1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
|
/* Definitions of target machine for GNU compiler. TMS320C[34]x
Copyright (C) 1994, 1995, 1996, 1997, 1998,
1999, 2000, 2001 Free Software Foundation, Inc.
Contributed by Michael Hayes (m.hayes@elec.canterbury.ac.nz)
and Herman Ten Brugge (Haj.Ten.Brugge@net.HCC.nl).
This file is part of GNU CC.
GNU CC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
GNU CC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GNU CC; see the file COPYING. If not, write to
the Free Software Foundation, 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA. */
#include "hwint.h"
/* RUN-TIME TARGET SPECIFICATION. */
#define C4x 1
/* Name of the c4x assembler. */
#define ASM_PROG "c4x-as"
/* Name of the c4x linker. */
#define LD_PROG "c4x-ld"
/* Define assembler options. */
#define ASM_SPEC "\
%{!mcpu=30:%{!mcpu=31:%{!mcpu=32:%{!mcpu=33:%{!mcpu=40:%{!mcpu=44:\
%{!m30:%{!m40:-m40}}}}}}}} \
%{mcpu=30:-m30} \
%{mcpu=31:-m31} \
%{mcpu=32:-m32} \
%{mcpu=33:-m33} \
%{mcpu=40:-m40} \
%{mcpu=44:-m44} \
%{m30:-m30} \
%{m31:-m31} \
%{m32:-m32} \
%{m33:-m33} \
%{m40:-m40} \
%{m44:-m44} \
%{mmemparm:-p} %{mregparm:-r} \
%{!mmemparm:%{!mregparm:-r}} \
%{mbig:-b} %{msmall:-s} \
%{!msmall:%{!mbig:-b}}"
/* Define linker options. */
#define LINK_SPEC "\
%{m30:--architecture c3x} \
%{m31:--architecture c3x} \
%{m32:--architecture c3x} \
%{m33:--architecture c3x} \
%{mcpu=30:--architecture c3x} \
%{mcpu=31:--architecture c3x} \
%{mcpu=32:--architecture c3x} \
%{mcpu=33:--architecture c3x}"
/* Define C preprocessor options. */
#define CPP_SPEC "\
%{!m30:%{!m31:%{!m32:%{!m33:%{!mcpu=30:%{!mcpu=31:%{!mcpu=32:%{!mcpu=33:\
%{!mcpu=40:%{!mcpu=44:%{\
!m40:%{!m44:-D_TMS320C4x -D_C4x -D_TMS320C40 -D_C40}}}}}}}}}}}} \
%{mcpu=30:-D_TMS320C3x -D_C3x -D_TMS320C30 -D_C30 } \
%{m30:-D_TMS320C3x -D_C3x -D_TMS320C30 -D_C30 } \
%{mcpu=31:-D_TMS320C3x -D_C3x -D_TMS320C31 -D_C31 } \
%{m31:-D_TMS320C3x -D_C3x -D_TMS320C31 -D_C31 } \
%{mcpu=32:-D_TMS320C3x -D_C3x -D_TMS320C32 -D_C32 } \
%{m32:-D_TMS320C3x -D_C3x -D_TMS320C32 -D_C32 } \
%{mcpu=33:-D_TMS320C3x -D_C3x -D_TMS320C33 -D_C33 } \
%{m33:-D_TMS320C3x -D_C3x -D_TMS320C33 -D_C33 } \
%{mcpu=40:-D_TMS320C4x -D_C4x -D_TMS320C40 -D_C40 } \
%{m40:-D_TMS320C4x -D_C4x -D_TMS320C40 -D_C40 } \
%{mcpu=44:-D_TMS320C4x -D_C4x -D_TMS320C44 -D_C44 } \
%{m44:-D_TMS320C4x -D_C4x -D_TMS320C44 -D_C44 } \
%{mmemparm:-U_REGPARM }%{mregparm:-D_REGPARM } \
%{!mmemparm:%{!mregparm:-D_REGPARM }} \
%{msmall:-U_BIGMODEL } %{mbig:-D_BIGMODEL } \
%{!msmall:%{!mbig:-D_BIGMODEL }} \
%{finline-functions:-D_INLINE }"
/* Specify the end file to link with. */
#define ENDFILE_SPEC ""
/* Target compilation option flags. */
#define SMALL_MEMORY_FLAG 0x0000001 /* Small memory model. */
#define MPYI_FLAG 0x0000002 /* Use 24-bit MPYI for C3x. */
#define FAST_FIX_FLAG 0x0000004 /* Fast fixing of floats. */
#define RPTS_FLAG 0x0000008 /* Allow use of RPTS. */
#define C3X_FLAG 0x0000010 /* Emit C3x code. */
#define TI_FLAG 0x0000020 /* Be compatible with TI assembler. */
#define PARANOID_FLAG 0x0000040 /* Be paranoid about DP reg. in ISRs. */
#define MEMPARM_FLAG 0x0000080 /* Pass arguments on stack. */
#define DEVEL_FLAG 0x0000100 /* Enable features under development. */
#define RPTB_FLAG 0x0000200 /* Enable repeat block. */
#define BK_FLAG 0x0000400 /* Use BK as general register. */
#define DB_FLAG 0x0000800 /* Use decrement and branch for C3x. */
#define DEBUG_FLAG 0x0001000 /* Enable debugging of GCC. */
#define HOIST_FLAG 0x0002000 /* Force constants into registers. */
#define LOOP_UNSIGNED_FLAG 0x0004000 /* Allow unsigned loop counters. */
#define FORCE_FLAG 0x0008000 /* Force op0 and op1 to be same. */
#define PRESERVE_FLOAT_FLAG 0x0010000 /* Save all 40 bits for floats. */
#define PARALLEL_INSN_FLAG 0x0020000 /* Allow parallel insns. */
#define PARALLEL_MPY_FLAG 0x0040000 /* Allow MPY||ADD, MPY||SUB insns. */
#define ALIASES_FLAG 0x0080000 /* Assume mem refs possibly aliased. */
#define C30_FLAG 0x0100000 /* Emit C30 code. */
#define C31_FLAG 0x0200000 /* Emit C31 code. */
#define C32_FLAG 0x0400000 /* Emit C32 code. */
#define C33_FLAG 0x0400000 /* Emit C33 code. */
#define C40_FLAG 0x1000000 /* Emit C40 code. */
#define C44_FLAG 0x2000000 /* Emit C44 code. */
/* Run-time compilation parameters selecting different hardware subsets.
Macro to define tables used to set the flags.
This is a list in braces of triplets in braces,
each pair being { "NAME", VALUE, "DESCRIPTION" }
where VALUE is the bits to set or minus the bits to clear.
An empty string NAME is used to identify the default VALUE. */
#define TARGET_SWITCHES \
{ { "small", SMALL_MEMORY_FLAG, \
N_("Small memory model") }, \
{ "big", -SMALL_MEMORY_FLAG, \
N_("Big memory model") }, \
{ "mpyi", MPYI_FLAG, \
N_("Use MPYI instruction for C3x") }, \
{ "no-mpyi", -MPYI_FLAG, \
N_("Do not use MPYI instruction for C3x") }, \
{ "fast-fix", FAST_FIX_FLAG, \
N_("Use fast but approximate float to integer conversion") }, \
{ "no-fast-fix", -FAST_FIX_FLAG, \
N_("Use slow but accurate float to integer conversion") }, \
{ "rpts", RPTS_FLAG, \
N_("Enable use of RTPS instruction") }, \
{ "no-rpts", -RPTS_FLAG, \
N_("Disable use of RTPS instruction") }, \
{ "rptb", RPTB_FLAG, \
N_("Enable use of RTPB instruction") }, \
{ "no-rptb", -RPTB_FLAG, \
N_("Disable use of RTPB instruction") }, \
{ "30", C30_FLAG, \
N_("Generate code for C30 CPU")}, \
{ "31", C31_FLAG, \
N_("Generate code for C31 CPU")}, \
{ "32", C32_FLAG, \
N_("Generate code for C32 CPU")}, \
{ "33", C33_FLAG, \
N_("Generate code for C33 CPU")}, \
{ "40", C40_FLAG, \
N_("Generate code for C40 CPU")}, \
{ "44", C44_FLAG, \
N_("Generate code for C44 CPU")}, \
{ "ti", TI_FLAG, \
N_("Emit code compatible with TI tools")}, \
{ "no-ti", -TI_FLAG, \
N_("Emit code to use GAS extensions")}, \
{ "paranoid", PARANOID_FLAG, \
N_("Save DP across ISR in small memory model") }, \
{ "no-paranoid", -PARANOID_FLAG, \
N_("Don't save DP across ISR in small memory model") }, \
{ "isr-dp-reload", PARANOID_FLAG, \
N_("Save DP across ISR in small memory model") }, \
{ "no-isr-dp-reload", -PARANOID_FLAG, \
N_("Don't save DP across ISR in small memory model") }, \
{ "memparm", MEMPARM_FLAG, \
N_("Pass arguments on the stack") }, \
{ "regparm", -MEMPARM_FLAG, \
N_("Pass arguments in registers") }, \
{ "devel", DEVEL_FLAG, \
N_("Enable new features under development") }, \
{ "no-devel", -DEVEL_FLAG, \
N_("Disable new features under development") }, \
{ "bk", BK_FLAG, \
N_("Use the BK register as a general purpose register") }, \
{ "no-bk", -BK_FLAG, \
N_("Do not allocate BK register") }, \
{ "db", DB_FLAG, \
N_("Enable use of DB instruction") }, \
{ "no-db", -DB_FLAG, \
N_("Disable use of DB instruction") }, \
{ "debug", DEBUG_FLAG, \
N_("Enable debugging") }, \
{ "no-debug", -DEBUG_FLAG, \
N_("Disable debugging") }, \
{ "hoist", HOIST_FLAG, \
N_("Force constants into registers to improve hoisting") }, \
{ "no-hoist", -HOIST_FLAG, \
N_("Don't force constants into registers") }, \
{ "force", FORCE_FLAG, \
N_("Force RTL generation to emit valid 3 operand insns") }, \
{ "no-force", -FORCE_FLAG, \
N_("Allow RTL generation to emit invalid 3 operand insns") }, \
{ "loop-unsigned", LOOP_UNSIGNED_FLAG, \
N_("Allow unsigned interation counts for RPTB/DB") }, \
{ "no-loop-unsigned", -LOOP_UNSIGNED_FLAG, \
N_("Disallow unsigned iteration counts for RPTB/DB") }, \
{ "preserve-float", PRESERVE_FLOAT_FLAG, \
N_("Preserve all 40 bits of FP reg across call") }, \
{ "no-preserve-float", -PRESERVE_FLOAT_FLAG, \
N_("Only preserve 32 bits of FP reg across call") }, \
{ "parallel-insns", PARALLEL_INSN_FLAG, \
N_("Enable parallel instructions") }, \
{ "no-parallel-insns", -PARALLEL_INSN_FLAG, \
N_("Disable parallel instructions") }, \
{ "parallel-mpy", PARALLEL_MPY_FLAG, \
N_("Enable MPY||ADD and MPY||SUB instructions") }, \
{ "no-parallel-mpy", -PARALLEL_MPY_FLAG, \
N_("Disable MPY||ADD and MPY||SUB instructions") }, \
{ "aliases", ALIASES_FLAG, \
N_("Assume that pointers may be aliased") }, \
{ "no-aliases", -ALIASES_FLAG, \
N_("Assume that pointers not aliased") }, \
{ "", TARGET_DEFAULT, ""} }
/* Default target switches. */
/* Play safe, not the fastest code. */
#define TARGET_DEFAULT ALIASES_FLAG | PARALLEL_INSN_FLAG \
| PARALLEL_MPY_FLAG | RPTB_FLAG
/* Caveats:
Max iteration count for RPTB/RPTS is 2^31 + 1.
Max iteration count for DB is 2^31 + 1 for C40, but 2^23 + 1 for C30.
RPTS blocks interrupts. */
extern int target_flags;
#define TARGET_INLINE (! optimize_size) /* Inline MPYI. */
#define TARGET_SMALL_REG_CLASS 0
#define TARGET_SMALL (target_flags & SMALL_MEMORY_FLAG)
#define TARGET_MPYI (!TARGET_C3X || (target_flags & MPYI_FLAG))
#define TARGET_FAST_FIX (target_flags & FAST_FIX_FLAG)
#define TARGET_RPTS (target_flags & RPTS_FLAG)
#define TARGET_TI (target_flags & TI_FLAG)
#define TARGET_PARANOID (target_flags & PARANOID_FLAG)
#define TARGET_MEMPARM (target_flags & MEMPARM_FLAG)
#define TARGET_DEVEL (target_flags & DEVEL_FLAG)
#define TARGET_RPTB (target_flags & RPTB_FLAG \
&& optimize >= 2)
#define TARGET_BK (target_flags & BK_FLAG)
#define TARGET_DB (! TARGET_C3X || (target_flags & DB_FLAG))
#define TARGET_DEBUG (target_flags & DEBUG_FLAG)
#define TARGET_HOIST (target_flags & HOIST_FLAG)
#define TARGET_LOOP_UNSIGNED (target_flags & LOOP_UNSIGNED_FLAG)
#define TARGET_FORCE (target_flags & FORCE_FLAG)
#define TARGET_PRESERVE_FLOAT (target_flags & PRESERVE_FLOAT_FLAG)
#define TARGET_PARALLEL ((target_flags & PARALLEL_INSN_FLAG) \
&& optimize >= 2)
#define TARGET_PARALLEL_MPY (TARGET_PARALLEL \
&& (target_flags & PARALLEL_MPY_FLAG))
#define TARGET_ALIASES (target_flags & ALIASES_FLAG)
#define TARGET_C3X (target_flags & C3X_FLAG)
#define TARGET_C30 (target_flags & C30_FLAG)
#define TARGET_C31 (target_flags & C31_FLAG)
#define TARGET_C32 (target_flags & C32_FLAG)
#define TARGET_C33 (target_flags & C33_FLAG)
#define TARGET_C40 (target_flags & C40_FLAG)
#define TARGET_C44 (target_flags & C44_FLAG)
/* Define some options to control code generation. */
#define TARGET_LOAD_ADDRESS (1 || (! TARGET_C3X && ! TARGET_SMALL))
/* Nonzero to convert direct memory references into HIGH/LO_SUM pairs
during RTL generation. */
#define TARGET_EXPOSE_LDP 0
/* Nonzero to force loading of direct memory references into a register. */
#define TARGET_LOAD_DIRECT_MEMS 0
/* -mrpts allows the use of the RPTS instruction irregardless.
-mrpts=max-cycles will use RPTS if the number of cycles is constant
and less than max-cycles. */
#define TARGET_RPTS_CYCLES(CYCLES) (TARGET_RPTS || (CYCLES) < c4x_rpts_cycles)
#define BCT_CHECK_LOOP_ITERATIONS !(TARGET_LOOP_UNSIGNED)
/* -mcpu=XX with XX = target DSP version number. */
/* This macro is similar to `TARGET_SWITCHES' but defines names of
command options that have values. Its definition is an
initializer with a subgrouping for each command option.
Each subgrouping contains a string constant, that defines the
fixed part of the option name, and the address of a variable.
The variable, type `char *', is set to the variable part of the
given option if the fixed part matches. The actual option name
is made by appending `-m' to the specified name.
Here is an example which defines `-mshort-data-NUMBER'. If the
given option is `-mshort-data-512', the variable `m88k_short_data'
will be set to the string `"512"'.
extern char *m88k_short_data;
#define TARGET_OPTIONS { { "short-data-", &m88k_short_data } } */
extern const char *c4x_rpts_cycles_string, *c4x_cpu_version_string;
#define TARGET_OPTIONS \
{ {"rpts=", &c4x_rpts_cycles_string, \
N_("Specify maximum number of iterations for RPTS") }, \
{"cpu=", &c4x_cpu_version_string, \
N_("Select CPU to generate code for") } }
/* Sometimes certain combinations of command options do not make sense
on a particular target machine. You can define a macro
`OVERRIDE_OPTIONS' to take account of this. This macro, if
defined, is executed once just after all the command options have
been parsed. */
#define OVERRIDE_OPTIONS c4x_override_options ()
/* Define this to change the optimizations performed by default. */
#define OPTIMIZATION_OPTIONS(LEVEL,SIZE) c4x_optimization_options(LEVEL, SIZE)
/* Run Time Target Specification. */
#define TARGET_VERSION fprintf (stderr, " (TMS320C[34]x, TI syntax)");
/* Storage Layout. */
#define BITS_BIG_ENDIAN 0
#define BYTES_BIG_ENDIAN 0
#define WORDS_BIG_ENDIAN 0
/* Technically, we are little endian, but we put the floats out as
whole longs and this makes GCC put them out in the right order. */
#define FLOAT_WORDS_BIG_ENDIAN 1
/* Note the ANSI C standard requires sizeof(char) = 1. On the C[34]x
all integral and floating point data types are stored in memory as
32-bits (floating point types can be stored as 40-bits in the
extended precision registers), so sizeof(char) = sizeof(short) =
sizeof(int) = sizeof(long) = sizeof(float) = sizeof(double) = 1. */
#define BITS_PER_UNIT 32
#define BITS_PER_WORD 32
#define UNITS_PER_WORD 1
#define POINTER_SIZE 32
#define PARM_BOUNDARY 32
#define STACK_BOUNDARY 32
#define FUNCTION_BOUNDARY 32
#define BIGGEST_ALIGNMENT 32
#define EMPTY_FIELD_BOUNDARY 32
#define STRICT_ALIGNMENT 0
#define TARGET_FLOAT_FORMAT C4X_FLOAT_FORMAT
#define MAX_FIXED_MODE_SIZE 64 /* HImode. */
/* If a structure has a floating point field then force structure
to have BLKMODE. */
#define MEMBER_TYPE_FORCES_BLK(FIELD) \
(TREE_CODE (TREE_TYPE (FIELD)) == REAL_TYPE)
/* Number of bits in the high and low parts of a two stage
load of an immediate constant. */
#define BITS_PER_HIGH 16
#define BITS_PER_LO_SUM 16
/* Use the internal floating point stuff in the compiler and not the
host floating point stuff. */
#define REAL_ARITHMETIC
/* Define register numbers. */
/* Extended-precision registers. */
#define R0_REGNO 0
#define R1_REGNO 1
#define R2_REGNO 2
#define R3_REGNO 3
#define R4_REGNO 4
#define R5_REGNO 5
#define R6_REGNO 6
#define R7_REGNO 7
/* Auxiliary (address) registers. */
#define AR0_REGNO 8
#define AR1_REGNO 9
#define AR2_REGNO 10
#define AR3_REGNO 11
#define AR4_REGNO 12
#define AR5_REGNO 13
#define AR6_REGNO 14
#define AR7_REGNO 15
/* Data page register. */
#define DP_REGNO 16
/* Index registers. */
#define IR0_REGNO 17
#define IR1_REGNO 18
/* Block size register. */
#define BK_REGNO 19
/* Stack pointer. */
#define SP_REGNO 20
/* Status register. */
#define ST_REGNO 21
/* Misc. interrupt registers. */
#define DIE_REGNO 22 /* C4x only. */
#define IE_REGNO 22 /* C3x only. */
#define IIE_REGNO 23 /* C4x only. */
#define IF_REGNO 23 /* C3x only. */
#define IIF_REGNO 24 /* C4x only. */
#define IOF_REGNO 24 /* C3x only. */
/* Repeat block registers. */
#define RS_REGNO 25
#define RE_REGNO 26
#define RC_REGNO 27
/* Additional extended-precision registers. */
#define R8_REGNO 28 /* C4x only. */
#define R9_REGNO 29 /* C4x only. */
#define R10_REGNO 30 /* C4x only. */
#define R11_REGNO 31 /* C4x only. */
#define FIRST_PSEUDO_REGISTER 32
/* Extended precision registers (low set). */
#define IS_R0R1_REGNO(r) \
((unsigned int)((r) - R0_REGNO) <= (R1_REGNO - R0_REGNO))
#define IS_R2R3_REGNO(r) \
((unsigned int)((r) - R2_REGNO) <= (R3_REGNO - R2_REGNO))
#define IS_EXT_LOW_REGNO(r) \
((unsigned int)((r) - R0_REGNO) <= (R7_REGNO - R0_REGNO))
/* Extended precision registers (high set). */
#define IS_EXT_HIGH_REGNO(r) \
(! TARGET_C3X \
&& ((unsigned int) ((r) - R8_REGNO) <= (R11_REGNO - R8_REGNO)))
/* Address registers. */
#define IS_AUX_REGNO(r) \
((unsigned int)((r) - AR0_REGNO) <= (AR7_REGNO - AR0_REGNO))
#define IS_ADDR_REGNO(r) IS_AUX_REGNO(r)
#define IS_DP_REGNO(r) ((r) == DP_REGNO)
#define IS_INDEX_REGNO(r) (((r) == IR0_REGNO) || ((r) == IR1_REGNO))
#define IS_SP_REGNO(r) ((r) == SP_REGNO)
#define IS_BK_REGNO(r) (TARGET_BK && (r) == BK_REGNO)
/* Misc registers. */
#define IS_ST_REGNO(r) ((r) == ST_REGNO)
#define IS_RC_REGNO(r) ((r) == RC_REGNO)
#define IS_REPEAT_REGNO(r) (((r) >= RS_REGNO) && ((r) <= RC_REGNO))
/* Composite register sets. */
#define IS_ADDR_OR_INDEX_REGNO(r) (IS_ADDR_REGNO(r) || IS_INDEX_REGNO(r))
#define IS_EXT_REGNO(r) (IS_EXT_LOW_REGNO(r) || IS_EXT_HIGH_REGNO(r))
#define IS_STD_REGNO(r) (IS_ADDR_OR_INDEX_REGNO(r) \
|| IS_REPEAT_REGNO(r) \
|| IS_SP_REGNO(r) \
|| IS_BK_REGNO(r))
#define IS_INT_REGNO(r) (IS_EXT_REGNO(r) || IS_STD_REGNO(r))
#define IS_GROUP1_REGNO(r) (IS_ADDR_OR_INDEX_REGNO(r) || IS_BK_REGNO(r))
#define IS_INT_CALL_SAVED_REGNO(r) (((r) == R4_REGNO) || ((r) == R5_REGNO) \
|| ((r) == R8_REGNO))
#define IS_FLOAT_CALL_SAVED_REGNO(r) (((r) == R6_REGNO) || ((r) == R7_REGNO))
#define IS_PSEUDO_REGNO(r) ((r) >= FIRST_PSEUDO_REGISTER)
#define IS_R0R1_OR_PSEUDO_REGNO(r) (IS_R0R1_REGNO(r) || IS_PSEUDO_REGNO(r))
#define IS_R2R3_OR_PSEUDO_REGNO(r) (IS_R2R3_REGNO(r) || IS_PSEUDO_REGNO(r))
#define IS_EXT_OR_PSEUDO_REGNO(r) (IS_EXT_REGNO(r) || IS_PSEUDO_REGNO(r))
#define IS_STD_OR_PSEUDO_REGNO(r) (IS_STD_REGNO(r) || IS_PSEUDO_REGNO(r))
#define IS_INT_OR_PSEUDO_REGNO(r) (IS_INT_REGNO(r) || IS_PSEUDO_REGNO(r))
#define IS_ADDR_OR_PSEUDO_REGNO(r) (IS_ADDR_REGNO(r) || IS_PSEUDO_REGNO(r))
#define IS_INDEX_OR_PSEUDO_REGNO(r) (IS_INDEX_REGNO(r) || IS_PSEUDO_REGNO(r))
#define IS_EXT_LOW_OR_PSEUDO_REGNO(r) (IS_EXT_LOW_REGNO(r) \
|| IS_PSEUDO_REGNO(r))
#define IS_DP_OR_PSEUDO_REGNO(r) (IS_DP_REGNO(r) || IS_PSEUDO_REGNO(r))
#define IS_SP_OR_PSEUDO_REGNO(r) (IS_SP_REGNO(r) || IS_PSEUDO_REGNO(r))
#define IS_ST_OR_PSEUDO_REGNO(r) (IS_ST_REGNO(r) || IS_PSEUDO_REGNO(r))
#define IS_RC_OR_PSEUDO_REGNO(r) (IS_RC_REGNO(r) || IS_PSEUDO_REGNO(r))
#define IS_PSEUDO_REG(op) (IS_PSEUDO_REGNO(REGNO(op)))
#define IS_ADDR_REG(op) (IS_ADDR_REGNO(REGNO(op)))
#define IS_INDEX_REG(op) (IS_INDEX_REGNO(REGNO(op)))
#define IS_GROUP1_REG(r) (IS_GROUP1_REGNO(REGNO(op)))
#define IS_SP_REG(op) (IS_SP_REGNO(REGNO(op)))
#define IS_STD_REG(op) (IS_STD_REGNO(REGNO(op)))
#define IS_EXT_REG(op) (IS_EXT_REGNO(REGNO(op)))
#define IS_R0R1_OR_PSEUDO_REG(op) (IS_R0R1_OR_PSEUDO_REGNO(REGNO(op)))
#define IS_R2R3_OR_PSEUDO_REG(op) (IS_R2R3_OR_PSEUDO_REGNO(REGNO(op)))
#define IS_EXT_OR_PSEUDO_REG(op) (IS_EXT_OR_PSEUDO_REGNO(REGNO(op)))
#define IS_STD_OR_PSEUDO_REG(op) (IS_STD_OR_PSEUDO_REGNO(REGNO(op)))
#define IS_EXT_LOW_OR_PSEUDO_REG(op) (IS_EXT_LOW_OR_PSEUDO_REGNO(REGNO(op)))
#define IS_INT_OR_PSEUDO_REG(op) (IS_INT_OR_PSEUDO_REGNO(REGNO(op)))
#define IS_ADDR_OR_PSEUDO_REG(op) (IS_ADDR_OR_PSEUDO_REGNO(REGNO(op)))
#define IS_INDEX_OR_PSEUDO_REG(op) (IS_INDEX_OR_PSEUDO_REGNO(REGNO(op)))
#define IS_DP_OR_PSEUDO_REG(op) (IS_DP_OR_PSEUDO_REGNO(REGNO(op)))
#define IS_SP_OR_PSEUDO_REG(op) (IS_SP_OR_PSEUDO_REGNO(REGNO(op)))
#define IS_ST_OR_PSEUDO_REG(op) (IS_ST_OR_PSEUDO_REGNO(REGNO(op)))
#define IS_RC_OR_PSEUDO_REG(op) (IS_RC_OR_PSEUDO_REGNO(REGNO(op)))
/* 1 for registers that have pervasive standard uses
and are not available for the register allocator. */
#define FIXED_REGISTERS \
{ \
/* R0 R1 R2 R3 R4 R5 R6 R7 AR0 AR1 AR2 AR3 AR4 AR5 AR6 AR7. */ \
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
/* DP IR0 IR1 BK SP ST DIE IIE IIF RS RE RC R8 R9 R10 R11. */ \
1, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0 \
}
/* 1 for registers not available across function calls.
These must include the FIXED_REGISTERS and also any
registers that can be used without being saved.
The latter must include the registers where values are returned
and the register where structure-value addresses are passed.
Aside from that, you can include as many other registers as you like.
Note that the extended precision registers are only saved in some
modes. The macro HARD_REGNO_CALL_CLOBBERED specifies which modes
get clobbered for a given regno. */
#define CALL_USED_REGISTERS \
{ \
/* R0 R1 R2 R3 R4 R5 R6 R7 AR0 AR1 AR2 AR3 AR4 AR5 AR6 AR7. */ \
1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, \
/* DP IR0 IR1 BK SP ST DIE IIE IIF RS RE RC R8 R9 R10 R11. */ \
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1 \
}
/* Macro to conditionally modify fixed_regs/call_used_regs. */
#define CONDITIONAL_REGISTER_USAGE \
{ \
if (! TARGET_BK) \
{ \
fixed_regs[BK_REGNO] = 1; \
call_used_regs[BK_REGNO] = 1; \
c4x_regclass_map[BK_REGNO] = NO_REGS; \
} \
if (TARGET_C3X) \
{ \
int i; \
\
reg_names[DIE_REGNO] = "ie"; /* Clobber die. */ \
reg_names[IF_REGNO] = "if"; /* Clobber iie. */ \
reg_names[IOF_REGNO] = "iof"; /* Clobber iif. */ \
\
for (i = R8_REGNO; i <= R11_REGNO; i++) \
{ \
fixed_regs[i] = call_used_regs[i] = 1; \
c4x_regclass_map[i] = NO_REGS; \
} \
} \
if (TARGET_PRESERVE_FLOAT) \
{ \
c4x_caller_save_map[R6_REGNO] = HFmode; \
c4x_caller_save_map[R7_REGNO] = HFmode; \
} \
}
/* Order of Allocation of Registers. */
/* List the order in which to allocate registers. Each register must be
listed once, even those in FIXED_REGISTERS.
First allocate registers that don't need preservation across calls,
except index and address registers. Then allocate data registers
that require preservation across calls (even though this invokes an
extra overhead of having to save/restore these registers). Next
allocate the address and index registers, since using these
registers for arithmetic can cause pipeline stalls. Finally
allocated the fixed registers which won't be allocated anyhow. */
#define REG_ALLOC_ORDER \
{R0_REGNO, R1_REGNO, R2_REGNO, R3_REGNO, \
R9_REGNO, R10_REGNO, R11_REGNO, \
RS_REGNO, RE_REGNO, RC_REGNO, BK_REGNO, \
R4_REGNO, R5_REGNO, R6_REGNO, R7_REGNO, R8_REGNO, \
AR0_REGNO, AR1_REGNO, AR2_REGNO, AR3_REGNO, \
AR4_REGNO, AR5_REGNO, AR6_REGNO, AR7_REGNO, \
IR0_REGNO, IR1_REGNO, \
SP_REGNO, DP_REGNO, ST_REGNO, IE_REGNO, IF_REGNO, IOF_REGNO}
/* A C expression that is nonzero if hard register number REGNO2 can be
considered for use as a rename register for REGNO1 */
#define HARD_REGNO_RENAME_OK(REGNO1,REGNO2) \
c4x_hard_regno_rename_ok((REGNO1), (REGNO2))
/* Determine which register classes are very likely used by spill registers.
local-alloc.c won't allocate pseudos that have these classes as their
preferred class unless they are "preferred or nothing". */
#define CLASS_LIKELY_SPILLED_P(CLASS) ((CLASS) == INDEX_REGS)
/* CCmode is wrongly defined in machmode.def. It should have a size
of UNITS_PER_WORD. HFmode is 40-bits and thus fits within a single
extended precision register. Similarly, HCmode fits within two
extended precision registers. */
#define HARD_REGNO_NREGS(REGNO, MODE) \
(((MODE) == CCmode || (MODE) == CC_NOOVmode) ? 1 : \
((MODE) == HFmode) ? 1 : \
((MODE) == HCmode) ? 2 : \
((GET_MODE_SIZE(MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
/* A C expression that is nonzero if the hard register REGNO is preserved
across a call in mode MODE. This does not have to include the call used
registers. */
#define HARD_REGNO_CALL_PART_CLOBBERED(REGNO, MODE) \
((IS_FLOAT_CALL_SAVED_REGNO (REGNO) && ! ((MODE) == QFmode)) \
|| (IS_INT_CALL_SAVED_REGNO (REGNO) \
&& ! ((MODE) == QImode || (MODE) == HImode || (MODE) == Pmode)))
/* Specify the modes required to caller save a given hard regno. */
#define HARD_REGNO_CALLER_SAVE_MODE(REGNO, NREGS, MODE) (c4x_caller_save_map[REGNO])
#define HARD_REGNO_MODE_OK(REGNO, MODE) c4x_hard_regno_mode_ok(REGNO, MODE)
/* A C expression that is nonzero if it is desirable to choose
register allocation so as to avoid move instructions between a
value of mode MODE1 and a value of mode MODE2.
Value is 1 if it is a good idea to tie two pseudo registers
when one has mode MODE1 and one has mode MODE2.
If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
for any hard reg, then this must be 0 for correct output. */
#define MODES_TIEABLE_P(MODE1, MODE2) 0
/* Define the classes of registers for register constraints in the
machine description. Also define ranges of constants.
One of the classes must always be named ALL_REGS and include all hard regs.
If there is more than one class, another class must be named NO_REGS
and contain no registers.
The name GENERAL_REGS must be the name of a class (or an alias for
another name such as ALL_REGS). This is the class of registers
that is allowed by "g" or "r" in a register constraint.
Also, registers outside this class are allocated only when
instructions express preferences for them.
The classes must be numbered in nondecreasing order; that is,
a larger-numbered class must never be contained completely
in a smaller-numbered class.
For any two classes, it is very desirable that there be another
class that represents their union. */
enum reg_class
{
NO_REGS,
R0R1_REGS, /* 't'. */
R2R3_REGS, /* 'u'. */
EXT_LOW_REGS, /* 'q'. */
EXT_REGS, /* 'f'. */
ADDR_REGS, /* 'a'. */
INDEX_REGS, /* 'x'. */
BK_REG, /* 'k'. */
SP_REG, /* 'b'. */
RC_REG, /* 'v'. */
COUNTER_REGS, /* */
INT_REGS, /* 'c'. */
GENERAL_REGS, /* 'r'. */
DP_REG, /* 'z'. */
ST_REG, /* 'y'. */
ALL_REGS,
LIM_REG_CLASSES
};
#define N_REG_CLASSES (int) LIM_REG_CLASSES
#define REG_CLASS_NAMES \
{ \
"NO_REGS", \
"R0R1_REGS", \
"R2R3_REGS", \
"EXT_LOW_REGS", \
"EXT_REGS", \
"ADDR_REGS", \
"INDEX_REGS", \
"BK_REG", \
"SP_REG", \
"RC_REG", \
"COUNTER_REGS", \
"INT_REGS", \
"GENERAL_REGS", \
"DP_REG", \
"ST_REG", \
"ALL_REGS" \
}
/* Define which registers fit in which classes.
This is an initializer for a vector of HARD_REG_SET
of length N_REG_CLASSES. RC is not included in GENERAL_REGS
since the register allocator will often choose a general register
in preference to RC for the decrement_and_branch_on_count pattern. */
#define REG_CLASS_CONTENTS \
{ \
{0x00000000}, /* No registers. */ \
{0x00000003}, /* 't' R0-R1 . */ \
{0x0000000c}, /* 'u' R2-R3 . */ \
{0x000000ff}, /* 'q' R0-R7 . */ \
{0xf00000ff}, /* 'f' R0-R11 */ \
{0x0000ff00}, /* 'a' AR0-AR7. */ \
{0x00060000}, /* 'x' IR0-IR1. */ \
{0x00080000}, /* 'k' BK. */ \
{0x00100000}, /* 'b' SP. */ \
{0x08000000}, /* 'v' RC. */ \
{0x0800ff00}, /* RC,AR0-AR7. */ \
{0x0e1eff00}, /* 'c' AR0-AR7, IR0-IR1, BK, SP, RS, RE, RC. */ \
{0xfe1effff}, /* 'r' R0-R11, AR0-AR7, IR0-IR1, BK, SP, RS, RE, RC. */\
{0x00010000}, /* 'z' DP. */ \
{0x00200000}, /* 'y' ST. */ \
{0xffffffff}, /* All registers. */ \
}
/* The same information, inverted:
Return the class number of the smallest class containing
reg number REGNO. This could be a conditional expression
or could index an array. */
#define REGNO_REG_CLASS(REGNO) (c4x_regclass_map[REGNO])
/* When SMALL_REGISTER_CLASSES is defined, the lifetime of registers
explicitly used in the rtl is kept as short as possible.
We only need to define SMALL_REGISTER_CLASSES if TARGET_PARALLEL_MPY
is defined since the MPY|ADD insns require the classes R0R1_REGS and
R2R3_REGS which are used by the function return registers (R0,R1) and
the register arguments (R2,R3), respectively. I'm reluctant to define
this macro since it stomps on many potential optimisations. Ideally
it should have a register class argument so that not all the register
classes gets penalised for the sake of a naughty few... For long
double arithmetic we need two additional registers that we can use as
spill registers. */
#define SMALL_REGISTER_CLASSES (TARGET_SMALL_REG_CLASS && TARGET_PARALLEL_MPY)
#define BASE_REG_CLASS ADDR_REGS
#define INDEX_REG_CLASS INDEX_REGS
/*
Register constraints for the C4x
a - address reg (ar0-ar7)
b - stack reg (sp)
c - other gp int-only reg
d - data/int reg (equiv. to f)
f - data/float reg
h - data/long double reg (equiv. to f)
k - block count (bk)
q - r0-r7
t - r0-r1
u - r2-r3
v - repeat count (rc)
x - index register (ir0-ir1)
y - status register (st)
z - dp reg (dp)
Memory/constant constraints for the C4x
G - short float 16-bit
I - signed 16-bit constant (sign extended)
J - signed 8-bit constant (sign extended) (C4x only)
K - signed 5-bit constant (sign extended) (C4x only for stik)
L - unsigned 16-bit constant
M - unsigned 8-bit constant (C4x only)
N - ones complement of unsigned 16-bit constant
Q - indirect arx + 9-bit signed displacement
(a *-arx(n) or *+arx(n) is used to account for the sign bit)
R - indirect arx + 5-bit unsigned displacement (C4x only)
S - indirect arx + 0, 1, or irn displacement
T - direct symbol ref
> - indirect with autoincrement
< - indirect with autodecrement
} - indirect with post-modify
{ - indirect with pre-modify
*/
#define REG_CLASS_FROM_LETTER(CC) \
( ((CC) == 'a') ? ADDR_REGS \
: ((CC) == 'b') ? SP_REG \
: ((CC) == 'c') ? INT_REGS \
: ((CC) == 'd') ? EXT_REGS \
: ((CC) == 'f') ? EXT_REGS \
: ((CC) == 'h') ? EXT_REGS \
: ((CC) == 'k') ? BK_REG \
: ((CC) == 'q') ? EXT_LOW_REGS \
: ((CC) == 't') ? R0R1_REGS \
: ((CC) == 'u') ? R2R3_REGS \
: ((CC) == 'v') ? RC_REG \
: ((CC) == 'x') ? INDEX_REGS \
: ((CC) == 'y') ? ST_REG \
: ((CC) == 'z') ? DP_REG \
: NO_REGS )
/* These assume that REGNO is a hard or pseudo reg number.
They give nonzero only if REGNO is a hard reg of the suitable class
or a pseudo reg currently allocated to a suitable hard reg.
Since they use reg_renumber, they are safe only once reg_renumber
has been allocated, which happens in local-alloc.c. */
#define REGNO_OK_FOR_BASE_P(REGNO) \
(IS_ADDR_REGNO(REGNO) || IS_ADDR_REGNO((unsigned)reg_renumber[REGNO]))
#define REGNO_OK_FOR_INDEX_P(REGNO) \
(IS_INDEX_REGNO(REGNO) || IS_INDEX_REGNO((unsigned)reg_renumber[REGNO]))
/* If we have to generate framepointer + constant prefer an ADDR_REGS
register. This avoids using EXT_REGS in addqi3_noclobber_reload. */
#define PREFERRED_RELOAD_CLASS(X, CLASS) \
(GET_CODE (X) == PLUS \
&& GET_MODE (X) == Pmode \
&& GET_CODE (XEXP ((X), 0)) == REG \
&& GET_MODE (XEXP ((X), 0)) == Pmode \
&& REGNO (XEXP ((X), 0)) == FRAME_POINTER_REGNUM \
&& GET_CODE (XEXP ((X), 1)) == CONST_INT \
? ADDR_REGS : (CLASS))
#define LIMIT_RELOAD_CLASS(X, CLASS) (CLASS)
#define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE) 0
#define CLASS_MAX_NREGS(CLASS, MODE) \
(((MODE) == CCmode || (MODE) == CC_NOOVmode) ? 1 : ((MODE) == HFmode) ? 1 : \
((GET_MODE_SIZE(MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
#define IS_INT5_CONST(VAL) (((VAL) <= 15) && ((VAL) >= -16)) /* 'K'. */
#define IS_UINT5_CONST(VAL) (((VAL) <= 31) && ((VAL) >= 0)) /* 'R'. */
#define IS_INT8_CONST(VAL) (((VAL) <= 127) && ((VAL) >= -128)) /* 'J'. */
#define IS_UINT8_CONST(VAL) (((VAL) <= 255) && ((VAL) >= 0)) /* 'M'. */
#define IS_INT16_CONST(VAL) (((VAL) <= 32767) && ((VAL) >= -32768)) /* 'I'. */
#define IS_UINT16_CONST(VAL) (((VAL) <= 65535) && ((VAL) >= 0)) /* 'L'. */
#define IS_NOT_UINT16_CONST(VAL) IS_UINT16_CONST(~(VAL)) /* 'N'. */
#define IS_HIGH_CONST(VAL) \
(! TARGET_C3X && (((VAL) & 0xffff) == 0)) /* 'O'. */
#define IS_DISP1_CONST(VAL) (((VAL) <= 1) && ((VAL) >= -1)) /* 'S'. */
#define IS_DISP8_CONST(VAL) (((VAL) <= 255) && ((VAL) >= -255)) /* 'Q'. */
#define IS_DISP1_OFF_CONST(VAL) (IS_DISP1_CONST (VAL) \
&& IS_DISP1_CONST (VAL + 1))
#define IS_DISP8_OFF_CONST(VAL) (IS_DISP8_CONST (VAL) \
&& IS_DISP8_CONST (VAL + 1))
#define CONST_OK_FOR_LETTER_P(VAL, C) \
( ((C) == 'I') ? (IS_INT16_CONST (VAL)) \
: ((C) == 'J') ? (! TARGET_C3X && IS_INT8_CONST (VAL)) \
: ((C) == 'K') ? (! TARGET_C3X && IS_INT5_CONST (VAL)) \
: ((C) == 'L') ? (IS_UINT16_CONST (VAL)) \
: ((C) == 'M') ? (! TARGET_C3X && IS_UINT8_CONST (VAL)) \
: ((C) == 'N') ? (IS_NOT_UINT16_CONST (VAL)) \
: ((C) == 'O') ? (IS_HIGH_CONST (VAL)) \
: 0 )
#define CONST_DOUBLE_OK_FOR_LETTER_P(OP, C) \
( ((C) == 'G') ? (fp_zero_operand (OP, QFmode)) \
: ((C) == 'H') ? (c4x_H_constant (OP)) \
: 0 )
#define EXTRA_CONSTRAINT(OP, C) \
( ((C) == 'Q') ? (c4x_Q_constraint (OP)) \
: ((C) == 'R') ? (c4x_R_constraint (OP)) \
: ((C) == 'S') ? (c4x_S_constraint (OP)) \
: ((C) == 'T') ? (c4x_T_constraint (OP)) \
: ((C) == 'U') ? (c4x_U_constraint (OP)) \
: 0 )
#define SMALL_CONST(VAL, insn) \
( ((insn == NULL_RTX) || (get_attr_data (insn) == DATA_INT16)) \
? IS_INT16_CONST (VAL) \
: ( (get_attr_data (insn) == DATA_NOT_UINT16) \
? IS_NOT_UINT16_CONST (VAL) \
: ( (get_attr_data (insn) == DATA_HIGH_16) \
? IS_HIGH_CONST (VAL) \
: IS_UINT16_CONST (VAL) \
) \
) \
)
/*
I. Routine calling with arguments in registers
----------------------------------------------
The TI C3x compiler has a rather unusual register passing algorithm.
Data is passed in the following registers (in order):
AR2, R2, R3, RC, RS, RE
However, the first and second floating point values are always in R2
and R3 (and all other floats are on the stack). Structs are always
passed on the stack. If the last argument is an ellipsis, the
previous argument is passed on the stack so that its address can be
taken for the stdargs macros.
Because of this, we have to pre-scan the list of arguments to figure
out what goes where in the list.
II. Routine calling with arguments on stack
-------------------------------------------
Let the subroutine declared as "foo(arg0, arg1, arg2);" have local
variables loc0, loc1, and loc2. After the function prologue has
been executed, the stack frame will look like:
[stack grows towards increasing addresses]
I-------------I
5 I saved reg1 I <= SP points here
I-------------I
4 I saved reg0 I
I-------------I
3 I loc2 I
I-------------I
2 I loc1 I
I-------------I
1 I loc0 I
I-------------I
0 I old FP I <= FP (AR3) points here
I-------------I
-1 I return PC I
I-------------I
-2 I arg0 I
I-------------I
-3 I arg1 I
I-------------I
-4 I arg2 I
I-------------I
All local variables (locn) are accessible by means of +FP(n+1)
addressing, where n is the local variable number.
All stack arguments (argn) are accessible by means of -FP(n-2).
The stack pointer (SP) points to the last register saved in the
prologue (regn).
Note that a push instruction performs a preincrement of the stack
pointer. (STACK_PUSH_CODE == PRE_INC)
III. Registers used in function calling convention
--------------------------------------------------
Preserved across calls: R4...R5 (only by PUSH, i.e. lower 32 bits)
R6...R7 (only by PUSHF, i.e. upper 32 bits)
AR3...AR7
(Because of this model, we only assign FP values in R6, R7 and
only assign integer values in R4, R5.)
These registers are saved at each function entry and restored at
the exit. Also it is expected any of these not affected by any
call to user-defined (not service) functions.
Not preserved across calls: R0...R3
R4...R5 (upper 8 bits)
R6...R7 (lower 8 bits)
AR0...AR2, IR0, IR1, BK, ST, RS, RE, RC
These registers are used arbitrary in a function without being preserved.
It is also expected that any of these can be clobbered by any call.
Not used by GCC (except for in user "asm" statements):
IE (DIE), IF (IIE), IOF (IIF)
These registers are never used by GCC for any data, but can be used
with "asm" statements. */
#define C4X_ARG0 -2
#define C4X_LOC0 1
/* Basic Stack Layout. */
/* The stack grows upward, stack frame grows upward, and args grow
downward. */
#define STARTING_FRAME_OFFSET C4X_LOC0
#define FIRST_PARM_OFFSET(FNDECL) (C4X_ARG0 + 1)
#define ARGS_GROW_DOWNWARD
#define STACK_POINTER_OFFSET 1
/* Define this if pushing a word on the stack
makes the stack pointer a smaller address. */
/* #define STACK_GROWS_DOWNWARD. */
/* Like the dsp16xx, i370, i960, and we32k ports. */
/* Define this if the nominal address of the stack frame
is at the high-address end of the local variables;
that is, each additional local variable allocated
goes at a more negative offset in the frame. */
/* #define FRAME_GROWS_DOWNWARD. */
/* Registers That Address the Stack Frame. */
#define STACK_POINTER_REGNUM SP_REGNO /* SP. */
#define FRAME_POINTER_REGNUM AR3_REGNO /* AR3. */
#define ARG_POINTER_REGNUM AR3_REGNO /* AR3. */
#define STATIC_CHAIN_REGNUM AR0_REGNO /* AR0. */
/* Eliminating Frame Pointer and Arg Pointer. */
#define FRAME_POINTER_REQUIRED 0
#define INITIAL_FRAME_POINTER_OFFSET(DEPTH) \
{ \
int regno; \
int offset = 0; \
for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++) \
if (regs_ever_live[regno] && ! call_used_regs[regno]) \
offset += TARGET_PRESERVE_FLOAT \
&& IS_FLOAT_CALL_SAVED_REGNO (regno) ? 2 : 1; \
(DEPTH) = -(offset + get_frame_size ()); \
}
/* This is a hack... We need to specify a register. */
#define ELIMINABLE_REGS \
{{ FRAME_POINTER_REGNUM, FRAME_POINTER_REGNUM }}
#define CAN_ELIMINATE(FROM, TO) \
(! (((FROM) == FRAME_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM) \
|| ((FROM) == FRAME_POINTER_REGNUM && (TO) == FRAME_POINTER_REGNUM)))
#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
{ \
int regno; \
int offset = 0; \
for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++) \
if (regs_ever_live[regno] && ! call_used_regs[regno]) \
offset += TARGET_PRESERVE_FLOAT \
&& IS_FLOAT_CALL_SAVED_REGNO (regno) ? 2 : 1; \
(OFFSET) = -(offset + get_frame_size ()); \
}
/* Passing Function Arguments on the Stack. */
#if 0
#define PUSH_ROUNDING(BYTES) (BYTES)
#endif
#define RETURN_POPS_ARGS(FUNDECL, FUNTYPE, STACK_SIZE) 0
/* The following structure is used by calls.c, function.c, c4x.c. */
typedef struct c4x_args
{
int floats;
int ints;
int maxfloats;
int maxints;
int init;
int var;
int prototype;
int args;
}
CUMULATIVE_ARGS;
#define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME,INDIRECT) \
(c4x_init_cumulative_args (&CUM, FNTYPE, LIBNAME))
#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
(c4x_function_arg_advance (&CUM, MODE, TYPE, NAMED))
#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
(c4x_function_arg(&CUM, MODE, TYPE, NAMED))
/* Define the profitability of saving registers around calls.
We disable caller save to avoid a bug in flow.c (this also affects
other targets such as m68k). Since we must use stf/sti,
the profitability is marginal anyway. */
#define CALLER_SAVE_PROFITABLE(REFS,CALLS) 0
/* Never pass data by reference. */
#define FUNCTION_ARG_PASS_BY_REFERENCE(CUM, MODE, TYPE, NAMED) 0
#define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) 0
/* 1 if N is a possible register number for function argument passing. */
#define FUNCTION_ARG_REGNO_P(REGNO) \
( ( ((REGNO) == AR2_REGNO) /* AR2. */ \
|| ((REGNO) == R2_REGNO) /* R2. */ \
|| ((REGNO) == R3_REGNO) /* R3. */ \
|| ((REGNO) == RC_REGNO) /* RC. */ \
|| ((REGNO) == RS_REGNO) /* RS. */ \
|| ((REGNO) == RE_REGNO)) /* RE. */ \
? 1 \
: 0)
/* How Scalar Function Values Are Returned. */
#define FUNCTION_VALUE(VALTYPE, FUNC) \
gen_rtx(REG, TYPE_MODE(VALTYPE), R0_REGNO) /* Return in R0. */
#define LIBCALL_VALUE(MODE) \
gen_rtx(REG, MODE, R0_REGNO) /* Return in R0. */
#define FUNCTION_VALUE_REGNO_P(REGNO) ((REGNO) == R0_REGNO)
/* How Large Values Are Returned. */
#define DEFAULT_PCC_STRUCT_RETURN 0
#define STRUCT_VALUE_REGNUM AR0_REGNO /* AR0. */
/* Varargs handling. */
#define EXPAND_BUILTIN_VA_START(stdarg, valist, nextarg) \
c4x_va_start (stdarg, valist, nextarg)
#define EXPAND_BUILTIN_VA_ARG(valist, type) \
c4x_va_arg (valist, type)
/* Generating Code for Profiling. */
/* Note that the generated assembly uses the ^ operator to load the 16
MSBs of the address. This is not supported by the TI assembler.
The FUNCTION profiler needs a function mcount which gets passed
a pointer to the LABELNO. */
#define FUNCTION_PROFILER(FILE, LABELNO) \
if (! TARGET_C3X) \
{ \
fprintf (FILE, "\tpush\tar2\n"); \
fprintf (FILE, "\tldhi\t^LP%d,ar2\n", (LABELNO)); \
fprintf (FILE, "\tor\t#LP%d,ar2\n", (LABELNO)); \
fprintf (FILE, "\tcall\tmcount\n"); \
fprintf (FILE, "\tpop\tar2\n"); \
} \
else \
{ \
fprintf (FILE, "\tpush\tar2\n"); \
fprintf (FILE, "\tldiu\t^LP%d,ar2\n", (LABELNO)); \
fprintf (FILE, "\tlsh\t16,ar2\n"); \
fprintf (FILE, "\tor\t#LP%d,ar2\n", (LABELNO)); \
fprintf (FILE, "\tcall\tmcount\n"); \
fprintf (FILE, "\tpop\tar2\n"); \
}
/* There are three profiling modes for basic blocks available.
The modes are selected at compile time by using the options
-a or -ax of the gnu compiler.
The variable `profile_block_flag' will be set according to the
selected option.
profile_block_flag == 0, no option used:
No profiling done.
profile_block_flag == 1, -a option used.
Count frequency of execution of every basic block.
profile_block_flag == 2, -ax option used.
Generate code to allow several different profiling modes at run time.
Available modes are:
Produce a trace of all basic blocks.
Count frequency of jump instructions executed.
In every mode it is possible to start profiling upon entering
certain functions and to disable profiling of some other functions.
The result of basic-block profiling will be written to a file `bb.out'.
If the -ax option is used parameters for the profiling will be read
from file `bb.in'.
*/
#define FUNCTION_BLOCK_PROFILER(FILE, BLOCKNO) \
if (profile_block_flag == 2) \
{ \
if (! TARGET_C3X) \
{ \
fprintf (FILE, "\tpush\tst\n"); \
fprintf (FILE, "\tpush\tar2\n"); \
fprintf (FILE, "\tpush\tr2\n"); \
fprintf (FILE, "\tldhi\t^LPBX0,ar2\n"); \
fprintf (FILE, "\tor\t#LPBX0,ar2\n"); \
if (BLOCKNO > 32767) \
{ \
fprintf (FILE, "\tldhi\t%d,r2\n", (BLOCKNO) >> 16); \
fprintf (FILE, "\tor\t%d,r2\n", (BLOCKNO)); \
} \
else \
{ \
fprintf (FILE, "\tldiu\t%d,r2\n", (BLOCKNO)); \
} \
fprintf (FILE, "\tcall\t___bb_init_trace_func\n"); \
fprintf (FILE, "\tpop\tr2\n"); \
fprintf (FILE, "\tpop\tar2\n"); \
fprintf (FILE, "\tpop\tst\n"); \
} \
else \
{ \
fprintf (FILE, "\tpush\tst\n"); \
fprintf (FILE, "\tpush\tar2\n"); \
fprintf (FILE, "\tpush\tr2\n"); \
fprintf (FILE, "\tldiu\t^LPBX0,ar2\n"); \
fprintf (FILE, "\tlsh\t16,ar2\n"); \
fprintf (FILE, "\tor\t#LPBX0,ar2\n"); \
if (BLOCKNO > 32767) \
{ \
fprintf (FILE, "\tldi\t%d,r2\n", (BLOCKNO) >> 16); \
fprintf (FILE, "\tlsh\t16,r2\n"); \
fprintf (FILE, "\tor\t%d,r2\n", (BLOCKNO)); \
} \
else \
{ \
fprintf (FILE, "\tldiu\t%d,r2\n", (BLOCKNO)); \
} \
fprintf (FILE, "\tcall\t___bb_init_trace_func\n"); \
fprintf (FILE, "\tpop\tr2\n"); \
fprintf (FILE, "\tpop\tar2\n"); \
fprintf (FILE, "\tpop\tst\n"); \
} \
} \
else \
{ \
if (! TARGET_C3X) \
{ \
fprintf (FILE, "\tpush\tst\n"); \
fprintf (FILE, "\tpush\tar2\n"); \
fprintf (FILE, "\tldhi\t^LPBX0,ar2\n"); \
fprintf (FILE, "\tor\t#LPBX0,ar2\n"); \
fprintf (FILE, "\tcmpi\t0,*ar2\n"); \
fprintf (FILE, "\tbne\t$+2\n"); \
fprintf (FILE, "\tcall\t___bb_init_func\n"); \
fprintf (FILE, "\tpop\tar2\n"); \
fprintf (FILE, "\tpop\tst\n"); \
} \
else \
{ \
fprintf (FILE, "\tpush\tst\n"); \
fprintf (FILE, "\tpush\tar2\n"); \
fprintf (FILE, "\tpush\tr2\n"); \
fprintf (FILE, "\tldiu\t^LPBX0,ar2\n"); \
fprintf (FILE, "\tlsh\t16,ar2\n"); \
fprintf (FILE, "\tor\t#LPBX0,ar2\n"); \
fprintf (FILE, "\tldi\t*ar2,r2\n"); \
fprintf (FILE, "\tbne\t$+2\n"); \
fprintf (FILE, "\tcall\t___bb_init_func\n"); \
fprintf (FILE, "\tpop\tr2\n"); \
fprintf (FILE, "\tpop\tar2\n"); \
fprintf (FILE, "\tpop\tst\n"); \
} \
}
#define BLOCK_PROFILER(FILE, BLOCKNO) \
if (profile_block_flag == 2) \
{ \
if (! TARGET_C3X) \
{ \
fprintf (FILE, "\tpush\tst\n"); \
fprintf (FILE, "\tpush\tar2\n"); \
fprintf (FILE, "\tpush\tar0\n"); \
fprintf (FILE, "\tldhi\t^___bb,ar2\n"); \
fprintf (FILE, "\tor\t#___bb,ar2\n"); \
if (BLOCKNO > 32767) \
{ \
fprintf (FILE, "\tldhi\t%d,ar0\n", (BLOCKNO) >> 16);\
fprintf (FILE, "\tor\t%d,ar0\n", (BLOCKNO)); \
} \
else \
{ \
fprintf (FILE, "\tldiu\t%d,ar0\n", (BLOCKNO)); \
} \
fprintf (FILE, "\tsti\tar0,*ar2\n"); \
fprintf (FILE, "\tldhi\t^LPBX0,ar0\n"); \
fprintf (FILE, "\tor\t#LPBX0,ar0\n"); \
fprintf (FILE, "\tsti\tar0,*+ar2(1)\n"); \
fprintf (FILE, "\tcall\t___bb_trace_func\n"); \
fprintf (FILE, "\tpop\tar0\n"); \
fprintf (FILE, "\tpop\tar2\n"); \
fprintf (FILE, "\tpop\tst\n"); \
} \
else \
{ \
fprintf (FILE, "\tpush\tst\n"); \
fprintf (FILE, "\tpush\tar2\n"); \
fprintf (FILE, "\tpush\tar0\n"); \
fprintf (FILE, "\tldiu\t^___bb,ar2\n"); \
fprintf (FILE, "\tlsh\t16,ar2\n"); \
fprintf (FILE, "\tor\t#___bb,ar2\n"); \
if (BLOCKNO > 32767) \
{ \
fprintf (FILE, "\tldi\t%d,ar0\n", (BLOCKNO) >> 16); \
fprintf (FILE, "\tlsh\t16,ar0\n"); \
fprintf (FILE, "\tor\t%d,ar0\n", (BLOCKNO)); \
} \
else \
{ \
fprintf (FILE, "\tldiu\t%d,ar0\n", (BLOCKNO)); \
} \
fprintf (FILE, "\tsti\tar0,*ar2\n"); \
fprintf (FILE, "\tldiu\t^LPBX0,ar0\n"); \
fprintf (FILE, "\tlsh\t16,ar0\n"); \
fprintf (FILE, "\tor\t#LPBX0,ar0\n"); \
fprintf (FILE, "\tsti\tar0,*+ar2(1)\n"); \
fprintf (FILE, "\tcall\t___bb_trace_func\n"); \
fprintf (FILE, "\tpop\tar0\n"); \
fprintf (FILE, "\tpop\tar2\n"); \
fprintf (FILE, "\tpop\tst\n"); \
} \
} \
else \
{ \
if (! TARGET_C3X) \
{ \
fprintf (FILE, "\tpush\tar2\n"); \
fprintf (FILE, "\tpush\tar0\n"); \
fprintf (FILE, "\tldhi\t^LPBX2+%d,ar2\n", (BLOCKNO)); \
fprintf (FILE, "\tor\t#LPBX2+%d,ar2\n", (BLOCKNO)); \
fprintf (FILE, "\taddi3\t1,*ar2,ar0\n"); \
fprintf (FILE, "\tsti\tar0,*ar2\n"); \
fprintf (FILE, "\tpop\tar0\n"); \
fprintf (FILE, "\tpop\tar2\n"); \
} \
else \
{ \
fprintf (FILE, "\tpush\tar2\n"); \
fprintf (FILE, "\tpush\tar0\n"); \
fprintf (FILE, "\tldiu\t^LPBX2+%d,ar2\n", (BLOCKNO)); \
fprintf (FILE, "\tlsh\t16,ar2\n"); \
fprintf (FILE, "\tor\t#LPBX2+%d,ar2\n", (BLOCKNO)); \
fprintf (FILE, "\tldiu\t*ar2,ar0\n"); \
fprintf (FILE, "\taddi\t1,ar0\n"); \
fprintf (FILE, "\tsti\tar0,*ar2\n"); \
fprintf (FILE, "\tpop\tar0\n"); \
fprintf (FILE, "\tpop\tar2\n"); \
} \
}
#define FUNCTION_BLOCK_PROFILER_EXIT \
{ \
emit_insn (gen_push_st ()); \
emit_insn (gen_pushqi ( \
gen_rtx_REG (QImode, AR2_REGNO))); \
emit_call_insn (gen_nodb_call ( \
gen_rtx_SYMBOL_REF (QImode, "__bb_trace_ret")));\
emit_insn (gen_popqi_unspec ( \
gen_rtx_REG (QImode, AR2_REGNO))); \
emit_insn (gen_pop_st ()); \
}
#define MACHINE_STATE_SAVE(ID) \
asm(" push r0"); \
asm(" pushf r0"); \
asm(" push r1"); \
asm(" pushf r1"); \
asm(" push r2"); \
asm(" pushf r2"); \
asm(" push r3"); \
asm(" pushf r3"); \
asm(" push ar0"); \
asm(" push ar1"); \
asm(" .if .BIGMODEL"); \
asm(" push dp"); \
asm(" .endif"); \
asm(" push ir0"); \
asm(" push ir1"); \
asm(" push bk"); \
asm(" push rs"); \
asm(" push re"); \
asm(" push rc"); \
asm(" .if .tms320C40"); \
asm(" push r9"); \
asm(" pushf r9"); \
asm(" push r10"); \
asm(" pushf r10"); \
asm(" push r11"); \
asm(" pushf r11"); \
asm(" .endif");
#define MACHINE_STATE_RESTORE(ID) \
asm(" .if .tms320C40"); \
asm(" popf r11"); \
asm(" pop r11"); \
asm(" popf r10"); \
asm(" pop r10"); \
asm(" popf r9"); \
asm(" pop r9"); \
asm(" .endif"); \
asm(" pop rc"); \
asm(" pop re"); \
asm(" pop rs"); \
asm(" pop bk"); \
asm(" pop ir1"); \
asm(" pop ir0"); \
asm(" .if .BIGMODEL"); \
asm(" pop dp"); \
asm(" .endif"); \
asm(" pop ar1"); \
asm(" pop ar0"); \
asm(" popf r3"); \
asm(" pop r3"); \
asm(" popf r2"); \
asm(" pop r2"); \
asm(" popf r1"); \
asm(" pop r1"); \
asm(" popf r0"); \
asm(" pop r0"); \
/* Implicit Calls to Library Routines. */
#define MULQI3_LIBCALL "__mulqi3"
#define DIVQI3_LIBCALL "__divqi3"
#define UDIVQI3_LIBCALL "__udivqi3"
#define MODQI3_LIBCALL "__modqi3"
#define UMODQI3_LIBCALL "__umodqi3"
#define DIVQF3_LIBCALL "__divqf3"
#define MULHF3_LIBCALL "__mulhf3"
#define DIVHF3_LIBCALL "__divhf3"
#define MULHI3_LIBCALL "__mulhi3"
#define SMULHI3_LIBCALL "__smulhi3_high"
#define UMULHI3_LIBCALL "__umulhi3_high"
#define DIVHI3_LIBCALL "__divhi3"
#define UDIVHI3_LIBCALL "__udivhi3"
#define MODHI3_LIBCALL "__modhi3"
#define UMODHI3_LIBCALL "__umodhi3"
#define FLOATHIQF2_LIBCALL "__floathiqf2"
#define FLOATUNSHIQF2_LIBCALL "__ufloathiqf2"
#define FIX_TRUNCQFHI2_LIBCALL "__fix_truncqfhi2"
#define FIXUNS_TRUNCQFHI2_LIBCALL "__ufix_truncqfhi2"
#define FLOATHIHF2_LIBCALL "__floathihf2"
#define FLOATUNSHIHF2_LIBCALL "__ufloathihf2"
#define FIX_TRUNCHFHI2_LIBCALL "__fix_trunchfhi2"
#define FIXUNS_TRUNCHFHI2_LIBCALL "__ufix_trunchfhi2"
#define FFS_LIBCALL "__ffs"
#define INIT_TARGET_OPTABS \
do { \
smul_optab->handlers[(int) QImode].libfunc \
= init_one_libfunc (MULQI3_LIBCALL); \
sdiv_optab->handlers[(int) QImode].libfunc \
= init_one_libfunc (DIVQI3_LIBCALL); \
udiv_optab->handlers[(int) QImode].libfunc \
= init_one_libfunc (UDIVQI3_LIBCALL); \
smod_optab->handlers[(int) QImode].libfunc \
= init_one_libfunc (MODQI3_LIBCALL); \
umod_optab->handlers[(int) QImode].libfunc \
= init_one_libfunc (UMODQI3_LIBCALL); \
sdiv_optab->handlers[(int) QFmode].libfunc \
= init_one_libfunc (DIVQF3_LIBCALL); \
smul_optab->handlers[(int) HFmode].libfunc \
= init_one_libfunc (MULHF3_LIBCALL); \
sdiv_optab->handlers[(int) HFmode].libfunc \
= init_one_libfunc (DIVHF3_LIBCALL); \
smul_optab->handlers[(int) HImode].libfunc \
= init_one_libfunc (MULHI3_LIBCALL); \
sdiv_optab->handlers[(int) HImode].libfunc \
= init_one_libfunc (DIVHI3_LIBCALL); \
udiv_optab->handlers[(int) HImode].libfunc \
= init_one_libfunc (UDIVHI3_LIBCALL); \
smod_optab->handlers[(int) HImode].libfunc \
= init_one_libfunc (MODHI3_LIBCALL); \
umod_optab->handlers[(int) HImode].libfunc \
= init_one_libfunc (UMODHI3_LIBCALL); \
ffs_optab->handlers[(int) QImode].libfunc \
= init_one_libfunc (FFS_LIBCALL); \
smulhi3_libfunc \
= init_one_libfunc(SMULHI3_LIBCALL); \
umulhi3_libfunc \
= init_one_libfunc(UMULHI3_LIBCALL); \
fix_truncqfhi2_libfunc \
= init_one_libfunc(FIX_TRUNCQFHI2_LIBCALL); \
fixuns_truncqfhi2_libfunc \
= init_one_libfunc(FIXUNS_TRUNCQFHI2_LIBCALL); \
fix_trunchfhi2_libfunc \
= init_one_libfunc(FIX_TRUNCHFHI2_LIBCALL); \
fixuns_trunchfhi2_libfunc \
= init_one_libfunc(FIXUNS_TRUNCHFHI2_LIBCALL); \
floathiqf2_libfunc \
= init_one_libfunc(FLOATHIQF2_LIBCALL); \
floatunshiqf2_libfunc \
= init_one_libfunc(FLOATUNSHIQF2_LIBCALL); \
floathihf2_libfunc \
= init_one_libfunc(FLOATHIHF2_LIBCALL); \
floatunshihf2_libfunc \
= init_one_libfunc(FLOATUNSHIHF2_LIBCALL); \
} while (0)
#define TARGET_MEM_FUNCTIONS
/* Add any extra modes needed to represent the condition code.
On the C4x, we have a "no-overflow" mode which is used when an ADD,
SUB, NEG, or MPY insn is used to set the condition code. This is
to prevent the combiner from optimising away a following CMP of the
result with zero when a signed conditional branch or load insn
follows.
The problem is a subtle one and deals with the manner in which the
negative condition (N) flag is used on the C4x. This flag does not
reflect the status of the actual result but of the ideal result had
no overflow occurred (when considering signed operands).
For example, 0x7fffffff + 1 => 0x80000000 Z=0 V=1 N=0 C=0. Here
the flags reflect the untruncated result, not the actual result.
While the actual result is less than zero, the N flag is not set
since the ideal result of the addition without truncation would
have been positive.
Note that the while the N flag is handled differently to most other
architectures, the use of it is self consistent and is not the
cause of the problem.
Logical operations set the N flag to the MSB of the result so if
the result is negative, N is 1. However, integer and floating
point operations set the N flag to be the MSB of the result
exclusive ored with the overflow (V) flag. Thus if an overflow
occurs and the result does not have the MSB set (i.e., the result
looks like a positive number), the N flag is set. Conversely, if
an overflow occurs and the MSB of the result is set, N is set to 0.
Thus the N flag represents the sign of the result if it could have
been stored without overflow but does not represent the apparent
sign of the result. Note that most architectures set the N flag to
be the MSB of the result.
The C4x approach to setting the N flag simplifies signed
conditional branches and loads which only have to test the state of
the N flag, whereas most architectures have to look at both the N
and V flags. The disadvantage is that there is no flag giving the
status of the sign bit of the operation. However, there are no
conditional load or branch instructions that make use of this
feature (e.g., BMI---branch minus) instruction. Note that BN and
BLT are identical in the C4x.
To handle the problem where the N flag is set differently whenever
there is an overflow we use a different CC mode, CC_NOOVmode which
says that the CC reflects the comparison of the result against zero
if no overflow occurred.
For example,
[(set (reg:CC_NOOV 21)
(compare:CC_NOOV (minus:QI (match_operand:QI 1 "src_operand" "")
(match_operand:QI 2 "src_operand" ""))
(const_int 0)))
(set (match_operand:QI 0 "ext_reg_operand" "")
(minus:QI (match_dup 1)
(match_dup 2)))]
Note that there is no problem for insns that don't return a result
like CMP, since the CC reflects the effect of operation.
An example of a potential problem is when GCC
converts (LTU (MINUS (0x80000000) (0x7fffffff) (0x80000000)))
to (LEU (MINUS (0x80000000) (0x7fffffff) (0x7fffffff)))
to (GE (MINUS (0x80000000) (0x7fffffff) (0x00000000)))
Now (MINUS (0x80000000) (0x7fffffff)) returns 0x00000001 but the
C4x sets the N flag since the result without overflow would have
been 0xffffffff when treating the operands as signed integers.
Thus (GE (MINUS (0x80000000) (0x7fffffff) (0x00000000))) sets the N
flag but (GE (0x00000001)) does not set the N flag.
The upshot is that we can not use signed branch and conditional
load instructions after an add, subtract, neg, abs or multiply.
We must emit a compare insn to check the result against 0. */
#define EXTRA_CC_MODES CC(CC_NOOVmode, "CC_NOOV")
/* CC_NOOVmode should be used when the first operand is a PLUS, MINUS, NEG
or MULT.
CCmode should be used when no special processing is needed. */
#define SELECT_CC_MODE(OP,X,Y) \
((GET_CODE (X) == PLUS || GET_CODE (X) == MINUS \
|| GET_CODE (X) == NEG || GET_CODE (X) == MULT \
|| GET_MODE (X) == ABS \
|| GET_CODE (Y) == PLUS || GET_CODE (Y) == MINUS \
|| GET_CODE (Y) == NEG || GET_CODE (Y) == MULT \
|| GET_MODE (Y) == ABS) \
? CC_NOOVmode : CCmode)
/* Addressing Modes. */
#define HAVE_POST_INCREMENT 1
#define HAVE_PRE_INCREMENT 1
#define HAVE_POST_DECREMENT 1
#define HAVE_PRE_DECREMENT 1
#define HAVE_PRE_MODIFY_REG 1
#define HAVE_POST_MODIFY_REG 1
#define HAVE_PRE_MODIFY_DISP 1
#define HAVE_POST_MODIFY_DISP 1
/* The number of insns that can be packed into a single opcode. */
#define PACK_INSNS 2
/* Recognize any constant value that is a valid address.
We could allow arbitrary constant addresses in the large memory
model but for the small memory model we can only accept addresses
within the data page. I suppose we could also allow
CONST PLUS SYMBOL_REF. */
#define CONSTANT_ADDRESS_P(X) (GET_CODE (X) == SYMBOL_REF)
/* Maximum number of registers that can appear in a valid memory
address. */
#define MAX_REGS_PER_ADDRESS 2
/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
and check its validity for a certain class.
We have two alternate definitions for each of them.
The usual definition accepts all pseudo regs; the other rejects
them unless they have been allocated suitable hard regs.
The symbol REG_OK_STRICT causes the latter definition to be used.
Most source files want to accept pseudo regs in the hope that
they will get allocated to the class that the insn wants them to be in.
Source files for reload pass need to be strict.
After reload, it makes no difference, since pseudo regs have
been eliminated by then. */
#ifndef REG_OK_STRICT
/* Nonzero if X is a hard or pseudo reg that can be used as an base. */
#define REG_OK_FOR_BASE_P(X) IS_ADDR_OR_PSEUDO_REG(X)
/* Nonzero if X is a hard or pseudo reg that can be used as an index. */
#define REG_OK_FOR_INDEX_P(X) IS_INDEX_OR_PSEUDO_REG(X)
#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
{ \
if (c4x_check_legit_addr (MODE, X, 0)) \
goto ADDR; \
}
#else
/* Nonzero if X is a hard reg that can be used as an index. */
#define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
/* Nonzero if X is a hard reg that can be used as a base reg. */
#define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
{ \
if (c4x_check_legit_addr (MODE, X, 1)) \
goto ADDR; \
}
#endif
#define LEGITIMIZE_ADDRESS(X, OLDX, MODE, WIN) \
{ \
rtx new; \
new = c4x_legitimize_address (X, MODE); \
if (new != NULL_RTX) \
{ \
(X) = new; \
goto WIN; \
} \
}
#define LEGITIMIZE_RELOAD_ADDRESS(X,MODE,OPNUM,TYPE,IND_LEVELS,WIN) \
{ \
if (MODE != HImode \
&& MODE != HFmode \
&& GET_MODE (X) != HImode \
&& GET_MODE (X) != HFmode \
&& (GET_CODE (X) == CONST \
|| GET_CODE (X) == SYMBOL_REF \
|| GET_CODE (X) == LABEL_REF)) \
{ \
if (! TARGET_SMALL) \
{ \
int i; \
X = gen_rtx_LO_SUM (GET_MODE (X), \
gen_rtx_HIGH (GET_MODE (X), X), X); \
i = push_reload (XEXP (X, 0), NULL_RTX, \
&XEXP (X, 0), NULL, \
DP_REG, GET_MODE (X), VOIDmode, 0, 0, \
OPNUM, TYPE); \
/* The only valid reg is DP. This is a fixed reg and will \
normally not be used so force it. */ \
rld[i].reg_rtx = gen_rtx_REG (Pmode, DP_REGNO); \
rld[i].nocombine = 1; \
} \
goto WIN; \
} \
else if (MODE != HImode \
&& MODE != HFmode \
&& GET_MODE (X) != HImode \
&& GET_MODE (X) != HFmode \
&& GET_CODE (X) == LO_SUM \
&& GET_CODE (XEXP (X,0)) == HIGH \
&& (GET_CODE (XEXP (XEXP (X,0),0)) == CONST \
|| GET_CODE (XEXP (XEXP (X,0),0)) == SYMBOL_REF \
|| GET_CODE (XEXP (XEXP (X,0),0)) == LABEL_REF)) \
{ \
if (! TARGET_SMALL) \
{ \
int i = push_reload (XEXP (X, 0), NULL_RTX, \
&XEXP (X, 0), NULL, \
DP_REG, GET_MODE (X), VOIDmode, 0, 0, \
OPNUM, TYPE); \
/* The only valid reg is DP. This is a fixed reg and will \
normally not be used so force it. */ \
rld[i].reg_rtx = gen_rtx_REG (Pmode, DP_REGNO); \
rld[i].nocombine = 1; \
} \
goto WIN; \
} \
}
/* No mode-dependent addresses on the C4x are autoincrements. */
#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR, LABEL) \
if (GET_CODE (ADDR) == PRE_DEC \
|| GET_CODE (ADDR) == POST_DEC \
|| GET_CODE (ADDR) == PRE_INC \
|| GET_CODE (ADDR) == POST_INC \
|| GET_CODE (ADDR) == POST_MODIFY \
|| GET_CODE (ADDR) == PRE_MODIFY) \
goto LABEL
/* Nonzero if the constant value X is a legitimate general operand.
It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE.
The C4x can only load 16-bit immediate values, so we only allow a
restricted subset of CONST_INT and CONST_DOUBLE. Disallow
LABEL_REF and SYMBOL_REF (except on the C40 with the big memory
model) so that the symbols will be forced into the constant pool.
On second thoughts, let's do this with the move expanders since
the alias analysis has trouble if we force constant addresses
into memory.
*/
#define LEGITIMATE_CONSTANT_P(X) \
((GET_CODE (X) == CONST_DOUBLE && c4x_H_constant (X)) \
|| (GET_CODE (X) == CONST_INT) \
|| (GET_CODE (X) == SYMBOL_REF) \
|| (GET_CODE (X) == LABEL_REF) \
|| (GET_CODE (X) == CONST) \
|| (GET_CODE (X) == HIGH && ! TARGET_C3X) \
|| (GET_CODE (X) == LO_SUM && ! TARGET_C3X))
#define LEGITIMATE_DISPLACEMENT_P(X) IS_DISP8_CONST (INTVAL (X))
/* Define this macro if references to a symbol must be treated
differently depending on something about the variable or
function named by the symbol (such as what section it is in).
The macro definition, if any, is executed immediately after the
rtl for DECL or other node is created.
The value of the rtl will be a `mem' whose address is a
`symbol_ref'.
The usual thing for this macro to do is to a flag in the
`symbol_ref' (such as `SYMBOL_REF_FLAG') or to store a modified
name string in the `symbol_ref' (if one bit is not enough
information).
On the C4x we use this to indicate if a symbol is in text or
data space. */
#define ENCODE_SECTION_INFO(DECL) c4x_encode_section_info (DECL);
/* Descripting Relative Cost of Operations. */
/* Provide the costs of a rtl expression. This is in the body of a
switch on CODE.
Note that we return, rather than break so that rtx_cost doesn't
include CONST_COSTS otherwise expand_mult will think that it is
cheaper to synthesise a multiply rather than to use a multiply
instruction. I think this is because the algorithm synth_mult
doesn't take into account the loading of the operands, whereas the
calculation of mult_cost does.
*/
#define RTX_COSTS(RTX, CODE, OUTER_CODE) \
case PLUS: \
case MINUS: \
case AND: \
case IOR: \
case XOR: \
case ASHIFT: \
case ASHIFTRT: \
case LSHIFTRT: \
return COSTS_N_INSNS (1); \
case MULT: \
return COSTS_N_INSNS (GET_MODE_CLASS (GET_MODE (RTX)) == MODE_FLOAT \
|| TARGET_MPYI ? 1 : 14); \
case DIV: \
case UDIV: \
case MOD: \
case UMOD: \
return COSTS_N_INSNS (GET_MODE_CLASS (GET_MODE (RTX)) == MODE_FLOAT \
? 15 : 50);
/* Compute the cost of computing a constant rtl expression RTX
whose rtx-code is CODE. The body of this macro is a portion
of a switch statement. If the code is computed here,
return it with a return statement. Otherwise, break from the switch.
An insn is assumed to cost 4 units.
COSTS_N_INSNS (N) is defined as (N) * 4 - 2.
Some small integers are effectively free for the C40. We should
also consider if we are using the small memory model. With
the big memory model we require an extra insn for a constant
loaded from memory.
This is used by expand_binop to decide whether to force a constant
into a register. If the cost is greater than 2 and the constant
is used within a short loop, it gets forced into a register.
Ideally, there should be some weighting as to how mnay times it is used
within the loop. */
#define SHIFT_CODE_P(C) ((C) == ASHIFT || (C) == ASHIFTRT || (C) == LSHIFTRT)
#define LOGICAL_CODE_P(C) ((C) == NOT || (C) == AND \
|| (C) == IOR || (C) == XOR)
#define NON_COMMUTATIVE_CODE_P ((C) == MINUS || (C) == COMPARE)
#define CONST_COSTS(RTX,CODE,OUTER_CODE) \
case CONST_INT: \
if (c4x_J_constant (RTX)) \
return 0; \
if (! TARGET_C3X \
&& OUTER_CODE == AND \
&& GET_CODE (RTX) == CONST_INT \
&& (INTVAL (RTX) == 255 || INTVAL (RTX) == 65535)) \
return 0; \
if (! TARGET_C3X \
&& (OUTER_CODE == ASHIFTRT || OUTER_CODE == LSHIFTRT) \
&& GET_CODE (RTX) == CONST_INT \
&& (INTVAL (RTX) == 16 || INTVAL (RTX) == 24)) \
return 0; \
if (TARGET_C3X && SHIFT_CODE_P (OUTER_CODE)) \
return 3; \
if (LOGICAL_CODE_P (OUTER_CODE) \
? c4x_L_constant (RTX) : c4x_I_constant (RTX)) \
return 2; \
case CONST: \
case LABEL_REF: \
case SYMBOL_REF: \
return 4; \
case CONST_DOUBLE: \
if (c4x_H_constant (RTX)) \
return 2; \
if (GET_MODE (RTX) == QFmode) \
return 4; \
else \
return 8;
/* Compute the cost of an address. This is meant to approximate the size
and/or execution delay of an insn using that address. If the cost is
approximated by the RTL complexity, including CONST_COSTS above, as
is usually the case for CISC machines, this macro should not be defined.
For aggressively RISCy machines, only one insn format is allowed, so
this macro should be a constant. The value of this macro only matters
for valid addresses. We handle the most common address without
a call to c4x_address_cost. */
#define ADDRESS_COST(ADDR) (REG_P (ADDR) ? 1 : c4x_address_cost (ADDR))
#define CANONICALIZE_COMPARISON(CODE, OP0, OP1) \
if (REG_P (OP1) && ! REG_P (OP0)) \
{ \
rtx tmp = OP0; OP0 = OP1 ; OP1 = tmp; \
CODE = swap_condition (CODE); \
}
#define EXT_CLASS_P(CLASS) (reg_class_subset_p (CLASS, EXT_REGS))
#define ADDR_CLASS_P(CLASS) (reg_class_subset_p (CLASS, ADDR_REGS))
#define INDEX_CLASS_P(CLASS) (reg_class_subset_p (CLASS, INDEX_REGS))
#define EXPENSIVE_CLASS_P(CLASS) (ADDR_CLASS_P(CLASS) \
|| INDEX_CLASS_P(CLASS) || (CLASS) == SP_REG)
/* Compute extra cost of moving data between one register class
and another. */
#define REGISTER_MOVE_COST(MODE, FROM, TO) 2
/* Memory move cost is same as fast register move. Maybe this should
be bumped up?. */
#define MEMORY_MOVE_COST(M,C,I) 4
/* Branches are kind of expensive (even with delayed branching) so
make their cost higher. */
#define BRANCH_COST 8
#define WORD_REGISTER_OPERATIONS
/* Dividing the Output into Sections. */
#define TEXT_SECTION_ASM_OP "\t.text"
#define DATA_SECTION_ASM_OP "\t.data"
#define USE_CONST_SECTION 1
#define CONST_SECTION_ASM_OP "\t.sect\t\".const\""
/* Do not use .init section so __main will be called on startup. This will
call __do_global_ctors and prepare for __do_global_dtors on exit. */
#if 0
#define INIT_SECTION_ASM_OP "\t.sect\t\".init\""
#endif
#define FINI_SECTION_ASM_OP "\t.sect\t\".fini\""
#undef EXTRA_SECTIONS
#define EXTRA_SECTIONS in_const, in_init, in_fini
#undef EXTRA_SECTION_FUNCTIONS
#define EXTRA_SECTION_FUNCTIONS \
CONST_SECTION_FUNCTION \
INIT_SECTION_FUNCTION \
FINI_SECTION_FUNCTION
#define INIT_SECTION_FUNCTION \
extern void init_section PARAMS ((void)); \
void \
init_section () \
{ \
if (in_section != in_init) \
{ \
fprintf (asm_out_file, ";\t.init\n"); \
in_section = in_init; \
} \
}
#define FINI_SECTION_FUNCTION \
void \
fini_section () \
{ \
if (in_section != in_fini) \
{ \
fprintf (asm_out_file, "%s\n", FINI_SECTION_ASM_OP); \
in_section = in_fini; \
} \
}
#define READONLY_DATA_SECTION() const_section ()
#define CONST_SECTION_FUNCTION \
void \
const_section () \
{ \
if (! USE_CONST_SECTION) \
text_section(); \
else if (in_section != in_const) \
{ \
fprintf (asm_out_file, "%s\n", CONST_SECTION_ASM_OP); \
in_section = in_const; \
} \
}
#define ASM_STABS_OP "\t.stabs\t"
/* Switch into a generic section. */
#define TARGET_ASM_NAMED_SECTION c4x_asm_named_section
/* A C statement or statements to switch to the appropriate
section for output of DECL. DECL is either a `VAR_DECL' node
or a constant of some sort. RELOC indicates whether forming
the initial value of DECL requires link-time relocations. */
#define SELECT_SECTION(DECL, RELOC, ALIGN) \
{ \
if (TREE_CODE (DECL) == STRING_CST) \
{ \
if (! flag_writable_strings) \
const_section (); \
else \
data_section (); \
} \
else if (TREE_CODE (DECL) == VAR_DECL) \
{ \
if ((0 && RELOC) /* Should be (flag_pic && RELOC). */ \
|| ! TREE_READONLY (DECL) || TREE_SIDE_EFFECTS (DECL) \
|| ! DECL_INITIAL (DECL) \
|| (DECL_INITIAL (DECL) != error_mark_node \
&& ! TREE_CONSTANT (DECL_INITIAL (DECL)))) \
data_section (); \
else \
const_section (); \
} \
else \
const_section (); \
}
/* The TI assembler wants to have hex numbers this way. */
#undef HOST_WIDE_INT_PRINT_HEX
#ifndef HOST_WIDE_INT_PRINT_HEX
# if HOST_BITS_PER_WIDE_INT == HOST_BITS_PER_INT
# define HOST_WIDE_INT_PRINT_HEX "0%xh"
# else
# if HOST_BITS_PER_WIDE_INT == HOST_BITS_PER_LONG
# define HOST_WIDE_INT_PRINT_HEX "0%lxh"
# else
# define HOST_WIDE_INT_PRINT_HEX "0%llxh"
# endif
# endif
#endif /* ! HOST_WIDE_INT_PRINT_HEX */
/* A C statement or statements to switch to the appropriate
section for output of RTX in mode MODE. RTX is some kind
of constant in RTL. The argument MODE is redundant except
in the case of a `const_int' rtx. Currently, these always
go into the const section. */
#define SELECT_RTX_SECTION(MODE, RTX, ALIGN) const_section()
/* Overall Framework of an Assembler File. */
/* We need to have a data section we can identify so that we can set
the DP register back to a data pointer in the small memory model.
This is only required for ISRs if we are paranoid that someone
may have quietly changed this register on the sly. */
#define ASM_FILE_START(FILE) \
{ \
int dspversion = 0; \
if (TARGET_C30) dspversion = 30; \
if (TARGET_C31) dspversion = 31; \
if (TARGET_C32) dspversion = 32; \
if (TARGET_C40) dspversion = 40; \
if (TARGET_C44) dspversion = 44; \
fprintf (FILE, "\t.version\t%d\n", dspversion); \
fprintf (FILE, "\t.file\t"); \
if (TARGET_TI) \
{ \
const char *p; \
const char *after_dir = main_input_filename; \
for (p = main_input_filename; *p; p++) \
if (*p == '/') \
after_dir = p + 1; \
output_quoted_string (FILE, after_dir); \
} \
else \
output_quoted_string (FILE, main_input_filename); \
fputs ("\n\t.data\ndata_sec:\n", FILE); \
}
#define ASM_COMMENT_START ";"
#define ASM_APP_ON ""
#define ASM_APP_OFF ""
/* Output float/double constants QFmode. */
#define ASM_OUTPUT_BYTE_FLOAT(FILE, VALUE) \
do { \
long l; \
char str[30]; \
REAL_VALUE_TO_TARGET_SINGLE (VALUE, l); \
REAL_VALUE_TO_DECIMAL (VALUE, "%20lf", str); \
if (sizeof (int) == sizeof (long)) \
fprintf (FILE, "\t.word\t0%08xh\t; %s\n", (int) l, str);\
else \
fprintf (FILE, "\t.word\t0%08lxh\t; %s\n", l, str);\
} while (0);
/* Output long double constants HFmode.
The first word contains the exponent and first part of the mantissa
in the same manner as QFmode. The second word contains the full
mantissa. We should ensure that the two words are allocated within
the same page for the large memory model since we only output a single
LDP instruction. FIXME. The simplest solution probably is to output
a LDP for each load. */
#define ASM_OUTPUT_SHORT_FLOAT(FILE, VALUE) \
do { \
long l[2]; \
char str[30]; \
REAL_VALUE_TO_TARGET_DOUBLE (VALUE, l); \
REAL_VALUE_TO_DECIMAL (VALUE, "%20lf", str); \
l[1] = (l[0] << 8) | ((l[1] >> 24) & 0xff); \
if (sizeof (int) == sizeof (long)) \
fprintf (FILE, "\t.word\t0%08xh\t; %s\n\t.word\t0%08xh\n", \
(int) l[0], str, (int) l[1]); \
else \
fprintf (FILE, "\t.word\t0%08lxh\t; %s\n\t.word\t0%08lxh\n", \
l[0], str, l[1]); \
} while (0);
#define ASM_OUTPUT_CHAR(FILE, VALUE) \
do { \
fprintf (FILE, "\t.word\t"); \
output_addr_const (FILE, VALUE); \
if (GET_CODE (VALUE) != SYMBOL_REF) \
fprintf (FILE, " ; 0%08xh\n", INTVAL (VALUE)); \
else \
fputc ('\n', FILE); \
} while (0);
#define ASM_OUTPUT_BYTE(FILE, VALUE) \
fprintf (FILE, "\t.word\t0%xh\n", (VALUE))
#define ASM_OUTPUT_ASCII(FILE, PTR, LEN) c4x_output_ascii (FILE, PTR, LEN)
/* Output and Generation of Labels. */
#define NO_DOT_IN_LABEL /* Only required for TI format. */
#define ASM_OUTPUT_LABEL(FILE, NAME) \
do { assemble_name (FILE, NAME); fputs (":\n", FILE); } while (0);
#define ASM_GLOBALIZE_LABEL(FILE, NAME) \
do { \
fprintf (FILE, "\t.global\t"); \
assemble_name (FILE, NAME); \
fputs ("\n", FILE); \
c4x_global_label (NAME); \
} while (0);
#define ASM_OUTPUT_EXTERNAL(FILE, DECL, NAME) \
c4x_external_ref (NAME)
/* A C statement to output on FILE an assembler pseudo-op to
declare a library function named external.
(Only needed to keep asm30 happy for ___divqf3 etc.) */
#define ASM_OUTPUT_EXTERNAL_LIBCALL(FILE, FUN) \
c4x_external_ref (XSTR (FUN, 0))
#define ASM_FILE_END(FILE) \
c4x_file_end (FILE)
/* The prefix to add to user-visible assembler symbols. */
#define USER_LABEL_PREFIX "_"
/* This is how to output an internal numbered label where
PREFIX is the class of label and NUM is the number within the class. */
#define ASM_OUTPUT_INTERNAL_LABEL(FILE, PREFIX, NUM) \
asm_fprintf (FILE, "%s%d:\n", PREFIX, NUM)
/* This is how to store into the string LABEL
the symbol_ref name of an internal numbered label where
PREFIX is the class of label and NUM is the number within the class.
This is suitable for output with `assemble_name'. */
#define ASM_GENERATE_INTERNAL_LABEL(BUFFER, PREFIX, NUM) \
sprintf (BUFFER, "*%s%d", PREFIX, NUM)
/* Store in OUTPUT a string (made with alloca) containing
an assembler-name for a local static variable named NAME.
LABELNO is an integer which is different for each call. */
#define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \
sprintf ((OUTPUT), "%s$%d", (NAME), (LABELNO)))
/* A C statement to output to the stdio stream STREAM assembler code which
defines (equates) the symbol NAME to have the value VALUE. */
#define ASM_OUTPUT_DEF(STREAM, NAME, VALUE) \
do { \
assemble_name (STREAM, NAME); \
fprintf (STREAM, "\t.set\t%s\n", VALUE); \
} while (0)
/* Output of Dispatch Tables. */
/* This is how to output an element of a case-vector that is absolute. */
#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
fprintf (FILE, "\t.long\tL%d\n", VALUE);
/* This is how to output an element of a case-vector that is relative. */
#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
fprintf (FILE, "\t.long\tL%d-L%d\n", VALUE, REL);
#undef SIZE_TYPE
#define SIZE_TYPE "unsigned int"
#undef PTRDIFF_TYPE
#define PTRDIFF_TYPE "int"
#undef WCHAR_TYPE
#define WCHAR_TYPE "long int"
#undef WCHAR_TYPE_SIZE
#define WCHAR_TYPE_SIZE 32
#define INT_TYPE_SIZE 32
#define LONG_LONG_TYPE_SIZE 64
#define FLOAT_TYPE_SIZE 32
#define DOUBLE_TYPE_SIZE 32
#define LONG_DOUBLE_TYPE_SIZE 64 /* Actually only 40. */
/* Allow #sccs in preprocessor. */
#define SCCS_DIRECTIVE
/* Output #ident as a .ident. */
#define ASM_OUTPUT_IDENT(FILE, NAME) \
fprintf (FILE, "\t.ident \"%s\"\n", NAME);
#define CPP_PREDEFINES ""
/* Output of Uninitialized Variables. */
/* This says how to output an assembler line to define a local
uninitialized variable. */
#undef ASM_OUTPUT_LOCAL
#define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE, ROUNDED) \
( fputs ("\t.bss\t", FILE), \
assemble_name (FILE, (NAME)), \
fprintf (FILE, ",%u\n", (ROUNDED)))
/* This says how to output an assembler line to define a global
uninitialized variable. */
#undef ASM_OUTPUT_COMMON
#define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) \
( fputs ("\t.globl\t", FILE), \
assemble_name (FILE, (NAME)), \
fputs ("\n\t.bss\t", FILE), \
assemble_name (FILE, (NAME)), \
fprintf (FILE, ",%u\n", (ROUNDED)))
#undef ASM_OUTPUT_BSS
#define ASM_OUTPUT_BSS(FILE, DECL, NAME, SIZE, ALIGN) \
( fputs ("\t.globl\t", FILE), \
assemble_name (FILE, (NAME)), \
fputs ("\n\t.bss\t", FILE), \
assemble_name (FILE, (NAME)), \
fprintf (FILE, ",%u\n", (SIZE)))
/* Macros Controlling Initialization Routines. */
#define OBJECT_FORMAT_COFF
#define REAL_NM_FILE_NAME "c4x-nm"
/* Output of Assembler Instructions. */
/* Register names when used for integer modes. */
#define REGISTER_NAMES \
{ \
"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", \
"ar0", "ar1", "ar2", "ar3", "ar4", "ar5", "ar6", "ar7", \
"dp", "ir0", "ir1", "bk", "sp", "st", "die", "iie", \
"iif", "rs", "re", "rc", "r8", "r9", "r10", "r11" \
}
/* Alternate register names when used for floating point modes. */
#define FLOAT_REGISTER_NAMES \
{ \
"f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7", \
"ar0", "ar1", "ar2", "ar3", "ar4", "ar5", "ar6", "ar7", \
"dp", "ir0", "ir1", "bk", "sp", "st", "die", "iie", \
"iif", "rs", "re", "rc", "f8", "f9", "f10", "f11" \
}
#define PRINT_OPERAND(FILE, X, CODE) c4x_print_operand(FILE, X, CODE)
/* Determine which codes are valid without a following integer. These must
not be alphabetic. */
#define PRINT_OPERAND_PUNCT_VALID_P(CODE) ((CODE) == '#')
#define PRINT_OPERAND_ADDRESS(FILE, X) c4x_print_operand_address(FILE, X)
/* C4x specific pragmas. */
#define REGISTER_TARGET_PRAGMAS(PFILE) do { \
cpp_register_pragma (PFILE, 0, "CODE_SECTION", c4x_pr_CODE_SECTION); \
cpp_register_pragma (PFILE, 0, "DATA_SECTION", c4x_pr_DATA_SECTION); \
cpp_register_pragma (PFILE, 0, "FUNC_CANNOT_INLINE", c4x_pr_ignored); \
cpp_register_pragma (PFILE, 0, "FUNC_EXT_CALLED", c4x_pr_ignored); \
cpp_register_pragma (PFILE, 0, "FUNC_IS_PURE", c4x_pr_FUNC_IS_PURE); \
cpp_register_pragma (PFILE, 0, "FUNC_IS_SYSTEM", c4x_pr_ignored); \
cpp_register_pragma (PFILE, 0, "FUNC_NEVER_RETURNS", \
c4x_pr_FUNC_NEVER_RETURNS); \
cpp_register_pragma (PFILE, 0, "FUNC_NO_GLOBAL_ASG", c4x_pr_ignored); \
cpp_register_pragma (PFILE, 0, "FUNC_NO_IND_ASG", c4x_pr_ignored); \
cpp_register_pragma (PFILE, 0, "INTERRUPT", c4x_pr_INTERRUPT); \
} while (0)
/* Assembler Commands for Alignment. */
#define ASM_OUTPUT_SKIP(FILE, SIZE) \
{ int c = SIZE; \
for (; c > 0; --c) \
fprintf (FILE,"\t.word\t0\n"); \
}
#define ASM_NO_SKIP_IN_TEXT 1
/* I'm not sure about this one. FIXME. */
#define ASM_OUTPUT_ALIGN(FILE, LOG) \
if ((LOG) != 0) \
fprintf (FILE, "\t.align\t%d\n", (1 << (LOG)))
/* Macros for SDB and DWARF Output (use .sdef instead of .def
to avoid conflict with TI's use of .def). */
#define SDB_DELIM "\n"
#define SDB_DEBUGGING_INFO
/* Don't use octal since this can confuse gas for the c4x. */
#define PUT_SDB_TYPE(a) fprintf(asm_out_file, "\t.type\t0x%x%s", a, SDB_DELIM)
#define PUT_SDB_DEF(A) \
do { fprintf (asm_out_file, "\t.sdef\t"); \
ASM_OUTPUT_LABELREF (asm_out_file, A); \
fprintf (asm_out_file, SDB_DELIM); } while (0)
#define PUT_SDB_PLAIN_DEF(A) \
fprintf (asm_out_file,"\t.sdef\t.%s%s", A, SDB_DELIM)
#define PUT_SDB_BLOCK_START(LINE) \
fprintf (asm_out_file, \
"\t.sdef\t.bb%s\t.val\t.%s\t.scl\t100%s\t.line\t%d%s\t.endef\n", \
SDB_DELIM, SDB_DELIM, SDB_DELIM, (LINE), SDB_DELIM)
#define PUT_SDB_BLOCK_END(LINE) \
fprintf (asm_out_file, \
"\t.sdef\t.eb%s\t.val\t.%s\t.scl\t100%s\t.line\t%d%s\t.endef\n", \
SDB_DELIM, SDB_DELIM, SDB_DELIM, (LINE), SDB_DELIM)
#define PUT_SDB_FUNCTION_START(LINE) \
fprintf (asm_out_file, \
"\t.sdef\t.bf%s\t.val\t.%s\t.scl\t101%s\t.line\t%d%s\t.endef\n", \
SDB_DELIM, SDB_DELIM, SDB_DELIM, (LINE), SDB_DELIM)
/* Note we output relative line numbers for .ef which gas converts
to absolute line numbers. The TI compiler outputs absolute line numbers
in the .sym directive which gas does not support. */
#define PUT_SDB_FUNCTION_END(LINE) \
fprintf (asm_out_file, \
"\t.sdef\t.ef%s\t.val\t.%s\t.scl\t101%s\t.line\t%d%s\t.endef\n", \
SDB_DELIM, SDB_DELIM, SDB_DELIM, \
(LINE), SDB_DELIM)
#define PUT_SDB_EPILOGUE_END(NAME) \
do { fprintf (asm_out_file, "\t.sdef\t"); \
ASM_OUTPUT_LABELREF (asm_out_file, NAME); \
fprintf (asm_out_file, \
"%s\t.val\t.%s\t.scl\t-1%s\t.endef\n", \
SDB_DELIM, SDB_DELIM, SDB_DELIM); } while (0)
/* This is the kind of divide that is easiest to do in the general case. */
#define EASY_DIV_EXPR TRUNC_DIV_EXPR
/* Define this as 1 if `char' should by default be signed; else as 0. */
#define DEFAULT_SIGNED_CHAR 1
/* A function address in a call instruction is a byte address (for
indexing purposes) so give the MEM rtx a byte's mode. */
#define FUNCTION_MODE QImode
#define SLOW_BYTE_ACCESS 0
/* Specify the machine mode that pointers have. After generation of
RTL, the compiler makes no further distinction between pointers and
any other objects of this machine mode. */
#define Pmode QImode
/* On the C4x we can write the following code. We have to clear the cache
every time we execute it because the data in the stack could change.
laj $+4
addi3 4,r11,ar0
lda *ar0,ar1
lda *+ar0(1),ar0
bud ar1
nop
nop
or 1000h,st
.word FNADDR
.word CXT
On the c3x this is a bit more difficult. We have to write self
modifying code here. So we have to clear the cache every time
we execute it because the data in the stack could change.
ldiu TOP_OF_FUNCTION,ar1
lsh 16,ar1
or BOTTOM_OF_FUNCTION,ar1
ldiu TOP_OF_STATIC,ar0
bud ar1
lsh 16,ar0
or BOTTOM_OF_STATIC,ar0
or 1000h,st
*/
#define TRAMPOLINE_SIZE (TARGET_C3X ? 8 : 10)
#define TRAMPOLINE_TEMPLATE(FILE) \
{ \
if (TARGET_C3X) \
{ \
asm_fprintf (FILE, "\tldiu\t0,ar1\n"); \
asm_fprintf (FILE, "\tlsh\t16,ar1\n"); \
asm_fprintf (FILE, "\tor\t0,ar1\n"); \
asm_fprintf (FILE, "\tldiu\t0,ar0\n"); \
asm_fprintf (FILE, "\tbud\tar1\n"); \
asm_fprintf (FILE, "\tlsh\t16,ar0\n"); \
asm_fprintf (FILE, "\tor\t0,ar0\n"); \
asm_fprintf (FILE, "\tor\t1000h,st\n"); \
} \
else \
{ \
asm_fprintf (FILE, "\tlaj\t$+4\n"); \
asm_fprintf (FILE, "\taddi3\t4,r11,ar0\n"); \
asm_fprintf (FILE, "\tlda\t*ar0,ar1\n"); \
asm_fprintf (FILE, "\tlda\t*+ar0(1),ar0\n"); \
asm_fprintf (FILE, "\tbud\tar1\n"); \
asm_fprintf (FILE, "\tnop\n"); \
asm_fprintf (FILE, "\tnop\n"); \
asm_fprintf (FILE, "\tor\t1000h,st\n"); \
asm_fprintf (FILE, "\t.word\t0\n"); \
asm_fprintf (FILE, "\t.word\t0\n"); \
} \
}
#define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
{ \
if (TARGET_C3X) \
{ \
rtx tmp1, tmp2; \
tmp1 = expand_shift (RSHIFT_EXPR, QImode, FNADDR, \
size_int (16), 0, 1); \
tmp2 = expand_shift (LSHIFT_EXPR, QImode, \
gen_rtx (CONST_INT, VOIDmode, 0x5069), \
size_int (16), 0, 1); \
emit_insn (gen_iorqi3 (tmp1, tmp1, tmp2)); \
emit_move_insn (gen_rtx (MEM, QImode, \
plus_constant (tramp, 0)), tmp1); \
tmp1 = expand_and (FNADDR, gen_rtx (CONST_INT, VOIDmode, \
0xffff), 0); \
tmp2 = expand_shift (LSHIFT_EXPR, QImode, \
gen_rtx (CONST_INT, VOIDmode, 0x1069), \
size_int (16), 0, 1); \
emit_insn (gen_iorqi3 (tmp1, tmp1, tmp2)); \
emit_move_insn (gen_rtx (MEM, QImode, \
plus_constant (tramp, 2)), tmp1); \
tmp1 = expand_shift (RSHIFT_EXPR, QImode, CXT, \
size_int (16), 0, 1); \
tmp2 = expand_shift (LSHIFT_EXPR, QImode, \
gen_rtx (CONST_INT, VOIDmode, 0x5068), \
size_int (16), 0, 1); \
emit_insn (gen_iorqi3 (tmp1, tmp1, tmp2)); \
emit_move_insn (gen_rtx (MEM, QImode, \
plus_constant (tramp, 3)), tmp1); \
tmp1 = expand_and (CXT, gen_rtx (CONST_INT, VOIDmode, \
0xffff), 0); \
tmp2 = expand_shift (LSHIFT_EXPR, QImode, \
gen_rtx (CONST_INT, VOIDmode, 0x1068), \
size_int (16), 0, 1); \
emit_insn (gen_iorqi3 (tmp1, tmp1, tmp2)); \
emit_move_insn (gen_rtx (MEM, QImode, \
plus_constant (tramp, 6)), tmp1); \
} \
else \
{ \
emit_move_insn (gen_rtx (MEM, QImode, \
plus_constant (TRAMP, 8)), FNADDR); \
emit_move_insn (gen_rtx (MEM, QImode, \
plus_constant (TRAMP, 9)), CXT); \
} \
}
/* Specify the machine mode that this machine uses for the index in
the tablejump instruction. */
#define CASE_VECTOR_MODE Pmode
/* Max number of (32-bit) bytes we can move from memory to memory
in one reasonably fast instruction. */
#define MOVE_MAX 1
/* MOVE_RATIO is the number of move instructions that is better than a
block move. */
#define MOVE_RATIO 3
#define BSS_SECTION_ASM_OP "\t.bss"
#define ASM_OUTPUT_REG_PUSH(FILE, REGNO) \
asm_fprintf (FILE, "\tpush\t%s\n", reg_names[REGNO])
/* This is how to output an insn to pop a register from the stack.
It need not be very fast code. */
#define ASM_OUTPUT_REG_POP(FILE, REGNO) \
asm_fprintf (FILE, "\tpop\t%s\n", reg_names[REGNO])
/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
is done just by pretending it is already truncated. */
#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
#define DBX_REGISTER_NUMBER(REGNO) (REGNO)
/* We need to use direct addressing for large constants and addresses
that cannot fit within an instruction. We must check for these
after after the final jump optimisation pass, since this may
introduce a local_move insn for a SYMBOL_REF. This pass
must come before delayed branch slot filling since it can generate
additional instructions. */
#define MACHINE_DEPENDENT_REORG(INSNS) c4x_process_after_reload(INSNS)
#define DBR_OUTPUT_SEQEND(FILE) \
if (final_sequence != NULL_RTX) \
{ \
int count; \
rtx insn = XVECEXP (final_sequence, 0, 0); \
int laj = GET_CODE (insn) == CALL_INSN \
|| (GET_CODE (insn) == INSN \
&& GET_CODE (PATTERN (insn)) == TRAP_IF);\
\
count = dbr_sequence_length(); \
while (count < (laj ? 2 : 3)) \
{ \
fputs("\tnop\n", FILE); \
count++; \
} \
if (laj) \
fputs("\tpush\tr11\n", FILE); \
}
#define NO_FUNCTION_CSE
/* We don't want a leading tab. */
#define ASM_OUTPUT_ASM(FILE, STRING) fprintf (FILE, "%s\n", STRING)
/* Define the codes that are matched by predicates in c4x.c. */
#define PREDICATE_CODES \
{"fp_zero_operand", {CONST_DOUBLE}}, \
{"const_operand", {CONST_INT, CONST_DOUBLE}}, \
{"stik_const_operand", {CONST_INT}}, \
{"not_const_operand", {CONST_INT}}, \
{"reg_operand", {REG, SUBREG}}, \
{"reg_or_const_operand", {REG, SUBREG, CONST_INT, CONST_DOUBLE}},\
{"r0r1_reg_operand", {REG, SUBREG}}, \
{"r2r3_reg_operand", {REG, SUBREG}}, \
{"ext_low_reg_operand", {REG, SUBREG}}, \
{"ext_reg_operand", {REG, SUBREG}}, \
{"std_reg_operand", {REG, SUBREG}}, \
{"std_or_reg_operand", {REG, SUBREG}}, \
{"addr_reg_operand", {REG, SUBREG}}, \
{"index_reg_operand", {REG, SUBREG}}, \
{"dp_reg_operand", {REG}}, \
{"sp_reg_operand", {REG}}, \
{"st_reg_operand", {REG}}, \
{"rc_reg_operand", {REG}}, \
{"call_address_operand", {REG, SYMBOL_REF, LABEL_REF, CONST}}, \
{"dst_operand", {SUBREG, REG, MEM}}, \
{"src_operand", {SUBREG, REG, MEM, CONST_INT, CONST_DOUBLE}}, \
{"src_hi_operand", {SUBREG, REG, MEM, CONST_DOUBLE}}, \
{"lsrc_operand", {SUBREG, REG, MEM, CONST_INT, CONST_DOUBLE}}, \
{"tsrc_operand", {SUBREG, REG, MEM, CONST_INT, CONST_DOUBLE}}, \
{"any_operand", {SUBREG, REG, MEM, CONST_INT, CONST_DOUBLE}}, \
{"par_ind_operand", {MEM}}, \
{"parallel_operand", {SUBREG, REG, MEM}}, \
{"symbolic_address_operand", {SYMBOL_REF, LABEL_REF, CONST}}, \
{"mem_operand", {MEM}},
/* Define the intrinsic functions for the c3x/c4x. */
enum c4x_builtins
{
/* intrinsic name */
C4X_BUILTIN_FIX, /* fast_ftoi */
C4X_BUILTIN_FIX_ANSI, /* ansi_ftoi */
C4X_BUILTIN_MPYI, /* fast_imult (only C3x) */
C4X_BUILTIN_TOIEEE, /* toieee (only C4x) */
C4X_BUILTIN_FRIEEE, /* frieee (only C4x) */
C4X_BUILTIN_RCPF /* fast_invf (only C4x) */
};
|