summaryrefslogtreecommitdiff
path: root/gcc/config/m68hc11/m68hc11.h
blob: 07e640b63f7c4e31c7ae3d3f8361ab3409c30765 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
/* Definitions of target machine for GNU compiler.
   Motorola 68HC11 and 68HC12.
   Copyright (C) 1999, 2000, 2001 Free Software Foundation, Inc.
   Contributed by Stephane Carrez (stcarrez@worldnet.fr)

This file is part of GNU CC.

GNU CC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.

GNU CC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with GNU CC; see the file COPYING.  If not, write to
the Free Software Foundation, 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA.

Note:
   A first 68HC11 port was made by Otto Lind (otto@coactive.com)
   on gcc 2.6.3.  I have used it as a starting point for this port.
   However, this new port is a complete re-write.  Its internal
   design is completely different.  The generated code is not
   compatible with the gcc 2.6.3 port.

   The gcc 2.6.3 port is available at:

   ftp.unina.it/pub/electronics/motorola/68hc11/gcc/gcc-6811-fsf.tar.gz

*/

/*****************************************************************************
**
** Controlling the Compilation Driver, `gcc'
**
*****************************************************************************/

#undef ENDFILE_SPEC

/* Compile and assemble for a 68hc11 unless there is a -m68hc12 option.  */
#ifndef ASM_SPEC
#define ASM_SPEC       "%{m68hc12:-m68hc12}%{!m68hc12:-m68hc11}"
#endif

/* We need to tell the linker the target elf format.  Just pass an
   emulation option.  This can be overriden by -Wl option of gcc.  */
#ifndef LINK_SPEC
#define LINK_SPEC      "%{m68hc12:-m m68hc12elf}%{!m68hc12:-m m68hc11elf}"
#endif

#ifndef LIB_SPEC
#define LIB_SPEC       ""
#endif

#ifndef CC1_SPEC
#define CC1_SPEC       ""
#endif

#ifndef CPP_SPEC
#define CPP_SPEC  \
"%{mshort:-D__HAVE_SHORT_INT__ -D__INT__=16 -D__INT_MAX__=32767}\
 %{!mshort:-D__INT__=32 -D__INT_MAX__=2147483647}\
 %{m68hc12:-Dmc6812 -DMC6812 -Dmc68hc12}\
 %{!m68hc12:-Dmc6811 -DMC6811 -Dmc68hc11}\
 %{fshort-double:-D__HAVE_SHORT_DOUBLE__}"
#endif

#undef STARTFILE_SPEC
#define STARTFILE_SPEC "crt1%O%s"

/* Names to predefine in the preprocessor for this target machine.  */
#define CPP_PREDEFINES		"-Dmc68hc1x"

/* As an embedded target, we have no libc.  */
#define inhibit_libc

/* Forward type declaration for prototypes definitions.
   rtx_ptr is equivalent to rtx. Can't use the same name. */
struct rtx_def;
typedef struct rtx_def *rtx_ptr;

union tree_node;
typedef union tree_node *tree_ptr;

/* We can't declare enum machine_mode forward nor include 'machmode.h' here.
   Prototypes defined here will use an int instead. It's better than no
   prototype at all. */
typedef int enum_machine_mode;

/*****************************************************************************
**
** Run-time Target Specification
**
*****************************************************************************/

/* Run-time compilation parameters selecting different hardware subsets.  */

extern int target_flags;

extern short *reg_renumber;	/* def in local_alloc.c */

/* Macros used in the machine description to test the flags.  */

/* 6811 specific options
 *
 * For 68HC12, the auto inc/dec mode is disabled by default. The reason
 * is that for most programs, the reload pass will fail because it needs
 * more registers to save the value of the indexed register after the
 * memory access.  For simple programs, you can enable this
 * with -mauto-incdec.
 */

#define MASK_SHORT              0002	/* Compile with 16-bit `int' */
#define MASK_AUTO_INC_DEC       0004
#define MASK_M6811              0010
#define MASK_M6812              0020

#define TARGET_OP_TIME		(optimize && optimize_size == 0)
#define TARGET_SHORT            (target_flags & MASK_SHORT)
#define TARGET_M6811            (target_flags & MASK_M6811)
#define TARGET_M6812            (target_flags & MASK_M6812)
#define TARGET_AUTO_INC_DEC     (target_flags & MASK_AUTO_INC_DEC)

/* Default target_flags if no switches specified.  */
#ifndef TARGET_DEFAULT
# define TARGET_DEFAULT		(MASK_M6811)
#endif

/* Define this macro as a C expression for the initializer of an
   array of string to tell the driver program which options are
   defaults for this target and thus do not need to be handled
   specially when using `MULTILIB_OPTIONS'.  */
#ifndef MULTILIB_DEFAULTS
# if TARGET_DEFAULT & MASK_M6811
#  define MULTILIB_DEFAULTS { "m68hc11" }
# else
#  define MULTILIB_DEFAULTS { "m68hc12" }
# endif
#endif

/* Macro to define tables used to set the flags. This is a list in braces of
   pairs in braces, each pair being { "NAME", VALUE } where VALUE is the bits
   to set or minus the bits to clear. An empty string NAME is used to
   identify the default VALUE.  */

#define TARGET_SWITCHES						\
{ { "short", MASK_SHORT,					\
    N_("Compile with 16-bit integer mode")},			\
  { "noshort", - MASK_SHORT,					\
    N_("Compile with 32-bit integer mode")},			\
  { "auto-incdec", MASK_AUTO_INC_DEC,				\
    N_("Auto pre/post decrement increment allowed")},		\
  { "noauto-incdec", - MASK_AUTO_INC_DEC,			\
    N_("Auto pre/post decrement increment not allowed")},	\
  { "68hc11", MASK_M6811,					\
    N_("Compile for a 68HC11")},				\
  { "68hc12", MASK_M6812,					\
    N_("Compile for a 68HC12")},				\
  { "6811",   MASK_M6811,					\
    N_("Compile for a 68HC11")},				\
  { "6812",   MASK_M6812,					\
    N_("Compile for a 68HC12")},				\
  { "", TARGET_DEFAULT, 0 }}

/* This macro is similar to `TARGET_SWITCHES' but defines names of
   command options that have values.  Its definition is an
   initializer with a subgrouping for each command option.

   Each subgrouping contains a string constant, that defines the
   fixed part of the option name, and the address of a variable.  The
   variable, type `char *', is set to the variable part of the given
   option if the fixed part matches.  The actual option name is made
   by appending `-m' to the specified name.  */
#define TARGET_OPTIONS							\
{ { "reg-alloc=",	&m68hc11_reg_alloc_order,                       \
    N_("Specify the register allocation order")},			\
  { "soft-reg-count=",	&m68hc11_soft_reg_count,                        \
    N_("Indicate the number of soft registers available") },		\
  SUBTARGET_OPTIONS							\
}

/* These are meant to be redefined in the host dependent files */
#define SUBTARGET_SWITCHES
#define SUBTARGET_OPTIONS

extern const char *m68hc11_regparm_string;
extern const char *m68hc11_reg_alloc_order;
extern const char *m68hc11_soft_reg_count;

#ifndef TARGET_M68HC12
# define TARGET_M68HC11 1
#endif

/* Print subsidiary information on the compiler version in use.  */
#define TARGET_VERSION		fprintf (stderr, " (MC68HC11/MC68HC12)")

/* Sometimes certain combinations of command options do not make
   sense on a particular target machine.  You can define a macro
   `OVERRIDE_OPTIONS' to take account of this.  This macro, if
   defined, is executed once just after all the command options have
   been parsed.

   Don't use this macro to turn on various extra optimizations for
   `-O'.  That is what `OPTIMIZATION_OPTIONS' is for.  */

#define OVERRIDE_OPTIONS	m68hc11_override_options ();


/* Define cost parameters for a given processor variant.  */
struct processor_costs {
  const int add;		/* cost of an add instruction */
  const int logical;          /* cost of a logical instruction */
  const int shift_var;
  const int shiftQI_const[8];
  const int shiftHI_const[16];
  const int multQI;
  const int multHI;
  const int multSI;
  const int divQI;
  const int divHI;
  const int divSI;
};

/* Costs for the current processor.  */
extern const struct processor_costs *m68hc11_cost;


/* target machine storage layout */

/* Define this if most significant byte of a word is the lowest numbered.  */
#define BYTES_BIG_ENDIAN 	1

/* Define this if most significant bit is lowest numbered
   in instructions that operate on numbered bit-fields. */
#define BITS_BIG_ENDIAN         0

/* Define this if most significant word of a multiword number is numbered.  */
#define WORDS_BIG_ENDIAN 	1

/* Number of bits in an addressible storage unit */
#define BITS_PER_UNIT		8

/* Number of bits in a word */
#define BITS_PER_WORD		16

/* Width of a word, in units (bytes).  */
#define UNITS_PER_WORD		(BITS_PER_WORD/8)

/* Define if you don't want extended real, but do want to use the
   software floating point emulator for REAL_ARITHMETIC and
   decimal <-> binary conversion.  */
#define REAL_ARITHMETIC

/* Width in bits of a pointer.  See also the macro `Pmode' defined below.  */
#define POINTER_SIZE		16

/* Definition of size_t.  This is really an unsigned short as the
   68hc11 only handles a 64K address space.  */
#define SIZE_TYPE               "short unsigned int"

/* A C expression for a string describing the name of the data type
   to use for the result of subtracting two pointers.  The typedef
   name `ptrdiff_t' is defined using the contents of the string.
   The 68hc11 only has a 64K address space.  */
#define PTRDIFF_TYPE            "short int"

/* Allocation boundary (bits) for storing pointers in memory.  */
#define POINTER_BOUNDARY	8

/* Normal alignment required for function parameters on the stack, in bits.
   This can't be less than BITS_PER_WORD */
#define PARM_BOUNDARY		(BITS_PER_WORD)

/* Boundary (bits) on which stack pointer should be aligned.  */
#define STACK_BOUNDARY		8

/* Allocation boundary (bits) for the code of a function.  */
#define FUNCTION_BOUNDARY	8

/* Biggest alignment that any data type can require on this machine,
   in bits. */
#define BIGGEST_ALIGNMENT	8

/* Alignment of field after `int : 0' in a structure.  */
#define EMPTY_FIELD_BOUNDARY	8

/* Every structure's size must be a multiple of this.  */
#define STRUCTURE_SIZE_BOUNDARY 8

/* Define this if instructions will fail to work if given data not
   on the nominal alignment.  If instructions will merely go slower
   in that case, do not define this macro.  */
#define STRICT_ALIGNMENT	0

/* An integer expression for the size in bits of the largest integer
   machine mode that should actually be used.  All integer machine modes of
   this size or smaller can be used for structures and unions with the
   appropriate sizes.  */
#define MAX_FIXED_MODE_SIZE	64

/* Floats are checked in a generic way. */
/* #define CHECK_FLOAT_VALUE(MODE, D, OVERFLOW) */



/* target machine storage layout */

/* Size (bits) of the type "int" on target machine
   (If undefined, default is BITS_PER_WORD).  */
#define INT_TYPE_SIZE           (TARGET_SHORT ? 16 : 32)

/* Size (bits) of the type "short" on target machine */
#define SHORT_TYPE_SIZE		16

/* Size (bits) of the type "long" on target machine */
#define LONG_TYPE_SIZE		32

/* Size (bits) of the type "long long" on target machine */
#define LONG_LONG_TYPE_SIZE     64

/* Size (bits) of the type "char" on target machine */
#define CHAR_TYPE_SIZE		8

/* A C expression for the size in bits of the type `float' on the
   target machine. If you don't define this, the default is one word.
   Don't use default: a word is only 16.  */
#define FLOAT_TYPE_SIZE         32

/* A C expression for the size in bits of the type double on the target
   machine. If you don't define this, the default is two words.
   Be IEEE compliant.  */
#define DOUBLE_TYPE_SIZE        64

#define LONG_DOUBLE_TYPE_SIZE   64

/* Define this as 1 if `char' should by default be signed; else as 0.  */
#define DEFAULT_SIGNED_CHAR	0

/* Define these to avoid dependence on meaning of `int'.
   Note that WCHAR_TYPE_SIZE is used in cexp.y,
   where TARGET_SHORT is not available.  */
#define WCHAR_TYPE              "short int"
#define WCHAR_TYPE_SIZE         16


/* Standard register usage.  */

#define HARD_REG_SIZE           (UNITS_PER_WORD)

/* Assign names to real MC68HC11 registers.
   A and B registers are not really used (A+B = D)
   X register is first so that GCC allocates X+D for 32-bit integers and
   the lowpart of that integer will be D.  Having the lower part in D is
   better for 32<->16bit conversions and for many arithmetic operations.  */
#define HARD_X_REGNUM		0
#define HARD_D_REGNUM		1
#define HARD_Y_REGNUM		2
#define HARD_SP_REGNUM		3
#define HARD_PC_REGNUM		4
#define HARD_A_REGNUM		5
#define HARD_B_REGNUM		6
#define HARD_CCR_REGNUM		7

/* The Z register does not really exist in the 68HC11.  This a fake register
   for GCC.  It is treated exactly as an index register (X or Y).  It is only
   in the A_REGS class, which is the BASE_REG_CLASS for GCC.  Defining this
   register helps the reload pass of GCC.  Otherwise, the reload often aborts
   with register spill failures.

   The Z register is replaced by either X or Y during the machine specific
   reorg (m68hc11_reorg).  It is saved in the SOFT_Z_REGNUM soft-register
   when this is necessary.

   It's possible to tell GCC not to use this register with -ffixed-z.  */
#define HARD_Z_REGNUM           8

/* The frame pointer is a soft-register.  It's treated as such by GCC:
   it is not and must not be part of the BASE_REG_CLASS.  */
#define DEFAULT_HARD_FP_REGNUM  (9)
#define HARD_FP_REGNUM		(9)
#define HARD_AP_REGNUM		(HARD_FP_REGNUM)

/* Temporary soft-register used in some cases when an operand came
   up into a bad register class (D, X, Y, SP) and gcc failed to
   recognize this. This register is never allocated by GCC.  */
#define SOFT_TMP_REGNUM          10

/* The soft-register which is used to save the Z register
   (see Z register replacement notes in m68hc11.c).  */
#define SOFT_Z_REGNUM            11

/* The soft-register which is used to save either X or Y. */
#define SOFT_SAVED_XY_REGNUM     12

/* A fake clobber register for 68HC12 patterns.  */
#define FAKE_CLOBBER_REGNUM     (13)

/* Define 32 soft-registers of 16-bit each.  By default,
   only 12 of them are enabled and can be used by GCC.  The
   -msoft-reg-count=<n> option allows to control the number of valid
   soft-registers. GCC can put 32-bit values in them
   by allocating consecutive registers.  The first 3 soft-registers
   are never allocated by GCC.  They are used in case the insn template needs
   a temporary register, or for the Z register replacement.  */

#define MAX_SOFT_REG_COUNT      (32)
#define SOFT_REG_FIXED          0, 0, 0, 0, 0, 0, 0, 0, \
				0, 0, 0, 0, 1, 1, 1, 1, \
				1, 1, 1, 1, 1, 1, 1, 1, \
				1, 1, 1, 1, 1, 1, 1, 1
#define SOFT_REG_USED           0, 0, 0, 0, 0, 0, 0, 0, \
				0, 0, 0, 0, 1, 1, 1, 1, \
				1, 1, 1, 1, 1, 1, 1, 1, \
				1, 1, 1, 1, 1, 1, 1, 1
#define SOFT_REG_ORDER		\
SOFT_REG_FIRST, SOFT_REG_FIRST+1,SOFT_REG_FIRST+2,SOFT_REG_FIRST+3,\
SOFT_REG_FIRST+4, SOFT_REG_FIRST+5,SOFT_REG_FIRST+6,SOFT_REG_FIRST+7,\
SOFT_REG_FIRST+8, SOFT_REG_FIRST+9,SOFT_REG_FIRST+10,SOFT_REG_FIRST+11,\
SOFT_REG_FIRST+12, SOFT_REG_FIRST+13,SOFT_REG_FIRST+14,SOFT_REG_FIRST+15,\
SOFT_REG_FIRST+16, SOFT_REG_FIRST+17,SOFT_REG_FIRST+18,SOFT_REG_FIRST+19,\
SOFT_REG_FIRST+20, SOFT_REG_FIRST+21,SOFT_REG_FIRST+22,SOFT_REG_FIRST+23,\
SOFT_REG_FIRST+24, SOFT_REG_FIRST+25,SOFT_REG_FIRST+26,SOFT_REG_FIRST+27,\
SOFT_REG_FIRST+28, SOFT_REG_FIRST+29,SOFT_REG_FIRST+30,SOFT_REG_FIRST+31

#define SOFT_REG_NAMES							\
"*_.d1",  "*_.d2",  "*_.d3",  "*_.d4", \
"*_.d5",  "*_.d6",  "*_.d7",  "*_.d8",	\
"*_.d9",  "*_.d10", "*_.d11", "*_.d12", \
"*_.d13", "*_.d14", "*_.d15", "*_.d16",	\
"*_.d17", "*_.d18", "*_.d19", "*_.d20", \
"*_.d21", "*_.d22", "*_.d23", "*_.d24", \
"*_.d25", "*_.d26", "*_.d27", "*_.d28", \
"*_.d29", "*_.d30", "*_.d31", "*_.d32"

/* First available soft-register for GCC. */
#define SOFT_REG_FIRST          (SOFT_SAVED_XY_REGNUM+2)

/* Last available soft-register for GCC. */
#define SOFT_REG_LAST           (SOFT_REG_FIRST+MAX_SOFT_REG_COUNT)
#define SOFT_FP_REGNUM		(SOFT_REG_LAST)
#define SOFT_AP_REGNUM		(SOFT_FP_REGNUM+1)

/* Number of actual hardware registers. The hardware registers are assigned
   numbers for the compiler from 0 to just below FIRST_PSEUDO_REGISTER. 
   All registers that the compiler knows about must be given numbers, even
   those that are not normally considered general registers. */
#define FIRST_PSEUDO_REGISTER	(SOFT_REG_LAST+2)

/* 1 for registers that have pervasive standard uses and are not available
   for the register allocator. */
#define FIXED_REGISTERS \
  {0, 0, 0, 1, 1, 1, 1, 1,   0, 1,  1,   1,1, 1, SOFT_REG_FIXED, 1, 1}
/* X, D, Y, SP,PC,A, B, CCR, Z, FP,ZTMP,ZR,XYR, FK, D1 - D32, SOFT-FP, AP */

/* 1 for registers not available across function calls. For our pseudo
   registers, all are available.  */
#define CALL_USED_REGISTERS \
  {1, 1, 1, 1, 1, 1, 1, 1,   1, 1,  1,   1,1, 1, SOFT_REG_USED, 1, 1}
/* X, D, Y, SP,PC,A, B, CCR, Z, FP, ZTMP,ZR,XYR, D1 - 32,     SOFT-FP, AP */


/* Define this macro to change register usage conditional on target flags.

   The soft-registers are disabled or enabled according to the
  -msoft-reg-count=<n> option. */


#define CONDITIONAL_REGISTER_USAGE (m68hc11_conditional_register_usage ())

/* List the order in which to allocate registers.  Each register must be
   listed once, even those in FIXED_REGISTERS.  */
#define REG_ALLOC_ORDER							\
{ HARD_D_REGNUM, HARD_X_REGNUM, HARD_Y_REGNUM,				\
  SOFT_REG_ORDER, HARD_Z_REGNUM, HARD_PC_REGNUM, HARD_A_REGNUM,		\
  HARD_B_REGNUM, HARD_CCR_REGNUM, HARD_FP_REGNUM, SOFT_FP_REGNUM,	\
  HARD_SP_REGNUM, SOFT_TMP_REGNUM, SOFT_Z_REGNUM, SOFT_SAVED_XY_REGNUM, \
  SOFT_AP_REGNUM, FAKE_CLOBBER_REGNUM  }

/* A C expression for the number of consecutive hard registers,
   starting at register number REGNO, required to hold a value of
   mode MODE.  */
#define HARD_REGNO_NREGS(REGNO, MODE) \
((Q_REGNO_P (REGNO)) ? (GET_MODE_SIZE (MODE)) : \
   ((GET_MODE_SIZE (MODE) + HARD_REG_SIZE - 1) / HARD_REG_SIZE))

/* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
    - 8 bit values are stored anywhere (except the SP register).
    - 16 bit values can be stored in any register whose mode is 16
    - 32 bit values can be stored in D, X registers or in a soft register
      (except the last one because we need 2 soft registers)
    - Values whose size is > 32 bit are not stored in real hard
      registers.  They may be stored in soft registers if there are
      enough of them.  */
#define HARD_REGNO_MODE_OK(REGNO, MODE) \
     hard_regno_mode_ok (REGNO,MODE)

/* Value is 1 if it is a good idea to tie two pseudo registers when one has
   mode MODE1 and one has mode MODE2.  If HARD_REGNO_MODE_OK could produce
   different values for MODE1 and MODE2, for any hard reg, then this must be
   0 for correct output.  */
#define MODES_TIEABLE_P(MODE1, MODE2)                   \
     (((MODE1) == (MODE2))                              \
      || ((MODE1) == SImode && (MODE2) == HImode)	\
      || ((MODE1) == HImode && (MODE2) == SImode))


/* Define the classes of registers for register constraints in the
   machine description.  Also define ranges of constants.

   One of the classes must always be named ALL_REGS and include all hard regs.
   If there is more than one class, another class must be named NO_REGS
   and contain no registers.

   The name GENERAL_REGS must be the name of a class (or an alias for
   another name such as ALL_REGS).  This is the class of registers
   that is allowed by "g" or "r" in a register constraint.
   Also, registers outside this class are allocated only when
   instructions express preferences for them.

   The classes must be numbered in nondecreasing order; that is,
   a larger-numbered class must never be contained completely
   in a smaller-numbered class.

   For any two classes, it is very desirable that there be another
   class that represents their union.  */

/* The M68hc11 has so fiew registers that it's not possible for GCC to
   do any register allocation without breaking. We extend the processor
   registers by having soft registers. These registers are treated as
   hard registers by GCC but they are located in memory and accessed by page0
   accesses (IND mode).  */
enum reg_class
{
  NO_REGS,
  D_REGS,			/* 16-bit data register */
  X_REGS,			/* 16-bit X register */
  Y_REGS,			/* 16-bit Y register */
  SP_REGS,			/* 16 bit stack pointer */
  DA_REGS,			/* 8-bit A reg. */
  DB_REGS,			/* 8-bit B reg. */
  Z_REGS,			/* 16-bit fake Z register */
  D8_REGS,			/* 8-bit A or B reg. */
  Q_REGS,			/* 8-bit (byte (QI)) data (A, B or D) */
  D_OR_X_REGS,			/* D or X register */
  D_OR_Y_REGS,			/* D or Y register */
  D_OR_SP_REGS,			/* D or SP register */
  X_OR_Y_REGS,			/* IX or Y register */
  A_REGS,			/* 16-bit address register (X, Y, Z) */
  X_OR_SP_REGS,			/* X or SP register */
  Y_OR_SP_REGS,			/* Y or SP register */
  X_OR_Y_OR_D_REGS,		/* X, Y or D */
  A_OR_D_REGS,			/* X, Y, Z or D */
  A_OR_SP_REGS,			/* X, Y, Z or SP */
  H_REGS,			/* 16-bit hard register (D, X, Y, Z, SP) */
  S_REGS,			/* 16-bit soft register */
  D_OR_S_REGS,			/* 16-bit soft register or D register */
  X_OR_S_REGS,			/* 16-bit soft register or X register */
  Y_OR_S_REGS,			/* 16-bit soft register or Y register */
  SP_OR_S_REGS,			/* 16-bit soft register or SP register */
  D_OR_X_OR_S_REGS,		/* 16-bit soft register or D or X register */
  D_OR_Y_OR_S_REGS,		/* 16-bit soft register or D or Y register */
  D_OR_SP_OR_S_REGS,		/* 16-bit soft register or D or SP register */
  A_OR_S_REGS,			/* 16-bit soft register or X, Y registers */
  D_OR_A_OR_S_REGS,		/* 16-bit soft register or D, X, Y registers */
  TMP_REGS,			/* 16 bit fake scratch register */
  D_OR_A_OR_TMP_REGS,		/* General scratch register */
  G_REGS,			/* 16-bit general register
                                   (H_REGS + soft registers) */
  ALL_REGS,
  LIM_REG_CLASSES
};

/* alias GENERAL_REGS to G_REGS. */
#define GENERAL_REGS	G_REGS

#define N_REG_CLASSES	(int) LIM_REG_CLASSES

/* Give names of register classes as strings for dump file.   */
#define REG_CLASS_NAMES \
{ "NO_REGS",                                    \
      "D_REGS",                                 \
      "X_REGS",                                 \
      "Y_REGS",                                 \
      "SP_REGS",                                \
      "DA_REGS",                                \
      "DB_REGS",                                \
      "D8_REGS",                                \
      "Z_REGS",                                 \
      "Q_REGS",                                 \
      "D_OR_X_REGS",                            \
      "D_OR_Y_REGS",                            \
      "D_OR_SP_REGS",                           \
      "X_OR_Y_REGS",                            \
      "A_REGS",                                 \
      "X_OR_SP_REGS",                           \
      "Y_OR_SP_REGS",                           \
      "X_OR_Y_OR_D_REGS",                       \
      "A_OR_D_REGS",                            \
      "A_OR_SP_REGS",                           \
      "H_REGS",                                 \
      "S_REGS",                                 \
      "D_OR_S_REGS",                            \
      "X_OR_S_REGS",                            \
      "Y_OR_S_REGS",                            \
      "SP_OR_S_REGS",                           \
      "D_OR_X_OR_S_REGS",                       \
      "D_OR_Y_OR_S_REGS",                       \
      "D_OR_SP_OR_S_REGS",                      \
      "A_OR_S_REGS",                            \
      "D_OR_A_OR_S_REGS",                       \
      "TMP_REGS",				\
      "D_OR_A_OR_TMP_REGS",			\
      "G_REGS",                                 \
      "ALL_REGS" }

/* An initializer containing the contents of the register classes,
   as integers which are bit masks.  The Nth integer specifies the
   contents of class N.  The way the integer MASK is interpreted is
   that register R is in the class if `MASK & (1 << R)' is 1.  */

/*--------------------------------------------------------------
   X		0x00000001
   D		0x00000002
   Y		0x00000004
   SP		0x00000008
   PC		0x00000010
   A		0x00000020
   B		0x00000040
   CCR		0x00000080
   Z		0x00000100
   FRAME        0x00000200
   ZTMP		0x00000400
   ZREG		0x00000800
   XYREG	0x00001000
   FAKE         0x00002000
   Di		0xFFFFc000, 0x03FFF
   SFRAME       0x00000000, 0x04000
   AP           0x00000000, 0x08000

   D_OR_X_REGS represents D+X. It is used for 32-bits numbers.
   A_REGS      represents a valid base register for indexing. It represents
	       X,Y and the Z register.
   S_REGS      represents the soft-registers. This includes the hard frame
	       and soft frame registers.
--------------------------------------------------------------*/

#define REG_CLASS_CONTENTS \
/* NO_REGS */		{{ 0x00000000, 0x00000000 },			\
/* D_REGS  */		 { 0x00000002, 0x00000000 }, /* D */            \
/* X_REGS  */		 { 0x00000001, 0x00000000 }, /* X */            \
/* Y_REGS  */		 { 0x00000004, 0x00000000 }, /* Y */            \
/* SP_REGS */		 { 0x00000008, 0x00000000 }, /* SP */           \
/* DA_REGS */		 { 0x00000020, 0x00000000 }, /* A */            \
/* DB_REGS */		 { 0x00000040, 0x00000000 }, /* B */            \
/* D8_REGS */		 { 0x00000060, 0x00000000 }, /* A B */          \
/* Z_REGS  */		 { 0x00000100, 0x00000000 }, /* Z */            \
/* Q_REGS  */		 { 0x00000062, 0x00000000 }, /* A B D */        \
/* D_OR_X_REGS */        { 0x00000003, 0x00000000 }, /* D X */          \
/* D_OR_Y_REGS */        { 0x00000006, 0x00000000 }, /* D Y */          \
/* D_OR_SP_REGS */       { 0x0000000A, 0x00000000 }, /* D SP */         \
/* X_OR_Y_REGS  */	 { 0x00000005, 0x00000000 }, /* X Y */          \
/* A_REGS  */		 { 0x00000105, 0x00000000 }, /* X Y Z */        \
/* X_OR_SP_REGS */       { 0x00000009, 0x00000000 }, /* X SP */         \
/* Y_OR_SP_REGS */       { 0x0000000C, 0x00000000 }, /* Y SP */         \
/* X_OR_Y_OR_D_REGS */   { 0x00000007, 0x00000000 }, /* D X Y */        \
/* A_OR_D_REGS  */       { 0x00000107, 0x00000000 }, /* D X Y Z */      \
/* A_OR_SP_REGS */       { 0x0000010D, 0x00000000 }, /* X Y SP */       \
/* H_REGS  */		 { 0x0000010F, 0x00000000 }, /* D X Y SP */     \
/* S_REGS  */		 { 0xFFFFDE00, 0x00007FFF }, /* _.D,..,FP,Z*  */  \
/* D_OR_S_REGS */	 { 0xFFFFDE02, 0x00007FFF }, /* D _.D */        \
/* X_OR_S_REGS */	 { 0xFFFFDE01, 0x00007FFF }, /* X _.D */        \
/* Y_OR_S_REGS */	 { 0xFFFFDE04, 0x00007FFF }, /* Y _.D */        \
/* SP_OR_S_REGS */	 { 0xFFFFDE08, 0x00007FFF }, /* SP _.D */	\
/* D_OR_X_OR_S_REGS */	 { 0xFFFFDE03, 0x00007FFF }, /* D X _.D */      \
/* D_OR_Y_OR_S_REGS */	 { 0xFFFFDE06, 0x00007FFF }, /* D Y _.D */      \
/* D_OR_SP_OR_S_REGS */	 { 0xFFFFDE0A, 0x00007FFF }, /* D SP _.D */     \
/* A_OR_S_REGS */	 { 0xFFFFDF05, 0x00007FFF }, /* X Y _.D */      \
/* D_OR_A_OR_S_REGS */	 { 0xFFFFDF07, 0x00007FFF }, /* D X Y _.D */    \
/* TMP_REGS  */	         { 0x00002000, 0x00000000 }, /* FAKE */		\
/* D_OR_A_OR_TMP_REGS*/  { 0x00002107, 0x00000000 }, /* D X Y Z Fake */  \
/* G_REGS  */		 { 0xFFFFFF1F, 0x00007FFF }, /* ? _.D D X Y */   \
/* ALL_REGS*/		 { 0xFFFFFFFF, 0x00007FFF }}


/* set up a C expression whose value is a register class containing hard
   register REGNO */
#define Q_REGNO_P(REGNO)	((REGNO) == HARD_A_REGNUM \
				 || (REGNO) == HARD_B_REGNUM)
#define Q_REG_P(X)              (REG_P (X) && Q_REGNO_P (REGNO (X)))

#define D_REGNO_P(REGNO)        ((REGNO) == HARD_D_REGNUM)
#define D_REG_P(X)              (REG_P (X) && D_REGNO_P (REGNO (X)))

#define DB_REGNO_P(REGNO)       ((REGNO) == HARD_B_REGNUM)
#define DB_REG_P(X)             (REG_P (X) && DB_REGNO_P (REGNO (X)))
#define DA_REGNO_P(REGNO)       ((REGNO) == HARD_A_REGNUM)
#define DA_REG_P(X)             (REG_P (X) && DA_REGNO_P (REGNO (X)))

#define X_REGNO_P(REGNO)        ((REGNO) == HARD_X_REGNUM)
#define X_REG_P(X)              (REG_P (X) && X_REGNO_P (REGNO (X)))

#define Y_REGNO_P(REGNO)        ((REGNO) == HARD_Y_REGNUM)
#define Y_REG_P(X)              (REG_P (X) && Y_REGNO_P (REGNO (X)))

#define Z_REGNO_P(REGNO)        ((REGNO) == HARD_Z_REGNUM)
#define Z_REG_P(X)              (REG_P (X) && Z_REGNO_P (REGNO (X)))

#define SP_REGNO_P(REGNO)       ((REGNO) == HARD_SP_REGNUM)
#define SP_REG_P(X)             (REG_P (X) && SP_REGNO_P (REGNO (X)))

/* Address register.  */
#define A_REGNO_P(REGNO)        ((REGNO) == HARD_X_REGNUM \
                                 || (REGNO) == HARD_Y_REGNUM \
                                 || (REGNO) == HARD_Z_REGNUM)
#define A_REG_P(X)              (REG_P (X) && A_REGNO_P (REGNO (X)))

/* M68hc11 hard registers.  */
#define H_REGNO_P(REGNO)        (D_REGNO_P (REGNO) || A_REGNO_P (REGNO) \
				 || SP_REGNO_P (REGNO) || Q_REGNO_P (REGNO))
#define H_REG_P(X)              (REG_P (X) && H_REGNO_P (REGNO (X)))

#define FAKE_REGNO_P(REGNO)     ((REGNO) == FAKE_CLOBBER_REGNUM)
#define FAKE_REG_P(X)           (REG_P (X) && FAKE_REGNO_P (REGNO (X)))

/* Soft registers (or register emulation for gcc).  The temporary register
   used by insn template must be part of the S_REGS class so that it
   matches the 'u' constraint.  */
#define S_REGNO_P(REGNO)        ((REGNO) >= SOFT_TMP_REGNUM \
                                 && (REGNO) <= SOFT_REG_LAST \
                                 && (REGNO) != FAKE_CLOBBER_REGNUM)
#define S_REG_P(X)              (REG_P (X) && S_REGNO_P (REGNO (X)))

#define Z_REGNO_P(REGNO)        ((REGNO) == HARD_Z_REGNUM)
#define Z_REG_P(X)              (REG_P (X) && Z_REGNO_P (REGNO (X)))

/* General register.  */
#define G_REGNO_P(REGNO)        (H_REGNO_P (REGNO) || S_REGNO_P (REGNO) \
                                 || ((REGNO) == HARD_PC_REGNUM) \
				 || ((REGNO) == HARD_FP_REGNUM) \
				 || ((REGNO) == SOFT_FP_REGNUM) \
				 || ((REGNO) == FAKE_CLOBBER_REGNUM) \
				 || ((REGNO) == SOFT_AP_REGNUM))

#define G_REG_P(X)              (REG_P (X) && G_REGNO_P (REGNO (X)))

#define REGNO_REG_CLASS(REGNO) \
  (D_REGNO_P (REGNO) ? D_REGS : \
   (X_REGNO_P (REGNO) ? X_REGS : \
    (Y_REGNO_P (REGNO) ? Y_REGS : \
     (SP_REGNO_P (REGNO) ? SP_REGS : \
      (Z_REGNO_P (REGNO) ? Z_REGS : \
       (H_REGNO_P (REGNO) ? H_REGS : \
        (FAKE_REGNO_P (REGNO) ? TMP_REGS : \
	 (S_REGNO_P (REGNO) ? S_REGS : \
	  (DA_REGNO_P (REGNO) ? DA_REGS: \
	   (DB_REGNO_P (REGNO) ? DB_REGS: \
            (G_REGNO_P (REGNO) ? G_REGS : ALL_REGS)))))))))))


/* Get reg_class from a letter in the machine description.  */

extern enum reg_class m68hc11_tmp_regs_class;
#define REG_CLASS_FROM_LETTER(C) \
   ((C) == 'a' ? DA_REGS : \
    (C) == 'A' ? A_REGS : \
    (C) == 'b' ? DB_REGS : \
    (C) == 'B' ? X_OR_Y_REGS : \
    (C) == 'd' ? D_REGS : \
    (C) == 'D' ? D_OR_X_REGS : \
    (C) == 'q' ? Q_REGS : \
    (C) == 'h' ? H_REGS : \
    (C) == 't' ? TMP_REGS : \
    (C) == 'u' ? S_REGS : \
    (C) == 'v' ? m68hc11_tmp_regs_class : \
    (C) == 'w' ? SP_REGS : \
    (C) == 'x' ? X_REGS : \
    (C) == 'y' ? Y_REGS : \
    (C) == 'z' ? Z_REGS : NO_REGS)

#define PREFERRED_RELOAD_CLASS(X,CLASS)	preferred_reload_class(X,CLASS)

#define SMALL_REGISTER_CLASSES 1

/* A C expression whose value is nonzero if pseudos that have been
   assigned to registers of class CLASS would likely be spilled
   because registers of CLASS are needed for spill registers.

   The default value of this macro returns 1 if CLASS has exactly one
   register and zero otherwise.  On most machines, this default
   should be used.  Only define this macro to some other expression
   if pseudo allocated by `local-alloc.c' end up in memory because
   their hard registers were needed for spill registers.  If this
   macro returns nonzero for those classes, those pseudos will only
   be allocated by `global.c', which knows how to reallocate the
   pseudo to another register.  If there would not be another
   register available for reallocation, you should not change the
   definition of this macro since the only effect of such a
   definition would be to slow down register allocation.  */

#define CLASS_LIKELY_SPILLED_P(CLASS)					\
  (((CLASS) == D_REGS)							\
   || ((CLASS) == X_REGS)                                               \
   || ((CLASS) == Y_REGS)                                               \
   || ((CLASS) == A_REGS)                                               \
   || ((CLASS) == SP_REGS)                                              \
   || ((CLASS) == D_OR_X_REGS)                                          \
   || ((CLASS) == D_OR_Y_REGS)                                          \
   || ((CLASS) == X_OR_SP_REGS)                                         \
   || ((CLASS) == Y_OR_SP_REGS)                                         \
   || ((CLASS) == D_OR_SP_REGS))

/* Return the maximum number of consecutive registers needed to represent
   mode MODE in a register of class CLASS.  */
#define CLASS_MAX_NREGS(CLASS, MODE)		\
(((CLASS) == DA_REGS || (CLASS) == DB_REGS \
   || (CLASS) == D8_REGS || (CLASS) == Q_REGS) ? GET_MODE_SIZE (MODE) \
 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))

/* The letters I, J, K, L and M in a register constraint string
   can be used to stand for particular ranges of immediate operands.
   This macro defines what the ranges are.
   C is the letter, and VALUE is a constant value.
   Return 1 if VALUE is in the range specified by C.

   `L' is for range -65536 to 65536
   `M' is for values whose 16-bit low part is 0
   'N' is for +1 or -1.
   'O' is for 16 (for rotate using swap).
   'P' is for range -8 to 2 (used by addhi_sp)

   'I', 'J', 'K' are not used.  */

#define CONST_OK_FOR_LETTER_P(VALUE, C) \
  ((C) == 'L' ? (VALUE) >= -65536 && (VALUE) <= 65535 : \
   (C) == 'M' ? ((VALUE) & 0x0ffffL) == 0 : \
   (C) == 'N' ? ((VALUE) == 1 || (VALUE) == -1): \
   (C) == 'O' ? (VALUE) == 16 : \
   (C) == 'P' ? (VALUE) <= 2 && (VALUE) >= -8 : 0)

/* Similar, but for floating constants, and defining letters G and H.
   No floating-point constants are valid on 68HC11.  */
#define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C)  0

/* 'U' represents certain kind of memory indexed operand for 68HC12.
   and any memory operand for 68HC11.  */
#define EXTRA_CONSTRAINT(OP, C)                         \
((C) == 'U' ? m68hc11_small_indexed_indirect_p (OP, GET_MODE (OP)) : 0)



/* Stack layout; function entry, exit and calling.  */

/* Define this if pushing a word on the stack
   makes the stack pointer a smaller address.  */
#define STACK_GROWS_DOWNWARD

/* Define this if the nominal address of the stack frame
   is at the high-address end of the local variables;
   that is, each additional local variable allocated
   goes at a more negative offset in the frame.

   Don't define for 68HC11, the frame pointer is the bottom
   of local variables.  */
/* #define FRAME_GROWS_DOWNWARD */

/* Define this if successive arguments to a function occupy decreasing 
   addresses in the stack.  */
/* #define ARGS_GROW_DOWNWARD */

/* Offset within stack frame to start allocating local variables at.
   If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
   first local allocated.  Otherwise, it is the offset to the BEGINNING
   of the first local allocated.  */
#define STARTING_FRAME_OFFSET		0

/* Offset of first parameter from the argument pointer register value.  */

#define FIRST_PARM_OFFSET(FNDECL)	2

/* After the prologue, RA is at 0(AP) in the current frame.  */
#define RETURN_ADDR_RTX(COUNT, FRAME)					\
  ((COUNT) == 0								\
   ? gen_rtx_MEM (Pmode, arg_pointer_rtx)                               \
   : 0)

/* Before the prologue, the top of the frame is at 2(sp).  */
#define INCOMING_FRAME_SP_OFFSET        2

/* Define this if functions should assume that stack space has been
   allocated for arguments even when their values are passed in
   registers.
  
   The value of this macro is the size, in bytes, of the area reserved for
   arguments passed in registers.
  
   This space can either be allocated by the caller or be a part of the
   machine-dependent stack frame: `OUTGOING_REG_PARM_STACK_SPACE'
   says which. */
/* #define REG_PARM_STACK_SPACE(FNDECL)	2 */

/* Define this macro if REG_PARM_STACK_SPACE is defined but stack
   parameters don't skip the area specified by REG_PARM_STACK_SPACE.
   Normally, when a parameter is not passed in registers, it is placed on
   the stack beyond the REG_PARM_STACK_SPACE area.  Defining this macro  
   suppresses this behavior and causes the parameter to be passed on the
   stack in its natural location.  */
/* #define STACK_PARMS_IN_REG_PARM_AREA */

/* Register to use for pushing function arguments.  */
#define STACK_POINTER_REGNUM		HARD_SP_REGNUM

/* Base register for access to local variables of the function.  */
#define FRAME_POINTER_REGNUM		SOFT_FP_REGNUM

#define HARD_FRAME_POINTER_REGNUM	HARD_FP_REGNUM

/* Base register for access to arguments of the function.  */
#define ARG_POINTER_REGNUM		SOFT_AP_REGNUM

/* Register in which static-chain is passed to a function.  */
#define STATIC_CHAIN_REGNUM	        SOFT_Z_REGNUM


/* Definitions for register eliminations.

   This is an array of structures.  Each structure initializes one pair
   of eliminable registers.  The "from" register number is given first,
   followed by "to".  Eliminations of the same "from" register are listed
   in order of preference.

   We have two registers that are eliminated on the 6811. The psuedo arg
   pointer and pseudo frame pointer registers can always be eliminated;
   they are replaced with either the stack or the real frame pointer. */

#define ELIMINABLE_REGS					\
{{ARG_POINTER_REGNUM,   STACK_POINTER_REGNUM},		\
 {ARG_POINTER_REGNUM,   HARD_FRAME_POINTER_REGNUM},	\
 {FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM},		\
 {FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}}

/* Value should be nonzero if functions must have frame pointers.
   Zero means the frame pointer need not be set up (and parms may be
   accessed via the stack pointer) in functions that seem suitable.
   This is computed in `reload', in reload1.c. */
#define FRAME_POINTER_REQUIRED	0

/* Given FROM and TO register numbers, say whether this elimination is allowed.
   Frame pointer elimination is automatically handled.

   All other eliminations are valid.  */

#define CAN_ELIMINATE(FROM, TO)					\
 ((FROM) == ARG_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM	\
  ? ! frame_pointer_needed					\
  : 1)


/* Define the offset between two registers, one to be eliminated, and the other
   its replacement, at the start of a routine.  */

#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET)			\
    { OFFSET = m68hc11_initial_elimination_offset (FROM, TO); }


/* Passing Function Arguments on the Stack.  */

/* When a prototype says `char' or `short', really pass an `int'.  */
/* #define PROMOTE_PROTOTYPES */

/* If we generate an insn to push BYTES bytes, this says how many the
   stack pointer really advances by. No rounding or alignment needed
   for MC6811. */
#define PUSH_ROUNDING(BYTES)	(BYTES)

/* Value is 1 if returning from a function call automatically pops the
   arguments described by the number-of-args field in the call. FUNTYPE is
   the data type of the function (as a tree), or for a library call it is
   an identifier node for the subroutine name.
  
   The standard MC6811 call, with arg count word, includes popping the
   args as part of the call template. */
#define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE)	0

/* Nonzero if type TYPE should be returned in memory.
   Blocks and data types largers than 4 bytes cannot be returned
   in the register (D + X = 4).  */
#define RETURN_IN_MEMORY(TYPE)				\
    ((TYPE_MODE (TYPE) == BLKmode)			\
     ? (int_size_in_bytes (TYPE) > 4)			\
     : (GET_MODE_SIZE (TYPE_MODE (TYPE)) > 4))


/* Passing Arguments in Registers.  */

/* Define a data type for recording info about an argument list
   during the scan of that argument list.  This data type should
   hold all necessary information about the function itself
   and about the args processed so far, enough to enable macros
   such as FUNCTION_ARG to determine where the next arg should go.  */

typedef struct m68hc11_args
{
  int words;
  int nregs;
} CUMULATIVE_ARGS;

/* A C expression that indicates when an argument must be passed by reference.
   If nonzero for an argument, a copy of that argument is made in memory and a
   pointer to the argument is passed instead of the argument itself.
   The pointer is passed in whatever way is appropriate for passing a pointer
   to that type.
 
   64-bit numbers are passed by reference. */
#define FUNCTION_ARG_PASS_BY_REFERENCE(CUM, MODE, TYPE, NAMED) \
    m68hc11_function_arg_pass_by_reference (& (CUM), (MODE), (TYPE), (NAMED))


/* If defined, a C expression which determines whether, and in which direction,
   to pad out an argument with extra space.  The value should be of type
   `enum direction': either `upward' to pad above the argument,
   `downward' to pad below, or `none' to inhibit padding.

   Structures are stored left shifted in their argument slot.  */
#define FUNCTION_ARG_PADDING(MODE, TYPE) \
  m68hc11_function_arg_padding ((MODE), (TYPE))

/* A C expression that indicates when it is the called function's
   responsibility to make a copy of arguments passed by invisible
   reference.  Normally, the caller makes a copy and passes the
   address of the copy to the routine being called.  When
   FUNCTION_ARG_CALLEE_COPIES is defined and is nonzero, the caller
   does not make a copy.  Instead, it passes a pointer to the "live"
   value.  The called function must not modify this value.  If it can
   be determined that the value won't be modified, it need not make a
   copy; otherwise a copy must be made. */
#define FUNCTION_ARG_CALLEE_COPIES(CUM, MODE, TYPE, NAMED)		\
    ((NAMED) && FUNCTION_ARG_PASS_BY_REFERENCE (CUM, MODE, TYPE, NAMED))

/* Initialize a variable CUM of type CUMULATIVE_ARGS for a call to a
   function whose data type is FNTYPE. For a library call, FNTYPE is 0. */
#define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME,INDIRECT) \
    (m68hc11_init_cumulative_args (&CUM, FNTYPE, LIBNAME))

/* Update the data in CUM to advance over an argument of mode MODE and data
   type TYPE. (TYPE is null for libcalls where that information may not be
   available.) */
#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
    (m68hc11_function_arg_advance (&CUM, MODE, TYPE, NAMED))

/* Define where to put the arguments to a function.
   Value is zero to push the argument on the stack,
   or a hard register in which to store the argument.

   MODE is the argument's machine mode.
   TYPE is the data type of the argument (as a tree).
    This is null for libcalls where that information may
    not be available.
   CUM is a variable of type CUMULATIVE_ARGS which gives info about
    the preceding args and about the function being called.
   NAMED is nonzero if this argument is a named parameter
    (otherwise it is an extra parameter matching an ellipsis).  */
#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
  (m68hc11_function_arg (&CUM, MODE, TYPE, NAMED))

/* Define the profitability of saving registers around calls.

   Disable this because the saving instructions generated by
   caller-save need a reload and the way it is implemented,
   it forbids all spill registers at that point.  Enabling
   caller saving results in spill failure.  */
#define CALLER_SAVE_PROFITABLE(REFS,CALLS) 0

/* Implement `va_arg'.  */
#define EXPAND_BUILTIN_VA_START(stdarg, valist, nextarg) \
  m68hc11_expand_builtin_va_start (stdarg, valist, nextarg)

#define EXPAND_BUILTIN_VA_ARG(valist, type) \
  m68hc11_va_arg (valist, type)

/* For an arg passed partly in registers and partly in memory,
   this is the number of registers used.
   For args passed entirely in registers or entirely in memory, zero.

   Passing an arg partly in register and memory does not work at all.
   Don't do that.  */
#define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) (0)

/* 1 if N is a possible register number for function argument passing.
   D is for 16-bit values, X is for 32-bit (X+D).  */
#define FUNCTION_ARG_REGNO_P(N)	\
     (((N) == HARD_D_REGNUM) || ((N) == HARD_X_REGNUM))

/* All return values are in the D or X+D registers:
    - 8 and 16-bit values are returned in D.
      BLKmode are passed in D as pointer.
    - 32-bit values are returned in X + D.
      The high part is passed in X and the low part in D.
      For GCC, the register number must be HARD_X_REGNUM.  */
#define FUNCTION_VALUE(VALTYPE, FUNC)					\
     gen_rtx (REG, TYPE_MODE (VALTYPE),					\
              ((TYPE_MODE (VALTYPE) == BLKmode				\
	        || GET_MODE_SIZE (TYPE_MODE (VALTYPE)) <= 2)		\
		   ? HARD_D_REGNUM : HARD_X_REGNUM))

#define LIBCALL_VALUE(MODE)						\
     gen_rtx (REG, MODE,						\
              (((MODE) == BLKmode || GET_MODE_SIZE (MODE) <= 2)		\
                   ? HARD_D_REGNUM : HARD_X_REGNUM))

/* 1 if N is a possible register number for a function value.  */
#define FUNCTION_VALUE_REGNO_P(N) \
     ((N) == HARD_D_REGNUM || (N) == HARD_X_REGNUM)

/* Register in which address to store a structure value is passed to a
   function.  */
#define STRUCT_VALUE_REGNUM	HARD_D_REGNUM

/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
   the stack pointer does not matter.  The value is tested only in functions
   that have frame pointers. No definition is equivalent to always zero.  */
#define EXIT_IGNORE_STACK	0


/* Generating Code for Profiling.  */

/* Output assembler code to FILE to increment profiler label # LABELNO
   for profiling a function entry.  */
#define FUNCTION_PROFILER(FILE, LABELNO)		\
    asm_fprintf (FILE, "\tldy LP%d\n\tjsr mcount\n", (LABELNO))

/* Output assembler code to FILE to initialize this source file's
   basic block profiling info, if that has not already been done. */
#define FUNCTION_BLOCK_PROFILER(FILE, BLOCK_OR_LABEL)	\
    m68hc11_function_block_profiler(FILE, BLOCK_OR_LABEL)

/* Output assembler code to FILE to increment the counter for
  the BLOCKNO'th basic block in this source file.  */
#define BLOCK_PROFILER(FILE, BLOCKNO)			\
    m68hc11_block_profiler(FILE, BLOCKNO)

/* Output assembler code to FILE to indicate return from 
   a function during basic block profiling.  */
#define FUNCTION_BLOCK_PROFILER_EXIT(FILE)		\
    asm_fprintf (FILE, "\tjsr %U__bb_trace_ret\n");

/* Save all registers which may be clobbered by a function call.
   MACHINE_STATE_SAVE and MACHINE_STATE_RESTORE are target-code macros,
   used in libgcc2.c.  They may not refer to TARGET_* macros !!!

   We don't need to save the CCR nor the soft registers because
   they will be saved by gcc.  */
#define MACHINE_STATE_SAVE(id) \
  {			       \
    asm ("pshy");	       \
    asm ("pshx");	       \
    asm ("psha");	       \
    asm ("pshb");	       \
  }

#define MACHINE_STATE_RESTORE(id) \
  {			       \
    asm ("pulb");	       \
    asm ("pula");	       \
    asm ("pulx");	       \
    asm ("puly");	       \
  }

/* Length in units of the trampoline for entering a nested function.  */
#define TRAMPOLINE_SIZE		(TARGET_M6811 ? 11 : 9)

/* A C statement to initialize the variable parts of a trampoline.
   ADDR is an RTX for the address of the trampoline; FNADDR is an
   RTX for the address of the nested function; STATIC_CHAIN is an
   RTX for the static chain value that should be passed to the
   function when it is called.  */
#define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
  m68hc11_initialize_trampoline ((TRAMP), (FNADDR), (CXT))


/* Define this macro if references to a symbol must be treated
   differently depending on something about the variable or function
   named by the symbol (such as what section it is in).

   For the 68HC11, we want to recognize trap handlers so that we
   handle calls to traps in a special manner (by issuing the trap).
   This information is stored in SYMBOL_REF_FLAG.  */

#define ENCODE_SECTION_INFO(DECL) m68hc11_encode_section_info (DECL)

/* Override what GCC does for section info to let us recognize traps.  */

#define REDO_SECTION_INFO_P(DECL) 1

/* `INIT_TARGET_OPTABS'
     Define this macro as a C statement that declares additional library
     routines renames existing ones. `init_optabs' calls this macro
     after initializing all the normal library routines.

     Overrides the memcpy */

#define INIT_TARGET_OPTABS						\
do									\
  {									\
    memcpy_libfunc = gen_rtx_SYMBOL_REF (Pmode, "__memcpy");		\
    memcmp_libfunc = gen_rtx_SYMBOL_REF (Pmode, "__memcmp");		\
    memset_libfunc = gen_rtx_SYMBOL_REF (Pmode, "__memset");		\
  }									\
while (0)


/* Addressing modes, and classification of registers for them.  */

/* The 68HC12 has all the post/pre increment/decrement modes.  */
#define HAVE_POST_INCREMENT (TARGET_M6812 && TARGET_AUTO_INC_DEC)
#define HAVE_PRE_INCREMENT  (TARGET_M6812 && TARGET_AUTO_INC_DEC)
#define HAVE_POST_DECREMENT (TARGET_M6812 && TARGET_AUTO_INC_DEC)
#define HAVE_PRE_DECREMENT  (TARGET_M6812 && TARGET_AUTO_INC_DEC)

/* The class value for base registers.  This depends on the target:
   A_REGS for 68HC11 and A_OR_SP_REGS for 68HC12.  The class value
   is stored at init time.  */
extern enum reg_class m68hc11_base_reg_class;
#define BASE_REG_CLASS		m68hc11_base_reg_class

/* The class value for index registers.  This is NO_REGS for 68HC11.  */

extern enum reg_class m68hc11_index_reg_class;
#define INDEX_REG_CLASS	        m68hc11_index_reg_class

/* These assume that REGNO is a hard or pseudo reg number. They give nonzero
   only if REGNO is a hard reg of the suitable class or a pseudo reg currently
   allocated to a suitable hard reg.  Since they use reg_renumber, they are
   safe only once reg_renumber has been allocated, which happens in
   local-alloc.c.  */


/* Internal macro, return 1 if REGNO is a valid base register.  */
#define REG_VALID_P(REGNO) (1)	/* ? */

extern unsigned char m68hc11_reg_valid_for_base[FIRST_PSEUDO_REGISTER];
#define REG_VALID_FOR_BASE_P(REGNO) \
    (REG_VALID_P (REGNO) && (REGNO) < FIRST_PSEUDO_REGISTER \
     && m68hc11_reg_valid_for_base[REGNO])

/* Internal macro, return 1 if REGNO is a valid index register.  */
extern unsigned char m68hc11_reg_valid_for_index[FIRST_PSEUDO_REGISTER];
#define REG_VALID_FOR_INDEX_P(REGNO) \
    (REG_VALID_P (REGNO) >= 0 && (REGNO) < FIRST_PSEUDO_REGISTER \
     && m68hc11_reg_valid_for_index[REGNO])

/* Internal macro, the nonstrict definition for REGNO_OK_FOR_BASE_P.  */
#define REGNO_OK_FOR_BASE_NONSTRICT_P(REGNO) \
    ((REGNO) >= FIRST_PSEUDO_REGISTER \
     || REG_VALID_FOR_BASE_P (REGNO) \
     || (REGNO) == FRAME_POINTER_REGNUM \
     || (REGNO) == HARD_FRAME_POINTER_REGNUM \
     || (REGNO) == ARG_POINTER_REGNUM \
     || (reg_renumber && REG_VALID_FOR_BASE_P (reg_renumber[REGNO])))

/* Internal macro, the nonstrict definition for REGNO_OK_FOR_INDEX_P.  */
#define REGNO_OK_FOR_INDEX_NONSTRICT_P(REGNO) \
    (TARGET_M6812 \
     && ((REGNO) >= FIRST_PSEUDO_REGISTER \
         || REG_VALID_FOR_INDEX_P (REGNO) \
         || (reg_renumber && REG_VALID_FOR_INDEX_P (reg_renumber[REGNO]))))

/* Internal macro, the strict definition for REGNO_OK_FOR_BASE_P.  */
#define REGNO_OK_FOR_BASE_STRICT_P(REGNO) \
    ((REGNO) < FIRST_PSEUDO_REGISTER ? REG_VALID_FOR_BASE_P (REGNO) \
     : (reg_renumber && REG_VALID_FOR_BASE_P (reg_renumber[REGNO])))

/* Internal macro, the strict definition for REGNO_OK_FOR_INDEX_P.  */
#define REGNO_OK_FOR_INDEX_STRICT_P(REGNO) \
    (TARGET_M6812 \
     && ((REGNO) < FIRST_PSEUDO_REGISTER ? REG_VALID_FOR_INDEX_P (REGNO) \
         : (reg_renumber && REG_VALID_FOR_INDEX_P (reg_renumber[REGNO]))))

#define REGNO_OK_FOR_BASE_P2(REGNO,STRICT) \
    ((STRICT) ? (REGNO_OK_FOR_BASE_STRICT_P (REGNO)) \
              : (REGNO_OK_FOR_BASE_NONSTRICT_P (REGNO)))

#define REGNO_OK_FOR_INDEX_P2(REGNO,STRICT) \
    ((STRICT) ? (REGNO_OK_FOR_INDEX_STRICT_P (REGNO)) \
              : (REGNO_OK_FOR_INDEX_NONSTRICT_P (REGNO)))

#define REGNO_OK_FOR_BASE_P(REGNO) REGNO_OK_FOR_BASE_STRICT_P (REGNO)
#define REGNO_OK_FOR_INDEX_P(REGNO) REGNO_OK_FOR_INDEX_STRICT_P (REGNO)

#define REG_OK_FOR_BASE_STRICT_P(X)     REGNO_OK_FOR_BASE_STRICT_P (REGNO (X))
#define REG_OK_FOR_BASE_NONSTRICT_P(X)  REGNO_OK_FOR_BASE_NONSTRICT_P (REGNO (X))
#define REG_OK_FOR_INDEX_STRICT_P(X)    REGNO_OK_FOR_INDEX_STRICT_P (REGNO (X))
#define REG_OK_FOR_INDEX_NONSTRICT_P(X) REGNO_OK_FOR_INDEX_NONSTRICT_P (REGNO (X))

/* see PUSH_POP_ADDRESS_P() below for an explanation of this.  */
#define IS_STACK_PUSH(operand) \
    ((GET_CODE (operand) == MEM) \
     && (GET_CODE (XEXP (operand, 0)) == PRE_DEC) \
     && (SP_REG_P (XEXP (XEXP (operand, 0), 0))))

#define IS_STACK_POP(operand) \
    ((GET_CODE (operand) == MEM) \
     && (GET_CODE (XEXP (operand, 0)) == POST_INC) \
     && (SP_REG_P (XEXP (XEXP (operand, 0), 0))))

/* 1 if X is an rtx for a constant that is a valid address.  */
#define CONSTANT_ADDRESS_P(X)	(CONSTANT_P (X))

/* Maximum number of registers that can appear in a valid memory address */
#define MAX_REGS_PER_ADDRESS	2

/* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression that is a
   valid memory address for an instruction. The MODE argument is the
   machine mode for the MEM expression that wants to use this address.  */

/*--------------------------------------------------------------
   Valid addresses are either direct or indirect (MEM) versions
   of the following forms:
	constant		N
	register		,X
	indexed			N,X
--------------------------------------------------------------*/

/* The range of index that is allowed by indirect addressing. */

#define VALID_MIN_OFFSET m68hc11_min_offset
#define VALID_MAX_OFFSET m68hc11_max_offset

/* The offset values which are allowed by the n,x and n,y addressing modes.
   Take into account the size of the mode because we may have to add
   a mode offset to access the lowest part of the data.
   (For example, for an SImode, the last valid offset is 252.) */
#define VALID_CONSTANT_OFFSET_P(X,MODE)		\
((GET_CODE (X) == CONST_INT) &&			\
 ((INTVAL (X) >= VALID_MIN_OFFSET)		\
    && ((INTVAL (X) <= VALID_MAX_OFFSET		\
		- (HOST_WIDE_INT) (GET_MODE_SIZE (MODE) + 1)))))

/* This is included to allow stack push/pop operations. Special hacks in the
   md and m6811.c files exist to support this.  */
#define PUSH_POP_ADDRESS_P(X) \
  (((GET_CODE (X) == PRE_DEC) || (GET_CODE (X) == POST_INC)) \
	&& SP_REG_P (XEXP (X, 0)))

/* Go to ADDR if X is a valid address. */
#ifndef REG_OK_STRICT
#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
{ \
  if (m68hc11_go_if_legitimate_address ((X), (MODE), 0)) goto ADDR; \
}
#else
#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR)		 \
{							 \
  if (m68hc11_go_if_legitimate_address ((X), (MODE), 1)) goto ADDR; \
}
#endif

/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx and check its
   validity for a certain class.  We have two alternate definitions for each
   of them.  The usual definition accepts all pseudo regs; the other rejects
   them unless they have been allocated suitable hard regs.  The symbol
   REG_OK_STRICT causes the latter definition to be used.
  
   Most source files want to accept pseudo regs in the hope that they will
   get allocated to the class that the insn wants them to be in. Source files
   for reload pass need to be strict. After reload, it makes no difference,
   since pseudo regs have been eliminated by then.  */

#ifndef REG_OK_STRICT
/* Nonzero if X is a hard reg that can be used as a base reg.  */
#define REG_OK_FOR_BASE_P(X)   REG_OK_FOR_BASE_NONSTRICT_P(X)

/* Nonzero if X is a hard reg that can be used as an index.  */
#define REG_OK_FOR_INDEX_P(X)  REG_OK_FOR_INDEX_NONSTRICT_P(X)
#else
#define REG_OK_FOR_BASE_P(X)   REG_OK_FOR_BASE_STRICT_P(X)
#define REG_OK_FOR_INDEX_P(X)  REG_OK_FOR_INDEX_STRICT_P(X)
#endif


/* Try machine-dependent ways of modifying an illegitimate address
   to be legitimate.  If we find one, return the new, valid address.
   This macro is used in only one place: `memory_address' in explow.c.
  
   OLDX is the address as it was before break_out_memory_refs was called.
   In some cases it is useful to look at this to decide what needs to be done.
  
   MODE and WIN are passed so that this macro can use
   GO_IF_LEGITIMATE_ADDRESS.
  
   It is always safe for this macro to do nothing.
   It exists to recognize opportunities to optimize the output.  */

#define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN)                     \
{ rtx operand = (X);                                            \
  if (m68hc11_legitimize_address (&operand, (OLDX), (MODE)))	\
    {                                                           \
      (X) = operand;                                            \
      GO_IF_LEGITIMATE_ADDRESS (MODE,X,WIN);                    \
    }                                                           \
}

/* Go to LABEL if ADDR (a legitimate address expression)
   has an effect that depends on the machine mode it is used for.  */
#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL)  \
{									\
  if (GET_CODE (ADDR) == PRE_DEC || GET_CODE (ADDR) == POST_DEC		\
      || GET_CODE (ADDR) == PRE_INC || GET_CODE (ADDR) == POST_INC)	\
    goto LABEL;								\
}

/* Nonzero if the constant value X is a legitimate general operand.
   It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE.  */

#define LEGITIMATE_CONSTANT_P(X)	1


/* Tell final.c how to eliminate redundant test instructions.  */

#define NOTICE_UPDATE_CC(EXP, INSN) \
	m68hc11_notice_update_cc ((EXP), (INSN))

/* Compute the cost of computing a constant rtl expression RTX whose rtx-code
   is CODE.  The body of this macro is a portion of a switch statement.  If
   the code is computed here, return it with a return statement.  Otherwise,
   break from the switch.

   Constants are cheap.  Moving them in registers must be avoided
   because most instructions do not handle two register operands.  */
#define CONST_COSTS(RTX,CODE,OUTER_CODE)			\
 case CONST_INT:						\
     /* Logical and arithmetic operations with a constant  */	\
     /* operand are better because they are not supported  */	\
     /* with two registers.  */					\
     /* 'clr' is slow */					\
   if ((OUTER_CODE) == SET && (RTX) == const0_rtx)		\
     /* After reload, the reload_cse pass checks the cost */    \
     /* to change a SET into a PLUS.  Make const0 cheap.  */    \
     return 1 - reload_completed;				\
   else								\
     return 0;							\
 case CONST:							\
 case LABEL_REF:						\
 case SYMBOL_REF:						\
   if ((OUTER_CODE) == SET)					\
      return 1 - reload_completed;				\
   return 0;							\
 case CONST_DOUBLE:						\
   return 0;

#define RTX_COSTS(X,CODE,OUTER_CODE)				\
 case ROTATE:							\
 case ROTATERT:							\
 case ASHIFT:							\
 case LSHIFTRT:							\
 case ASHIFTRT:							\
 case MINUS:							\
 case PLUS:							\
 case AND:							\
 case XOR:							\
 case IOR:							\
 case UDIV:							\
 case DIV:							\
 case MOD:							\
 case MULT:							\
 case NEG:							\
 case SIGN_EXTEND:						\
 case NOT:							\
 case COMPARE:							\
 case ZERO_EXTEND:						\
 case IF_THEN_ELSE:						\
   return m68hc11_rtx_costs (X, CODE, OUTER_CODE);

/* An expression giving the cost of an addressing mode that contains
   ADDRESS.  If not defined, the cost is computed from the ADDRESS
   expression and the `CONST_COSTS' values.  */

#define ADDRESS_COST(RTX) m68hc11_address_cost (RTX)

/* Move costs between classes of registers */
#define REGISTER_MOVE_COST(MODE, CLASS1, CLASS2)	\
    (m68hc11_register_move_cost (CLASS1, CLASS2))

/* Move cost between register and memory.
    - Move to a 16-bit register is reasonable,
    - Move to a soft register can be expensive.  */
#define MEMORY_MOVE_COST(MODE,CLASS,IN)		\
    m68hc11_memory_move_cost ((MODE),(CLASS),(IN))

/* A C expression for the cost of a branch instruction.  A value of 1
   is the default; other values are interpreted relative to that.

   Pretend branches are cheap because GCC generates sub-optimal code
   for the default value.  */
#define BRANCH_COST 0

/* Nonzero if access to memory by bytes is slow and undesirable.  */
#define SLOW_BYTE_ACCESS	0

/* It is as good to call a constant function address as to call an address
   kept in a register.  */
#define NO_FUNCTION_CSE

/* Try a machine-dependent way of reloading an illegitimate address
   operand.  If we find one, push the reload and jump to WIN.  This
   macro is used in only one place: `find_reloads_address' in reload.c.

   For M68HC11, we handle large displacements of a base register
   by splitting the addend accors an addhi3 insn.

   For M68HC12, the 64K offset range is available.
   */

#define LEGITIMIZE_RELOAD_ADDRESS(X,MODE,OPNUM,TYPE,IND_LEVELS,WIN)     \
do {                                                                    \
  /* We must recognize output that we have already generated ourselves.  */ \
  if (GET_CODE (X) == PLUS						\
      && GET_CODE (XEXP (X, 0)) == PLUS					\
      && GET_CODE (XEXP (XEXP (X, 0), 0)) == REG			\
      && GET_CODE (XEXP (XEXP (X, 0), 1)) == CONST_INT			\
      && GET_CODE (XEXP (X, 1)) == CONST_INT)				\
    {									\
      push_reload (XEXP (X, 0), NULL_RTX, &XEXP (X, 0), NULL,           \
                   BASE_REG_CLASS, GET_MODE (X), VOIDmode, 0, 0,        \
                   OPNUM, TYPE);                                        \
      goto WIN;                                                         \
    }									\
  if (GET_CODE (X) == PLUS                                              \
      && GET_CODE (XEXP (X, 0)) == REG                                  \
      && GET_CODE (XEXP (X, 1)) == CONST_INT				\
      && !VALID_CONSTANT_OFFSET_P (XEXP (X, 1), MODE))                  \
    {                                                                   \
      HOST_WIDE_INT val = INTVAL (XEXP (X, 1));                         \
      HOST_WIDE_INT low, high;                                          \
      high = val & (~0x0FF);                                            \
      low  = val & 0x00FF;                                              \
      if (low >= 256-15) { high += 16; low -= 16; }                     \
      /* Reload the high part into a base reg; leave the low part       \
         in the mem directly.  */                                       \
                                                                        \
      X = gen_rtx_PLUS (Pmode,						\
                        gen_rtx_PLUS (Pmode, XEXP (X, 0),		\
                                      GEN_INT (high)),                  \
                        GEN_INT (low));                                 \
                                                                        \
      push_reload (XEXP (X, 0), NULL_RTX, &XEXP (X, 0), NULL,           \
                   BASE_REG_CLASS, GET_MODE (X), VOIDmode, 0, 0,        \
                   OPNUM, TYPE);                                        \
      goto WIN;                                                         \
    }                                                                   \
} while (0)


/* Defining the Output Assembler Language.  */

/* A default list of other sections which we might be "in" at any given
   time.  For targets that use additional sections (e.g. .tdesc) you
   should override this definition in the target-specific file which
   includes this file.  */

/* Output before read-only data.  */
#define TEXT_SECTION_ASM_OP	("\t.sect\t.text")

/* Output before writable data.  */
#define DATA_SECTION_ASM_OP	("\t.sect\t.data")

/* Output before uninitialized data.  */
#define BSS_SECTION_ASM_OP 	("\t.sect\t.bss")

/* This is the pseudo-op used to generate a reference to a specific
   symbol in some section.  It is only used in machine-specific
   configuration files.  This is the same for all known svr4
   assemblers, except those in targets that don't use 32-bit pointers.
   Those should override INT_ASM_OP.  Yes, the name of the macro is
   misleading.  */
#undef INT_ASM_OP
#define INT_ASM_OP		"\t.word\t"

/* Define the pseudo-ops used to switch to the .ctors and .dtors sections.

   Same as config/elfos.h but don't mark these section SHF_WRITE since
   there is no shared library problem.  */
#undef CTORS_SECTION_ASM_OP
#define CTORS_SECTION_ASM_OP	"\t.section\t.ctors,\"a\""

#undef DTORS_SECTION_ASM_OP
#define DTORS_SECTION_ASM_OP	"\t.section\t.dtors,\"a\""

#define TARGET_ASM_CONSTRUCTOR  m68hc11_asm_out_constructor
#define TARGET_ASM_DESTRUCTOR   m68hc11_asm_out_destructor

/* This is how to begin an assembly language file.  Most svr4 assemblers want
   at least a .file directive to come first, and some want to see a .version
   directive come right after that.  Here we just establish a default
   which generates only the .file directive.  If you need a .version
   directive for any specific target, you should override this definition
   in the target-specific file which includes this one.  */

#undef ASM_FILE_START
#define ASM_FILE_START(FILE)                            \
    m68hc11_asm_file_start ((FILE), main_input_filename)

/* Comment character */
#define ASM_COMMENT_START	";"

/* Output to assembler file text saying following lines
   may contain character constants, extra white space, comments, etc.  */
#define ASM_APP_ON 		"; Begin inline assembler code\n#APP\n"

/* Output to assembler file text saying following lines
   no longer contain unusual constructs.  */
#define ASM_APP_OFF 		"; End of inline assembler code\n#NO_APP\n"

/* Output #ident as a .ident.  */

/* This is how to output a `long double' extended real constant.  */

#define ASM_OUTPUT_LONG_DOUBLE(FILE,VALUE)  				\
    ASM_OUTPUT_DOUBLE(FILE,VALUE)

/* This is how to output an assembler line defining a `double' constant.  */

#define ASM_OUTPUT_DOUBLE(FILE,VALUE)					\
do { long l[2];								\
     REAL_VALUE_TO_TARGET_DOUBLE (VALUE, l);				\
     fprintf (FILE, "\t%s\t0x%lx,0x%lx\n", ASM_LONG, l[0], l[1]);	\
   } while (0)

/* This is how to output an assembler line defining a `float' constant.  */

#define ASM_OUTPUT_FLOAT(FILE,VALUE)			\
do { long l;						\
     REAL_VALUE_TO_TARGET_SINGLE (VALUE, l);		\
     fprintf ((FILE), "\t%s\t0x%lx\n", ASM_LONG, l);	\
   } while (0)

/* This is how to output an assembler line defining a `long' constant.  */
#define ASM_OUTPUT_INT(FILE,VALUE)		        \
( fprintf (FILE, "\t%s\t", ASM_LONG),			\
  output_addr_const (FILE, (VALUE)),			\
  fprintf (FILE, "\n"))

/* Likewise for `char' and `short' constants.  */
#define ASM_OUTPUT_SHORT(FILE,VALUE)			\
( fprintf (FILE, "\t%s\t", ASM_SHORT),			\
  output_addr_const (FILE, (VALUE)),			\
  fprintf (FILE, "\n"))

/* This is how to output an assembler line for a numeric constant byte.  */
#define ASM_OUTPUT_CHAR(FILE,VALUE)			\
( fprintf (FILE, "%s", ASM_BYTE_OP),			\
  output_addr_const (FILE, (VALUE)),			\
  putc ('\n', FILE))

#define ASM_OUTPUT_BYTE(FILE,VALUE)			\
  fprintf ((FILE), "%s0x%x\n", ASM_BYTE_OP, (VALUE))

/* This is how to output the definition of a user-level label named NAME,
   such as the label on a static function or variable NAME.  */

#define ASM_OUTPUT_LABEL(FILE,NAME)	\
  do { assemble_name (FILE, NAME); fputs (":\n", FILE); } while (0)


/* This is how to output a command to make the user-level label named NAME
   defined for reference from other files.  */

#define ASM_GLOBALIZE_LABEL(FILE,NAME)	\
  do { fprintf (FILE, "%s", GLOBAL_ASM_OP);		\
       assemble_name (FILE, NAME);			\
       fputs ("\n", FILE);} while (0)

/* output external reference */
#define ASM_OUTPUT_EXTERNAL(FILE,DECL,NAME) \
  {fputs ("\t; extern\t", FILE); \
  assemble_name (FILE, NAME); \
  fputs ("\n", FILE);}



/* Store in OUTPUT a string (made with alloca) containing
   an assembler-name for a local static variable named NAME.
   LABELNO is an integer which is different for each call.  */

#define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO)	\
( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10),	\
  sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO)))

/* How to refer to registers in assembler output.  This sequence is indexed
   by compiler's hard-register-number (see above).  */
#define REGISTER_NAMES						\
{ "x", "d", "y", "sp", "pc", "a", "b", "ccr", "z",		\
  "*_.frame", "*_.tmp", "*_.z", "*_.xy", "*fake clobber",	\
  SOFT_REG_NAMES, "*sframe", "*ap"}


/* Output a float value (represented as a C double) as an immediate operand.
   This macro is a 68k-specific macro.  */

#define ASM_OUTPUT_FLOAT_OPERAND(CODE,FILE,VALUE)		\
 do {								\
      long l;							\
      REAL_VALUE_TO_TARGET_SINGLE (VALUE, l);			\
      asm_fprintf ((FILE), "%I0x%lx", l);			\
     } while (0)

/* Output a double value (represented as a C double) as an immediate operand.
   This macro is a 68k-specific macro.  */
#define ASM_OUTPUT_DOUBLE_OPERAND(FILE,VALUE)				\
 do { char dstr[30];							\
      REAL_VALUE_TO_DECIMAL (VALUE, "%.20g", dstr);			\
      asm_fprintf (FILE, "%I0r%s", dstr);				\
    } while (0)

/* Note, long double immediate operands are not actually
   generated by m68k.md.  */
#define ASM_OUTPUT_LONG_DOUBLE_OPERAND(FILE,VALUE)			\
 do { char dstr[30];							\
      REAL_VALUE_TO_DECIMAL (VALUE, "%.20g", dstr);			\
      asm_fprintf (FILE, "%I0r%s", dstr);				\
    } while (0)

/* Print an instruction operand X on file FILE. CODE is the code from the
   %-spec for printing this operand. If `%z3' was used to print operand
   3, then CODE is 'z'.  */

#define PRINT_OPERAND(FILE, X, CODE) \
  print_operand (FILE, X, CODE)

/* Print a memory operand whose address is X, on file FILE. */
#define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
  print_operand_address (FILE, ADDR)

/* This is how to output an insn to push/pop a register on the stack.
   It need not be very fast code.  

   Don't define because we don't know how to handle that with
   the STATIC_CHAIN_REGNUM (soft register).  Saving the static
   chain must be made inside FUNCTION_PROFILER.  */

#undef ASM_OUTPUT_REG_PUSH
#undef ASM_OUTPUT_REG_POP

/* This is how to output an element of a case-vector that is relative. */

#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
  asm_fprintf (FILE, "\t%s\tL%d-L%d\n", ASM_SHORT, VALUE, REL)

/* This is how to output an element of a case-vector that is absolute. */
#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
  asm_fprintf (FILE, "\t%s\t.L%d\n", ASM_SHORT, VALUE)

/* This is how to output an assembler line that says to advance the
   location counter to a multiple of 2**LOG bytes.  */
#define ASM_OUTPUT_ALIGN(FILE,LOG)			\
  do {                                                  \
      if ((LOG) > 1)                                    \
          asm_fprintf ((FILE), "%s\n", ALIGN_ASM_OP); \
  } while (0)


/* Assembler Commands for Exception Regions.  */

/* Default values provided by GCC should be ok. Assumming that DWARF-2
   frame unwind info is ok for this platform. */

/* How to renumber registers for dbx and gdb. */
#define DBX_REGISTER_NUMBER(REGNO) \
 ((REGNO))

#undef PREFERRED_DEBUGGING_TYPE
#define PREFERRED_DEBUGGING_TYPE DWARF2_DEBUG

/* The prefix for local labels.  You should be able to define this as
   an empty string, or any arbitrary string (such as ".", ".L%", etc)
   without having to make any other changes to account for the specific
   definition.  Note it is a string literal, not interpreted by printf
   and friends. */
#define LOCAL_LABEL_PREFIX "."

/* The prefix for immediate operands.  */
#define IMMEDIATE_PREFIX "#"
#define GLOBAL_ASM_OP   "\t.globl\t"
#define ASM_LONG        ".long"
#define ASM_SHORT       ".word"


/* Miscellaneous Parameters.  */

/* Define the codes that are matched by predicates in m68hc11.c.  */
#define PREDICATE_CODES \
{"stack_register_operand",   {SUBREG, REG}},				\
{"d_register_operand",       {SUBREG, REG}},				\
{"hard_addr_reg_operand",    {SUBREG, REG}},				\
{"hard_reg_operand",         {SUBREG, REG}},				\
{"m68hc11_logical_operator", {AND, IOR, XOR}},				\
{"m68hc11_arith_operator",   {AND, IOR, XOR, PLUS, MINUS,		\
			      ASHIFT, ASHIFTRT, LSHIFTRT,		\
			      ROTATE, ROTATERT }},			\
{"m68hc11_non_shift_operator", {AND, IOR, XOR, PLUS, MINUS}},		\
{"m68hc11_unary_operator",   {NEG, NOT, SIGN_EXTEND, ZERO_EXTEND}},	\
{"non_push_operand",         {SUBREG, REG, MEM}},			\
{"reg_or_some_mem_operand",  {SUBREG, REG, MEM}},			\
{"tst_operand",              {SUBREG, REG, MEM}},			\
{"cmp_operand",              {SUBREG, REG, MEM, SYMBOL_REF, LABEL_REF,	\
			     CONST_INT, CONST_DOUBLE}},

/* Specify the machine mode that this machine uses
   for the index in the tablejump instruction.  */
#define CASE_VECTOR_MODE	Pmode

/* Specify the tree operation to be used to convert reals to integers. */
#define IMPLICIT_FIX_EXPR	FIX_ROUND_EXPR

/* This flag, if defined, says the same insns that convert to a signed fixnum
   also convert validly to an unsigned one.  */
#define FIXUNS_TRUNC_LIKE_FIX_TRUNC

/* This is the kind of divide that is easiest to do in the general case.  */
#define EASY_DIV_EXPR		TRUNC_DIV_EXPR

/* Max number of bytes we can move from memory to memory in one
   reasonably fast instruction.  */
#define MOVE_MAX 		2

/* MOVE_RATIO is the number of move instructions that is better than a
   block move.  Make this small on 6811, since the code size grows very
   large with each move.  */
#define MOVE_RATIO		3

/* Define if shifts truncate the shift count which implies one can omit
   a sign-extension or zero-extension of a shift count.  */
#define SHIFT_COUNT_TRUNCATED	1

/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
   is done just by pretending it is already truncated.  */
#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC)	1

/* Specify the machine mode that pointers have. After generation of rtl, the
   compiler makes no further distinction between pointers and any other
   objects of this machine mode.  */
#define Pmode			HImode

/* A function address in a call instruction is a byte address (for indexing
   purposes) so give the MEM rtx a byte's mode.  */
#define FUNCTION_MODE		QImode

/* define SCCS_DIRECTIVE if SCCS directives should be ignored */
#define SCCS_DIRECTIVE		1

/* Allow $ in identifiers */
#define DOLLARS_IN_IDENTIFIERS	1

/* Machine-dependent reorg pass.
   Specific optimizations are defined here:
    - this pass changes the Z register into either X or Y
      (it preserves X/Y previous values in a memory slot in page0). 

   When this pass is finished, the global variable
   'z_replacement_completed' is set to 2.  */
#define MACHINE_DEPENDENT_REORG(X)	m68hc11_reorg (X)

extern int debug_m6811;
extern int z_replacement_completed;
extern int current_function_interrupt;
extern int current_function_trap;