1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
|
;; Predicate definitions for code generation on the EPIPHANY cpu.
;; Copyright (C) 1994-2019 Free Software Foundation, Inc.
;; Contributed by Embecosm on behalf of Adapteva, Inc.
;;
;; This file is part of GCC.
;; GCC is free software; you can redistribute it and/or modify
;; it under the terms of the GNU General Public License as published by
;; the Free Software Foundation; either version 3, or (at your option)
;; any later version.
;; GCC is distributed in the hope that it will be useful,
;; but WITHOUT ANY WARRANTY; without even the implied warranty of
;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
;; GNU General Public License for more details.
;; You should have received a copy of the GNU General Public License
;; along with GCC; see the file COPYING3. If not see
;; <http://www.gnu.org/licenses/>.
;; Returns true iff OP is a symbol reference that is a valid operand
;; in a jump or call instruction.
(define_predicate "symbolic_operand"
(match_code "symbol_ref,label_ref,const")
{
if (GET_CODE (op) == SYMBOL_REF)
return (!epiphany_is_long_call_p (op)
&& (!flag_pic || SYMBOL_REF_LOCAL_P (op)));
if (GET_CODE (op) == LABEL_REF)
return true;
if (GET_CODE (op) == CONST)
{
op = XEXP (op, 0);
if (GET_CODE (op) != PLUS || !symbolic_operand (XEXP (op, 0), mode))
return false;
/* The idea here is that a 'small' constant offset should be OK.
What exactly is considered 'small' is a bit arbitrary. */
return satisfies_constraint_L (XEXP (op, 1));
}
gcc_unreachable ();
})
;; Acceptable arguments to the call insn.
(define_predicate "call_address_operand"
(ior (match_code "reg")
(match_operand 0 "symbolic_operand")))
(define_predicate "call_operand"
(match_code "mem")
{
op = XEXP (op, 0);
return call_address_operand (op, mode);
})
;; general purpose register.
(define_predicate "gpr_operand"
(match_code "reg,subreg")
{
int regno;
if (!register_operand (op, mode))
return 0;
if (GET_CODE (op) == SUBREG)
op = XEXP (op, 0);
regno = REGNO (op);
return regno >= FIRST_PSEUDO_REGISTER || regno <= 63;
})
(define_special_predicate "any_gpr_operand"
(match_code "subreg,reg")
{
return gpr_operand (op, mode);
})
;; register suitable for integer add / sub operations; besides general purpose
;; registers we allow fake hard registers that are eliminated to a real
;; hard register via an offset.
(define_predicate "add_reg_operand"
(match_code "reg,subreg")
{
int regno;
if (!register_operand (op, mode))
return 0;
if (GET_CODE (op) == SUBREG)
op = XEXP (op, 0);
regno = REGNO (op);
return (regno >= FIRST_PSEUDO_REGISTER || regno <= 63
|| regno == FRAME_POINTER_REGNUM
|| regno == ARG_POINTER_REGNUM);
})
;; Also allows suitable constants
(define_predicate "add_operand"
(match_code "reg,subreg,const_int,symbol_ref,label_ref,const")
{
if (GET_CODE (op) == REG || GET_CODE (op) == SUBREG)
return add_reg_operand (op, mode);
return satisfies_constraint_L (op) || satisfies_constraint_CnL (op);
})
;; Ordinary 3rd operand for arithmetic operations
(define_predicate "arith_operand"
(match_code "reg,subreg,const_int,symbol_ref,label_ref,const")
{
if (GET_CODE (op) == REG || GET_CODE (op) == SUBREG)
return register_operand (op, mode);
return satisfies_constraint_L (op);
})
;; Constant integer 3rd operand for arithmetic operations
(define_predicate "arith_int_operand"
(match_code "const_int,symbol_ref,label_ref,const")
{
return satisfies_constraint_L (op);
})
;; Return true if OP is an acceptable argument for a single word move source.
(define_predicate "move_src_operand"
(match_code
"symbol_ref,label_ref,const,const_int,const_double,reg,subreg,mem,unspec")
{
switch (GET_CODE (op))
{
case SYMBOL_REF :
case LABEL_REF :
case CONST :
return 1;
case CONST_INT :
return immediate_operand (op, mode);
case CONST_DOUBLE :
/* SImode constants should always fit into a CONST_INT. Large
unsigned 32-bit constants are represented as negative CONST_INTs. */
gcc_assert (GET_MODE (op) != SImode);
/* We can handle 32-bit floating point constants. */
if (mode == SFmode)
return GET_MODE (op) == SFmode;
return 0;
case REG :
return op != frame_pointer_rtx && register_operand (op, mode);
case SUBREG :
/* (subreg (mem ...) ...) can occur here if the inner part was once a
pseudo-reg and is now a stack slot. */
if (GET_CODE (SUBREG_REG (op)) == MEM)
return address_operand (XEXP (SUBREG_REG (op), 0), mode);
else
return register_operand (op, mode);
case MEM :
return address_operand (XEXP (op, 0), mode);
case UNSPEC:
return satisfies_constraint_Sra (op);
default :
return 0;
}
})
;; Return true if OP is an acceptable argument for a double word move source.
(define_predicate "move_double_src_operand"
(match_code "reg,subreg,mem,const_int,const_double,const_vector")
{
if (GET_CODE (op) == MEM && misaligned_operand (op, mode)
&& !address_operand (plus_constant (Pmode, XEXP (op, 0), 4), SImode))
return 0;
return general_operand (op, mode);
})
;; Return true if OP is an acceptable argument for a move destination.
(define_predicate "move_dest_operand"
(match_code "reg,subreg,mem")
{
switch (GET_CODE (op))
{
case REG :
return register_operand (op, mode);
case SUBREG :
/* (subreg (mem ...) ...) can occur here if the inner part was once a
pseudo-reg and is now a stack slot. */
if (GET_CODE (SUBREG_REG (op)) == MEM)
{
return address_operand (XEXP (SUBREG_REG (op), 0), mode);
}
else
{
return register_operand (op, mode);
}
case MEM :
if (GET_MODE_SIZE (mode) == 8 && misaligned_operand (op, mode)
&& !address_operand (plus_constant (Pmode, XEXP (op, 0), 4), SImode))
return 0;
return address_operand (XEXP (op, 0), mode);
default :
return 0;
}
})
(define_special_predicate "stacktop_operand"
(match_code "mem")
{
if (mode != VOIDmode && GET_MODE (op) != mode)
return false;
return rtx_equal_p (XEXP (op, 0), stack_pointer_rtx);
})
;; Return 1 if OP is a comparison operator valid for the mode of CC.
;; This allows the use of MATCH_OPERATOR to recognize all the branch insns.
;;
;; Some insns only set a few bits in the condition code. So only allow those
;; comparisons that use the bits that are valid.
(define_predicate "proper_comparison_operator"
(match_code "eq, ne, le, lt, ge, gt, leu, ltu, geu, gtu, unordered, ordered, uneq, unge, ungt, unle, unlt, ltgt")
{
enum rtx_code code = GET_CODE (op);
rtx cc = XEXP (op, 0);
/* combine can try strange things. */
if (!REG_P (cc))
return 0;
switch (GET_MODE (cc))
{
case E_CC_Zmode:
case E_CC_N_NEmode:
case E_CC_FP_EQmode:
return REGNO (cc) == CC_REGNUM && (code == EQ || code == NE);
case E_CC_C_LTUmode:
return REGNO (cc) == CC_REGNUM && (code == LTU || code == GEU);
case E_CC_C_GTUmode:
return REGNO (cc) == CC_REGNUM && (code == GTU || code == LEU);
case E_CC_FPmode:
return (REGNO (cc) == CCFP_REGNUM
&& (code == EQ || code == NE || code == LT || code == LE));
case E_CC_FP_GTEmode:
return (REGNO (cc) == CC_REGNUM
&& (code == EQ || code == NE || code == GT || code == GE
|| code == UNLE || code == UNLT));
case E_CC_FP_ORDmode:
return REGNO (cc) == CC_REGNUM && (code == ORDERED || code == UNORDERED);
case E_CC_FP_UNEQmode:
return REGNO (cc) == CC_REGNUM && (code == UNEQ || code == LTGT);
case E_CCmode:
return REGNO (cc) == CC_REGNUM;
/* From combiner. */
case E_QImode: case E_SImode: case E_SFmode: case E_HImode:
/* From cse.c:dead_libcall_p. */
case E_DFmode:
return 0;
default:
gcc_unreachable ();
}
})
(define_predicate "addsub_operator"
(match_code "plus, minus"))
(define_predicate "cc_operand"
(and (match_code "reg")
(match_test "REGNO (op) == CC_REGNUM || REGNO (op) == CCFP_REGNUM")))
(define_predicate "const0_operand"
(match_code "const_int, const_double")
{
if (mode == VOIDmode)
mode = GET_MODE (op);
return op == CONST0_RTX (mode);
})
(define_predicate "const_float_1_operand"
(match_code "const_double")
{
return op == CONST1_RTX (mode);
})
(define_predicate "cc_move_operand"
(and (match_code "reg")
(ior (match_test "REGNO (op) == CC_REGNUM")
(match_test "gpr_operand (op, mode)"))))
(define_predicate "float_operation"
(match_code "parallel")
{
/* Most patterns start out with one SET and one CLOBBER, and gain a USE
or two of FP_NEAREST_REGNUM / FP_TRUNCATE_REGNUM / FP_ANYFP_REGNUM
after mode switching. The longer patterns are
all beyond length 4, and before mode switching, end with a
CLOBBER of CCFP_REGNUM. */
int count = XVECLEN (op, 0);
bool inserted = MACHINE_FUNCTION (cfun)->control_use_inserted;
int i;
if (count == 2
/* Vector ashift has an extra use for the constant factor required to
implement the shift as multiply. */
|| (count == 3 && GET_CODE (XVECEXP (op, 0, 0)) == SET
&& GET_CODE (XEXP (XVECEXP (op, 0, 0), 1)) == ASHIFT))
return !inserted;
/* combine / recog will pass any old garbage here before checking the
rest of the insn. */
if (count <= 3)
return false;
i = 1;
if (count > 4)
for (i = 2; i < count; i++)
{
rtx x = XVECEXP (op, 0, i);
if (GET_CODE (x) == CLOBBER)
{
if (!REG_P (XEXP (x, 0)))
return false;
if (REGNO (XEXP (x, 0)) == CCFP_REGNUM)
{
if (count == i + 1)
return !inserted;
break;
}
/* Just an ordinary clobber, keep looking. */
}
else if (GET_CODE (x) == USE
|| (GET_CODE (x) == SET && i == 2))
continue;
else
return false;
}
if (count != i + 3 || !inserted)
return false;
for (i = i+1; i < count; i++)
{
rtx x = XVECEXP (op, 0, i);
if (GET_CODE (x) != USE && GET_CODE (x) != CLOBBER)
return false;
x = XEXP (x, 0);
if (!REG_P (x)
|| (REGNO (x) != FP_NEAREST_REGNUM
&& REGNO (x) != FP_TRUNCATE_REGNUM
&& REGNO (x) != FP_ANYFP_REGNUM))
return false;
}
return true;
})
(define_predicate "set_fp_mode_operand"
(ior (match_test "gpr_operand (op, mode)")
(and (match_code "const")
(match_test "satisfies_constraint_Cfm (op)"))))
(define_predicate "post_modify_address"
(match_code "post_modify,post_inc,post_dec"))
(define_predicate "post_modify_operand"
(and (match_code "mem")
(match_test "post_modify_address (XEXP (op, 0), Pmode)")))
; used in the memory clobber of stack_adjust_str, allows addresses with
; large offsets.
(define_predicate "memclob_operand"
(match_code "mem"))
(define_predicate "nonsymbolic_immediate_operand"
(ior (match_test "immediate_operand (op, mode)")
(match_code "const_vector"))) /* Is this specific enough? */
;; Return true if OP is misaligned memory operand
(define_predicate "misaligned_operand"
(and (match_code "mem")
(match_test "MEM_ALIGN (op) < GET_MODE_ALIGNMENT (mode)")))
|