summaryrefslogtreecommitdiff
path: root/gcc/config/h8300/predicates.md
blob: 70c6c5c17655ee54bfe67713fd1ef5794c219b26 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
;; Predicate definitions for Renesas H8/300.
;; Copyright (C) 2005-2019 Free Software Foundation, Inc.
;;
;; This file is part of GCC.
;;
;; GCC is free software; you can redistribute it and/or modify
;; it under the terms of the GNU General Public License as published by
;; the Free Software Foundation; either version 3, or (at your option)
;; any later version.
;;
;; GCC is distributed in the hope that it will be useful,
;; but WITHOUT ANY WARRANTY; without even the implied warranty of
;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
;; GNU General Public License for more details.
;;
;; You should have received a copy of the GNU General Public License
;; along with GCC; see the file COPYING3.  If not see
;; <http://www.gnu.org/licenses/>.

;; Return true if OP is a valid source operand for an integer move
;; instruction.

(define_predicate "general_operand_src"
  (match_code "const_int,const_double,const,symbol_ref,label_ref,subreg,reg,mem")
{
  if (GET_MODE (op) == mode
      && GET_CODE (op) == MEM
      && GET_CODE (XEXP (op, 0)) == POST_INC)
    return 1;
  return general_operand (op, mode);
})

;; Return true if OP is a valid destination operand for an integer
;; move instruction.

(define_predicate "general_operand_dst"
  (match_code "subreg,reg,mem")
{
  if (GET_MODE (op) == mode
      && GET_CODE (op) == MEM
      && GET_CODE (XEXP (op, 0)) == PRE_DEC)
    return 1;
  return general_operand (op, mode);
})

;; Likewise the second operand.

(define_predicate "h8300_src_operand"
  (match_code "const_int,const_double,const,symbol_ref,label_ref,subreg,reg,mem")
{
  if (TARGET_H8300SX)
    return general_operand (op, mode);
  return nonmemory_operand (op, mode);
})

;; Return true if OP is a suitable first operand for a general
;; arithmetic insn such as "add".

(define_predicate "h8300_dst_operand"
  (match_code "subreg,reg,mem")
{
  if (TARGET_H8300SX)
    return nonimmediate_operand (op, mode);
  return register_operand (op, mode);
})

;; Check that an operand is either a register or an unsigned 4-bit
;; constant.

(define_predicate "nibble_operand"
  (match_code "const_int")
{
  return (GET_CODE (op) == CONST_INT && TARGET_H8300SX
	  && INTVAL (op) >= 0 && INTVAL (op) <= 15);
})

;; Check that an operand is either a register or an unsigned 4-bit
;; constant.

(define_predicate "reg_or_nibble_operand"
  (match_code "const_int,subreg,reg")
{
  return (nibble_operand (op, mode) || register_operand (op, mode));
})

;; Return true if X is a shift operation of type H8SX_SHIFT_UNARY.

(define_predicate "h8sx_unary_shift_operator"
  (match_code "ashiftrt,lshiftrt,ashift,rotate")
{
  return (BINARY_P (op) && NON_COMMUTATIVE_P (op)
	  && (h8sx_classify_shift (GET_MODE (op), GET_CODE (op), XEXP (op, 1))
	      == H8SX_SHIFT_UNARY));
})

;; Likewise H8SX_SHIFT_BINARY.

(define_predicate "h8sx_binary_shift_operator"
  (match_code "ashiftrt,lshiftrt,ashift")
{
  return (BINARY_P (op) && NON_COMMUTATIVE_P (op)
	  && (h8sx_classify_shift (GET_MODE (op), GET_CODE (op), XEXP (op, 1))
	      == H8SX_SHIFT_BINARY));
})

;; Return true if OP is a binary operator in which it would be safe to
;; replace register operands with memory operands.

(define_predicate "h8sx_binary_memory_operator"
  (match_code "plus,minus,and,ior,xor,ashift,ashiftrt,lshiftrt,rotate")
{
  if (!TARGET_H8300SX)
    return false;

  if (GET_MODE (op) != QImode
      && GET_MODE (op) != HImode
      && GET_MODE (op) != SImode)
    return false;

  switch (GET_CODE (op))
    {
    case PLUS:
    case MINUS:
    case AND:
    case IOR:
    case XOR:
      return true;

    default:
      return h8sx_unary_shift_operator (op, mode);
    }
})

;; Like h8sx_binary_memory_operator, but applies to unary operators.

(define_predicate "h8sx_unary_memory_operator"
  (match_code "neg,not")
{
  if (!TARGET_H8300SX)
    return false;

  if (GET_MODE (op) != QImode
      && GET_MODE (op) != HImode
      && GET_MODE (op) != SImode)
    return false;

  switch (GET_CODE (op))
    {
    case NEG:
    case NOT:
      return true;

    default:
      return false;
    }
})

;; Return true if X is an ldm.l pattern.  X is known to be parallel.

(define_predicate "h8300_ldm_parallel"
  (match_code "parallel")
{
  return h8300_ldm_stm_parallel (XVEC (op, 0), 1, 0);
})

;; Likewise stm.l.

(define_predicate "h8300_stm_parallel"
  (match_code "parallel")
{
  return h8300_ldm_stm_parallel (XVEC (op, 0), 0, 0);
})

;; Likewise rts/l and rte/l.  Note that the .md pattern will check for
;; the return so there's no need to do that here.

(define_predicate "h8300_return_parallel"
  (match_code "parallel")
{
  return h8300_ldm_stm_parallel (XVEC (op, 0), 1, 1);
})

;; Return true if OP is a constant that contains only one 1 in its
;; binary representation.

(define_predicate "single_one_operand"
  (match_code "const_int")
{
  if (GET_CODE (op) == CONST_INT)
    {
      /* We really need to do this masking because 0x80 in QImode is
	 represented as -128 for example.  */
      if (exact_log2 (INTVAL (op) & GET_MODE_MASK (mode)) >= 0)
	return 1;
    }

  return 0;
})

;; Return true if OP is a constant that contains only one 0 in its
;; binary representation.

(define_predicate "single_zero_operand"
  (match_code "const_int")
{
  if (GET_CODE (op) == CONST_INT)
    {
      /* We really need to do this masking because 0x80 in QImode is
	 represented as -128 for example.  */
      if (exact_log2 (~INTVAL (op) & GET_MODE_MASK (mode)) >= 0)
	return 1;
    }

  return 0;
})

;; Return true if OP is a valid call operand.

(define_predicate "call_expander_operand"
  (match_code "mem")
{
  if (GET_CODE (op) == MEM)
    {
      rtx inside = XEXP (op, 0);
      if (register_operand (inside, Pmode))
	return 1;
      if (SYMBOL_REF_P (inside))
	return 1;
    }
  return 0;
})

(define_predicate "call_insn_operand"
  (match_code "reg,symbol_ref")
{
  if (register_operand (op, Pmode))
    return 1;
  if (SYMBOL_REF_P (op))
    return 1;
  return 0;
})

;; Return true if OP is a valid call operand, and OP represents an
;; operand for a small call (4 bytes instead of 6 bytes).

(define_predicate "small_call_insn_operand"
  (match_code "reg,symbol_ref")
{
  /* Register indirect is a small call.  */
  if (register_operand (op, Pmode))
    return 1;

  /* A call through the function vector is a small call too.  */
  if (GET_CODE (op) == SYMBOL_REF
      && (SYMBOL_REF_FLAGS (op) & SYMBOL_FLAG_FUNCVEC_FUNCTION))
    return 1;

  /* Otherwise it's a large call.  */
  return 0;
})

;; Return true if OP is a valid jump operand.

(define_predicate "jump_address_operand"
  (match_code "reg,mem")
{
  if (GET_CODE (op) == REG)
    return GET_MODE (op) == Pmode;

  if (GET_CODE (op) == MEM)
    {
      rtx inside = XEXP (op, 0);
      if (register_operand (inside, Pmode))
	return 1;
      if (CONSTANT_ADDRESS_P (inside))
	return 1;
    }
  return 0;
})

;; Return 1 if an addition/subtraction of a constant integer can be
;; transformed into two consecutive adds/subs that are faster than the
;; straightforward way.  Otherwise, return 0.

(define_predicate "two_insn_adds_subs_operand"
  (match_code "const_int")
{
  if (TARGET_H8300SX)
    return 0;

  if (GET_CODE (op) == CONST_INT)
    {
      HOST_WIDE_INT value = INTVAL (op);

      /* Force VALUE to be positive so that we do not have to consider
         the negative case.  */
      if (value < 0)
	value = -value;
      if (TARGET_H8300H || TARGET_H8300S)
	{
	  /* A constant addition/subtraction takes 2 states in QImode,
	     4 states in HImode, and 6 states in SImode.  Thus, the
	     only case we can win is when SImode is used, in which
	     case, two adds/subs are used, taking 4 states.  */
	  if (mode == SImode
	      && (value == 2 + 1
		  || value == 4 + 1
		  || value == 4 + 2
		  || value == 4 + 4))
	    return 1;
	}
      else
	{
	  /* We do not profit directly by splitting addition or
	     subtraction of 3 and 4.  However, since these are
	     implemented as a sequence of adds or subs, they do not
	     clobber (cc0) unlike a sequence of add.b and add.x.  */
	  if (mode == HImode
	      && (value == 2 + 1
		  || value == 2 + 2))
	    return 1;
	}
    }

  return 0;
})

;; Recognize valid operands for bit-field instructions.

(define_predicate "bit_operand"
  (match_code "reg,subreg,mem")
{
  /* We can accept any nonimmediate operand, except that MEM operands must
     be limited to those that use addresses valid for the 'U' constraint.  */
  if (!nonimmediate_operand (op, mode) && !satisfies_constraint_U (op))
    return 0;

  /* H8SX accepts pretty much anything here.  */
  if (TARGET_H8300SX)
    return 1;

  /* Accept any mem during RTL generation.  Otherwise, the code that does
     insv and extzv will think that we cannot handle memory.  However,
     to avoid reload problems, we only accept 'U' MEM operands after RTL
     generation.  This means that any named pattern which uses this predicate
     must force its operands to match 'U' before emitting RTL.  */

  if (GET_CODE (op) == REG)
    return 1;
  if (GET_CODE (op) == SUBREG)
    return 1;
  return (GET_CODE (op) == MEM
	  && satisfies_constraint_U (op));
})

;; Return nonzero if OP is a MEM suitable for bit manipulation insns.

(define_predicate "bit_memory_operand"
  (match_code "mem")
{
  return (GET_CODE (op) == MEM
	  && satisfies_constraint_U (op));
})

;; Return nonzero if OP is indirect register or constant memory
;; suitable for bit manipulation insns.

(define_predicate "bit_register_indirect_operand"
  (match_code "mem")
{
  return (GET_CODE (op) == MEM
          && (GET_CODE (XEXP (op, 0)) == REG
              || GET_CODE (XEXP (op, 0)) == CONST_INT));
})

;; Return nonzero if X is a stack pointer.

(define_predicate "stack_pointer_operand"
  (match_code "reg")
{
  return op == stack_pointer_rtx;
})

;; False if X is anything that might eliminate to the stack pointer.

(define_predicate "register_no_sp_elim_operand"
  (match_operand 0 "register_operand")
{
  if (GET_CODE (op) == SUBREG)
    op = SUBREG_REG (op);
  return !(op == stack_pointer_rtx
	   || op == arg_pointer_rtx
	   || op == frame_pointer_rtx
	   || IN_RANGE (REGNO (op),
			FIRST_PSEUDO_REGISTER, LAST_VIRTUAL_REGISTER));
})

;; Return nonzero if X is a constant whose absolute value is greater
;; than 2.

(define_predicate "const_int_gt_2_operand"
  (match_code "const_int")
{
  return (GET_CODE (op) == CONST_INT
	  && abs (INTVAL (op)) > 2);
})

;; Return nonzero if X is a constant whose absolute value is no
;; smaller than 8.

(define_predicate "const_int_ge_8_operand"
  (match_code "const_int")
{
  return (GET_CODE (op) == CONST_INT
	  && abs (INTVAL (op)) >= 8);
})

;; Return nonzero if X is a constant expressible in QImode.

(define_predicate "const_int_qi_operand"
  (match_code "const_int")
{
  return (GET_CODE (op) == CONST_INT
	  && (INTVAL (op) & 0xff) == INTVAL (op));
})

;; Return nonzero if X is a constant expressible in HImode.

(define_predicate "const_int_hi_operand"
  (match_code "const_int")
{
  return (GET_CODE (op) == CONST_INT
	  && (INTVAL (op) & 0xffff) == INTVAL (op));
})

;; Return nonzero if X is a constant suitable for inc/dec.

(define_predicate "incdec_operand"
  (and (match_code "const_int")
       (ior (match_test "satisfies_constraint_M (op)")
	    (match_test "satisfies_constraint_O (op)"))))

;; Recognize valid operators for bit instructions.

(define_predicate "bit_operator"
  (match_code "xor,and,ior")
{
  enum rtx_code code = GET_CODE (op);

  return (code == XOR
	  || code == AND
	  || code == IOR);
})

;; Return nonzero if OP is a shift operator.

(define_predicate "nshift_operator"
  (match_code "ashiftrt,lshiftrt,ashift")
{
  switch (GET_CODE (op))
    {
    case ASHIFTRT:
    case LSHIFTRT:
    case ASHIFT:
      return 1;

    default:
      return 0;
    }
})

;; Return nonzero if X is either EQ or NE.

(define_predicate "eqne_operator"
  (match_code "eq,ne")
{
  enum rtx_code code = GET_CODE (op);

  return (code == EQ || code == NE);
})

;; Return nonzero if X is either GT or LE.

(define_predicate "gtle_operator"
  (match_code "gt,le,gtu,leu")
{
  enum rtx_code code = GET_CODE (op);

  return (code == GT || code == LE);
})

;; Return nonzero if X is either GTU or LEU.

(define_predicate "gtuleu_operator"
  (match_code "gtu,leu")
{
  enum rtx_code code = GET_CODE (op);

  return (code == GTU || code == LEU);
})

;; Return nonzero if X is either IOR or XOR.

(define_predicate "iorxor_operator"
  (match_code "ior,xor")
{
  enum rtx_code code = GET_CODE (op);

  return (code == IOR || code == XOR);
})