1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
|
/* Subroutines used for code generation on intel 80960.
Copyright (C) 1992, 1995, 1996, 1997, 1998, 1999, 2000, 2001
Free Software Foundation, Inc.
Contributed by Steven McGeady, Intel Corp.
Additional Work by Glenn Colon-Bonet, Jonathan Shapiro, Andy Wilson
Converted to GCC 2.0 by Jim Wilson and Michael Tiemann, Cygnus Support.
This file is part of GNU CC.
GNU CC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
GNU CC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GNU CC; see the file COPYING. If not, write to
the Free Software Foundation, 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA. */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include <math.h>
#include "rtl.h"
#include "regs.h"
#include "hard-reg-set.h"
#include "real.h"
#include "insn-config.h"
#include "conditions.h"
#include "output.h"
#include "insn-attr.h"
#include "flags.h"
#include "tree.h"
#include "expr.h"
#include "except.h"
#include "function.h"
#include "recog.h"
#include "toplev.h"
#include "tm_p.h"
#include "target.h"
#include "target-def.h"
static void i960_output_function_prologue PARAMS ((FILE *, HOST_WIDE_INT));
static void i960_output_function_epilogue PARAMS ((FILE *, HOST_WIDE_INT));
static void i960_output_mi_thunk PARAMS ((FILE *, tree, HOST_WIDE_INT,
HOST_WIDE_INT, tree));
/* Save the operands last given to a compare for use when we
generate a scc or bcc insn. */
rtx i960_compare_op0, i960_compare_op1;
/* Used to implement #pragma align/noalign. Initialized by OVERRIDE_OPTIONS
macro in i960.h. */
int i960_maxbitalignment;
int i960_last_maxbitalignment;
/* Used to implement switching between MEM and ALU insn types, for better
C series performance. */
enum insn_types i960_last_insn_type;
/* The leaf-procedure return register. Set only if this is a leaf routine. */
static int i960_leaf_ret_reg;
/* True if replacing tail calls with jumps is OK. */
static int tail_call_ok;
/* A string containing a list of insns to emit in the epilogue so as to
restore all registers saved by the prologue. Created by the prologue
code as it saves registers away. */
char epilogue_string[1000];
/* A unique number (per function) for return labels. */
static int ret_label = 0;
/* This is true if FNDECL is either a varargs or a stdarg function.
This is used to help identify functions that use an argument block. */
#define VARARGS_STDARG_FUNCTION(FNDECL) \
(TYPE_ARG_TYPES (TREE_TYPE (FNDECL)) != 0 \
&& (TREE_VALUE (tree_last (TYPE_ARG_TYPES (TREE_TYPE (FNDECL))))) \
!= void_type_node)
/* Initialize the GCC target structure. */
#undef TARGET_ASM_ALIGNED_SI_OP
#define TARGET_ASM_ALIGNED_SI_OP "\t.word\t"
#undef TARGET_ASM_FUNCTION_PROLOGUE
#define TARGET_ASM_FUNCTION_PROLOGUE i960_output_function_prologue
#undef TARGET_ASM_FUNCTION_EPILOGUE
#define TARGET_ASM_FUNCTION_EPILOGUE i960_output_function_epilogue
#undef TARGET_ASM_OUTPUT_MI_THUNK
#define TARGET_ASM_OUTPUT_MI_THUNK i960_output_mi_thunk
#undef TARGET_CAN_ASM_OUTPUT_MI_THUNK
#define TARGET_CAN_ASM_OUTPUT_MI_THUNK default_can_output_mi_thunk_no_vcall
struct gcc_target targetm = TARGET_INITIALIZER;
/* Override conflicting target switch options.
Doesn't actually detect if more than one -mARCH option is given, but
does handle the case of two blatantly conflicting -mARCH options.
Also initialize variables before compiling any files. */
void
i960_initialize ()
{
if (TARGET_K_SERIES && TARGET_C_SERIES)
{
warning ("conflicting architectures defined - using C series");
target_flags &= ~TARGET_FLAG_K_SERIES;
}
if (TARGET_K_SERIES && TARGET_MC)
{
warning ("conflicting architectures defined - using K series");
target_flags &= ~TARGET_FLAG_MC;
}
if (TARGET_C_SERIES && TARGET_MC)
{
warning ("conflicting architectures defined - using C series");
target_flags &= ~TARGET_FLAG_MC;
}
if (TARGET_IC_COMPAT3_0)
{
flag_short_enums = 1;
flag_signed_char = 1;
target_flags |= TARGET_FLAG_CLEAN_LINKAGE;
if (TARGET_IC_COMPAT2_0)
{
warning ("iC2.0 and iC3.0 are incompatible - using iC3.0");
target_flags &= ~TARGET_FLAG_IC_COMPAT2_0;
}
}
if (TARGET_IC_COMPAT2_0)
{
flag_signed_char = 1;
target_flags |= TARGET_FLAG_CLEAN_LINKAGE;
}
if (TARGET_IC_COMPAT2_0)
{
i960_maxbitalignment = 8;
i960_last_maxbitalignment = 128;
}
else
{
i960_maxbitalignment = 128;
i960_last_maxbitalignment = 8;
}
/* Tell the compiler which flavor of TFmode we're using. */
real_format_for_mode[TFmode - QFmode] = &ieee_extended_intel_128_format;
}
/* Return true if OP can be used as the source of an fp move insn. */
int
fpmove_src_operand (op, mode)
rtx op;
enum machine_mode mode;
{
return (GET_CODE (op) == CONST_DOUBLE || general_operand (op, mode));
}
#if 0
/* Return true if OP is a register or zero. */
int
reg_or_zero_operand (op, mode)
rtx op;
enum machine_mode mode;
{
return register_operand (op, mode) || op == const0_rtx;
}
#endif
/* Return truth value of whether OP can be used as an operands in a three
address arithmetic insn (such as add %o1,7,%l2) of mode MODE. */
int
arith_operand (op, mode)
rtx op;
enum machine_mode mode;
{
return (register_operand (op, mode) || literal (op, mode));
}
/* Return truth value of whether OP can be used as an operands in a three
address logic insn, possibly complementing OP, of mode MODE. */
int
logic_operand (op, mode)
rtx op;
enum machine_mode mode;
{
return (register_operand (op, mode)
|| (GET_CODE (op) == CONST_INT
&& INTVAL(op) >= -32 && INTVAL(op) < 32));
}
/* Return true if OP is a register or a valid floating point literal. */
int
fp_arith_operand (op, mode)
rtx op;
enum machine_mode mode;
{
return (register_operand (op, mode) || fp_literal (op, mode));
}
/* Return true if OP is a register or a valid signed integer literal. */
int
signed_arith_operand (op, mode)
rtx op;
enum machine_mode mode;
{
return (register_operand (op, mode) || signed_literal (op, mode));
}
/* Return truth value of whether OP is an integer which fits the
range constraining immediate operands in three-address insns. */
int
literal (op, mode)
rtx op;
enum machine_mode mode ATTRIBUTE_UNUSED;
{
return ((GET_CODE (op) == CONST_INT) && INTVAL(op) >= 0 && INTVAL(op) < 32);
}
/* Return true if OP is a float constant of 1. */
int
fp_literal_one (op, mode)
rtx op;
enum machine_mode mode;
{
return (TARGET_NUMERICS && mode == GET_MODE (op) && op == CONST1_RTX (mode));
}
/* Return true if OP is a float constant of 0. */
int
fp_literal_zero (op, mode)
rtx op;
enum machine_mode mode;
{
return (TARGET_NUMERICS && mode == GET_MODE (op) && op == CONST0_RTX (mode));
}
/* Return true if OP is a valid floating point literal. */
int
fp_literal(op, mode)
rtx op;
enum machine_mode mode;
{
return fp_literal_zero (op, mode) || fp_literal_one (op, mode);
}
/* Return true if OP is a valid signed immediate constant. */
int
signed_literal(op, mode)
rtx op;
enum machine_mode mode ATTRIBUTE_UNUSED;
{
return ((GET_CODE (op) == CONST_INT) && INTVAL(op) > -32 && INTVAL(op) < 32);
}
/* Return truth value of statement that OP is a symbolic memory
operand of mode MODE. */
int
symbolic_memory_operand (op, mode)
rtx op;
enum machine_mode mode ATTRIBUTE_UNUSED;
{
if (GET_CODE (op) == SUBREG)
op = SUBREG_REG (op);
if (GET_CODE (op) != MEM)
return 0;
op = XEXP (op, 0);
return (GET_CODE (op) == SYMBOL_REF || GET_CODE (op) == CONST
|| GET_CODE (op) == HIGH || GET_CODE (op) == LABEL_REF);
}
/* Return truth value of whether OP is EQ or NE. */
int
eq_or_neq (op, mode)
rtx op;
enum machine_mode mode ATTRIBUTE_UNUSED;
{
return (GET_CODE (op) == EQ || GET_CODE (op) == NE);
}
/* OP is an integer register or a constant. */
int
arith32_operand (op, mode)
rtx op;
enum machine_mode mode;
{
if (register_operand (op, mode))
return 1;
return (CONSTANT_P (op));
}
/* Return true if OP is an integer constant which is a power of 2. */
int
power2_operand (op,mode)
rtx op;
enum machine_mode mode ATTRIBUTE_UNUSED;
{
if (GET_CODE (op) != CONST_INT)
return 0;
return exact_log2 (INTVAL (op)) >= 0;
}
/* Return true if OP is an integer constant which is the complement of a
power of 2. */
int
cmplpower2_operand (op, mode)
rtx op;
enum machine_mode mode ATTRIBUTE_UNUSED;
{
if (GET_CODE (op) != CONST_INT)
return 0;
return exact_log2 (~ INTVAL (op)) >= 0;
}
/* If VAL has only one bit set, return the index of that bit. Otherwise
return -1. */
int
bitpos (val)
unsigned int val;
{
register int i;
for (i = 0; val != 0; i++, val >>= 1)
{
if (val & 1)
{
if (val != 1)
return -1;
return i;
}
}
return -1;
}
/* Return nonzero if OP is a mask, i.e. all one bits are consecutive.
The return value indicates how many consecutive nonzero bits exist
if this is a mask. This is the same as the next function, except that
it does not indicate what the start and stop bit positions are. */
int
is_mask (val)
unsigned int val;
{
register int start, end = 0, i;
start = -1;
for (i = 0; val != 0; val >>= 1, i++)
{
if (val & 1)
{
if (start < 0)
start = i;
end = i;
continue;
}
/* Still looking for the first bit. */
if (start < 0)
continue;
/* We've seen the start of a bit sequence, and now a zero. There
must be more one bits, otherwise we would have exited the loop.
Therefore, it is not a mask. */
if (val)
return 0;
}
/* The bit string has ones from START to END bit positions only. */
return end - start + 1;
}
/* If VAL is a mask, then return nonzero, with S set to the starting bit
position and E set to the ending bit position of the mask. The return
value indicates how many consecutive bits exist in the mask. This is
the same as the previous function, except that it also indicates the
start and end bit positions of the mask. */
int
bitstr (val, s, e)
unsigned int val;
int *s, *e;
{
register int start, end, i;
start = -1;
end = -1;
for (i = 0; val != 0; val >>= 1, i++)
{
if (val & 1)
{
if (start < 0)
start = i;
end = i;
continue;
}
/* Still looking for the first bit. */
if (start < 0)
continue;
/* We've seen the start of a bit sequence, and now a zero. There
must be more one bits, otherwise we would have exited the loop.
Therefor, it is not a mask. */
if (val)
{
start = -1;
end = -1;
break;
}
}
/* The bit string has ones from START to END bit positions only. */
*s = start;
*e = end;
return ((start < 0) ? 0 : end - start + 1);
}
/* Return the machine mode to use for a comparison. */
enum machine_mode
select_cc_mode (op, x)
RTX_CODE op;
rtx x ATTRIBUTE_UNUSED;
{
if (op == GTU || op == LTU || op == GEU || op == LEU)
return CC_UNSmode;
return CCmode;
}
/* X and Y are two things to compare using CODE. Emit the compare insn and
return the rtx for register 36 in the proper mode. */
rtx
gen_compare_reg (code, x, y)
enum rtx_code code;
rtx x, y;
{
rtx cc_reg;
enum machine_mode ccmode = SELECT_CC_MODE (code, x, y);
enum machine_mode mode
= GET_MODE (x) == VOIDmode ? GET_MODE (y) : GET_MODE (x);
if (mode == SImode)
{
if (! arith_operand (x, mode))
x = force_reg (SImode, x);
if (! arith_operand (y, mode))
y = force_reg (SImode, y);
}
cc_reg = gen_rtx_REG (ccmode, 36);
emit_insn (gen_rtx_SET (VOIDmode, cc_reg,
gen_rtx_COMPARE (ccmode, x, y)));
return cc_reg;
}
/* For the i960, REG is cost 1, REG+immed CONST is cost 2, REG+REG is cost 2,
REG+nonimmed CONST is cost 4. REG+SYMBOL_REF, SYMBOL_REF, and similar
are 4. Indexed addresses are cost 6. */
/* ??? Try using just RTX_COST, i.e. not defining ADDRESS_COST. */
int
i960_address_cost (x)
rtx x;
{
#if 0
/* Handled before calling here. */
if (GET_CODE (x) == REG)
return 1;
#endif
/* This is a MEMA operand -- it's free. */
if (GET_CODE (x) == CONST_INT
&& INTVAL (x) >= 0
&& INTVAL (x) < 4096)
return 0;
if (GET_CODE (x) == PLUS)
{
rtx base = XEXP (x, 0);
rtx offset = XEXP (x, 1);
if (GET_CODE (base) == SUBREG)
base = SUBREG_REG (base);
if (GET_CODE (offset) == SUBREG)
offset = SUBREG_REG (offset);
if (GET_CODE (base) == REG)
{
if (GET_CODE (offset) == REG)
return 2;
if (GET_CODE (offset) == CONST_INT)
{
if ((unsigned)INTVAL (offset) < 2047)
return 2;
return 4;
}
if (CONSTANT_P (offset))
return 4;
}
if (GET_CODE (base) == PLUS || GET_CODE (base) == MULT)
return 6;
/* This is an invalid address. The return value doesn't matter, but
for convenience we make this more expensive than anything else. */
return 12;
}
if (GET_CODE (x) == MULT)
return 6;
/* Symbol_refs and other unrecognized addresses are cost 4. */
return 4;
}
/* Emit insns to move operands[1] into operands[0].
Return 1 if we have written out everything that needs to be done to
do the move. Otherwise, return 0 and the caller will emit the move
normally. */
int
emit_move_sequence (operands, mode)
rtx *operands;
enum machine_mode mode;
{
/* We can only store registers to memory. */
if (GET_CODE (operands[0]) == MEM && GET_CODE (operands[1]) != REG
&& (operands[1] != const0_rtx || current_function_args_size
|| current_function_stdarg
|| rtx_equal_function_value_matters))
/* Here we use the same test as movsi+1 pattern -- see i960.md. */
operands[1] = force_reg (mode, operands[1]);
/* Storing multi-word values in unaligned hard registers to memory may
require a scratch since we have to store them a register at a time and
adding 4 to the memory address may not yield a valid insn. */
/* ??? We don't always need the scratch, but that would complicate things.
Maybe later. */
/* ??? We must also handle stores to pseudos here, because the pseudo may be
replaced with a MEM later. This would be cleaner if we didn't have
a separate pattern for unaligned DImode/TImode stores. */
if (GET_MODE_SIZE (mode) > UNITS_PER_WORD
&& (GET_CODE (operands[0]) == MEM
|| (GET_CODE (operands[0]) == REG
&& REGNO (operands[0]) >= FIRST_PSEUDO_REGISTER))
&& GET_CODE (operands[1]) == REG
&& REGNO (operands[1]) < FIRST_PSEUDO_REGISTER
&& ! HARD_REGNO_MODE_OK (REGNO (operands[1]), mode))
{
emit_insn (gen_rtx_PARALLEL
(VOIDmode,
gen_rtvec (2,
gen_rtx_SET (VOIDmode, operands[0], operands[1]),
gen_rtx_CLOBBER (VOIDmode,
gen_rtx_SCRATCH (Pmode)))));
return 1;
}
return 0;
}
/* Output assembler to move a double word value. */
const char *
i960_output_move_double (dst, src)
rtx dst, src;
{
rtx operands[5];
if (GET_CODE (dst) == REG
&& GET_CODE (src) == REG)
{
if ((REGNO (src) & 1)
|| (REGNO (dst) & 1))
{
/* We normally copy the low-numbered register first. However, if
the second source register is the same as the first destination
register, we must copy in the opposite order. */
if (REGNO (src) + 1 == REGNO (dst))
return "mov %D1,%D0\n\tmov %1,%0";
else
return "mov %1,%0\n\tmov %D1,%D0";
}
else
return "movl %1,%0";
}
else if (GET_CODE (dst) == REG
&& GET_CODE (src) == CONST_INT
&& CONST_OK_FOR_LETTER_P (INTVAL (src), 'I'))
{
if (REGNO (dst) & 1)
return "mov %1,%0\n\tmov 0,%D0";
else
return "movl %1,%0";
}
else if (GET_CODE (dst) == REG
&& GET_CODE (src) == MEM)
{
if (REGNO (dst) & 1)
{
/* One can optimize a few cases here, but you have to be
careful of clobbering registers used in the address and
edge conditions. */
operands[0] = dst;
operands[1] = src;
operands[2] = gen_rtx_REG (Pmode, REGNO (dst) + 1);
operands[3] = gen_rtx_MEM (word_mode, operands[2]);
operands[4] = adjust_address (operands[3], word_mode,
UNITS_PER_WORD);
output_asm_insn
("lda %1,%2\n\tld %3,%0\n\tld %4,%D0", operands);
return "";
}
else
return "ldl %1,%0";
}
else if (GET_CODE (dst) == MEM
&& GET_CODE (src) == REG)
{
if (REGNO (src) & 1)
{
operands[0] = dst;
operands[1] = adjust_address (dst, word_mode, UNITS_PER_WORD);
if (! memory_address_p (word_mode, XEXP (operands[1], 0)))
abort ();
operands[2] = src;
output_asm_insn ("st %2,%0\n\tst %D2,%1", operands);
return "";
}
return "stl %1,%0";
}
else
abort ();
}
/* Output assembler to move a double word zero. */
const char *
i960_output_move_double_zero (dst)
rtx dst;
{
rtx operands[2];
operands[0] = dst;
{
operands[1] = adjust_address (dst, word_mode, 4);
output_asm_insn ("st g14,%0\n\tst g14,%1", operands);
}
return "";
}
/* Output assembler to move a quad word value. */
const char *
i960_output_move_quad (dst, src)
rtx dst, src;
{
rtx operands[7];
if (GET_CODE (dst) == REG
&& GET_CODE (src) == REG)
{
if ((REGNO (src) & 3)
|| (REGNO (dst) & 3))
{
/* We normally copy starting with the low numbered register.
However, if there is an overlap such that the first dest reg
is <= the last source reg but not < the first source reg, we
must copy in the opposite order. */
if (REGNO (dst) <= REGNO (src) + 3
&& REGNO (dst) >= REGNO (src))
return "mov %F1,%F0\n\tmov %E1,%E0\n\tmov %D1,%D0\n\tmov %1,%0";
else
return "mov %1,%0\n\tmov %D1,%D0\n\tmov %E1,%E0\n\tmov %F1,%F0";
}
else
return "movq %1,%0";
}
else if (GET_CODE (dst) == REG
&& GET_CODE (src) == CONST_INT
&& CONST_OK_FOR_LETTER_P (INTVAL (src), 'I'))
{
if (REGNO (dst) & 3)
return "mov %1,%0\n\tmov 0,%D0\n\tmov 0,%E0\n\tmov 0,%F0";
else
return "movq %1,%0";
}
else if (GET_CODE (dst) == REG
&& GET_CODE (src) == MEM)
{
if (REGNO (dst) & 3)
{
/* One can optimize a few cases here, but you have to be
careful of clobbering registers used in the address and
edge conditions. */
operands[0] = dst;
operands[1] = src;
operands[2] = gen_rtx_REG (Pmode, REGNO (dst) + 3);
operands[3] = gen_rtx_MEM (word_mode, operands[2]);
operands[4]
= adjust_address (operands[3], word_mode, UNITS_PER_WORD);
operands[5]
= adjust_address (operands[4], word_mode, UNITS_PER_WORD);
operands[6]
= adjust_address (operands[5], word_mode, UNITS_PER_WORD);
output_asm_insn ("lda %1,%2\n\tld %3,%0\n\tld %4,%D0\n\tld %5,%E0\n\tld %6,%F0", operands);
return "";
}
else
return "ldq %1,%0";
}
else if (GET_CODE (dst) == MEM
&& GET_CODE (src) == REG)
{
if (REGNO (src) & 3)
{
operands[0] = dst;
operands[1] = adjust_address (dst, word_mode, UNITS_PER_WORD);
operands[2] = adjust_address (dst, word_mode, 2 * UNITS_PER_WORD);
operands[3] = adjust_address (dst, word_mode, 3 * UNITS_PER_WORD);
if (! memory_address_p (word_mode, XEXP (operands[3], 0)))
abort ();
operands[4] = src;
output_asm_insn ("st %4,%0\n\tst %D4,%1\n\tst %E4,%2\n\tst %F4,%3", operands);
return "";
}
return "stq %1,%0";
}
else
abort ();
}
/* Output assembler to move a quad word zero. */
const char *
i960_output_move_quad_zero (dst)
rtx dst;
{
rtx operands[4];
operands[0] = dst;
{
operands[1] = adjust_address (dst, word_mode, 4);
operands[2] = adjust_address (dst, word_mode, 8);
operands[3] = adjust_address (dst, word_mode, 12);
output_asm_insn ("st g14,%0\n\tst g14,%1\n\tst g14,%2\n\tst g14,%3", operands);
}
return "";
}
/* Emit insns to load a constant to non-floating point registers.
Uses several strategies to try to use as few insns as possible. */
const char *
i960_output_ldconst (dst, src)
register rtx dst, src;
{
register int rsrc1;
register unsigned rsrc2;
enum machine_mode mode = GET_MODE (dst);
rtx operands[4];
operands[0] = operands[2] = dst;
operands[1] = operands[3] = src;
/* Anything that isn't a compile time constant, such as a SYMBOL_REF,
must be a ldconst insn. */
if (GET_CODE (src) != CONST_INT && GET_CODE (src) != CONST_DOUBLE)
{
output_asm_insn ("ldconst %1,%0", operands);
return "";
}
else if (mode == TFmode)
{
REAL_VALUE_TYPE d;
long value_long[3];
int i;
if (fp_literal_zero (src, TFmode))
return "movt 0,%0";
REAL_VALUE_FROM_CONST_DOUBLE (d, src);
REAL_VALUE_TO_TARGET_LONG_DOUBLE (d, value_long);
output_asm_insn ("# ldconst %1,%0",operands);
for (i = 0; i < 3; i++)
{
operands[0] = gen_rtx_REG (SImode, REGNO (dst) + i);
operands[1] = GEN_INT (value_long[i]);
output_asm_insn (i960_output_ldconst (operands[0], operands[1]),
operands);
}
return "";
}
else if (mode == DFmode)
{
rtx first, second;
if (fp_literal_zero (src, DFmode))
return "movl 0,%0";
split_double (src, &first, &second);
output_asm_insn ("# ldconst %1,%0",operands);
operands[0] = gen_rtx_REG (SImode, REGNO (dst));
operands[1] = first;
output_asm_insn (i960_output_ldconst (operands[0], operands[1]),
operands);
operands[0] = gen_rtx_REG (SImode, REGNO (dst) + 1);
operands[1] = second;
output_asm_insn (i960_output_ldconst (operands[0], operands[1]),
operands);
return "";
}
else if (mode == SFmode)
{
REAL_VALUE_TYPE d;
long value;
REAL_VALUE_FROM_CONST_DOUBLE (d, src);
REAL_VALUE_TO_TARGET_SINGLE (d, value);
output_asm_insn ("# ldconst %1,%0",operands);
operands[0] = gen_rtx_REG (SImode, REGNO (dst));
operands[1] = GEN_INT (value);
output_asm_insn (i960_output_ldconst (operands[0], operands[1]),
operands);
return "";
}
else if (mode == TImode)
{
/* ??? This is currently not handled at all. */
abort ();
/* Note: lowest order word goes in lowest numbered reg. */
rsrc1 = INTVAL (src);
if (rsrc1 >= 0 && rsrc1 < 32)
return "movq %1,%0";
else
output_asm_insn ("movq\t0,%0\t# ldconstq %1,%0",operands);
/* Go pick up the low-order word. */
}
else if (mode == DImode)
{
rtx upperhalf, lowerhalf, xoperands[2];
if (GET_CODE (src) == CONST_DOUBLE || GET_CODE (src) == CONST_INT)
split_double (src, &lowerhalf, &upperhalf);
else
abort ();
/* Note: lowest order word goes in lowest numbered reg. */
/* Numbers from 0 to 31 can be handled with a single insn. */
rsrc1 = INTVAL (lowerhalf);
if (upperhalf == const0_rtx && rsrc1 >= 0 && rsrc1 < 32)
return "movl %1,%0";
/* Output the upper half with a recursive call. */
xoperands[0] = gen_rtx_REG (SImode, REGNO (dst) + 1);
xoperands[1] = upperhalf;
output_asm_insn (i960_output_ldconst (xoperands[0], xoperands[1]),
xoperands);
/* The lower word is emitted as normally. */
}
else
{
rsrc1 = INTVAL (src);
if (mode == QImode)
{
if (rsrc1 > 0xff)
rsrc1 &= 0xff;
}
else if (mode == HImode)
{
if (rsrc1 > 0xffff)
rsrc1 &= 0xffff;
}
}
if (rsrc1 >= 0)
{
/* ldconst 0..31,X -> mov 0..31,X */
if (rsrc1 < 32)
{
if (i960_last_insn_type == I_TYPE_REG && TARGET_C_SERIES)
return "lda %1,%0";
return "mov %1,%0";
}
/* ldconst 32..63,X -> add 31,nn,X */
if (rsrc1 < 63)
{
if (i960_last_insn_type == I_TYPE_REG && TARGET_C_SERIES)
return "lda %1,%0";
operands[1] = GEN_INT (rsrc1 - 31);
output_asm_insn ("addo\t31,%1,%0\t# ldconst %3,%0", operands);
return "";
}
}
else if (rsrc1 < 0)
{
/* ldconst -1..-31 -> sub 0,0..31,X */
if (rsrc1 >= -31)
{
/* return 'sub -(%1),0,%0' */
operands[1] = GEN_INT (- rsrc1);
output_asm_insn ("subo\t%1,0,%0\t# ldconst %3,%0", operands);
return "";
}
/* ldconst -32 -> not 31,X */
if (rsrc1 == -32)
{
operands[1] = GEN_INT (~rsrc1);
output_asm_insn ("not\t%1,%0 # ldconst %3,%0", operands);
return "";
}
}
/* If const is a single bit. */
if (bitpos (rsrc1) >= 0)
{
operands[1] = GEN_INT (bitpos (rsrc1));
output_asm_insn ("setbit\t%1,0,%0\t# ldconst %3,%0", operands);
return "";
}
/* If const is a bit string of less than 6 bits (1..31 shifted). */
if (is_mask (rsrc1))
{
int s, e;
if (bitstr (rsrc1, &s, &e) < 6)
{
rsrc2 = ((unsigned int) rsrc1) >> s;
operands[1] = GEN_INT (rsrc2);
operands[2] = GEN_INT (s);
output_asm_insn ("shlo\t%2,%1,%0\t# ldconst %3,%0", operands);
return "";
}
}
/* Unimplemented cases:
const is in range 0..31 but rotated around end of word:
ror 31,3,g0 -> ldconst 0xe0000003,g0
and any 2 instruction cases that might be worthwhile */
output_asm_insn ("ldconst %1,%0", operands);
return "";
}
/* Determine if there is an opportunity for a bypass optimization.
Bypass succeeds on the 960K* if the destination of the previous
instruction is the second operand of the current instruction.
Bypass always succeeds on the C*.
Return 1 if the pattern should interchange the operands.
CMPBR_FLAG is true if this is for a compare-and-branch insn.
OP1 and OP2 are the two source operands of a 3 operand insn. */
int
i960_bypass (insn, op1, op2, cmpbr_flag)
register rtx insn, op1, op2;
int cmpbr_flag;
{
register rtx prev_insn, prev_dest;
if (TARGET_C_SERIES)
return 0;
/* Can't do this if op1 isn't a register. */
if (! REG_P (op1))
return 0;
/* Can't do this for a compare-and-branch if both ops aren't regs. */
if (cmpbr_flag && ! REG_P (op2))
return 0;
prev_insn = prev_real_insn (insn);
if (prev_insn && GET_CODE (prev_insn) == INSN
&& GET_CODE (PATTERN (prev_insn)) == SET)
{
prev_dest = SET_DEST (PATTERN (prev_insn));
if ((GET_CODE (prev_dest) == REG && REGNO (prev_dest) == REGNO (op1))
|| (GET_CODE (prev_dest) == SUBREG
&& GET_CODE (SUBREG_REG (prev_dest)) == REG
&& REGNO (SUBREG_REG (prev_dest)) == REGNO (op1)))
return 1;
}
return 0;
}
/* Output the code which declares the function name. This also handles
leaf routines, which have special requirements, and initializes some
global variables. */
void
i960_function_name_declare (file, name, fndecl)
FILE *file;
const char *name;
tree fndecl;
{
register int i, j;
int leaf_proc_ok;
rtx insn;
/* Increment global return label. */
ret_label++;
/* Compute whether tail calls and leaf routine optimizations can be performed
for this function. */
if (TARGET_TAILCALL)
tail_call_ok = 1;
else
tail_call_ok = 0;
if (TARGET_LEAFPROC)
leaf_proc_ok = 1;
else
leaf_proc_ok = 0;
/* Even if nobody uses extra parms, can't have leafproc or tail calls if
argblock, because argblock uses g14 implicitly. */
if (current_function_args_size != 0 || VARARGS_STDARG_FUNCTION (fndecl))
{
tail_call_ok = 0;
leaf_proc_ok = 0;
}
/* See if caller passes in an address to return value. */
if (aggregate_value_p (DECL_RESULT (fndecl)))
{
tail_call_ok = 0;
leaf_proc_ok = 0;
}
/* Can not use tail calls or make this a leaf routine if there is a non
zero frame size. */
if (get_frame_size () != 0)
leaf_proc_ok = 0;
/* I don't understand this condition, and do not think that it is correct.
Apparently this is just checking whether the frame pointer is used, and
we can't trust regs_ever_live[fp] since it is (almost?) always set. */
if (tail_call_ok)
for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
if (GET_CODE (insn) == INSN
&& reg_mentioned_p (frame_pointer_rtx, insn))
{
tail_call_ok = 0;
break;
}
/* Check for CALL insns. Can not be a leaf routine if there are any. */
if (leaf_proc_ok)
for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
if (GET_CODE (insn) == CALL_INSN)
{
leaf_proc_ok = 0;
break;
}
/* Can not be a leaf routine if any non-call clobbered registers are
used in this function. */
if (leaf_proc_ok)
for (i = 0, j = 0; i < FIRST_PSEUDO_REGISTER; i++)
if (regs_ever_live[i]
&& ((! call_used_regs[i]) || (i > 7 && i < 12)))
{
/* Global registers. */
if (i < 16 && i > 7 && i != 13)
leaf_proc_ok = 0;
/* Local registers. */
else if (i < 32)
leaf_proc_ok = 0;
}
/* Now choose a leaf return register, if we can find one, and if it is
OK for this to be a leaf routine. */
i960_leaf_ret_reg = -1;
if (optimize && leaf_proc_ok)
{
for (i960_leaf_ret_reg = -1, i = 0; i < 8; i++)
if (regs_ever_live[i] == 0)
{
i960_leaf_ret_reg = i;
regs_ever_live[i] = 1;
break;
}
}
/* Do this after choosing the leaf return register, so it will be listed
if one was chosen. */
fprintf (file, "\t# Function '%s'\n", (name[0] == '*' ? &name[1] : name));
fprintf (file, "\t# Registers used: ");
for (i = 0, j = 0; i < FIRST_PSEUDO_REGISTER; i++)
{
if (regs_ever_live[i])
{
fprintf (file, "%s%s ", reg_names[i], call_used_regs[i] ? "" : "*");
if (i > 15 && j == 0)
{
fprintf (file,"\n\t#\t\t ");
j++;
}
}
}
fprintf (file, "\n");
if (i960_leaf_ret_reg >= 0)
{
/* Make it a leaf procedure. */
if (TREE_PUBLIC (fndecl))
fprintf (file,"\t.globl\t%s.lf\n", (name[0] == '*' ? &name[1] : name));
fprintf (file, "\t.leafproc\t");
assemble_name (file, name);
fprintf (file, ",%s.lf\n", (name[0] == '*' ? &name[1] : name));
ASM_OUTPUT_LABEL (file, name);
fprintf (file, "\tlda Li960R%d,g14\n", ret_label);
fprintf (file, "%s.lf:\n", (name[0] == '*' ? &name[1] : name));
fprintf (file, "\tmov g14,g%d\n", i960_leaf_ret_reg);
if (TARGET_C_SERIES)
{
fprintf (file, "\tlda 0,g14\n");
i960_last_insn_type = I_TYPE_MEM;
}
else
{
fprintf (file, "\tmov 0,g14\n");
i960_last_insn_type = I_TYPE_REG;
}
}
else
{
ASM_OUTPUT_LABEL (file, name);
i960_last_insn_type = I_TYPE_CTRL;
}
}
/* Compute and return the frame size. */
int
compute_frame_size (size)
int size;
{
int actual_fsize;
int outgoing_args_size = current_function_outgoing_args_size;
/* The STARTING_FRAME_OFFSET is totally hidden to us as far
as size is concerned. */
actual_fsize = (size + 15) & -16;
actual_fsize += (outgoing_args_size + 15) & -16;
return actual_fsize;
}
/* Here register group is range of registers which can be moved by
one i960 instruction. */
struct reg_group
{
char start_reg;
char length;
};
static int i960_form_reg_groups PARAMS ((int, int, int *, int, struct reg_group *));
static int i960_reg_group_compare PARAMS ((const void *, const void *));
static int i960_split_reg_group PARAMS ((struct reg_group *, int, int));
static void i960_arg_size_and_align PARAMS ((enum machine_mode, tree, int *, int *));
/* The following functions forms the biggest as possible register
groups with registers in STATE. REGS contain states of the
registers in range [start, finish_reg). The function returns the
number of groups formed. */
static int
i960_form_reg_groups (start_reg, finish_reg, regs, state, reg_groups)
int start_reg;
int finish_reg;
int *regs;
int state;
struct reg_group *reg_groups;
{
int i;
int nw = 0;
for (i = start_reg; i < finish_reg; )
{
if (regs [i] != state)
{
i++;
continue;
}
else if (i % 2 != 0 || regs [i + 1] != state)
reg_groups [nw].length = 1;
else if (i % 4 != 0 || regs [i + 2] != state)
reg_groups [nw].length = 2;
else if (regs [i + 3] != state)
reg_groups [nw].length = 3;
else
reg_groups [nw].length = 4;
reg_groups [nw].start_reg = i;
i += reg_groups [nw].length;
nw++;
}
return nw;
}
/* We sort register winodws in descending order by length. */
static int
i960_reg_group_compare (group1, group2)
const void *group1;
const void *group2;
{
const struct reg_group *w1 = group1;
const struct reg_group *w2 = group2;
if (w1->length > w2->length)
return -1;
else if (w1->length < w2->length)
return 1;
else
return 0;
}
/* Split the first register group in REG_GROUPS on subgroups one of
which will contain SUBGROUP_LENGTH registers. The function
returns new number of winodws. */
static int
i960_split_reg_group (reg_groups, nw, subgroup_length)
struct reg_group *reg_groups;
int nw;
int subgroup_length;
{
if (subgroup_length < reg_groups->length - subgroup_length)
/* This guarantees correct alignments of the two subgroups for
i960 (see spliting for the group length 2, 3, 4). More
generalized algorithm would require splitting the group more
two subgroups. */
subgroup_length = reg_groups->length - subgroup_length;
/* More generalized algorithm would require to try merging
subgroups here. But in case i960 it always results in failure
because of register group alignment. */
reg_groups[nw].length = reg_groups->length - subgroup_length;
reg_groups[nw].start_reg = reg_groups->start_reg + subgroup_length;
nw++;
reg_groups->length = subgroup_length;
qsort (reg_groups, nw, sizeof (struct reg_group), i960_reg_group_compare);
return nw;
}
/* Output code for the function prologue. */
static void
i960_output_function_prologue (file, size)
FILE *file;
HOST_WIDE_INT size;
{
register int i, j, nr;
int n_saved_regs = 0;
int n_remaining_saved_regs;
HOST_WIDE_INT lvar_size;
HOST_WIDE_INT actual_fsize, offset;
int gnw, lnw;
struct reg_group *g, *l;
char tmpstr[1000];
/* -1 if reg must be saved on proc entry, 0 if available, 1 if saved
somewhere. */
int regs[FIRST_PSEUDO_REGISTER];
/* All global registers (which must be saved) divided by groups. */
struct reg_group global_reg_groups [16];
/* All local registers (which are available) divided by groups. */
struct reg_group local_reg_groups [16];
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
if (regs_ever_live[i]
&& ((! call_used_regs[i]) || (i > 7 && i < 12))
/* No need to save the static chain pointer. */
&& ! (i == STATIC_CHAIN_REGNUM && current_function_needs_context))
{
regs[i] = -1;
/* Count global registers that need saving. */
if (i < 16)
n_saved_regs++;
}
else
regs[i] = 0;
n_remaining_saved_regs = n_saved_regs;
epilogue_string[0] = '\0';
if (current_function_profile)
{
/* When profiling, we may use registers 20 to 27 to save arguments, so
they can't be used here for saving globals. J is the number of
argument registers the mcount call will save. */
for (j = 7; j >= 0 && ! regs_ever_live[j]; j--)
;
for (i = 20; i <= j + 20; i++)
regs[i] = -1;
}
gnw = i960_form_reg_groups (0, 16, regs, -1, global_reg_groups);
lnw = i960_form_reg_groups (19, 32, regs, 0, local_reg_groups);
qsort (global_reg_groups, gnw, sizeof (struct reg_group),
i960_reg_group_compare);
qsort (local_reg_groups, lnw, sizeof (struct reg_group),
i960_reg_group_compare);
for (g = global_reg_groups, l = local_reg_groups; lnw != 0 && gnw != 0;)
{
if (g->length == l->length)
{
fprintf (file, "\tmov%s %s,%s\n",
((g->length == 4) ? "q" :
(g->length == 3) ? "t" :
(g->length == 2) ? "l" : ""),
reg_names[(unsigned char) g->start_reg],
reg_names[(unsigned char) l->start_reg]);
sprintf (tmpstr, "\tmov%s %s,%s\n",
((g->length == 4) ? "q" :
(g->length == 3) ? "t" :
(g->length == 2) ? "l" : ""),
reg_names[(unsigned char) l->start_reg],
reg_names[(unsigned char) g->start_reg]);
strcat (epilogue_string, tmpstr);
n_remaining_saved_regs -= g->length;
for (i = 0; i < g->length; i++)
{
regs [i + g->start_reg] = 1;
regs [i + l->start_reg] = -1;
regs_ever_live [i + l->start_reg] = 1;
}
g++;
l++;
gnw--;
lnw--;
}
else if (g->length > l->length)
gnw = i960_split_reg_group (g, gnw, l->length);
else
lnw = i960_split_reg_group (l, lnw, g->length);
}
actual_fsize = compute_frame_size (size) + 4 * n_remaining_saved_regs;
#if 0
/* ??? The 1.2.1 compiler does this also. This is meant to round the frame
size up to the nearest multiple of 16. I don't know whether this is
necessary, or even desirable.
The frame pointer must be aligned, but the call instruction takes care of
that. If we leave the stack pointer unaligned, we may save a little on
dynamic stack allocation. And we don't lose, at least according to the
i960CA manual. */
actual_fsize = (actual_fsize + 15) & ~0xF;
#endif
/* Check stack limit if necessary. */
if (current_function_limit_stack)
{
rtx min_stack = stack_limit_rtx;
if (actual_fsize != 0)
min_stack = plus_constant (stack_limit_rtx, -actual_fsize);
/* Now, emulate a little bit of reload. We want to turn 'min_stack'
into an arith_operand. Use register 20 as the temporary. */
if (legitimate_address_p (Pmode, min_stack, 1)
&& !arith_operand (min_stack, Pmode))
{
rtx tmp = gen_rtx_MEM (Pmode, min_stack);
fputs ("\tlda\t", file);
i960_print_operand (file, tmp, 0);
fputs (",r4\n", file);
min_stack = gen_rtx_REG (Pmode, 20);
}
if (arith_operand (min_stack, Pmode))
{
fputs ("\tcmpo\tsp,", file);
i960_print_operand (file, min_stack, 0);
fputs ("\n\tfaultge.f\n", file);
}
else
warning ("stack limit expression is not supported");
}
/* Allocate space for register save and locals. */
if (actual_fsize > 0)
{
if (actual_fsize < 32)
fprintf (file, "\taddo %d,sp,sp\n", actual_fsize);
else
fprintf (file, "\tlda\t%d(sp),sp\n", actual_fsize);
}
/* Take hardware register save area created by the call instruction
into account, but store them before the argument block area. */
lvar_size = actual_fsize - compute_frame_size (0) - n_remaining_saved_regs * 4;
offset = STARTING_FRAME_OFFSET + lvar_size;
/* Save registers on stack if needed. */
/* ??? Is it worth to use the same algorithm as one for saving
global registers in local registers? */
for (i = 0, j = n_remaining_saved_regs; j > 0 && i < 16; i++)
{
if (regs[i] != -1)
continue;
nr = 1;
if (i <= 14 && i % 2 == 0 && regs[i+1] == -1 && offset % 2 == 0)
nr = 2;
if (nr == 2 && i <= 12 && i % 4 == 0 && regs[i+2] == -1
&& offset % 4 == 0)
nr = 3;
if (nr == 3 && regs[i+3] == -1)
nr = 4;
fprintf (file,"\tst%s %s,%d(fp)\n",
((nr == 4) ? "q" :
(nr == 3) ? "t" :
(nr == 2) ? "l" : ""),
reg_names[i], offset);
sprintf (tmpstr,"\tld%s %d(fp),%s\n",
((nr == 4) ? "q" :
(nr == 3) ? "t" :
(nr == 2) ? "l" : ""),
offset, reg_names[i]);
strcat (epilogue_string, tmpstr);
i += nr-1;
j -= nr;
offset += nr * 4;
}
if (actual_fsize == 0)
return;
fprintf (file, "\t#Prologue stats:\n");
fprintf (file, "\t# Total Frame Size: %d bytes\n", actual_fsize);
if (lvar_size)
fprintf (file, "\t# Local Variable Size: %d bytes\n", lvar_size);
if (n_saved_regs)
fprintf (file, "\t# Register Save Size: %d regs, %d bytes\n",
n_saved_regs, n_saved_regs * 4);
fprintf (file, "\t#End Prologue#\n");
}
/* Output code for the function profiler. */
void
output_function_profiler (file, labelno)
FILE *file;
int labelno;
{
/* The last used parameter register. */
int last_parm_reg;
int i, j, increment;
int varargs_stdarg_function
= VARARGS_STDARG_FUNCTION (current_function_decl);
/* Figure out the last used parameter register. The proper thing to do
is to walk incoming args of the function. A function might have live
parameter registers even if it has no incoming args. Note that we
don't have to save parameter registers g8 to g11 because they are
call preserved. */
/* See also output_function_prologue, which tries to use local registers
for preserved call-saved global registers. */
for (last_parm_reg = 7;
last_parm_reg >= 0 && ! regs_ever_live[last_parm_reg];
last_parm_reg--)
;
/* Save parameter registers in regs r4 (20) to r11 (27). */
for (i = 0, j = 4; i <= last_parm_reg; i += increment, j += increment)
{
if (i % 4 == 0 && (last_parm_reg - i) >= 3)
increment = 4;
else if (i % 4 == 0 && (last_parm_reg - i) >= 2)
increment = 3;
else if (i % 2 == 0 && (last_parm_reg - i) >= 1)
increment = 2;
else
increment = 1;
fprintf (file, "\tmov%s g%d,r%d\n",
(increment == 4 ? "q" : increment == 3 ? "t"
: increment == 2 ? "l": ""), i, j);
}
/* If this function uses the arg pointer, then save it in r3 and then
set it to zero. */
if (current_function_args_size != 0 || varargs_stdarg_function)
fprintf (file, "\tmov g14,r3\n\tmov 0,g14\n");
/* Load location address into g0 and call mcount. */
fprintf (file, "\tlda\tLP%d,g0\n\tcallx\tmcount\n", labelno);
/* If this function uses the arg pointer, restore it. */
if (current_function_args_size != 0 || varargs_stdarg_function)
fprintf (file, "\tmov r3,g14\n");
/* Restore parameter registers. */
for (i = 0, j = 4; i <= last_parm_reg; i += increment, j += increment)
{
if (i % 4 == 0 && (last_parm_reg - i) >= 3)
increment = 4;
else if (i % 4 == 0 && (last_parm_reg - i) >= 2)
increment = 3;
else if (i % 2 == 0 && (last_parm_reg - i) >= 1)
increment = 2;
else
increment = 1;
fprintf (file, "\tmov%s r%d,g%d\n",
(increment == 4 ? "q" : increment == 3 ? "t"
: increment == 2 ? "l": ""), j, i);
}
}
/* Output code for the function epilogue. */
static void
i960_output_function_epilogue (file, size)
FILE *file;
HOST_WIDE_INT size ATTRIBUTE_UNUSED;
{
if (i960_leaf_ret_reg >= 0)
{
fprintf (file, "Li960R%d: ret\n", ret_label);
return;
}
if (*epilogue_string == 0)
{
register rtx tmp;
/* Emit a return insn, but only if control can fall through to here. */
tmp = get_last_insn ();
while (tmp)
{
if (GET_CODE (tmp) == BARRIER)
return;
if (GET_CODE (tmp) == CODE_LABEL)
break;
if (GET_CODE (tmp) == JUMP_INSN)
{
if (GET_CODE (PATTERN (tmp)) == RETURN)
return;
break;
}
if (GET_CODE (tmp) == NOTE)
{
tmp = PREV_INSN (tmp);
continue;
}
break;
}
fprintf (file, "Li960R%d: ret\n", ret_label);
return;
}
fprintf (file, "Li960R%d:\n", ret_label);
fprintf (file, "\t#EPILOGUE#\n");
/* Output the string created by the prologue which will restore all
registers saved by the prologue. */
if (epilogue_string[0] != '\0')
fprintf (file, "%s", epilogue_string);
/* Must clear g14 on return if this function set it.
Only varargs/stdarg functions modify g14. */
if (VARARGS_STDARG_FUNCTION (current_function_decl))
fprintf (file, "\tmov 0,g14\n");
fprintf (file, "\tret\n");
fprintf (file, "\t#End Epilogue#\n");
}
/* Output code for a call insn. */
const char *
i960_output_call_insn (target, argsize_rtx, arg_pointer, insn)
register rtx target, argsize_rtx, arg_pointer, insn;
{
int argsize = INTVAL (argsize_rtx);
rtx nexti = next_real_insn (insn);
rtx operands[2];
int varargs_stdarg_function
= VARARGS_STDARG_FUNCTION (current_function_decl);
operands[0] = target;
operands[1] = arg_pointer;
if (current_function_args_size != 0 || varargs_stdarg_function)
output_asm_insn ("mov g14,r3", operands);
if (argsize > 48)
output_asm_insn ("lda %a1,g14", operands);
else if (current_function_args_size != 0 || varargs_stdarg_function)
output_asm_insn ("mov 0,g14", operands);
/* The code used to assume that calls to SYMBOL_REFs could not be more
than 24 bits away (b vs bx, callj vs callx). This is not true. This
feature is now implemented by relaxing in the GNU linker. It can convert
bx to b if in range, and callx to calls/call/balx/bal as appropriate. */
/* Nexti could be zero if the called routine is volatile. */
if (optimize && (*epilogue_string == 0) && argsize == 0 && tail_call_ok
&& (nexti == 0 || GET_CODE (PATTERN (nexti)) == RETURN))
{
/* Delete following return insn. */
if (nexti && no_labels_between_p (insn, nexti))
delete_insn (nexti);
output_asm_insn ("bx %0", operands);
return "# notreached";
}
output_asm_insn ("callx %0", operands);
/* If the caller sets g14 to the address of the argblock, then the caller
must clear it after the return. */
if (current_function_args_size != 0 || varargs_stdarg_function)
output_asm_insn ("mov r3,g14", operands);
else if (argsize > 48)
output_asm_insn ("mov 0,g14", operands);
return "";
}
/* Output code for a return insn. */
const char *
i960_output_ret_insn (insn)
register rtx insn;
{
static char lbuf[20];
if (*epilogue_string != 0)
{
if (! TARGET_CODE_ALIGN && next_real_insn (insn) == 0)
return "";
sprintf (lbuf, "b Li960R%d", ret_label);
return lbuf;
}
/* Must clear g14 on return if this function set it.
Only varargs/stdarg functions modify g14. */
if (VARARGS_STDARG_FUNCTION (current_function_decl))
output_asm_insn ("mov 0,g14", 0);
if (i960_leaf_ret_reg >= 0)
{
sprintf (lbuf, "bx (%s)", reg_names[i960_leaf_ret_reg]);
return lbuf;
}
return "ret";
}
/* Print the operand represented by rtx X formatted by code CODE. */
void
i960_print_operand (file, x, code)
FILE *file;
rtx x;
int code;
{
enum rtx_code rtxcode = x ? GET_CODE (x) : NIL;
if (rtxcode == REG)
{
switch (code)
{
case 'D':
/* Second reg of a double or quad. */
fprintf (file, "%s", reg_names[REGNO (x)+1]);
break;
case 'E':
/* Third reg of a quad. */
fprintf (file, "%s", reg_names[REGNO (x)+2]);
break;
case 'F':
/* Fourth reg of a quad. */
fprintf (file, "%s", reg_names[REGNO (x)+3]);
break;
case 0:
fprintf (file, "%s", reg_names[REGNO (x)]);
break;
default:
abort ();
}
return;
}
else if (rtxcode == MEM)
{
output_address (XEXP (x, 0));
return;
}
else if (rtxcode == CONST_INT)
{
HOST_WIDE_INT val = INTVAL (x);
if (code == 'C')
val = ~val;
if (val > 9999 || val < -999)
fprintf (file, "0x%x", val);
else
fprintf (file, "%d", val);
return;
}
else if (rtxcode == CONST_DOUBLE)
{
char dstr[30];
if (x == CONST0_RTX (GET_MODE (x)))
{
fprintf (file, "0f0.0");
return;
}
else if (x == CONST1_RTX (GET_MODE (x)))
{
fprintf (file, "0f1.0");
return;
}
real_to_decimal (dstr, CONST_DOUBLE_REAL_VALUE (x), sizeof (dstr), 0, 1);
fprintf (file, "0f%s", dstr);
return;
}
switch(code)
{
case 'B':
/* Branch or jump, depending on assembler. */
if (TARGET_ASM_COMPAT)
fputs ("j", file);
else
fputs ("b", file);
break;
case 'S':
/* Sign of condition. */
if ((rtxcode == EQ) || (rtxcode == NE) || (rtxcode == GTU)
|| (rtxcode == LTU) || (rtxcode == GEU) || (rtxcode == LEU))
fputs ("o", file);
else if ((rtxcode == GT) || (rtxcode == LT)
|| (rtxcode == GE) || (rtxcode == LE))
fputs ("i", file);
else
abort();
break;
case 'I':
/* Inverted condition. */
rtxcode = reverse_condition (rtxcode);
goto normal;
case 'X':
/* Inverted condition w/ reversed operands. */
rtxcode = reverse_condition (rtxcode);
/* Fallthrough. */
case 'R':
/* Reversed operand condition. */
rtxcode = swap_condition (rtxcode);
/* Fallthrough. */
case 'C':
/* Normal condition. */
normal:
if (rtxcode == EQ) { fputs ("e", file); return; }
else if (rtxcode == NE) { fputs ("ne", file); return; }
else if (rtxcode == GT) { fputs ("g", file); return; }
else if (rtxcode == GTU) { fputs ("g", file); return; }
else if (rtxcode == LT) { fputs ("l", file); return; }
else if (rtxcode == LTU) { fputs ("l", file); return; }
else if (rtxcode == GE) { fputs ("ge", file); return; }
else if (rtxcode == GEU) { fputs ("ge", file); return; }
else if (rtxcode == LE) { fputs ("le", file); return; }
else if (rtxcode == LEU) { fputs ("le", file); return; }
else abort ();
break;
case '+':
/* For conditional branches, substitute ".t" or ".f". */
if (TARGET_BRANCH_PREDICT)
{
x = find_reg_note (current_output_insn, REG_BR_PROB, 0);
if (x)
{
int pred_val = INTVAL (XEXP (x, 0));
fputs ((pred_val < REG_BR_PROB_BASE / 2 ? ".f" : ".t"), file);
}
}
break;
case 0:
output_addr_const (file, x);
break;
default:
abort ();
}
return;
}
/* Print a memory address as an operand to reference that memory location.
This is exactly the same as legitimate_address_p, except that it the prints
addresses instead of recognizing them. */
void
i960_print_operand_addr (file, addr)
FILE *file;
register rtx addr;
{
rtx breg, ireg;
rtx scale, offset;
ireg = 0;
breg = 0;
offset = 0;
scale = const1_rtx;
if (GET_CODE (addr) == REG)
breg = addr;
else if (CONSTANT_P (addr))
offset = addr;
else if (GET_CODE (addr) == PLUS)
{
rtx op0, op1;
op0 = XEXP (addr, 0);
op1 = XEXP (addr, 1);
if (GET_CODE (op0) == REG)
{
breg = op0;
if (GET_CODE (op1) == REG)
ireg = op1;
else if (CONSTANT_P (op1))
offset = op1;
else
abort ();
}
else if (GET_CODE (op0) == PLUS)
{
if (GET_CODE (XEXP (op0, 0)) == MULT)
{
ireg = XEXP (XEXP (op0, 0), 0);
scale = XEXP (XEXP (op0, 0), 1);
if (GET_CODE (XEXP (op0, 1)) == REG)
{
breg = XEXP (op0, 1);
offset = op1;
}
else
abort ();
}
else if (GET_CODE (XEXP (op0, 0)) == REG)
{
breg = XEXP (op0, 0);
if (GET_CODE (XEXP (op0, 1)) == REG)
{
ireg = XEXP (op0, 1);
offset = op1;
}
else
abort ();
}
else
abort ();
}
else if (GET_CODE (op0) == MULT)
{
ireg = XEXP (op0, 0);
scale = XEXP (op0, 1);
if (GET_CODE (op1) == REG)
breg = op1;
else if (CONSTANT_P (op1))
offset = op1;
else
abort ();
}
else
abort ();
}
else if (GET_CODE (addr) == MULT)
{
ireg = XEXP (addr, 0);
scale = XEXP (addr, 1);
}
else
abort ();
if (offset)
output_addr_const (file, offset);
if (breg)
fprintf (file, "(%s)", reg_names[REGNO (breg)]);
if (ireg)
fprintf (file, "[%s*%d]", reg_names[REGNO (ireg)], INTVAL (scale));
}
/* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
that is a valid memory address for an instruction.
The MODE argument is the machine mode for the MEM expression
that wants to use this address.
On 80960, legitimate addresses are:
base ld (g0),r0
disp (12 or 32 bit) ld foo,r0
base + index ld (g0)[g1*1],r0
base + displ ld 0xf00(g0),r0
base + index*scale + displ ld 0xf00(g0)[g1*4],r0
index*scale + base ld (g0)[g1*4],r0
index*scale + displ ld 0xf00[g1*4],r0
index*scale ld [g1*4],r0
index + base + displ ld 0xf00(g0)[g1*1],r0
In each case, scale can be 1, 2, 4, 8, or 16. */
/* This is exactly the same as i960_print_operand_addr, except that
it recognizes addresses instead of printing them.
It only recognizes address in canonical form. LEGITIMIZE_ADDRESS should
convert common non-canonical forms to canonical form so that they will
be recognized. */
/* These two macros allow us to accept either a REG or a SUBREG anyplace
where a register is valid. */
#define RTX_OK_FOR_BASE_P(X, STRICT) \
((GET_CODE (X) == REG \
&& (STRICT ? REG_OK_FOR_BASE_P_STRICT (X) : REG_OK_FOR_BASE_P (X))) \
|| (GET_CODE (X) == SUBREG \
&& GET_CODE (SUBREG_REG (X)) == REG \
&& (STRICT ? REG_OK_FOR_BASE_P_STRICT (SUBREG_REG (X)) \
: REG_OK_FOR_BASE_P (SUBREG_REG (X)))))
#define RTX_OK_FOR_INDEX_P(X, STRICT) \
((GET_CODE (X) == REG \
&& (STRICT ? REG_OK_FOR_INDEX_P_STRICT (X) : REG_OK_FOR_INDEX_P (X)))\
|| (GET_CODE (X) == SUBREG \
&& GET_CODE (SUBREG_REG (X)) == REG \
&& (STRICT ? REG_OK_FOR_INDEX_P_STRICT (SUBREG_REG (X)) \
: REG_OK_FOR_INDEX_P (SUBREG_REG (X)))))
int
legitimate_address_p (mode, addr, strict)
enum machine_mode mode ATTRIBUTE_UNUSED;
register rtx addr;
int strict;
{
if (RTX_OK_FOR_BASE_P (addr, strict))
return 1;
else if (CONSTANT_P (addr))
return 1;
else if (GET_CODE (addr) == PLUS)
{
rtx op0, op1;
if (! TARGET_COMPLEX_ADDR && ! reload_completed)
return 0;
op0 = XEXP (addr, 0);
op1 = XEXP (addr, 1);
if (RTX_OK_FOR_BASE_P (op0, strict))
{
if (RTX_OK_FOR_INDEX_P (op1, strict))
return 1;
else if (CONSTANT_P (op1))
return 1;
else
return 0;
}
else if (GET_CODE (op0) == PLUS)
{
if (GET_CODE (XEXP (op0, 0)) == MULT)
{
if (! (RTX_OK_FOR_INDEX_P (XEXP (XEXP (op0, 0), 0), strict)
&& SCALE_TERM_P (XEXP (XEXP (op0, 0), 1))))
return 0;
if (RTX_OK_FOR_BASE_P (XEXP (op0, 1), strict)
&& CONSTANT_P (op1))
return 1;
else
return 0;
}
else if (RTX_OK_FOR_BASE_P (XEXP (op0, 0), strict))
{
if (RTX_OK_FOR_INDEX_P (XEXP (op0, 1), strict)
&& CONSTANT_P (op1))
return 1;
else
return 0;
}
else
return 0;
}
else if (GET_CODE (op0) == MULT)
{
if (! (RTX_OK_FOR_INDEX_P (XEXP (op0, 0), strict)
&& SCALE_TERM_P (XEXP (op0, 1))))
return 0;
if (RTX_OK_FOR_BASE_P (op1, strict))
return 1;
else if (CONSTANT_P (op1))
return 1;
else
return 0;
}
else
return 0;
}
else if (GET_CODE (addr) == MULT)
{
if (! TARGET_COMPLEX_ADDR && ! reload_completed)
return 0;
return (RTX_OK_FOR_INDEX_P (XEXP (addr, 0), strict)
&& SCALE_TERM_P (XEXP (addr, 1)));
}
else
return 0;
}
/* Try machine-dependent ways of modifying an illegitimate address
to be legitimate. If we find one, return the new, valid address.
This macro is used in only one place: `memory_address' in explow.c.
This converts some non-canonical addresses to canonical form so they
can be recognized. */
rtx
legitimize_address (x, oldx, mode)
register rtx x;
register rtx oldx ATTRIBUTE_UNUSED;
enum machine_mode mode ATTRIBUTE_UNUSED;
{
if (GET_CODE (x) == SYMBOL_REF)
{
abort ();
x = copy_to_reg (x);
}
if (! TARGET_COMPLEX_ADDR && ! reload_completed)
return x;
/* Canonicalize (plus (mult (reg) (const)) (plus (reg) (const)))
into (plus (plus (mult (reg) (const)) (reg)) (const)). This can be
created by virtual register instantiation, register elimination, and
similar optimizations. */
if (GET_CODE (x) == PLUS && GET_CODE (XEXP (x, 0)) == MULT
&& GET_CODE (XEXP (x, 1)) == PLUS)
x = gen_rtx_PLUS (Pmode,
gen_rtx_PLUS (Pmode, XEXP (x, 0), XEXP (XEXP (x, 1), 0)),
XEXP (XEXP (x, 1), 1));
/* Canonicalize (plus (plus (mult (reg) (const)) (plus (reg) (const))) const)
into (plus (plus (mult (reg) (const)) (reg)) (const)). */
else if (GET_CODE (x) == PLUS && GET_CODE (XEXP (x, 0)) == PLUS
&& GET_CODE (XEXP (XEXP (x, 0), 0)) == MULT
&& GET_CODE (XEXP (XEXP (x, 0), 1)) == PLUS
&& CONSTANT_P (XEXP (x, 1)))
{
rtx constant, other;
if (GET_CODE (XEXP (x, 1)) == CONST_INT)
{
constant = XEXP (x, 1);
other = XEXP (XEXP (XEXP (x, 0), 1), 1);
}
else if (GET_CODE (XEXP (XEXP (XEXP (x, 0), 1), 1)) == CONST_INT)
{
constant = XEXP (XEXP (XEXP (x, 0), 1), 1);
other = XEXP (x, 1);
}
else
constant = 0, other = 0;
if (constant)
x = gen_rtx_PLUS (Pmode,
gen_rtx_PLUS (Pmode, XEXP (XEXP (x, 0), 0),
XEXP (XEXP (XEXP (x, 0), 1), 0)),
plus_constant (other, INTVAL (constant)));
}
return x;
}
#if 0
/* Return the most stringent alignment that we are willing to consider
objects of size SIZE and known alignment ALIGN as having. */
int
i960_alignment (size, align)
int size;
int align;
{
int i;
if (! TARGET_STRICT_ALIGN)
if (TARGET_IC_COMPAT2_0 || align >= 4)
{
i = i960_object_bytes_bitalign (size) / BITS_PER_UNIT;
if (i > align)
align = i;
}
return align;
}
#endif
int
hard_regno_mode_ok (regno, mode)
int regno;
enum machine_mode mode;
{
if (regno < 32)
{
switch (mode)
{
case CCmode: case CC_UNSmode: case CC_CHKmode:
return 0;
case DImode: case DFmode:
return (regno & 1) == 0;
case TImode: case TFmode:
return (regno & 3) == 0;
default:
return 1;
}
}
else if (regno >= 32 && regno < 36)
{
switch (mode)
{
case SFmode: case DFmode: case TFmode:
case SCmode: case DCmode:
return 1;
default:
return 0;
}
}
else if (regno == 36)
{
switch (mode)
{
case CCmode: case CC_UNSmode: case CC_CHKmode:
return 1;
default:
return 0;
}
}
else if (regno == 37)
return 0;
abort ();
}
/* Return the minimum alignment of an expression rtx X in bytes. This takes
advantage of machine specific facts, such as knowing that the frame pointer
is always 16 byte aligned. */
int
i960_expr_alignment (x, size)
rtx x;
int size;
{
int align = 1;
if (x == 0)
return 1;
switch (GET_CODE(x))
{
case CONST_INT:
align = INTVAL(x);
if ((align & 0xf) == 0)
align = 16;
else if ((align & 0x7) == 0)
align = 8;
else if ((align & 0x3) == 0)
align = 4;
else if ((align & 0x1) == 0)
align = 2;
else
align = 1;
break;
case PLUS:
align = MIN (i960_expr_alignment (XEXP (x, 0), size),
i960_expr_alignment (XEXP (x, 1), size));
break;
case SYMBOL_REF:
/* If this is a valid program, objects are guaranteed to be
correctly aligned for whatever size the reference actually is. */
align = i960_object_bytes_bitalign (size) / BITS_PER_UNIT;
break;
case REG:
if (REGNO (x) == FRAME_POINTER_REGNUM)
align = 16;
break;
case ASHIFT:
align = i960_expr_alignment (XEXP (x, 0), size);
if (GET_CODE (XEXP (x, 1)) == CONST_INT)
{
align = align << INTVAL (XEXP (x, 1));
align = MIN (align, 16);
}
break;
case MULT:
align = (i960_expr_alignment (XEXP (x, 0), size) *
i960_expr_alignment (XEXP (x, 1), size));
align = MIN (align, 16);
break;
default:
break;
}
return align;
}
/* Return true if it is possible to reference both BASE and OFFSET, which
have alignment at least as great as 4 byte, as if they had alignment valid
for an object of size SIZE. */
int
i960_improve_align (base, offset, size)
rtx base;
rtx offset;
int size;
{
int i, j;
/* We have at least a word reference to the object, so we know it has to
be aligned at least to 4 bytes. */
i = MIN (i960_expr_alignment (base, 4),
i960_expr_alignment (offset, 4));
i = MAX (i, 4);
/* We know the size of the request. If strict align is not enabled, we
can guess that the alignment is OK for the requested size. */
if (! TARGET_STRICT_ALIGN)
if ((j = (i960_object_bytes_bitalign (size) / BITS_PER_UNIT)) > i)
i = j;
return (i >= size);
}
/* Return true if it is possible to access BASE and OFFSET, which have 4 byte
(SImode) alignment as if they had 16 byte (TImode) alignment. */
int
i960_si_ti (base, offset)
rtx base;
rtx offset;
{
return i960_improve_align (base, offset, 16);
}
/* Return true if it is possible to access BASE and OFFSET, which have 4 byte
(SImode) alignment as if they had 8 byte (DImode) alignment. */
int
i960_si_di (base, offset)
rtx base;
rtx offset;
{
return i960_improve_align (base, offset, 8);
}
/* Return raw values of size and alignment (in words) for the data
type being accessed. These values will be rounded by the caller. */
static void
i960_arg_size_and_align (mode, type, size_out, align_out)
enum machine_mode mode;
tree type;
int *size_out;
int *align_out;
{
int size, align;
/* Use formal alignment requirements of type being passed, except make
it at least a word. If we don't have a type, this is a library call,
and the parm has to be of scalar type. In this case, consider its
formal alignment requirement to be its size in words. */
if (mode == BLKmode)
size = (int_size_in_bytes (type) + UNITS_PER_WORD - 1) / UNITS_PER_WORD;
else if (mode == VOIDmode)
{
/* End of parm list. */
if (type == 0 || TYPE_MODE (type) != VOIDmode)
abort ();
size = 1;
}
else
size = (GET_MODE_SIZE (mode) + UNITS_PER_WORD - 1) / UNITS_PER_WORD;
if (type == 0)
align = size;
else if (TYPE_ALIGN (type) >= BITS_PER_WORD)
align = TYPE_ALIGN (type) / BITS_PER_WORD;
else
align = 1;
*size_out = size;
*align_out = align;
}
/* On the 80960 the first 12 args are in registers and the rest are pushed.
Any arg that is bigger than 4 words is placed on the stack and all
subsequent arguments are placed on the stack.
Additionally, parameters with an alignment requirement stronger than
a word must be aligned appropriately. Note that this means that a
64 bit object with a 32 bit alignment is not 64 bit aligned and may be
passed in an odd/even register pair. */
/* Update CUM to advance past an argument described by MODE and TYPE. */
void
i960_function_arg_advance (cum, mode, type, named)
CUMULATIVE_ARGS *cum;
enum machine_mode mode;
tree type;
int named ATTRIBUTE_UNUSED;
{
int size, align;
i960_arg_size_and_align (mode, type, &size, &align);
if (size > 4 || cum->ca_nstackparms != 0
|| (size + ROUND_PARM (cum->ca_nregparms, align)) > NPARM_REGS
|| MUST_PASS_IN_STACK (mode, type))
{
/* Indicate that all the registers are in use, even if all are not,
so va_start will compute the right value. */
cum->ca_nregparms = NPARM_REGS;
cum->ca_nstackparms = ROUND_PARM (cum->ca_nstackparms, align) + size;
}
else
cum->ca_nregparms = ROUND_PARM (cum->ca_nregparms, align) + size;
}
/* Return the register that the argument described by MODE and TYPE is
passed in, or else return 0 if it is passed on the stack. */
rtx
i960_function_arg (cum, mode, type, named)
CUMULATIVE_ARGS *cum;
enum machine_mode mode;
tree type;
int named ATTRIBUTE_UNUSED;
{
rtx ret;
int size, align;
if (mode == VOIDmode)
return 0;
i960_arg_size_and_align (mode, type, &size, &align);
if (size > 4 || cum->ca_nstackparms != 0
|| (size + ROUND_PARM (cum->ca_nregparms, align)) > NPARM_REGS
|| MUST_PASS_IN_STACK (mode, type))
{
cum->ca_nstackparms = ROUND_PARM (cum->ca_nstackparms, align);
ret = 0;
}
else
{
cum->ca_nregparms = ROUND_PARM (cum->ca_nregparms, align);
ret = gen_rtx_REG (mode, cum->ca_nregparms);
}
return ret;
}
/* Return the number of bits that an object of size N bytes is aligned to. */
int
i960_object_bytes_bitalign (n)
int n;
{
if (n > 8) n = 128;
else if (n > 4) n = 64;
else if (n > 2) n = 32;
else if (n > 1) n = 16;
else n = 8;
return n;
}
/* Compute the alignment for an aggregate type TSIZE.
Alignment is MAX (greatest member alignment,
MIN (pragma align, structure size alignment)). */
int
i960_round_align (align, type)
int align;
tree type;
{
int new_align;
tree tsize;
if (TARGET_OLD_ALIGN || TYPE_PACKED (type))
return align;
if (TREE_CODE (type) != RECORD_TYPE)
return align;
tsize = TYPE_SIZE (type);
if (! tsize || TREE_CODE (tsize) != INTEGER_CST)
return align;
new_align = i960_object_bytes_bitalign (TREE_INT_CST_LOW (tsize)
/ BITS_PER_UNIT);
/* Handle #pragma align. */
if (new_align > i960_maxbitalignment)
new_align = i960_maxbitalignment;
if (align < new_align)
align = new_align;
return align;
}
/* Do any needed setup for a varargs function. For the i960, we must
create a register parameter block if one doesn't exist, and then copy
all register parameters to memory. */
void
i960_setup_incoming_varargs (cum, mode, type, pretend_size, no_rtl)
CUMULATIVE_ARGS *cum;
enum machine_mode mode ATTRIBUTE_UNUSED;
tree type ATTRIBUTE_UNUSED;
int *pretend_size ATTRIBUTE_UNUSED;
int no_rtl;
{
/* Note: for a varargs fn with only a va_alist argument, this is 0. */
int first_reg = cum->ca_nregparms;
/* Copy only unnamed register arguments to memory. If there are
any stack parms, there are no unnamed arguments in registers, and
an argument block was already allocated by the caller.
Remember that any arg bigger than 4 words is passed on the stack as
are all subsequent args.
If there are no stack arguments but there are exactly NPARM_REGS
registers, either there were no extra arguments or the caller
allocated an argument block. */
if (cum->ca_nstackparms == 0 && first_reg < NPARM_REGS && !no_rtl)
{
rtx label = gen_label_rtx ();
rtx regblock, fake_arg_pointer_rtx;
/* Use a different rtx than arg_pointer_rtx so that cse and friends
can go on believing that the argument pointer can never be zero. */
fake_arg_pointer_rtx = gen_raw_REG (Pmode, ARG_POINTER_REGNUM);
/* If the argument pointer is 0, no arguments were passed on the stack
and we need to allocate a chunk to save the registers (if any
arguments were passed on the stack the caller would allocate the
48 bytes as well). We must allocate all 48 bytes (12*4) because
va_start assumes it. */
emit_insn (gen_cmpsi (fake_arg_pointer_rtx, const0_rtx));
emit_jump_insn (gen_bne (label));
emit_insn (gen_rtx_SET (VOIDmode, fake_arg_pointer_rtx,
stack_pointer_rtx));
emit_insn (gen_rtx_SET (VOIDmode, stack_pointer_rtx,
memory_address (SImode,
plus_constant (stack_pointer_rtx,
48))));
emit_label (label);
/* ??? Note that we unnecessarily store one extra register for stdarg
fns. We could optimize this, but it's kept as for now. */
regblock = gen_rtx_MEM (BLKmode,
plus_constant (arg_pointer_rtx, first_reg * 4));
set_mem_alias_set (regblock, get_varargs_alias_set ());
set_mem_align (regblock, BITS_PER_WORD);
move_block_from_reg (first_reg, regblock,
NPARM_REGS - first_reg,
(NPARM_REGS - first_reg) * UNITS_PER_WORD);
}
}
/* Define the `__builtin_va_list' type for the ABI. */
tree
i960_build_va_list ()
{
return build_array_type (unsigned_type_node,
build_index_type (size_one_node));
}
/* Implement `va_start' for varargs and stdarg. */
void
i960_va_start (valist, nextarg)
tree valist;
rtx nextarg ATTRIBUTE_UNUSED;
{
tree s, t, base, num;
rtx fake_arg_pointer_rtx;
/* The array type always decays to a pointer before we get here, so we
can't use ARRAY_REF. */
base = build1 (INDIRECT_REF, unsigned_type_node, valist);
num = build1 (INDIRECT_REF, unsigned_type_node,
build (PLUS_EXPR, unsigned_type_node, valist,
TYPE_SIZE_UNIT (TREE_TYPE (valist))));
/* Use a different rtx than arg_pointer_rtx so that cse and friends
can go on believing that the argument pointer can never be zero. */
fake_arg_pointer_rtx = gen_raw_REG (Pmode, ARG_POINTER_REGNUM);
s = make_tree (unsigned_type_node, fake_arg_pointer_rtx);
t = build (MODIFY_EXPR, unsigned_type_node, base, s);
TREE_SIDE_EFFECTS (t) = 1;
expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL);
s = build_int_2 ((current_function_args_info.ca_nregparms
+ current_function_args_info.ca_nstackparms) * 4, 0);
t = build (MODIFY_EXPR, unsigned_type_node, num, s);
TREE_SIDE_EFFECTS (t) = 1;
expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL);
}
/* Implement `va_arg'. */
rtx
i960_va_arg (valist, type)
tree valist, type;
{
HOST_WIDE_INT siz, ali;
tree base, num, pad, next, this, t1, t2, int48;
rtx addr_rtx;
/* The array type always decays to a pointer before we get here, so we
can't use ARRAY_REF. */
base = build1 (INDIRECT_REF, unsigned_type_node, valist);
num = build1 (INDIRECT_REF, unsigned_type_node,
build (PLUS_EXPR, unsigned_type_node, valist,
TYPE_SIZE_UNIT (TREE_TYPE (valist))));
/* Round up sizeof(type) to a word. */
siz = (int_size_in_bytes (type) + UNITS_PER_WORD - 1) & -UNITS_PER_WORD;
/* Round up alignment to a word. */
ali = TYPE_ALIGN (type);
if (ali < BITS_PER_WORD)
ali = BITS_PER_WORD;
ali /= BITS_PER_UNIT;
/* Align NUM appropriate for the argument. */
pad = fold (build (PLUS_EXPR, unsigned_type_node, num,
build_int_2 (ali - 1, 0)));
pad = fold (build (BIT_AND_EXPR, unsigned_type_node, pad,
build_int_2 (-ali, -1)));
pad = save_expr (pad);
/* Increment VPAD past this argument. */
next = fold (build (PLUS_EXPR, unsigned_type_node, pad,
build_int_2 (siz, 0)));
next = save_expr (next);
/* Find the offset for the current argument. Mind peculiar overflow
from registers to stack. */
int48 = build_int_2 (48, 0);
if (siz > 16)
t2 = integer_one_node;
else
t2 = fold (build (GT_EXPR, integer_type_node, next, int48));
t1 = fold (build (LE_EXPR, integer_type_node, num, int48));
t1 = fold (build (TRUTH_AND_EXPR, integer_type_node, t1, t2));
this = fold (build (COND_EXPR, unsigned_type_node, t1, int48, pad));
/* Find the address for the current argument. */
t1 = fold (build (PLUS_EXPR, unsigned_type_node, base, this));
t1 = build1 (NOP_EXPR, ptr_type_node, t1);
addr_rtx = expand_expr (t1, NULL_RTX, Pmode, EXPAND_NORMAL);
/* Increment NUM. */
t1 = build (MODIFY_EXPR, unsigned_type_node, num, next);
TREE_SIDE_EFFECTS (t1) = 1;
expand_expr (t1, const0_rtx, VOIDmode, EXPAND_NORMAL);
return addr_rtx;
}
/* Calculate the final size of the reg parm stack space for the current
function, based on how many bytes would be allocated on the stack. */
int
i960_final_reg_parm_stack_space (const_size, var_size)
int const_size;
tree var_size;
{
if (var_size || const_size > 48)
return 48;
else
return 0;
}
/* Calculate the size of the reg parm stack space. This is a bit complicated
on the i960. */
int
i960_reg_parm_stack_space (fndecl)
tree fndecl;
{
/* In this case, we are called from emit_library_call, and we don't need
to pretend we have more space for parameters than what's apparent. */
if (fndecl == 0)
return 0;
/* In this case, we are called from locate_and_pad_parms when we're
not IN_REGS, so we have an arg block. */
if (fndecl != current_function_decl)
return 48;
/* Otherwise, we have an arg block if the current function has more than
48 bytes of parameters. */
if (current_function_args_size != 0 || VARARGS_STDARG_FUNCTION (fndecl))
return 48;
else
return 0;
}
/* Return the register class of a scratch register needed to copy IN into
or out of a register in CLASS in MODE. If it can be done directly,
NO_REGS is returned. */
enum reg_class
secondary_reload_class (class, mode, in)
enum reg_class class;
enum machine_mode mode;
rtx in;
{
int regno = -1;
if (GET_CODE (in) == REG || GET_CODE (in) == SUBREG)
regno = true_regnum (in);
/* We can place anything into LOCAL_OR_GLOBAL_REGS and can put
LOCAL_OR_GLOBAL_REGS into anything. */
if (class == LOCAL_OR_GLOBAL_REGS || class == LOCAL_REGS
|| class == GLOBAL_REGS || (regno >= 0 && regno < 32))
return NO_REGS;
/* We can place any hard register, 0.0, and 1.0 into FP_REGS. */
if (class == FP_REGS
&& ((regno >= 0 && regno < FIRST_PSEUDO_REGISTER)
|| in == CONST0_RTX (mode) || in == CONST1_RTX (mode)))
return NO_REGS;
return LOCAL_OR_GLOBAL_REGS;
}
/* Look at the opcode P, and set i96_last_insn_type to indicate which
function unit it executed on. */
/* ??? This would make more sense as an attribute. */
void
i960_scan_opcode (p)
const char *p;
{
switch (*p)
{
case 'a':
case 'd':
case 'e':
case 'm':
case 'n':
case 'o':
case 'r':
/* Ret is not actually of type REG, but it won't matter, because no
insn will ever follow it. */
case 'u':
case 'x':
i960_last_insn_type = I_TYPE_REG;
break;
case 'b':
if (p[1] == 'x' || p[3] == 'x')
i960_last_insn_type = I_TYPE_MEM;
i960_last_insn_type = I_TYPE_CTRL;
break;
case 'f':
case 't':
i960_last_insn_type = I_TYPE_CTRL;
break;
case 'c':
if (p[1] == 'a')
{
if (p[4] == 'x')
i960_last_insn_type = I_TYPE_MEM;
else
i960_last_insn_type = I_TYPE_CTRL;
}
else if (p[1] == 'm')
{
if (p[3] == 'd')
i960_last_insn_type = I_TYPE_REG;
else if (p[4] == 'b' || p[4] == 'j')
i960_last_insn_type = I_TYPE_CTRL;
else
i960_last_insn_type = I_TYPE_REG;
}
else
i960_last_insn_type = I_TYPE_REG;
break;
case 'l':
i960_last_insn_type = I_TYPE_MEM;
break;
case 's':
if (p[1] == 't')
i960_last_insn_type = I_TYPE_MEM;
else
i960_last_insn_type = I_TYPE_REG;
break;
}
}
static void
i960_output_mi_thunk (file, thunk, delta, vcall_offset, function)
FILE *file;
tree thunk ATTRIBUTE_UNUSED;
HOST_WIDE_INT delta;
HOST_WIDE_INT vcall_offset ATTRIBUTE_UNUSED;
tree function;
{
int d = delta;
if (d < 0 && d > -32)
fprintf (file, "\tsubo %d,g0,g0\n", -d);
else if (d > 0 && d < 32)
fprintf (file, "\taddo %d,g0,g0\n", d);
else
{
fprintf (file, "\tldconst %d,r5\n", d);
fprintf (file, "\taddo r5,g0,g0\n");
}
fprintf (file, "\tbx ");
assemble_name (file, XSTR (XEXP (DECL_RTL (function), 0), 0));
fprintf (file, "\n");
}
|