) & 0xffff);
else if (code == 'h')
x = GEN_INT (INTVAL (x) & 0xffff);
else if (code == 'X')
x = GEN_INT (exact_log2 (0xffffffff & INTVAL (x)));
else if (code == 'Y')
x = GEN_INT (exact_log2 (0xffffffff & ~INTVAL (x)));
else if (code == 'Z')
/* Used for LINK insns. */
x = GEN_INT (-8 - INTVAL (x));
/* fall through */
case SYMBOL_REF:
output_addr_const (file, x);
if (code == 'G' && flag_pic)
fprintf (file, "@GOT");
break;
case CONST_DOUBLE:
output_operand_lossage ("invalid const_double operand");
break;
case UNSPEC:
switch (XINT (x, 1))
{
case UNSPEC_MOVE_PIC:
output_addr_const (file, XVECEXP (x, 0, 0));
fprintf (file, "@GOT");
break;
case UNSPEC_LIBRARY_OFFSET:
fprintf (file, "_current_shared_library_p5_offset_");
break;
default:
gcc_unreachable ();
}
break;
default:
output_addr_const (file, x);
}
}
}
/* Argument support functions. */
/* Initialize a variable CUM of type CUMULATIVE_ARGS
for a call to a function whose data type is FNTYPE.
For a library call, FNTYPE is 0.
VDSP C Compiler manual, our ABI says that
first 3 words of arguments will use R0, R1 and R2.
*/
void
init_cumulative_args (CUMULATIVE_ARGS *cum, tree fntype ATTRIBUTE_UNUSED,
rtx libname ATTRIBUTE_UNUSED)
{
static CUMULATIVE_ARGS zero_cum;
*cum = zero_cum;
/* Set up the number of registers to use for passing arguments. */
cum->nregs = max_arg_registers;
cum->arg_regs = arg_regs;
return;
}
/* Update the data in CUM to advance over an argument
of mode MODE and data type TYPE.
(TYPE is null for libcalls where that information may not be available.) */
void
function_arg_advance (CUMULATIVE_ARGS *cum, enum machine_mode mode, tree type,
int named ATTRIBUTE_UNUSED)
{
int count, bytes, words;
bytes = (mode == BLKmode) ? int_size_in_bytes (type) : GET_MODE_SIZE (mode);
words = (bytes + UNITS_PER_WORD - 1) / UNITS_PER_WORD;
cum->words += words;
cum->nregs -= words;
if (cum->nregs <= 0)
{
cum->nregs = 0;
cum->arg_regs = NULL;
}
else
{
for (count = 1; count <= words; count++)
cum->arg_regs++;
}
return;
}
/* Define where to put the arguments to a function.
Value is zero to push the argument on the stack,
or a hard register in which to store the argument.
MODE is the argument's machine mode.
TYPE is the data type of the argument (as a tree).
This is null for libcalls where that information may
not be available.
CUM is a variable of type CUMULATIVE_ARGS which gives info about
the preceding args and about the function being called.
NAMED is nonzero if this argument is a named parameter
(otherwise it is an extra parameter matching an ellipsis). */
struct rtx_def *
function_arg (CUMULATIVE_ARGS *cum, enum machine_mode mode, tree type,
int named ATTRIBUTE_UNUSED)
{
int bytes
= (mode == BLKmode) ? int_size_in_bytes (type) : GET_MODE_SIZE (mode);
if (bytes == -1)
return NULL_RTX;
if (cum->nregs)
return gen_rtx_REG (mode, *(cum->arg_regs));
return NULL_RTX;
}
/* For an arg passed partly in registers and partly in memory,
this is the number of bytes passed in registers.
For args passed entirely in registers or entirely in memory, zero.
Refer VDSP C Compiler manual, our ABI.
First 3 words are in registers. So, if a an argument is larger
than the registers available, it will span the register and
stack. */
static int
bfin_arg_partial_bytes (CUMULATIVE_ARGS *cum, enum machine_mode mode,
tree type ATTRIBUTE_UNUSED,
bool named ATTRIBUTE_UNUSED)
{
int bytes
= (mode == BLKmode) ? int_size_in_bytes (type) : GET_MODE_SIZE (mode);
int bytes_left = cum->nregs * UNITS_PER_WORD;
if (bytes == -1)
return 0;
if (bytes_left == 0)
return 0;
if (bytes > bytes_left)
return bytes_left;
return 0;
}
/* Variable sized types are passed by reference. */
static bool
bfin_pass_by_reference (CUMULATIVE_ARGS *cum ATTRIBUTE_UNUSED,
enum machine_mode mode ATTRIBUTE_UNUSED,
tree type, bool named ATTRIBUTE_UNUSED)
{
return type && TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST;
}
/* Decide whether a type should be returned in memory (true)
or in a register (false). This is called by the macro
RETURN_IN_MEMORY. */
int
bfin_return_in_memory (tree type)
{
int size;
enum machine_mode mode = TYPE_MODE (type);
if (mode == BLKmode)
return 1;
size = int_size_in_bytes (type);
if (VECTOR_MODE_P (mode) || mode == TImode)
{
/* User-created vectors small enough to fit in REG. */
if (size < 8)
return 0;
if (size == 8 || size == 16)
return 1;
}
if (size > 12)
return 1;
return 0;
}
/* Register in which address to store a structure value
is passed to a function. */
static rtx
bfin_struct_value_rtx (tree fntype ATTRIBUTE_UNUSED,
int incoming ATTRIBUTE_UNUSED)
{
return gen_rtx_REG (Pmode, REG_P0);
}
/* Return true when register may be used to pass function parameters. */
bool
function_arg_regno_p (int n)
{
int i;
for (i = 0; arg_regs[i] != -1; i++)
if (n == arg_regs[i])
return true;
return false;
}
/* Returns 1 if OP contains a symbol reference */
int
symbolic_reference_mentioned_p (rtx op)
{
register const char *fmt;
register int i;
if (GET_CODE (op) == SYMBOL_REF || GET_CODE (op) == LABEL_REF)
return 1;
fmt = GET_RTX_FORMAT (GET_CODE (op));
for (i = GET_RTX_LENGTH (GET_CODE (op)) - 1; i >= 0; i--)
{
if (fmt[i] == 'E')
{
register int j;
for (j = XVECLEN (op, i) - 1; j >= 0; j--)
if (symbolic_reference_mentioned_p (XVECEXP (op, i, j)))
return 1;
}
else if (fmt[i] == 'e' && symbolic_reference_mentioned_p (XEXP (op, i)))
return 1;
}
return 0;
}
/* Decide whether we can make a sibling call to a function. DECL is the
declaration of the function being targeted by the call and EXP is the
CALL_EXPR representing the call. */
static bool
bfin_function_ok_for_sibcall (tree decl ATTRIBUTE_UNUSED,
tree exp ATTRIBUTE_UNUSED)
{
return true;
}
/* Emit RTL insns to initialize the variable parts of a trampoline at
TRAMP. FNADDR is an RTX for the address of the function's pure
code. CXT is an RTX for the static chain value for the function. */
void
initialize_trampoline (tramp, fnaddr, cxt)
rtx tramp, fnaddr, cxt;
{
rtx t1 = copy_to_reg (fnaddr);
rtx t2 = copy_to_reg (cxt);
rtx addr;
addr = memory_address (Pmode, plus_constant (tramp, 2));
emit_move_insn (gen_rtx_MEM (HImode, addr), gen_lowpart (HImode, t1));
emit_insn (gen_ashrsi3 (t1, t1, GEN_INT (16)));
addr = memory_address (Pmode, plus_constant (tramp, 6));
emit_move_insn (gen_rtx_MEM (HImode, addr), gen_lowpart (HImode, t1));
addr = memory_address (Pmode, plus_constant (tramp, 10));
emit_move_insn (gen_rtx_MEM (HImode, addr), gen_lowpart (HImode, t2));
emit_insn (gen_ashrsi3 (t2, t2, GEN_INT (16)));
addr = memory_address (Pmode, plus_constant (tramp, 14));
emit_move_insn (gen_rtx_MEM (HImode, addr), gen_lowpart (HImode, t2));
}
/* Legitimize PIC addresses. If the address is already position-independent,
we return ORIG. Newly generated position-independent addresses go into a
reg. This is REG if nonzero, otherwise we allocate register(s) as
necessary. */
rtx
legitimize_pic_address (rtx orig, rtx reg)
{
rtx addr = orig;
rtx new = orig;
if (GET_CODE (addr) == SYMBOL_REF || GET_CODE (addr) == LABEL_REF)
{
if (GET_CODE (addr) == SYMBOL_REF && CONSTANT_POOL_ADDRESS_P (addr))
reg = new = orig;
else
{
if (reg == 0)
{
gcc_assert (!no_new_pseudos);
reg = gen_reg_rtx (Pmode);
}
if (flag_pic == 2)
{
emit_insn (gen_movsi_high_pic (reg, addr));
emit_insn (gen_movsi_low_pic (reg, reg, addr));
emit_insn (gen_addsi3 (reg, reg, pic_offset_table_rtx));
new = gen_rtx_MEM (Pmode, reg);
}
else
{
rtx tmp = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, addr),
UNSPEC_MOVE_PIC);
new = gen_rtx_MEM (Pmode,
gen_rtx_PLUS (Pmode, pic_offset_table_rtx,
tmp));
}
emit_move_insn (reg, new);
}
current_function_uses_pic_offset_table = 1;
return reg;
}
else if (GET_CODE (addr) == CONST || GET_CODE (addr) == PLUS)
{
rtx base;
if (GET_CODE (addr) == CONST)
{
addr = XEXP (addr, 0);
gcc_assert (GET_CODE (addr) == PLUS);
}
if (XEXP (addr, 0) == pic_offset_table_rtx)
return orig;
if (reg == 0)
{
gcc_assert (!no_new_pseudos);
reg = gen_reg_rtx (Pmode);
}
base = legitimize_pic_address (XEXP (addr, 0), reg);
addr = legitimize_pic_address (XEXP (addr, 1),
base == reg ? NULL_RTX : reg);
if (GET_CODE (addr) == CONST_INT)
{
gcc_assert (! reload_in_progress && ! reload_completed);
addr = force_reg (Pmode, addr);
}
if (GET_CODE (addr) == PLUS && CONSTANT_P (XEXP (addr, 1)))
{
base = gen_rtx_PLUS (Pmode, base, XEXP (addr, 0));
addr = XEXP (addr, 1);
}
return gen_rtx_PLUS (Pmode, base, addr);
}
return new;
}
/* Emit insns to move operands[1] into operands[0]. */
void
emit_pic_move (rtx *operands, enum machine_mode mode ATTRIBUTE_UNUSED)
{
rtx temp = reload_in_progress ? operands[0] : gen_reg_rtx (Pmode);
if (GET_CODE (operands[0]) == MEM && SYMBOLIC_CONST (operands[1]))
operands[1] = force_reg (SImode, operands[1]);
else
operands[1] = legitimize_pic_address (operands[1], temp);
}
/* Expand a move operation in mode MODE. The operands are in OPERANDS. */
void
expand_move (rtx *operands, enum machine_mode mode)
{
if (flag_pic && SYMBOLIC_CONST (operands[1]))
emit_pic_move (operands, mode);
/* Don't generate memory->memory or constant->memory moves, go through a
register */
else if ((reload_in_progress | reload_completed) == 0
&& GET_CODE (operands[0]) == MEM
&& GET_CODE (operands[1]) != REG)
operands[1] = force_reg (mode, operands[1]);
}
/* Split one or more DImode RTL references into pairs of SImode
references. The RTL can be REG, offsettable MEM, integer constant, or
CONST_DOUBLE. "operands" is a pointer to an array of DImode RTL to
split and "num" is its length. lo_half and hi_half are output arrays
that parallel "operands". */
void
split_di (rtx operands[], int num, rtx lo_half[], rtx hi_half[])
{
while (num--)
{
rtx op = operands[num];
/* simplify_subreg refuse to split volatile memory addresses,
but we still have to handle it. */
if (GET_CODE (op) == MEM)
{
lo_half[num] = adjust_address (op, SImode, 0);
hi_half[num] = adjust_address (op, SImode, 4);
}
else
{
lo_half[num] = simplify_gen_subreg (SImode, op,
GET_MODE (op) == VOIDmode
? DImode : GET_MODE (op), 0);
hi_half[num] = simplify_gen_subreg (SImode, op,
GET_MODE (op) == VOIDmode
? DImode : GET_MODE (op), 4);
}
}
}
/* Expand a call instruction. FNADDR is the call target, RETVAL the return value.
SIBCALL is nonzero if this is a sibling call. */
void
bfin_expand_call (rtx retval, rtx fnaddr, rtx callarg1, int sibcall)
{
rtx use = NULL, call;
/* Static functions and indirect calls don't need the pic register. */
if (flag_pic
&& GET_CODE (XEXP (fnaddr, 0)) == SYMBOL_REF
&& ! SYMBOL_REF_LOCAL_P (XEXP (fnaddr, 0)))
use_reg (&use, pic_offset_table_rtx);
if (! call_insn_operand (XEXP (fnaddr, 0), Pmode))
{
fnaddr = copy_to_mode_reg (Pmode, XEXP (fnaddr, 0));
fnaddr = gen_rtx_MEM (Pmode, fnaddr);
}
call = gen_rtx_CALL (VOIDmode, fnaddr, callarg1);
if (retval)
call = gen_rtx_SET (VOIDmode, retval, call);
if (sibcall)
{
rtx pat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (2));
XVECEXP (pat, 0, 0) = call;
XVECEXP (pat, 0, 1) = gen_rtx_RETURN (VOIDmode);
call = pat;
}
call = emit_call_insn (call);
if (use)
CALL_INSN_FUNCTION_USAGE (call) = use;
}
/* Return 1 if hard register REGNO can hold a value of machine-mode MODE. */
int
hard_regno_mode_ok (int regno, enum machine_mode mode)
{
/* Allow only dregs to store value of mode HI or QI */
enum reg_class class = REGNO_REG_CLASS (regno);
if (mode == CCmode)
return 0;
if (mode == V2HImode)
return D_REGNO_P (regno);
if (class == CCREGS)
return mode == BImode;
if (mode == PDImode)
return regno == REG_A0 || regno == REG_A1;
if (mode == SImode
&& TEST_HARD_REG_BIT (reg_class_contents[PROLOGUE_REGS], regno))
return 1;
return TEST_HARD_REG_BIT (reg_class_contents[MOST_REGS], regno);
}
/* Implements target hook vector_mode_supported_p. */
static bool
bfin_vector_mode_supported_p (enum machine_mode mode)
{
return mode == V2HImode;
}
/* Return the cost of moving data from a register in class CLASS1 to
one in class CLASS2. A cost of 2 is the default. */
int
bfin_register_move_cost (enum machine_mode mode ATTRIBUTE_UNUSED,
enum reg_class class1, enum reg_class class2)
{
/* If optimizing for size, always prefer reg-reg over reg-memory moves. */
if (optimize_size)
return 2;
/* There are some stalls involved when moving from a DREG to a different
class reg, and using the value in one of the following instructions.
Attempt to model this by slightly discouraging such moves. */
if (class1 == DREGS && class2 != DREGS)
return 2 * 2;
return 2;
}
/* Return the cost of moving data of mode M between a
register and memory. A value of 2 is the default; this cost is
relative to those in `REGISTER_MOVE_COST'.
??? In theory L1 memory has single-cycle latency. We should add a switch
that tells the compiler whether we expect to use only L1 memory for the
program; it'll make the costs more accurate. */
int
bfin_memory_move_cost (enum machine_mode mode ATTRIBUTE_UNUSED,
enum reg_class class,
int in ATTRIBUTE_UNUSED)
{
/* Make memory accesses slightly more expensive than any register-register
move. Also, penalize non-DP registers, since they need secondary
reloads to load and store. */
if (! reg_class_subset_p (class, DPREGS))
return 10;
return 8;
}
/* Inform reload about cases where moving X with a mode MODE to a register in
CLASS requires an extra scratch register. Return the class needed for the
scratch register. */
enum reg_class
secondary_input_reload_class (enum reg_class class, enum machine_mode mode,
rtx x)
{
/* If we have HImode or QImode, we can only use DREGS as secondary registers;
in most other cases we can also use PREGS. */
enum reg_class default_class = GET_MODE_SIZE (mode) >= 4 ? DPREGS : DREGS;
enum reg_class x_class = NO_REGS;
enum rtx_code code = GET_CODE (x);
if (code == SUBREG)
x = SUBREG_REG (x), code = GET_CODE (x);
if (REG_P (x))
{
int regno = REGNO (x);
if (regno >= FIRST_PSEUDO_REGISTER)
regno = reg_renumber[regno];
if (regno == -1)
code = MEM;
else
x_class = REGNO_REG_CLASS (regno);
}
/* We can be asked to reload (plus (FP) (large_constant)) into a DREG.
This happens as a side effect of register elimination, and we need
a scratch register to do it. */
if (fp_plus_const_operand (x, mode))
{
rtx op2 = XEXP (x, 1);
int large_constant_p = ! CONST_7BIT_IMM_P (INTVAL (op2));
if (class == PREGS || class == PREGS_CLOBBERED)
return NO_REGS;
/* If destination is a DREG, we can do this without a scratch register
if the constant is valid for an add instruction. */
if (class == DREGS || class == DPREGS)
return large_constant_p ? PREGS : NO_REGS;
/* Reloading to anything other than a DREG? Use a PREG scratch
register. */
return PREGS;
}
/* Data can usually be moved freely between registers of most classes.
AREGS are an exception; they can only move to or from another register
in AREGS or one in DREGS. They can also be assigned the constant 0. */
if (x_class == AREGS)
return class == DREGS || class == AREGS ? NO_REGS : DREGS;
if (class == AREGS)
{
if (x != const0_rtx && x_class != DREGS)
return DREGS;
else
return NO_REGS;
}
/* CCREGS can only be moved from/to DREGS. */
if (class == CCREGS && x_class != DREGS)
return DREGS;
if (x_class == CCREGS && class != DREGS)
return DREGS;
/* All registers other than AREGS can load arbitrary constants. The only
case that remains is MEM. */
if (code == MEM)
if (! reg_class_subset_p (class, default_class))
return default_class;
return NO_REGS;
}
/* Like secondary_input_reload_class; and all we do is call that function. */
enum reg_class
secondary_output_reload_class (enum reg_class class, enum machine_mode mode,
rtx x)
{
return secondary_input_reload_class (class, mode, x);
}
/* Implement TARGET_HANDLE_OPTION. */
static bool
bfin_handle_option (size_t code, const char *arg, int value)
{
switch (code)
{
case OPT_mshared_library_id_:
if (value > MAX_LIBRARY_ID)
error ("-mshared-library-id=%s is not between 0 and %d",
arg, MAX_LIBRARY_ID);
bfin_lib_id_given = 1;
return true;
default:
return true;
}
}
/* Implement the macro OVERRIDE_OPTIONS. */
void
override_options (void)
{
if (TARGET_OMIT_LEAF_FRAME_POINTER)
flag_omit_frame_pointer = 1;
/* Library identification */
if (bfin_lib_id_given && ! TARGET_ID_SHARED_LIBRARY)
error ("-mshared-library-id= specified without -mid-shared-library");
if (TARGET_ID_SHARED_LIBRARY)
/* ??? Provide a way to use a bigger GOT. */
flag_pic = 1;
flag_schedule_insns = 0;
}
/* Return the destination address of BRANCH.
We need to use this instead of get_attr_length, because the
cbranch_with_nops pattern conservatively sets its length to 6, and
we still prefer to use shorter sequences. */
static int
branch_dest (rtx branch)
{
rtx dest;
int dest_uid;
rtx pat = PATTERN (branch);
if (GET_CODE (pat) == PARALLEL)
pat = XVECEXP (pat, 0, 0);
dest = SET_SRC (pat);
if (GET_CODE (dest) == IF_THEN_ELSE)
dest = XEXP (dest, 1);
dest = XEXP (dest, 0);
dest_uid = INSN_UID (dest);
return INSN_ADDRESSES (dest_uid);
}
/* Return nonzero if INSN is annotated with a REG_BR_PROB note that indicates
it's a branch that's predicted taken. */
static int
cbranch_predicted_taken_p (rtx insn)
{
rtx x = find_reg_note (insn, REG_BR_PROB, 0);
if (x)
{
int pred_val = INTVAL (XEXP (x, 0));
return pred_val >= REG_BR_PROB_BASE / 2;
}
return 0;
}
/* Templates for use by asm_conditional_branch. */
static const char *ccbranch_templates[][3] = {
{ "if !cc jump %3;", "if cc jump 4 (bp); jump.s %3;", "if cc jump 6 (bp); jump.l %3;" },
{ "if cc jump %3;", "if !cc jump 4 (bp); jump.s %3;", "if !cc jump 6 (bp); jump.l %3;" },
{ "if !cc jump %3 (bp);", "if cc jump 4; jump.s %3;", "if cc jump 6; jump.l %3;" },
{ "if cc jump %3 (bp);", "if !cc jump 4; jump.s %3;", "if !cc jump 6; jump.l %3;" },
};
/* Output INSN, which is a conditional branch instruction with operands
OPERANDS.
We deal with the various forms of conditional branches that can be generated
by bfin_reorg to prevent the hardware from doing speculative loads, by
- emitting a sufficient number of nops, if N_NOPS is nonzero, or
- always emitting the branch as predicted taken, if PREDICT_TAKEN is true.
Either of these is only necessary if the branch is short, otherwise the
template we use ends in an unconditional jump which flushes the pipeline
anyway. */
void
asm_conditional_branch (rtx insn, rtx *operands, int n_nops, int predict_taken)
{
int offset = branch_dest (insn) - INSN_ADDRESSES (INSN_UID (insn));
/* Note : offset for instructions like if cc jmp; jump.[sl] offset
is to be taken from start of if cc rather than jump.
Range for jump.s is (-4094, 4096) instead of (-4096, 4094)
*/
int len = (offset >= -1024 && offset <= 1022 ? 0
: offset >= -4094 && offset <= 4096 ? 1
: 2);
int bp = predict_taken && len == 0 ? 1 : cbranch_predicted_taken_p (insn);
int idx = (bp << 1) | (GET_CODE (operands[0]) == EQ ? BRF : BRT);
output_asm_insn (ccbranch_templates[idx][len], operands);
gcc_assert (n_nops == 0 || !bp);
if (len == 0)
while (n_nops-- > 0)
output_asm_insn ("nop;", NULL);
}
/* Emit rtl for a comparison operation CMP in mode MODE. Operands have been
stored in bfin_compare_op0 and bfin_compare_op1 already. */
rtx
bfin_gen_compare (rtx cmp, enum machine_mode mode ATTRIBUTE_UNUSED)
{
enum rtx_code code1, code2;
rtx op0 = bfin_compare_op0, op1 = bfin_compare_op1;
rtx tem = bfin_cc_rtx;
enum rtx_code code = GET_CODE (cmp);
/* If we have a BImode input, then we already have a compare result, and
do not need to emit another comparison. */
if (GET_MODE (op0) == BImode)
{
gcc_assert ((code == NE || code == EQ) && op1 == const0_rtx);
tem = op0, code2 = code;
}
else
{
switch (code) {
/* bfin has these conditions */
case EQ:
case LT:
case LE:
case LEU:
case LTU:
code1 = code;
code2 = NE;
break;
default:
code1 = reverse_condition (code);
code2 = EQ;
break;
}
emit_insn (gen_rtx_SET (BImode, tem,
gen_rtx_fmt_ee (code1, BImode, op0, op1)));
}
return gen_rtx_fmt_ee (code2, BImode, tem, CONST0_RTX (BImode));
}
/* Return nonzero iff C has exactly one bit set if it is interpreted
as a 32 bit constant. */
int
log2constp (unsigned HOST_WIDE_INT c)
{
c &= 0xFFFFFFFF;
return c != 0 && (c & (c-1)) == 0;
}
/* Returns the number of consecutive least significant zeros in the binary
representation of *V.
We modify *V to contain the original value arithmetically shifted right by
the number of zeroes. */
static int
shiftr_zero (HOST_WIDE_INT *v)
{
unsigned HOST_WIDE_INT tmp = *v;
unsigned HOST_WIDE_INT sgn;
int n = 0;
if (tmp == 0)
return 0;
sgn = tmp & ((unsigned HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT - 1));
while ((tmp & 0x1) == 0 && n <= 32)
{
tmp = (tmp >> 1) | sgn;
n++;
}
*v = tmp;
return n;
}
/* After reload, split the load of an immediate constant. OPERANDS are the
operands of the movsi_insn pattern which we are splitting. We return
nonzero if we emitted a sequence to load the constant, zero if we emitted
nothing because we want to use the splitter's default sequence. */
int
split_load_immediate (rtx operands[])
{
HOST_WIDE_INT val = INTVAL (operands[1]);
HOST_WIDE_INT tmp;
HOST_WIDE_INT shifted = val;
HOST_WIDE_INT shifted_compl = ~val;
int num_zero = shiftr_zero (&shifted);
int num_compl_zero = shiftr_zero (&shifted_compl);
unsigned int regno = REGNO (operands[0]);
enum reg_class class1 = REGNO_REG_CLASS (regno);
/* This case takes care of single-bit set/clear constants, which we could
also implement with BITSET/BITCLR. */
if (num_zero
&& shifted >= -32768 && shifted < 65536
&& (D_REGNO_P (regno)
|| (regno >= REG_P0 && regno <= REG_P7 && num_zero <= 2)))
{
emit_insn (gen_movsi (operands[0], GEN_INT (shifted)));
emit_insn (gen_ashlsi3 (operands[0], operands[0], GEN_INT (num_zero)));
return 1;
}
tmp = val & 0xFFFF;
tmp |= -(tmp & 0x8000);
/* If high word has one bit set or clear, try to use a bit operation. */
if (D_REGNO_P (regno))
{
if (log2constp (val & 0xFFFF0000))
{
emit_insn (gen_movsi (operands[0], GEN_INT (val & 0xFFFF)));
emit_insn (gen_iorsi3 (operands[0], operands[0], GEN_INT (val & 0xFFFF0000)));
return 1;
}
else if (log2constp (val | 0xFFFF) && (val & 0x8000) != 0)
{
emit_insn (gen_movsi (operands[0], GEN_INT (tmp)));
emit_insn (gen_andsi3 (operands[0], operands[0], GEN_INT (val | 0xFFFF)));
}
}
if (D_REGNO_P (regno))
{
if (CONST_7BIT_IMM_P (tmp))
{
emit_insn (gen_movsi (operands[0], GEN_INT (tmp)));
emit_insn (gen_movstricthi_high (operands[0], GEN_INT (val & -65536)));
return 1;
}
if ((val & 0xFFFF0000) == 0)
{
emit_insn (gen_movsi (operands[0], const0_rtx));
emit_insn (gen_movsi_low (operands[0], operands[0], operands[1]));
return 1;
}
if ((val & 0xFFFF0000) == 0xFFFF0000)
{
emit_insn (gen_movsi (operands[0], constm1_rtx));
emit_insn (gen_movsi_low (operands[0], operands[0], operands[1]));
return 1;
}
}
/* Need DREGs for the remaining case. */
if (regno > REG_R7)
return 0;
if (optimize_size
&& num_compl_zero && CONST_7BIT_IMM_P (shifted_compl))
{
/* If optimizing for size, generate a sequence that has more instructions
but is shorter. */
emit_insn (gen_movsi (operands[0], GEN_INT (shifted_compl)));
emit_insn (gen_ashlsi3 (operands[0], operands[0],
GEN_INT (num_compl_zero)));
emit_insn (gen_one_cmplsi2 (operands[0], operands[0]));
return 1;
}
return 0;
}
/* Return true if the legitimate memory address for a memory operand of mode
MODE. Return false if not. */
static bool
bfin_valid_add (enum machine_mode mode, HOST_WIDE_INT value)
{
unsigned HOST_WIDE_INT v = value > 0 ? value : -value;
int sz = GET_MODE_SIZE (mode);
int shift = sz == 1 ? 0 : sz == 2 ? 1 : 2;
/* The usual offsettable_memref machinery doesn't work so well for this
port, so we deal with the problem here. */
unsigned HOST_WIDE_INT mask = sz == 8 ? 0x7ffe : 0x7fff;
return (v & ~(mask << shift)) == 0;
}
static bool
bfin_valid_reg_p (unsigned int regno, int strict)
{
return ((strict && REGNO_OK_FOR_BASE_STRICT_P (regno))
|| (!strict && REGNO_OK_FOR_BASE_NONSTRICT_P (regno)));
}
bool
bfin_legitimate_address_p (enum machine_mode mode, rtx x, int strict)
{
switch (GET_CODE (x)) {
case REG:
if (bfin_valid_reg_p (REGNO (x), strict))
return true;
break;
case PLUS:
if (REG_P (XEXP (x, 0))
&& bfin_valid_reg_p (REGNO (XEXP (x, 0)), strict)
&& (GET_CODE (XEXP (x, 1)) == UNSPEC
|| (GET_CODE (XEXP (x, 1)) == CONST_INT
&& bfin_valid_add (mode, INTVAL (XEXP (x, 1))))))
return true;
break;
case POST_INC:
case POST_DEC:
if (LEGITIMATE_MODE_FOR_AUTOINC_P (mode)
&& REG_P (XEXP (x, 0))
&& bfin_valid_reg_p (REGNO (XEXP (x, 0)), strict))
return true;
case PRE_DEC:
if (LEGITIMATE_MODE_FOR_AUTOINC_P (mode)
&& XEXP (x, 0) == stack_pointer_rtx
&& REG_P (XEXP (x, 0))
&& bfin_valid_reg_p (REGNO (XEXP (x, 0)), strict))
return true;
break;
default:
break;
}
return false;
}
static bool
bfin_rtx_costs (rtx x, int code, int outer_code, int *total)
{
int cost2 = COSTS_N_INSNS (1);
switch (code)
{
case CONST_INT:
if (outer_code == SET || outer_code == PLUS)
*total = CONST_7BIT_IMM_P (INTVAL (x)) ? 0 : cost2;
else if (outer_code == AND)
*total = log2constp (~INTVAL (x)) ? 0 : cost2;
else if (outer_code == LE || outer_code == LT || outer_code == EQ)
*total = (INTVAL (x) >= -4 && INTVAL (x) <= 3) ? 0 : cost2;
else if (outer_code == LEU || outer_code == LTU)
*total = (INTVAL (x) >= 0 && INTVAL (x) <= 7) ? 0 : cost2;
else if (outer_code == MULT)
*total = (INTVAL (x) == 2 || INTVAL (x) == 4) ? 0 : cost2;
else if (outer_code == ASHIFT && (INTVAL (x) == 1 || INTVAL (x) == 2))
*total = 0;
else if (outer_code == ASHIFT || outer_code == ASHIFTRT
|| outer_code == LSHIFTRT)
*total = (INTVAL (x) >= 0 && INTVAL (x) <= 31) ? 0 : cost2;
else if (outer_code == IOR || outer_code == XOR)
*total = (INTVAL (x) & (INTVAL (x) - 1)) == 0 ? 0 : cost2;
else
*total = cost2;
return true;
case CONST:
case LABEL_REF:
case SYMBOL_REF:
case CONST_DOUBLE:
*total = COSTS_N_INSNS (2);
return true;
case PLUS:
if (GET_MODE (x) == Pmode)
{
if (GET_CODE (XEXP (x, 0)) == MULT
&& GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT)
{
HOST_WIDE_INT val = INTVAL (XEXP (XEXP (x, 0), 1));
if (val == 2 || val == 4)
{
*total = cost2;
*total += rtx_cost (XEXP (XEXP (x, 0), 0), outer_code);
*total += rtx_cost (XEXP (x, 1), outer_code);
return true;
}
}
}
/* fall through */
case MINUS:
case ASHIFT:
case ASHIFTRT:
case LSHIFTRT:
if (GET_MODE (x) == DImode)
*total = 6 * cost2;
return false;
case AND:
case IOR:
case XOR:
if (GET_MODE (x) == DImode)
*total = 2 * cost2;
return false;
case MULT:
if (GET_MODE_SIZE (GET_MODE (x)) <= UNITS_PER_WORD)
*total = COSTS_N_INSNS (3);
return false;
default:
return false;
}
}
static void
bfin_internal_label (FILE *stream, const char *prefix, unsigned long num)
{
fprintf (stream, "%s%s$%ld:\n", LOCAL_LABEL_PREFIX, prefix, num);
}
/* Used for communication between {push,pop}_multiple_operation (which
we use not only as a predicate) and the corresponding output functions. */
static int first_preg_to_save, first_dreg_to_save;
int
push_multiple_operation (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
{
int lastdreg = 8, lastpreg = 6;
int i, group;
first_preg_to_save = lastpreg;
first_dreg_to_save = lastdreg;
for (i = 1, group = 0; i < XVECLEN (op, 0) - 1; i++)
{
rtx t = XVECEXP (op, 0, i);
rtx src, dest;
int regno;
if (GET_CODE (t) != SET)
return 0;
src = SET_SRC (t);
dest = SET_DEST (t);
if (GET_CODE (dest) != MEM || ! REG_P (src))
return 0;
dest = XEXP (dest, 0);
if (GET_CODE (dest) != PLUS
|| ! REG_P (XEXP (dest, 0))
|| REGNO (XEXP (dest, 0)) != REG_SP
|| GET_CODE (XEXP (dest, 1)) != CONST_INT
|| INTVAL (XEXP (dest, 1)) != -i * 4)
return 0;
regno = REGNO (src);
if (group == 0)
{
if (D_REGNO_P (regno))
{
group = 1;
first_dreg_to_save = lastdreg = regno - REG_R0;
}
else if (regno >= REG_P0 && regno <= REG_P7)
{
group = 2;
first_preg_to_save = lastpreg = regno - REG_P0;
}
else
return 0;
continue;
}
if (group == 1)
{
if (regno >= REG_P0 && regno <= REG_P7)
{
group = 2;
first_preg_to_save = lastpreg = regno - REG_P0;
}
else if (regno != REG_R0 + lastdreg + 1)
return 0;
else
lastdreg++;
}
else if (group == 2)
{
if (regno != REG_P0 + lastpreg + 1)
return 0;
lastpreg++;
}
}
return 1;
}
int
pop_multiple_operation (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
{
int lastdreg = 8, lastpreg = 6;
int i, group;
for (i = 1, group = 0; i < XVECLEN (op, 0); i++)
{
rtx t = XVECEXP (op, 0, i);
rtx src, dest;
int regno;
if (GET_CODE (t) != SET)
return 0;
src = SET_SRC (t);
dest = SET_DEST (t);
if (GET_CODE (src) != MEM || ! REG_P (dest))
return 0;
src = XEXP (src, 0);
if (i == 1)
{
if (! REG_P (src) || REGNO (src) != REG_SP)
return 0;
}
else if (GET_CODE (src) != PLUS
|| ! REG_P (XEXP (src, 0))
|| REGNO (XEXP (src, 0)) != REG_SP
|| GET_CODE (XEXP (src, 1)) != CONST_INT
|| INTVAL (XEXP (src, 1)) != (i - 1) * 4)
return 0;
regno = REGNO (dest);
if (group == 0)
{
if (regno == REG_R7)
{
group = 1;
lastdreg = 7;
}
else if (regno != REG_P0 + lastpreg - 1)
return 0;
else
lastpreg--;
}
else if (group == 1)
{
if (regno != REG_R0 + lastdreg - 1)
return 0;
else
lastdreg--;
}
}
first_dreg_to_save = lastdreg;
first_preg_to_save = lastpreg;
return 1;
}
/* Emit assembly code for one multi-register push described by INSN, with
operands in OPERANDS. */
void
output_push_multiple (rtx insn, rtx *operands)
{
char buf[80];
int ok;
/* Validate the insn again, and compute first_[dp]reg_to_save. */
ok = push_multiple_operation (PATTERN (insn), VOIDmode);
gcc_assert (ok);
if (first_dreg_to_save == 8)
sprintf (buf, "[--sp] = ( p5:%d );\n", first_preg_to_save);
else if (first_preg_to_save == 6)
sprintf (buf, "[--sp] = ( r7:%d );\n", first_dreg_to_save);
else
sprintf (buf, "[--sp] = ( r7:%d, p5:%d );\n",
first_dreg_to_save, first_preg_to_save);
output_asm_insn (buf, operands);
}
/* Emit assembly code for one multi-register pop described by INSN, with
operands in OPERANDS. */
void
output_pop_multiple (rtx insn, rtx *operands)
{
char buf[80];
int ok;
/* Validate the insn again, and compute first_[dp]reg_to_save. */
ok = pop_multiple_operation (PATTERN (insn), VOIDmode);
gcc_assert (ok);
if (first_dreg_to_save == 8)
sprintf (buf, "( p5:%d ) = [sp++];\n", first_preg_to_save);
else if (first_preg_to_save == 6)
sprintf (buf, "( r7:%d ) = [sp++];\n", first_dreg_to_save);
else
sprintf (buf, "( r7:%d, p5:%d ) = [sp++];\n",
first_dreg_to_save, first_preg_to_save);
output_asm_insn (buf, operands);
}
/* Adjust DST and SRC by OFFSET bytes, and generate one move in mode MODE. */
static void
single_move_for_strmov (rtx dst, rtx src, enum machine_mode mode, HOST_WIDE_INT offset)
{
rtx scratch = gen_reg_rtx (mode);
rtx srcmem, dstmem;
srcmem = adjust_address_nv (src, mode, offset);
dstmem = adjust_address_nv (dst, mode, offset);
emit_move_insn (scratch, srcmem);
emit_move_insn (dstmem, scratch);
}
/* Expand a string move operation of COUNT_EXP bytes from SRC to DST, with
alignment ALIGN_EXP. Return true if successful, false if we should fall
back on a different method. */
bool
bfin_expand_strmov (rtx dst, rtx src, rtx count_exp, rtx align_exp)
{
rtx srcreg, destreg, countreg;
HOST_WIDE_INT align = 0;
unsigned HOST_WIDE_INT count = 0;
if (GET_CODE (align_exp) == CONST_INT)
align = INTVAL (align_exp);
if (GET_CODE (count_exp) == CONST_INT)
{
count = INTVAL (count_exp);
#if 0
if (!TARGET_INLINE_ALL_STRINGOPS && count > 64)
return false;
#endif
}
/* If optimizing for size, only do single copies inline. */
if (optimize_size)
{
if (count == 2 && align < 2)
return false;
if (count == 4 && align < 4)
return false;
if (count != 1 && count != 2 && count != 4)
return false;
}
if (align < 2 && count != 1)
return false;
destreg = copy_to_mode_reg (Pmode, XEXP (dst, 0));
if (destreg != XEXP (dst, 0))
dst = replace_equiv_address_nv (dst, destreg);
srcreg = copy_to_mode_reg (Pmode, XEXP (src, 0));
if (srcreg != XEXP (src, 0))
src = replace_equiv_address_nv (src, srcreg);
if (count != 0 && align >= 2)
{
unsigned HOST_WIDE_INT offset = 0;
if (align >= 4)
{
if ((count & ~3) == 4)
{
single_move_for_strmov (dst, src, SImode, offset);
offset = 4;
}
else if (count & ~3)
{
HOST_WIDE_INT new_count = ((count >> 2) & 0x3fffffff) - 1;
countreg = copy_to_mode_reg (Pmode, GEN_INT (new_count));
emit_insn (gen_rep_movsi (destreg, srcreg, countreg, destreg, srcreg));
}
}
else
{
if ((count & ~1) == 2)
{
single_move_for_strmov (dst, src, HImode, offset);
offset = 2;
}
else if (count & ~1)
{
HOST_WIDE_INT new_count = ((count >> 1) & 0x7fffffff) - 1;
countreg = copy_to_mode_reg (Pmode, GEN_INT (new_count));
emit_insn (gen_rep_movhi (destreg, srcreg, countreg, destreg, srcreg));
}
}
if (count & 2)
{
single_move_for_strmov (dst, src, HImode, offset);
offset += 2;
}
if (count & 1)
{
single_move_for_strmov (dst, src, QImode, offset);
}
return true;
}
return false;
}
static int
bfin_adjust_cost (rtx insn, rtx link, rtx dep_insn, int cost)
{
enum attr_type insn_type, dep_insn_type;
int dep_insn_code_number;
/* Anti and output dependencies have zero cost. */
if (REG_NOTE_KIND (link) != 0)
return 0;
dep_insn_code_number = recog_memoized (dep_insn);
/* If we can't recognize the insns, we can't really do anything. */
if (dep_insn_code_number < 0 || recog_memoized (insn) < 0)
return cost;
insn_type = get_attr_type (insn);
dep_insn_type = get_attr_type (dep_insn);
if (dep_insn_type == TYPE_MOVE || dep_insn_type == TYPE_MCLD)
{
rtx pat = PATTERN (dep_insn);
rtx dest = SET_DEST (pat);
rtx src = SET_SRC (pat);
if (! ADDRESS_REGNO_P (REGNO (dest)) || ! D_REGNO_P (REGNO (src)))
return cost;
return cost + (dep_insn_type == TYPE_MOVE ? 4 : 3);
}
return cost;
}
/* We use the machine specific reorg pass for emitting CSYNC instructions
after conditional branches as needed.
The Blackfin is unusual in that a code sequence like
if cc jump label
r0 = (p0)
may speculatively perform the load even if the condition isn't true. This
happens for a branch that is predicted not taken, because the pipeline
isn't flushed or stalled, so the early stages of the following instructions,
which perform the memory reference, are allowed to execute before the
jump condition is evaluated.
Therefore, we must insert additional instructions in all places where this
could lead to incorrect behaviour. The manual recommends CSYNC, while
VDSP seems to use NOPs (even though its corresponding compiler option is
named CSYNC).
When optimizing for speed, we emit NOPs, which seems faster than a CSYNC.
When optimizing for size, we turn the branch into a predicted taken one.
This may be slower due to mispredicts, but saves code size. */
static void
bfin_reorg (void)
{
rtx insn, last_condjump = NULL_RTX;
int cycles_since_jump = INT_MAX;
if (! TARGET_CSYNC)
return;
for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
{
rtx pat;
if (NOTE_P (insn) || BARRIER_P (insn) || LABEL_P (insn))
continue;
pat = PATTERN (insn);
if (GET_CODE (pat) == USE || GET_CODE (pat) == CLOBBER
|| GET_CODE (pat) == ASM_INPUT || GET_CODE (pat) == ADDR_VEC
|| GET_CODE (pat) == ADDR_DIFF_VEC || asm_noperands (pat) >= 0)
continue;
if (JUMP_P (insn))
{
if (any_condjump_p (insn)
&& ! cbranch_predicted_taken_p (insn))
{
last_condjump = insn;
cycles_since_jump = 0;
}
else
cycles_since_jump = INT_MAX;
}
else if (INSN_P (insn))
{
enum attr_type type = get_attr_type (insn);
if (cycles_since_jump < INT_MAX)
cycles_since_jump++;
if (type == TYPE_MCLD && cycles_since_jump < 3)
{
rtx pat;
pat = single_set (insn);
if (may_trap_p (SET_SRC (pat)))
{
int num_clobbers;
rtx *op = recog_data.operand;
extract_insn (last_condjump);
if (optimize_size)
pat = gen_cbranch_predicted_taken (op[0], op[1], op[2],
op[3]);
else
pat = gen_cbranch_with_nops (op[0], op[1], op[2], op[3],
GEN_INT (3 - cycles_since_jump));
PATTERN (last_condjump) = pat;
INSN_CODE (last_condjump) = recog (pat, insn, &num_clobbers);
cycles_since_jump = INT_MAX;
}
}
}
}
}
/* Handle interrupt_handler, exception_handler and nmi_handler function
attributes; arguments as in struct attribute_spec.handler. */
static tree
handle_int_attribute (tree *node, tree name,
tree args ATTRIBUTE_UNUSED,
int flags ATTRIBUTE_UNUSED,
bool *no_add_attrs)
{
tree x = *node;
if (TREE_CODE (x) == FUNCTION_DECL)
x = TREE_TYPE (x);
if (TREE_CODE (x) != FUNCTION_TYPE)
{
warning (OPT_Wattributes, "%qs attribute only applies to functions",
IDENTIFIER_POINTER (name));
*no_add_attrs = true;
}
else if (funkind (x) != SUBROUTINE)
error ("multiple function type attributes specified");
return NULL_TREE;
}
/* Return 0 if the attributes for two types are incompatible, 1 if they
are compatible, and 2 if they are nearly compatible (which causes a
warning to be generated). */
static int
bfin_comp_type_attributes (tree type1, tree type2)
{
e_funkind kind1, kind2;
if (TREE_CODE (type1) != FUNCTION_TYPE)
return 1;
kind1 = funkind (type1);
kind2 = funkind (type2);
if (kind1 != kind2)
return 0;
/* Check for mismatched modifiers */
if (!lookup_attribute ("nesting", TYPE_ATTRIBUTES (type1))
!= !lookup_attribute ("nesting", TYPE_ATTRIBUTES (type2)))
return 0;
if (!lookup_attribute ("saveall", TYPE_ATTRIBUTES (type1))
!= !lookup_attribute ("saveall", TYPE_ATTRIBUTES (type2)))
return 0;
if (!lookup_attribute ("kspisusp", TYPE_ATTRIBUTES (type1))
!= !lookup_attribute ("kspisusp", TYPE_ATTRIBUTES (type2)))
return 0;
return 1;
}
/* Table of valid machine attributes. */
const struct attribute_spec bfin_attribute_table[] =
{
/* { name, min_len, max_len, decl_req, type_req, fn_type_req, handler } */
{ "interrupt_handler", 0, 0, false, true, true, handle_int_attribute },
{ "exception_handler", 0, 0, false, true, true, handle_int_attribute },
{ "nmi_handler", 0, 0, false, true, true, handle_int_attribute },
{ "nesting", 0, 0, false, true, true, NULL },
{ "kspisusp", 0, 0, false, true, true, NULL },
{ "saveall", 0, 0, false, true, true, NULL },
{ NULL, 0, 0, false, false, false, NULL }
};
/* Output the assembler code for a thunk function. THUNK_DECL is the
declaration for the thunk function itself, FUNCTION is the decl for
the target function. DELTA is an immediate constant offset to be
added to THIS. If VCALL_OFFSET is nonzero, the word at
*(*this + vcall_offset) should be added to THIS. */
static void
bfin_output_mi_thunk (FILE *file ATTRIBUTE_UNUSED,
tree thunk ATTRIBUTE_UNUSED, HOST_WIDE_INT delta,
HOST_WIDE_INT vcall_offset, tree function)
{
rtx xops[3];
/* The this parameter is passed as the first argument. */
rtx this = gen_rtx_REG (Pmode, REG_R0);
/* Adjust the this parameter by a fixed constant. */
if (delta)
{
xops[1] = this;
if (delta >= -64 && delta <= 63)
{
xops[0] = GEN_INT (delta);
output_asm_insn ("%1 += %0;", xops);
}
else if (delta >= -128 && delta < -64)
{
xops[0] = GEN_INT (delta + 64);
output_asm_insn ("%1 += -64; %1 += %0;", xops);
}
else if (delta > 63 && delta <= 126)
{
xops[0] = GEN_INT (delta - 63);
output_asm_insn ("%1 += 63; %1 += %0;", xops);
}
else
{
xops[0] = GEN_INT (delta);
output_asm_insn ("r3.l = %h0; r3.h = %d0; %1 = %1 + r3;", xops);
}
}
/* Adjust the this parameter by a value stored in the vtable. */
if (vcall_offset)
{
rtx p2tmp = gen_rtx_REG (Pmode, REG_P2);
rtx tmp = gen_rtx_REG (Pmode, REG_R2);
xops[1] = tmp;
xops[2] = p2tmp;
output_asm_insn ("%2 = r0; %2 = [%2];", xops);
/* Adjust the this parameter. */
xops[0] = gen_rtx_MEM (Pmode, plus_constant (p2tmp, vcall_offset));
if (!memory_operand (xops[0], Pmode))
{
rtx tmp2 = gen_rtx_REG (Pmode, REG_P1);
xops[0] = GEN_INT (vcall_offset);
xops[1] = tmp2;
output_asm_insn ("%h1 = %h0; %d1 = %d0; %2 = %2 + %1", xops);
xops[0] = gen_rtx_MEM (Pmode, p2tmp);
}
xops[2] = this;
output_asm_insn ("%1 = %0; %2 = %2 + %1;", xops);
}
xops[0] = XEXP (DECL_RTL (function), 0);
if (1 || !flag_pic || (*targetm.binds_local_p) (function))
output_asm_insn ("jump.l\t%P0", xops);
}
#undef TARGET_ASM_GLOBALIZE_LABEL
#define TARGET_ASM_GLOBALIZE_LABEL bfin_globalize_label
#undef TARGET_ASM_FILE_START
#define TARGET_ASM_FILE_START output_file_start
#undef TARGET_ATTRIBUTE_TABLE
#define TARGET_ATTRIBUTE_TABLE bfin_attribute_table
#undef TARGET_COMP_TYPE_ATTRIBUTES
#define TARGET_COMP_TYPE_ATTRIBUTES bfin_comp_type_attributes
#undef TARGET_RTX_COSTS
#define TARGET_RTX_COSTS bfin_rtx_costs
#undef TARGET_ADDRESS_COST
#define TARGET_ADDRESS_COST bfin_address_cost
#undef TARGET_ASM_INTERNAL_LABEL
#define TARGET_ASM_INTERNAL_LABEL bfin_internal_label
#undef TARGET_MACHINE_DEPENDENT_REORG
#define TARGET_MACHINE_DEPENDENT_REORG bfin_reorg
#undef TARGET_FUNCTION_OK_FOR_SIBCALL
#define TARGET_FUNCTION_OK_FOR_SIBCALL bfin_function_ok_for_sibcall
#undef TARGET_ASM_OUTPUT_MI_THUNK
#define TARGET_ASM_OUTPUT_MI_THUNK bfin_output_mi_thunk
#undef TARGET_ASM_CAN_OUTPUT_MI_THUNK
#define TARGET_ASM_CAN_OUTPUT_MI_THUNK hook_bool_tree_hwi_hwi_tree_true
#undef TARGET_SCHED_ADJUST_COST
#define TARGET_SCHED_ADJUST_COST bfin_adjust_cost
#undef TARGET_PROMOTE_PROTOTYPES
#define TARGET_PROMOTE_PROTOTYPES hook_bool_tree_true
#undef TARGET_PROMOTE_FUNCTION_ARGS
#define TARGET_PROMOTE_FUNCTION_ARGS hook_bool_tree_true
#undef TARGET_PROMOTE_FUNCTION_RETURN
#define TARGET_PROMOTE_FUNCTION_RETURN hook_bool_tree_true
#undef TARGET_ARG_PARTIAL_BYTES
#define TARGET_ARG_PARTIAL_BYTES bfin_arg_partial_bytes
#undef TARGET_PASS_BY_REFERENCE
#define TARGET_PASS_BY_REFERENCE bfin_pass_by_reference
#undef TARGET_SETUP_INCOMING_VARARGS
#define TARGET_SETUP_INCOMING_VARARGS setup_incoming_varargs
#undef TARGET_STRUCT_VALUE_RTX
#define TARGET_STRUCT_VALUE_RTX bfin_struct_value_rtx
#undef TARGET_VECTOR_MODE_SUPPORTED_P
#define TARGET_VECTOR_MODE_SUPPORTED_P bfin_vector_mode_supported_p
#undef TARGET_HANDLE_OPTION
#define TARGET_HANDLE_OPTION bfin_handle_option
struct gcc_target targetm = TARGET_INITIALIZER;
|