summaryrefslogtreecommitdiff
path: root/gcc/config/d30v/d30v.c
blob: 749aa1b4d306ce614110711b8f1f42269580f4c1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
/* Definitions of target machine for Mitsubishi D30V.
   Copyright (C) 1997, 1998, 1999, 2000 Free Software Foundation, Inc.
   Contributed by Cygnus Solutions.

   This file is part of GNU CC.

   GNU CC is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 2, or (at your option)
   any later version.

   GNU CC is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with GNU CC; see the file COPYING.  If not, write to
   the Free Software Foundation, 59 Temple Place - Suite 330,
   Boston, MA 02111-1307, USA.  */

#include "config.h"
#include "system.h"
#include "rtl.h"
#include "tree.h"
#include "regs.h"
#include "hard-reg-set.h"
#include "real.h"
#include "insn-config.h"
#include "conditions.h"
#include "insn-flags.h"
#include "output.h"
#include "insn-attr.h"
#include "flags.h"
#include "recog.h"
#include "expr.h"
#include "obstack.h"
#include "tm_p.h"
#include "except.h"
#include "function.h"
#include "toplev.h"
#include "ggc.h"

static void d30v_print_operand_memory_reference PARAMS ((FILE *, rtx));
static void d30v_build_long_insn PARAMS ((HOST_WIDE_INT, HOST_WIDE_INT,
					  rtx, rtx));
static void d30v_add_gc_roots PARAMS ((void));

/* Define the information needed to generate branch and scc insns.  This is
   stored from the compare operation.  */

struct rtx_def *d30v_compare_op0;
struct rtx_def *d30v_compare_op1;

/* Define the information needed to modify the epilogue for EH.  */

rtx d30v_eh_epilogue_sp_ofs;

/* Cached value of d30v_stack_info */
static d30v_stack_t *d30v_stack_cache = (d30v_stack_t *)0;

/* Cache for __builtin_return_addr */
static rtx d30v_return_addr_rtx;

/* Values of the -mbranch-cost=n string.  */
int d30v_branch_cost = D30V_DEFAULT_BRANCH_COST;
const char *d30v_branch_cost_string = (const char *)0;

/* Values of the -mcond-exec=n string.  */
int d30v_cond_exec = D30V_DEFAULT_MAX_CONDITIONAL_EXECUTE;
const char *d30v_cond_exec_string = (const char *)0;

/* Whether or not a hard register can accept a register */
unsigned char hard_regno_mode_ok[ (int)MAX_MACHINE_MODE ][FIRST_PSEUDO_REGISTER];

/* Whether to try and avoid moves between two different modes */
unsigned char modes_tieable_p[ (NUM_MACHINE_MODES) * (NUM_MACHINE_MODES) ];

/* Map register number to smallest register class.  */
enum reg_class regno_reg_class[FIRST_PSEUDO_REGISTER];

/* Map class letter into register class */
enum reg_class reg_class_from_letter[256];


/* Sometimes certain combinations of command options do not make
   sense on a particular target machine.  You can define a macro
   `OVERRIDE_OPTIONS' to take account of this.  This macro, if
   defined, is executed once just after all the command options have
   been parsed.

   Don't use this macro to turn on various extra optimizations for
   `-O'.  That is what `OPTIMIZATION_OPTIONS' is for.  */

void
override_options ()
{
  int regno, i, ok_p;
  enum machine_mode mode1, mode2;

  /* Set up the branch cost information */
  if (d30v_branch_cost_string)
    d30v_branch_cost = atoi (d30v_branch_cost_string);

  /* Set up max # instructions to use with conditional execution */
  if (d30v_cond_exec_string)
    d30v_cond_exec = atoi (d30v_cond_exec_string);

  /* Setup hard_regno_mode_ok/modes_tieable_p */
  for (mode1 = VOIDmode;
       (int)mode1 < NUM_MACHINE_MODES;
       mode1 = (enum machine_mode)((int)mode1 + 1))
    {
      int size = GET_MODE_SIZE (mode1);
      int large_p = size > UNITS_PER_WORD;
      int int_p = GET_MODE_CLASS (mode1) == MODE_INT;

      for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
	{
	  if (mode1 == VOIDmode)
	    ok_p = FALSE;

	  else if (GPR_P (regno))
	    {
	      if (!large_p)
		ok_p = TRUE;
	      else
		ok_p = (((regno - GPR_FIRST) & 1) == 0);
	    }

	  else if (FLAG_P (regno))
	    ok_p = (mode1 == CCmode);

	  else if (CR_P (regno))
	    ok_p = int_p && !large_p;

	  else if (ACCUM_P (regno))
	    ok_p = (mode1 == DImode);

	  else if (SPECIAL_REG_P (regno))
	    ok_p = (mode1 == SImode);

	  else
	    ok_p = FALSE;

	  hard_regno_mode_ok[ (int)mode1 ][ regno ] = ok_p;
	}

      /* A C expression that is nonzero if it is desirable to choose
	 register allocation so as to avoid move instructions between a
	 value of mode MODE1 and a value of mode MODE2.

	 If `HARD_REGNO_MODE_OK (R, MODE1)' and `HARD_REGNO_MODE_OK (R,
	 MODE2)' are ever different for any R, then `MODES_TIEABLE_P (MODE1,
	 MODE2)' must be zero. */
      for (mode2 = VOIDmode;
	   (int)mode2 <= NUM_MACHINE_MODES;
	   mode2 = (enum machine_mode)((int)mode2 + 1))
	{
	  if (mode1 == mode2)
	    ok_p = TRUE;

#if 0
	  else if (GET_MODE_CLASS (mode1) == MODE_INT
		   && GET_MODE_SIZE (mode1) <= UNITS_PER_WORD
		   && GET_MODE_CLASS (mode2) == MODE_INT
		   && GET_MODE_SIZE (mode2) <= UNITS_PER_WORD)
	    ok_p = TRUE;
#endif

	  else
	    ok_p = FALSE;

	  modes_tieable_p[ ((int)mode1 * (NUM_MACHINE_MODES)) + (int)mode2 ] = ok_p;
	}
    }

#if 0
  for (mode1 = VOIDmode;
       (int)mode1 < NUM_MACHINE_MODES;
       mode1 = (enum machine_mode)((int)mode1 + 1))
    {
      for (mode2 = VOIDmode;
	   (int)mode2 <= NUM_MACHINE_MODES;
	   mode2 = (enum machine_mode)((int)mode2 + 1))
	{
	  for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
	    if (ok_p
		&& (hard_regno_mode_ok[(int)mode1][regno]
		    != hard_regno_mode_ok[(int)mode2][regno]))
	      error ("Bad modes_tieable_p for register %s, mode1 %s, mode2 %s",
		     reg_names[regno], GET_MODE_NAME (mode1),
		     GET_MODE_NAME (mode2));
	}
    }
#endif

  /* A C expression whose value is a register class containing hard
     register REGNO.  In general there is more than one such class;
     choose a class which is "minimal", meaning that no smaller class
     also contains the register. */
  for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
    {
      enum reg_class class;

      if (GPR_P (regno))
	class = (IN_RANGE_P (regno, GPR_FIRST+2, GPR_FIRST+62)
		 && ((regno - GPR_FIRST) & 1) == 0) ? EVEN_REGS : GPR_REGS;

      else if (regno == FLAG_F0)
	class = F0_REGS;

      else if (regno == FLAG_F1)
	class = F1_REGS;

      else if (FLAG_P (regno))
	class = OTHER_FLAG_REGS;

      else if (ACCUM_P (regno))
	class = ACCUM_REGS;

      else if (regno == CR_RPT_C)
	class = REPEAT_REGS;

      else if (CR_P (regno))
	class = CR_REGS;

      else if (SPECIAL_REG_P (regno))
	class = GPR_REGS;

      else
	class = NO_REGS;

      regno_reg_class[regno] = class;

#if 0
      {
	static char *names[] = REG_CLASS_NAMES;
	fprintf (stderr, "Register %s class is %s, can hold modes", reg_names[regno], names[class]);
	for (mode1 = VOIDmode;
	     (int)mode1 < NUM_MACHINE_MODES;
	     mode1 = (enum machine_mode)((int)mode1 + 1))
	  {
	    if (hard_regno_mode_ok[ (int)mode1 ][ regno ])
	      fprintf (stderr, " %s", GET_MODE_NAME (mode1));
	  }
	fprintf (stderr, "\n");
      }
#endif
    }

  /* A C expression which defines the machine-dependent operand
     constraint letters for register classes.  If CHAR is such a
     letter, the value should be the register class corresponding to
     it.  Otherwise, the value should be `NO_REGS'.  The register
     letter `r', corresponding to class `GENERAL_REGS', will not be
     passed to this macro; you do not need to handle it.

     The following letters are unavailable, due to being used as
     constraints:
	'0'..'9'
	'<', '>'
	'E', 'F', 'G', 'H'
	'I', 'J', 'K', 'L', 'M', 'N', 'O', 'P'
	'Q', 'R', 'S', 'T', 'U'
	'V', 'X'
	'g', 'i', 'm', 'n', 'o', 'p', 'r', 's' */

  for (i = 0; i < 256; i++)
    reg_class_from_letter[i] = NO_REGS;

  reg_class_from_letter['a'] = ACCUM_REGS;
  reg_class_from_letter['b'] = BR_FLAG_REGS;
  reg_class_from_letter['c'] = CR_REGS;
  reg_class_from_letter['d'] = GPR_REGS;
  reg_class_from_letter['e'] = EVEN_REGS;
  reg_class_from_letter['f'] = FLAG_REGS;
  reg_class_from_letter['l'] = REPEAT_REGS;
  reg_class_from_letter['x'] = F0_REGS;
  reg_class_from_letter['y'] = F1_REGS;
  reg_class_from_letter['z'] = OTHER_FLAG_REGS;

  d30v_add_gc_roots ();
}


/* Return true if a memory operand is a short memory operand.  */

int
short_memory_operand (op, mode)
     register rtx op;
     enum machine_mode mode;
{
  if (GET_CODE (op) != MEM)
    return FALSE;

  if (GET_MODE (op) != mode && mode != VOIDmode)
    return FALSE;

  return (d30v_legitimate_address_p (mode, XEXP (op, 0), reload_completed)
	  == 1);
}

/* Return true if a memory operand is a long operand.  */

int
long_memory_operand (op, mode)
     rtx op;
     enum machine_mode mode;
{
  if (GET_CODE (op) != MEM)
    return FALSE;

  if (GET_MODE (op) != mode && mode != VOIDmode)
    return FALSE;

  return (d30v_legitimate_address_p (mode, XEXP (op, 0), reload_completed)
	  == 2);
}

/* Return true if a memory operand is valid for the D30V.  */

int
d30v_memory_operand (op, mode)
     rtx op;
     enum machine_mode mode;
{
  if (GET_CODE (op) != MEM)
    return FALSE;

  if (GET_MODE (op) != mode && mode != VOIDmode)
    return FALSE;

  return (d30v_legitimate_address_p (mode, XEXP (op, 0), reload_completed)
	  != 0);
}

/* Return true if a memory operand uses a single register for the
   address.  */

int
single_reg_memory_operand (op, mode)
     rtx op;
     enum machine_mode mode;
{
  rtx addr;

  if (GET_CODE (op) != MEM)
    return FALSE;

  if (GET_MODE (op) != mode && mode != VOIDmode)
    return FALSE;

  addr = XEXP (op, 0);
  if (! d30v_legitimate_address_p (mode, addr, reload_completed))
    return FALSE;

  if (GET_CODE (addr) == SUBREG)
    addr = SUBREG_REG (addr);

  return (GET_CODE (addr) == REG);
}

/* Return true if a memory operand uses a constant address.  */

int
const_addr_memory_operand (op, mode)
     rtx op;
     enum machine_mode mode;
{
  if (GET_CODE (op) != MEM)
    return FALSE;

  if (GET_MODE (op) != mode && mode != VOIDmode)
    return FALSE;

  if (! d30v_legitimate_address_p (mode, XEXP (op, 0), reload_completed))
    return FALSE;

  switch (GET_CODE (XEXP (op, 0)))
    {
    default:
      break;

    case SYMBOL_REF:
    case LABEL_REF:
    case CONST_INT:
    case CONST:
      return TRUE;
    }

  return FALSE;
}

/* Return true if operand is a memory reference suitable for a call.  */

int
call_operand (op, mode)
     rtx op;
     enum machine_mode mode;
{
  if (GET_CODE (op) != MEM)
    return FALSE;

  if (GET_MODE (op) != mode && mode != VOIDmode)
    return FALSE;

  if (! d30v_legitimate_address_p (mode, XEXP (op, 0), reload_completed))
    return FALSE;

  switch (GET_CODE (XEXP (op, 0)))
    {
    default:
      break;

    case SUBREG:
      op = SUBREG_REG (op);
      if (GET_CODE (op) != REG)
	return FALSE;

      /* fall through */

    case REG:
      return (GPR_OR_PSEUDO_P (REGNO (XEXP (op, 0))));

    case SYMBOL_REF:
    case LABEL_REF:
    case CONST_INT:
    case CONST:
      return TRUE;
    }

  return FALSE;
}

/* Return true if operand is a GPR register.  */

int
gpr_operand (op, mode)
     rtx op;
     enum machine_mode mode;
{
  if (GET_MODE (op) != mode && mode != VOIDmode)
    return FALSE;

  if (GET_CODE (op) == SUBREG)
    {
      if (GET_CODE (SUBREG_REG (op)) != REG)
	return register_operand (op, mode);

      op = SUBREG_REG (op);
    }

  if (GET_CODE (op) != REG)
    return FALSE;

  return GPR_OR_PSEUDO_P (REGNO (op));
}

/* Return true if operand is an accumulator register.  */

int
accum_operand (op, mode)
     rtx op;
     enum machine_mode mode;
{
  if (GET_MODE (op) != mode && mode != VOIDmode)
    return FALSE;

  if (GET_CODE (op) == SUBREG)
    {
      if (GET_CODE (SUBREG_REG (op)) != REG)
	return register_operand (op, mode);

      op = SUBREG_REG (op);
    }

  if (GET_CODE (op) != REG)
    return FALSE;

  return ACCUM_OR_PSEUDO_P (REGNO (op));
}

/* Return true if operand is a GPR or an accumulator register.  */

int
gpr_or_accum_operand (op, mode)
     rtx op;
     enum machine_mode mode;
{
  if (GET_MODE (op) != mode && mode != VOIDmode)
    return FALSE;

  if (GET_CODE (op) == SUBREG)
    {
      if (GET_CODE (SUBREG_REG (op)) != REG)
	return register_operand (op, mode);

      op = SUBREG_REG (op);
    }

  if (GET_CODE (op) != REG)
    return FALSE;

  if (ACCUM_P (REGNO (op)))
    return TRUE;

  return GPR_OR_PSEUDO_P (REGNO (op));
}

/* Return true if operand is a CR register.  */

int
cr_operand (op, mode)
     rtx op;
     enum machine_mode mode;
{
  if (GET_MODE (op) != mode && mode != VOIDmode)
    return FALSE;

  if (GET_CODE (op) == SUBREG)
    {
      if (GET_CODE (SUBREG_REG (op)) != REG)
	return register_operand (op, mode);

      op = SUBREG_REG (op);
    }

  if (GET_CODE (op) != REG)
    return FALSE;

  return CR_OR_PSEUDO_P (REGNO (op));
}

/* Return true if operand is the repeat count register.  */

int
repeat_operand (op, mode)
     rtx op;
     enum machine_mode mode;
{
  if (GET_MODE (op) != mode && mode != VOIDmode)
    return FALSE;

  if (GET_CODE (op) == SUBREG)
    {
      if (GET_CODE (SUBREG_REG (op)) != REG)
	return register_operand (op, mode);

      op = SUBREG_REG (op);
    }

  if (GET_CODE (op) != REG)
    return FALSE;

  return (REGNO (op) == CR_RPT_C || REGNO (op) >= FIRST_PSEUDO_REGISTER);
}

/* Return true if operand is a FLAG register.  */

int
flag_operand (op, mode)
     rtx op;
     enum machine_mode mode;
{
  if (GET_MODE (op) != mode && mode != VOIDmode)
    return FALSE;

  if (GET_CODE (op) == SUBREG)
    {
      if (GET_CODE (SUBREG_REG (op)) != REG)
	return register_operand (op, mode);

      op = SUBREG_REG (op);
    }

  if (GET_CODE (op) != REG)
    return FALSE;

  return FLAG_OR_PSEUDO_P (REGNO (op));
}

/* Return true if operand is either F0 or F1.  */

int
br_flag_operand (op, mode)
     rtx op;
     enum machine_mode mode;
{
  if (GET_MODE (op) != mode && mode != VOIDmode)
    return FALSE;

  if (GET_CODE (op) == SUBREG)
    {
      if (GET_CODE (SUBREG_REG (op)) != REG)
	return register_operand (op, mode);

      op = SUBREG_REG (op);
    }

  if (GET_CODE (op) != REG)
    return FALSE;

  return BR_FLAG_OR_PSEUDO_P (REGNO (op));
}

/* Return true if operand is either F0/F1 or the constants 0/1.  */

int
br_flag_or_constant_operand (op, mode)
     rtx op;
     enum machine_mode mode;
{
  if (GET_MODE (op) != mode && mode != VOIDmode)
    return FALSE;

  if (GET_CODE (op) == SUBREG)
    {
      if (GET_CODE (SUBREG_REG (op)) != REG)
	return register_operand (op, mode);

      op = SUBREG_REG (op);
    }

  if (GET_CODE (op) == CONST_INT)
    return (INTVAL (op) == 0 || INTVAL (op) == 1);

  if (GET_CODE (op) != REG)
    return FALSE;

  return BR_FLAG_OR_PSEUDO_P (REGNO (op));
}

/* Return true if operand is either F0 or F1, or a GPR register.  */

int
gpr_or_br_flag_operand (op, mode)
     rtx op;
     enum machine_mode mode;
{
  if (GET_MODE (op) != mode && mode != VOIDmode)
    return FALSE;

  if (GET_CODE (op) == SUBREG)
    {
      if (GET_CODE (SUBREG_REG (op)) != REG)
	return register_operand (op, mode);

      op = SUBREG_REG (op);
    }

  if (GET_CODE (op) != REG)
    return FALSE;

  return GPR_OR_PSEUDO_P (REGNO (op)) || BR_FLAG_P (REGNO (op));
}

/* Return true if operand is the F0 register.  */

int
f0_operand (op, mode)
     rtx op;
     enum machine_mode mode;
{
  if (GET_MODE (op) != mode && mode != VOIDmode)
    return FALSE;

  if (GET_CODE (op) == SUBREG)
    {
      if (GET_CODE (SUBREG_REG (op)) != REG)
	return register_operand (op, mode);

      op = SUBREG_REG (op);
    }

  if (GET_CODE (op) != REG)
    return FALSE;

  return (REGNO (op) == FLAG_F0 || REGNO (op) >= FIRST_PSEUDO_REGISTER);
}

/* Return true if operand is the F1 register.  */

int
f1_operand (op, mode)
     rtx op;
     enum machine_mode mode;
{
  if (GET_MODE (op) != mode && mode != VOIDmode)
    return FALSE;

  if (GET_CODE (op) == SUBREG)
    {
      if (GET_CODE (SUBREG_REG (op)) != REG)
	return register_operand (op, mode);

      op = SUBREG_REG (op);
    }

  if (GET_CODE (op) != REG)
    return FALSE;

  return (REGNO (op) == FLAG_F1 || REGNO (op) >= FIRST_PSEUDO_REGISTER);
}

/* Return true if operand is the F1 register.  */

int
carry_operand (op, mode)
     rtx op;
     enum machine_mode mode;
{
  if (GET_MODE (op) != mode && mode != VOIDmode)
    return FALSE;

  if (GET_CODE (op) == SUBREG)
    {
      if (GET_CODE (SUBREG_REG (op)) != REG)
	return register_operand (op, mode);

      op = SUBREG_REG (op);
    }

  if (GET_CODE (op) != REG)
    return FALSE;

  return (REGNO (op) == FLAG_CARRY || REGNO (op) >= FIRST_PSEUDO_REGISTER);
}

/* Return true if operand is a register of any flavor or a 0 of the
   appropriate type.  */

int
reg_or_0_operand (op, mode)
     rtx op;
     enum machine_mode mode;
{
  switch (GET_CODE (op))
    {
    default:
      break;

    case REG:
    case SUBREG:
      if (GET_MODE (op) != mode && mode != VOIDmode)
	return FALSE;

      return register_operand (op, mode);

    case CONST_INT:
      return INTVAL (op) == 0;

    case CONST_DOUBLE:
      return CONST_DOUBLE_HIGH (op) == 0 && CONST_DOUBLE_LOW (op) == 0;
    }

  return FALSE;
}

/* Return true if operand is a GPR register or a signed 6 bit immediate.  */

int
gpr_or_signed6_operand (op, mode)
     rtx op;
     enum machine_mode mode;
{
  if (GET_CODE (op) == SUBREG)
    {
      if (GET_CODE (SUBREG_REG (op)) != REG)
	return register_operand (op, mode);

      op = SUBREG_REG (op);
    }

  if (GET_CODE (op) == CONST_INT)
    return IN_RANGE_P (INTVAL (op), -32, 31);

  if (GET_CODE (op) != REG)
    return FALSE;

  if (GET_MODE (op) != mode && mode != VOIDmode)
    return FALSE;

  return GPR_OR_PSEUDO_P (REGNO (op));
}

/* Return true if operand is a GPR register or an unsigned 5 bit immediate.  */

int
gpr_or_unsigned5_operand (op, mode)
     rtx op;
     enum machine_mode mode;
{
  if (GET_CODE (op) == SUBREG)
    {
      if (GET_CODE (SUBREG_REG (op)) != REG)
	return register_operand (op, mode);

      op = SUBREG_REG (op);
    }

  if (GET_CODE (op) == CONST_INT)
    return IN_RANGE_P (INTVAL (op), 0, 31);

  if (GET_CODE (op) != REG)
    return FALSE;

  if (GET_MODE (op) != mode && mode != VOIDmode)
    return FALSE;

  return GPR_OR_PSEUDO_P (REGNO (op));
}

/* Return true if operand is a GPR register or an unsigned 6 bit immediate.  */

int
gpr_or_unsigned6_operand (op, mode)
     rtx op;
     enum machine_mode mode;
{
  if (GET_CODE (op) == SUBREG)
    {
      if (GET_CODE (SUBREG_REG (op)) != REG)
	return register_operand (op, mode);

      op = SUBREG_REG (op);
    }

  if (GET_CODE (op) == CONST_INT)
    return IN_RANGE_P (INTVAL (op), 0, 63);

  if (GET_CODE (op) != REG)
    return FALSE;

  if (GET_MODE (op) != mode && mode != VOIDmode)
    return FALSE;

  return GPR_OR_PSEUDO_P (REGNO (op));
}

/* Return true if operand is a GPR register or a constant of some form.  */

int
gpr_or_constant_operand (op, mode)
     rtx op;
     enum machine_mode mode;
{
  switch (GET_CODE (op))
    {
    default:
      break;

    case CONST_INT:
    case SYMBOL_REF:
    case LABEL_REF:
    case CONST:
      return TRUE;

    case SUBREG:
      if (GET_CODE (SUBREG_REG (op)) != REG)
	return register_operand (op, mode);

      op = SUBREG_REG (op);
      /* fall through */

    case REG:
      if (GET_MODE (op) != mode && mode != VOIDmode)
	return FALSE;

      return GPR_OR_PSEUDO_P (REGNO (op));
    }

  return FALSE;
}

/* Return true if operand is a GPR register or a constant of some form,
   including a CONST_DOUBLE, which gpr_or_constant_operand doesn't recognize.  */

int
gpr_or_dbl_const_operand (op, mode)
     rtx op;
     enum machine_mode mode;
{
  switch (GET_CODE (op))
    {
    default:
      break;

    case CONST_INT:
    case CONST_DOUBLE:
    case SYMBOL_REF:
    case LABEL_REF:
    case CONST:
      return TRUE;

    case SUBREG:
      if (GET_CODE (SUBREG_REG (op)) != REG)
	return register_operand (op, mode);

      op = SUBREG_REG (op);
      /* fall through */

    case REG:
      if (GET_MODE (op) != mode && mode != VOIDmode)
	return FALSE;

      return GPR_OR_PSEUDO_P (REGNO (op));
    }

  return FALSE;
}

/* Return true if operand is a gpr register or a valid memory operation.  */

int
gpr_or_memory_operand (op, mode)
     rtx op;
     enum machine_mode mode;
{
  switch (GET_CODE (op))
    {
    default:
      break;

    case SUBREG:
      if (GET_CODE (SUBREG_REG (op)) != REG)
	return register_operand (op, mode);

      op = SUBREG_REG (op);
      /* fall through */

    case REG:
      if (GET_MODE (op) != mode && mode != VOIDmode)
	return FALSE;

      return GPR_OR_PSEUDO_P (REGNO (op));

    case MEM:
      return d30v_legitimate_address_p (mode, XEXP (op, 0), reload_completed);
    }

  return FALSE;
}

/* Return true if operand is something that can be an input for a move
   operation.  */

int
move_input_operand (op, mode)
     rtx op;
     enum machine_mode mode;
{
  rtx subreg;
  enum rtx_code code;

  switch (GET_CODE (op))
    {
    default:
      break;

    case CONST_INT:
    case CONST_DOUBLE:
    case SYMBOL_REF:
    case LABEL_REF:
    case CONST:
      return TRUE;

    case SUBREG:
      if (GET_MODE (op) != mode && mode != VOIDmode)
        return FALSE;

      subreg = SUBREG_REG (op);
      code = GET_CODE (subreg);
      if (code == MEM)
	return d30v_legitimate_address_p ((int)mode, XEXP (subreg, 0),
					  reload_completed);

      return (code == REG);

    case REG:
      if (GET_MODE (op) != mode && mode != VOIDmode)
	return FALSE;

      return TRUE;

    case MEM:
      if (GET_CODE (XEXP (op, 0)) == ADDRESSOF)
	return TRUE;
      return d30v_legitimate_address_p (mode, XEXP (op, 0),
					reload_completed);
    }

  return FALSE;
}

/* Return true if operand is something that can be an output for a move
   operation.  */

int
move_output_operand (op, mode)
     rtx op;
     enum machine_mode mode;
{
  rtx subreg;
  enum rtx_code code;

  switch (GET_CODE (op))
    {
    default:
      break;

    case SUBREG:
      if (GET_MODE (op) != mode && mode != VOIDmode)
        return FALSE;

      subreg = SUBREG_REG (op);
      code = GET_CODE (subreg);
      if (code == MEM)
	return d30v_legitimate_address_p ((int)mode, XEXP (subreg, 0),
					  reload_completed);

      return (code == REG);

    case REG:
      if (GET_MODE (op) != mode && mode != VOIDmode)
	return FALSE;

      return TRUE;

    case MEM:
      if (GET_CODE (XEXP (op, 0)) == ADDRESSOF)
	return TRUE;
      return d30v_legitimate_address_p (mode, XEXP (op, 0),
					reload_completed);
    }

  return FALSE;
}

/* Return true if operand is a signed 6 bit immediate.  */

int
signed6_operand (op, mode)
     rtx op;
     enum machine_mode mode ATTRIBUTE_UNUSED;
{
  if (GET_CODE (op) == CONST_INT)
    return IN_RANGE_P (INTVAL (op), -32, 31);

  return FALSE;
}

/* Return true if operand is an unsigned 5 bit immediate.  */

int
unsigned5_operand (op, mode)
     rtx op;
     enum machine_mode mode ATTRIBUTE_UNUSED;
{
  if (GET_CODE (op) == CONST_INT)
    return IN_RANGE_P (INTVAL (op), 0, 31);

  return FALSE;
}

/* Return true if operand is an unsigned 6 bit immediate.  */

int
unsigned6_operand (op, mode)
     rtx op;
     enum machine_mode mode ATTRIBUTE_UNUSED;
{
  if (GET_CODE (op) == CONST_INT)
    return IN_RANGE_P (INTVAL (op), 0, 63);

  return FALSE;
}

/* Return true if operand is a constant with a single bit set.  */

int
bitset_operand (op, mode)
     rtx op;
     enum machine_mode mode ATTRIBUTE_UNUSED;
{
  if (GET_CODE (op) == CONST_INT)
    return IN_RANGE_P (exact_log2 (INTVAL (op)), 0, 31);

  return FALSE;
}

/* Return true if the operator is a ==/!= test against f0 or f1 that can be
   used in conditional execution.  */

int
condexec_test_operator (op, mode)
     rtx op;
     enum machine_mode mode;
{
  rtx x0, x1;

  if (GET_MODE (op) != mode && mode != VOIDmode)
    return FALSE;

  if (GET_CODE (op) != EQ && GET_CODE (op) != NE)
    return FALSE;

  x0 = XEXP (op, 0);
  if (GET_CODE (x0) != REG || !BR_FLAG_OR_PSEUDO_P (REGNO (x0)))
    return FALSE;

  x1 = XEXP (op, 1);
  if (GET_CODE (x1) != CONST_INT || INTVAL (x1) != 0)
    return FALSE;

  return TRUE;
}

/* Return true if the operator is a ==/!= test against f0, f1, or a general
   register that can be used in a branch instruction.  */

int
condexec_branch_operator (op, mode)
     rtx op;
     enum machine_mode mode;
{
  rtx x0, x1;

  if (GET_MODE (op) != mode && mode != VOIDmode)
    return FALSE;

  if (GET_CODE (op) != EQ && GET_CODE (op) != NE)
    return FALSE;

  x0 = XEXP (op, 0);
  if (GET_CODE (x0) == REG)
    {
      int regno = REGNO (x0);
      if (!GPR_OR_PSEUDO_P (regno) && !BR_FLAG_P (regno))
	return FALSE;
    }
  /* Allow the optimizer to generate things like:
     (if_then_else (ne (const_int 1) (const_int 0))) */
  else if (GET_CODE (x0) != CONST_INT)
    return FALSE;

  x1 = XEXP (op, 1);
  if (GET_CODE (x1) != CONST_INT || INTVAL (x1) != 0)
    return FALSE;

  return TRUE;
}

/* Return true if the unary operator can be executed with conditional
   execution.  */

int
condexec_unary_operator (op, mode)
     rtx op;
     enum machine_mode mode ATTRIBUTE_UNUSED;
{
  rtx op0;

  /* Only do this after register allocation, so that we can look at the register # */
  if (!reload_completed)
    return FALSE;

  if (GET_RTX_CLASS (GET_CODE (op)) != '1')
    return FALSE;

  op0 = XEXP (op, 0);
  if (GET_CODE (op0) == SUBREG)
    op0 = SUBREG_REG (op0);

  switch (GET_CODE (op))
    {
    default:
      break;

    case ABS:
    case NOT:
      if (GET_MODE (op) == SImode && GET_CODE (op0) == REG && GPR_P (REGNO (op0)))
	return TRUE;

      break;
    }

  return FALSE;
}

/* Return true if the add or subtraction can be executed with conditional
   execution.  */

int
condexec_addsub_operator (op, mode)
     rtx op;
     enum machine_mode mode ATTRIBUTE_UNUSED;
{
  rtx op0, op1;

  /* Only do this after register allocation, so that we can look at the register # */
  if (!reload_completed)
    return FALSE;

  if (GET_RTX_CLASS (GET_CODE (op)) != '2' && GET_RTX_CLASS (GET_CODE (op)) != 'c')
    return FALSE;

  op0 = XEXP (op, 0);
  op1 = XEXP (op, 1);

  if (GET_CODE (op0) == SUBREG)
    op0 = SUBREG_REG (op0);

  if (GET_CODE (op1) == SUBREG)
    op1 = SUBREG_REG (op1);

  if (GET_CODE (op0) != REG)
    return FALSE;

  switch (GET_CODE (op))
    {
    default:
      break;

    case PLUS:
    case MINUS:
      return (GET_MODE (op) == SImode && GPR_P (REGNO (op0))
	      && gpr_or_constant_operand (op1, SImode));
    }

  return FALSE;
}

/* Return true if the binary operator can be executed with conditional
   execution.  We don't include add/sub here, since they have extra
   clobbers for the flags registers.  */

int
condexec_binary_operator (op, mode)
     rtx op;
     enum machine_mode mode ATTRIBUTE_UNUSED;
{
  rtx op0, op1;

  /* Only do this after register allocation, so that we can look at the register # */
  if (!reload_completed)
    return FALSE;

  if (GET_RTX_CLASS (GET_CODE (op)) != '2' && GET_RTX_CLASS (GET_CODE (op)) != 'c')
    return FALSE;

  op0 = XEXP (op, 0);
  op1 = XEXP (op, 1);

  if (GET_CODE (op0) == SUBREG)
    op0 = SUBREG_REG (op0);

  if (GET_CODE (op1) == SUBREG)
    op1 = SUBREG_REG (op1);

  if (GET_CODE (op0) != REG)
    return FALSE;

  /* MULT is not included here, because it is an IU only instruction.  */
  switch (GET_CODE (op))
    {
    default:
      break;

    case AND:
    case IOR:
    case XOR:
    case ASHIFTRT:
    case LSHIFTRT:
    case ROTATERT:
      return (GET_MODE (op) == SImode && GPR_P (REGNO (op0))
	      && gpr_or_constant_operand (op1, SImode));

    case ASHIFT:
    case ROTATE:
      return (GET_MODE (op) == SImode && GPR_P (REGNO (op0))
	      && GET_CODE (op1) == CONST_INT);
    }

  return FALSE;
}

/* Return true if the shift/rotate left operator can be executed with
   conditional execution.  */

int
condexec_shiftl_operator (op, mode)
     rtx op;
     enum machine_mode mode ATTRIBUTE_UNUSED;
{
  rtx op0, op1;

  /* Only do this after register allocation, so that we can look at the register # */
  if (!reload_completed)
    return FALSE;

  if (GET_RTX_CLASS (GET_CODE (op)) != '2' && GET_RTX_CLASS (GET_CODE (op)) != 'c')
    return FALSE;

  op0 = XEXP (op, 0);
  op1 = XEXP (op, 1);

  if (GET_CODE (op0) == SUBREG)
    op0 = SUBREG_REG (op0);

  if (GET_CODE (op1) == SUBREG)
    op1 = SUBREG_REG (op1);

  if (GET_CODE (op0) != REG)
    return FALSE;

  switch (GET_CODE (op))
    {
    default:
      break;

    case ASHIFT:
    case ROTATE:
      return (GET_MODE (op) == SImode && GPR_P (REGNO (op0))
	      && GET_CODE (op1) == NEG
	      && GET_CODE (XEXP (op1, 0)) == REG
	      && GPR_P (REGNO (XEXP (op1, 0))));
    }

  return FALSE;
}

/* Return true if the {sign,zero} extend operator from memory can be
   conditionally executed.  */

int
condexec_extend_operator (op, mode)
     rtx op;
     enum machine_mode mode ATTRIBUTE_UNUSED;
{
  /* Only do this after register allocation, so that we can look at the register # */
  if (!reload_completed)
    return FALSE;

  if (GET_RTX_CLASS (GET_CODE (op)) != '1')
    return FALSE;

  switch (GET_CODE (op))
    {
    default:
      break;

    case SIGN_EXTEND:
    case ZERO_EXTEND:
      if ((GET_MODE (op) == SImode && GET_MODE (XEXP (op, 0)) == QImode)
	  || (GET_MODE (op) == SImode && GET_MODE (XEXP (op, 0)) == HImode)
	  || (GET_MODE (op) == HImode && GET_MODE (XEXP (op, 0)) == QImode))
	return TRUE;

      break;
    }

  return FALSE;
}

/* Return true for comparisons against 0 that can be turned into a
   bratnz/bratzr instruction.  */

int
branch_zero_operator (op, mode)
     rtx op;
     enum machine_mode mode;
{
  rtx x0, x1;

  if (GET_MODE (op) != mode && mode != VOIDmode)
    return FALSE;

  if (GET_CODE (op) != EQ && GET_CODE (op) != NE)
    return FALSE;

  x0 = XEXP (op, 0);
  if (GET_CODE (x0) != REG || !GPR_OR_PSEUDO_P (REGNO (x0)))
    return FALSE;

  x1 = XEXP (op, 1);
  if (GET_CODE (x1) != CONST_INT || INTVAL (x1) != 0)
    return FALSE;

  return TRUE;
}

/* Return true if an operand is simple, suitable for use as the destination of
   a conditional move */

int
cond_move_dest_operand (op, mode)
     register rtx op;
     enum machine_mode mode ATTRIBUTE_UNUSED;
{
  rtx addr;

  if (mode != QImode && mode != HImode && mode != SImode && mode != SFmode)
    return FALSE;

  switch (GET_CODE (op))
    {
    default:
      break;

    case REG:
    case SUBREG:
      return gpr_operand (op, mode);

    /* Don't allow post dec/inc, since we might not get the side effects correct. */
    case MEM:
      addr = XEXP (op, 0);
      return (GET_CODE (addr) != POST_DEC
	      && GET_CODE (addr) != POST_INC
	      && d30v_legitimate_address_p (mode, addr, reload_completed));
    }

  return FALSE;
}

/* Return true if an operand is simple, suitable for use in a conditional move */

int
cond_move_operand (op, mode)
     register rtx op;
     enum machine_mode mode ATTRIBUTE_UNUSED;
{
  rtx addr;

  if (mode != QImode && mode != HImode && mode != SImode && mode != SFmode)
    return FALSE;

  switch (GET_CODE (op))
    {
    default:
      break;

    case REG:
    case SUBREG:
      return gpr_operand (op, mode);

    case CONST_DOUBLE:
      return GET_MODE (op) == SFmode;

    case CONST_INT:
    case SYMBOL_REF:
    case LABEL_REF:
    case CONST:
      return TRUE;

    /* Don't allow post dec/inc, since we might not get the side effects correct. */
    case MEM:
      addr = XEXP (op, 0);
      return (GET_CODE (addr) != POST_DEC
	      && GET_CODE (addr) != POST_INC
	      && d30v_legitimate_address_p (mode, addr, reload_completed));
    }

  return FALSE;
}

/* Return true if an operand is simple, suitable for use in conditional execution.
   Unlike cond_move, we can allow auto inc/dec.  */

int
cond_exec_operand (op, mode)
     register rtx op;
     enum machine_mode mode;
{
  if (mode != QImode && mode != HImode && mode != SImode && mode != SFmode)
    return FALSE;

  switch (GET_CODE (op))
    {
    default:
      break;

    case REG:
    case SUBREG:
      return gpr_operand (op, mode);

    case CONST_DOUBLE:
      return GET_MODE (op) == SFmode;

    case CONST_INT:
    case SYMBOL_REF:
    case LABEL_REF:
    case CONST:
      return TRUE;

    case MEM:
      return memory_operand (op, mode);
    }

  return FALSE;
}

/* Return true if operand is a SI mode signed relational test.  */

int
srelational_si_operator (op, mode)
     register rtx op;
     enum machine_mode mode;
{
  rtx x0, x1;

  if (GET_MODE (op) != mode && mode != VOIDmode)
    return FALSE;

  switch (GET_CODE (op))
    {
    default:
      return FALSE;

    case EQ:
    case NE:
    case LT:
    case LE:
    case GT:
    case GE:
      break;
    }

  x0 = XEXP (op, 0);
  if (GET_CODE (x0) != REG && GET_CODE (x0) != SUBREG)
    return FALSE;

  if (GET_MODE (x0) != SImode)
    return FALSE;

  x1 = XEXP (op, 1);
  switch (GET_CODE (x1))
    {
    default:
      return FALSE;

    case REG:
    case SUBREG:
    case CONST_INT:
    case LABEL_REF:
    case SYMBOL_REF:
    case CONST:
      break;
    }

  return TRUE;
}

/* Return true if operand is a SI mode unsigned relational test.  */

int
urelational_si_operator (op, mode)
     register rtx op;
     enum machine_mode mode;
{
  rtx x0, x1;

  if (GET_MODE (op) != mode && mode != VOIDmode)
    return FALSE;

  switch (GET_CODE (op))
    {
    default:
      return FALSE;

    case LTU:
    case LEU:
    case GTU:
    case GEU:
      break;
    }

  x0 = XEXP (op, 0);
  if (GET_CODE (x0) != REG && GET_CODE (x0) != SUBREG)
    return FALSE;

  if (GET_MODE (x0) != SImode)
    return FALSE;

  x1 = XEXP (op, 1);
  switch (GET_CODE (x1))
    {
    default:
      return FALSE;

    case REG:
    case SUBREG:
    case CONST_INT:
    case LABEL_REF:
    case SYMBOL_REF:
    case CONST:
      break;
    }

  return TRUE;
}

/* Return true if operand is a DI mode relational test.  */

int
relational_di_operator (op, mode)
     register rtx op;
     enum machine_mode mode;
{
  rtx x0, x1;

  if (GET_MODE (op) != mode && mode != VOIDmode)
    return FALSE;

  if (GET_RTX_CLASS (GET_CODE (op)) != '<')
    return FALSE;

  x0 = XEXP (op, 0);
  if (GET_CODE (x0) != REG && GET_CODE (x0) != SUBREG)
    return FALSE;

  if (GET_MODE (x0) != DImode)
    return FALSE;

  x1 = XEXP (op, 1);
  if (GET_CODE (x1) != REG && GET_CODE (x1) != SUBREG
      && GET_CODE (x1) != CONST_INT && GET_CODE (x1) != CONST_DOUBLE)
    return FALSE;

  return TRUE;
}


/* Calculate the stack information for the current function.

   D30V stack frames look like:

	high		|  ....				|
			+-------------------------------+
			| Argument word #19		|
			+-------------------------------+
			| Argument word #18		|
			+-------------------------------+
			| Argument word #17		|
			+-------------------------------+
			| Argument word #16		|
		Prev sp	+-------------------------------+
			|				|
			| Save for arguments 1..16 if	|
			| the func. uses stdarg/varargs	|
			|				|
			+-------------------------------+
			|				|
			| Save area for GPR registers	|
			|				|
			+-------------------------------+
			|				|
			| Save area for accumulators	|
			|				|
			+-------------------------------+
			|				|
			| Local variables		|
			|				|
			+-------------------------------+
			|				|
			| alloca space if used		|
			|				|
			+-------------------------------+
			|				|
			| Space for outgoing arguments	|
			|				|
	low	SP---->	+-------------------------------+
*/

d30v_stack_t *
d30v_stack_info ()
{
  static d30v_stack_t info, zero_info;
  d30v_stack_t *info_ptr = &info;
  tree fndecl		 = current_function_decl;
  tree fntype		 = TREE_TYPE (fndecl);
  int varargs_p		 = 0;
  tree cur_arg;
  tree next_arg;
  int saved_gprs;
  int saved_accs;
  int memrefs_2words;
  int memrefs_1word;
  unsigned char save_gpr_p[GPR_LAST];
  int i;

  /* If we've already calculated the values and reload is complete, just return now */
  if (d30v_stack_cache)
    return d30v_stack_cache;

  /* Zero all fields */
  info = zero_info;

  if (profile_flag)
    regs_ever_live[GPR_LINK] = 1;

  /* Determine if this is a stdarg function */
  if (TYPE_ARG_TYPES (fntype) != 0
      && (TREE_VALUE (tree_last (TYPE_ARG_TYPES (fntype))) != void_type_node))
    varargs_p = 1;
  else
    {
      /* Find the last argument, and see if it is __builtin_va_alist.  */
      for (cur_arg = DECL_ARGUMENTS (fndecl); cur_arg != (tree)0; cur_arg = next_arg)
	{
	  next_arg = TREE_CHAIN (cur_arg);
	  if (next_arg == (tree)0)
	    {
	      if (DECL_NAME (cur_arg)
		  && !strcmp (IDENTIFIER_POINTER (DECL_NAME (cur_arg)), "__builtin_va_alist"))
		varargs_p = 1;

	      break;
	    }
	}
    }

  /* Calculate which registers need to be saved & save area size */
  saved_accs = 0;
  memrefs_2words = 0;
  memrefs_1word = 0;
  for (i = ACCUM_FIRST; i <= ACCUM_LAST; i++)
    {
      if (regs_ever_live[i] && !call_used_regs[i])
	{
	  info_ptr->save_p[i] = 2;
	  saved_accs++;
	  memrefs_2words++;
	}
    }

  saved_gprs = 0;
  for (i = GPR_FIRST; i <= GPR_LAST; i++)
    {
      if (regs_ever_live[i] && (!call_used_regs[i] || i == GPR_LINK))
	{
	  save_gpr_p[i] = 1;
	  saved_gprs++;
	}
      else
	save_gpr_p[i] = 0;
    }

  /* Determine which register pairs can be saved together with ld2w/st2w  */
  for (i = GPR_FIRST; i <= GPR_LAST; i++)
    {
      if (((i - GPR_FIRST) & 1) == 0 && save_gpr_p[i] && save_gpr_p[i+1])
	{
	  memrefs_2words++;
	  info_ptr->save_p[i++] = 2;
	}
      else if (save_gpr_p[i])
	{
	  memrefs_1word++;
	  info_ptr->save_p[i] = 1;
	}
    }

  /* Determine various sizes */
  info_ptr->varargs_p	 = varargs_p;
  info_ptr->varargs_size = ((varargs_p)
			    ? (GPR_ARG_LAST + 1 - GPR_ARG_FIRST) * UNITS_PER_WORD
			    : 0);

  info_ptr->accum_size	 = 2 * UNITS_PER_WORD * saved_accs;
  info_ptr->gpr_size	 = D30V_ALIGN (UNITS_PER_WORD * saved_gprs,
				       2 * UNITS_PER_WORD);
  info_ptr->vars_size    = D30V_ALIGN (get_frame_size (), 2 * UNITS_PER_WORD);
  info_ptr->parm_size    = D30V_ALIGN (current_function_outgoing_args_size,
				       2 * UNITS_PER_WORD);

  info_ptr->total_size	 = D30V_ALIGN ((info_ptr->gpr_size
					+ info_ptr->accum_size
					+ info_ptr->vars_size
					+ info_ptr->parm_size
					+ info_ptr->varargs_size
					+ current_function_pretend_args_size),
				       (STACK_BOUNDARY / BITS_PER_UNIT));

  info_ptr->save_offset  = (info_ptr->total_size
			    - (current_function_pretend_args_size
			       + info_ptr->varargs_size
			       + info_ptr->gpr_size
			       + info_ptr->accum_size));

  /* The link register is the last GPR saved, but there might be some padding
     bytes after it, so account for that.  */
  info_ptr->link_offset  = (info_ptr->total_size
			    - (current_function_pretend_args_size
			       + info_ptr->varargs_size
			       + (info_ptr->gpr_size
				  - UNITS_PER_WORD * saved_gprs)
			       + UNITS_PER_WORD));

  info_ptr->memrefs_varargs = info_ptr->varargs_size / (2 * UNITS_PER_WORD);
  info_ptr->memrefs_2words  = memrefs_2words;
  info_ptr->memrefs_1word   = memrefs_1word;

  if (reload_completed)
    d30v_stack_cache = info_ptr;

  return info_ptr;
}


/* Internal function to print all of the information about the stack */

void
debug_stack_info (info)
     d30v_stack_t *info;
{
  int i;

  if (!info)
    info = d30v_stack_info ();

  fprintf (stderr, "\nStack information for function %s:\n",
	   ((current_function_decl && DECL_NAME (current_function_decl))
	    ? IDENTIFIER_POINTER (DECL_NAME (current_function_decl))
	    : "<unknown>"));

  fprintf (stderr, "\tsave_offset     = %d\n", info->save_offset);
  fprintf (stderr, "\tmemrefs_varargs = %d\n", info->memrefs_varargs);
  fprintf (stderr, "\tmemrefs_2words  = %d\n", info->memrefs_2words);
  fprintf (stderr, "\tmemrefs_1word   = %d\n", info->memrefs_1word);
  fprintf (stderr, "\tvarargs_p       = %d\n", info->varargs_p);
  fprintf (stderr, "\tvarargs_size    = %d\n", info->varargs_size);
  fprintf (stderr, "\tvars_size       = %d\n", info->vars_size);
  fprintf (stderr, "\tparm_size       = %d\n", info->parm_size);
  fprintf (stderr, "\tgpr_size        = %d\n", info->gpr_size);
  fprintf (stderr, "\taccum_size      = %d\n", info->accum_size);
  fprintf (stderr, "\ttotal_size      = %d\n", info->total_size);
  fprintf (stderr, "\tsaved registers =");

  for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
    {
      if (info->save_p[i] == 2)
	{
	  fprintf (stderr, " %s-%s", reg_names[i], reg_names[i+1]);
	  i++;
	}
      else if (info->save_p[i])
	fprintf (stderr, " %s", reg_names[i]);
    }

  putc ('\n', stderr);
  fflush (stderr);
}


/* Return non-zero if this function is known to have a null or 1 instruction epilogue.  */

int
direct_return ()
{
  if (reload_completed)
    {
      d30v_stack_t *info = d30v_stack_info ();

      /* If no epilogue code is needed, can use just a simple jump */
      if (info->total_size == 0)
	return 1;

#if 0
      /* If just a small amount of local stack was allocated and no registers
         saved, skip forward branch */
      if (info->total_size == info->vars_size
	  && IN_RANGE_P (info->total_size, 1, 31))
	return 1;
#endif
    }

  return 0;
}


/* A C statement (sans semicolon) for initializing the variable CUM for the
   state at the beginning of the argument list.  The variable has type
   `CUMULATIVE_ARGS'.  The value of FNTYPE is the tree node for the data type
   of the function which will receive the args, or 0 if the args are to a
   compiler support library function.  The value of INDIRECT is nonzero when
   processing an indirect call, for example a call through a function pointer.
   The value of INDIRECT is zero for a call to an explicitly named function, a
   library function call, or when `INIT_CUMULATIVE_ARGS' is used to find
   arguments for the function being compiled.

   When processing a call to a compiler support library function, LIBNAME
   identifies which one.  It is a `symbol_ref' rtx which contains the name of
   the function, as a string.  LIBNAME is 0 when an ordinary C function call is
   being processed.  Thus, each time this macro is called, either LIBNAME or
   FNTYPE is nonzero, but never both of them at once.  */

void
d30v_init_cumulative_args (cum, fntype, libname, indirect, incoming)
     CUMULATIVE_ARGS *cum;
     tree fntype;
     rtx libname;
     int indirect;
     int incoming;
{
  *cum = GPR_ARG_FIRST;

  if (TARGET_DEBUG_ARG)
    {
      fprintf (stderr, "\ninit_cumulative_args:");
      if (indirect)
	fputs (" indirect", stderr);

      if (incoming)
	fputs (" incoming", stderr);

      if (fntype)
	{
	  tree ret_type = TREE_TYPE (fntype);
	  fprintf (stderr, " return=%s,",
		   tree_code_name[ (int)TREE_CODE (ret_type) ]);
	}

      if (libname && GET_CODE (libname) == SYMBOL_REF)
	fprintf (stderr, " libname=%s", XSTR (libname, 0));

      putc ('\n', stderr);
    }
}


/* If defined, a C expression that gives the alignment boundary, in bits, of an
   argument with the specified mode and type.  If it is not defined,
   `PARM_BOUNDARY' is used for all arguments.  */

int
d30v_function_arg_boundary (mode, type)
     enum machine_mode mode;
     tree type;
{
  int size = ((mode == BLKmode && type)
	      ? int_size_in_bytes (type)
	      : GET_MODE_SIZE (mode));

  return (size > UNITS_PER_WORD) ? 2*UNITS_PER_WORD : UNITS_PER_WORD;
}


/* A C expression that controls whether a function argument is passed in a
   register, and which register.

   The arguments are CUM, which summarizes all the previous arguments; MODE,
   the machine mode of the argument; TYPE, the data type of the argument as a
   tree node or 0 if that is not known (which happens for C support library
   functions); and NAMED, which is 1 for an ordinary argument and 0 for
   nameless arguments that correspond to `...' in the called function's
   prototype.

   The value of the expression should either be a `reg' RTX for the hard
   register in which to pass the argument, or zero to pass the argument on the
   stack.

   For machines like the Vax and 68000, where normally all arguments are
   pushed, zero suffices as a definition.

   The usual way to make the ANSI library `stdarg.h' work on a machine where
   some arguments are usually passed in registers, is to cause nameless
   arguments to be passed on the stack instead.  This is done by making
   `FUNCTION_ARG' return 0 whenever NAMED is 0.

   You may use the macro `MUST_PASS_IN_STACK (MODE, TYPE)' in the definition of
   this macro to determine if this argument is of a type that must be passed in
   the stack.  If `REG_PARM_STACK_SPACE' is not defined and `FUNCTION_ARG'
   returns non-zero for such an argument, the compiler will abort.  If
   `REG_PARM_STACK_SPACE' is defined, the argument will be computed in the
   stack and then loaded into a register.  */

rtx
d30v_function_arg (cum, mode, type, named, incoming)
     CUMULATIVE_ARGS *cum;
     enum machine_mode mode;
     tree type;
     int named;
     int incoming ATTRIBUTE_UNUSED;
{
  int size = ((mode == BLKmode && type)
	      ? int_size_in_bytes (type)
	      : GET_MODE_SIZE (mode));
  int adjust = (size > UNITS_PER_WORD && (*cum & 1) != 0);
  rtx ret;

  /* Return a marker for use in the call instruction.  */
  if (mode == VOIDmode)
    ret = const0_rtx;

  else if (*cum + adjust <= GPR_ARG_LAST)
    ret = gen_rtx (REG, mode, *cum + adjust);

  else
    ret = NULL_RTX;

  if (TARGET_DEBUG_ARG)
    fprintf (stderr,
	     "function_arg: words = %2d, mode = %4s, named = %d, size = %3d, adjust = %1d, arg = %s\n",
	     *cum, GET_MODE_NAME (mode), named, size, adjust,
	     (ret) ? ((ret == const0_rtx) ? "<0>" : reg_names[ REGNO (ret) ]) : "memory");

  return ret;
}


/* A C expression for the number of words, at the beginning of an argument,
   must be put in registers.  The value must be zero for arguments that are
   passed entirely in registers or that are entirely pushed on the stack.

   On some machines, certain arguments must be passed partially in registers
   and partially in memory.  On these machines, typically the first N words of
   arguments are passed in registers, and the rest on the stack.  If a
   multi-word argument (a `double' or a structure) crosses that boundary, its
   first few words must be passed in registers and the rest must be pushed.
   This macro tells the compiler when this occurs, and how many of the words
   should go in registers.

   `FUNCTION_ARG' for these arguments should return the first register to be
   used by the caller for this argument; likewise `FUNCTION_INCOMING_ARG', for
   the called function.  */

int
d30v_function_arg_partial_nregs (cum, mode, type, named)
     CUMULATIVE_ARGS *cum;
     enum machine_mode mode;
     tree type;
     int named ATTRIBUTE_UNUSED;
{
  int bytes = ((mode == BLKmode)
	       ? int_size_in_bytes (type)
	       : GET_MODE_SIZE (mode));
  int words = (bytes + UNITS_PER_WORD - 1) / UNITS_PER_WORD;
  int adjust = (bytes > UNITS_PER_WORD && (*cum & 1) != 0);
  int arg_num = *cum + adjust;
  int ret;

  ret = ((arg_num <= GPR_ARG_LAST && arg_num + words > GPR_ARG_LAST+1)
	 ? GPR_ARG_LAST - arg_num + 1
	 : 0);

  if (TARGET_DEBUG_ARG && ret)
    fprintf (stderr, "function_arg_partial_nregs: %d\n", ret);

  return ret;
}


/* A C expression that indicates when an argument must be passed by reference.
   If nonzero for an argument, a copy of that argument is made in memory and a
   pointer to the argument is passed instead of the argument itself.  The
   pointer is passed in whatever way is appropriate for passing a pointer to
   that type.

   On machines where `REG_PARM_STACK_SPACE' is not defined, a suitable
   definition of this macro might be
        #define FUNCTION_ARG_PASS_BY_REFERENCE\
        (CUM, MODE, TYPE, NAMED)  \
          MUST_PASS_IN_STACK (MODE, TYPE)  */

int
d30v_function_arg_pass_by_reference (cum, mode, type, named)
     CUMULATIVE_ARGS *cum ATTRIBUTE_UNUSED;
     enum machine_mode mode;
     tree type;
     int named ATTRIBUTE_UNUSED;
{
  int ret = MUST_PASS_IN_STACK (mode, type);

  if (TARGET_DEBUG_ARG && ret)
    fprintf (stderr, "function_arg_pass_by_reference: %d\n", ret);

  return ret;
}


/* A C statement (sans semicolon) to update the summarizer variable CUM to
   advance past an argument in the argument list.  The values MODE, TYPE and
   NAMED describe that argument.  Once this is done, the variable CUM is
   suitable for analyzing the *following* argument with `FUNCTION_ARG', etc.

   This macro need not do anything if the argument in question was passed on
   the stack.  The compiler knows how to track the amount of stack space used
   for arguments without any special help.  */

void
d30v_function_arg_advance (cum, mode, type, named)
     CUMULATIVE_ARGS *cum;
     enum machine_mode mode;
     tree type;
     int named;
{
  int bytes = ((mode == BLKmode)
	       ? int_size_in_bytes (type)
	       : GET_MODE_SIZE (mode));
  int words = D30V_ALIGN (bytes, UNITS_PER_WORD) / UNITS_PER_WORD;
  int adjust = (bytes > UNITS_PER_WORD && (*cum & 1) != 0);

  *cum += words + adjust;

  if (TARGET_DEBUG_ARG)
    fprintf (stderr,
	     "function_adv: words = %2d, mode = %4s, named = %d, size = %3d, adjust = %1d\n",
	     *cum, GET_MODE_NAME (mode), named, words * UNITS_PER_WORD, adjust);
}


/* If defined, is a C expression that produces the machine-specific code for a
   call to `__builtin_saveregs'.  This code will be moved to the very beginning
   of the function, before any parameter access are made.  The return value of
   this function should be an RTX that contains the value to use as the return
   of `__builtin_saveregs'.

   If this macro is not defined, the compiler will output an ordinary call to
   the library function `__builtin_saveregs'.  */

rtx
d30v_expand_builtin_saveregs ()
{
  int offset = UNITS_PER_WORD * (GPR_ARG_LAST + 1 - GPR_ARG_FIRST);

  if (TARGET_DEBUG_ARG)
    fprintf (stderr, "expand_builtin_saveregs: offset from ap = %d\n",
	     offset);

  return gen_rtx (PLUS, Pmode, virtual_incoming_args_rtx, GEN_INT (- offset));
}


/* This macro offers an alternative to using `__builtin_saveregs' and defining
   the macro `EXPAND_BUILTIN_SAVEREGS'.  Use it to store the anonymous register
   arguments into the stack so that all the arguments appear to have been
   passed consecutively on the stack.  Once this is done, you can use the
   standard implementation of varargs that works for machines that pass all
   their arguments on the stack.

   The argument ARGS_SO_FAR is the `CUMULATIVE_ARGS' data structure, containing
   the values that obtain after processing of the named arguments.  The
   arguments MODE and TYPE describe the last named argument--its machine mode
   and its data type as a tree node.

   The macro implementation should do two things: first, push onto the stack
   all the argument registers *not* used for the named arguments, and second,
   store the size of the data thus pushed into the `int'-valued variable whose
   name is supplied as the argument PRETEND_ARGS_SIZE.  The value that you
   store here will serve as additional offset for setting up the stack frame.

   Because you must generate code to push the anonymous arguments at compile
   time without knowing their data types, `SETUP_INCOMING_VARARGS' is only
   useful on machines that have just a single category of argument register and
   use it uniformly for all data types.

   If the argument SECOND_TIME is nonzero, it means that the arguments of the
   function are being analyzed for the second time.  This happens for an inline
   function, which is not actually compiled until the end of the source file.
   The macro `SETUP_INCOMING_VARARGS' should not generate any instructions in
   this case.  */

void
d30v_setup_incoming_varargs (cum, mode, type, pretend_size, second_time)
     CUMULATIVE_ARGS *cum;
     enum machine_mode mode;
     tree type ATTRIBUTE_UNUSED;
     int *pretend_size ATTRIBUTE_UNUSED;
     int second_time;
{
  if (TARGET_DEBUG_ARG)
    fprintf (stderr,
	     "setup_vararg: words = %2d, mode = %4s, second_time = %d\n",
	     *cum, GET_MODE_NAME (mode), second_time);
}


/* Create the va_list data type.  */

tree
d30v_build_va_list ()
{
  tree f_arg_ptr, f_arg_num, record, type_decl;
  tree int_type_node;

  record = make_lang_type (RECORD_TYPE);
  type_decl = build_decl (TYPE_DECL, get_identifier ("__va_list_tag"), record);
  int_type_node = make_signed_type (INT_TYPE_SIZE);

  f_arg_ptr = build_decl (FIELD_DECL, get_identifier ("__va_arg_ptr"), 
			  ptr_type_node);
  f_arg_num = build_decl (FIELD_DECL, get_identifier ("__va_arg_num"),
			  int_type_node);

  DECL_FIELD_CONTEXT (f_arg_ptr) = record;
  DECL_FIELD_CONTEXT (f_arg_num) = record;

  TREE_CHAIN (record) = type_decl;
  TYPE_NAME (record) = type_decl;
  TYPE_FIELDS (record) = f_arg_ptr;
  TREE_CHAIN (f_arg_ptr) = f_arg_num;

  layout_type (record);

  /* The correct type is an array type of one element.  */
  return build_array_type (record, build_index_type (size_zero_node));
}


/* Expand __builtin_va_start to do the va_start macro.  */

void 
d30v_expand_builtin_va_start (stdarg_p, valist, nextarg)
     int stdarg_p ATTRIBUTE_UNUSED;
     tree valist;
     rtx nextarg ATTRIBUTE_UNUSED;
{
  HOST_WIDE_INT words;
  tree f_arg_ptr, f_arg_num;
  tree arg_ptr, arg_num, saveregs, t;

  f_arg_ptr = TYPE_FIELDS (TREE_TYPE (va_list_type_node));
  f_arg_num = TREE_CHAIN (f_arg_ptr);

  valist = build1 (INDIRECT_REF, TREE_TYPE (TREE_TYPE (valist)), valist);
  arg_ptr = build (COMPONENT_REF, TREE_TYPE (f_arg_ptr), valist, f_arg_ptr);
  arg_num = build (COMPONENT_REF, TREE_TYPE (f_arg_num), valist, f_arg_num);

  words = current_function_args_info;	/* __builtin_args_info (0) */

  /* (AP)->__va_arg_ptr = (int *) __builtin_saveregs (); */
  saveregs = make_tree (TREE_TYPE (arg_ptr), d30v_expand_builtin_saveregs ());
  t = build (MODIFY_EXPR, TREE_TYPE (arg_ptr), arg_ptr, saveregs);
  TREE_SIDE_EFFECTS (t) = 1;
  expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL);

  /* (AP)->__va_arg_num = __builtin_args_info (0) - 2; */
  t = build (PLUS_EXPR, TREE_TYPE (arg_num), build_int_2 (words, 0),
	     build_int_2 (-GPR_ARG_FIRST, 0));
  t = build (MODIFY_EXPR, TREE_TYPE (arg_num), arg_num, t);
  TREE_SIDE_EFFECTS (t) = 1;
  expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL);
}


/* Expand __builtin_va_arg to do the va_arg macro.  */

rtx
d30v_expand_builtin_va_arg(valist, type)
     tree valist;
     tree type;
{
  tree f_arg_ptr, f_arg_num;
  tree arg_ptr, arg_num, t, ptr;
  int num, size;
  rtx lab_false, ptr_rtx, r;

  f_arg_ptr = TYPE_FIELDS (TREE_TYPE (va_list_type_node));
  f_arg_num = TREE_CHAIN (f_arg_ptr);

  valist = build1 (INDIRECT_REF, TREE_TYPE (TREE_TYPE (valist)), valist);
  arg_ptr = build (COMPONENT_REF, TREE_TYPE (f_arg_ptr), valist, f_arg_ptr);
  arg_num = build (COMPONENT_REF, TREE_TYPE (f_arg_num), valist, f_arg_num);

  size = int_size_in_bytes (type);

  lab_false = gen_label_rtx ();
  ptr_rtx = gen_reg_rtx (Pmode);

  /* if (sizeof (TYPE) > 4 && ((AP)->__va_arg_num & 1) != 0)
       (AP)->__va_arg_num++; */

  if (size > UNITS_PER_WORD) 
    {
      t = build (BIT_AND_EXPR, TREE_TYPE (arg_num), arg_num, 
		 build_int_2 (1, 0));

      emit_cmp_and_jump_insns (expand_expr (t, NULL_RTX, QImode, EXPAND_NORMAL),
			       GEN_INT (0), EQ, const1_rtx, QImode, 1, 1,
			       lab_false);

      t = build (POSTINCREMENT_EXPR, TREE_TYPE (arg_num), arg_num,
		 build_int_2 (1, 0));
      TREE_SIDE_EFFECTS (t) = 1;
      expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL);

      emit_label (lab_false);
    }


  /* __ptr = (TYPE *)(((char *)(void *)((AP)->__va_arg_ptr 
	     + (AP)->__va_arg_num))); */

  t = build (MULT_EXPR, TREE_TYPE (arg_num), arg_num, build_int_2 (4, 0));
  t = build (PLUS_EXPR, ptr_type_node, arg_ptr, t);

  /* if (sizeof (TYPE) < 4)
       __ptr = (void *)__ptr + 4 - sizeof (TYPE); */

  if (size < UNITS_PER_WORD)
    t = build (PLUS_EXPR, ptr_type_node, t,
	       build_int_2 (UNITS_PER_WORD - size, 0));

  TREE_SIDE_EFFECTS (t) = 1;

  ptr = build1 (NOP_EXPR, build_pointer_type (type), t);
  t = build (MODIFY_EXPR, type, ptr, t);

  r = expand_expr (t, ptr_rtx, Pmode, EXPAND_NORMAL);
  if (r != ptr_rtx)
    emit_move_insn (ptr_rtx, r);


  /* (AP)->__va_arg_num += (sizeof (TYPE) + 3) / 4; */
  num = (size + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD;
  t = build (POSTINCREMENT_EXPR, TREE_TYPE (arg_num), arg_num, 
	     build_int_2 (num, 0));
  expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL);

  return ptr_rtx;
}


/* A C compound statement that outputs the assembler code for entry to a
   function.  The prologue is responsible for setting up the stack frame,
   initializing the frame pointer register, saving registers that must be
   saved, and allocating SIZE additional bytes of storage for the local
   variables.  SIZE is an integer.  FILE is a stdio stream to which the
   assembler code should be output.

   The label for the beginning of the function need not be output by this
   macro.  That has already been done when the macro is run.

   To determine which registers to save, the macro can refer to the array
   `regs_ever_live': element R is nonzero if hard register R is used anywhere
   within the function.  This implies the function prologue should save
   register R, provided it is not one of the call-used registers.
   (`FUNCTION_EPILOGUE' must likewise use `regs_ever_live'.)

   On machines that have "register windows", the function entry code does not
   save on the stack the registers that are in the windows, even if they are
   supposed to be preserved by function calls; instead it takes appropriate
   steps to "push" the register stack, if any non-call-used registers are used
   in the function.

   On machines where functions may or may not have frame-pointers, the function
   entry code must vary accordingly; it must set up the frame pointer if one is
   wanted, and not otherwise.  To determine whether a frame pointer is in
   wanted, the macro can refer to the variable `frame_pointer_needed'.  The
   variable's value will be 1 at run time in a function that needs a frame
   pointer.  *Note Elimination::.

   The function entry code is responsible for allocating any stack space
   required for the function.  This stack space consists of the regions listed
   below.  In most cases, these regions are allocated in the order listed, with
   the last listed region closest to the top of the stack (the lowest address
   if `STACK_GROWS_DOWNWARD' is defined, and the highest address if it is not
   defined).  You can use a different order for a machine if doing so is more
   convenient or required for compatibility reasons.  Except in cases where
   required by standard or by a debugger, there is no reason why the stack
   layout used by GCC need agree with that used by other compilers for a
   machine.

      * A region of `current_function_pretend_args_size' bytes of
        uninitialized space just underneath the first argument
        arriving on the stack.  (This may not be at the very start of
        the allocated stack region if the calling sequence has pushed
        anything else since pushing the stack arguments.  But
        usually, on such machines, nothing else has been pushed yet,
        because the function prologue itself does all the pushing.)
        This region is used on machines where an argument may be
        passed partly in registers and partly in memory, and, in some
        cases to support the features in `varargs.h' and `stdargs.h'.

      * An area of memory used to save certain registers used by the
        function.  The size of this area, which may also include
        space for such things as the return address and pointers to
        previous stack frames, is machine-specific and usually
        depends on which registers have been used in the function.
        Machines with register windows often do not require a save
        area.

      * A region of at least SIZE bytes, possibly rounded up to an
        allocation boundary, to contain the local variables of the
        function.  On some machines, this region and the save area
        may occur in the opposite order, with the save area closer to
        the top of the stack.

      * Optionally, when `ACCUMULATE_OUTGOING_ARGS' is defined, a
        region of `current_function_outgoing_args_size' bytes to be
        used for outgoing argument lists of the function.  *Note
        Stack Arguments::.

   Normally, it is necessary for the macros `FUNCTION_PROLOGUE' and
   `FUNCTION_EPILOGUE' to treat leaf functions specially.  The C variable
   `leaf_function' is nonzero for such a function.  */

/* For the d30v, move all of the prologue processing into separate insns.  */
void
d30v_function_prologue (stream, size)
     FILE *stream ATTRIBUTE_UNUSED;
     int size ATTRIBUTE_UNUSED;
{
}


/* Called after register allocation to add any instructions needed for the
   prologue.  Using a prologue insn is favored compared to putting all of the
   instructions in the FUNCTION_PROLOGUE macro, since it allows the scheduler
   to intermix instructions with the saves of the caller saved registers.  In
   some cases, it might be necessary to emit a barrier instruction as the last
   insn to prevent such scheduling.  */

void
d30v_expand_prologue ()
{
  rtx sp = stack_pointer_rtx;
  d30v_stack_t *info = d30v_stack_info ();
  int i;
  rtx mem_di = NULL_RTX;
  rtx mem_si = NULL_RTX;
  int num_memrefs = (info->memrefs_2words
		     + info->memrefs_1word
		     + info->memrefs_varargs);

  if (TARGET_DEBUG_STACK)
    debug_stack_info (info);

  /* Grow the stack.  */
  if (info->total_size)
    emit_insn (gen_addsi3 (sp, sp, GEN_INT (- info->total_size)));

  /* If there is more than one save, use post-increment addressing which will
     result in smaller code, than would the normal references.  If there is
     only one save, just do the store as normal.  */

  if (num_memrefs > 1)
    {
      rtx save_tmp = gen_rtx (REG, Pmode, GPR_STACK_TMP);
      rtx post_inc = gen_rtx (POST_INC, Pmode, save_tmp);
      mem_di = gen_rtx (MEM, DImode, post_inc);
      mem_si = gen_rtx (MEM, SImode, post_inc);
      emit_insn (gen_addsi3 (save_tmp, sp, GEN_INT (info->save_offset)));
    }
  else if (num_memrefs == 1)
    {
      rtx addr = plus_constant (sp, info->save_offset);
      mem_di = gen_rtx (MEM, DImode, addr);
      mem_si = gen_rtx (MEM, SImode, addr);
    }

  /* Save the accumulators.  */
  for (i = ACCUM_FIRST; i <= ACCUM_LAST; i++)
    if (info->save_p[i])
      {
	rtx acc_tmp = gen_rtx (REG, DImode, GPR_ATMP_FIRST);
	emit_insn (gen_movdi (acc_tmp, gen_rtx (REG, DImode, i)));
	emit_insn (gen_movdi (mem_di, acc_tmp));
      }

  /* Save the GPR registers that are adjacent to each other with st2w.  */
  for (i = GPR_FIRST; i <= GPR_LAST; i += 2)
    if (info->save_p[i] == 2)
      emit_insn (gen_movdi (mem_di, gen_rtx (REG, DImode, i)));

  /* Save the GPR registers that need to be saved with a single word store.  */
  for (i = GPR_FIRST; i <= GPR_LAST; i++)
    if (info->save_p[i] == 1)
      emit_insn (gen_movsi (mem_si, gen_rtx (REG, SImode, i)));

  /* Save the argument registers if this function accepts variable args.  */
  if (info->varargs_p)
    {
      /* Realign r22 if an odd # of GPRs were saved.  */
      if ((info->memrefs_1word & 1) != 0)
	{
	  rtx save_tmp = XEXP (XEXP (mem_si, 0), 0);
	  emit_insn (gen_addsi3 (save_tmp, save_tmp, GEN_INT (UNITS_PER_WORD)));
	}

      for (i = GPR_ARG_FIRST; i <= GPR_ARG_LAST; i += 2)
	emit_insn (gen_movdi (mem_di, gen_rtx (REG, DImode, i)));
    }

  /* Update the frame pointer.  */
  if (frame_pointer_needed)
    emit_move_insn (frame_pointer_rtx, sp);

  /* Hack for now, to prevent scheduler from being too cleaver */
  emit_insn (gen_blockage ());
}


/* A C compound statement that outputs the assembler code for exit from a
   function.  The epilogue is responsible for restoring the saved registers and
   stack pointer to their values when the function was called, and returning
   control to the caller.  This macro takes the same arguments as the macro
   `FUNCTION_PROLOGUE', and the registers to restore are determined from
   `regs_ever_live' and `CALL_USED_REGISTERS' in the same way.

   On some machines, there is a single instruction that does all the work of
   returning from the function.  On these machines, give that instruction the
   name `return' and do not define the macro `FUNCTION_EPILOGUE' at all.

   Do not define a pattern named `return' if you want the `FUNCTION_EPILOGUE'
   to be used.  If you want the target switches to control whether return
   instructions or epilogues are used, define a `return' pattern with a
   validity condition that tests the target switches appropriately.  If the
   `return' pattern's validity condition is false, epilogues will be used.

   On machines where functions may or may not have frame-pointers, the function
   exit code must vary accordingly.  Sometimes the code for these two cases is
   completely different.  To determine whether a frame pointer is wanted, the
   macro can refer to the variable `frame_pointer_needed'.  The variable's
   value will be 1 when compiling a function that needs a frame pointer.

   Normally, `FUNCTION_PROLOGUE' and `FUNCTION_EPILOGUE' must treat leaf
   functions specially.  The C variable `leaf_function' is nonzero for such a
   function.  *Note Leaf Functions::.

   On some machines, some functions pop their arguments on exit while others
   leave that for the caller to do.  For example, the 68020 when given `-mrtd'
   pops arguments in functions that take a fixed number of arguments.

   Your definition of the macro `RETURN_POPS_ARGS' decides which functions pop
   their own arguments.  `FUNCTION_EPILOGUE' needs to know what was decided.
   The variable that is called `current_function_pops_args' is the number of
   bytes of its arguments that a function should pop.  *Note Scalar Return::.  */

/* For the d30v, move all processing to be as insns, but do any cleanup
   here, since it is done after handling all of the insns.  */
void
d30v_function_epilogue (stream, size)
     FILE *stream ATTRIBUTE_UNUSED;
     int size ATTRIBUTE_UNUSED;
{
  d30v_stack_cache = (d30v_stack_t *)0;	/* reset stack cache */
}



/* Called after register allocation to add any instructions needed for the
   epilogue.  Using a epilogue insn is favored compared to putting all of the
   instructions in the FUNCTION_PROLOGUE macro, since it allows the scheduler
   to intermix instructions with the saves of the caller saved registers.  In
   some cases, it might be necessary to emit a barrier instruction as the last
   insn to prevent such scheduling.  */

void
d30v_expand_epilogue ()
{
  rtx sp = stack_pointer_rtx;
  d30v_stack_t *info = d30v_stack_info ();
  int i;
  rtx mem_di = NULL_RTX;
  rtx mem_si = NULL_RTX;
  rtx post_inc;
  int extra_stack;

  /* Hack for now, to prevent scheduler from being too cleaver */
  emit_insn (gen_blockage ());

  /* Restore sp from fp.  */
  if (frame_pointer_needed)
    emit_move_insn (sp, frame_pointer_rtx);

  /* For the epilogue, use post-increment addressing all of the time.  First
     adjust the sp, to eliminate all of the stack, except for the save area.  */

  if (info->save_offset)
    emit_insn (gen_addsi3 (sp, sp, GEN_INT (info->save_offset)));

  post_inc = gen_rtx (POST_INC, Pmode, sp);
  mem_di = gen_rtx (MEM, DImode, post_inc);
  mem_si = gen_rtx (MEM, SImode, post_inc);

  /* Restore the accumulators.  */
  for (i = ACCUM_FIRST; i <= ACCUM_LAST; i++)
    if (info->save_p[i])
      {
	rtx acc_tmp = gen_rtx (REG, DImode, GPR_ATMP_FIRST);
	emit_insn (gen_movdi (acc_tmp, mem_di));
	emit_insn (gen_movdi (gen_rtx (REG, DImode, i), acc_tmp));
      }

  /* Restore the GPR registers that are adjacent to each other with ld2w.  */
  for (i = GPR_FIRST; i <= GPR_LAST; i += 2)
    if (info->save_p[i] == 2)
      emit_insn (gen_movdi (gen_rtx (REG, DImode, i), mem_di));

  /* Save the GPR registers that need to be saved with a single word store.  */
  extra_stack = 0;
  for (i = GPR_FIRST; i <= GPR_LAST; i++)
    if (info->save_p[i] == 1)
      {
	if (d30v_eh_epilogue_sp_ofs && i == GPR_LINK)
	  extra_stack = 4;
	else
	  {
	    if (extra_stack)
	      {
	        emit_insn (gen_addsi3 (sp, sp, GEN_INT (extra_stack)));
		extra_stack = 0;
	      }
	    emit_insn (gen_movsi (gen_rtx (REG, SImode, i), mem_si));
	  }
      }

  /* Release any remaining stack that was allocated for saving the
     varargs registers or because an odd # of registers were stored.  */
  if ((info->memrefs_1word & 1) != 0)
    extra_stack += UNITS_PER_WORD;
  extra_stack += current_function_pretend_args_size + info->varargs_size;

  if (extra_stack)
    {
      if (d30v_eh_epilogue_sp_ofs)
	emit_insn (gen_addsi3 (d30v_eh_epilogue_sp_ofs,
			       d30v_eh_epilogue_sp_ofs,
			       GEN_INT (extra_stack)));
      else
        emit_insn (gen_addsi3 (sp, sp, GEN_INT (extra_stack)));
    }
  if (d30v_eh_epilogue_sp_ofs)
    emit_insn (gen_addsi3 (sp, sp, d30v_eh_epilogue_sp_ofs));

  /* Now emit the return instruction.  */
  emit_jump_insn (gen_rtx_RETURN (VOIDmode));
}


/* A C statement or compound statement to output to FILE some assembler code to
   call the profiling subroutine `mcount'.  Before calling, the assembler code
   must load the address of a counter variable into a register where `mcount'
   expects to find the address.  The name of this variable is `LP' followed by
   the number LABELNO, so you would generate the name using `LP%d' in a
   `fprintf'.

   The details of how the address should be passed to `mcount' are determined
   by your operating system environment, not by GNU CC.  To figure them out,
   compile a small program for profiling using the system's installed C
   compiler and look at the assembler code that results.  */

void
d30v_function_profiler (stream, labelno)
     FILE *stream;
     int labelno ATTRIBUTE_UNUSED;
{
  fprintf (stream, "# profile\n");
}


/* Split a 64 bit item into an upper and a lower part.  We specifically do not
   want to call gen_highpart/gen_lowpart on CONST_DOUBLEs since it will give us
   the wrong part for floating point in cross compilers, and split_double does
   not handle registers.  Also abort if the register is not a general purpose
   register.  */

void
d30v_split_double (value, p_high, p_low)
     rtx value;
     rtx *p_high;
     rtx *p_low;
{
  int offset = 0;
  int regno;

  if (!reload_completed)
    abort ();

  switch (GET_CODE (value))
    {
    case SUBREG:
      offset = SUBREG_WORD (value);
      value = SUBREG_REG (value);
      if (GET_CODE (value) != REG)
	abort ();

      /* fall through */

    case REG:
      regno = REGNO (value) + offset;
      if (!GPR_P (regno))
	abort ();

      *p_high = gen_rtx (REG, SImode, regno);
      *p_low =  gen_rtx (REG, SImode, regno+1);
      break;

    case CONST_INT:
    case CONST_DOUBLE:
      split_double (value, p_high, p_low);
      break;

    default:
      abort ();
    }
}


/* A C compound statement to output to stdio stream STREAM the assembler syntax
   for an instruction operand that is a memory reference whose address is X.  X
   is an RTL expression.

   On some machines, the syntax for a symbolic address depends on the section
   that the address refers to.  On these machines, define the macro
   `ENCODE_SECTION_INFO' to store the information into the `symbol_ref', and
   then check for it here.  *Note Assembler Format::.  */

void
d30v_print_operand_address (stream, x)
     FILE *stream;
     rtx x;
{
  if (GET_CODE (x) == MEM)
    x = XEXP (x, 0);

  switch (GET_CODE (x))
    {
    default:
      break;

    case REG:
      fputs (reg_names[ REGNO (x) ], stream);
      return;

    case CONST_INT:
      fprintf (stream, "%ld", (long) INTVAL (x));
      return;

    /* We wrap simple symbol refs inside a parenthesis, so that a name
       like `r2' is not taken for a register name.  */
    case SYMBOL_REF:
      fputs ("(", stream);
      assemble_name (stream, XSTR (x, 0));
      fputs (")", stream);
      return;

    case LABEL_REF:
    case CONST:
      output_addr_const (stream, x);
      return;
    }

  fatal_insn ("Bad insn to d30v_print_operand_address:", x);
}


/* Print a memory reference suitable for the ld/st instructions.  */

static void
d30v_print_operand_memory_reference (stream, x)
     FILE *stream;
     rtx x;
{
  rtx x0 = NULL_RTX;
  rtx x1 = NULL_RTX;

  switch (GET_CODE (x))
    {
    default:
      fatal_insn ("Bad insn to d30v_print_operand_memory_reference:", x);
      break;

    case SUBREG:
    case REG:
    case POST_DEC:
    case POST_INC:
      x0 = x;
      break;

    case CONST_INT:
    case SYMBOL_REF:
    case LABEL_REF:
    case CONST:
      x1 = x;
      break;

    case PLUS:
      x0 = XEXP (x, 0);
      x1 = XEXP (x, 1);
      if (GET_CODE (x0) == CONST_INT || GET_CODE (x0) == SYMBOL_REF
	  || GET_CODE (x0) == CONST || GET_CODE (x0) == LABEL_REF)
	{
	  x0 = XEXP (x, 1);
	  x1 = XEXP (x, 0);
	}
      break;
    }

  fputs ("@(", stream);
  if (!x0)
    fputs (reg_names[GPR_R0], stream);

  else
    {
      char *suffix = "";
      int offset0  = 0;

      if (GET_CODE (x0) == SUBREG)
	{
	  offset0 = SUBREG_WORD (x0);
	  x0 = SUBREG_REG (x0);
	}

      if (GET_CODE (x0) == POST_INC)
	{
	  x0 = XEXP (x0, 0);
	  suffix = "+";
	}
      else if (GET_CODE (x0) == POST_DEC)
	{
	  x0 = XEXP (x0, 0);
	  suffix = "-";
	}

      if (GET_CODE (x0) == REG && GPR_P (REGNO (x0)))
	fprintf (stream, "%s%s", reg_names[REGNO (x0) + offset0], suffix);
      else
	fatal_insn ("Bad insn to d30v_print_operand_memory_reference:", x);
    }

  fputs (",", stream);

  if (!x1)
    fputs (reg_names[GPR_R0], stream);

  else
    {
      int offset1 = 0;

      switch (GET_CODE (x1))
	{
	case SUBREG:
	  offset1 = SUBREG_WORD (x1);
	  x1 = SUBREG_REG (x1);
	  if (GET_CODE (x1) != REG)
	    fatal_insn ("Bad insn to d30v_print_operand_memory_reference:", x);

	  /* fall through */
	case REG:
	  fputs (reg_names[REGNO (x1) + offset1], stream);
	  break;

	case CONST_INT:
	  fprintf (stream, "%ld", (long) INTVAL (x1));
	  break;

	case SYMBOL_REF:
	case LABEL_REF:
	case CONST:
	  d30v_print_operand_address (stream, x1);
	  break;

	default:
	  fatal_insn ("Bad insn to d30v_print_operand_memory_reference:", x);
	}
    }

  fputs (")", stream);
}


/* A C compound statement to output to stdio stream STREAM the assembler syntax
   for an instruction operand X.  X is an RTL expression.

   LETTER is a value that can be used to specify one of several ways of
   printing the operand.  It is used when identical operands must be printed
   differently depending on the context.  LETTER comes from the `%'
   specification that was used to request printing of the operand.  If the
   specification was just `%DIGIT' then LETTER is 0; if the specification was
   `%LTR DIGIT' then LETTER is the ASCII code for LTR.

   If X is a register, this macro should print the register's name.  The names
   can be found in an array `reg_names' whose type is `char *[]'.  `reg_names'
   is initialized from `REGISTER_NAMES'.

   When the machine description has a specification `%PUNCT' (a `%' followed by
   a punctuation character), this macro is called with a null pointer for X and
   the punctuation character for LETTER.

   Standard operand flags that are handled elsewhere:
	`='  Output a number unique to each instruction in the compilation.
	`a'  Substitute an operand as if it were a memory reference.
	`c'  Omit the syntax that indicates an immediate operand.
	`l'  Substitute a LABEL_REF into a jump instruction.
	`n'  Like %cDIGIT, except negate the value before printing.

   The d30v specific operand flags are:
	`.'  Print r0.
	`f'  Print a SF constant as an int.
	`s'  Subtract 32 and negate.
	`A'  Print accumulator number without an `a' in front of it.
	`B'  Print bit offset for BSET, etc. instructions.
	`E'  Print u if this is zero extend, nothing if this is sign extend.
	`F'  Emit /{f,t,x}{f,t,x} for executing a false condition.
	`L'  Print the lower half of a 64 bit item.
	`M'  Print a memory reference for ld/st instructions.
	`R'  Return appropriate cmp instruction for relational test.
	`S'  Subtract 32.
	`T'  Emit /{f,t,x}{f,t,x} for executing a true condition.
	`U'  Print the upper half of a 64 bit item.  */

void
d30v_print_operand (stream, x, letter)
     FILE *stream;
     rtx x;
     int letter;
{
  enum rtx_code code = (x) ? GET_CODE (x) : NIL;
  rtx split_values[2];
  REAL_VALUE_TYPE rv;
  long num;
  int log;

  switch (letter)
    {
    case '.':	/* Output r0 */
      fputs (reg_names[GPR_R0], stream);
      break;

    case 'f':	/* Print a SF floating constant as an int */
      if (GET_CODE (x) != CONST_DOUBLE)
	fatal_insn ("Bad insn to d30v_print_operand, 'f' modifier:", x);

      REAL_VALUE_FROM_CONST_DOUBLE (rv, x);
      REAL_VALUE_TO_TARGET_SINGLE (rv, num);
      fprintf (stream, "%ld", num);
      break;

    case 'A':	/* Print accumulator number without an `a' in front of it.  */
      if (GET_CODE (x) != REG || !ACCUM_P (REGNO (x)))
	fatal_insn ("Bad insn to d30v_print_operand, 'A' modifier:", x);

      putc ('0' + REGNO (x) - ACCUM_FIRST, stream);
      break;

    case 'M':	/* Print a memory reference for ld/st */
      if (GET_CODE (x) != MEM)
	fatal_insn ("Bad insn to d30v_print_operand, 'M' modifier:", x);

      d30v_print_operand_memory_reference (stream, XEXP (x, 0));
      break;

    case 'L':	/* print lower part of 64 bit item. */
    case 'U':	/* print upper part of 64 bit item. */
      d30v_split_double (x, &split_values[0], &split_values[1]);
      d30v_print_operand (stream, split_values[ letter == 'L' ], '\0');
      break;

    case ':':   /* Output the condition for the current insn.  */
      x = current_insn_predicate;
      if (x == NULL_RTX)
	break;
      letter = 'T';
      /* FALLTHRU */

    case 'F':	/* Print an appropriate suffix for a false comparision.  */
    case 'T':	/* Print an appropriate suffix for a true  comparision.  */
      /* Note that the sense of appropriate suffix is for conditional execution
	 and opposite of what branches want.  Branches just use the inverse
	 operation.  */
      if ((GET_CODE (x) == NE || GET_CODE (x) == EQ)
	  && GET_MODE (x) == CCmode
	  && GET_CODE (XEXP (x, 0)) == REG
	  && (GPR_P (REGNO (XEXP (x, 0))) || BR_FLAG_P (REGNO (XEXP (x, 0))))
	  && GET_CODE (XEXP (x, 1)) == CONST_INT && INTVAL (XEXP (x, 1)) == 0)
	{
	  int true_false = (letter == 'T');

	  if (GET_CODE (x) == EQ)
	    true_false = !true_false;

	  if (REGNO (XEXP (x, 0)) == FLAG_F0)
	    fprintf (stream, "/%cx", (true_false) ? 'f' : 't');

	  else if (REGNO (XEXP (x, 0)) == FLAG_F1)
	    fprintf (stream, "/x%c", (true_false) ? 'f' : 't');

	  else
	    fputs ((true_false) ? "tnz" : "tzr", stream);
	}

      else if (GET_CODE (x) == REG && REGNO (x) == FLAG_F0)
	fprintf (stream, "/%cx", (letter == 'T') ? 't' : 'f');

      else if (GET_CODE (x) == REG && REGNO (x) == FLAG_F1)
	fprintf (stream, "/x%c", (letter == 'T') ? 't' : 'f');

      else if (GET_CODE (x) == REG && GPR_P (REGNO (x)))
	fputs ((letter == 'T') ? "tnz" : "tzr", stream);

      else
	fatal_insn ("Bad insn to print_operand, 'F' or 'T' modifier:", x);
      break;

    case 'B':	/* emit offset single bit to change */
      if (GET_CODE (x) == CONST_INT && (log = exact_log2 (INTVAL (x))) >= 0)
	fprintf (stream, "%d", 31 - log);

      else if (GET_CODE (x) == CONST_INT && (log = exact_log2 (~ INTVAL (x))) >= 0)
	fprintf (stream, "%d", 31 - log);

      else
	fatal_insn ("Bad insn to print_operand, 'B' modifier:", x);
      break;

    case 'E':	/* Print u if this is zero extend, nothing if sign extend. */
      if (GET_CODE (x) == ZERO_EXTEND)
	putc ('u', stream);
      else if (GET_CODE (x) != SIGN_EXTEND)
	fatal_insn ("Bad insn to print_operand, 'E' modifier:", x);
      break;

    case 'R':	/* Return appropriate cmp instruction for relational test.  */
      switch (GET_CODE (x))
	{
	case EQ:  fputs ("cmpeq",  stream); break;
	case NE:  fputs ("cmpne",  stream); break;
	case LT:  fputs ("cmplt",  stream); break;
	case LE:  fputs ("cmple",  stream); break;
	case GT:  fputs ("cmpgt",  stream); break;
	case GE:  fputs ("cmpge",  stream); break;
	case LTU: fputs ("cmpult", stream); break;
	case LEU: fputs ("cmpule", stream); break;
	case GTU: fputs ("cmpugt", stream); break;
	case GEU: fputs ("cmpuge", stream); break;

	default:
	  fatal_insn ("Bad insn to print_operand, 'R' modifier:", x);
	}
      break;

    case 's':	/* Subtract 32 and negate (for 64 bit shifts).  */
      if (GET_CODE (x) == CONST_INT)
	fprintf (stream, "%d", (int) (32 - INTVAL (x)));

      else
	fatal_insn ("Bad insn to print_operand, 's' modifier:", x);
      break;

    case 'S':	/* Subtract 32.  */
      if (GET_CODE (x) == CONST_INT)
	fprintf (stream, "%d", (int)(INTVAL (x) - 32));

      else
	fatal_insn ("Bad insn to print_operand, 's' modifier:", x);
      break;


    case 'z':	/* If arg is 0 or 0.0, print r0, otherwise print as normal */
      if ((GET_CODE (x) == CONST_INT && INTVAL (x) == 0)
	  || (GET_CODE (x) == CONST_DOUBLE && CONST_DOUBLE_LOW (x) == 0
	      && CONST_DOUBLE_HIGH (x) == 0))
	{
	  fputs (reg_names[GPR_FIRST], stream);
	  return;
	}

      /* fall through */

    case '\0':
      if (code == REG)
	fputs (reg_names[ REGNO (x) ], stream);

      else if (code == CONST_INT)
	fprintf (stream, "%d", (int)INTVAL (x));

      else if (code == MEM)
	d30v_print_operand_address (stream, XEXP (x, 0));

      else if (CONSTANT_ADDRESS_P (x))
	d30v_print_operand_address (stream, x);

      else
	fatal_insn ("Bad insn in d30v_print_operand, 0 case", x);

      return;

    default:
      {
	char buf[80];

	sprintf (buf, "Invalid asm template character '%%%c'", letter);
	fatal_insn (buf, x);
      }
    }
}


/* A C expression for the size in bytes of the trampoline, as an integer.  */

int
d30v_trampoline_size ()
{
  return 16;
}


/* Create a long instruction for building up a trampoline.  */

static void
d30v_build_long_insn (high_bits, low_bits, imm, mem)
     HOST_WIDE_INT high_bits;
     HOST_WIDE_INT low_bits;
     rtx imm;
     rtx mem;
{
  rtx reg = gen_reg_rtx (DImode);
  rtx high_word = gen_highpart (SImode, reg);
  rtx low_word = gen_lowpart (SImode, reg);
  rtx tmp1 = gen_reg_rtx (SImode);
  rtx tmp2 = gen_reg_rtx (SImode);
  rtx tmp3 = gen_reg_rtx (SImode);
  rtx tmp4 = gen_reg_rtx (SImode);
  rtx tmp5 = gen_reg_rtx (SImode);
  rtx tmp6 = gen_reg_rtx (SImode);

  imm = force_reg (SImode, imm);

  /* Stuff top 6 bits of immediate value into high word */
  emit_insn (gen_lshrsi3 (tmp1, imm, GEN_INT (26)));
  emit_insn (gen_andsi3 (tmp2, tmp1, GEN_INT (0x3F)));
  emit_insn (gen_iorsi3 (high_word, tmp2, GEN_INT (high_bits)));

  /* Now get the next 8 bits for building the low word */
  emit_insn (gen_andsi3 (tmp3, imm, GEN_INT (0x03FC0000)));
  emit_insn (gen_ashlsi3 (tmp4, tmp3, GEN_INT (2)));

  /* And the bottom 18 bits */
  emit_insn (gen_andsi3 (tmp5, imm, GEN_INT (0x0003FFFF)));
  emit_insn (gen_iorsi3 (tmp6, tmp4, tmp5));
  emit_insn (gen_iorsi3 (low_word, tmp6, GEN_INT (low_bits)));

  /* Store the instruction */
  emit_insn (gen_movdi (mem, reg));
}


/* A C statement to initialize the variable parts of a trampoline.  ADDR is an
   RTX for the address of the trampoline; FNADDR is an RTX for the address of
   the nested function; STATIC_CHAIN is an RTX for the static chain value that
   should be passed to the function when it is called.  */

void
d30v_initialize_trampoline (addr, fnaddr, static_chain)
     rtx addr;
     rtx fnaddr;
     rtx static_chain;
{
  /* The instruction space can only be accessed by ld2w/st2w.
     Generate on the fly:
	or r18,r0,<static-chain>
	jmp <fnaddr> */
  d30v_build_long_insn (0x83A80000 | ((STATIC_CHAIN_REGNUM - GPR_FIRST) << 12),
			0x80000000, static_chain,
			gen_rtx (MEM, DImode, addr));

  d30v_build_long_insn (0x80180000, 0x80000000, fnaddr,
			gen_rtx (MEM, DImode, plus_constant (addr, 8)));
}


/* A C compound statement with a conditional `goto LABEL;' executed if X (an
   RTX) is a legitimate memory address on the target machine for a memory
   operand of mode MODE.

   It usually pays to define several simpler macros to serve as subroutines for
   this one.  Otherwise it may be too complicated to understand.

   This macro must exist in two variants: a strict variant and a non-strict
   one.  The strict variant is used in the reload pass.  It must be defined so
   that any pseudo-register that has not been allocated a hard register is
   considered a memory reference.  In contexts where some kind of register is
   required, a pseudo-register with no hard register must be rejected.

   The non-strict variant is used in other passes.  It must be defined to
   accept all pseudo-registers in every context where some kind of register is
   required.

   Compiler source files that want to use the strict variant of this macro
   define the macro `REG_OK_STRICT'.  You should use an `#ifdef REG_OK_STRICT'
   conditional to define the strict variant in that case and the non-strict
   variant otherwise.

   Subroutines to check for acceptable registers for various purposes (one for
   base registers, one for index registers, and so on) are typically among the
   subroutines used to define `GO_IF_LEGITIMATE_ADDRESS'.  Then only these
   subroutine macros need have two variants; the higher levels of macros may be
   the same whether strict or not.

   Normally, constant addresses which are the sum of a `symbol_ref' and an
   integer are stored inside a `const' RTX to mark them as constant.
   Therefore, there is no need to recognize such sums specifically as
   legitimate addresses.  Normally you would simply recognize any `const' as
   legitimate.

   Usually `PRINT_OPERAND_ADDRESS' is not prepared to handle constant sums that
   are not marked with `const'.  It assumes that a naked `plus' indicates
   indexing.  If so, then you *must* reject such naked constant sums as
   illegitimate addresses, so that none of them will be given to
   `PRINT_OPERAND_ADDRESS'.

   On some machines, whether a symbolic address is legitimate depends on the
   section that the address refers to.  On these machines, define the macro
   `ENCODE_SECTION_INFO' to store the information into the `symbol_ref', and
   then check for it here.  When you see a `const', you will have to look
   inside it to find the `symbol_ref' in order to determine the section.  *Note
   Assembler Format::.

   The best way to modify the name string is by adding text to the beginning,
   with suitable punctuation to prevent any ambiguity.  Allocate the new name
   in `saveable_obstack'.  You will have to modify `ASM_OUTPUT_LABELREF' to
   remove and decode the added text and output the name accordingly, and define
   `STRIP_NAME_ENCODING' to access the original name string.

   You can check the information stored here into the `symbol_ref' in the
   definitions of the macros `GO_IF_LEGITIMATE_ADDRESS' and
   `PRINT_OPERAND_ADDRESS'.

   Return 0 if the address is not legitimate, 1 if the address would fit
   in a short instruction, or 2 if the address would fit in a long
   instruction.  */

#define XREGNO_OK_FOR_BASE_P(REGNO, STRICT_P)				\
((STRICT_P)								\
 ? REGNO_OK_FOR_BASE_P (REGNO)						\
 : GPR_OR_PSEUDO_P (REGNO))

int
d30v_legitimate_address_p (mode, x, strict_p)
     enum machine_mode mode;
     rtx x;
     int strict_p;
{
  rtx x0, x1;
  int ret = 0;

  switch (GET_CODE (x))
    {
    default:
      break;

    case SUBREG:
      x = SUBREG_REG (x);
      if (GET_CODE (x) != REG)
	break;

      /* fall through */

    case REG:
      ret = XREGNO_OK_FOR_BASE_P (REGNO (x), strict_p);
      break;

    case PLUS:
      x0 = XEXP (x, 0);
      x1 = XEXP (x, 1);

      if (GET_CODE (x0) == SUBREG)
	x0 = SUBREG_REG (x0);

      if (GET_CODE (x0) == POST_INC || GET_CODE (x0) == POST_DEC)
	x0 = XEXP (x0, 0);

      if (GET_CODE (x0) != REG || !XREGNO_OK_FOR_BASE_P (REGNO (x0), strict_p))
	break;

      switch (GET_CODE (x1))
	{
	default:
	  break;

	case SUBREG:
	  x1 = SUBREG_REG (x1);
	  if (GET_CODE (x1) != REG)
	    break;

	  /* fall through */

	case REG:
	  ret = XREGNO_OK_FOR_BASE_P (REGNO (x1), strict_p);
	  break;

	case CONST_INT:
	  ret = (IN_RANGE_P (INTVAL (x1), -32, 31)) ? 1 : 2;
	  break;

	case SYMBOL_REF:
	case LABEL_REF:
	case CONST:
	  ret = 2;
	  break;
	}
      break;

    case CONST_INT:
      ret = (IN_RANGE_P (INTVAL (x), -32, 31)) ? 1 : 2;
      break;

    case SYMBOL_REF:
    case LABEL_REF:
    case CONST:
      ret = 2;
      break;

    case POST_INC:
    case POST_DEC:
      x0 = XEXP (x, 0);
      if (GET_CODE (x0) == REG && XREGNO_OK_FOR_BASE_P (REGNO (x0), strict_p))
	ret = 1;
      break;
    }

  if (TARGET_DEBUG_ADDR)
    {
      fprintf (stderr, "\n========== GO_IF_LEGITIMATE_ADDRESS, mode = %s, result = %d, addresses are %sstrict\n",
	       GET_MODE_NAME (mode), ret, (strict_p) ? "" : "not ");
      debug_rtx (x);
    }

  return ret;
}


/* A C compound statement that attempts to replace X with a valid memory
   address for an operand of mode MODE.  WIN will be a C statement label
   elsewhere in the code; the macro definition may use

        GO_IF_LEGITIMATE_ADDRESS (MODE, X, WIN);

   to avoid further processing if the address has become legitimate.

   X will always be the result of a call to `break_out_memory_refs', and OLDX
   will be the operand that was given to that function to produce X.

   The code generated by this macro should not alter the substructure of X.  If
   it transforms X into a more legitimate form, it should assign X (which will
   always be a C variable) a new value.

   It is not necessary for this macro to come up with a legitimate address.
   The compiler has standard ways of doing so in all cases.  In fact, it is
   safe for this macro to do nothing.  But often a machine-dependent strategy
   can generate better code.  */

rtx
d30v_legitimize_address (x, oldx, mode, strict_p)
     rtx x;
     rtx oldx ATTRIBUTE_UNUSED;
     enum machine_mode mode ATTRIBUTE_UNUSED;
     int strict_p ATTRIBUTE_UNUSED;
{
  rtx ret = NULL_RTX;

  if (TARGET_DEBUG_ADDR)
    {
      if (ret)
	{
	  fprintf (stderr, "\n========== LEGITIMIZE_ADDRESS, transformed:\n");
	  debug_rtx (x);
	  fprintf (stderr, "\ninto:\n");
	  debug_rtx (ret);
	}
      else
	{
	  fprintf (stderr, "\n========== LEGITIMIZE_ADDRESS, did nothing with:\n");
	  debug_rtx (x);
	}
    }

  return ret;
}


/* A C statement or compound statement with a conditional `goto LABEL;'
   executed if memory address X (an RTX) can have different meanings depending
   on the machine mode of the memory reference it is used for or if the address
   is valid for some modes but not others.

   Autoincrement and autodecrement addresses typically have mode-dependent
   effects because the amount of the increment or decrement is the size of the
   operand being addressed.  Some machines have other mode-dependent addresses.
   Many RISC machines have no mode-dependent addresses.

   You may assume that ADDR is a valid address for the machine.  */

int
d30v_mode_dependent_address_p (addr)
     rtx addr;
{
  switch (GET_CODE (addr))
    {
    default:
      break;

    case POST_INC:
    case POST_DEC:
      return TRUE;
    }

  return FALSE;
}


/* Generate the appropriate comparison code for a test.  */

rtx
d30v_emit_comparison (test_int, result, arg1, arg2)
     int test_int;
     rtx result;
     rtx arg1;
     rtx arg2;
{
  enum rtx_code test = (enum rtx_code) test_int;
  enum machine_mode mode = GET_MODE (arg1);
  rtx rtx_test = gen_rtx (SET, VOIDmode, result, gen_rtx (test, CCmode, arg1, arg2));

  if (mode == SImode
      || (mode == DImode && (test == EQ || test == NE))
      || (mode == DImode && (test == LT || test == GE)
	  && GET_CODE (arg2) == CONST_INT && INTVAL (arg2) == 0))
    return rtx_test;

  else if (mode == DImode)
    return gen_rtx (PARALLEL, VOIDmode,
		    gen_rtvec (2,
			       rtx_test,
			       gen_rtx (CLOBBER, VOIDmode,
					gen_reg_rtx (CCmode))));

  else
    fatal_insn ("d30v_emit_comparison", rtx_test);
}


/* Return appropriate code to move 2 words.  Since DImode registers must start
   on even register numbers, there is no possibility of overlap.  */

char *
d30v_move_2words (operands, insn)
     rtx operands[];
     rtx insn;
{
  if (GET_CODE (operands[0]) == REG && GPR_P (REGNO (operands[0])))
    {
      if (GET_CODE (operands[1]) == REG && GPR_P (REGNO (operands[1])))
	return "or %U0,%.,%U1\n\tor %L0,%.,%L1";

      else if (GET_CODE (operands[1]) == REG && ACCUM_P (REGNO (operands[1])))
	return "mvfacc %L0,%1,%.\n\tmvfacc %U0,%1,32";

      else if (GET_CODE (operands[1]) == MEM)
	return "ld2w %0,%M1";

      else if (GET_CODE (operands[1]) == CONST_INT
	       || GET_CODE (operands[1]) == CONST_DOUBLE)
	return "or %U0,%.,%U1\n\tor %L0,%.,%L1";
    }

  else if (GET_CODE (operands[0]) == REG && ACCUM_P (REGNO (operands[0])))
    {
      if (GET_CODE (operands[1]) == REG
	  && GPR_P (REGNO (operands[1])))
	return "mvtacc %0,%U1,%L1";

      if (GET_CODE (operands[1]) == CONST_INT
	  && INTVAL (operands[1]) == 0)
	return "mvtacc %0,%.,%.";
    }

  else if (GET_CODE (operands[0]) == MEM
	   && GET_CODE (operands[1]) == REG
	   && GPR_P (REGNO (operands[1])))
    return "st2w %1,%M0";

  fatal_insn ("Bad call to d30v_move_2words", insn);
}


/* Emit the code to do a conditional move instruction.  Return FALSE
   if the conditional move could not be executed.  */

int
d30v_emit_cond_move (dest, test, true_value, false_value)
     rtx dest;
     rtx test;
     rtx true_value;
     rtx false_value;
{
  rtx br_reg;
  enum machine_mode mode = GET_MODE (dest);
  int two_mem_moves_p = FALSE;

  if (GET_CODE (dest) == MEM)
    {
      if (!reg_or_0_operand (true_value, mode))
	return FALSE;

      if (rtx_equal_p (dest, false_value))
	two_mem_moves_p = TRUE;

      else if (!reg_or_0_operand (false_value, mode))
	return FALSE;
    }

  /* We used to try to optimize setting 0/1 by using mvfsys, but that turns out
     to be slower than just doing the conditional execution.  */

  br_reg = gen_reg_rtx (CCmode);
  emit_insn (d30v_emit_comparison (GET_CODE (test), br_reg,
				   d30v_compare_op0, d30v_compare_op1));

  if (!two_mem_moves_p)
    emit_insn (gen_rtx_SET (VOIDmode,
			    dest,
			    gen_rtx_IF_THEN_ELSE (mode,
						  gen_rtx_NE (CCmode, br_reg,
							      const0_rtx),
						  true_value,
						  false_value)));
  else
    {
      /* Emit conditional stores as two separate stores.  This avoids a problem
         where you have a conditional store, and one of the arms of the
         conditional store is spilled to memory.  */
      emit_insn (gen_rtx_SET (VOIDmode,
			      dest,
			      gen_rtx_IF_THEN_ELSE (mode,
						    gen_rtx_NE (CCmode, br_reg,
								const0_rtx),
						    true_value,
						    dest)));

      emit_insn (gen_rtx_SET (VOIDmode,
			      dest,
			      gen_rtx_IF_THEN_ELSE (mode,
						    gen_rtx_EQ (CCmode, br_reg,
								const0_rtx),
						    false_value,
						    dest)));
	 
    }

  return TRUE;
}


/* In rare cases, correct code generation requires extra machine dependent
   processing between the second jump optimization pass and delayed branch
   scheduling.  On those machines, define this macro as a C statement to act on
   the code starting at INSN.  */

void
d30v_machine_dependent_reorg (insn)
     rtx insn ATTRIBUTE_UNUSED;
{
}


/* A C statement (sans semicolon) to update the integer variable COST based on
   the relationship between INSN that is dependent on DEP_INSN through the
   dependence LINK.  The default is to make no adjustment to COST.  This can be
   used for example to specify to the scheduler that an output- or
   anti-dependence does not incur the same cost as a data-dependence.  */

/* For the d30v, try to insure that the source operands for a load/store are
   set 2 cycles before the memory reference.  */

int
d30v_adjust_cost (insn, link, dep_insn, cost)
     rtx insn;
     rtx link ATTRIBUTE_UNUSED;
     rtx dep_insn;
     int cost;
{
  rtx set_dep = single_set (dep_insn);
  rtx set_insn = single_set (insn);

  if (set_dep != NULL_RTX && set_insn != NULL_RTX
      && GET_CODE (SET_DEST (set_dep)) == REG)
    {
      rtx reg = SET_DEST (set_dep);
      rtx mem;

      if ((GET_CODE (mem = SET_SRC (set_insn)) == MEM
	   && reg_mentioned_p (reg, XEXP (mem, 0)))
	  || (GET_CODE (mem = SET_DEST (set_insn)) == MEM
	      && reg_mentioned_p (reg, XEXP (mem, 0))))
	{
	  return cost + ((HAIFA_P) ? 2 : 4);
	}
    }

  return cost;
}


/* Functions to save and restore d30v_return_addr_rtx.  */

struct machine_function
{
  rtx ra_rtx;
};

static void
d30v_save_machine_status (p)
     struct function *p;
{
  struct machine_function *machine =
    (struct machine_function *) xmalloc (sizeof (struct machine_function));

  p->machine = machine;
  machine->ra_rtx = d30v_return_addr_rtx;
}

static void
d30v_restore_machine_status (p)
     struct function *p;
{
  struct machine_function *machine = p->machine;

  d30v_return_addr_rtx = machine->ra_rtx;

  free (machine);
  p->machine = (struct machine_function *)0;
}

/* Do anything needed before RTL is emitted for each function.  */

void
d30v_init_expanders ()
{
  d30v_return_addr_rtx = NULL_RTX;
  d30v_eh_epilogue_sp_ofs = NULL_RTX;

  /* Arrange to save and restore machine status around nested functions.  */
  save_machine_status = d30v_save_machine_status;
  restore_machine_status = d30v_restore_machine_status;
}

/* Find the current function's return address.

   ??? It would be better to arrange things such that if we would ordinarily
   have been a leaf function and we didn't spill the hard reg that we
   wouldn't have to save the register in the prolog.  But it's not clear
   how to get the right information at the right time.  */

rtx
d30v_return_addr ()
{
  rtx ret;

  if ((ret = d30v_return_addr_rtx) == NULL)
    {
      rtx init;

      d30v_return_addr_rtx = ret = gen_reg_rtx (Pmode);

      init = gen_rtx (SET, VOIDmode, ret, gen_rtx (REG, Pmode, GPR_LINK));
      push_topmost_sequence ();
      emit_insn_after (init, get_insns ());
      pop_topmost_sequence ();
    }

  return ret;
}

/* Called to register all of our global variables with the garbage
   collector.  */

static void
d30v_add_gc_roots ()
{
  ggc_add_rtx_root (&d30v_compare_op0, 1);
  ggc_add_rtx_root (&d30v_compare_op1, 1);
  ggc_add_rtx_root (&d30v_eh_epilogue_sp_ofs, 1);
  ggc_add_rtx_root (&d30v_return_addr_rtx, 1);
}