summaryrefslogtreecommitdiff
path: root/gcc/config/epiphany/epiphany.c
blob: 1dcdc4b380852d4d41ab0340068f6e55117fb562 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
/* Subroutines used for code generation on the EPIPHANY cpu.
   Copyright (C) 1994-2013 Free Software Foundation, Inc.
   Contributed by Embecosm on behalf of Adapteva, Inc.

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3, or (at your option)
any later version.

GCC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3.  If not see
<http://www.gnu.org/licenses/>.  */

#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "tree.h"
#include "rtl.h"
#include "regs.h"
#include "hard-reg-set.h"
#include "real.h"
#include "insn-config.h"
#include "conditions.h"
#include "output.h"
#include "insn-attr.h"
#include "flags.h"
#include "function.h"
#include "expr.h"
#include "diagnostic-core.h"
#include "recog.h"
#include "toplev.h"
#include "tm_p.h"
#include "target.h"
#include "df.h"
#include "langhooks.h"
#include "insn-codes.h"
#include "ggc.h"
#include "tm-constrs.h"
#include "tree-pass.h"	/* for current_pass */

/* Which cpu we're compiling for.  */
int epiphany_cpu_type;

/* Name of mangle string to add to symbols to separate code compiled for each
   cpu (or NULL).  */
const char *epiphany_mangle_cpu;

/* Array of valid operand punctuation characters.  */
char epiphany_punct_chars[256];

/* The rounding mode that we generally use for floating point.  */
int epiphany_normal_fp_rounding;

static void epiphany_init_reg_tables (void);
static int get_epiphany_condition_code (rtx);
static tree epiphany_handle_interrupt_attribute (tree *, tree, tree, int, bool *);
static tree epiphany_handle_forwarder_attribute (tree *, tree, tree, int,
						 bool *);
static bool epiphany_pass_by_reference (cumulative_args_t, enum machine_mode,
					const_tree, bool);
static rtx frame_insn (rtx);

/* defines for the initialization of the GCC target structure.  */
#define TARGET_ATTRIBUTE_TABLE epiphany_attribute_table

#define TARGET_PRINT_OPERAND epiphany_print_operand
#define TARGET_PRINT_OPERAND_ADDRESS epiphany_print_operand_address

#define TARGET_RTX_COSTS epiphany_rtx_costs
#define TARGET_ADDRESS_COST epiphany_address_cost
#define TARGET_MEMORY_MOVE_COST epiphany_memory_move_cost

#define TARGET_PROMOTE_FUNCTION_MODE epiphany_promote_function_mode
#define TARGET_PROMOTE_PROTOTYPES hook_bool_const_tree_true

#define TARGET_RETURN_IN_MEMORY epiphany_return_in_memory
#define TARGET_PASS_BY_REFERENCE epiphany_pass_by_reference
#define TARGET_CALLEE_COPIES hook_bool_CUMULATIVE_ARGS_mode_tree_bool_true
#define TARGET_FUNCTION_VALUE epiphany_function_value
#define TARGET_LIBCALL_VALUE epiphany_libcall_value
#define TARGET_FUNCTION_VALUE_REGNO_P epiphany_function_value_regno_p

#define TARGET_SETUP_INCOMING_VARARGS epiphany_setup_incoming_varargs

/* Using the simplistic varags handling forces us to do partial reg/stack
   argument passing for types with larger size (> 4 bytes) than alignemnt.  */
#define TARGET_ARG_PARTIAL_BYTES epiphany_arg_partial_bytes

#define TARGET_FUNCTION_OK_FOR_SIBCALL epiphany_function_ok_for_sibcall

#define TARGET_SCHED_ISSUE_RATE epiphany_issue_rate
#define TARGET_SCHED_ADJUST_COST epiphany_adjust_cost

#define TARGET_LEGITIMATE_ADDRESS_P epiphany_legitimate_address_p

#define TARGET_SECONDARY_RELOAD epiphany_secondary_reload

#define TARGET_OPTION_OVERRIDE epiphany_override_options

#define TARGET_CONDITIONAL_REGISTER_USAGE epiphany_conditional_register_usage

#define TARGET_FUNCTION_ARG epiphany_function_arg

#define TARGET_FUNCTION_ARG_ADVANCE epiphany_function_arg_advance

#define TARGET_FUNCTION_ARG_BOUNDARY epiphany_function_arg_boundary

#define TARGET_TRAMPOLINE_INIT epiphany_trampoline_init

/* Nonzero if the constant rtx value is a legitimate general operand.
   We can handle any 32- or 64-bit constant.  */
#define TARGET_LEGITIMATE_CONSTANT_P hook_bool_mode_rtx_true

#define TARGET_MIN_DIVISIONS_FOR_RECIP_MUL \
  epiphany_min_divisions_for_recip_mul

#define TARGET_VECTORIZE_PREFERRED_SIMD_MODE epiphany_preferred_simd_mode

#define TARGET_VECTOR_MODE_SUPPORTED_P epiphany_vector_mode_supported_p

#define TARGET_VECTORIZE_VECTOR_ALIGNMENT_REACHABLE \
  epiphany_vector_alignment_reachable

#define TARGET_VECTORIZE_SUPPORT_VECTOR_MISALIGNMENT \
  epiphany_support_vector_misalignment

#define TARGET_ASM_CAN_OUTPUT_MI_THUNK \
  hook_bool_const_tree_hwi_hwi_const_tree_true
#define TARGET_ASM_OUTPUT_MI_THUNK epiphany_output_mi_thunk

#include "target-def.h"

#undef TARGET_ASM_ALIGNED_HI_OP
#define TARGET_ASM_ALIGNED_HI_OP "\t.hword\t"
#undef TARGET_ASM_ALIGNED_SI_OP
#define TARGET_ASM_ALIGNED_SI_OP "\t.word\t"

bool
epiphany_is_interrupt_p (tree decl)
{
  tree attrs;

  attrs = DECL_ATTRIBUTES (decl);
  if (lookup_attribute ("interrupt", attrs))
    return true;
  else
    return false;
}

/* Called from epiphany_override_options.
   We use this to initialize various things.  */

static void
epiphany_init (void)
{
  /* N.B. this pass must not run before the first optimize_mode_switching
     pass because of the side offect of epiphany_mode_needed on
     MACHINE_FUNCTION(cfun)->unknown_mode_uses.  But it must run before
     pass_resolve_sw_modes.  */
  static struct register_pass_info insert_use_info
    = { &pass_mode_switch_use.pass, "mode_sw",
	1, PASS_POS_INSERT_AFTER
      };
  static struct register_pass_info mode_sw2_info
    = { &pass_mode_switching.pass, "mode_sw",
	1, PASS_POS_INSERT_AFTER
      };
  static struct register_pass_info mode_sw3_info
    = { &pass_resolve_sw_modes.pass, "mode_sw",
	1, PASS_POS_INSERT_AFTER
      };
  static struct register_pass_info mode_sw4_info
    = { &pass_split_all_insns.pass, "mode_sw",
	1, PASS_POS_INSERT_AFTER
      };
  static const int num_modes[] = NUM_MODES_FOR_MODE_SWITCHING;
#define N_ENTITIES ARRAY_SIZE (num_modes)

  epiphany_init_reg_tables ();

  /* Initialize array for PRINT_OPERAND_PUNCT_VALID_P.  */
  memset (epiphany_punct_chars, 0, sizeof (epiphany_punct_chars));
  epiphany_punct_chars['-'] = 1;

  epiphany_normal_fp_rounding
    = (epiphany_normal_fp_mode == FP_MODE_ROUND_TRUNC
       ? FP_MODE_ROUND_TRUNC : FP_MODE_ROUND_NEAREST);
  register_pass (&mode_sw4_info);
  register_pass (&mode_sw2_info);
  register_pass (&mode_sw3_info);
  register_pass (&insert_use_info);
  register_pass (&mode_sw2_info);
  /* Verify that NUM_MODES_FOR_MODE_SWITCHING has one value per entity.  */
  gcc_assert (N_ENTITIES == EPIPHANY_MSW_ENTITY_NUM);

#if 1 /* As long as peep2_rescan is not implemented,
         (see http://gcc.gnu.org/ml/gcc-patches/2011-10/msg02819.html,)
         we need a second peephole2 pass to get reasonable code.  */
  {
    static struct register_pass_info peep2_2_info
      = { &pass_peephole2.pass, "peephole2",
	  1, PASS_POS_INSERT_AFTER
	};

    register_pass (&peep2_2_info);
  }
#endif
}

/* The condition codes of the EPIPHANY, and the inverse function.  */
static const char *const epiphany_condition_codes[] =
{ /* 0    1      2      3      4      5      6     7      8      9   */
   "eq", "ne", "ltu", "gteu", "gt", "lte", "gte", "lt", "gtu", "lteu",
  /* 10   11    12     13  */
   "beq","bne","blt", "blte",
};

#define EPIPHANY_INVERSE_CONDITION_CODE(X)  ((X) ^ 1)

/* Returns the index of the EPIPHANY condition code string in
   `epiphany_condition_codes'.  COMPARISON should be an rtx like
   `(eq (...) (...))'.  */

static int
get_epiphany_condition_code (rtx comparison)
{
  switch (GET_MODE (XEXP (comparison, 0)))
    {
    case CCmode:
      switch (GET_CODE (comparison))
	{
	case EQ  : return 0;
	case NE  : return 1;
	case LTU : return 2;
	case GEU : return 3;
	case GT  : return 4;
	case LE  : return 5;
	case GE  : return 6;
	case LT  : return 7;
	case GTU : return 8;
	case LEU : return 9;

	default : gcc_unreachable ();
	}
    case CC_N_NEmode:
      switch (GET_CODE (comparison))
	{
	case EQ: return 6;
	case NE: return 7;
	default: gcc_unreachable ();
	}
    case CC_C_LTUmode:
      switch (GET_CODE (comparison))
	{
	case GEU: return 2;
	case LTU: return 3;
	default: gcc_unreachable ();
	}
    case CC_C_GTUmode:
      switch (GET_CODE (comparison))
	{
	case LEU: return 3;
	case GTU: return 2;
	default: gcc_unreachable ();
	}
    case CC_FPmode:
      switch (GET_CODE (comparison))
	{
	case EQ: return 10;
	case NE: return 11;
	case LT: return 12;
	case LE: return 13;
	default: gcc_unreachable ();
	}
    case CC_FP_EQmode:
      switch (GET_CODE (comparison))
	{
	case EQ: return 0;
	case NE: return 1;
	default: gcc_unreachable ();
	}
    case CC_FP_GTEmode:
      switch (GET_CODE (comparison))
	{
	case EQ: return 0;
	case NE: return 1;
	case GT : return 4;
	case GE : return 6;
	case UNLE : return 5;
	case UNLT : return 7;
	default: gcc_unreachable ();
	}
    case CC_FP_ORDmode:
      switch (GET_CODE (comparison))
	{
	case ORDERED: return 9;
	case UNORDERED: return 8;
	default: gcc_unreachable ();
	}
    case CC_FP_UNEQmode:
      switch (GET_CODE (comparison))
	{
	case UNEQ: return 9;
	case LTGT: return 8;
	default: gcc_unreachable ();
	}
    default: gcc_unreachable ();
    }
  /*NOTREACHED*/
  return (42);
}


/* Return 1 if hard register REGNO can hold a value of machine_mode MODE.  */
int
hard_regno_mode_ok (int regno, enum machine_mode mode)
{
  if (GET_MODE_SIZE (mode) > UNITS_PER_WORD)
    return (regno & 1) == 0 && GPR_P (regno);
  else
    return 1;
}

/* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
   return the mode to be used for the comparison.  */

enum machine_mode
epiphany_select_cc_mode (enum rtx_code op,
			 rtx x ATTRIBUTE_UNUSED,
			 rtx y ATTRIBUTE_UNUSED)
{
  if (GET_MODE_CLASS (GET_MODE (x)) == MODE_FLOAT)
    {
      if (TARGET_SOFT_CMPSF
	  || op == ORDERED || op == UNORDERED)
	{
	  if (op == EQ || op == NE)
	    return CC_FP_EQmode;
	  if (op == ORDERED || op == UNORDERED)
	    return CC_FP_ORDmode;
	  if (op == UNEQ || op == LTGT)
	    return CC_FP_UNEQmode;
	  return CC_FP_GTEmode;
	}
      return CC_FPmode;
    }
  /* recognize combiner pattern ashlsi_btst:
     (parallel [
	    (set (reg:N_NE 65 cc1)
		(compare:N_NE (zero_extract:SI (reg/v:SI 75 [ a ])
			(const_int 1 [0x1])
			(const_int 0 [0x0]))
		    (const_int 0 [0x0])))
	    (clobber (scratch:SI))  */
  else if ((op == EQ || op == NE)
	   && GET_CODE (x) == ZERO_EXTRACT
	   && XEXP (x, 1) == const1_rtx
	   && CONST_INT_P (XEXP (x, 2)))
    return CC_N_NEmode;
  else if ((op == GEU || op == LTU) && GET_CODE (x) == PLUS)
    return CC_C_LTUmode;
  else if ((op == LEU || op == GTU) && GET_CODE (x) == MINUS)
    return CC_C_GTUmode;
  else
    return CCmode;
}

enum reg_class epiphany_regno_reg_class[FIRST_PSEUDO_REGISTER];

static void
epiphany_init_reg_tables (void)
{
  int i;

  for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
    {
      if (i == GPR_LR)
	epiphany_regno_reg_class[i] = LR_REGS;
      else if (i <= 7 && TARGET_PREFER_SHORT_INSN_REGS)
	epiphany_regno_reg_class[i] = SHORT_INSN_REGS;
      else if (call_used_regs[i]
	       && TEST_HARD_REG_BIT (reg_class_contents[GENERAL_REGS], i))
	epiphany_regno_reg_class[i] = SIBCALL_REGS;
      else if (i >= CORE_CONTROL_FIRST && i <= CORE_CONTROL_LAST)
	epiphany_regno_reg_class[i] = CORE_CONTROL_REGS;
      else if (i < (GPR_LAST+1)
	       || i == ARG_POINTER_REGNUM || i == FRAME_POINTER_REGNUM)
	epiphany_regno_reg_class[i] = GENERAL_REGS;
      else if (i == CC_REGNUM)
	epiphany_regno_reg_class[i] = NO_REGS /* CC_REG: must be NO_REGS */;
      else
	epiphany_regno_reg_class[i] = NO_REGS;
    }
}

/* EPIPHANY specific attribute support.

   The EPIPHANY has these attributes:
   interrupt - for interrupt functions.
   short_call - the function is assumed to be reachable with the b / bl
		instructions.
   long_call - the function address is loaded into a register before use.
   disinterrupt - functions which mask interrupts throughout.
                     They unmask them while calling an interruptible
		     function, though.  */

static const struct attribute_spec epiphany_attribute_table[] =
{
  /* { name, min_len, max_len, decl_req, type_req, fn_type_req, handler } */
  { "interrupt",  0, 9, true,  false, false, epiphany_handle_interrupt_attribute, true },
  { "forwarder_section", 1, 1, true, false, false, epiphany_handle_forwarder_attribute, false },
  { "long_call",  0, 0, false, true, true, NULL, false },
  { "short_call", 0, 0, false, true, true, NULL, false },
  { "disinterrupt", 0, 0, false, true, true, NULL, true },
  { NULL,         0, 0, false, false, false, NULL, false }
};

/* Handle an "interrupt" attribute; arguments as in
   struct attribute_spec.handler.  */
static tree
epiphany_handle_interrupt_attribute (tree *node ATTRIBUTE_UNUSED,
				     tree name, tree args,
				     int flags ATTRIBUTE_UNUSED,
				     bool *no_add_attrs)
{
  tree value;

  if (!args)
    return NULL_TREE;

  value = TREE_VALUE (args);

  if (TREE_CODE (value) != STRING_CST)
    {
      warning (OPT_Wattributes,
	       "argument of %qE attribute is not a string constant", name);
      *no_add_attrs = true;
    }
  else if (strcmp (TREE_STRING_POINTER (value), "reset")
	   && strcmp (TREE_STRING_POINTER (value), "software_exception")
	   && strcmp (TREE_STRING_POINTER (value), "page_miss")
	   && strcmp (TREE_STRING_POINTER (value), "timer0")
	   && strcmp (TREE_STRING_POINTER (value), "timer1")
	   && strcmp (TREE_STRING_POINTER (value), "message")
	   && strcmp (TREE_STRING_POINTER (value), "dma0")
	   && strcmp (TREE_STRING_POINTER (value), "dma1")
	   && strcmp (TREE_STRING_POINTER (value), "wand")
	   && strcmp (TREE_STRING_POINTER (value), "swi"))
    {
      warning (OPT_Wattributes,
	       "argument of %qE attribute is not \"reset\", \"software_exception\", \"page_miss\", \"timer0\", \"timer1\", \"message\", \"dma0\", \"dma1\", \"wand\" or \"swi\"",
	       name);
      *no_add_attrs = true;
      return NULL_TREE;
    }

  return epiphany_handle_interrupt_attribute (node, name, TREE_CHAIN (args),
					      flags, no_add_attrs);
}

/* Handle a "forwarder_section" attribute; arguments as in
   struct attribute_spec.handler.  */
static tree
epiphany_handle_forwarder_attribute (tree *node ATTRIBUTE_UNUSED,
				     tree name, tree args,
				     int flags ATTRIBUTE_UNUSED,
				     bool *no_add_attrs)
{
  tree value;

  value = TREE_VALUE (args);

  if (TREE_CODE (value) != STRING_CST)
    {
      warning (OPT_Wattributes,
	       "argument of %qE attribute is not a string constant", name);
      *no_add_attrs = true;
    }
  return NULL_TREE;
}


/* Misc. utilities.  */

/* Generate a SYMBOL_REF for the special function NAME.  When the address
   can't be placed directly into a call instruction, and if possible, copy
   it to a register so that cse / code hoisting is possible.  */
rtx
sfunc_symbol (const char *name)
{
  rtx sym = gen_rtx_SYMBOL_REF (Pmode, name);

  /* These sfuncs should be hidden, and every dso should get a copy.  */
  SYMBOL_REF_FLAGS (sym) = SYMBOL_FLAG_FUNCTION | SYMBOL_FLAG_LOCAL;
  if (TARGET_SHORT_CALLS)
    ; /* Nothing to be done.  */
  else if (can_create_pseudo_p ())
    sym = copy_to_mode_reg (Pmode, sym);
  else /* We rely on reload to fix this up.  */
    gcc_assert (!reload_in_progress || reload_completed);
  return sym;
}

/* X and Y are two things to compare using CODE in IN_MODE.
   Emit the compare insn, construct the the proper cc reg in the proper
   mode, and return the rtx for the cc reg comparison in CMODE.  */

rtx
gen_compare_reg (enum machine_mode cmode, enum rtx_code code,
		 enum machine_mode in_mode, rtx x, rtx y)
{
  enum machine_mode mode = SELECT_CC_MODE (code, x, y);
  rtx cc_reg, pat, clob0, clob1, clob2;

  if (in_mode == VOIDmode)
    in_mode = GET_MODE (x);
  if (in_mode == VOIDmode)
    in_mode = GET_MODE (y);

  if (mode == CC_FPmode)
    {
      /* The epiphany has only EQ / NE / LT / LE conditions for
	 hardware floating point.  */
      if (code == GT || code == GE || code == UNLE || code == UNLT)
	{
	  rtx tmp = x; x = y; y = tmp;
	  code = swap_condition (code);
	}
      cc_reg = gen_rtx_REG (mode, CCFP_REGNUM);
      y = force_reg (in_mode, y);
    }
  else
    {
      if (mode == CC_FP_GTEmode
	  && (code == LE || code == LT || code == UNGT || code == UNGE))
	{
	  if (flag_finite_math_only
	      && ((REG_P (x) && REGNO (x) == GPR_0)
		  || (REG_P (y) && REGNO (y) == GPR_1)))
	    switch (code)
	      {
	      case LE: code = UNLE; break;
	      case LT: code = UNLT; break;
	      case UNGT: code = GT; break;
	      case UNGE: code = GE; break;
	      default: gcc_unreachable ();
	      }
	  else
	    {
	      rtx tmp = x; x = y; y = tmp;
	      code = swap_condition (code);
	    }
	}
      cc_reg = gen_rtx_REG (mode, CC_REGNUM);
    }
  if ((mode == CC_FP_EQmode || mode == CC_FP_GTEmode
       || mode == CC_FP_ORDmode || mode == CC_FP_UNEQmode)
      /* mov<mode>cc might want to re-emit a comparison during ifcvt.  */
      && (!REG_P (x) || REGNO (x) != GPR_0
	  || !REG_P (y) || REGNO (y) != GPR_1))
    {
      rtx reg;

#if 0
      /* ??? We should really do the r0/r1 clobber only during rtl expansion,
	 but just like the flag clobber of movsicc, we have to allow
	 this for ifcvt to work, on the assumption that we'll only want
	 to do this if these registers have been used before by the
	 pre-ifcvt  code.  */
      gcc_assert (currently_expanding_to_rtl);
#endif
      reg = gen_rtx_REG (in_mode, GPR_0);
      if (reg_overlap_mentioned_p (reg, y))
	return 0;
      emit_move_insn (reg, x);
      x = reg;
      reg = gen_rtx_REG (in_mode, GPR_1);
      emit_move_insn (reg, y);
      y = reg;
    }
  else
    x = force_reg (in_mode, x);

  pat = gen_rtx_SET (VOIDmode, cc_reg, gen_rtx_COMPARE (mode, x, y));
  if (mode == CC_FP_EQmode || mode == CC_FP_GTEmode)
    {
      const char *name = mode == CC_FP_EQmode ? "__eqsf2" : "__gtesf2";
      rtx use = gen_rtx_USE (VOIDmode, sfunc_symbol (name));

      clob0 = gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (SImode, GPR_IP));
      clob1 = gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (SImode, GPR_LR));
      pat = gen_rtx_PARALLEL (VOIDmode, gen_rtvec (4, pat, use, clob0, clob1));
    }
  else if (mode == CC_FP_ORDmode || mode == CC_FP_UNEQmode)
    {
      const char *name = mode == CC_FP_ORDmode ? "__ordsf2" : "__uneqsf2";
      rtx use = gen_rtx_USE (VOIDmode, sfunc_symbol (name));

      clob0 = gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (SImode, GPR_IP));
      clob1 = gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (SImode, GPR_16));
      clob2 = gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (SImode, GPR_LR));
      pat = gen_rtx_PARALLEL (VOIDmode, gen_rtvec (5, pat, use,
						   clob0, clob1, clob2));
    }
  else
    {
      clob0 = gen_rtx_CLOBBER (VOIDmode, gen_rtx_SCRATCH (in_mode));
      pat = gen_rtx_PARALLEL (VOIDmode, gen_rtvec (2, pat, clob0));
    }
  emit_insn (pat);
  return gen_rtx_fmt_ee (code, cmode, cc_reg, const0_rtx);
}

/* The ROUND_ADVANCE* macros are local to this file.  */
/* Round SIZE up to a word boundary.  */
#define ROUND_ADVANCE(SIZE) \
  (((SIZE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)

/* Round arg MODE/TYPE up to the next word boundary.  */
#define ROUND_ADVANCE_ARG(MODE, TYPE) \
  ((MODE) == BLKmode \
   ? ROUND_ADVANCE (int_size_in_bytes (TYPE)) \
   : ROUND_ADVANCE (GET_MODE_SIZE (MODE)))

/* Round CUM up to the necessary point for argument MODE/TYPE.  */
#define ROUND_ADVANCE_CUM(CUM, MODE, TYPE) \
  (epiphany_function_arg_boundary ((MODE), (TYPE)) > BITS_PER_WORD \
   ? (((CUM) + 1) & ~1)	\
   : (CUM))

static unsigned int
epiphany_function_arg_boundary (enum machine_mode mode, const_tree type)
{
  if ((type ? TYPE_ALIGN (type) : GET_MODE_BITSIZE (mode)) <= PARM_BOUNDARY)
    return PARM_BOUNDARY;
  return 2 * PARM_BOUNDARY;
}

/* Do any needed setup for a variadic function.  For the EPIPHANY, we
   actually emit the code in epiphany_expand_prologue.

   CUM has not been updated for the last named argument which has type TYPE
   and mode MODE, and we rely on this fact.  */


static void
epiphany_setup_incoming_varargs (cumulative_args_t cum, enum machine_mode mode,
				 tree type, int *pretend_size, int no_rtl)
{
  int first_anon_arg;
  CUMULATIVE_ARGS next_cum;
  machine_function_t *mf = MACHINE_FUNCTION (cfun);

  /* All BLKmode values are passed by reference.  */
  gcc_assert (mode != BLKmode);

  next_cum = *get_cumulative_args (cum);
  next_cum
    = ROUND_ADVANCE_CUM (next_cum, mode, type) + ROUND_ADVANCE_ARG (mode, type);
  first_anon_arg = next_cum;

  if (first_anon_arg < MAX_EPIPHANY_PARM_REGS && !no_rtl)
    {
      /* Note that first_reg_offset < MAX_EPIPHANY_PARM_REGS.  */
      int first_reg_offset = first_anon_arg;

      *pretend_size = ((MAX_EPIPHANY_PARM_REGS - first_reg_offset)
		       * UNITS_PER_WORD);
    }
  mf->args_parsed = 1;
  mf->pretend_args_odd = ((*pretend_size & UNITS_PER_WORD) ? 1 : 0);
}

static int
epiphany_arg_partial_bytes (cumulative_args_t cum, enum machine_mode mode,
			    tree type, bool named ATTRIBUTE_UNUSED)
{
  int words = 0, rounded_cum;

  gcc_assert (!epiphany_pass_by_reference (cum, mode, type, /* named */ true));

  rounded_cum = ROUND_ADVANCE_CUM (*get_cumulative_args (cum), mode, type);
  if (rounded_cum < MAX_EPIPHANY_PARM_REGS)
    {
      words = MAX_EPIPHANY_PARM_REGS - rounded_cum;
      if (words >= ROUND_ADVANCE_ARG (mode, type))
	words = 0;
    }
  return words * UNITS_PER_WORD;
}

/* Cost functions.  */

/* Compute a (partial) cost for rtx X.  Return true if the complete
   cost has been computed, and false if subexpressions should be
   scanned.  In either case, *TOTAL contains the cost result.  */

static bool
epiphany_rtx_costs (rtx x, int code, int outer_code, int opno ATTRIBUTE_UNUSED,
		    int *total, bool speed ATTRIBUTE_UNUSED)
{
  switch (code)
    {
      /* Small integers in the right context are as cheap as registers.  */
    case CONST_INT:
      if ((outer_code == PLUS || outer_code == MINUS)
	  && SIMM11 (INTVAL (x)))
	{
	  *total = 0;
	  return true;
	}
      if (IMM16 (INTVAL (x)))
	{
	  *total = outer_code == SET ? 0 : COSTS_N_INSNS (1);
	  return true;
	}
      /* FALLTHRU */

    case CONST:
    case LABEL_REF:
    case SYMBOL_REF:
      *total = COSTS_N_INSNS ((epiphany_small16 (x) ? 0 : 1)
			      + (outer_code == SET ? 0 : 1));
      return true;

    case CONST_DOUBLE:
      {
	rtx high, low;
	split_double (x, &high, &low);
	*total = COSTS_N_INSNS (!IMM16 (INTVAL (high))
				+ !IMM16 (INTVAL (low)));
	return true;
      }

    case ASHIFT:
    case ASHIFTRT:
    case LSHIFTRT:
      *total = COSTS_N_INSNS (1);
      return true;

    default:
      return false;
    }
}


/* Provide the costs of an addressing mode that contains ADDR.
   If ADDR is not a valid address, its cost is irrelevant.  */

static int
epiphany_address_cost (rtx addr, enum machine_mode mode,
		       addr_space_t as ATTRIBUTE_UNUSED, bool speed)
{
  rtx reg;
  rtx off = const0_rtx;
  int i;

  if (speed)
    return 0;
  /* Return 0 for addresses valid in short insns, 1 for addresses only valid
     in long insns.  */
  switch (GET_CODE (addr))
    {
    case PLUS :
      reg = XEXP (addr, 0);
      off = XEXP (addr, 1);
      break;
    case POST_MODIFY:
      reg = XEXP (addr, 0);
      off = XEXP (addr, 1);
      gcc_assert (GET_CODE (off) == PLUS && rtx_equal_p (reg, XEXP (off, 0)));
      off = XEXP (off, 1);
      if (satisfies_constraint_Rgs (reg) && satisfies_constraint_Rgs (off))
	return 0;
      return 1;
    case REG:
    default:
      reg = addr;
      break;
    }
  if (!satisfies_constraint_Rgs (reg))
    return 1;
  /* The offset range available for short instructions depends on the mode
     of the memory access.  */
  /* First, make sure we have a valid integer.  */
  if (!satisfies_constraint_L (off))
    return 1;
  i = INTVAL (off);
  switch (GET_MODE_SIZE (mode))
    {
      default:
      case 4:
	if (i & 1)
	  return 1;
	i >>= 1;
	/* Fall through.  */
      case 2:
	if (i & 1)
	  return 1;
	i >>= 1;
	/* Fall through.  */
      case 1:
	return i < -7 || i > 7;
    }
}

/* Compute the cost of moving data between registers and memory.
   For integer, load latency is twice as long as register-register moves,
   but issue pich is the same.  For floating point, load latency is three
   times as much as a reg-reg move.  */
static int
epiphany_memory_move_cost (enum machine_mode mode,
                          reg_class_t rclass ATTRIBUTE_UNUSED,
                          bool in ATTRIBUTE_UNUSED)
{
  return GET_MODE_CLASS (mode) == MODE_INT ? 3 : 4;
}

/* Function prologue/epilogue handlers.  */

/* EPIPHANY stack frames look like:

	     Before call                       After call
	+-----------------------+       +-----------------------+
	|                       |       |                       |
   high |  local variables,     |       |  local variables,     |
   mem  |  reg save area, etc.  |       |  reg save area, etc.  |
	|                       |       |                       |
	+-----------------------+       +-----------------------+
	|                       |       |                       |
	|  arguments on stack.  |       |  arguments on stack.  |
	|                       |       |                       |
  SP+8->+-----------------------+FP+8m->+-----------------------+
	| 2 word save area for  |       |  reg parm save area,  |
	| leaf funcs / flags    |       |  only created for     |
  SP+0->+-----------------------+       |  variable argument    |
					|  functions            |
				 FP+8n->+-----------------------+
					|                       |
					|  register save area   |
					|                       |
					+-----------------------+
					|                       |
					|  local variables      |
					|                       |
				  FP+0->+-----------------------+
					|                       |
					|  alloca allocations   |
					|                       |
					+-----------------------+
					|                       |
					|  arguments on stack   |
					|                       |
				  SP+8->+-----------------------+
   low                                  | 2 word save area for  |
   memory                               | leaf funcs / flags    |
				  SP+0->+-----------------------+

Notes:
1) The "reg parm save area" does not exist for non variable argument fns.
   The "reg parm save area" could be eliminated if we created our
   own TARGET_GIMPLIFY_VA_ARG_EXPR, but that has tradeoffs as well
   (so it's not done).  */

/* Structure to be filled in by epiphany_compute_frame_size with register
   save masks, and offsets for the current function.  */
struct epiphany_frame_info
{
  unsigned int total_size;	/* # bytes that the entire frame takes up.  */
  unsigned int pretend_size;	/* # bytes we push and pretend caller did.  */
  unsigned int args_size;	/* # bytes that outgoing arguments take up.  */
  unsigned int reg_size;	/* # bytes needed to store regs.  */
  unsigned int var_size;	/* # bytes that variables take up.  */
  HARD_REG_SET gmask;		/* Set of saved gp registers.  */
  int          initialized;	/* Nonzero if frame size already calculated.  */
  int      stld_sz;             /* Current load/store data size for offset
				   adjustment. */
  int      need_fp;             /* value to override "frame_pointer_needed */
  /* FIRST_SLOT is the slot that is saved first, at the very start of
     the frame, with a POST_MODIFY to allocate the frame, if the size fits,
     or at least the parm and register save areas, otherwise.
     In the case of a large frame, LAST_SLOT is the slot that is saved last,
     with a POST_MODIFY to allocate the rest of the frame.  */
  int first_slot, last_slot, first_slot_offset, last_slot_offset;
  int first_slot_size;
  int small_threshold;
};

/* Current frame information calculated by epiphany_compute_frame_size.  */
static struct epiphany_frame_info current_frame_info;

/* Zero structure to initialize current_frame_info.  */
static struct epiphany_frame_info zero_frame_info;

/* The usual; we set up our machine_function data.  */
static struct machine_function *
epiphany_init_machine_status (void)
{
  struct machine_function *machine;

  /* Reset state info for each function.  */
  current_frame_info = zero_frame_info;

  machine = ggc_alloc_cleared_machine_function_t ();

  return machine;
}

/* Implements INIT_EXPANDERS.  We just set up to call the above
 *    function.  */
void
epiphany_init_expanders (void)
{
  init_machine_status = epiphany_init_machine_status;
}

/* Type of function DECL.

   The result is cached.  To reset the cache at the end of a function,
   call with DECL = NULL_TREE.  */

static enum epiphany_function_type
epiphany_compute_function_type (tree decl)
{
  tree a;
  /* Cached value.  */
  static enum epiphany_function_type fn_type = EPIPHANY_FUNCTION_UNKNOWN;
  /* Last function we were called for.  */
  static tree last_fn = NULL_TREE;

  /* Resetting the cached value?  */
  if (decl == NULL_TREE)
    {
      fn_type = EPIPHANY_FUNCTION_UNKNOWN;
      last_fn = NULL_TREE;
      return fn_type;
    }

  if (decl == last_fn && fn_type != EPIPHANY_FUNCTION_UNKNOWN)
    return fn_type;

  /* Assume we have a normal function (not an interrupt handler).  */
  fn_type = EPIPHANY_FUNCTION_NORMAL;

  /* Now see if this is an interrupt handler.  */
  for (a = DECL_ATTRIBUTES (decl);
       a;
       a = TREE_CHAIN (a))
    {
      tree name = TREE_PURPOSE (a);

      if (name == get_identifier ("interrupt"))
	fn_type = EPIPHANY_FUNCTION_INTERRUPT;
    }

  last_fn = decl;
  return fn_type;
}

#define RETURN_ADDR_REGNUM GPR_LR
#define FRAME_POINTER_MASK (1 << (FRAME_POINTER_REGNUM))
#define RETURN_ADDR_MASK (1 << (RETURN_ADDR_REGNUM))

/* Tell prologue and epilogue if register REGNO should be saved / restored.
   The return address and frame pointer are treated separately.
   Don't consider them here.  */
#define MUST_SAVE_REGISTER(regno, interrupt_p) \
  ((df_regs_ever_live_p (regno) \
    || (interrupt_p && !crtl->is_leaf \
	&& call_used_regs[regno] && !fixed_regs[regno])) \
   && (!call_used_regs[regno] || regno == GPR_LR \
       || (interrupt_p && regno != GPR_SP)))

#define MUST_SAVE_RETURN_ADDR 0

/* Return the bytes needed to compute the frame pointer from the current
   stack pointer.

   SIZE is the size needed for local variables.  */

static unsigned int
epiphany_compute_frame_size (int size /* # of var. bytes allocated.  */)
{
  int regno;
  unsigned int total_size, var_size, args_size, pretend_size, reg_size;
  HARD_REG_SET gmask;
  enum epiphany_function_type fn_type;
  int interrupt_p;
  int first_slot, last_slot, first_slot_offset, last_slot_offset;
  int first_slot_size;
  int small_slots = 0;

  var_size	= size;
  args_size	= crtl->outgoing_args_size;
  pretend_size	= crtl->args.pretend_args_size;
  total_size	= args_size + var_size;
  reg_size	= 0;
  CLEAR_HARD_REG_SET (gmask);
  first_slot = -1;
  first_slot_offset = 0;
  last_slot = -1;
  last_slot_offset = 0;
  first_slot_size = UNITS_PER_WORD;

  /* See if this is an interrupt handler.  Call used registers must be saved
     for them too.  */
  fn_type = epiphany_compute_function_type (current_function_decl);
  interrupt_p = EPIPHANY_INTERRUPT_P (fn_type);

  /* Calculate space needed for registers.  */

  for (regno = MAX_EPIPHANY_PARM_REGS - 1; pretend_size > reg_size; regno--)
    {
      reg_size += UNITS_PER_WORD;
      SET_HARD_REG_BIT (gmask, regno);
      if (epiphany_stack_offset - reg_size == 0)
	first_slot = regno;
    }

  if (interrupt_p)
    reg_size += 2 * UNITS_PER_WORD;
  else
    small_slots = epiphany_stack_offset / UNITS_PER_WORD;

  if (frame_pointer_needed)
    {
      current_frame_info.need_fp = 1;
      if (!interrupt_p && first_slot < 0)
	first_slot = GPR_FP;
    }
  else
    current_frame_info.need_fp = 0;
  for (regno = 0; regno <= GPR_LAST; regno++)
    {
      if (MUST_SAVE_REGISTER (regno, interrupt_p))
	{
	  gcc_assert (!TEST_HARD_REG_BIT (gmask, regno));
	  reg_size += UNITS_PER_WORD;
	  SET_HARD_REG_BIT (gmask, regno);
	  /* FIXME: when optimizing for speed, take schedling into account
	     when selecting these registers.  */
	  if (regno == first_slot)
	    gcc_assert (regno == GPR_FP && frame_pointer_needed);
	  else if (!interrupt_p && first_slot < 0)
	    first_slot = regno;
	  else if (last_slot < 0
		   && (first_slot ^ regno) != 1
		   && (!interrupt_p || regno > GPR_1))
	    last_slot = regno;
	}
    }
  if (TEST_HARD_REG_BIT (gmask, GPR_LR))
    MACHINE_FUNCTION (cfun)->lr_clobbered = 1;
  /* ??? Could sometimes do better than that.  */
  current_frame_info.small_threshold
    = (optimize >= 3 || interrupt_p ? 0
       : pretend_size ? small_slots
       : 4 + small_slots - (first_slot == GPR_FP));

  /* If there might be variables with 64-bit alignment requirement, align the
     start of the variables.  */
  if (var_size >= 2 * UNITS_PER_WORD
      /* We don't want to split a double reg save/restore across two unpaired
	 stack slots when optimizing.  This rounding could be avoided with
	 more complex reordering of the register saves, but that would seem
	 to be a lot of code complexity for little gain.  */
      || (reg_size > 8 && optimize))
    reg_size = EPIPHANY_STACK_ALIGN (reg_size);
  if (((total_size + reg_size
	/* Reserve space for UNKNOWN_REGNUM.  */
	+ EPIPHANY_STACK_ALIGN (4))
       <= (unsigned) epiphany_stack_offset)
      && !interrupt_p
      && crtl->is_leaf && !frame_pointer_needed)
    {
      first_slot = -1;
      last_slot = -1;
      goto alloc_done;
    }
  else if (reg_size
	   && !interrupt_p
	   && reg_size < (unsigned HOST_WIDE_INT) epiphany_stack_offset)
    reg_size = epiphany_stack_offset;
  if (interrupt_p)
    {
      if (total_size + reg_size < 0x3fc)
	{
	  first_slot_offset = EPIPHANY_STACK_ALIGN (total_size + reg_size);
	  first_slot_offset += EPIPHANY_STACK_ALIGN (epiphany_stack_offset);
	  last_slot = -1;
	}
      else
	{
	  first_slot_offset = EPIPHANY_STACK_ALIGN (reg_size);
	  last_slot_offset = EPIPHANY_STACK_ALIGN (total_size);
	  last_slot_offset += EPIPHANY_STACK_ALIGN (epiphany_stack_offset);
	  if (last_slot >= 0)
	    CLEAR_HARD_REG_BIT (gmask, last_slot);
	}
    }
  else if (total_size + reg_size < 0x1ffc && first_slot >= 0)
    {
      first_slot_offset = EPIPHANY_STACK_ALIGN (total_size + reg_size);
      last_slot = -1;
    }
  else
    {
      if (total_size + reg_size <= (unsigned) epiphany_stack_offset)
	{
	  gcc_assert (first_slot < 0);
	  gcc_assert (reg_size == 0 || reg_size == epiphany_stack_offset);
	  last_slot_offset = EPIPHANY_STACK_ALIGN (total_size + reg_size);
	}
      else
	{
	  first_slot_offset
	    = (reg_size
	       ? EPIPHANY_STACK_ALIGN (reg_size - epiphany_stack_offset) : 0);
	  if (!first_slot_offset)
	    {
	      if (first_slot != GPR_FP || !current_frame_info.need_fp)
		last_slot = first_slot;
	      first_slot = -1;
	    }
	  last_slot_offset = EPIPHANY_STACK_ALIGN (total_size);
	  if (reg_size)
	    last_slot_offset += EPIPHANY_STACK_ALIGN (epiphany_stack_offset);
	}
      if (last_slot >= 0)
	CLEAR_HARD_REG_BIT (gmask, last_slot);
    }
 alloc_done:
  if (first_slot >= 0)
    {
      CLEAR_HARD_REG_BIT (gmask, first_slot);
      if (TEST_HARD_REG_BIT (gmask, first_slot ^ 1)
	  && epiphany_stack_offset - pretend_size >= 2 * UNITS_PER_WORD)
	{
	  CLEAR_HARD_REG_BIT (gmask, first_slot ^ 1);
	  first_slot_size = 2 * UNITS_PER_WORD;
	  first_slot &= ~1;
	}
    }
  total_size = first_slot_offset + last_slot_offset;

  /* Save computed information.  */
  current_frame_info.total_size   = total_size;
  current_frame_info.pretend_size = pretend_size;
  current_frame_info.var_size     = var_size;
  current_frame_info.args_size    = args_size;
  current_frame_info.reg_size	  = reg_size;
  COPY_HARD_REG_SET (current_frame_info.gmask, gmask);
  current_frame_info.first_slot		= first_slot;
  current_frame_info.last_slot		= last_slot;
  current_frame_info.first_slot_offset	= first_slot_offset;
  current_frame_info.first_slot_size	= first_slot_size;
  current_frame_info.last_slot_offset	= last_slot_offset;

  current_frame_info.initialized  = reload_completed;

  /* Ok, we're done.  */
  return total_size;
}

/* Print operand X (an rtx) in assembler syntax to file FILE.
   CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
   For `%' followed by punctuation, CODE is the punctuation and X is null.  */

static void
epiphany_print_operand (FILE *file, rtx x, int code)
{
  switch (code)
    {
    case 'd':
      fputs (epiphany_condition_codes[get_epiphany_condition_code (x)], file);
      return;
    case 'D':
     fputs (epiphany_condition_codes[EPIPHANY_INVERSE_CONDITION_CODE
				 (get_epiphany_condition_code (x))],
	     file);
      return;

    case 'X':
      current_frame_info.stld_sz = 8;
      break;

    case 'C' :
      current_frame_info.stld_sz = 4;
      break;

    case 'c' :
      current_frame_info.stld_sz = 2;
      break;

    case 'f':
     fputs (REG_P (x) ? "jalr " : "bl ", file);
     break;

    case '-':
    fprintf (file, "r%d", epiphany_m1reg);
    return;

    case 0 :
      /* Do nothing special.  */
      break;
    default :
      /* Unknown flag.  */
      output_operand_lossage ("invalid operand output code");
    }

  switch (GET_CODE (x))
    {
      rtx addr;
      rtx offset;

    case REG :
      fputs (reg_names[REGNO (x)], file);
      break;
    case MEM :
      if (code == 0)
	current_frame_info.stld_sz = 1;
      fputc ('[', file);
      addr = XEXP (x, 0);
      switch (GET_CODE (addr))
	{
	  case POST_INC:
	    offset = GEN_INT (GET_MODE_SIZE (GET_MODE (x)));
	    addr = XEXP (addr, 0);
	    break;
	  case POST_DEC:
	    offset = GEN_INT (-GET_MODE_SIZE (GET_MODE (x)));
	    addr = XEXP (addr, 0);
	    break;
	  case POST_MODIFY:
	    offset = XEXP (XEXP (addr, 1), 1);
	    addr = XEXP (addr, 0);
	    break;
	  default:
	    offset = 0;
	    break;
	}
      output_address (addr);
      fputc (']', file);
      if (offset)
	{
	  fputc (',', file);
	  if (CONST_INT_P (offset)) switch (GET_MODE_SIZE (GET_MODE (x)))
	    {
	      default:
		gcc_unreachable ();
	      case 8:
		offset = GEN_INT (INTVAL (offset) >> 3);
		break;
	      case 4:
		offset = GEN_INT (INTVAL (offset) >> 2);
		break;
	      case 2:
		offset = GEN_INT (INTVAL (offset) >> 1);
		break;
	      case 1:
		break;
	    }
	  output_address (offset);
	}
      break;
    case CONST_DOUBLE :
      /* We handle SFmode constants here as output_addr_const doesn't.  */
      if (GET_MODE (x) == SFmode)
	{
	  REAL_VALUE_TYPE d;
	  long l;

	  REAL_VALUE_FROM_CONST_DOUBLE (d, x);
	  REAL_VALUE_TO_TARGET_SINGLE (d, l);
	  fprintf (file, "%s0x%08lx", IMMEDIATE_PREFIX, l);
	  break;
	}
      /* Fall through.  Let output_addr_const deal with it.  */
    case CONST_INT:
      fprintf(file,"%s",IMMEDIATE_PREFIX);
      if (code == 'C' || code == 'X')
	{
	  fprintf (file, "%ld",
		   (long) (INTVAL (x) / current_frame_info.stld_sz));
	  break;
	}
      /* Fall through */
    default :
      output_addr_const (file, x);
      break;
    }
}

/* Print a memory address as an operand to reference that memory location.  */

static void
epiphany_print_operand_address (FILE *file, rtx addr)
{
  register rtx base, index = 0;
  int offset = 0;

  switch (GET_CODE (addr))
    {
    case REG :
      fputs (reg_names[REGNO (addr)], file);
      break;
    case SYMBOL_REF :
      if (/*???*/ 0 && SYMBOL_REF_FUNCTION_P (addr))
	{
	  output_addr_const (file, addr);
	}
      else
	{
	  output_addr_const (file, addr);
	}
      break;
    case PLUS :
      if (GET_CODE (XEXP (addr, 0)) == CONST_INT)
	offset = INTVAL (XEXP (addr, 0)), base = XEXP (addr, 1);
      else if (GET_CODE (XEXP (addr, 1)) == CONST_INT)
	offset = INTVAL (XEXP (addr, 1)), base = XEXP (addr, 0);
      else
	base = XEXP (addr, 0), index = XEXP (addr, 1);
      gcc_assert (GET_CODE (base) == REG);
      fputs (reg_names[REGNO (base)], file);
      if (index == 0)
	{
	  /*
	  ** ++rk quirky method to scale offset for ld/str.......
	  */
	  fprintf (file, ",%s%d", IMMEDIATE_PREFIX,
		   offset/current_frame_info.stld_sz);
	}
      else
	{
	  switch (GET_CODE (index))
	    {
	    case REG:
	      fprintf (file, ",%s", reg_names[REGNO (index)]);
	      break;
	    case SYMBOL_REF:
	      fputc (',', file), output_addr_const (file, index);
	      break;
	    default:
	      gcc_unreachable ();
	    }
	}
      break;
    case PRE_INC: case PRE_DEC: case POST_INC: case POST_DEC: case POST_MODIFY:
      /* We shouldn't get here as we've lost the mode of the memory object
	 (which says how much to inc/dec by.  */
      gcc_unreachable ();
      break;
    default:
      output_addr_const (file, addr);
      break;
    }
}

void
epiphany_final_prescan_insn (rtx insn ATTRIBUTE_UNUSED,
			     rtx *opvec ATTRIBUTE_UNUSED,
			     int noperands ATTRIBUTE_UNUSED)
{
  int i = epiphany_n_nops;
  rtx pat ATTRIBUTE_UNUSED;

  while (i--)
    fputs ("\tnop\n", asm_out_file);
}


/* Worker function for TARGET_RETURN_IN_MEMORY.  */

static bool
epiphany_return_in_memory (const_tree type, const_tree fntype ATTRIBUTE_UNUSED)
{
  HOST_WIDE_INT size = int_size_in_bytes (type);

  if (AGGREGATE_TYPE_P (type)
      && (TYPE_MODE (type) == BLKmode || TYPE_NEEDS_CONSTRUCTING (type)))
    return true;
  return (size == -1 || size > 8);
}

/* For EPIPHANY, All aggregates and arguments greater than 8 bytes are
   passed by reference.  */

static bool
epiphany_pass_by_reference (cumulative_args_t ca ATTRIBUTE_UNUSED,
		       enum machine_mode mode, const_tree type,
		       bool named ATTRIBUTE_UNUSED)
{
  if (type)
    {
      if (AGGREGATE_TYPE_P (type)
	  && (mode == BLKmode || TYPE_NEEDS_CONSTRUCTING (type)))
	return true;
    }
  return false;
}


static rtx
epiphany_function_value (const_tree ret_type,
			 const_tree fn_decl_or_type ATTRIBUTE_UNUSED,
			 bool outgoing ATTRIBUTE_UNUSED)
{
  enum machine_mode mode;

  mode = TYPE_MODE (ret_type);
  /* We must change the mode like PROMOTE_MODE does.
     ??? PROMOTE_MODE is ignored for non-scalar types.
     The set of types tested here has to be kept in sync
     with the one in explow.c:promote_mode.  */
  if (GET_MODE_CLASS (mode) == MODE_INT
      && GET_MODE_SIZE (mode) < 4
      && (TREE_CODE (ret_type) == INTEGER_TYPE
          || TREE_CODE (ret_type) == ENUMERAL_TYPE
          || TREE_CODE (ret_type) == BOOLEAN_TYPE
          || TREE_CODE (ret_type) == OFFSET_TYPE))
    mode = SImode;
  return gen_rtx_REG (mode, 0);
}

static rtx
epiphany_libcall_value (enum machine_mode mode, const_rtx fun ATTRIBUTE_UNUSED)
{
  return gen_rtx_REG (mode, 0);
}

static bool
epiphany_function_value_regno_p (const unsigned int regno ATTRIBUTE_UNUSED)
{
  return regno == 0;
}

/* Fix up invalid option settings.  */
static void
epiphany_override_options (void)
{
  if (epiphany_stack_offset < 4)
    error ("stack_offset must be at least 4");
  if (epiphany_stack_offset & 3)
    error ("stack_offset must be a multiple of 4");
  epiphany_stack_offset = (epiphany_stack_offset + 3) & -4;

  /* This needs to be done at start up.  It's convenient to do it here.  */
  epiphany_init ();
}

/* For a DImode load / store SET, make a SImode set for a
   REG_FRAME_RELATED_EXPR note, using OFFSET to create a high or lowpart
   subreg.  */
static rtx
frame_subreg_note (rtx set, int offset)
{
  rtx src = simplify_gen_subreg (SImode, SET_SRC (set), DImode, offset);
  rtx dst = simplify_gen_subreg (SImode, SET_DEST (set), DImode, offset);

  set = gen_rtx_SET (VOIDmode, dst ,src);
  RTX_FRAME_RELATED_P (set) = 1;
  return set;
}

static rtx
frame_insn (rtx x)
{
  int i;
  rtx note = NULL_RTX;

  if (GET_CODE (x) == PARALLEL)
    {
      rtx part = XVECEXP (x, 0, 0);

      if (GET_MODE (SET_DEST (part)) == DImode)
	{
	  note = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (XVECLEN (x, 0) + 1));
	  XVECEXP (note, 0, 0) = frame_subreg_note (part, 0);
	  XVECEXP (note, 0, 1) = frame_subreg_note (part, UNITS_PER_WORD);
	  for (i = XVECLEN (x, 0) - 1; i >= 1; i--)
	    {
	      part = copy_rtx (XVECEXP (x, 0, i));

	      if (GET_CODE (part) == SET)
		RTX_FRAME_RELATED_P (part) = 1;
	      XVECEXP (note, 0, i + 1) = part;
	    }
	}
      else
	{
	  for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
	    {
	      part = XVECEXP (x, 0, i);

	      if (GET_CODE (part) == SET)
		RTX_FRAME_RELATED_P (part) = 1;
	    }
	}
    }
  else if (GET_CODE (x) == SET && GET_MODE (SET_DEST (x)) == DImode)
    note = gen_rtx_PARALLEL (VOIDmode,
			     gen_rtvec (2, frame_subreg_note (x, 0),
					frame_subreg_note (x, UNITS_PER_WORD)));
  x = emit_insn (x);
  RTX_FRAME_RELATED_P (x) = 1;
  if (note)
    add_reg_note (x, REG_FRAME_RELATED_EXPR, note);
  return x;
}

static rtx
frame_move_insn (rtx to, rtx from)
{
  return frame_insn (gen_rtx_SET (VOIDmode, to, from));
}

/* Generate a MEM referring to a varargs argument slot.  */

static rtx
gen_varargs_mem (enum machine_mode mode, rtx addr)
{
  rtx mem = gen_rtx_MEM (mode, addr);
  MEM_NOTRAP_P (mem) = 1;
  set_mem_alias_set (mem, get_varargs_alias_set ());
  return mem;
}

/* Emit instructions to save or restore registers in the range [MIN..LIMIT) .
   If EPILOGUE_P is 0, save; if it is one, restore.
   ADDR is the stack slot to save the first register to; subsequent
   registers are written to lower addresses.
   However, the order of register pairs can be reversed in order to
   use double-word load-store instructions.  Likewise, an unpaired single
   word save slot can be skipped while double saves are carried out, and
   reused when a single register is to be saved.  */

static void
epiphany_emit_save_restore (int min, int limit, rtx addr, int epilogue_p)
{
  int i;
  int stack_offset
    = current_frame_info.first_slot >= 0 ? epiphany_stack_offset : 0;
  rtx skipped_mem = NULL_RTX;
  int last_saved = limit - 1;

  if (!optimize)
    while (last_saved >= 0
	   && !TEST_HARD_REG_BIT (current_frame_info.gmask, last_saved))
      last_saved--;
  for (i = 0; i < limit; i++)
    {
      enum machine_mode mode = word_mode;
      rtx mem, reg;
      int n = i;
      rtx (*gen_mem) (enum machine_mode, rtx) = gen_frame_mem;

      /* Make sure we push the arguments in the right order.  */
      if (n < MAX_EPIPHANY_PARM_REGS && crtl->args.pretend_args_size)
	{
	  n = MAX_EPIPHANY_PARM_REGS - 1 - n;
	  gen_mem = gen_varargs_mem;
	}
      if (stack_offset == current_frame_info.first_slot_size
	  && current_frame_info.first_slot >= 0)
	{
	  if (current_frame_info.first_slot_size > UNITS_PER_WORD)
	    {
	      mode = DImode;
	      addr = plus_constant (Pmode, addr,
				    - (HOST_WIDE_INT) UNITS_PER_WORD);
	    }
	  if (i-- < min || !epilogue_p)
	    goto next_slot;
	  n = current_frame_info.first_slot;
	  gen_mem = gen_frame_mem;
	}
      else if (n == UNKNOWN_REGNUM
	       && stack_offset > current_frame_info.first_slot_size)
	{
	  i--;
	  goto next_slot;
	}
      else if (!TEST_HARD_REG_BIT (current_frame_info.gmask, n))
	continue;
      else if (i < min)
	goto next_slot;

      /* Check for a register pair to save.  */
      if (n == i
	  && (n >= MAX_EPIPHANY_PARM_REGS || crtl->args.pretend_args_size == 0)
	  && (n & 1) == 0 && n+1 < limit
	  && TEST_HARD_REG_BIT (current_frame_info.gmask, n+1))
	{
	  /* If it fits in the current stack slot pair, place it there.  */
	  if (GET_CODE (addr) == PLUS && (stack_offset & 7) == 0
	      && stack_offset != 2 * UNITS_PER_WORD
	      && (current_frame_info.last_slot < 0
		  || INTVAL (XEXP (addr, 1)) != UNITS_PER_WORD)
	      && (n+1 != last_saved || !skipped_mem))
	    {
	      mode = DImode;
	      i++;
	      addr = plus_constant (Pmode, addr,
				    - (HOST_WIDE_INT) UNITS_PER_WORD);
	    }
	  /* If it fits in the following stack slot pair, that's fine, too.  */
	  else if (GET_CODE (addr) == PLUS && (stack_offset & 7) == 4
		   && stack_offset != 2 * UNITS_PER_WORD
		   && stack_offset != 3 * UNITS_PER_WORD
		   && (current_frame_info.last_slot < 0
		       || INTVAL (XEXP (addr, 1)) != 2 * UNITS_PER_WORD)
		   && n + 1 != last_saved)
	    {
	      gcc_assert (!skipped_mem);
	      stack_offset -= GET_MODE_SIZE (mode);
	      skipped_mem = gen_mem (mode, addr);
	      mode = DImode;
	      i++;
	      addr = plus_constant (Pmode, addr,
				    - (HOST_WIDE_INT) 2 * UNITS_PER_WORD);
	    }
	}
      reg = gen_rtx_REG (mode, n);
      if (mode != DImode && skipped_mem)
	mem = skipped_mem;
      else
	mem = gen_mem (mode, addr);

      /* If we are loading / storing LR, note the offset that
	 gen_reload_insi_ra requires.  Since GPR_LR is even,
	 we only need to test n, even if mode is DImode.  */
      gcc_assert ((GPR_LR & 1) == 0);
      if (n == GPR_LR)
	{
	  long lr_slot_offset = 0;
	  rtx m_addr = XEXP (mem, 0);

	  if (GET_CODE (m_addr) == PLUS)
	    lr_slot_offset = INTVAL (XEXP (m_addr, 1));
	  if (frame_pointer_needed)
	    lr_slot_offset += (current_frame_info.first_slot_offset
			       - current_frame_info.total_size);
	  if (MACHINE_FUNCTION (cfun)->lr_slot_known)
	    gcc_assert (MACHINE_FUNCTION (cfun)->lr_slot_offset
			== lr_slot_offset);
	  MACHINE_FUNCTION (cfun)->lr_slot_offset = lr_slot_offset;
	  MACHINE_FUNCTION (cfun)->lr_slot_known = 1;
	}

      if (!epilogue_p)
	frame_move_insn (mem, reg);
      else if (n >= MAX_EPIPHANY_PARM_REGS || !crtl->args.pretend_args_size)
	emit_move_insn (reg, mem);
      if (mem == skipped_mem)
	{
	  skipped_mem = NULL_RTX;
	  continue;
	}
    next_slot:
      addr = plus_constant (Pmode, addr, -(HOST_WIDE_INT) UNITS_PER_WORD);
      stack_offset -= GET_MODE_SIZE (mode);
    }
}

void
epiphany_expand_prologue (void)
{
  int interrupt_p;
  enum epiphany_function_type fn_type;
  rtx addr, mem, off, reg;
  rtx save_config;

  if (!current_frame_info.initialized)
    epiphany_compute_frame_size (get_frame_size ());

  /* It is debatable if we should adjust this by epiphany_stack_offset.  */
  if (flag_stack_usage_info)
    current_function_static_stack_size = current_frame_info.total_size;

  fn_type = epiphany_compute_function_type (current_function_decl);
  interrupt_p = EPIPHANY_INTERRUPT_P (fn_type);

  if (interrupt_p)
    {
      addr = plus_constant (Pmode, stack_pointer_rtx,
			    - (HOST_WIDE_INT) 2 * UNITS_PER_WORD);
      if (!lookup_attribute ("forwarder_section",
			    DECL_ATTRIBUTES (current_function_decl))
	  || !epiphany_is_long_call_p (XEXP (DECL_RTL (current_function_decl),
					     0)))
        frame_move_insn (gen_frame_mem (DImode, addr),
			 gen_rtx_REG (DImode, GPR_0));
      frame_move_insn (gen_rtx_REG (SImode, GPR_0),
		       gen_rtx_REG (word_mode, STATUS_REGNUM));
      frame_move_insn (gen_rtx_REG (SImode, GPR_1),
		       gen_rtx_REG (word_mode, IRET_REGNUM));
      mem = gen_frame_mem (BLKmode, stack_pointer_rtx);
      off = GEN_INT (-current_frame_info.first_slot_offset);
      frame_insn (gen_stack_adjust_add (off, mem));
      if (!epiphany_uninterruptible_p (current_function_decl))
	emit_insn (gen_gie ());
      addr = plus_constant (Pmode, stack_pointer_rtx,
			    current_frame_info.first_slot_offset
			    - (HOST_WIDE_INT) 3 * UNITS_PER_WORD);
    }
  else
    {
      addr = plus_constant (Pmode, stack_pointer_rtx,
			    epiphany_stack_offset
			    - (HOST_WIDE_INT) UNITS_PER_WORD);
      epiphany_emit_save_restore (0, current_frame_info.small_threshold,
				  addr, 0);
      /* Allocate register save area; for small to medium size frames,
	 allocate the entire frame; this is joint with one register save.  */
      if (current_frame_info.first_slot >= 0)
	{
	  enum machine_mode mode
	= (current_frame_info.first_slot_size == UNITS_PER_WORD
	   ? word_mode : DImode);

	  off = GEN_INT (-current_frame_info.first_slot_offset);
	  mem = gen_frame_mem (BLKmode,
			       gen_rtx_PLUS (Pmode, stack_pointer_rtx, off));
	  frame_insn (gen_stack_adjust_str
		       (gen_frame_mem (mode, stack_pointer_rtx),
			gen_rtx_REG (mode, current_frame_info.first_slot),
			off, mem));
	  addr = plus_constant (Pmode, addr,
				current_frame_info.first_slot_offset);
	}
    }
  epiphany_emit_save_restore (current_frame_info.small_threshold,
			      FIRST_PSEUDO_REGISTER, addr, 0);
  if (current_frame_info.need_fp)
    frame_move_insn (hard_frame_pointer_rtx, stack_pointer_rtx);
  /* For large frames, allocate bulk of frame.  This is usually joint with one
     register save.  */
  if (current_frame_info.last_slot >= 0)
    {
      rtx ip, mem2, insn, note;

      gcc_assert (current_frame_info.last_slot != GPR_FP
		  || (!current_frame_info.need_fp
		      && current_frame_info.first_slot < 0));
      off = GEN_INT (-current_frame_info.last_slot_offset);
      mem = gen_frame_mem (BLKmode,
			   gen_rtx_PLUS (Pmode, stack_pointer_rtx, off));
      ip = gen_rtx_REG (Pmode, GPR_IP);
      frame_move_insn (ip, off);
      reg = gen_rtx_REG (word_mode, current_frame_info.last_slot),
      mem2 = gen_frame_mem (word_mode, stack_pointer_rtx),
      insn = frame_insn (gen_stack_adjust_str (mem2, reg, ip, mem));
      /* Instruction scheduling can separate the instruction setting IP from
	 INSN so that dwarf2out_frame_debug_expr becomes confused what the
	 temporary register is.  Example: _gcov.o  */
      note = gen_rtx_SET (VOIDmode, stack_pointer_rtx,
			  gen_rtx_PLUS (Pmode, stack_pointer_rtx, off));
      note = gen_rtx_PARALLEL (VOIDmode,
			       gen_rtvec (2, gen_rtx_SET (VOIDmode, mem2, reg),
					  note));
      add_reg_note (insn, REG_FRAME_RELATED_EXPR, note);
    }
  /* If there is only one or no register to save, yet we have a large frame,
     use an add.  */
  else if (current_frame_info.last_slot_offset)
    {
      mem = gen_frame_mem (BLKmode,
			   plus_constant (Pmode, stack_pointer_rtx,
					  current_frame_info.last_slot_offset));
      off = GEN_INT (-current_frame_info.last_slot_offset);
      if (!SIMM11 (INTVAL (off)))
	{
	  reg = gen_rtx_REG (Pmode, GPR_IP);
	  frame_move_insn (reg, off);
	  off = reg;
	}
      frame_insn (gen_stack_adjust_add (off, mem));
    }
}

void
epiphany_expand_epilogue (int sibcall_p)
{
  int interrupt_p;
  enum epiphany_function_type fn_type;
  rtx mem, addr, reg, off;
  HOST_WIDE_INT restore_offset;

  fn_type = epiphany_compute_function_type( current_function_decl);
  interrupt_p = EPIPHANY_INTERRUPT_P (fn_type);

  /* For variable frames, deallocate bulk of frame.  */
  if (current_frame_info.need_fp)
    {
      mem = gen_frame_mem (BLKmode, stack_pointer_rtx);
      emit_insn (gen_stack_adjust_mov (mem));
    }
  /* Else for large static frames, deallocate bulk of frame.  */
  else if (current_frame_info.last_slot_offset)
    {
      mem = gen_frame_mem (BLKmode, stack_pointer_rtx);
      reg = gen_rtx_REG (Pmode, GPR_IP);
      emit_move_insn (reg, GEN_INT (current_frame_info.last_slot_offset));
      emit_insn (gen_stack_adjust_add (reg, mem));
    }
  restore_offset = (interrupt_p
		    ? - 3 * UNITS_PER_WORD
		    : epiphany_stack_offset - (HOST_WIDE_INT) UNITS_PER_WORD);
  addr = plus_constant (Pmode, stack_pointer_rtx,
			(current_frame_info.first_slot_offset
			 + restore_offset));
  epiphany_emit_save_restore (current_frame_info.small_threshold,
			   FIRST_PSEUDO_REGISTER, addr, 1);

  if (interrupt_p && !epiphany_uninterruptible_p (current_function_decl))
    emit_insn (gen_gid ());

  off = GEN_INT (current_frame_info.first_slot_offset);
  mem = gen_frame_mem (BLKmode, stack_pointer_rtx);
  /* For large / variable size frames, deallocating the register save area is
     joint with one register restore; for medium size frames, we use a
     dummy post-increment load to dealloacte the whole frame.  */
  if (!SIMM11 (INTVAL (off)) || current_frame_info.last_slot >= 0)
    {
      emit_insn (gen_stack_adjust_ldr
		  (gen_rtx_REG (word_mode,
				(current_frame_info.last_slot >= 0
				 ? current_frame_info.last_slot : GPR_IP)),
		   gen_frame_mem (word_mode, stack_pointer_rtx),
		   off,
		   mem));
    }
  /* While for small frames, we deallocate the entire frame with one add.  */
  else if (INTVAL (off))
    {
      emit_insn (gen_stack_adjust_add (off, mem));
    }
  if (interrupt_p)
    {
      emit_move_insn (gen_rtx_REG (word_mode, STATUS_REGNUM),
		      gen_rtx_REG (SImode, GPR_0));
      emit_move_insn (gen_rtx_REG (word_mode, IRET_REGNUM),
		      gen_rtx_REG (SImode, GPR_1));
      addr = plus_constant (Pmode, stack_pointer_rtx,
			    - (HOST_WIDE_INT) 2 * UNITS_PER_WORD);
      emit_move_insn (gen_rtx_REG (DImode, GPR_0),
		      gen_frame_mem (DImode, addr));
    }
  addr = plus_constant (Pmode, stack_pointer_rtx,
			epiphany_stack_offset - (HOST_WIDE_INT) UNITS_PER_WORD);
  epiphany_emit_save_restore (0, current_frame_info.small_threshold, addr, 1);
  if (!sibcall_p)
    {
      if (interrupt_p)
	emit_jump_insn (gen_return_internal_interrupt());
      else
	emit_jump_insn (gen_return_i ());
    }
}

int
epiphany_initial_elimination_offset (int from, int to)
{
  epiphany_compute_frame_size (get_frame_size ());
  if (from == FRAME_POINTER_REGNUM && to == STACK_POINTER_REGNUM)
    return current_frame_info.total_size - current_frame_info.reg_size;
  if (from == FRAME_POINTER_REGNUM && to == HARD_FRAME_POINTER_REGNUM)
    return current_frame_info.first_slot_offset - current_frame_info.reg_size;
  if (from == ARG_POINTER_REGNUM && to == STACK_POINTER_REGNUM)
    return (current_frame_info.total_size
	    - ((current_frame_info.pretend_size + 4) & -8));
  if (from == ARG_POINTER_REGNUM && to == HARD_FRAME_POINTER_REGNUM)
    return (current_frame_info.first_slot_offset
	    - ((current_frame_info.pretend_size + 4) & -8));
  gcc_unreachable ();
}

bool
epiphany_regno_rename_ok (unsigned, unsigned dst)
{
  enum epiphany_function_type fn_type;

  fn_type = epiphany_compute_function_type (current_function_decl);
  if (!EPIPHANY_INTERRUPT_P (fn_type))
    return true;
  if (df_regs_ever_live_p (dst))
    return true;
  return false;
}

static int
epiphany_issue_rate (void)
{
  return 2;
}

/* Function to update the integer COST
   based on the relationship between INSN that is dependent on
   DEP_INSN through the dependence LINK.  The default is to make no
   adjustment to COST.  This can be used for example to specify to
   the scheduler that an output- or anti-dependence does not incur
   the same cost as a data-dependence.  The return value should be
   the new value for COST.  */
static int
epiphany_adjust_cost (rtx insn, rtx link, rtx dep_insn, int cost)
{
  if (REG_NOTE_KIND (link) == 0)
    {
      rtx dep_set;

      if (recog_memoized (insn) < 0
	  || recog_memoized (dep_insn) < 0)
	return cost;

      dep_set = single_set (dep_insn);

      /* The latency that we specify in the scheduling description refers
	 to the actual output, not to an auto-increment register; for that,
	 the latency is one.  */
      if (dep_set && MEM_P (SET_SRC (dep_set)) && cost > 1)
	{
	  rtx set = single_set (insn);

	  if (set
	      && !reg_overlap_mentioned_p (SET_DEST (dep_set), SET_SRC (set))
	      && (!MEM_P (SET_DEST (set))
		  || !reg_overlap_mentioned_p (SET_DEST (dep_set),
					       XEXP (SET_DEST (set), 0))))
	    cost = 1;
	}
    }
  return cost;
}

#define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_BASE_P (X)

#define RTX_OK_FOR_BASE_P(X) \
  (REG_P (X) && REG_OK_FOR_BASE_P (X))

#define RTX_OK_FOR_INDEX_P(MODE, X) \
  ((GET_MODE_CLASS (MODE) != MODE_VECTOR_INT \
    || epiphany_vect_align >= GET_MODE_SIZE (MODE)) \
   && (REG_P (X) && REG_OK_FOR_INDEX_P (X)))

#define LEGITIMATE_OFFSET_ADDRESS_P(MODE, X) \
(GET_CODE (X) == PLUS \
 && RTX_OK_FOR_BASE_P (XEXP (X, 0)) \
 && (RTX_OK_FOR_INDEX_P (MODE, XEXP (X, 1)) \
     || RTX_OK_FOR_OFFSET_P (MODE, XEXP (X, 1))))

static bool
epiphany_legitimate_address_p (enum machine_mode mode, rtx x, bool strict)
{
#define REG_OK_FOR_BASE_P(X) \
  (strict ? GPR_P (REGNO (X)) : GPR_AP_OR_PSEUDO_P (REGNO (X)))
  if (RTX_OK_FOR_BASE_P (x))
    return true;
  if (RTX_FRAME_OFFSET_P (x))
    return true;
  if (LEGITIMATE_OFFSET_ADDRESS_P (mode, x))
    return true;
  /* If this is a misaligned stack access, don't force it to reg+index.  */
  if (GET_MODE_SIZE (mode) == 8
      && GET_CODE (x) == PLUS && XEXP (x, 0) == stack_pointer_rtx
      /* Decomposed to SImode; GET_MODE_SIZE (SImode) == 4 */
      && !(INTVAL (XEXP (x, 1)) & 3)
      && INTVAL (XEXP (x, 1)) >= -2047 * 4
      && INTVAL (XEXP (x, 1)) <=  2046 * 4)
    return true;
  if (TARGET_POST_INC
      && (GET_CODE (x) == POST_DEC || GET_CODE (x) == POST_INC)
      && RTX_OK_FOR_BASE_P (XEXP ((x), 0)))
    return true;
  if ((TARGET_POST_MODIFY || reload_completed)
      && GET_CODE (x) == POST_MODIFY
      && GET_CODE (XEXP ((x), 1)) == PLUS
      && rtx_equal_p (XEXP ((x), 0), XEXP (XEXP ((x), 1), 0))
      && LEGITIMATE_OFFSET_ADDRESS_P (mode, XEXP ((x), 1)))
    return true;
  if (mode == BLKmode)
    return true;
  return false;
}

static reg_class_t
epiphany_secondary_reload (bool in_p, rtx x, reg_class_t rclass,
			enum machine_mode mode ATTRIBUTE_UNUSED,
			secondary_reload_info *sri)
{
  /* This could give more reload inheritance, but we are missing some
     reload infrastructure.  */
 if (0)
  if (in_p && GET_CODE (x) == UNSPEC
      && satisfies_constraint_Sra (x) && !satisfies_constraint_Rra (x))
    {
      gcc_assert (rclass == GENERAL_REGS);
      sri->icode = CODE_FOR_reload_insi_ra;
      return NO_REGS;
    }
  return NO_REGS;
}

bool
epiphany_is_long_call_p (rtx x)
{
  tree decl = SYMBOL_REF_DECL (x);
  bool ret_val = !TARGET_SHORT_CALLS;
  tree attrs;

  /* ??? Is it safe to default to ret_val if decl is NULL?  We should
     probably encode information via encode_section_info, and also
     have (an) option(s) to take SYMBOL_FLAG_LOCAL and/or SYMBOL_FLAG_EXTERNAL
     into account.  */
  if (decl)
    {
      attrs = TYPE_ATTRIBUTES (TREE_TYPE (decl));
      if (lookup_attribute ("long_call", attrs))
	ret_val = true;
      else if (lookup_attribute ("short_call", attrs))
	ret_val = false;
    }
  return ret_val;
}

bool
epiphany_small16 (rtx x)
{
  rtx base = x;
  rtx offs ATTRIBUTE_UNUSED = const0_rtx;

  if (GET_CODE (x) == CONST && GET_CODE (XEXP (x, 0)) == PLUS)
    {
      base = XEXP (XEXP (x, 0), 0);
      offs = XEXP (XEXP (x, 0), 1);
    }
  if (GET_CODE (base) == SYMBOL_REF && SYMBOL_REF_FUNCTION_P (base)
      && epiphany_is_long_call_p (base))
    return false;
  return TARGET_SMALL16 != 0;
}

/* Return nonzero if it is ok to make a tail-call to DECL.  */
static bool
epiphany_function_ok_for_sibcall (tree decl, tree exp)
{
  bool cfun_interrupt_p, call_interrupt_p;

  cfun_interrupt_p = EPIPHANY_INTERRUPT_P (epiphany_compute_function_type
					(current_function_decl));
  if (decl)
    call_interrupt_p = EPIPHANY_INTERRUPT_P (epiphany_compute_function_type (decl));
  else
    {
      tree fn_type = TREE_TYPE (CALL_EXPR_FN (exp));

      gcc_assert (POINTER_TYPE_P (fn_type));
      fn_type = TREE_TYPE (fn_type);
      gcc_assert (TREE_CODE (fn_type) == FUNCTION_TYPE
		  || TREE_CODE (fn_type) == METHOD_TYPE);
      call_interrupt_p
	= lookup_attribute ("interrupt", TYPE_ATTRIBUTES (fn_type)) != NULL;
    }

  /* Don't tailcall from or to an ISR routine - although we could in
     principle tailcall from one ISR routine to another, we'd need to
     handle this in sibcall_epilogue to make it work.  */
  if (cfun_interrupt_p || call_interrupt_p)
    return false;

  /* Everything else is ok.  */
  return true;
}

/* T is a function declaration or the MEM_EXPR of a MEM passed to a call
   expander.
   Return true iff the type of T has the uninterruptible attribute.
   If T is NULL, return false.  */
bool
epiphany_uninterruptible_p (tree t)
{
  tree attrs;

  if (t)
    {
      attrs = TYPE_ATTRIBUTES (TREE_TYPE (t));
      if (lookup_attribute ("disinterrupt", attrs))
	return true;
    }
  return false;
}

bool
epiphany_call_uninterruptible_p (rtx mem)
{
  rtx addr = XEXP (mem, 0);
  tree t = NULL_TREE;

  if (GET_CODE (addr) == SYMBOL_REF)
    t = SYMBOL_REF_DECL (addr);
  if (!t)
    t = MEM_EXPR (mem);
  return epiphany_uninterruptible_p (t);
}

static enum machine_mode
epiphany_promote_function_mode (const_tree type, enum machine_mode mode,
				int *punsignedp ATTRIBUTE_UNUSED,
				const_tree funtype ATTRIBUTE_UNUSED,
				int for_return ATTRIBUTE_UNUSED)
{
  int dummy;

  return promote_mode (type, mode, &dummy);
}

static void
epiphany_conditional_register_usage (void)
{
  int i;

  if (PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM)
    {
      fixed_regs[PIC_OFFSET_TABLE_REGNUM] = 1;
      call_used_regs[PIC_OFFSET_TABLE_REGNUM] = 1;
    }
  if (TARGET_HALF_REG_FILE)
    {
      for (i = 32; i <= 63; i++)
	{
	  fixed_regs[i] = 1;
	  call_used_regs[i] = 1;
	}
    }
  if (epiphany_m1reg >= 0)
    {
      fixed_regs[epiphany_m1reg] = 1;
      call_used_regs[epiphany_m1reg] = 1;
    }
  if (!TARGET_PREFER_SHORT_INSN_REGS)
    CLEAR_HARD_REG_SET (reg_class_contents[SHORT_INSN_REGS]);
  COPY_HARD_REG_SET (reg_class_contents[SIBCALL_REGS],
		     reg_class_contents[GENERAL_REGS]);
  /* It would be simpler and quicker if we could just use
     AND_COMPL_HARD_REG_SET, alas, call_used_reg_set is yet uninitialized;
     it is set up later by our caller.  */
  for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
    if (!call_used_regs[i])
      CLEAR_HARD_REG_BIT (reg_class_contents[SIBCALL_REGS], i);
}

/* Determine where to put an argument to a function.
   Value is zero to push the argument on the stack,
   or a hard register in which to store the argument.

   MODE is the argument's machine mode.
   TYPE is the data type of the argument (as a tree).
    This is null for libcalls where that information may
    not be available.
   CUM is a variable of type CUMULATIVE_ARGS which gives info about
    the preceding args and about the function being called.
   NAMED is nonzero if this argument is a named parameter
    (otherwise it is an extra parameter matching an ellipsis).  */
/* On the EPIPHANY the first MAX_EPIPHANY_PARM_REGS args are normally in
   registers and the rest are pushed.  */
static rtx
epiphany_function_arg (cumulative_args_t cum_v, enum machine_mode mode,
		       const_tree type, bool named ATTRIBUTE_UNUSED)
{
  CUMULATIVE_ARGS cum = *get_cumulative_args (cum_v);

  if (PASS_IN_REG_P (cum, mode, type))
    return gen_rtx_REG (mode, ROUND_ADVANCE_CUM (cum, mode, type));
  return 0;
}

/* Update the data in CUM to advance over an argument
   of mode MODE and data type TYPE.
   (TYPE is null for libcalls where that information may not be available.)  */
static void
epiphany_function_arg_advance (cumulative_args_t cum_v, enum machine_mode mode,
			       const_tree type, bool named ATTRIBUTE_UNUSED)
{
  CUMULATIVE_ARGS *cum = get_cumulative_args (cum_v);

  *cum = ROUND_ADVANCE_CUM (*cum, mode, type) + ROUND_ADVANCE_ARG (mode, type);
}

/* Nested function support.
   An epiphany trampoline looks like this:
   mov r16,%low(fnaddr)
   movt r16,%high(fnaddr)
   mov ip,%low(cxt)
   movt ip,%high(cxt)
   jr r16  */

#define EPIPHANY_LOW_RTX(X) \
  (gen_rtx_IOR (SImode, \
    gen_rtx_ASHIFT (SImode, \
		    gen_rtx_AND (SImode, (X), GEN_INT (0xff)), GEN_INT (5)), \
    gen_rtx_ASHIFT (SImode, \
		    gen_rtx_AND (SImode, (X), GEN_INT (0xff00)), GEN_INT (12))))
#define EPIPHANY_HIGH_RTX(X) \
  EPIPHANY_LOW_RTX (gen_rtx_LSHIFTRT (SImode, (X), GEN_INT (16)))

/* Emit RTL insns to initialize the variable parts of a trampoline.
   FNADDR is an RTX for the address of the function's pure code.
   CXT is an RTX for the static chain value for the function.  */
static void
epiphany_trampoline_init (rtx tramp_mem, tree fndecl, rtx cxt)
{
  rtx fnaddr = XEXP (DECL_RTL (fndecl), 0);
  rtx tramp = force_reg (Pmode, XEXP (tramp_mem, 0));

  emit_move_insn (gen_rtx_MEM (SImode, plus_constant (Pmode, tramp, 0)),
		  gen_rtx_IOR (SImode, GEN_INT (0x4002000b),
			       EPIPHANY_LOW_RTX (fnaddr)));
  emit_move_insn (gen_rtx_MEM (SImode, plus_constant (Pmode, tramp, 4)),
		  gen_rtx_IOR (SImode, GEN_INT (0x5002000b),
			       EPIPHANY_HIGH_RTX (fnaddr)));
  emit_move_insn (gen_rtx_MEM (SImode, plus_constant (Pmode, tramp, 8)),
		  gen_rtx_IOR (SImode, GEN_INT (0x2002800b),
			       EPIPHANY_LOW_RTX (cxt)));
  emit_move_insn (gen_rtx_MEM (SImode, plus_constant (Pmode, tramp, 12)),
		  gen_rtx_IOR (SImode, GEN_INT (0x3002800b),
			       EPIPHANY_HIGH_RTX (cxt)));
  emit_move_insn (gen_rtx_MEM (SImode, plus_constant (Pmode, tramp, 16)),
		  GEN_INT (0x0802014f));
}

bool
epiphany_optimize_mode_switching (int entity)
{
  if (MACHINE_FUNCTION (cfun)->sw_entities_processed & (1 << entity))
    return false;
  switch (entity)
    {
    case EPIPHANY_MSW_ENTITY_AND:
    case EPIPHANY_MSW_ENTITY_OR:
    case EPIPHANY_MSW_ENTITY_CONFIG:
      return true;
    case EPIPHANY_MSW_ENTITY_NEAREST:
    case EPIPHANY_MSW_ENTITY_TRUNC:
      return optimize > 0;
    case EPIPHANY_MSW_ENTITY_ROUND_UNKNOWN:
      return MACHINE_FUNCTION (cfun)->unknown_mode_uses != 0;
    case EPIPHANY_MSW_ENTITY_ROUND_KNOWN:
      return (MACHINE_FUNCTION (cfun)->sw_entities_processed
	      & (1 << EPIPHANY_MSW_ENTITY_ROUND_UNKNOWN)) != 0;
    case EPIPHANY_MSW_ENTITY_FPU_OMNIBUS:
      return optimize == 0 || current_pass == &pass_mode_switch_use.pass;
    }
  gcc_unreachable ();
}

int
epiphany_mode_priority_to_mode (int entity, unsigned priority)
{
  if (entity == EPIPHANY_MSW_ENTITY_AND || entity == EPIPHANY_MSW_ENTITY_OR
      || entity== EPIPHANY_MSW_ENTITY_CONFIG)
    return priority;
  if (priority > 3)
    switch (priority)
      {
      case 4: return FP_MODE_ROUND_UNKNOWN;
      case 5: return FP_MODE_NONE;
      default: gcc_unreachable ();
      }
  switch ((enum attr_fp_mode) epiphany_normal_fp_mode)
    {
      case FP_MODE_INT:
	switch (priority)
	  {
	  case 0: return FP_MODE_INT;
	  case 1: return epiphany_normal_fp_rounding;
	  case 2: return (epiphany_normal_fp_rounding == FP_MODE_ROUND_NEAREST
			  ? FP_MODE_ROUND_TRUNC : FP_MODE_ROUND_NEAREST);
	  case 3: return FP_MODE_CALLER;
	  }
      case FP_MODE_ROUND_NEAREST:
      case FP_MODE_CALLER:
	switch (priority)
	  {
	  case 0: return FP_MODE_ROUND_NEAREST;
	  case 1: return FP_MODE_ROUND_TRUNC;
	  case 2: return FP_MODE_INT;
	  case 3: return FP_MODE_CALLER;
	  }
      case FP_MODE_ROUND_TRUNC:
	switch (priority)
	  {
	  case 0: return FP_MODE_ROUND_TRUNC;
	  case 1: return FP_MODE_ROUND_NEAREST;
	  case 2: return FP_MODE_INT;
	  case 3: return FP_MODE_CALLER;
	  }
      case FP_MODE_ROUND_UNKNOWN:
      case FP_MODE_NONE:
	gcc_unreachable ();
    }
  gcc_unreachable ();
}

int
epiphany_mode_needed (int entity, rtx insn)
{
  enum attr_fp_mode mode;

  if (recog_memoized (insn) < 0)
    {
      if (entity == EPIPHANY_MSW_ENTITY_AND
	  || entity == EPIPHANY_MSW_ENTITY_OR
	  || entity == EPIPHANY_MSW_ENTITY_CONFIG)
	return 2;
      return FP_MODE_NONE;
    }
  mode = get_attr_fp_mode (insn);

  switch (entity)
  {
  case EPIPHANY_MSW_ENTITY_AND:
    return mode != FP_MODE_NONE && mode != FP_MODE_INT ? 1 : 2;
  case EPIPHANY_MSW_ENTITY_OR:
    return mode == FP_MODE_INT ? 1 : 2;
  case EPIPHANY_MSW_ENTITY_CONFIG:
    /* We must know/save config before we set it to something else.
       Where we need the original value, we are fine with having it
       just unchanged from the function start.
       Because of the nature of the mode switching optimization,
       a restore will be dominated by a clobber.  */
    if (mode != FP_MODE_NONE && mode != FP_MODE_CALLER)
      return 1;
    /* A cpecial case are abnormal edges, which are deemed to clobber
       the mode as well.  We need to pin this effect on a actually
       dominating insn, and one where the frame can be accessed, too, in
       case the pseudo used to save CONFIG doesn't get a hard register.  */
    if (CALL_P (insn) && find_reg_note (insn, REG_EH_REGION, NULL_RTX))
      return 1;
    return 2;
  case EPIPHANY_MSW_ENTITY_ROUND_KNOWN:
    if (recog_memoized (insn) == CODE_FOR_set_fp_mode)
      mode = (enum attr_fp_mode) epiphany_mode_after (entity, mode, insn);
    /* Fall through.  */
  case EPIPHANY_MSW_ENTITY_NEAREST:
  case EPIPHANY_MSW_ENTITY_TRUNC:
    if (mode == FP_MODE_ROUND_UNKNOWN)
      {
	MACHINE_FUNCTION (cfun)->unknown_mode_uses++;
	return FP_MODE_NONE;
      }
    return mode;
  case EPIPHANY_MSW_ENTITY_ROUND_UNKNOWN:
    if (mode == FP_MODE_ROUND_NEAREST || mode == FP_MODE_ROUND_TRUNC)
	return FP_MODE_ROUND_UNKNOWN;
    return mode;
  case EPIPHANY_MSW_ENTITY_FPU_OMNIBUS:
    if (mode == FP_MODE_ROUND_UNKNOWN)
      return epiphany_normal_fp_rounding;
    return mode;
  default:
    gcc_unreachable ();
  }
}

int
epiphany_mode_entry_exit (int entity, bool exit)
{
  int normal_mode = epiphany_normal_fp_mode ;

  MACHINE_FUNCTION (cfun)->sw_entities_processed |= (1 << entity);
  if (epiphany_is_interrupt_p (current_function_decl))
    normal_mode = FP_MODE_CALLER;
  switch (entity)
    {
    case EPIPHANY_MSW_ENTITY_AND:
      if (exit)
	return normal_mode != FP_MODE_INT ? 1 : 2;
      return 0;
    case EPIPHANY_MSW_ENTITY_OR:
      if (exit)
	return normal_mode == FP_MODE_INT ? 1 : 2;
      return 0;
    case EPIPHANY_MSW_ENTITY_CONFIG:
      if (exit)
	return 2;
      return normal_mode == FP_MODE_CALLER ? 0 : 1;
    case EPIPHANY_MSW_ENTITY_ROUND_UNKNOWN:
      if (normal_mode == FP_MODE_ROUND_NEAREST
	  || normal_mode == FP_MODE_ROUND_TRUNC)
      return FP_MODE_ROUND_UNKNOWN;
      /* Fall through.  */
    case EPIPHANY_MSW_ENTITY_NEAREST:
    case EPIPHANY_MSW_ENTITY_TRUNC:
    case EPIPHANY_MSW_ENTITY_ROUND_KNOWN:
    case EPIPHANY_MSW_ENTITY_FPU_OMNIBUS:
      return normal_mode;
    default:
      gcc_unreachable ();
    }
}

int
epiphany_mode_after (int entity, int last_mode, rtx insn)
{
  /* We have too few call-saved registers to hope to keep the masks across
     calls.  */
  if (entity == EPIPHANY_MSW_ENTITY_AND || entity == EPIPHANY_MSW_ENTITY_OR)
    {
      if (CALL_P (insn))
	return 0;
      return last_mode;
    }
  /* If there is an abnormal edge, we don't want the config register to
     be 'saved' again at the destination.
     The frame pointer adjustment is inside a PARALLEL because of the
     flags clobber.  */
  if (entity == EPIPHANY_MSW_ENTITY_CONFIG && NONJUMP_INSN_P (insn)
      && GET_CODE (PATTERN (insn)) == PARALLEL
      && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET
      && SET_DEST (XVECEXP (PATTERN (insn), 0, 0)) == frame_pointer_rtx)
    {
      gcc_assert (cfun->has_nonlocal_label);
      return 1;
    }
  if (recog_memoized (insn) < 0)
    return last_mode;
  if (get_attr_fp_mode (insn) == FP_MODE_ROUND_UNKNOWN
      && last_mode != FP_MODE_ROUND_NEAREST && last_mode != FP_MODE_ROUND_TRUNC)
    {
      if (entity == EPIPHANY_MSW_ENTITY_NEAREST)
	return FP_MODE_ROUND_NEAREST;
      if (entity == EPIPHANY_MSW_ENTITY_TRUNC)
	return FP_MODE_ROUND_TRUNC;
    }
  if (recog_memoized (insn) == CODE_FOR_set_fp_mode)
    {
      rtx src = SET_SRC (XVECEXP (PATTERN (insn), 0, 0));
      int fp_mode;

      if (REG_P (src))
	return FP_MODE_CALLER;
      fp_mode = INTVAL (XVECEXP (XEXP (src, 0), 0, 0));
      if (entity == EPIPHANY_MSW_ENTITY_ROUND_UNKNOWN
	  && (fp_mode == FP_MODE_ROUND_NEAREST
	      || fp_mode == EPIPHANY_MSW_ENTITY_TRUNC))
	return FP_MODE_ROUND_UNKNOWN;
      return fp_mode;
    }
  return last_mode;
}

void
emit_set_fp_mode (int entity, int mode, HARD_REG_SET regs_live ATTRIBUTE_UNUSED)
{
  rtx save_cc, cc_reg, mask, src, src2;
  enum attr_fp_mode fp_mode;

  if (!MACHINE_FUNCTION (cfun)->and_mask)
    {
      MACHINE_FUNCTION (cfun)->and_mask = gen_reg_rtx (SImode);
      MACHINE_FUNCTION (cfun)->or_mask = gen_reg_rtx (SImode);
    }
  if (entity == EPIPHANY_MSW_ENTITY_AND)
    {
      gcc_assert (mode >= 0 && mode <= 2);
      if (mode == 1)
	emit_move_insn (MACHINE_FUNCTION (cfun)->and_mask,
			gen_int_mode (0xfff1fffe, SImode));
      return;
    }
  else if (entity == EPIPHANY_MSW_ENTITY_OR)
    {
      gcc_assert (mode >= 0 && mode <= 2);
      if (mode == 1)
	emit_move_insn (MACHINE_FUNCTION (cfun)->or_mask, GEN_INT(0x00080000));
      return;
    }
  else if (entity == EPIPHANY_MSW_ENTITY_CONFIG)
    {
      /* Mode switching optimization is done after emit_initial_value_sets,
	 so we have to take care of CONFIG_REGNUM here.  */
      gcc_assert (mode >= 0 && mode <= 2);
      rtx save = get_hard_reg_initial_val (SImode, CONFIG_REGNUM);
      if (mode == 1)
	emit_insn (gen_save_config (save));
      return;
    }
  fp_mode = (enum attr_fp_mode) mode;
  src = NULL_RTX;

  switch (fp_mode)
    {
      case FP_MODE_CALLER:
	/* The EPIPHANY_MSW_ENTITY_CONFIG processing must come later
	   so that the config save gets inserted before the first use.  */
	gcc_assert (entity > EPIPHANY_MSW_ENTITY_CONFIG);
	src = get_hard_reg_initial_val (SImode, CONFIG_REGNUM);
	mask = MACHINE_FUNCTION (cfun)->and_mask;
	break;
      case FP_MODE_ROUND_UNKNOWN:
	MACHINE_FUNCTION (cfun)->unknown_mode_sets++;
	mask = MACHINE_FUNCTION (cfun)->and_mask;
	break;
      case FP_MODE_ROUND_NEAREST:
	if (entity == EPIPHANY_MSW_ENTITY_TRUNC)
	  return;
	mask = MACHINE_FUNCTION (cfun)->and_mask;
	break;
      case FP_MODE_ROUND_TRUNC:
	if (entity == EPIPHANY_MSW_ENTITY_NEAREST)
	  return;
	mask = MACHINE_FUNCTION (cfun)->and_mask;
	break;
      case FP_MODE_INT:
	mask = MACHINE_FUNCTION (cfun)->or_mask;
	break;
      case FP_MODE_NONE:
      default:
	gcc_unreachable ();
    }
  save_cc = gen_reg_rtx (CCmode);
  cc_reg = gen_rtx_REG (CCmode, CC_REGNUM);
  emit_move_insn (save_cc, cc_reg);
  mask = force_reg (SImode, mask);
  if (!src)
    {
      rtvec v = gen_rtvec (1, GEN_INT (fp_mode));

      src = gen_rtx_CONST (SImode, gen_rtx_UNSPEC (SImode, v, UNSPEC_FP_MODE));
    }
  if (entity == EPIPHANY_MSW_ENTITY_ROUND_KNOWN
      || entity == EPIPHANY_MSW_ENTITY_FPU_OMNIBUS)
    src2 = copy_rtx (src);
  else
    {
      rtvec v = gen_rtvec (1, GEN_INT (FP_MODE_ROUND_UNKNOWN));

      src2 = gen_rtx_CONST (SImode, gen_rtx_UNSPEC (SImode, v, UNSPEC_FP_MODE));
    }
  emit_insn (gen_set_fp_mode (src, src2, mask));
  emit_move_insn (cc_reg, save_cc);
}

void
epiphany_expand_set_fp_mode (rtx *operands)
{
  rtx ctrl = gen_rtx_REG (SImode, CONFIG_REGNUM);
  rtx src = operands[0];
  rtx mask_reg = operands[2];
  rtx scratch = operands[3];
  enum attr_fp_mode fp_mode;


  gcc_assert (rtx_equal_p (src, operands[1])
	      /* Sometimes reload gets silly and reloads the same pseudo
		 into different registers.  */
	      || (REG_P (src) && REG_P (operands[1])));

  if (!epiphany_uninterruptible_p (current_function_decl))
    emit_insn (gen_gid ());
  emit_move_insn (scratch, ctrl);

  if (GET_CODE (src) == REG)
    {
      /* FP_MODE_CALLER */
      emit_insn (gen_xorsi3 (scratch, scratch, src));
      emit_insn (gen_andsi3 (scratch, scratch, mask_reg));
      emit_insn (gen_xorsi3 (scratch, scratch, src));
    }
  else
    {
      gcc_assert (GET_CODE (src) == CONST);
      src = XEXP (src, 0);
      fp_mode = (enum attr_fp_mode) INTVAL (XVECEXP (src, 0, 0));
      switch (fp_mode)
	{
	case FP_MODE_ROUND_NEAREST:
	  emit_insn (gen_andsi3 (scratch, scratch, mask_reg));
	  break;
	case FP_MODE_ROUND_TRUNC:
	  emit_insn (gen_andsi3 (scratch, scratch, mask_reg));
	  emit_insn (gen_add2_insn (scratch, const1_rtx));
	  break;
	case FP_MODE_INT:
	  emit_insn (gen_iorsi3 (scratch, scratch, mask_reg));
	  break;
	case FP_MODE_CALLER:
	case FP_MODE_ROUND_UNKNOWN:
	case FP_MODE_NONE:
	  gcc_unreachable ();
	}
    }
  emit_move_insn (ctrl, scratch);
  if (!epiphany_uninterruptible_p (current_function_decl))
    emit_insn (gen_gie ());
}

void
epiphany_insert_mode_switch_use (rtx insn,
				 int entity ATTRIBUTE_UNUSED,
				 int mode ATTRIBUTE_UNUSED)
{
  rtx pat = PATTERN (insn);
  rtvec v;
  int len, i;
  rtx near = gen_rtx_REG (SImode, FP_NEAREST_REGNUM);
  rtx trunc = gen_rtx_REG (SImode, FP_TRUNCATE_REGNUM);

  if (entity != EPIPHANY_MSW_ENTITY_FPU_OMNIBUS)
    return;
  switch ((enum attr_fp_mode) get_attr_fp_mode (insn))
    {
      case FP_MODE_ROUND_NEAREST:
	near = gen_rtx_USE (VOIDmode, near);
	trunc = gen_rtx_CLOBBER (VOIDmode, trunc);
	break;
      case FP_MODE_ROUND_TRUNC:
	near = gen_rtx_CLOBBER (VOIDmode, near);
	trunc = gen_rtx_USE (VOIDmode, trunc);
	break;
      case FP_MODE_ROUND_UNKNOWN:
	near = gen_rtx_USE (VOIDmode, gen_rtx_REG (SImode, FP_ANYFP_REGNUM));
	trunc = copy_rtx (near);
	/* Fall through.  */
      case FP_MODE_INT:
      case FP_MODE_CALLER:
	near = gen_rtx_USE (VOIDmode, near);
	trunc = gen_rtx_USE (VOIDmode, trunc);
	break;
      case FP_MODE_NONE:
	gcc_unreachable ();
    }
  gcc_assert (GET_CODE (pat) == PARALLEL);
  len = XVECLEN (pat, 0);
  v = rtvec_alloc (len + 2);
  for (i = 0; i < len; i++)
    RTVEC_ELT (v, i) = XVECEXP (pat, 0, i);
  RTVEC_ELT (v, len) = near;
  RTVEC_ELT (v, len + 1) = trunc;
  pat = gen_rtx_PARALLEL (VOIDmode, v);
  PATTERN (insn) = pat;
  MACHINE_FUNCTION (cfun)->control_use_inserted = true;
}

bool
epiphany_epilogue_uses (int regno)
{
  if (regno == GPR_LR)
    return true;
  if (reload_completed && epiphany_is_interrupt_p (current_function_decl))
    {
      if (fixed_regs[regno]
	  && regno != STATUS_REGNUM && regno != IRET_REGNUM
	  && regno != FP_NEAREST_REGNUM && regno != FP_TRUNCATE_REGNUM)
	return false;
      return true;
    }
  if (regno == FP_NEAREST_REGNUM
      && epiphany_normal_fp_mode != FP_MODE_ROUND_TRUNC)
    return true;
  if (regno == FP_TRUNCATE_REGNUM
      && epiphany_normal_fp_mode != FP_MODE_ROUND_NEAREST)
    return true;
  return false;
}

static unsigned int
epiphany_min_divisions_for_recip_mul (enum machine_mode mode)
{
  if (flag_reciprocal_math && mode == SFmode)
    /* We'll expand into a multiply-by-reciprocal anyway, so we might a well do
       it already at the tree level and expose it to further optimizations.  */
    return 1;
  return default_min_divisions_for_recip_mul (mode);
}

static enum machine_mode
epiphany_preferred_simd_mode (enum machine_mode mode ATTRIBUTE_UNUSED)
{
  return TARGET_VECT_DOUBLE ? DImode : SImode;
}

static bool
epiphany_vector_mode_supported_p (enum machine_mode mode)
{
  if (mode == V2SFmode)
    return true;
  if (GET_MODE_CLASS (mode) == MODE_VECTOR_INT
      && (GET_MODE_SIZE (mode) == 4 || GET_MODE_SIZE (mode) == 8))
    return true;
  return false;
}

static bool
epiphany_vector_alignment_reachable (const_tree type, bool is_packed)
{
  /* Vectors which aren't in packed structures will not be less aligned than
     the natural alignment of their element type, so this is safe.  */
  if (TYPE_ALIGN_UNIT (type) == 4)
    return !is_packed;

  return default_builtin_vector_alignment_reachable (type, is_packed);
}

static bool
epiphany_support_vector_misalignment (enum machine_mode mode, const_tree type,
				      int misalignment, bool is_packed)
{
  if (GET_MODE_SIZE (mode) == 8 && misalignment % 4 == 0)
    return true;
  return default_builtin_support_vector_misalignment (mode, type, misalignment,
						      is_packed);
}

/* STRUCTURE_SIZE_BOUNDARY seems a bit crude in how it enlarges small
   structs.  Make structs double-word-aligned it they are a double word or
   (potentially) larger;  failing that, do the same for a size of 32 bits.  */
unsigned
epiphany_special_round_type_align (tree type, unsigned computed,
				   unsigned specified)
{
  unsigned align = MAX (computed, specified);
  tree field;
  HOST_WIDE_INT total, max;
  unsigned try_align = FASTEST_ALIGNMENT;

  if (maximum_field_alignment && try_align > maximum_field_alignment)
    try_align = maximum_field_alignment;
  if (align >= try_align)
    return align;
  for (max = 0, field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
    {
      tree offset, size;

      if (TREE_CODE (field) != FIELD_DECL
	  || TREE_TYPE (field) == error_mark_node)
	continue;
      offset = bit_position (field);
      size = DECL_SIZE (field);
      if (!host_integerp (offset, 1) || !host_integerp (size, 1)
	  || TREE_INT_CST_LOW (offset) >= try_align
	  || TREE_INT_CST_LOW (size) >= try_align)
	return try_align;
      total = TREE_INT_CST_LOW (offset) + TREE_INT_CST_LOW (size);
      if (total > max)
	max = total;
    }
  if (max >= (HOST_WIDE_INT) try_align)
    align = try_align;
  else if (try_align > 32 && max >= 32)
    align = max > 32 ? 64 : 32;
  return align;
}

/* Upping the alignment of arrays in structs is not only a performance
   enhancement, it also helps preserve assumptions about how
   arrays-at-the-end-of-structs work, like for struct gcov_fn_info in
   libgcov.c .  */
unsigned
epiphany_adjust_field_align (tree field, unsigned computed)
{
  if (computed == 32
      && TREE_CODE (TREE_TYPE (field)) == ARRAY_TYPE)
    {
      tree elmsz = TYPE_SIZE (TREE_TYPE (TREE_TYPE (field)));

      if (!host_integerp (elmsz, 1) || tree_low_cst (elmsz, 1) >= 32)
	return 64;
    }
  return computed;
}

/* Output code to add DELTA to the first argument, and then jump
   to FUNCTION.  Used for C++ multiple inheritance.  */
static void
epiphany_output_mi_thunk (FILE *file, tree thunk ATTRIBUTE_UNUSED,
			  HOST_WIDE_INT delta,
			  HOST_WIDE_INT vcall_offset,
			  tree function)
{
  int this_regno
    = aggregate_value_p (TREE_TYPE (TREE_TYPE (function)), function) ? 1 : 0;
  const char *this_name = reg_names[this_regno];
  const char *fname;

  /* We use IP and R16 as a scratch registers.  */
  gcc_assert (call_used_regs [GPR_IP]);
  gcc_assert (call_used_regs [GPR_16]);

  /* Add DELTA.  When possible use a plain add, otherwise load it into
     a register first. */
  if (delta == 0)
    ; /* Done.  */
  else if (SIMM11 (delta))
    asm_fprintf (file, "\tadd\t%s,%s,%d\n", this_name, this_name, (int) delta);
  else if (delta < 0 && delta >= -0xffff)
    {
      asm_fprintf (file, "\tmov\tip,%d\n", (int) -delta);
      asm_fprintf (file, "\tsub\t%s,%s,ip\n", this_name, this_name);
    }
  else
    {
      asm_fprintf (file, "\tmov\tip,%%low(%ld)\n", (long) delta);
      if (delta & ~0xffff)
	asm_fprintf (file, "\tmovt\tip,%%high(%ld)\n", (long) delta);
      asm_fprintf (file, "\tadd\t%s,%s,ip\n", this_name, this_name);
    }

  /* If needed, add *(*THIS + VCALL_OFFSET) to THIS.  */
  if (vcall_offset != 0)
    {
      /* ldr ip,[this]		--> temp = *this
	 ldr ip,[ip,vcall_offset] > temp = *(*this + vcall_offset)
	 add this,this,ip	--> this+ = *(*this + vcall_offset) */
      asm_fprintf (file, "\tldr\tip, [%s]\n", this_name);
      if (vcall_offset < -0x7ff * 4 || vcall_offset > 0x7ff * 4
	  || (vcall_offset & 3) != 0)
	{
	  asm_fprintf (file, "\tmov\tr16, %%low(%ld)\n", (long) vcall_offset);
	  asm_fprintf (file, "\tmovt\tr16, %%high(%ld)\n", (long) vcall_offset);
	  asm_fprintf (file, "\tldr\tip, [ip,r16]\n");
	}
      else
	asm_fprintf (file, "\tldr\tip, [ip,%d]\n", (int) vcall_offset / 4);
      asm_fprintf (file, "\tadd\t%s, %s, ip\n", this_name, this_name);
    }

  fname = XSTR (XEXP (DECL_RTL (function), 0), 0);
  if (epiphany_is_long_call_p (XEXP (DECL_RTL (function), 0)))
    {
      fputs ("\tmov\tip,%low(", file);
      assemble_name (file, fname);
      fputs (")\n\tmovt\tip,%high(", file);
      assemble_name (file, fname);
      fputs (")\n\tjr ip\n", file);
    }
  else
    {
      fputs ("\tb\t", file);
      assemble_name (file, fname);
      fputc ('\n', file);
    }
}

void
epiphany_start_function (FILE *file, const char *name, tree decl)
{
  /* If the function doesn't fit into the on-chip memory, it will have a
     section attribute - or lack of it - that denotes it goes somewhere else.
     But the architecture spec says that an interrupt vector still has to
     point to on-chip memory.  So we must place a jump there to get to the
     actual function implementation.  The forwarder_section attribute
     specifies the section where this jump goes.
     This mechanism can also be useful to have a shortcall destination for
     a function that is actually placed much farther away.  */
  tree attrs, int_attr, int_names, int_name, forwarder_attr;

  attrs = DECL_ATTRIBUTES (decl);
  int_attr = lookup_attribute ("interrupt", attrs);
  if (int_attr)
    for (int_names = TREE_VALUE (int_attr); int_names;
	 int_names = TREE_CHAIN (int_names))
      {
	char buf[99];

	int_name = TREE_VALUE (int_names);
	sprintf (buf, "ivt_entry_%.80s", TREE_STRING_POINTER (int_name));
	switch_to_section (get_section (buf, SECTION_CODE, decl));
	fputs ("\tb\t", file);
	assemble_name (file, name);
	fputc ('\n', file);
      }
  forwarder_attr = lookup_attribute ("forwarder_section", attrs);
  if (forwarder_attr)
    {
      const char *prefix = "__forwarder_dst_";
      char *dst_name = (char *) alloca (strlen (prefix) + strlen (name) + 1);

      strcpy (dst_name, prefix);
      strcat (dst_name, name);
      forwarder_attr = TREE_VALUE (TREE_VALUE (forwarder_attr));
      switch_to_section (get_section (TREE_STRING_POINTER (forwarder_attr),
			 SECTION_CODE, decl));
      ASM_OUTPUT_FUNCTION_LABEL (file, name, decl);
      if (epiphany_is_long_call_p (XEXP (DECL_RTL (decl), 0)))
	{
	  int tmp = GPR_0;

	  if (int_attr)
	    fputs ("\tstrd r0,[sp,-1]\n", file);
	  else
	    tmp = GPR_16;
	  gcc_assert (call_used_regs[tmp]);
	  fprintf (file, "\tmov r%d,%%low(", tmp);
	  assemble_name (file, dst_name);
	  fprintf (file, ")\n"
		   "\tmovt r%d,%%high(", tmp);
	  assemble_name (file, dst_name);
	  fprintf (file, ")\n"
		 "\tjr r%d\n", tmp);
	}
      else
	{
	  fputs ("\tb\t", file);
	  assemble_name (file, dst_name);
	  fputc ('\n', file);
	}
      name = dst_name;
    }
  switch_to_section (function_section (decl));
  ASM_OUTPUT_FUNCTION_LABEL (file, name, decl);
}

struct gcc_target targetm = TARGET_INITIALIZER;