summaryrefslogtreecommitdiff
path: root/gcc/config/m68k/lb1sf68.asm
blob: 922df8f8a3ea606065a2dc37e777c8a6c2eb9ba7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
/* libgcc1 routines for 68000 w/o floating-point hardware. */
/* Copyright (C) 1994 Free Software Foundation, Inc.

This file is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 2, or (at your option) any
later version.

In addition to the permissions in the GNU General Public License, the
Free Software Foundation gives you unlimited permission to link the
compiled version of this file with other programs, and to distribute
those programs without any restriction coming from the use of this
file.  (The General Public License restrictions do apply in other
respects; for example, they cover modification of the file, and
distribution when not linked into another program.)

This file is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; see the file COPYING.  If not, write to
the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.  */

/* As a special exception, if you link this library with files
   compiled with GCC to produce an executable, this does not cause
   the resulting executable to be covered by the GNU General Public License.
   This exception does not however invalidate any other reasons why
   the executable file might be covered by the GNU General Public License.  */

/* Use this one for any 680x0; assumes no floating point hardware.
   The trailing " '" appearing on some lines is for ANSI preprocessors.  Yuk.
   Some of this code comes from MINIX, via the folks at ericsson.
   D. V. Henkel-Wallace (gumby@cygnus.com) Fete Bastille, 1992
*/

/* These are predefined by new versions of GNU cpp.  */

#ifndef __USER_LABEL_PREFIX__
#define __USER_LABEL_PREFIX__ _
#endif

#ifndef __REGISTER_PREFIX__
#define __REGISTER_PREFIX__
#endif

#ifndef __IMMEDIATE_PREFIX__
#define __IMMEDIATE_PREFIX__ #
#endif

/* ANSI concatenation macros.  */

#define CONCAT1(a, b) CONCAT2(a, b)
#define CONCAT2(a, b) a ## b

/* Use the right prefix for global labels.  */

#define SYM(x) CONCAT1 (__USER_LABEL_PREFIX__, x)

/* Use the right prefix for registers.  */

#define REG(x) CONCAT1 (__REGISTER_PREFIX__, x)

/* Use the right prefix for immediate values.  */

#define IMM(x) CONCAT1 (__IMMEDIATE_PREFIX__, x)

#define d0 REG (d0)
#define d1 REG (d1)
#define d2 REG (d2)
#define d3 REG (d3)
#define d4 REG (d4)
#define d5 REG (d5)
#define d6 REG (d6)
#define d7 REG (d7)
#define a0 REG (a0)
#define a1 REG (a1)
#define a2 REG (a2)
#define a3 REG (a3)
#define a4 REG (a4)
#define a5 REG (a5)
#define a6 REG (a6)
#define fp REG (fp)
#define sp REG (sp)

#ifdef L_floatex

| This is an attempt at a decent floating point (single, double and 
| extended double) code for the GNU C compiler. It should be easy to
| adapt to other compilers (but beware of the local labels!).

| Starting date: 21 October, 1990

| It is convenient to introduce the notation (s,e,f) for a floating point
| number, where s=sign, e=exponent, f=fraction. We will call a floating
| point number fpn to abbreviate, independently of the precision.
| Let MAX_EXP be in each case the maximum exponent (255 for floats, 1023 
| for doubles and 16383 for long doubles). We then have the following 
| different cases:
|  1. Normalized fpns have 0 < e < MAX_EXP. They correspond to 
|     (-1)^s x 1.f x 2^(e-bias-1).
|  2. Denormalized fpns have e=0. They correspond to numbers of the form
|     (-1)^s x 0.f x 2^(-bias).
|  3. +/-INFINITY have e=MAX_EXP, f=0.
|  4. Quiet NaN (Not a Number) have all bits set.
|  5. Signaling NaN (Not a Number) have s=0, e=MAX_EXP, f=1.

|=============================================================================
|                                  exceptions
|=============================================================================

| This is the floating point condition code register (_fpCCR):
|
| struct {
|   short _exception_bits;	
|   short _trap_enable_bits;	
|   short _sticky_bits;
|   short _rounding_mode;
|   short _format;
|   short _last_operation;
|   union {
|     float sf;
|     double df;
|   } _operand1;
|   union {
|     float sf;
|     double df;
|   } _operand2;
| } _fpCCR;

	.data
	.even

	.globl	SYM (_fpCCR)
	
SYM (_fpCCR):
__exception_bits:
	.word	0
__trap_enable_bits:
	.word	0
__sticky_bits:
	.word	0
__rounding_mode:
	.word	ROUND_TO_NEAREST
__format:
	.word	NIL
__last_operation:
	.word	NOOP
__operand1:
	.long	0
	.long	0
__operand2:
	.long 	0
	.long	0

| Offsets:
EBITS  = __exception_bits - SYM (_fpCCR)
TRAPE  = __trap_enable_bits - SYM (_fpCCR)
STICK  = __sticky_bits - SYM (_fpCCR)
ROUND  = __rounding_mode - SYM (_fpCCR)
FORMT  = __format - SYM (_fpCCR)
LASTO  = __last_operation - SYM (_fpCCR)
OPER1  = __operand1 - SYM (_fpCCR)
OPER2  = __operand2 - SYM (_fpCCR)

| The following exception types are supported:
INEXACT_RESULT 		= 0x0001
UNDERFLOW 		= 0x0002
OVERFLOW 		= 0x0004
DIVIDE_BY_ZERO 		= 0x0008
INVALID_OPERATION 	= 0x0010

| The allowed rounding modes are:
UNKNOWN           = -1
ROUND_TO_NEAREST  = 0 | round result to nearest representable value
ROUND_TO_ZERO     = 1 | round result towards zero
ROUND_TO_PLUS     = 2 | round result towards plus infinity
ROUND_TO_MINUS    = 3 | round result towards minus infinity

| The allowed values of format are:
NIL          = 0
SINGLE_FLOAT = 1
DOUBLE_FLOAT = 2
LONG_FLOAT   = 3

| The allowed values for the last operation are:
NOOP         = 0
ADD          = 1
MULTIPLY     = 2
DIVIDE       = 3
NEGATE       = 4
COMPARE      = 5
EXTENDSFDF   = 6
TRUNCDFSF    = 7

|=============================================================================
|                           __clear_sticky_bits
|=============================================================================

| The sticky bits are normally not cleared (thus the name), whereas the 
| exception type and exception value reflect the last computation. 
| This routine is provided to clear them (you can also write to _fpCCR,
| since it is globally visible).

	.globl  SYM (__clear_sticky_bit)

	.text
	.even

| void __clear_sticky_bits(void);
SYM (__clear_sticky_bit):		
	lea	SYM (_fpCCR),a0
	movew	IMM (0),a0@(STICK)
	rts

|=============================================================================
|                           $_exception_handler
|=============================================================================

	.globl  $_exception_handler

	.text
	.even

| This is the common exit point if an exception occurs.
| NOTE: it is NOT callable from C!
| It expects the exception type in d7, the format (SINGLE_FLOAT,
| DOUBLE_FLOAT or LONG_FLOAT) in d6, and the last operation code in d5.
| It sets the corresponding exception and sticky bits, and the format. 
| Depending on the format if fills the corresponding slots for the 
| operands which produced the exception (all this information is provided
| so if you write your own exception handlers you have enough information
| to deal with the problem).
| Then checks to see if the corresponding exception is trap-enabled, 
| in which case it pushes the address of _fpCCR and traps through 
| trap FPTRAP (15 for the moment).

FPTRAP = 15

$_exception_handler:
	lea	SYM (_fpCCR),a0
	movew	d7,a0@(EBITS)	| set __exception_bits
	orw	d7,a0@(STICK)	| and __sticky_bits
	movew	d6,a0@(FORMT)	| and __format
	movew	d5,a0@(LASTO)	| and __last_operation

| Now put the operands in place:
	cmpw	IMM (SINGLE_FLOAT),d6
	beq	1f
	movel	a6@(8),a0@(OPER1)
	movel	a6@(12),a0@(OPER1+4)
	movel	a6@(16),a0@(OPER2)
	movel	a6@(20),a0@(OPER2+4)
	bra	2f
1:	movel	a6@(8),a0@(OPER1)
	movel	a6@(12),a0@(OPER2)
2:
| And check whether the exception is trap-enabled:
	andw	a0@(TRAPE),d7	| is exception trap-enabled?
	beq	1f		| no, exit
	pea	SYM (_fpCCR)	| yes, push address of _fpCCR
	trap	IMM (FPTRAP)	| and trap
1:	moveml	sp@+,d2-d7	| restore data registers
	unlk	a6		| and return
	rts
#endif /* L_floatex */

#ifdef  L_mulsi3
	.text
	.proc
	.globl	SYM (__mulsi3)
SYM (__mulsi3):
	movew	sp@(4), d0	/* x0 -> d0 */
	muluw	sp@(10), d0	/* x0*y1 */
	movew	sp@(6), d1	/* x1 -> d1 */
	muluw	sp@(8), d1	/* x1*y0 */
	addw	d1, d0
	swap	d0
	clrw	d0
	movew	sp@(6), d1	/* x1 -> d1 */
	muluw	sp@(10), d1	/* x1*y1 */
	addl	d1, d0

	rts
#endif /* L_mulsi3 */

#ifdef  L_udivsi3
	.text
	.proc
	.globl	SYM (__udivsi3)
SYM (__udivsi3):
	movel	d2, sp@-
	movel	sp@(12), d1	/* d1 = divisor */
	movel	sp@(8), d0	/* d0 = dividend */

	cmpl	IMM (0x10000), d1 /* divisor >= 2 ^ 16 ?   */
	jcc	L3		/* then try next algorithm */
	movel	d0, d2
	clrw	d2
	swap	d2
	divu	d1, d2          /* high quotient in lower word */
	movew	d2, d0		/* save high quotient */
	swap	d0
	movew	sp@(10), d2	/* get low dividend + high rest */
	divu	d1, d2		/* low quotient */
	movew	d2, d0
	jra	L6

L3:	movel	d1, d2		/* use d2 as divisor backup */
L4:	lsrl	IMM (1), d1	/* shift divisor */
	lsrl	IMM (1), d0	/* shift dividend */
	cmpl	IMM (0x10000), d1 /* still divisor >= 2 ^ 16 ?  */
	jcc	L4
	divu	d1, d0		/* now we have 16 bit divisor */
	andl	IMM (0xffff), d0 /* mask out divisor, ignore remainder */

/* Muliply the 16 bit tentative quotient with the 32 bit divisor.  Because of
   the operand ranges, this might give a 33 bit product.  If this product is
   greater than the dividend, the tentative quotient was too large. */
	movel	d2, d1
	mulu	d0, d1		/* low part, 32 bits */
	swap	d2
	mulu	d0, d2		/* high part, at most 17 bits */
	swap	d2		/* align high part with low part */
	btst	IMM (0), d2	/* high part 17 bits? */
	jne	L5		/* if 17 bits, quotient was too large */
	addl	d2, d1		/* add parts */
	jcs	L5		/* if sum is 33 bits, quotient was too large */
	cmpl	sp@(8), d1	/* compare the sum with the dividend */
	jls	L6		/* if sum > dividend, quotient was too large */
L5:	subql	IMM (1), d0	/* adjust quotient */

L6:	movel	sp@+, d2
	rts
#endif /* L_udivsi3 */

#ifdef  L_divsi3
	.text
	.proc
	.globl	SYM (__divsi3)
SYM (__divsi3):
	movel	d2, sp@-

	moveb	IMM (1), d2	/* sign of result stored in d2 (=1 or =-1) */
	movel	sp@(12), d1	/* d1 = divisor */
	jpl	L1
	negl	d1
	negb	d2		/* change sign because divisor <0  */
L1:	movel	sp@(8), d0	/* d0 = dividend */
	jpl	L2
	negl	d0
	negb	d2

L2:	movel	d1, sp@-
	movel	d0, sp@-
	jbsr	SYM (__udivsi3)	/* divide abs(dividend) by abs(divisor) */
	addql	IMM (8), sp

	tstb	d2
	jpl	L3
	negl	d0

L3:	movel	sp@+, d2
	rts
#endif /* L_divsi3 */

#ifdef  L_umodsi3
	.text
	.proc
	.globl	SYM (__umodsi3)
SYM (__umodsi3):
	movel	sp@(8), d1	/* d1 = divisor */
	movel	sp@(4), d0	/* d0 = dividend */
	movel	d1, sp@-
	movel	d0, sp@-
	jbsr	SYM (__udivsi3)
	addql	IMM (8), sp
	movel	sp@(8), d1	/* d1 = divisor */
	movel	d1, sp@-
	movel	d0, sp@-
	jbsr	SYM (__mulsi3)	/* d0 = (a/b)*b */
	addql	IMM (8), sp
	movel	sp@(4), d1	/* d1 = dividend */
	subl	d0, d1		/* d1 = a - (a/b)*b */
	movel	d1, d0
	rts
#endif /* L_umodsi3 */

#ifdef  L_modsi3
	.text
	.proc
	.globl	SYM (__modsi3)
SYM (__modsi3):
	movel	sp@(8), d1	/* d1 = divisor */
	movel	sp@(4), d0	/* d0 = dividend */
	movel	d1, sp@-
	movel	d0, sp@-
	jbsr	SYM (__divsi3)
	addql	IMM (8), sp
	movel	sp@(8), d1	/* d1 = divisor */
	movel	d1, sp@-
	movel	d0, sp@-
	jbsr	SYM (__mulsi3)	/* d0 = (a/b)*b */
	addql	IMM (8), sp
	movel	sp@(4), d1	/* d1 = dividend */
	subl	d0, d1		/* d1 = a - (a/b)*b */
	movel	d1, d0
	rts
#endif /* L_modsi3 */


#ifdef  L_double

	.globl	SYM (_fpCCR)
	.globl  $_exception_handler

QUIET_NaN      = 0xffffffff

D_MAX_EXP      = 0x07ff
D_BIAS         = 1022
DBL_MAX_EXP    = D_MAX_EXP - D_BIAS
DBL_MIN_EXP    = 1 - D_BIAS
DBL_MANT_DIG   = 53

INEXACT_RESULT 		= 0x0001
UNDERFLOW 		= 0x0002
OVERFLOW 		= 0x0004
DIVIDE_BY_ZERO 		= 0x0008
INVALID_OPERATION 	= 0x0010

DOUBLE_FLOAT = 2

NOOP         = 0
ADD          = 1
MULTIPLY     = 2
DIVIDE       = 3
NEGATE       = 4
COMPARE      = 5
EXTENDSFDF   = 6
TRUNCDFSF    = 7

UNKNOWN           = -1
ROUND_TO_NEAREST  = 0 | round result to nearest representable value
ROUND_TO_ZERO     = 1 | round result towards zero
ROUND_TO_PLUS     = 2 | round result towards plus infinity
ROUND_TO_MINUS    = 3 | round result towards minus infinity

| Entry points:

	.globl SYM (__adddf3)
	.globl SYM (__subdf3)
	.globl SYM (__muldf3)
	.globl SYM (__divdf3)
	.globl SYM (__negdf2)
	.globl SYM (__cmpdf2)

	.text
	.even

| These are common routines to return and signal exceptions.	

Ld$den:
| Return and signal a denormalized number
	orl	d7,d0
	movew	IMM (UNDERFLOW),d7
	orw	IMM (INEXACT_RESULT),d7
	movew	IMM (DOUBLE_FLOAT),d6
	jmp	$_exception_handler

Ld$infty:
Ld$overflow:
| Return a properly signed INFINITY and set the exception flags 
	movel	IMM (0x7ff00000),d0
	movel	IMM (0),d1
	orl	d7,d0
	movew	IMM (OVERFLOW),d7
	orw	IMM (INEXACT_RESULT),d7
	movew	IMM (DOUBLE_FLOAT),d6
	jmp	$_exception_handler

Ld$underflow:
| Return 0 and set the exception flags 
	movel	IMM (0),d0
	movel	d0,d1
	movew	IMM (UNDERFLOW),d7
	orw	IMM (INEXACT_RESULT),d7
	movew	IMM (DOUBLE_FLOAT),d6
	jmp	$_exception_handler

Ld$inop:
| Return a quiet NaN and set the exception flags
	movel	IMM (QUIET_NaN),d0
	movel	d0,d1
	movew	IMM (INVALID_OPERATION),d7
	orw	IMM (INEXACT_RESULT),d7
	movew	IMM (DOUBLE_FLOAT),d6
	jmp	$_exception_handler

Ld$div$0:
| Return a properly signed INFINITY and set the exception flags
	movel	IMM (0x7ff00000),d0
	movel	IMM (0),d1
	orl	d7,d0
	movew	IMM (DIVIDE_BY_ZERO),d7
	orw	IMM (INEXACT_RESULT),d7
	movew	IMM (DOUBLE_FLOAT),d6
	jmp	$_exception_handler

|=============================================================================
|=============================================================================
|                         double precision routines
|=============================================================================
|=============================================================================

| A double precision floating point number (double) has the format:
|
| struct _double {
|  unsigned int sign      : 1;  /* sign bit */ 
|  unsigned int exponent  : 11; /* exponent, shifted by 126 */
|  unsigned int fraction  : 52; /* fraction */
| } double;
| 
| Thus sizeof(double) = 8 (64 bits). 
|
| All the routines are callable from C programs, and return the result 
| in the register pair d0-d1. They also preserve all registers except 
| d0-d1 and a0-a1.

|=============================================================================
|                              __subdf3
|=============================================================================

| double __subdf3(double, double);
SYM (__subdf3):
	bchg	IMM (31),sp@(12) | change sign of second operand
				| and fall through, so we always add
|=============================================================================
|                              __adddf3
|=============================================================================

| double __adddf3(double, double);
SYM (__adddf3):
	link	a6,IMM (0)	| everything will be done in registers
	moveml	d2-d7,sp@-	| save all data registers and a2 (but d0-d1)
	movel	a6@(8),d0	| get first operand
	movel	a6@(12),d1	| 
	movel	a6@(16),d2	| get second operand
	movel	a6@(20),d3	| 

	movel	d0,d7		| get d0's sign bit in d7 '
	addl	d1,d1		| check and clear sign bit of a, and gain one
	addxl	d0,d0		| bit of extra precision
	beq	Ladddf$b	| if zero return second operand

	movel	d2,d6		| save sign in d6 
	addl	d3,d3		| get rid of sign bit and gain one bit of
	addxl	d2,d2		| extra precision
	beq	Ladddf$a	| if zero return first operand

	andl	IMM (0x80000000),d7 | isolate a's sign bit '
        swap	d6		| and also b's sign bit '
	andw	IMM (0x8000),d6	|
	orw	d6,d7		| and combine them into d7, so that a's sign '
				| bit is in the high word and b's is in the '
				| low word, so d6 is free to be used
	movel	d7,a0		| now save d7 into a0, so d7 is free to
                		| be used also

| Get the exponents and check for denormalized and/or infinity.

	movel	IMM (0x001fffff),d6 | mask for the fraction
	movel	IMM (0x00200000),d7 | mask to put hidden bit back

	movel	d0,d4		| 
	andl	d6,d0		| get fraction in d0
	notl	d6		| make d6 into mask for the exponent
	andl	d6,d4		| get exponent in d4
	beq	Ladddf$a$den	| branch if a is denormalized
	cmpl	d6,d4		| check for INFINITY or NaN
	beq	Ladddf$nf       | 
	orl	d7,d0		| and put hidden bit back
Ladddf$1:
	swap	d4		| shift right exponent so that it starts
	lsrw	IMM (5),d4	| in bit 0 and not bit 20
| Now we have a's exponent in d4 and fraction in d0-d1 '
	movel	d2,d5		| save b to get exponent
	andl	d6,d5		| get exponent in d5
	beq	Ladddf$b$den	| branch if b is denormalized
	cmpl	d6,d5		| check for INFINITY or NaN
	beq	Ladddf$nf
	notl	d6		| make d6 into mask for the fraction again
	andl	d6,d2		| and get fraction in d2
	orl	d7,d2		| and put hidden bit back
Ladddf$2:
	swap	d5		| shift right exponent so that it starts
	lsrw	IMM (5),d5	| in bit 0 and not bit 20

| Now we have b's exponent in d5 and fraction in d2-d3. '

| The situation now is as follows: the signs are combined in a0, the 
| numbers are in d0-d1 (a) and d2-d3 (b), and the exponents in d4 (a)
| and d5 (b). To do the rounding correctly we need to keep all the
| bits until the end, so we need to use d0-d1-d2-d3 for the first number
| and d4-d5-d6-d7 for the second. To do this we store (temporarily) the
| exponents in a2-a3.

	moveml	a2-a3,sp@-	| save the address registers

	movel	d4,a2		| save the exponents
	movel	d5,a3		| 

	movel	IMM (0),d7	| and move the numbers around
	movel	d7,d6		|
	movel	d3,d5		|
	movel	d2,d4		|
	movel	d7,d3		|
	movel	d7,d2		|

| Here we shift the numbers until the exponents are the same, and put 
| the largest exponent in a2.
	exg	d4,a2		| get exponents back
	exg	d5,a3		|
	cmpw	d4,d5		| compare the exponents
	beq	Ladddf$3	| if equal don't shift '
	bhi	9f		| branch if second exponent is higher

| Here we have a's exponent larger than b's, so we have to shift b. We do 
| this by using as counter d2:
1:	movew	d4,d2		| move largest exponent to d2
	subw	d5,d2		| and substract second exponent
	exg	d4,a2		| get back the longs we saved
	exg	d5,a3		|
| if difference is too large we don't shift (actually, we can just exit) '
	cmpw	IMM (DBL_MANT_DIG+2),d2
	bge	Ladddf$b$small
	cmpw	IMM (32),d2	| if difference >= 32, shift by longs
	bge	5f
2:	cmpw	IMM (16),d2	| if difference >= 16, shift by words	
	bge	6f
	bra	3f		| enter dbra loop

4:	lsrl	IMM (1),d4
	roxrl	IMM (1),d5
	roxrl	IMM (1),d6
	roxrl	IMM (1),d7
3:	dbra	d2,4b
	movel	IMM (0),d2
	movel	d2,d3	
	bra	Ladddf$4
5:
	movel	d6,d7
	movel	d5,d6
	movel	d4,d5
	movel	IMM (0),d4
	subw	IMM (32),d2
	bra	2b
6:
	movew	d6,d7
	swap	d7
	movew	d5,d6
	swap	d6
	movew	d4,d5
	swap	d5
	movew	IMM (0),d4
	swap	d4
	subw	IMM (16),d2
	bra	3b
	
9:	exg	d4,d5
	movew	d4,d6
	subw	d5,d6		| keep d5 (largest exponent) in d4
	exg	d4,a2
	exg	d5,a3
| if difference is too large we don't shift (actually, we can just exit) '
	cmpw	IMM (DBL_MANT_DIG+2),d6
	bge	Ladddf$a$small
	cmpw	IMM (32),d6	| if difference >= 32, shift by longs
	bge	5f
2:	cmpw	IMM (16),d6	| if difference >= 16, shift by words	
	bge	6f
	bra	3f		| enter dbra loop

4:	lsrl	IMM (1),d0
	roxrl	IMM (1),d1
	roxrl	IMM (1),d2
	roxrl	IMM (1),d3
3:	dbra	d6,4b
	movel	IMM (0),d7
	movel	d7,d6
	bra	Ladddf$4
5:
	movel	d2,d3
	movel	d1,d2
	movel	d0,d1
	movel	IMM (0),d0
	subw	IMM (32),d6
	bra	2b
6:
	movew	d2,d3
	swap	d3
	movew	d1,d2
	swap	d2
	movew	d0,d1
	swap	d1
	movew	IMM (0),d0
	swap	d0
	subw	IMM (16),d6
	bra	3b
Ladddf$3:
	exg	d4,a2	
	exg	d5,a3
Ladddf$4:	
| Now we have the numbers in d0--d3 and d4--d7, the exponent in a2, and
| the signs in a4.

| Here we have to decide whether to add or substract the numbers:
	exg	d7,a0		| get the signs 
	exg	d6,a3		| a3 is free to be used
	movel	d7,d6		|
	movew	IMM (0),d7	| get a's sign in d7 '
	swap	d6              |
	movew	IMM (0),d6	| and b's sign in d6 '
	eorl	d7,d6		| compare the signs
	bmi	Lsubdf$0	| if the signs are different we have 
				| to substract
	exg	d7,a0		| else we add the numbers
	exg	d6,a3		|
	addl	d7,d3		|
	addxl	d6,d2		|
	addxl	d5,d1		| 
	addxl	d4,d0           |

	movel	a2,d4		| return exponent to d4
	movel	a0,d7		| 
	andl	IMM (0x80000000),d7 | d7 now has the sign

	moveml	sp@+,a2-a3	

| Before rounding normalize so bit #DBL_MANT_DIG is set (we will consider
| the case of denormalized numbers in the rounding routine itself).
| As in the addition (not in the substraction!) we could have set 
| one more bit we check this:
	btst	IMM (DBL_MANT_DIG+1),d0	
	beq	1f
	lsrl	IMM (1),d0
	roxrl	IMM (1),d1
	roxrl	IMM (1),d2
	roxrl	IMM (1),d3
	addw	IMM (1),d4
1:
	lea	Ladddf$5,a0	| to return from rounding routine
	lea	SYM (_fpCCR),a1	| check the rounding mode
	movew	a1@(6),d6	| rounding mode in d6
	beq	Lround$to$nearest
	cmpw	IMM (ROUND_TO_PLUS),d6
	bhi	Lround$to$minus
	blt	Lround$to$zero
	bra	Lround$to$plus
Ladddf$5:
| Put back the exponent and check for overflow
	cmpw	IMM (0x7ff),d4	| is the exponent big?
	bge	1f
	bclr	IMM (DBL_MANT_DIG-1),d0
	lslw	IMM (4),d4	| put exponent back into position
	swap	d0		| 
	orw	d4,d0		|
	swap	d0		|
	bra	Ladddf$ret
1:
	movew	IMM (ADD),d5
	bra	Ld$overflow

Lsubdf$0:
| Here we do the substraction.
	exg	d7,a0		| put sign back in a0
	exg	d6,a3		|
	subl	d7,d3		|
	subxl	d6,d2		|
	subxl	d5,d1		|
	subxl	d4,d0		|
	beq	Ladddf$ret$1	| if zero just exit
	bpl	1f		| if positive skip the following
	exg	d7,a0		|
	bchg	IMM (31),d7	| change sign bit in d7
	exg	d7,a0		|
	negl	d3		|
	negxl	d2		|
	negxl	d1              | and negate result
	negxl	d0              |
1:	
	movel	a2,d4		| return exponent to d4
	movel	a0,d7
	andl	IMM (0x80000000),d7 | isolate sign bit
	moveml	sp@+,a2-a3	|

| Before rounding normalize so bit #DBL_MANT_DIG is set (we will consider
| the case of denormalized numbers in the rounding routine itself).
| As in the addition (not in the substraction!) we could have set 
| one more bit we check this:
	btst	IMM (DBL_MANT_DIG+1),d0	
	beq	1f
	lsrl	IMM (1),d0
	roxrl	IMM (1),d1
	roxrl	IMM (1),d2
	roxrl	IMM (1),d3
	addw	IMM (1),d4
1:
	lea	Lsubdf$1,a0	| to return from rounding routine
	lea	SYM (_fpCCR),a1	| check the rounding mode
	movew	a1@(6),d6	| rounding mode in d6
	beq	Lround$to$nearest
	cmpw	IMM (ROUND_TO_PLUS),d6
	bhi	Lround$to$minus
	blt	Lround$to$zero
	bra	Lround$to$plus
Lsubdf$1:
| Put back the exponent and sign (we don't have overflow). '
	bclr	IMM (DBL_MANT_DIG-1),d0	
	lslw	IMM (4),d4	| put exponent back into position
	swap	d0		| 
	orw	d4,d0		|
	swap	d0		|
	bra	Ladddf$ret

| If one of the numbers was too small (difference of exponents >= 
| DBL_MANT_DIG+1) we return the other (and now we don't have to '
| check for finiteness or zero).
Ladddf$a$small:
	moveml	sp@+,a2-a3	
	movel	a6@(16),d0
	movel	a6@(20),d1
	lea	SYM (_fpCCR),a0
	movew	IMM (0),a0@
	moveml	sp@+,d2-d7	| restore data registers
	unlk	a6		| and return
	rts

Ladddf$b$small:
	moveml	sp@+,a2-a3	
	movel	a6@(8),d0
	movel	a6@(12),d1
	lea	SYM (_fpCCR),a0
	movew	IMM (0),a0@
	moveml	sp@+,d2-d7	| restore data registers
	unlk	a6		| and return
	rts

Ladddf$a$den:
	movel	d7,d4		| d7 contains 0x00200000
	bra	Ladddf$1

Ladddf$b$den:
	movel	d7,d5           | d7 contains 0x00200000
	notl	d6
	bra	Ladddf$2

Ladddf$b:
| Return b (if a is zero)
	movel	d2,d0
	movel	d3,d1
	bra	1f
Ladddf$a:
	movel	a6@(8),d0
	movel	a6@(12),d1
1:
	movew	IMM (ADD),d5
| Check for NaN and +/-INFINITY.
	movel	d0,d7         		|
	andl	IMM (0x80000000),d7	|
	bclr	IMM (31),d0		|
	cmpl	IMM (0x7ff00000),d0	|
	bge	2f			|
	movel	d0,d0           	| check for zero, since we don't  '
	bne	Ladddf$ret		| want to return -0 by mistake
	bclr	IMM (31),d7		|
	bra	Ladddf$ret		|
2:
	andl	IMM (0x000fffff),d0	| check for NaN (nonzero fraction)
	orl	d1,d0			|
	bne	Ld$inop         	|
	bra	Ld$infty		|
	
Ladddf$ret$1:
	moveml	sp@+,a2-a3	| restore regs and exit

Ladddf$ret:
| Normal exit.
	lea	SYM (_fpCCR),a0
	movew	IMM (0),a0@
	orl	d7,d0		| put sign bit back
	moveml	sp@+,d2-d7
	unlk	a6
	rts

Ladddf$ret$den:
| Return a denormalized number.
	lsrl	IMM (1),d0	| shift right once more
	roxrl	IMM (1),d1	|
	bra	Ladddf$ret

Ladddf$nf:
	movew	IMM (ADD),d5
| This could be faster but it is not worth the effort, since it is not
| executed very often. We sacrifice speed for clarity here.
	movel	a6@(8),d0	| get the numbers back (remember that we
	movel	a6@(12),d1	| did some processing already)
	movel	a6@(16),d2	| 
	movel	a6@(20),d3	| 
	movel	IMM (0x7ff00000),d4 | useful constant (INFINITY)
	movel	d0,d7		| save sign bits
	movel	d2,d6		| 
	bclr	IMM (31),d0	| clear sign bits
	bclr	IMM (31),d2	| 
| We know that one of them is either NaN of +/-INFINITY
| Check for NaN (if either one is NaN return NaN)
	cmpl	d4,d0		| check first a (d0)
	bhi	Ld$inop		| if d0 > 0x7ff00000 or equal and
	bne	2f
	tstl	d1		| d1 > 0, a is NaN
	bne	Ld$inop		| 
2:	cmpl	d4,d2		| check now b (d1)
	bhi	Ld$inop		| 
	bne	3f
	tstl	d3		| 
	bne	Ld$inop		| 
3:
| Now comes the check for +/-INFINITY. We know that both are (maybe not
| finite) numbers, but we have to check if both are infinite whether we
| are adding or substracting them.
	eorl	d7,d6		| to check sign bits
	bmi	1f
	andl	IMM (0x80000000),d7 | get (common) sign bit
	bra	Ld$infty
1:
| We know one (or both) are infinite, so we test for equality between the
| two numbers (if they are equal they have to be infinite both, so we
| return NaN).
	cmpl	d2,d0		| are both infinite?
	bne	1f		| if d0 <> d2 they are not equal
	cmpl	d3,d1		| if d0 == d2 test d3 and d1
	beq	Ld$inop		| if equal return NaN
1:	
	andl	IMM (0x80000000),d7 | get a's sign bit '
	cmpl	d4,d0		| test now for infinity
	beq	Ld$infty	| if a is INFINITY return with this sign
	bchg	IMM (31),d7	| else we know b is INFINITY and has
	bra	Ld$infty	| the opposite sign

|=============================================================================
|                              __muldf3
|=============================================================================

| double __muldf3(double, double);
SYM (__muldf3):
	link	a6,IMM (0)
	moveml	d2-d7,sp@-
	movel	a6@(8),d0		| get a into d0-d1
	movel	a6@(12),d1		| 
	movel	a6@(16),d2		| and b into d2-d3
	movel	a6@(20),d3		|
	movel	d0,d7			| d7 will hold the sign of the product
	eorl	d2,d7			|
	andl	IMM (0x80000000),d7	|
	movel	d7,a0			| save sign bit into a0 
	movel	IMM (0x7ff00000),d7	| useful constant (+INFINITY)
	movel	d7,d6			| another (mask for fraction)
	notl	d6			|
	bclr	IMM (31),d0		| get rid of a's sign bit '
	movel	d0,d4			| 
	orl	d1,d4			| 
	beq	Lmuldf$a$0		| branch if a is zero
	movel	d0,d4			|
	bclr	IMM (31),d2		| get rid of b's sign bit '
	movel	d2,d5			|
	orl	d3,d5			| 
	beq	Lmuldf$b$0		| branch if b is zero
	movel	d2,d5			| 
	cmpl	d7,d0			| is a big?
	bhi	Lmuldf$inop		| if a is NaN return NaN
	beq	Lmuldf$a$nf		| we still have to check d1 and b ...
	cmpl	d7,d2			| now compare b with INFINITY
	bhi	Lmuldf$inop		| is b NaN?
	beq	Lmuldf$b$nf 		| we still have to check d3 ...
| Here we have both numbers finite and nonzero (and with no sign bit).
| Now we get the exponents into d4 and d5.
	andl	d7,d4			| isolate exponent in d4
	beq	Lmuldf$a$den		| if exponent zero, have denormalized
	andl	d6,d0			| isolate fraction
	orl	IMM (0x00100000),d0	| and put hidden bit back
	swap	d4			| I like exponents in the first byte
	lsrw	IMM (4),d4		| 
Lmuldf$1:			
	andl	d7,d5			|
	beq	Lmuldf$b$den		|
	andl	d6,d2			|
	orl	IMM (0x00100000),d2	| and put hidden bit back
	swap	d5			|
	lsrw	IMM (4),d5		|
Lmuldf$2:				|
	addw	d5,d4			| add exponents
	subw	IMM (D_BIAS+1),d4	| and substract bias (plus one)

| We are now ready to do the multiplication. The situation is as follows:
| both a and b have bit 52 ( bit 20 of d0 and d2) set (even if they were 
| denormalized to start with!), which means that in the product bit 104 
| (which will correspond to bit 8 of the fourth long) is set.

| Here we have to do the product.
| To do it we have to juggle the registers back and forth, as there are not
| enough to keep everything in them. So we use the address registers to keep
| some intermediate data.

	moveml	a2-a3,sp@-	| save a2 and a3 for temporary use
	movel	IMM (0),a2	| a2 is a null register
	movel	d4,a3		| and a3 will preserve the exponent

| First, shift d2-d3 so bit 20 becomes bit 31:
	rorl	IMM (5),d2	| rotate d2 5 places right
	swap	d2		| and swap it
	rorl	IMM (5),d3	| do the same thing with d3
	swap	d3		|
	movew	d3,d6		| get the rightmost 11 bits of d3
	andw	IMM (0x07ff),d6	|
	orw	d6,d2		| and put them into d2
	andw	IMM (0xf800),d3	| clear those bits in d3

	movel	d2,d6		| move b into d6-d7
	movel	d3,d7           | move a into d4-d5
	movel	d0,d4           | and clear d0-d1-d2-d3 (to put result)
	movel	d1,d5           |
	movel	IMM (0),d3	|
	movel	d3,d2           |
	movel	d3,d1           |
	movel	d3,d0	        |

| We use a1 as counter:	
	movel	IMM (DBL_MANT_DIG-1),a1		
	exg	d7,a1

1:	exg	d7,a1		| put counter back in a1
	addl	d3,d3		| shift sum once left
	addxl	d2,d2           |
	addxl	d1,d1           |
	addxl	d0,d0           |
	addl	d7,d7		|
	addxl	d6,d6		|
	bcc	2f		| if bit clear skip the following
	exg	d7,a2		|
	addl	d5,d3		| else add a to the sum
	addxl	d4,d2		|
	addxl	d7,d1		|
	addxl	d7,d0		|
	exg	d7,a2		| 
2:	exg	d7,a1		| put counter in d7
	dbf	d7,1b		| decrement and branch

	movel	a3,d4		| restore exponent
	moveml	sp@+,a2-a3

| Now we have the product in d0-d1-d2-d3, with bit 8 of d0 set. The 
| first thing to do now is to normalize it so bit 8 becomes bit 
| DBL_MANT_DIG-32 (to do the rounding); later we will shift right.
	swap	d0
	swap	d1
	movew	d1,d0
	swap	d2
	movew	d2,d1
	swap	d3
	movew	d3,d2
	movew	IMM (0),d3
	lsrl	IMM (1),d0
	roxrl	IMM (1),d1
	roxrl	IMM (1),d2
	roxrl	IMM (1),d3
	lsrl	IMM (1),d0
	roxrl	IMM (1),d1
	roxrl	IMM (1),d2
	roxrl	IMM (1),d3
	lsrl	IMM (1),d0
	roxrl	IMM (1),d1
	roxrl	IMM (1),d2
	roxrl	IMM (1),d3
	
| Now round, check for over- and underflow, and exit.
	movel	a0,d7		| get sign bit back into d7
	movew	IMM (MULTIPLY),d5

	btst	IMM (DBL_MANT_DIG+1-32),d0
	beq	Lround$exit
	lsrl	IMM (1),d0
	roxrl	IMM (1),d1
	addw	IMM (1),d4
	bra	Lround$exit

Lmuldf$inop:
	movew	IMM (MULTIPLY),d5
	bra	Ld$inop

Lmuldf$b$nf:
	movew	IMM (MULTIPLY),d5
	movel	a0,d7		| get sign bit back into d7
	tstl	d3		| we know d2 == 0x7ff00000, so check d3
	bne	Ld$inop		| if d3 <> 0 b is NaN
	bra	Ld$overflow	| else we have overflow (since a is finite)

Lmuldf$a$nf:
	movew	IMM (MULTIPLY),d5
	movel	a0,d7		| get sign bit back into d7
	tstl	d1		| we know d0 == 0x7ff00000, so check d1
	bne	Ld$inop		| if d1 <> 0 a is NaN
	bra	Ld$overflow	| else signal overflow

| If either number is zero return zero, unless the other is +/-INFINITY or
| NaN, in which case we return NaN.
Lmuldf$b$0:
	movew	IMM (MULTIPLY),d5
	exg	d2,d0		| put b (==0) into d0-d1
	exg	d3,d1		| and a (with sign bit cleared) into d2-d3
	bra	1f
Lmuldf$a$0:
	movel	a6@(16),d2	| put b into d2-d3 again
	movel	a6@(20),d3	|
	bclr	IMM (31),d2	| clear sign bit
1:	cmpl	IMM (0x7ff00000),d2 | check for non-finiteness
	bge	Ld$inop		| in case NaN or +/-INFINITY return NaN
	lea	SYM (_fpCCR),a0
	movew	IMM (0),a0@
	moveml	sp@+,d2-d7
	unlk	a6
	rts

| If a number is denormalized we put an exponent of 1 but do not put the 
| hidden bit back into the fraction; instead we shift left until bit 21
| (the hidden bit) is set, adjusting the exponent accordingly. We do this
| to ensure that the product of the fractions is close to 1.
Lmuldf$a$den:
	movel	IMM (1),d4
	andl	d6,d0
1:	addl	d1,d1           | shift a left until bit 20 is set
	addxl	d0,d0		|
	subw	IMM (1),d4	| and adjust exponent
	btst	IMM (20),d0	|
	bne	Lmuldf$1        |
	bra	1b

Lmuldf$b$den:
	movel	IMM (1),d5
	andl	d6,d2
1:	addl	d3,d3		| shift b left until bit 20 is set
	addxl	d2,d2		|
	subw	IMM (1),d5	| and adjust exponent
	btst	IMM (20),d2	|
	bne	Lmuldf$2	|
	bra	1b


|=============================================================================
|                              __divdf3
|=============================================================================

| double __divdf3(double, double);
SYM (__divdf3):
	link	a6,IMM (0)
	moveml	d2-d7,sp@-
	movel	a6@(8),d0	| get a into d0-d1
	movel	a6@(12),d1	| 
	movel	a6@(16),d2	| and b into d2-d3
	movel	a6@(20),d3	|
	movel	d0,d7		| d7 will hold the sign of the result
	eorl	d2,d7		|
	andl	IMM (0x80000000),d7
	movel	d7,a0		| save sign into a0
	movel	IMM (0x7ff00000),d7 | useful constant (+INFINITY)
	movel	d7,d6		| another (mask for fraction)
	notl	d6		|
	bclr	IMM (31),d0	| get rid of a's sign bit '
	movel	d0,d4		|
	orl	d1,d4		|
	beq	Ldivdf$a$0	| branch if a is zero
	movel	d0,d4		|
	bclr	IMM (31),d2	| get rid of b's sign bit '
	movel	d2,d5		|
	orl	d3,d5		|
	beq	Ldivdf$b$0	| branch if b is zero
	movel	d2,d5
	cmpl	d7,d0		| is a big?
	bhi	Ldivdf$inop	| if a is NaN return NaN
	beq	Ldivdf$a$nf	| if d0 == 0x7ff00000 we check d1
	cmpl	d7,d2		| now compare b with INFINITY 
	bhi	Ldivdf$inop	| if b is NaN return NaN
	beq	Ldivdf$b$nf	| if d2 == 0x7ff00000 we check d3
| Here we have both numbers finite and nonzero (and with no sign bit).
| Now we get the exponents into d4 and d5 and normalize the numbers to
| ensure that the ratio of the fractions is around 1. We do this by
| making sure that both numbers have bit #DBL_MANT_DIG-32-1 (hidden bit)
| set, even if they were denormalized to start with.
| Thus, the result will satisfy: 2 > result > 1/2.
	andl	d7,d4		| and isolate exponent in d4
	beq	Ldivdf$a$den	| if exponent is zero we have a denormalized
	andl	d6,d0		| and isolate fraction
	orl	IMM (0x00100000),d0 | and put hidden bit back
	swap	d4		| I like exponents in the first byte
	lsrw	IMM (4),d4	| 
Ldivdf$1:			| 
	andl	d7,d5		|
	beq	Ldivdf$b$den	|
	andl	d6,d2		|
	orl	IMM (0x00100000),d2
	swap	d5		|
	lsrw	IMM (4),d5	|
Ldivdf$2:			|
	subw	d5,d4		| substract exponents
	addw	IMM (D_BIAS),d4	| and add bias

| We are now ready to do the division. We have prepared things in such a way
| that the ratio of the fractions will be less than 2 but greater than 1/2.
| At this point the registers in use are:
| d0-d1	hold a (first operand, bit DBL_MANT_DIG-32=0, bit 
| DBL_MANT_DIG-1-32=1)
| d2-d3	hold b (second operand, bit DBL_MANT_DIG-32=1)
| d4	holds the difference of the exponents, corrected by the bias
| a0	holds the sign of the ratio

| To do the rounding correctly we need to keep information about the
| nonsignificant bits. One way to do this would be to do the division
| using four registers; another is to use two registers (as originally
| I did), but use a sticky bit to preserve information about the 
| fractional part. Note that we can keep that info in a1, which is not
| used.
	movel	IMM (0),d6	| d6-d7 will hold the result
	movel	d6,d7		| 
	movel	IMM (0),a1	| and a1 will hold the sticky bit

	movel	IMM (DBL_MANT_DIG-32+1),d5	
	
1:	cmpl	d0,d2		| is a < b?
	bhi	3f		| if b > a skip the following
	beq	4f		| if d0==d2 check d1 and d3
2:	subl	d3,d1		| 
	subxl	d2,d0		| a <-- a - b
	bset	d5,d6		| set the corresponding bit in d6
3:	addl	d1,d1		| shift a by 1
	addxl	d0,d0		|
	dbra	d5,1b		| and branch back
	bra	5f			
4:	cmpl	d1,d3		| here d0==d2, so check d1 and d3
	bhi	3b		| if d1 > d2 skip the substraction
	bra	2b		| else go do it
5:
| Here we have to start setting the bits in the second long.
	movel	IMM (31),d5	| again d5 is counter

1:	cmpl	d0,d2		| is a < b?
	bhi	3f		| if b > a skip the following
	beq	4f		| if d0==d2 check d1 and d3
2:	subl	d3,d1		| 
	subxl	d2,d0		| a <-- a - b
	bset	d5,d7		| set the corresponding bit in d7
3:	addl	d1,d1		| shift a by 1
	addxl	d0,d0		|
	dbra	d5,1b		| and branch back
	bra	5f			
4:	cmpl	d1,d3		| here d0==d2, so check d1 and d3
	bhi	3b		| if d1 > d2 skip the substraction
	bra	2b		| else go do it
5:
| Now go ahead checking until we hit a one, which we store in d2.
	movel	IMM (DBL_MANT_DIG),d5
1:	cmpl	d2,d0		| is a < b?
	bhi	4f		| if b < a, exit
	beq	3f		| if d0==d2 check d1 and d3
2:	addl	d1,d1		| shift a by 1
	addxl	d0,d0		|
	dbra	d5,1b		| and branch back
	movel	IMM (0),d2	| here no sticky bit was found
	movel	d2,d3
	bra	5f			
3:	cmpl	d1,d3		| here d0==d2, so check d1 and d3
	bhi	2b		| if d1 > d2 go back
4:
| Here put the sticky bit in d2-d3 (in the position which actually corresponds
| to it; if you don't do this the algorithm loses in some cases). '
	movel	IMM (0),d2
	movel	d2,d3
	subw	IMM (DBL_MANT_DIG),d5
	addw	IMM (63),d5
	cmpw	IMM (31),d5
	bhi	2f
1:	bset	d5,d3
	bra	5f
	subw	IMM (32),d5
2:	bset	d5,d2
5:
| Finally we are finished! Move the longs in the address registers to
| their final destination:
	movel	d6,d0
	movel	d7,d1
	movel	IMM (0),d3

| Here we have finished the division, with the result in d0-d1-d2-d3, with
| 2^21 <= d6 < 2^23. Thus bit 23 is not set, but bit 22 could be set.
| If it is not, then definitely bit 21 is set. Normalize so bit 22 is
| not set:
	btst	IMM (DBL_MANT_DIG-32+1),d0
	beq	1f
	lsrl	IMM (1),d0
	roxrl	IMM (1),d1
	roxrl	IMM (1),d2
	roxrl	IMM (1),d3
	addw	IMM (1),d4
1:
| Now round, check for over- and underflow, and exit.
	movel	a0,d7		| restore sign bit to d7
	movew	IMM (DIVIDE),d5
	bra	Lround$exit

Ldivdf$inop:
	movew	IMM (DIVIDE),d5
	bra	Ld$inop

Ldivdf$a$0:
| If a is zero check to see whether b is zero also. In that case return
| NaN; then check if b is NaN, and return NaN also in that case. Else
| return zero.
	movew	IMM (DIVIDE),d5
	bclr	IMM (31),d2	|
	movel	d2,d4		| 
	orl	d3,d4		| 
	beq	Ld$inop		| if b is also zero return NaN
	cmpl	IMM (0x7ff00000),d2 | check for NaN
	bhi	Ld$inop		| 
	blt	1f		|
	tstl	d3		|
	bne	Ld$inop		|
1:	movel	IMM (0),d0	| else return zero
	movel	d0,d1		| 
	lea	SYM (_fpCCR),a0	| clear exception flags
	movew	IMM (0),a0@	|
	moveml	sp@+,d2-d7	| 
	unlk	a6		| 
	rts			| 	

Ldivdf$b$0:
	movew	IMM (DIVIDE),d5
| If we got here a is not zero. Check if a is NaN; in that case return NaN,
| else return +/-INFINITY. Remember that a is in d0 with the sign bit 
| cleared already.
	movel	a0,d7		| put a's sign bit back in d7 '
	cmpl	IMM (0x7ff00000),d0 | compare d0 with INFINITY
	bhi	Ld$inop		| if larger it is NaN
	tstl	d1		| 
	bne	Ld$inop		| 
	bra	Ld$div$0	| else signal DIVIDE_BY_ZERO

Ldivdf$b$nf:
	movew	IMM (DIVIDE),d5
| If d2 == 0x7ff00000 we have to check d3.
	tstl	d3		|
	bne	Ld$inop		| if d3 <> 0, b is NaN
	bra	Ld$underflow	| else b is +/-INFINITY, so signal underflow

Ldivdf$a$nf:
	movew	IMM (DIVIDE),d5
| If d0 == 0x7ff00000 we have to check d1.
	tstl	d1		|
	bne	Ld$inop		| if d1 <> 0, a is NaN
| If a is INFINITY we have to check b
	cmpl	d7,d2		| compare b with INFINITY 
	bge	Ld$inop		| if b is NaN or INFINITY return NaN
	tstl	d3		|
	bne	Ld$inop		| 
	bra	Ld$overflow	| else return overflow

| If a number is denormalized we put an exponent of 1 but do not put the 
| bit back into the fraction.
Ldivdf$a$den:
	movel	IMM (1),d4
	andl	d6,d0
1:	addl	d1,d1		| shift a left until bit 20 is set
	addxl	d0,d0
	subw	IMM (1),d4	| and adjust exponent
	btst	IMM (DBL_MANT_DIG-32-1),d0
	bne	Ldivdf$1
	bra	1b

Ldivdf$b$den:
	movel	IMM (1),d5
	andl	d6,d2
1:	addl	d3,d3		| shift b left until bit 20 is set
	addxl	d2,d2
	subw	IMM (1),d5	| and adjust exponent
	btst	IMM (DBL_MANT_DIG-32-1),d2
	bne	Ldivdf$2
	bra	1b

Lround$exit:
| This is a common exit point for __muldf3 and __divdf3. When they enter
| this point the sign of the result is in d7, the result in d0-d1, normalized
| so that 2^21 <= d0 < 2^22, and the exponent is in the lower byte of d4.

| First check for underlow in the exponent:
	cmpw	IMM (-DBL_MANT_DIG-1),d4		
	blt	Ld$underflow	
| It could happen that the exponent is less than 1, in which case the 
| number is denormalized. In this case we shift right and adjust the 
| exponent until it becomes 1 or the fraction is zero (in the latter case 
| we signal underflow and return zero).
	movel	d7,a0		|
	movel	IMM (0),d6	| use d6-d7 to collect bits flushed right
	movel	d6,d7		| use d6-d7 to collect bits flushed right
	cmpw	IMM (1),d4	| if the exponent is less than 1 we 
	bge	2f		| have to shift right (denormalize)
1:	addw	IMM (1),d4	| adjust the exponent
	lsrl	IMM (1),d0	| shift right once 
	roxrl	IMM (1),d1	|
	roxrl	IMM (1),d2	|
	roxrl	IMM (1),d3	|
	roxrl	IMM (1),d6	| 
	roxrl	IMM (1),d7	|
	cmpw	IMM (1),d4	| is the exponent 1 already?
	beq	2f		| if not loop back
	bra	1b              |
	bra	Ld$underflow	| safety check, shouldn't execute '
2:	orl	d6,d2		| this is a trick so we don't lose  '
	orl	d7,d3		| the bits which were flushed right
	movel	a0,d7		| get back sign bit into d7
| Now call the rounding routine (which takes care of denormalized numbers):
	lea	Lround$0,a0	| to return from rounding routine
	lea	SYM (_fpCCR),a1	| check the rounding mode
	movew	a1@(6),d6	| rounding mode in d6
	beq	Lround$to$nearest
	cmpw	IMM (ROUND_TO_PLUS),d6
	bhi	Lround$to$minus
	blt	Lround$to$zero
	bra	Lround$to$plus
Lround$0:
| Here we have a correctly rounded result (either normalized or denormalized).

| Here we should have either a normalized number or a denormalized one, and
| the exponent is necessarily larger or equal to 1 (so we don't have to  '
| check again for underflow!). We have to check for overflow or for a 
| denormalized number (which also signals underflow).
| Check for overflow (i.e., exponent >= 0x7ff).
	cmpw	IMM (0x07ff),d4
	bge	Ld$overflow
| Now check for a denormalized number (exponent==0):
	movew	d4,d4
	beq	Ld$den
1:
| Put back the exponents and sign and return.
	lslw	IMM (4),d4	| exponent back to fourth byte
	bclr	IMM (DBL_MANT_DIG-32-1),d0
	swap	d0		| and put back exponent
	orw	d4,d0		| 
	swap	d0		|
	orl	d7,d0		| and sign also

	lea	SYM (_fpCCR),a0
	movew	IMM (0),a0@
	moveml	sp@+,d2-d7
	unlk	a6
	rts

|=============================================================================
|                              __negdf2
|=============================================================================

| double __negdf2(double, double);
SYM (__negdf2):
	link	a6,IMM (0)
	moveml	d2-d7,sp@-
	movew	IMM (NEGATE),d5
	movel	a6@(8),d0	| get number to negate in d0-d1
	movel	a6@(12),d1	|
	bchg	IMM (31),d0	| negate
	movel	d0,d2		| make a positive copy (for the tests)
	bclr	IMM (31),d2	|
	movel	d2,d4		| check for zero
	orl	d1,d4		|
	beq	2f		| if zero (either sign) return +zero
	cmpl	IMM (0x7ff00000),d2 | compare to +INFINITY
	blt	1f		| if finite, return
	bhi	Ld$inop		| if larger (fraction not zero) is NaN
	tstl	d1		| if d2 == 0x7ff00000 check d1
	bne	Ld$inop		|
	movel	d0,d7		| else get sign and return INFINITY
	andl	IMM (0x80000000),d7
	bra	Ld$infty		
1:	lea	SYM (_fpCCR),a0
	movew	IMM (0),a0@
	moveml	sp@+,d2-d7
	unlk	a6
	rts
2:	bclr	IMM (31),d0
	bra	1b

|=============================================================================
|                              __cmpdf2
|=============================================================================

GREATER =  1
LESS    = -1
EQUAL   =  0

| int __cmpdf2(double, double);
SYM (__cmpdf2):
	link	a6,IMM (0)
	moveml	d2-d7,sp@- 	| save registers
	movew	IMM (COMPARE),d5
	movel	a6@(8),d0	| get first operand
	movel	a6@(12),d1	|
	movel	a6@(16),d2	| get second operand
	movel	a6@(20),d3	|
| First check if a and/or b are (+/-) zero and in that case clear
| the sign bit.
	movel	d0,d6		| copy signs into d6 (a) and d7(b)
	bclr	IMM (31),d0	| and clear signs in d0 and d2
	movel	d2,d7		|
	bclr	IMM (31),d2	|
	cmpl	IMM (0x7fff0000),d0 | check for a == NaN
	bhi	Ld$inop		| if d0 > 0x7ff00000, a is NaN
	beq	Lcmpdf$a$nf	| if equal can be INFINITY, so check d1
	movel	d0,d4		| copy into d4 to test for zero
	orl	d1,d4		|
	beq	Lcmpdf$a$0	|
Lcmpdf$0:
	cmpl	IMM (0x7fff0000),d2 | check for b == NaN
	bhi	Ld$inop		| if d2 > 0x7ff00000, b is NaN
	beq	Lcmpdf$b$nf	| if equal can be INFINITY, so check d3
	movel	d2,d4		|
	orl	d3,d4		|
	beq	Lcmpdf$b$0	|
Lcmpdf$1:
| Check the signs
	eorl	d6,d7
	bpl	1f
| If the signs are not equal check if a >= 0
	tstl	d6
	bpl	Lcmpdf$a$gt$b	| if (a >= 0 && b < 0) => a > b
	bmi	Lcmpdf$b$gt$a	| if (a < 0 && b >= 0) => a < b
1:
| If the signs are equal check for < 0
	tstl	d6
	bpl	1f
| If both are negative exchange them
	exg	d0,d2
	exg	d1,d3
1:
| Now that they are positive we just compare them as longs (does this also
| work for denormalized numbers?).
	cmpl	d0,d2
	bhi	Lcmpdf$b$gt$a	| |b| > |a|
	bne	Lcmpdf$a$gt$b	| |b| < |a|
| If we got here d0 == d2, so we compare d1 and d3.
	cmpl	d1,d3
	bhi	Lcmpdf$b$gt$a	| |b| > |a|
	bne	Lcmpdf$a$gt$b	| |b| < |a|
| If we got here a == b.
	movel	IMM (EQUAL),d0
	moveml	sp@+,d2-d7 	| put back the registers
	unlk	a6
	rts
Lcmpdf$a$gt$b:
	movel	IMM (GREATER),d0
	moveml	sp@+,d2-d7 	| put back the registers
	unlk	a6
	rts
Lcmpdf$b$gt$a:
	movel	IMM (LESS),d0
	moveml	sp@+,d2-d7 	| put back the registers
	unlk	a6
	rts

Lcmpdf$a$0:	
	bclr	IMM (31),d6
	bra	Lcmpdf$0
Lcmpdf$b$0:
	bclr	IMM (31),d7
	bra	Lcmpdf$1

Lcmpdf$a$nf:
	tstl	d1
	bne	Ld$inop
	bra	Lcmpdf$0

Lcmpdf$b$nf:
	tstl	d3
	bne	Ld$inop
	bra	Lcmpdf$1

|=============================================================================
|                           rounding routines
|=============================================================================

| The rounding routines expect the number to be normalized in registers
| d0-d1-d2-d3, with the exponent in register d4. They assume that the 
| exponent is larger or equal to 1. They return a properly normalized number
| if possible, and a denormalized number otherwise. The exponent is returned
| in d4.

Lround$to$nearest:
| We now normalize as suggested by D. Knuth ("Seminumerical Algorithms"):
| Here we assume that the exponent is not too small (this should be checked
| before entering the rounding routine), but the number could be denormalized.

| Check for denormalized numbers:
1:	btst	IMM (DBL_MANT_DIG-32),d0
	bne	2f		| if set the number is normalized
| Normalize shifting left until bit #DBL_MANT_DIG-32 is set or the exponent 
| is one (remember that a denormalized number corresponds to an 
| exponent of -D_BIAS+1).
	cmpw	IMM (1),d4	| remember that the exponent is at least one
 	beq	2f		| an exponent of one means denormalized
	addl	d3,d3		| else shift and adjust the exponent
	addxl	d2,d2		|
	addxl	d1,d1		|
	addxl	d0,d0		|
	dbra	d4,1b		|
2:
| Now round: we do it as follows: after the shifting we can write the
| fraction part as f + delta, where 1 < f < 2^25, and 0 <= delta <= 2.
| If delta < 1, do nothing. If delta > 1, add 1 to f. 
| If delta == 1, we make sure the rounded number will be even (odd?) 
| (after shifting).
	btst	IMM (0),d1	| is delta < 1?
	beq	2f		| if so, do not do anything
	orl	d2,d3		| is delta == 1?
	bne	1f		| if so round to even
	movel	d1,d3		| 
	andl	IMM (2),d3	| bit 1 is the last significant bit
	movel	IMM (0),d2	|
	addl	d3,d1		|
	addxl	d2,d0		|
	bra	2f		| 
1:	movel	IMM (1),d3	| else add 1 
	movel	IMM (0),d2	|
	addl	d3,d1		|
	addxl	d2,d0
| Shift right once (because we used bit #DBL_MANT_DIG-32!).
2:	lsrl	IMM (1),d0
	roxrl	IMM (1),d1		

| Now check again bit #DBL_MANT_DIG-32 (rounding could have produced a
| 'fraction overflow' ...).
	btst	IMM (DBL_MANT_DIG-32),d0	
	beq	1f
	lsrl	IMM (1),d0
	roxrl	IMM (1),d1
	addw	IMM (1),d4
1:
| If bit #DBL_MANT_DIG-32-1 is clear we have a denormalized number, so we 
| have to put the exponent to zero and return a denormalized number.
	btst	IMM (DBL_MANT_DIG-32-1),d0
	beq	1f
	jmp	a0@
1:	movel	IMM (0),d4
	jmp	a0@

Lround$to$zero:
Lround$to$plus:
Lround$to$minus:
	jmp	a0@
#endif /* L_double */

#ifdef  L_float

	.globl	SYM (_fpCCR)
	.globl  $_exception_handler

QUIET_NaN    = 0xffffffff
SIGNL_NaN    = 0x7f800001
INFINITY     = 0x7f800000

F_MAX_EXP      = 0xff
F_BIAS         = 126
FLT_MAX_EXP    = F_MAX_EXP - F_BIAS
FLT_MIN_EXP    = 1 - F_BIAS
FLT_MANT_DIG   = 24

INEXACT_RESULT 		= 0x0001
UNDERFLOW 		= 0x0002
OVERFLOW 		= 0x0004
DIVIDE_BY_ZERO 		= 0x0008
INVALID_OPERATION 	= 0x0010

SINGLE_FLOAT = 1

NOOP         = 0
ADD          = 1
MULTIPLY     = 2
DIVIDE       = 3
NEGATE       = 4
COMPARE      = 5
EXTENDSFDF   = 6
TRUNCDFSF    = 7

UNKNOWN           = -1
ROUND_TO_NEAREST  = 0 | round result to nearest representable value
ROUND_TO_ZERO     = 1 | round result towards zero
ROUND_TO_PLUS     = 2 | round result towards plus infinity
ROUND_TO_MINUS    = 3 | round result towards minus infinity

| Entry points:

	.globl SYM (__addsf3)
	.globl SYM (__subsf3)
	.globl SYM (__mulsf3)
	.globl SYM (__divsf3)
	.globl SYM (__negsf2)
	.globl SYM (__cmpsf2)

| These are common routines to return and signal exceptions.	

	.text
	.even

Lf$den:
| Return and signal a denormalized number
	orl	d7,d0
	movew	IMM (UNDERFLOW),d7
	orw	IMM (INEXACT_RESULT),d7
	movew	IMM (SINGLE_FLOAT),d6
	jmp	$_exception_handler

Lf$infty:
Lf$overflow:
| Return a properly signed INFINITY and set the exception flags 
	movel	IMM (INFINITY),d0
	orl	d7,d0
	movew	IMM (OVERFLOW),d7
	orw	IMM (INEXACT_RESULT),d7
	movew	IMM (SINGLE_FLOAT),d6
	jmp	$_exception_handler

Lf$underflow:
| Return 0 and set the exception flags 
	movel	IMM (0),d0
	movew	IMM (UNDERFLOW),d7
	orw	IMM (INEXACT_RESULT),d7
	movew	IMM (SINGLE_FLOAT),d6
	jmp	$_exception_handler

Lf$inop:
| Return a quiet NaN and set the exception flags
	movel	IMM (QUIET_NaN),d0
	movew	IMM (INVALID_OPERATION),d7
	orw	IMM (INEXACT_RESULT),d7
	movew	IMM (SINGLE_FLOAT),d6
	jmp	$_exception_handler

Lf$div$0:
| Return a properly signed INFINITY and set the exception flags
	movel	IMM (INFINITY),d0
	orl	d7,d0
	movew	IMM (DIVIDE_BY_ZERO),d7
	orw	IMM (INEXACT_RESULT),d7
	movew	IMM (SINGLE_FLOAT),d6
	jmp	$_exception_handler

|=============================================================================
|=============================================================================
|                         single precision routines
|=============================================================================
|=============================================================================

| A single precision floating point number (float) has the format:
|
| struct _float {
|  unsigned int sign      : 1;  /* sign bit */ 
|  unsigned int exponent  : 8;  /* exponent, shifted by 126 */
|  unsigned int fraction  : 23; /* fraction */
| } float;
| 
| Thus sizeof(float) = 4 (32 bits). 
|
| All the routines are callable from C programs, and return the result 
| in the single register d0. They also preserve all registers except 
| d0-d1 and a0-a1.

|=============================================================================
|                              __subsf3
|=============================================================================

| float __subsf3(float, float);
SYM (__subsf3):
	bchg	IMM (31),sp@(8)	| change sign of second operand
				| and fall through
|=============================================================================
|                              __addsf3
|=============================================================================

| float __addsf3(float, float);
SYM (__addsf3):
	link	a6,IMM (0)	| everything will be done in registers
	moveml	d2-d7,sp@-	| save all data registers but d0-d1
	movel	a6@(8),d0	| get first operand
	movel	a6@(12),d1	| get second operand
	movel	d0,d6		| get d0's sign bit '
	addl	d0,d0		| check and clear sign bit of a
	beq	Laddsf$b	| if zero return second operand
	movel	d1,d7		| save b's sign bit '
	addl	d1,d1		| get rid of sign bit
	beq	Laddsf$a	| if zero return first operand

	movel	d6,a0		| save signs in address registers
	movel	d7,a1		| so we can use d6 and d7

| Get the exponents and check for denormalized and/or infinity.

	movel	IMM (0x00ffffff),d4	| mask to get fraction
	movel	IMM (0x01000000),d5	| mask to put hidden bit back

	movel	d0,d6		| save a to get exponent
	andl	d4,d0		| get fraction in d0
	notl 	d4		| make d4 into a mask for the exponent
	andl	d4,d6		| get exponent in d6
	beq	Laddsf$a$den	| branch if a is denormalized
	cmpl	d4,d6		| check for INFINITY or NaN
	beq	Laddsf$nf
	swap	d6		| put exponent into first word
	orl	d5,d0		| and put hidden bit back
Laddsf$1:
| Now we have a's exponent in d6 (second byte) and the mantissa in d0. '
	movel	d1,d7		| get exponent in d7
	andl	d4,d7		| 
	beq	Laddsf$b$den	| branch if b is denormalized
	cmpl	d4,d7		| check for INFINITY or NaN
	beq	Laddsf$nf
	swap	d7		| put exponent into first word
	notl 	d4		| make d4 into a mask for the fraction
	andl	d4,d1		| get fraction in d1
	orl	d5,d1		| and put hidden bit back
Laddsf$2:
| Now we have b's exponent in d7 (second byte) and the mantissa in d1. '

| Note that the hidden bit corresponds to bit #FLT_MANT_DIG-1, and we 
| shifted right once, so bit #FLT_MANT_DIG is set (so we have one extra
| bit).

	movel	d1,d2		| move b to d2, since we want to use
				| two registers to do the sum
	movel	IMM (0),d1	| and clear the new ones
	movel	d1,d3		|

| Here we shift the numbers in registers d0 and d1 so the exponents are the
| same, and put the largest exponent in d6. Note that we are using two
| registers for each number (see the discussion by D. Knuth in "Seminumerical 
| Algorithms").
	cmpw	d6,d7		| compare exponents
	beq	Laddsf$3	| if equal don't shift '
	bhi	5f		| branch if second exponent largest
1:
	subl	d6,d7		| keep the largest exponent
	negl	d7
	lsrw	IMM (8),d7	| put difference in lower byte
| if difference is too large we don't shift (actually, we can just exit) '
	cmpw	IMM (FLT_MANT_DIG+2),d7		
	bge	Laddsf$b$small
	cmpw	IMM (16),d7	| if difference >= 16 swap
	bge	4f
2:
	subw	IMM (1),d7
3:	lsrl	IMM (1),d2	| shift right second operand
	roxrl	IMM (1),d3
	dbra	d7,3b
	bra	Laddsf$3
4:
	movew	d2,d3
	swap	d3
	movew	d3,d2
	swap	d2
	subw	IMM (16),d7
	bne	2b		| if still more bits, go back to normal case
	bra	Laddsf$3
5:
	exg	d6,d7		| exchange the exponents
	subl	d6,d7		| keep the largest exponent
	negl	d7		|
	lsrw	IMM (8),d7	| put difference in lower byte
| if difference is too large we don't shift (and exit!) '
	cmpw	IMM (FLT_MANT_DIG+2),d7		
	bge	Laddsf$a$small
	cmpw	IMM (16),d7	| if difference >= 16 swap
	bge	8f
6:
	subw	IMM (1),d7
7:	lsrl	IMM (1),d0	| shift right first operand
	roxrl	IMM (1),d1
	dbra	d7,7b
	bra	Laddsf$3
8:
	movew	d0,d1
	swap	d1
	movew	d1,d0
	swap	d0
	subw	IMM (16),d7
	bne	6b		| if still more bits, go back to normal case
				| otherwise we fall through

| Now we have a in d0-d1, b in d2-d3, and the largest exponent in d6 (the
| signs are stored in a0 and a1).

Laddsf$3:
| Here we have to decide whether to add or substract the numbers
	exg	d6,a0		| get signs back
	exg	d7,a1		| and save the exponents
	eorl	d6,d7		| combine sign bits
	bmi	Lsubsf$0	| if negative a and b have opposite 
				| sign so we actually substract the
				| numbers

| Here we have both positive or both negative
	exg	d6,a0		| now we have the exponent in d6
	movel	a0,d7		| and sign in d7
	andl	IMM (0x80000000),d7
| Here we do the addition.
	addl	d3,d1
	addxl	d2,d0
| Note: now we have d2, d3, d4 and d5 to play with! 

| Put the exponent, in the first byte, in d2, to use the "standard" rounding
| routines:
	movel	d6,d2
	lsrw	IMM (8),d2

| Before rounding normalize so bit #FLT_MANT_DIG is set (we will consider
| the case of denormalized numbers in the rounding routine itself).
| As in the addition (not in the substraction!) we could have set 
| one more bit we check this:
	btst	IMM (FLT_MANT_DIG+1),d0	
	beq	1f
	lsrl	IMM (1),d0
	roxrl	IMM (1),d1
	addl	IMM (1),d2
1:
	lea	Laddsf$4,a0	| to return from rounding routine
	lea	SYM (_fpCCR),a1	| check the rounding mode
	movew	a1@(6),d6	| rounding mode in d6
	beq	Lround$to$nearest
	cmpw	IMM (ROUND_TO_PLUS),d6
	bhi	Lround$to$minus
	blt	Lround$to$zero
	bra	Lround$to$plus
Laddsf$4:
| Put back the exponent, but check for overflow.
	cmpw	IMM (0xff),d2
	bhi	1f
	bclr	IMM (FLT_MANT_DIG-1),d0
	lslw	IMM (7),d2
	swap	d2
	orl	d2,d0
	bra	Laddsf$ret
1:
	movew	IMM (ADD),d5
	bra	Lf$overflow

Lsubsf$0:
| We are here if a > 0 and b < 0 (sign bits cleared).
| Here we do the substraction.
	movel	d6,d7		| put sign in d7
	andl	IMM (0x80000000),d7

	subl	d3,d1		| result in d0-d1
	subxl	d2,d0		|
	beq	Laddsf$ret	| if zero just exit
	bpl	1f		| if positive skip the following
	bchg	IMM (31),d7	| change sign bit in d7
	negl	d1
	negxl	d0
1:
	exg	d2,a0		| now we have the exponent in d2
	lsrw	IMM (8),d2	| put it in the first byte

| Now d0-d1 is positive and the sign bit is in d7.

| Note that we do not have to normalize, since in the substraction bit
| #FLT_MANT_DIG+1 is never set, and denormalized numbers are handled by
| the rounding routines themselves.
	lea	Lsubsf$1,a0	| to return from rounding routine
	lea	SYM (_fpCCR),a1	| check the rounding mode
	movew	a1@(6),d6	| rounding mode in d6
	beq	Lround$to$nearest
	cmpw	IMM (ROUND_TO_PLUS),d6
	bhi	Lround$to$minus
	blt	Lround$to$zero
	bra	Lround$to$plus
Lsubsf$1:
| Put back the exponent (we can't have overflow!). '
	bclr	IMM (FLT_MANT_DIG-1),d0
	lslw	IMM (7),d2
	swap	d2
	orl	d2,d0
	bra	Laddsf$ret

| If one of the numbers was too small (difference of exponents >= 
| FLT_MANT_DIG+2) we return the other (and now we don't have to '
| check for finiteness or zero).
Laddsf$a$small:
	movel	a6@(12),d0
	lea	SYM (_fpCCR),a0
	movew	IMM (0),a0@
	moveml	sp@+,d2-d7	| restore data registers
	unlk	a6		| and return
	rts

Laddsf$b$small:
	movel	a6@(8),d0
	lea	SYM (_fpCCR),a0
	movew	IMM (0),a0@
	moveml	sp@+,d2-d7	| restore data registers
	unlk	a6		| and return
	rts

| If the numbers are denormalized remember to put exponent equal to 1.

Laddsf$a$den:
	movel	d5,d6		| d5 contains 0x01000000
	swap	d6
	bra	Laddsf$1

Laddsf$b$den:
	movel	d5,d7
	swap	d7
	notl 	d4		| make d4 into a mask for the fraction
				| (this was not executed after the jump)
	bra	Laddsf$2

| The rest is mainly code for the different results which can be 
| returned (checking always for +/-INFINITY and NaN).

Laddsf$b:
| Return b (if a is zero).
	movel	a6@(12),d0
	bra	1f
Laddsf$a:
| Return a (if b is zero).
	movel	a6@(8),d0
1:
	movew	IMM (ADD),d5
| We have to check for NaN and +/-infty.
	movel	d0,d7
	andl	IMM (0x80000000),d7	| put sign in d7
	bclr	IMM (31),d0		| clear sign
	cmpl	IMM (INFINITY),d0	| check for infty or NaN
	bge	2f
	movel	d0,d0		| check for zero (we do this because we don't '
	bne	Laddsf$ret	| want to return -0 by mistake
	bclr	IMM (31),d7	| if zero be sure to clear sign
	bra	Laddsf$ret	| if everything OK just return
2:
| The value to be returned is either +/-infty or NaN
	andl	IMM (0x007fffff),d0	| check for NaN
	bne	Lf$inop			| if mantissa not zero is NaN
	bra	Lf$infty

Laddsf$ret:
| Normal exit (a and b nonzero, result is not NaN nor +/-infty).
| We have to clear the exception flags (just the exception type).
	lea	SYM (_fpCCR),a0
	movew	IMM (0),a0@
	orl	d7,d0		| put sign bit
	moveml	sp@+,d2-d7	| restore data registers
	unlk	a6		| and return
	rts

Laddsf$ret$den:
| Return a denormalized number (for addition we don't signal underflow) '
	lsrl	IMM (1),d0	| remember to shift right back once
	bra	Laddsf$ret	| and return

| Note: when adding two floats of the same sign if either one is 
| NaN we return NaN without regard to whether the other is finite or 
| not. When substracting them (i.e., when adding two numbers of 
| opposite signs) things are more complicated: if both are INFINITY 
| we return NaN, if only one is INFINITY and the other is NaN we return
| NaN, but if it is finite we return INFINITY with the corresponding sign.

Laddsf$nf:
	movew	IMM (ADD),d5
| This could be faster but it is not worth the effort, since it is not
| executed very often. We sacrifice speed for clarity here.
	movel	a6@(8),d0	| get the numbers back (remember that we
	movel	a6@(12),d1	| did some processing already)
	movel	IMM (INFINITY),d4 | useful constant (INFINITY)
	movel	d0,d2		| save sign bits
	movel	d1,d3
	bclr	IMM (31),d0	| clear sign bits
	bclr	IMM (31),d1
| We know that one of them is either NaN of +/-INFINITY
| Check for NaN (if either one is NaN return NaN)
	cmpl	d4,d0		| check first a (d0)
	bhi	Lf$inop		
	cmpl	d4,d1		| check now b (d1)
	bhi	Lf$inop		
| Now comes the check for +/-INFINITY. We know that both are (maybe not
| finite) numbers, but we have to check if both are infinite whether we
| are adding or substracting them.
	eorl	d3,d2		| to check sign bits
	bmi	1f
	movel	d0,d7
	andl	IMM (0x80000000),d7	| get (common) sign bit
	bra	Lf$infty
1:
| We know one (or both) are infinite, so we test for equality between the
| two numbers (if they are equal they have to be infinite both, so we
| return NaN).
	cmpl	d1,d0		| are both infinite?
	beq	Lf$inop		| if so return NaN

	movel	d0,d7
	andl	IMM (0x80000000),d7 | get a's sign bit '
	cmpl	d4,d0		| test now for infinity
	beq	Lf$infty	| if a is INFINITY return with this sign
	bchg	IMM (31),d7	| else we know b is INFINITY and has
	bra	Lf$infty	| the opposite sign

|=============================================================================
|                             __mulsf3
|=============================================================================

| float __mulsf3(float, float);
SYM (__mulsf3):
	link	a6,IMM (0)
	moveml	d2-d7,sp@-
	movel	a6@(8),d0	| get a into d0
	movel	a6@(12),d1	| and b into d1
	movel	d0,d7		| d7 will hold the sign of the product
	eorl	d1,d7		|
	andl	IMM (0x80000000),d7
	movel	IMM (INFINITY),d6	| useful constant (+INFINITY)
	movel	d6,d5			| another (mask for fraction)
	notl	d5			|
	movel	IMM (0x00800000),d4	| this is to put hidden bit back
	bclr	IMM (31),d0		| get rid of a's sign bit '
	movel	d0,d2			|
	beq	Lmulsf$a$0		| branch if a is zero
	bclr	IMM (31),d1		| get rid of b's sign bit '
	movel	d1,d3		|
	beq	Lmulsf$b$0	| branch if b is zero
	cmpl	d6,d0		| is a big?
	bhi	Lmulsf$inop	| if a is NaN return NaN
	beq	Lmulsf$inf	| if a is INFINITY we have to check b
	cmpl	d6,d1		| now compare b with INFINITY
	bhi	Lmulsf$inop	| is b NaN?
	beq	Lmulsf$overflow | is b INFINITY?
| Here we have both numbers finite and nonzero (and with no sign bit).
| Now we get the exponents into d2 and d3.
	andl	d6,d2		| and isolate exponent in d2
	beq	Lmulsf$a$den	| if exponent is zero we have a denormalized
	andl	d5,d0		| and isolate fraction
	orl	d4,d0		| and put hidden bit back
	swap	d2		| I like exponents in the first byte
	lsrw	IMM (7),d2	| 
Lmulsf$1:			| number
	andl	d6,d3		|
	beq	Lmulsf$b$den	|
	andl	d5,d1		|
	orl	d4,d1		|
	swap	d3		|
	lsrw	IMM (7),d3	|
Lmulsf$2:			|
	addw	d3,d2		| add exponents
	subw	IMM (F_BIAS+1),d2 | and substract bias (plus one)

| We are now ready to do the multiplication. The situation is as follows:
| both a and b have bit FLT_MANT_DIG-1 set (even if they were 
| denormalized to start with!), which means that in the product 
| bit 2*(FLT_MANT_DIG-1) (that is, bit 2*FLT_MANT_DIG-2-32 of the 
| high long) is set. 

| To do the multiplication let us move the number a little bit around ...
	movel	d1,d6		| second operand in d6
	movel	d0,d5		| first operand in d4-d5
	movel	IMM (0),d4
	movel	d4,d1		| the sums will go in d0-d1
	movel	d4,d0

| now bit FLT_MANT_DIG-1 becomes bit 31:
	lsll	IMM (31-FLT_MANT_DIG+1),d6		

| Start the loop (we loop #FLT_MANT_DIG times):
	movew	IMM (FLT_MANT_DIG-1),d3	
1:	addl	d1,d1		| shift sum 
	addxl	d0,d0
	lsll	IMM (1),d6	| get bit bn
	bcc	2f		| if not set skip sum
	addl	d5,d1		| add a
	addxl	d4,d0
2:	dbf	d3,1b		| loop back

| Now we have the product in d0-d1, with bit (FLT_MANT_DIG - 1) + FLT_MANT_DIG
| (mod 32) of d0 set. The first thing to do now is to normalize it so bit 
| FLT_MANT_DIG is set (to do the rounding).
	rorl	IMM (6),d1
	swap	d1
	movew	d1,d3
	andw	IMM (0x03ff),d3
	andw	IMM (0xfd00),d1
	lsll	IMM (8),d0
	addl	d0,d0
	addl	d0,d0
	orw	d3,d0

	movew	IMM (MULTIPLY),d5
	
	btst	IMM (FLT_MANT_DIG+1),d0
	beq	Lround$exit
	lsrl	IMM (1),d0
	roxrl	IMM (1),d1
	addw	IMM (1),d2
	bra	Lround$exit

Lmulsf$inop:
	movew	IMM (MULTIPLY),d5
	bra	Lf$inop

Lmulsf$overflow:
	movew	IMM (MULTIPLY),d5
	bra	Lf$overflow

Lmulsf$inf:
	movew	IMM (MULTIPLY),d5
| If either is NaN return NaN; else both are (maybe infinite) numbers, so
| return INFINITY with the correct sign (which is in d7).
	cmpl	d6,d1		| is b NaN?
	bhi	Lf$inop		| if so return NaN
	bra	Lf$overflow	| else return +/-INFINITY

| If either number is zero return zero, unless the other is +/-INFINITY, 
| or NaN, in which case we return NaN.
Lmulsf$b$0:
| Here d1 (==b) is zero.
	movel	d1,d0		| put b into d0 (just a zero)
	movel	a6@(8),d1	| get a again to check for non-finiteness
	bra	1f
Lmulsf$a$0:
	movel	a6@(12),d1	| get b again to check for non-finiteness
1:	bclr	IMM (31),d1	| clear sign bit 
	cmpl	IMM (INFINITY),d1 | and check for a large exponent
	bge	Lf$inop		| if b is +/-INFINITY or NaN return NaN
	lea	SYM (_fpCCR),a0	| else return zero
	movew	IMM (0),a0@	| 
	moveml	sp@+,d2-d7	| 
	unlk	a6		| 
	rts			| 

| If a number is denormalized we put an exponent of 1 but do not put the 
| hidden bit back into the fraction; instead we shift left until bit 23
| (the hidden bit) is set, adjusting the exponent accordingly. We do this
| to ensure that the product of the fractions is close to 1.
Lmulsf$a$den:
	movel	IMM (1),d2
	andl	d5,d0
1:	addl	d0,d0		| shift a left (until bit 23 is set)
	subw	IMM (1),d2	| and adjust exponent
	btst	IMM (FLT_MANT_DIG-1),d0
	bne	Lmulsf$1	|
	bra	1b		| else loop back

Lmulsf$b$den:
	movel	IMM (1),d3
	andl	d5,d1
1:	addl	d1,d1		| shift b left until bit 23 is set
	subw	IMM (1),d3	| and adjust exponent
	btst	IMM (FLT_MANT_DIG-1),d1
	bne	Lmulsf$2	|
	bra	1b		| else loop back

|=============================================================================
|                             __divsf3
|=============================================================================

| float __divsf3(float, float);
SYM (__divsf3):
	link	a6,IMM (0)
	moveml	d2-d7,sp@-
	movel	a6@(8),d0		| get a into d0
	movel	a6@(12),d1		| and b into d1
	movel	d0,d7			| d7 will hold the sign of the result
	eorl	d1,d7			|
	andl	IMM (0x80000000),d7	| 
	movel	IMM (INFINITY),d6	| useful constant (+INFINITY)
	movel	d6,d5			| another (mask for fraction)
	notl	d5			|
	movel	IMM (0x00800000),d4	| this is to put hidden bit back
	bclr	IMM (31),d0		| get rid of a's sign bit '
	movel	d0,d2			|
	beq	Ldivsf$a$0		| branch if a is zero
	bclr	IMM (31),d1		| get rid of b's sign bit '
	movel	d1,d3			|
	beq	Ldivsf$b$0		| branch if b is zero
	cmpl	d6,d0			| is a big?
	bhi	Ldivsf$inop		| if a is NaN return NaN
	beq	Ldivsf$inf		| if a is INIFINITY we have to check b
	cmpl	d6,d1			| now compare b with INFINITY 
	bhi	Ldivsf$inop		| if b is NaN return NaN
	beq	Ldivsf$underflow
| Here we have both numbers finite and nonzero (and with no sign bit).
| Now we get the exponents into d2 and d3 and normalize the numbers to
| ensure that the ratio of the fractions is close to 1. We do this by
| making sure that bit #FLT_MANT_DIG-1 (hidden bit) is set.
	andl	d6,d2		| and isolate exponent in d2
	beq	Ldivsf$a$den	| if exponent is zero we have a denormalized
	andl	d5,d0		| and isolate fraction
	orl	d4,d0		| and put hidden bit back
	swap	d2		| I like exponents in the first byte
	lsrw	IMM (7),d2	| 
Ldivsf$1:			| 
	andl	d6,d3		|
	beq	Ldivsf$b$den	|
	andl	d5,d1		|
	orl	d4,d1		|
	swap	d3		|
	lsrw	IMM (7),d3	|
Ldivsf$2:			|
	subw	d3,d2		| substract exponents
 	addw	IMM (F_BIAS),d2	| and add bias
 
| We are now ready to do the division. We have prepared things in such a way
| that the ratio of the fractions will be less than 2 but greater than 1/2.
| At this point the registers in use are:
| d0	holds a (first operand, bit FLT_MANT_DIG=0, bit FLT_MANT_DIG-1=1)
| d1	holds b (second operand, bit FLT_MANT_DIG=1)
| d2	holds the difference of the exponents, corrected by the bias
| d7	holds the sign of the ratio
| d4, d5, d6 hold some constants
	movel	d7,a0		| d6-d7 will hold the ratio of the fractions
	movel	IMM (0),d6	| 
	movel	d6,d7

	movew	IMM (FLT_MANT_DIG+1),d3
1:	cmpl	d0,d1		| is a < b?
	bhi	2f		|
	bset	d3,d6		| set a bit in d6
	subl	d1,d0		| if a >= b  a <-- a-b
	beq	3f		| if a is zero, exit
2:	addl	d0,d0		| multiply a by 2
	dbra	d3,1b

| Now we keep going to set the sticky bit ...
	movew	IMM (FLT_MANT_DIG),d3
1:	cmpl	d0,d1
	ble	2f
	addl	d0,d0
	dbra	d3,1b
	movel	IMM (0),d1
	bra	3f
2:	movel	IMM (0),d1
	subw	IMM (FLT_MANT_DIG),d3
	addw	IMM (31),d3
	bset	d3,d1
3:
	movel	d6,d0		| put the ratio in d0-d1
	movel	a0,d7		| get sign back

| Because of the normalization we did before we are guaranteed that 
| d0 is smaller than 2^26 but larger than 2^24. Thus bit 26 is not set,
| bit 25 could be set, and if it is not set then bit 24 is necessarily set.
	btst	IMM (FLT_MANT_DIG+1),d0		
	beq	1f              | if it is not set, then bit 24 is set
	lsrl	IMM (1),d0	|
	addw	IMM (1),d2	|
1:
| Now round, check for over- and underflow, and exit.
	movew	IMM (DIVIDE),d5
	bra	Lround$exit

Ldivsf$inop:
	movew	IMM (DIVIDE),d5
	bra	Lf$inop

Ldivsf$overflow:
	movew	IMM (DIVIDE),d5
	bra	Lf$overflow

Ldivsf$underflow:
	movew	IMM (DIVIDE),d5
	bra	Lf$underflow

Ldivsf$a$0:
	movew	IMM (DIVIDE),d5
| If a is zero check to see whether b is zero also. In that case return
| NaN; then check if b is NaN, and return NaN also in that case. Else
| return zero.
	andl	IMM (0x7fffffff),d1	| clear sign bit and test b
	beq	Lf$inop			| if b is also zero return NaN
	cmpl	IMM (INFINITY),d1	| check for NaN
	bhi	Lf$inop			| 
	movel	IMM (0),d0		| else return zero
	lea	SYM (_fpCCR),a0		|
	movew	IMM (0),a0@		|
	moveml	sp@+,d2-d7		| 
	unlk	a6			| 
	rts				| 
	
Ldivsf$b$0:
	movew	IMM (DIVIDE),d5
| If we got here a is not zero. Check if a is NaN; in that case return NaN,
| else return +/-INFINITY. Remember that a is in d0 with the sign bit 
| cleared already.
	cmpl	IMM (INFINITY),d0	| compare d0 with INFINITY
	bhi	Lf$inop			| if larger it is NaN
	bra	Lf$div$0		| else signal DIVIDE_BY_ZERO

Ldivsf$inf:
	movew	IMM (DIVIDE),d5
| If a is INFINITY we have to check b
	cmpl	IMM (INFINITY),d1	| compare b with INFINITY 
	bge	Lf$inop			| if b is NaN or INFINITY return NaN
	bra	Lf$overflow		| else return overflow

| If a number is denormalized we put an exponent of 1 but do not put the 
| bit back into the fraction.
Ldivsf$a$den:
	movel	IMM (1),d2
	andl	d5,d0
1:	addl	d0,d0		| shift a left until bit FLT_MANT_DIG-1 is set
	subw	IMM (1),d2	| and adjust exponent
	btst	IMM (FLT_MANT_DIG-1),d0
	bne	Ldivsf$1
	bra	1b

Ldivsf$b$den:
	movel	IMM (1),d3
	andl	d5,d1
1:	addl	d1,d1		| shift b left until bit FLT_MANT_DIG is set
	subw	IMM (1),d3	| and adjust exponent
	btst	IMM (FLT_MANT_DIG-1),d1
	bne	Ldivsf$2
	bra	1b

Lround$exit:
| This is a common exit point for __mulsf3 and __divsf3. 

| First check for underlow in the exponent:
	cmpw	IMM (-FLT_MANT_DIG-1),d2		
	blt	Lf$underflow	
| It could happen that the exponent is less than 1, in which case the 
| number is denormalized. In this case we shift right and adjust the 
| exponent until it becomes 1 or the fraction is zero (in the latter case 
| we signal underflow and return zero).
	movel	IMM (0),d6	| d6 is used temporarily
	cmpw	IMM (1),d2	| if the exponent is less than 1 we 
	bge	2f		| have to shift right (denormalize)
1:	addw	IMM (1),d2	| adjust the exponent
	lsrl	IMM (1),d0	| shift right once 
	roxrl	IMM (1),d1	|
	roxrl	IMM (1),d6	| d6 collect bits we would lose otherwise
	cmpw	IMM (1),d2	| is the exponent 1 already?
	beq	2f		| if not loop back
	bra	1b              |
	bra	Lf$underflow	| safety check, shouldn't execute '
2:	orl	d6,d1		| this is a trick so we don't lose  '
				| the extra bits which were flushed right
| Now call the rounding routine (which takes care of denormalized numbers):
	lea	Lround$0,a0	| to return from rounding routine
	lea	SYM (_fpCCR),a1	| check the rounding mode
	movew	a1@(6),d6	| rounding mode in d6
	beq	Lround$to$nearest
	cmpw	IMM (ROUND_TO_PLUS),d6
	bhi	Lround$to$minus
	blt	Lround$to$zero
	bra	Lround$to$plus
Lround$0:
| Here we have a correctly rounded result (either normalized or denormalized).

| Here we should have either a normalized number or a denormalized one, and
| the exponent is necessarily larger or equal to 1 (so we don't have to  '
| check again for underflow!). We have to check for overflow or for a 
| denormalized number (which also signals underflow).
| Check for overflow (i.e., exponent >= 255).
	cmpw	IMM (0x00ff),d2
	bge	Lf$overflow
| Now check for a denormalized number (exponent==0).
	movew	d2,d2
	beq	Lf$den
1:
| Put back the exponents and sign and return.
	lslw	IMM (7),d2	| exponent back to fourth byte
	bclr	IMM (FLT_MANT_DIG-1),d0
	swap	d0		| and put back exponent
	orw	d2,d0		| 
	swap	d0		|
	orl	d7,d0		| and sign also

	lea	SYM (_fpCCR),a0
	movew	IMM (0),a0@
	moveml	sp@+,d2-d7
	unlk	a6
	rts

|=============================================================================
|                             __negsf2
|=============================================================================

| This is trivial and could be shorter if we didn't bother checking for NaN '
| and +/-INFINITY.

| float __negsf2(float);
SYM (__negsf2):
	link	a6,IMM (0)
	moveml	d2-d7,sp@-
	movew	IMM (NEGATE),d5
	movel	a6@(8),d0	| get number to negate in d0
	bchg	IMM (31),d0	| negate
	movel	d0,d1		| make a positive copy
	bclr	IMM (31),d1	|
	tstl	d1		| check for zero
	beq	2f		| if zero (either sign) return +zero
	cmpl	IMM (INFINITY),d1 | compare to +INFINITY
	blt	1f		|
	bhi	Lf$inop		| if larger (fraction not zero) is NaN
	movel	d0,d7		| else get sign and return INFINITY
	andl	IMM (0x80000000),d7
	bra	Lf$infty		
1:	lea	SYM (_fpCCR),a0
	movew	IMM (0),a0@
	moveml	sp@+,d2-d7
	unlk	a6
	rts
2:	bclr	IMM (31),d0
	bra	1b

|=============================================================================
|                             __cmpsf2
|=============================================================================

GREATER =  1
LESS    = -1
EQUAL   =  0

| int __cmpsf2(float, float);
SYM (__cmpsf2):
	link	a6,IMM (0)
	moveml	d2-d7,sp@- 	| save registers
	movew	IMM (COMPARE),d5
	movel	a6@(8),d0	| get first operand
	movel	a6@(12),d1	| get second operand
| Check if either is NaN, and in that case return garbage and signal
| INVALID_OPERATION. Check also if either is zero, and clear the signs
| if necessary.
	movel	d0,d6
	andl	IMM (0x7fffffff),d0
	beq	Lcmpsf$a$0
	cmpl	IMM (0x7f800000),d0
	bhi	Lf$inop
Lcmpsf$1:
	movel	d1,d7
	andl	IMM (0x7fffffff),d1
	beq	Lcmpsf$b$0
	cmpl	IMM (0x7f800000),d1
	bhi	Lf$inop
Lcmpsf$2:
| Check the signs
	eorl	d6,d7
	bpl	1f
| If the signs are not equal check if a >= 0
	tstl	d6
	bpl	Lcmpsf$a$gt$b	| if (a >= 0 && b < 0) => a > b
	bmi	Lcmpsf$b$gt$a	| if (a < 0 && b >= 0) => a < b
1:
| If the signs are equal check for < 0
	tstl	d6
	bpl	1f
| If both are negative exchange them
	exg	d0,d1
1:
| Now that they are positive we just compare them as longs (does this also
| work for denormalized numbers?).
	cmpl	d0,d1
	bhi	Lcmpsf$b$gt$a	| |b| > |a|
	bne	Lcmpsf$a$gt$b	| |b| < |a|
| If we got here a == b.
	movel	IMM (EQUAL),d0
	moveml	sp@+,d2-d7 	| put back the registers
	unlk	a6
	rts
Lcmpsf$a$gt$b:
	movel	IMM (GREATER),d0
	moveml	sp@+,d2-d7 	| put back the registers
	unlk	a6
	rts
Lcmpsf$b$gt$a:
	movel	IMM (LESS),d0
	moveml	sp@+,d2-d7 	| put back the registers
	unlk	a6
	rts

Lcmpsf$a$0:	
	bclr	IMM (31),d6
	bra	Lcmpsf$1
Lcmpsf$b$0:
	bclr	IMM (31),d7
	bra	Lcmpsf$2

|=============================================================================
|                           rounding routines
|=============================================================================

| The rounding routines expect the number to be normalized in registers
| d0-d1, with the exponent in register d2. They assume that the 
| exponent is larger or equal to 1. They return a properly normalized number
| if possible, and a denormalized number otherwise. The exponent is returned
| in d2.

Lround$to$nearest:
| We now normalize as suggested by D. Knuth ("Seminumerical Algorithms"):
| Here we assume that the exponent is not too small (this should be checked
| before entering the rounding routine), but the number could be denormalized.

| Check for denormalized numbers:
1:	btst	IMM (FLT_MANT_DIG),d0
	bne	2f		| if set the number is normalized
| Normalize shifting left until bit #FLT_MANT_DIG is set or the exponent 
| is one (remember that a denormalized number corresponds to an 
| exponent of -F_BIAS+1).
	cmpw	IMM (1),d2	| remember that the exponent is at least one
 	beq	2f		| an exponent of one means denormalized
	addl	d1,d1		| else shift and adjust the exponent
	addxl	d0,d0		|
	dbra	d2,1b		|
2:
| Now round: we do it as follows: after the shifting we can write the
| fraction part as f + delta, where 1 < f < 2^25, and 0 <= delta <= 2.
| If delta < 1, do nothing. If delta > 1, add 1 to f. 
| If delta == 1, we make sure the rounded number will be even (odd?) 
| (after shifting).
	btst	IMM (0),d0	| is delta < 1?
	beq	2f		| if so, do not do anything
	tstl	d1		| is delta == 1?
	bne	1f		| if so round to even
	movel	d0,d1		| 
	andl	IMM (2),d1	| bit 1 is the last significant bit
	addl	d1,d0		| 
	bra	2f		| 
1:	movel	IMM (1),d1	| else add 1 
	addl	d1,d0		|
| Shift right once (because we used bit #FLT_MANT_DIG!).
2:	lsrl	IMM (1),d0		
| Now check again bit #FLT_MANT_DIG (rounding could have produced a
| 'fraction overflow' ...).
	btst	IMM (FLT_MANT_DIG),d0	
	beq	1f
	lsrl	IMM (1),d0
	addw	IMM (1),d2
1:
| If bit #FLT_MANT_DIG-1 is clear we have a denormalized number, so we 
| have to put the exponent to zero and return a denormalized number.
	btst	IMM (FLT_MANT_DIG-1),d0
	beq	1f
	jmp	a0@
1:	movel	IMM (0),d2
	jmp	a0@

Lround$to$zero:
Lround$to$plus:
Lround$to$minus:
	jmp	a0@
#endif /* L_float */

| gcc expects the routines __eqdf2, __nedf2, __gtdf2, __gedf2,
| __ledf2, __ltdf2 to all return the same value as a direct call to
| __cmpdf2 would.  In this implementation, each of these routines
| simply calls __cmpdf2.  It would be more efficient to give the
| __cmpdf2 routine several names, but separating them out will make it
| easier to write efficient versions of these routines someday.

#ifdef  L_eqdf2
LL0:
	.text
	.proc
|#PROC# 04
	LF18	=	4
	LS18	=	128
	LFF18	=	0
	LSS18	=	0
	LV18	=	0
	.text
	.globl	SYM (__eqdf2)
SYM (__eqdf2):
|#PROLOGUE# 0
	link	a6,IMM (0)
|#PROLOGUE# 1
	movl	a6@(20),sp@-
	movl	a6@(16),sp@-
	movl	a6@(12),sp@-
	movl	a6@(8),sp@-
	jbsr	SYM (__cmpdf2)
|#PROLOGUE# 2
	unlk	a6
|#PROLOGUE# 3
	rts
#endif /* L_eqdf2 */

#ifdef  L_nedf2
LL0:
	.text
	.proc
|#PROC# 04
	LF18	=	8
	LS18	=	132
	LFF18	=	0
	LSS18	=	0
	LV18	=	0
	.text
	.globl	SYM (__nedf2)
SYM (__nedf2):
|#PROLOGUE# 0
	link	a6,IMM (0)
|#PROLOGUE# 1
	movl	a6@(20),sp@-
	movl	a6@(16),sp@-
	movl	a6@(12),sp@-
	movl	a6@(8),sp@-
	jbsr	SYM (__cmpdf2)
|#PROLOGUE# 2
	unlk	a6
|#PROLOGUE# 3
	rts
#endif /* L_nedf2 */

#ifdef  L_gtdf2
	.text
	.proc
|#PROC# 04
	LF18	=	8
	LS18	=	132
	LFF18	=	0
	LSS18	=	0
	LV18	=	0
	.text
	.globl	SYM (__gtdf2)
SYM (__gtdf2):
|#PROLOGUE# 0
	link	a6,IMM (0)
|#PROLOGUE# 1
	movl	a6@(20),sp@-
	movl	a6@(16),sp@-
	movl	a6@(12),sp@-
	movl	a6@(8),sp@-
	jbsr	SYM (__cmpdf2)
|#PROLOGUE# 2
	unlk	a6
|#PROLOGUE# 3
	rts
#endif /* L_gtdf2 */

#ifdef  L_gedf2
LL0:
	.text
	.proc
|#PROC# 04
	LF18	=	8
	LS18	=	132
	LFF18	=	0
	LSS18	=	0
	LV18	=	0
	.text
	.globl	SYM (__gedf2)
SYM (__gedf2):
|#PROLOGUE# 0
	link	a6,IMM (0)
|#PROLOGUE# 1
	movl	a6@(20),sp@-
	movl	a6@(16),sp@-
	movl	a6@(12),sp@-
	movl	a6@(8),sp@-
	jbsr	SYM (__cmpdf2)
|#PROLOGUE# 2
	unlk	a6
|#PROLOGUE# 3
	rts
#endif /* L_gedf2 */

#ifdef  L_ltdf2
LL0:
	.text
	.proc
|#PROC# 04
	LF18	=	8
	LS18	=	132
	LFF18	=	0
	LSS18	=	0
	LV18	=	0
	.text
	.globl	SYM (__ltdf2)
SYM (__ltdf2):
|#PROLOGUE# 0
	link	a6,IMM (0)
|#PROLOGUE# 1
	movl	a6@(20),sp@-
	movl	a6@(16),sp@-
	movl	a6@(12),sp@-
	movl	a6@(8),sp@-
	jbsr	SYM (__cmpdf2)
|#PROLOGUE# 2
	unlk	a6
|#PROLOGUE# 3
	rts
#endif /* L_ltdf2 */

#ifdef  L_ledf2
	.text
	.proc
|#PROC# 04
	LF18	=	8
	LS18	=	132
	LFF18	=	0
	LSS18	=	0
	LV18	=	0
	.text
	.globl	SYM (__ledf2)
SYM (__ledf2):
|#PROLOGUE# 0
	link	a6,IMM (0)
|#PROLOGUE# 1
	movl	a6@(20),sp@-
	movl	a6@(16),sp@-
	movl	a6@(12),sp@-
	movl	a6@(8),sp@-
	jbsr	SYM (__cmpdf2)
|#PROLOGUE# 2
	unlk	a6
|#PROLOGUE# 3
	rts
#endif /* L_ledf2 */

| The comments above about __eqdf2, et. al., also apply to __eqsf2,
| et. al., except that the latter call __cmpsf2 rather than __cmpdf2.

#ifdef  L_eqsf2
	.text
	.proc
|#PROC# 04
	LF18	=	4
	LS18	=	128
	LFF18	=	0
	LSS18	=	0
	LV18	=	0
	.text
	.globl	SYM (__eqsf2)
SYM (__eqsf2):
|#PROLOGUE# 0
	link	a6,IMM (0)
|#PROLOGUE# 1
	movl	a6@(12),sp@-
	movl	a6@(8),sp@-
	jbsr	SYM (__cmpsf2)
|#PROLOGUE# 2
	unlk	a6
|#PROLOGUE# 3
	rts
#endif /* L_eqsf2 */

#ifdef  L_nesf2
	.text
	.proc
|#PROC# 04
	LF18	=	8
	LS18	=	132
	LFF18	=	0
	LSS18	=	0
	LV18	=	0
	.text
	.globl	SYM (__nesf2)
SYM (__nesf2):
|#PROLOGUE# 0
	link	a6,IMM (0)
|#PROLOGUE# 1
	movl	a6@(12),sp@-
	movl	a6@(8),sp@-
	jbsr	SYM (__cmpsf2)
|#PROLOGUE# 2
	unlk	a6
|#PROLOGUE# 3
	rts
#endif /* L_nesf2 */

#ifdef  L_gtsf2
	.text
	.proc
|#PROC# 04
	LF18	=	8
	LS18	=	132
	LFF18	=	0
	LSS18	=	0
	LV18	=	0
	.text
	.globl	SYM (__gtsf2)
SYM (__gtsf2):
|#PROLOGUE# 0
	link	a6,IMM (0)
|#PROLOGUE# 1
	movl	a6@(12),sp@-
	movl	a6@(8),sp@-
	jbsr	SYM (__cmpsf2)
|#PROLOGUE# 2
	unlk	a6
|#PROLOGUE# 3
	rts
#endif /* L_gtsf2 */

#ifdef  L_gesf2
	.text
	.proc
|#PROC# 04
	LF18	=	8
	LS18	=	132
	LFF18	=	0
	LSS18	=	0
	LV18	=	0
	.text
	.globl	SYM (__gesf2)
SYM (__gesf2):
|#PROLOGUE# 0
	link	a6,IMM (0)
|#PROLOGUE# 1
	movl	a6@(12),sp@-
	movl	a6@(8),sp@-
	jbsr	SYM (__cmpsf2)
|#PROLOGUE# 2
	unlk	a6
|#PROLOGUE# 3
	rts
#endif /* L_gesf2 */

#ifdef  L_ltsf2
	.text
	.proc
|#PROC# 04
	LF18	=	8
	LS18	=	132
	LFF18	=	0
	LSS18	=	0
	LV18	=	0
	.text
	.globl	SYM (__ltsf2)
SYM (__ltsf2):
|#PROLOGUE# 0
	link	a6,IMM (0)
|#PROLOGUE# 1
	movl	a6@(12),sp@-
	movl	a6@(8),sp@-
	jbsr	SYM (__cmpsf2)
|#PROLOGUE# 2
	unlk	a6
|#PROLOGUE# 3
	rts
#endif /* L_ltsf2 */

#ifdef  L_lesf2
	.text
	.proc
|#PROC# 04
	LF18	=	8
	LS18	=	132
	LFF18	=	0
	LSS18	=	0
	LV18	=	0
	.text
	.globl	SYM (__lesf2)
SYM (__lesf2):
|#PROLOGUE# 0
	link	a6,IMM (0)
|#PROLOGUE# 1
	movl	a6@(12),sp@-
	movl	a6@(8),sp@-
	jbsr	SYM (__cmpsf2)
|#PROLOGUE# 2
	unlk	a6
|#PROLOGUE# 3
	rts
#endif /* L_lesf2 */