1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
|
/* Subroutines for insn-output.c for Motorola 68000 family.
Copyright (C) 1987, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
2001, 2003, 2004, 2005, 2006, 2007
Free Software Foundation, Inc.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
GCC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING. If not, write to
the Free Software Foundation, 51 Franklin Street, Fifth Floor,
Boston, MA 02110-1301, USA. */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "tree.h"
#include "rtl.h"
#include "function.h"
#include "regs.h"
#include "hard-reg-set.h"
#include "real.h"
#include "insn-config.h"
#include "conditions.h"
#include "output.h"
#include "insn-attr.h"
#include "recog.h"
#include "toplev.h"
#include "expr.h"
#include "reload.h"
#include "tm_p.h"
#include "target.h"
#include "target-def.h"
#include "debug.h"
#include "flags.h"
enum reg_class regno_reg_class[] =
{
DATA_REGS, DATA_REGS, DATA_REGS, DATA_REGS,
DATA_REGS, DATA_REGS, DATA_REGS, DATA_REGS,
ADDR_REGS, ADDR_REGS, ADDR_REGS, ADDR_REGS,
ADDR_REGS, ADDR_REGS, ADDR_REGS, ADDR_REGS,
FP_REGS, FP_REGS, FP_REGS, FP_REGS,
FP_REGS, FP_REGS, FP_REGS, FP_REGS,
ADDR_REGS
};
/* The ASM_DOT macro allows easy string pasting to handle the differences
between MOTOROLA and MIT syntaxes in asm_fprintf(), which doesn't
support the %. option. */
#if MOTOROLA
# define ASM_DOT "."
# define ASM_DOTW ".w"
# define ASM_DOTL ".l"
#else
# define ASM_DOT ""
# define ASM_DOTW ""
# define ASM_DOTL ""
#endif
/* The minimum number of integer registers that we want to save with the
movem instruction. Using two movel instructions instead of a single
moveml is about 15% faster for the 68020 and 68030 at no expense in
code size. */
#define MIN_MOVEM_REGS 3
/* The minimum number of floating point registers that we want to save
with the fmovem instruction. */
#define MIN_FMOVEM_REGS 1
/* Structure describing stack frame layout. */
struct m68k_frame
{
/* Stack pointer to frame pointer offset. */
HOST_WIDE_INT offset;
/* Offset of FPU registers. */
HOST_WIDE_INT foffset;
/* Frame size in bytes (rounded up). */
HOST_WIDE_INT size;
/* Data and address register. */
int reg_no;
unsigned int reg_mask;
/* FPU registers. */
int fpu_no;
unsigned int fpu_mask;
/* Offsets relative to ARG_POINTER. */
HOST_WIDE_INT frame_pointer_offset;
HOST_WIDE_INT stack_pointer_offset;
/* Function which the above information refers to. */
int funcdef_no;
};
/* Current frame information calculated by m68k_compute_frame_layout(). */
static struct m68k_frame current_frame;
/* Structure describing an m68k address.
If CODE is UNKNOWN, the address is BASE + INDEX * SCALE + OFFSET,
with null fields evaluating to 0. Here:
- BASE satisfies m68k_legitimate_base_reg_p
- INDEX satisfies m68k_legitimate_index_reg_p
- OFFSET satisfies m68k_legitimate_constant_address_p
INDEX is either HImode or SImode. The other fields are SImode.
If CODE is PRE_DEC, the address is -(BASE). If CODE is POST_INC,
the address is (BASE)+. */
struct m68k_address {
enum rtx_code code;
rtx base;
rtx index;
rtx offset;
int scale;
};
static bool m68k_handle_option (size_t, const char *, int);
static rtx find_addr_reg (rtx);
static const char *singlemove_string (rtx *);
#ifdef M68K_TARGET_COFF
static void m68k_coff_asm_named_section (const char *, unsigned int, tree);
#endif /* M68K_TARGET_COFF */
static void m68k_output_mi_thunk (FILE *, tree, HOST_WIDE_INT,
HOST_WIDE_INT, tree);
static rtx m68k_struct_value_rtx (tree, int);
static tree m68k_handle_fndecl_attribute (tree *node, tree name,
tree args, int flags,
bool *no_add_attrs);
static void m68k_compute_frame_layout (void);
static bool m68k_save_reg (unsigned int regno, bool interrupt_handler);
static bool m68k_ok_for_sibcall_p (tree, tree);
static bool m68k_rtx_costs (rtx, int, int, int *);
/* Specify the identification number of the library being built */
const char *m68k_library_id_string = "_current_shared_library_a5_offset_";
/* Nonzero if the last compare/test insn had FP operands. The
sCC expanders peek at this to determine what to do for the
68060, which has no fsCC instructions. */
int m68k_last_compare_had_fp_operands;
/* Initialize the GCC target structure. */
#if INT_OP_GROUP == INT_OP_DOT_WORD
#undef TARGET_ASM_ALIGNED_HI_OP
#define TARGET_ASM_ALIGNED_HI_OP "\t.word\t"
#endif
#if INT_OP_GROUP == INT_OP_NO_DOT
#undef TARGET_ASM_BYTE_OP
#define TARGET_ASM_BYTE_OP "\tbyte\t"
#undef TARGET_ASM_ALIGNED_HI_OP
#define TARGET_ASM_ALIGNED_HI_OP "\tshort\t"
#undef TARGET_ASM_ALIGNED_SI_OP
#define TARGET_ASM_ALIGNED_SI_OP "\tlong\t"
#endif
#if INT_OP_GROUP == INT_OP_DC
#undef TARGET_ASM_BYTE_OP
#define TARGET_ASM_BYTE_OP "\tdc.b\t"
#undef TARGET_ASM_ALIGNED_HI_OP
#define TARGET_ASM_ALIGNED_HI_OP "\tdc.w\t"
#undef TARGET_ASM_ALIGNED_SI_OP
#define TARGET_ASM_ALIGNED_SI_OP "\tdc.l\t"
#endif
#undef TARGET_ASM_UNALIGNED_HI_OP
#define TARGET_ASM_UNALIGNED_HI_OP TARGET_ASM_ALIGNED_HI_OP
#undef TARGET_ASM_UNALIGNED_SI_OP
#define TARGET_ASM_UNALIGNED_SI_OP TARGET_ASM_ALIGNED_SI_OP
#undef TARGET_ASM_OUTPUT_MI_THUNK
#define TARGET_ASM_OUTPUT_MI_THUNK m68k_output_mi_thunk
#undef TARGET_ASM_CAN_OUTPUT_MI_THUNK
#define TARGET_ASM_CAN_OUTPUT_MI_THUNK hook_bool_tree_hwi_hwi_tree_true
#undef TARGET_ASM_FILE_START_APP_OFF
#define TARGET_ASM_FILE_START_APP_OFF true
#undef TARGET_DEFAULT_TARGET_FLAGS
#define TARGET_DEFAULT_TARGET_FLAGS MASK_STRICT_ALIGNMENT
#undef TARGET_HANDLE_OPTION
#define TARGET_HANDLE_OPTION m68k_handle_option
#undef TARGET_RTX_COSTS
#define TARGET_RTX_COSTS m68k_rtx_costs
#undef TARGET_ATTRIBUTE_TABLE
#define TARGET_ATTRIBUTE_TABLE m68k_attribute_table
#undef TARGET_PROMOTE_PROTOTYPES
#define TARGET_PROMOTE_PROTOTYPES hook_bool_tree_true
#undef TARGET_STRUCT_VALUE_RTX
#define TARGET_STRUCT_VALUE_RTX m68k_struct_value_rtx
#undef TARGET_CANNOT_FORCE_CONST_MEM
#define TARGET_CANNOT_FORCE_CONST_MEM m68k_illegitimate_symbolic_constant_p
#undef TARGET_FUNCTION_OK_FOR_SIBCALL
#define TARGET_FUNCTION_OK_FOR_SIBCALL m68k_ok_for_sibcall_p
static const struct attribute_spec m68k_attribute_table[] =
{
/* { name, min_len, max_len, decl_req, type_req, fn_type_req, handler } */
{ "interrupt", 0, 0, true, false, false, m68k_handle_fndecl_attribute },
{ "interrupt_handler", 0, 0, true, false, false, m68k_handle_fndecl_attribute },
{ "interrupt_thread", 0, 0, true, false, false, m68k_handle_fndecl_attribute },
{ NULL, 0, 0, false, false, false, NULL }
};
struct gcc_target targetm = TARGET_INITIALIZER;
/* Base flags for 68k ISAs. */
#define FL_FOR_isa_00 FL_ISA_68000
#define FL_FOR_isa_10 (FL_FOR_isa_00 | FL_ISA_68010)
/* FL_68881 controls the default setting of -m68881. gcc has traditionally
generated 68881 code for 68020 and 68030 targets unless explicitly told
not to. */
#define FL_FOR_isa_20 (FL_FOR_isa_10 | FL_ISA_68020 \
| FL_BITFIELD | FL_68881)
#define FL_FOR_isa_40 (FL_FOR_isa_20 | FL_ISA_68040)
#define FL_FOR_isa_cpu32 (FL_FOR_isa_10 | FL_ISA_68020)
/* Base flags for ColdFire ISAs. */
#define FL_FOR_isa_a (FL_COLDFIRE | FL_ISA_A)
#define FL_FOR_isa_aplus (FL_FOR_isa_a | FL_ISA_APLUS | FL_CF_USP)
/* Note ISA_B doesn't necessarily include USP (user stack pointer) support. */
#define FL_FOR_isa_b (FL_FOR_isa_a | FL_ISA_B | FL_CF_HWDIV)
#define FL_FOR_isa_c (FL_FOR_isa_b | FL_ISA_C | FL_CF_USP)
enum m68k_isa
{
/* Traditional 68000 instruction sets. */
isa_00,
isa_10,
isa_20,
isa_40,
isa_cpu32,
/* ColdFire instruction set variants. */
isa_a,
isa_aplus,
isa_b,
isa_c,
isa_max
};
/* Information about one of the -march, -mcpu or -mtune arguments. */
struct m68k_target_selection
{
/* The argument being described. */
const char *name;
/* For -mcpu, this is the device selected by the option.
For -mtune and -march, it is a representative device
for the microarchitecture or ISA respectively. */
enum target_device device;
/* The M68K_DEVICE fields associated with DEVICE. See the comment
in m68k-devices.def for details. FAMILY is only valid for -mcpu. */
const char *family;
enum uarch_type microarch;
enum m68k_isa isa;
unsigned long flags;
};
/* A list of all devices in m68k-devices.def. Used for -mcpu selection. */
static const struct m68k_target_selection all_devices[] =
{
#define M68K_DEVICE(NAME,ENUM_VALUE,FAMILY,MULTILIB,MICROARCH,ISA,FLAGS) \
{ NAME, ENUM_VALUE, FAMILY, u##MICROARCH, ISA, FLAGS | FL_FOR_##ISA },
#include "m68k-devices.def"
#undef M68K_DEVICE
{ NULL, unk_device, NULL, unk_arch, isa_max, 0 }
};
/* A list of all ISAs, mapping each one to a representative device.
Used for -march selection. */
static const struct m68k_target_selection all_isas[] =
{
{ "68000", m68000, NULL, u68000, isa_00, FL_FOR_isa_00 },
{ "68010", m68010, NULL, u68010, isa_10, FL_FOR_isa_10 },
{ "68020", m68020, NULL, u68020, isa_20, FL_FOR_isa_20 },
{ "68030", m68030, NULL, u68030, isa_20, FL_FOR_isa_20 },
{ "68040", m68040, NULL, u68040, isa_40, FL_FOR_isa_40 },
{ "68060", m68060, NULL, u68060, isa_40, FL_FOR_isa_40 },
{ "cpu32", cpu32, NULL, ucpu32, isa_20, FL_FOR_isa_cpu32 },
{ "isaa", mcf5206e, NULL, ucfv2, isa_a, (FL_FOR_isa_a
| FL_CF_HWDIV) },
{ "isaaplus", mcf5271, NULL, ucfv2, isa_aplus, (FL_FOR_isa_aplus
| FL_CF_HWDIV) },
{ "isab", mcf5407, NULL, ucfv4, isa_b, FL_FOR_isa_b },
{ "isac", unk_device, NULL, ucfv4, isa_c, (FL_FOR_isa_c
| FL_CF_FPU
| FL_CF_EMAC) },
{ NULL, unk_device, NULL, unk_arch, isa_max, 0 }
};
/* A list of all microarchitectures, mapping each one to a representative
device. Used for -mtune selection. */
static const struct m68k_target_selection all_microarchs[] =
{
{ "68000", m68000, NULL, u68000, isa_00, FL_FOR_isa_00 },
{ "68010", m68010, NULL, u68010, isa_10, FL_FOR_isa_10 },
{ "68020", m68020, NULL, u68020, isa_20, FL_FOR_isa_20 },
{ "68020-40", m68020, NULL, u68020_40, isa_20, FL_FOR_isa_20 },
{ "68020-60", m68020, NULL, u68020_60, isa_20, FL_FOR_isa_20 },
{ "68030", m68030, NULL, u68030, isa_20, FL_FOR_isa_20 },
{ "68040", m68040, NULL, u68040, isa_40, FL_FOR_isa_40 },
{ "68060", m68060, NULL, u68060, isa_40, FL_FOR_isa_40 },
{ "cpu32", cpu32, NULL, ucpu32, isa_20, FL_FOR_isa_cpu32 },
{ "cfv2", mcf5206, NULL, ucfv2, isa_a, FL_FOR_isa_a },
{ "cfv3", mcf5307, NULL, ucfv3, isa_a, (FL_FOR_isa_a
| FL_CF_HWDIV) },
{ "cfv4", mcf5407, NULL, ucfv4, isa_b, FL_FOR_isa_b },
{ "cfv4e", mcf547x, NULL, ucfv4e, isa_b, (FL_FOR_isa_b
| FL_CF_USP
| FL_CF_EMAC
| FL_CF_FPU) },
{ NULL, unk_device, NULL, unk_arch, isa_max, 0 }
};
/* The entries associated with the -mcpu, -march and -mtune settings,
or null for options that have not been used. */
const struct m68k_target_selection *m68k_cpu_entry;
const struct m68k_target_selection *m68k_arch_entry;
const struct m68k_target_selection *m68k_tune_entry;
/* Which CPU we are generating code for. */
enum target_device m68k_cpu;
/* Which microarchitecture to tune for. */
enum uarch_type m68k_tune;
/* Which FPU to use. */
enum fpu_type m68k_fpu;
/* The set of FL_* flags that apply to the target processor. */
unsigned int m68k_cpu_flags;
/* Asm templates for calling or jumping to an arbitrary symbolic address,
or NULL if such calls or jumps are not supported. The address is held
in operand 0. */
const char *m68k_symbolic_call;
const char *m68k_symbolic_jump;
/* See whether TABLE has an entry with name NAME. Return true and
store the entry in *ENTRY if so, otherwise return false and
leave *ENTRY alone. */
static bool
m68k_find_selection (const struct m68k_target_selection **entry,
const struct m68k_target_selection *table,
const char *name)
{
size_t i;
for (i = 0; table[i].name; i++)
if (strcmp (table[i].name, name) == 0)
{
*entry = table + i;
return true;
}
return false;
}
/* Implement TARGET_HANDLE_OPTION. */
static bool
m68k_handle_option (size_t code, const char *arg, int value)
{
switch (code)
{
case OPT_march_:
return m68k_find_selection (&m68k_arch_entry, all_isas, arg);
case OPT_mcpu_:
return m68k_find_selection (&m68k_cpu_entry, all_devices, arg);
case OPT_mtune_:
return m68k_find_selection (&m68k_tune_entry, all_microarchs, arg);
case OPT_m5200:
return m68k_find_selection (&m68k_cpu_entry, all_devices, "5206");
case OPT_m5206e:
return m68k_find_selection (&m68k_cpu_entry, all_devices, "5206e");
case OPT_m528x:
return m68k_find_selection (&m68k_cpu_entry, all_devices, "528x");
case OPT_m5307:
return m68k_find_selection (&m68k_cpu_entry, all_devices, "5307");
case OPT_m5407:
return m68k_find_selection (&m68k_cpu_entry, all_devices, "5407");
case OPT_mcfv4e:
return m68k_find_selection (&m68k_cpu_entry, all_devices, "547x");
case OPT_m68000:
case OPT_mc68000:
return m68k_find_selection (&m68k_cpu_entry, all_devices, "68000");
case OPT_m68010:
return m68k_find_selection (&m68k_cpu_entry, all_devices, "68010");
case OPT_m68020:
case OPT_mc68020:
return m68k_find_selection (&m68k_cpu_entry, all_devices, "68020");
case OPT_m68020_40:
return (m68k_find_selection (&m68k_tune_entry, all_microarchs,
"68020-40")
&& m68k_find_selection (&m68k_cpu_entry, all_devices, "68020"));
case OPT_m68020_60:
return (m68k_find_selection (&m68k_tune_entry, all_microarchs,
"68020-60")
&& m68k_find_selection (&m68k_cpu_entry, all_devices, "68020"));
case OPT_m68030:
return m68k_find_selection (&m68k_cpu_entry, all_devices, "68030");
case OPT_m68040:
return m68k_find_selection (&m68k_cpu_entry, all_devices, "68040");
case OPT_m68060:
return m68k_find_selection (&m68k_cpu_entry, all_devices, "68060");
case OPT_m68302:
return m68k_find_selection (&m68k_cpu_entry, all_devices, "68302");
case OPT_m68332:
case OPT_mcpu32:
return m68k_find_selection (&m68k_cpu_entry, all_devices, "68332");
case OPT_mshared_library_id_:
if (value > MAX_LIBRARY_ID)
error ("-mshared-library-id=%s is not between 0 and %d",
arg, MAX_LIBRARY_ID);
else
asprintf ((char **) &m68k_library_id_string, "%d", (value * -4) - 4);
return true;
default:
return true;
}
}
/* Sometimes certain combinations of command options do not make
sense on a particular target machine. You can define a macro
`OVERRIDE_OPTIONS' to take account of this. This macro, if
defined, is executed once just after all the command options have
been parsed.
Don't use this macro to turn on various extra optimizations for
`-O'. That is what `OPTIMIZATION_OPTIONS' is for. */
void
override_options (void)
{
const struct m68k_target_selection *entry;
unsigned long target_mask;
/* User can choose:
-mcpu=
-march=
-mtune=
-march=ARCH should generate code that runs any processor
implementing architecture ARCH. -mcpu=CPU should override -march
and should generate code that runs on processor CPU, making free
use of any instructions that CPU understands. -mtune=UARCH applies
on top of -mcpu or -march and optimizes the code for UARCH. It does
not change the target architecture. */
if (m68k_cpu_entry)
{
/* Complain if the -march setting is for a different microarchitecture,
or includes flags that the -mcpu setting doesn't. */
if (m68k_arch_entry
&& (m68k_arch_entry->microarch != m68k_cpu_entry->microarch
|| (m68k_arch_entry->flags & ~m68k_cpu_entry->flags) != 0))
warning (0, "-mcpu=%s conflicts with -march=%s",
m68k_cpu_entry->name, m68k_arch_entry->name);
entry = m68k_cpu_entry;
}
else
entry = m68k_arch_entry;
if (!entry)
entry = all_devices + TARGET_CPU_DEFAULT;
m68k_cpu_flags = entry->flags;
/* Use the architecture setting to derive default values for
certain flags. */
target_mask = 0;
if ((m68k_cpu_flags & FL_BITFIELD) != 0)
target_mask |= MASK_BITFIELD;
if ((m68k_cpu_flags & FL_CF_HWDIV) != 0)
target_mask |= MASK_CF_HWDIV;
if ((m68k_cpu_flags & (FL_68881 | FL_CF_FPU)) != 0)
target_mask |= MASK_HARD_FLOAT;
target_flags |= target_mask & ~target_flags_explicit;
/* Set the directly-usable versions of the -mcpu and -mtune settings. */
m68k_cpu = entry->device;
if (m68k_tune_entry)
m68k_tune = m68k_tune_entry->microarch;
#ifdef M68K_DEFAULT_TUNE
else if (!m68k_cpu_entry && !m68k_arch_entry)
m68k_tune = M68K_DEFAULT_TUNE;
#endif
else
m68k_tune = entry->microarch;
/* Set the type of FPU. */
m68k_fpu = (!TARGET_HARD_FLOAT ? FPUTYPE_NONE
: (m68k_cpu_flags & FL_COLDFIRE) != 0 ? FPUTYPE_COLDFIRE
: FPUTYPE_68881);
/* Sanity check to ensure that msep-data and mid-sahred-library are not
* both specified together. Doing so simply doesn't make sense.
*/
if (TARGET_SEP_DATA && TARGET_ID_SHARED_LIBRARY)
error ("cannot specify both -msep-data and -mid-shared-library");
/* If we're generating code for a separate A5 relative data segment,
* we've got to enable -fPIC as well. This might be relaxable to
* -fpic but it hasn't been tested properly.
*/
if (TARGET_SEP_DATA || TARGET_ID_SHARED_LIBRARY)
flag_pic = 2;
/* -mpcrel -fPIC uses 32-bit pc-relative displacements. Raise an
error if the target does not support them. */
if (TARGET_PCREL && !TARGET_68020 && flag_pic == 2)
error ("-mpcrel -fPIC is not currently supported on selected cpu");
/* ??? A historic way of turning on pic, or is this intended to
be an embedded thing that doesn't have the same name binding
significance that it does on hosted ELF systems? */
if (TARGET_PCREL && flag_pic == 0)
flag_pic = 1;
if (!flag_pic)
{
#if MOTOROLA && !defined (USE_GAS)
m68k_symbolic_call = "jsr %a0";
m68k_symbolic_jump = "jmp %a0";
#else
m68k_symbolic_call = "jbsr %a0";
m68k_symbolic_jump = "jra %a0";
#endif
}
else if (TARGET_ID_SHARED_LIBRARY)
/* All addresses must be loaded from the GOT. */
;
else if (TARGET_68020 || TARGET_ISAB)
{
if (TARGET_PCREL)
{
m68k_symbolic_call = "bsr.l %c0";
m68k_symbolic_jump = "bra.l %c0";
}
else
{
#if defined(USE_GAS)
m68k_symbolic_call = "bsr.l %p0";
m68k_symbolic_jump = "bra.l %p0";
#else
m68k_symbolic_call = "bsr %p0";
m68k_symbolic_jump = "bra %p0";
#endif
}
/* Turn off function cse if we are doing PIC. We always want
function call to be done as `bsr foo@PLTPC'. */
/* ??? It's traditional to do this for -mpcrel too, but it isn't
clear how intentional that is. */
flag_no_function_cse = 1;
}
SUBTARGET_OVERRIDE_OPTIONS;
}
/* Generate a macro of the form __mPREFIX_cpu_NAME, where PREFIX is the
given argument and NAME is the argument passed to -mcpu. Return NULL
if -mcpu was not passed. */
const char *
m68k_cpp_cpu_ident (const char *prefix)
{
if (!m68k_cpu_entry)
return NULL;
return concat ("__m", prefix, "_cpu_", m68k_cpu_entry->name, NULL);
}
/* Generate a macro of the form __mPREFIX_family_NAME, where PREFIX is the
given argument and NAME is the name of the representative device for
the -mcpu argument's family. Return NULL if -mcpu was not passed. */
const char *
m68k_cpp_cpu_family (const char *prefix)
{
if (!m68k_cpu_entry)
return NULL;
return concat ("__m", prefix, "_family_", m68k_cpu_entry->family, NULL);
}
/* Return m68k_fk_interrupt_handler if FUNC has an "interrupt" or
"interrupt_handler" attribute and interrupt_thread if FUNC has an
"interrupt_thread" attribute. Otherwise, return
m68k_fk_normal_function. */
enum m68k_function_kind
m68k_get_function_kind (tree func)
{
tree a;
if (TREE_CODE (func) != FUNCTION_DECL)
return false;
a = lookup_attribute ("interrupt", DECL_ATTRIBUTES (func));
if (a != NULL_TREE)
return m68k_fk_interrupt_handler;
a = lookup_attribute ("interrupt_handler", DECL_ATTRIBUTES (func));
if (a != NULL_TREE)
return m68k_fk_interrupt_handler;
a = lookup_attribute ("interrupt_thread", DECL_ATTRIBUTES (func));
if (a != NULL_TREE)
return m68k_fk_interrupt_thread;
return m68k_fk_normal_function;
}
/* Handle an attribute requiring a FUNCTION_DECL; arguments as in
struct attribute_spec.handler. */
static tree
m68k_handle_fndecl_attribute (tree *node, tree name,
tree args ATTRIBUTE_UNUSED,
int flags ATTRIBUTE_UNUSED,
bool *no_add_attrs)
{
if (TREE_CODE (*node) != FUNCTION_DECL)
{
warning (OPT_Wattributes, "%qs attribute only applies to functions",
IDENTIFIER_POINTER (name));
*no_add_attrs = true;
}
if (m68k_get_function_kind (*node) != m68k_fk_normal_function)
{
error ("multiple interrupt attributes not allowed");
*no_add_attrs = true;
}
if (!TARGET_FIDOA
&& !strcmp (IDENTIFIER_POINTER (name), "interrupt_thread"))
{
error ("interrupt_thread is available only on fido");
*no_add_attrs = true;
}
return NULL_TREE;
}
static void
m68k_compute_frame_layout (void)
{
int regno, saved;
unsigned int mask;
enum m68k_function_kind func_kind =
m68k_get_function_kind (current_function_decl);
bool interrupt_handler = func_kind == m68k_fk_interrupt_handler;
bool interrupt_thread = func_kind == m68k_fk_interrupt_thread;
/* Only compute the frame once per function.
Don't cache information until reload has been completed. */
if (current_frame.funcdef_no == current_function_funcdef_no
&& reload_completed)
return;
current_frame.size = (get_frame_size () + 3) & -4;
mask = saved = 0;
/* Interrupt thread does not need to save any register. */
if (!interrupt_thread)
for (regno = 0; regno < 16; regno++)
if (m68k_save_reg (regno, interrupt_handler))
{
mask |= 1 << (regno - D0_REG);
saved++;
}
current_frame.offset = saved * 4;
current_frame.reg_no = saved;
current_frame.reg_mask = mask;
current_frame.foffset = 0;
mask = saved = 0;
if (TARGET_HARD_FLOAT)
{
/* Interrupt thread does not need to save any register. */
if (!interrupt_thread)
for (regno = 16; regno < 24; regno++)
if (m68k_save_reg (regno, interrupt_handler))
{
mask |= 1 << (regno - FP0_REG);
saved++;
}
current_frame.foffset = saved * TARGET_FP_REG_SIZE;
current_frame.offset += current_frame.foffset;
}
current_frame.fpu_no = saved;
current_frame.fpu_mask = mask;
/* Remember what function this frame refers to. */
current_frame.funcdef_no = current_function_funcdef_no;
}
HOST_WIDE_INT
m68k_initial_elimination_offset (int from, int to)
{
int argptr_offset;
/* The arg pointer points 8 bytes before the start of the arguments,
as defined by FIRST_PARM_OFFSET. This makes it coincident with the
frame pointer in most frames. */
argptr_offset = frame_pointer_needed ? 0 : UNITS_PER_WORD;
if (from == ARG_POINTER_REGNUM && to == FRAME_POINTER_REGNUM)
return argptr_offset;
m68k_compute_frame_layout ();
gcc_assert (to == STACK_POINTER_REGNUM);
switch (from)
{
case ARG_POINTER_REGNUM:
return current_frame.offset + current_frame.size - argptr_offset;
case FRAME_POINTER_REGNUM:
return current_frame.offset + current_frame.size;
default:
gcc_unreachable ();
}
}
/* Refer to the array `regs_ever_live' to determine which registers
to save; `regs_ever_live[I]' is nonzero if register number I
is ever used in the function. This function is responsible for
knowing which registers should not be saved even if used.
Return true if we need to save REGNO. */
static bool
m68k_save_reg (unsigned int regno, bool interrupt_handler)
{
if (flag_pic && regno == PIC_REG)
{
/* A function that receives a nonlocal goto must save all call-saved
registers. */
if (current_function_has_nonlocal_label)
return true;
if (current_function_uses_pic_offset_table)
return true;
/* Reload may introduce constant pool references into a function
that thitherto didn't need a PIC register. Note that the test
above will not catch that case because we will only set
current_function_uses_pic_offset_table when emitting
the address reloads. */
if (current_function_uses_const_pool)
return true;
}
if (current_function_calls_eh_return)
{
unsigned int i;
for (i = 0; ; i++)
{
unsigned int test = EH_RETURN_DATA_REGNO (i);
if (test == INVALID_REGNUM)
break;
if (test == regno)
return true;
}
}
/* Fixed regs we never touch. */
if (fixed_regs[regno])
return false;
/* The frame pointer (if it is such) is handled specially. */
if (regno == FRAME_POINTER_REGNUM && frame_pointer_needed)
return false;
/* Interrupt handlers must also save call_used_regs
if they are live or when calling nested functions. */
if (interrupt_handler)
{
if (regs_ever_live[regno])
return true;
if (!current_function_is_leaf && call_used_regs[regno])
return true;
}
/* Never need to save registers that aren't touched. */
if (!regs_ever_live[regno])
return false;
/* Otherwise save everything that isn't call-clobbered. */
return !call_used_regs[regno];
}
/* Emit RTL for a MOVEM or FMOVEM instruction. BASE + OFFSET represents
the lowest memory address. COUNT is the number of registers to be
moved, with register REGNO + I being moved if bit I of MASK is set.
STORE_P specifies the direction of the move and ADJUST_STACK_P says
whether or not this is pre-decrement (if STORE_P) or post-increment
(if !STORE_P) operation. */
static rtx
m68k_emit_movem (rtx base, HOST_WIDE_INT offset,
unsigned int count, unsigned int regno,
unsigned int mask, bool store_p, bool adjust_stack_p)
{
int i;
rtx body, addr, src, operands[2];
enum machine_mode mode;
body = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (adjust_stack_p + count));
mode = reg_raw_mode[regno];
i = 0;
if (adjust_stack_p)
{
src = plus_constant (base, (count
* GET_MODE_SIZE (mode)
* (HOST_WIDE_INT) (store_p ? -1 : 1)));
XVECEXP (body, 0, i++) = gen_rtx_SET (VOIDmode, base, src);
}
for (; mask != 0; mask >>= 1, regno++)
if (mask & 1)
{
addr = plus_constant (base, offset);
operands[!store_p] = gen_frame_mem (mode, addr);
operands[store_p] = gen_rtx_REG (mode, regno);
XVECEXP (body, 0, i++)
= gen_rtx_SET (VOIDmode, operands[0], operands[1]);
offset += GET_MODE_SIZE (mode);
}
gcc_assert (i == XVECLEN (body, 0));
return emit_insn (body);
}
/* Make INSN a frame-related instruction. */
static void
m68k_set_frame_related (rtx insn)
{
rtx body;
int i;
RTX_FRAME_RELATED_P (insn) = 1;
body = PATTERN (insn);
if (GET_CODE (body) == PARALLEL)
for (i = 0; i < XVECLEN (body, 0); i++)
RTX_FRAME_RELATED_P (XVECEXP (body, 0, i)) = 1;
}
/* Emit RTL for the "prologue" define_expand. */
void
m68k_expand_prologue (void)
{
HOST_WIDE_INT fsize_with_regs;
rtx limit, src, dest, insn;
m68k_compute_frame_layout ();
/* If the stack limit is a symbol, we can check it here,
before actually allocating the space. */
if (current_function_limit_stack
&& GET_CODE (stack_limit_rtx) == SYMBOL_REF)
{
limit = plus_constant (stack_limit_rtx, current_frame.size + 4);
if (!LEGITIMATE_CONSTANT_P (limit))
{
emit_move_insn (gen_rtx_REG (Pmode, D0_REG), limit);
limit = gen_rtx_REG (Pmode, D0_REG);
}
emit_insn (gen_cmpsi (stack_pointer_rtx, limit));
emit_insn (gen_conditional_trap (gen_rtx_LTU (VOIDmode,
cc0_rtx, const0_rtx),
const1_rtx));
}
fsize_with_regs = current_frame.size;
if (TARGET_COLDFIRE)
{
/* ColdFire's move multiple instructions do not allow pre-decrement
addressing. Add the size of movem saves to the initial stack
allocation instead. */
if (current_frame.reg_no >= MIN_MOVEM_REGS)
fsize_with_regs += current_frame.reg_no * GET_MODE_SIZE (SImode);
if (current_frame.fpu_no >= MIN_FMOVEM_REGS)
fsize_with_regs += current_frame.fpu_no * GET_MODE_SIZE (DFmode);
}
if (frame_pointer_needed)
{
if (fsize_with_regs == 0 && TUNE_68040)
{
/* On the 68040, two separate moves are faster than link.w 0. */
dest = gen_frame_mem (Pmode,
gen_rtx_PRE_DEC (Pmode, stack_pointer_rtx));
m68k_set_frame_related (emit_move_insn (dest, frame_pointer_rtx));
m68k_set_frame_related (emit_move_insn (frame_pointer_rtx,
stack_pointer_rtx));
}
else if (fsize_with_regs < 0x8000 || TARGET_68020)
m68k_set_frame_related
(emit_insn (gen_link (frame_pointer_rtx,
GEN_INT (-4 - fsize_with_regs))));
else
{
m68k_set_frame_related
(emit_insn (gen_link (frame_pointer_rtx, GEN_INT (-4))));
m68k_set_frame_related
(emit_insn (gen_addsi3 (stack_pointer_rtx,
stack_pointer_rtx,
GEN_INT (-fsize_with_regs))));
}
}
else if (fsize_with_regs != 0)
m68k_set_frame_related
(emit_insn (gen_addsi3 (stack_pointer_rtx,
stack_pointer_rtx,
GEN_INT (-fsize_with_regs))));
if (current_frame.fpu_mask)
{
gcc_assert (current_frame.fpu_no >= MIN_FMOVEM_REGS);
if (TARGET_68881)
m68k_set_frame_related
(m68k_emit_movem (stack_pointer_rtx,
current_frame.fpu_no * -GET_MODE_SIZE (XFmode),
current_frame.fpu_no, FP0_REG,
current_frame.fpu_mask, true, true));
else
{
int offset;
/* If we're using moveml to save the integer registers,
the stack pointer will point to the bottom of the moveml
save area. Find the stack offset of the first FP register. */
if (current_frame.reg_no < MIN_MOVEM_REGS)
offset = 0;
else
offset = current_frame.reg_no * GET_MODE_SIZE (SImode);
m68k_set_frame_related
(m68k_emit_movem (stack_pointer_rtx, offset,
current_frame.fpu_no, FP0_REG,
current_frame.fpu_mask, true, false));
}
}
/* If the stack limit is not a symbol, check it here.
This has the disadvantage that it may be too late... */
if (current_function_limit_stack)
{
if (REG_P (stack_limit_rtx))
{
emit_insn (gen_cmpsi (stack_pointer_rtx, stack_limit_rtx));
emit_insn (gen_conditional_trap (gen_rtx_LTU (VOIDmode,
cc0_rtx, const0_rtx),
const1_rtx));
}
else if (GET_CODE (stack_limit_rtx) != SYMBOL_REF)
warning (0, "stack limit expression is not supported");
}
if (current_frame.reg_no < MIN_MOVEM_REGS)
{
/* Store each register separately in the same order moveml does. */
int i;
for (i = 16; i-- > 0; )
if (current_frame.reg_mask & (1 << i))
{
src = gen_rtx_REG (SImode, D0_REG + i);
dest = gen_frame_mem (SImode,
gen_rtx_PRE_DEC (Pmode, stack_pointer_rtx));
m68k_set_frame_related (emit_insn (gen_movsi (dest, src)));
}
}
else
{
if (TARGET_COLDFIRE)
/* The required register save space has already been allocated.
The first register should be stored at (%sp). */
m68k_set_frame_related
(m68k_emit_movem (stack_pointer_rtx, 0,
current_frame.reg_no, D0_REG,
current_frame.reg_mask, true, false));
else
m68k_set_frame_related
(m68k_emit_movem (stack_pointer_rtx,
current_frame.reg_no * -GET_MODE_SIZE (SImode),
current_frame.reg_no, D0_REG,
current_frame.reg_mask, true, true));
}
if (flag_pic
&& !TARGET_SEP_DATA
&& current_function_uses_pic_offset_table)
{
insn = emit_insn (gen_load_got (pic_offset_table_rtx));
REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_MAYBE_DEAD,
const0_rtx,
REG_NOTES (insn));
}
}
/* Return true if a simple (return) instruction is sufficient for this
instruction (i.e. if no epilogue is needed). */
bool
m68k_use_return_insn (void)
{
if (!reload_completed || frame_pointer_needed || get_frame_size () != 0)
return false;
m68k_compute_frame_layout ();
return current_frame.offset == 0;
}
/* Emit RTL for the "epilogue" or "sibcall_epilogue" define_expand;
SIBCALL_P says which.
The function epilogue should not depend on the current stack pointer!
It should use the frame pointer only, if there is a frame pointer.
This is mandatory because of alloca; we also take advantage of it to
omit stack adjustments before returning. */
void
m68k_expand_epilogue (bool sibcall_p)
{
HOST_WIDE_INT fsize, fsize_with_regs;
bool big, restore_from_sp;
m68k_compute_frame_layout ();
fsize = current_frame.size;
big = false;
restore_from_sp = false;
/* FIXME : current_function_is_leaf below is too strong.
What we really need to know there is if there could be pending
stack adjustment needed at that point. */
restore_from_sp = (!frame_pointer_needed
|| (!current_function_calls_alloca
&& current_function_is_leaf));
/* fsize_with_regs is the size we need to adjust the sp when
popping the frame. */
fsize_with_regs = fsize;
if (TARGET_COLDFIRE && restore_from_sp)
{
/* ColdFire's move multiple instructions do not allow post-increment
addressing. Add the size of movem loads to the final deallocation
instead. */
if (current_frame.reg_no >= MIN_MOVEM_REGS)
fsize_with_regs += current_frame.reg_no * GET_MODE_SIZE (SImode);
if (current_frame.fpu_no >= MIN_FMOVEM_REGS)
fsize_with_regs += current_frame.fpu_no * GET_MODE_SIZE (DFmode);
}
if (current_frame.offset + fsize >= 0x8000
&& !restore_from_sp
&& (current_frame.reg_mask || current_frame.fpu_mask))
{
if (TARGET_COLDFIRE
&& (current_frame.reg_no >= MIN_MOVEM_REGS
|| current_frame.fpu_no >= MIN_FMOVEM_REGS))
{
/* ColdFire's move multiple instructions do not support the
(d8,Ax,Xi) addressing mode, so we're as well using a normal
stack-based restore. */
emit_move_insn (gen_rtx_REG (Pmode, A1_REG),
GEN_INT (-(current_frame.offset + fsize)));
emit_insn (gen_addsi3 (stack_pointer_rtx,
gen_rtx_REG (Pmode, A1_REG),
frame_pointer_rtx));
restore_from_sp = true;
}
else
{
emit_move_insn (gen_rtx_REG (Pmode, A1_REG), GEN_INT (-fsize));
fsize = 0;
big = true;
}
}
if (current_frame.reg_no < MIN_MOVEM_REGS)
{
/* Restore each register separately in the same order moveml does. */
int i;
HOST_WIDE_INT offset;
offset = current_frame.offset + fsize;
for (i = 0; i < 16; i++)
if (current_frame.reg_mask & (1 << i))
{
rtx addr;
if (big)
{
/* Generate the address -OFFSET(%fp,%a1.l). */
addr = gen_rtx_REG (Pmode, A1_REG);
addr = gen_rtx_PLUS (Pmode, addr, frame_pointer_rtx);
addr = plus_constant (addr, -offset);
}
else if (restore_from_sp)
addr = gen_rtx_POST_INC (Pmode, stack_pointer_rtx);
else
addr = plus_constant (frame_pointer_rtx, -offset);
emit_move_insn (gen_rtx_REG (SImode, D0_REG + i),
gen_frame_mem (SImode, addr));
offset -= GET_MODE_SIZE (SImode);
}
}
else if (current_frame.reg_mask)
{
if (big)
m68k_emit_movem (gen_rtx_PLUS (Pmode,
gen_rtx_REG (Pmode, A1_REG),
frame_pointer_rtx),
-(current_frame.offset + fsize),
current_frame.reg_no, D0_REG,
current_frame.reg_mask, false, false);
else if (restore_from_sp)
m68k_emit_movem (stack_pointer_rtx, 0,
current_frame.reg_no, D0_REG,
current_frame.reg_mask, false,
!TARGET_COLDFIRE);
else
m68k_emit_movem (frame_pointer_rtx,
-(current_frame.offset + fsize),
current_frame.reg_no, D0_REG,
current_frame.reg_mask, false, false);
}
if (current_frame.fpu_no > 0)
{
if (big)
m68k_emit_movem (gen_rtx_PLUS (Pmode,
gen_rtx_REG (Pmode, A1_REG),
frame_pointer_rtx),
-(current_frame.foffset + fsize),
current_frame.fpu_no, FP0_REG,
current_frame.fpu_mask, false, false);
else if (restore_from_sp)
{
if (TARGET_COLDFIRE)
{
int offset;
/* If we used moveml to restore the integer registers, the
stack pointer will still point to the bottom of the moveml
save area. Find the stack offset of the first FP
register. */
if (current_frame.reg_no < MIN_MOVEM_REGS)
offset = 0;
else
offset = current_frame.reg_no * GET_MODE_SIZE (SImode);
m68k_emit_movem (stack_pointer_rtx, offset,
current_frame.fpu_no, FP0_REG,
current_frame.fpu_mask, false, false);
}
else
m68k_emit_movem (stack_pointer_rtx, 0,
current_frame.fpu_no, FP0_REG,
current_frame.fpu_mask, false, true);
}
else
m68k_emit_movem (frame_pointer_rtx,
-(current_frame.foffset + fsize),
current_frame.fpu_no, FP0_REG,
current_frame.fpu_mask, false, false);
}
if (frame_pointer_needed)
emit_insn (gen_unlink (frame_pointer_rtx));
else if (fsize_with_regs)
emit_insn (gen_addsi3 (stack_pointer_rtx,
stack_pointer_rtx,
GEN_INT (fsize_with_regs)));
if (current_function_calls_eh_return)
emit_insn (gen_addsi3 (stack_pointer_rtx,
stack_pointer_rtx,
EH_RETURN_STACKADJ_RTX));
if (!sibcall_p)
emit_insn (gen_rtx_RETURN (VOIDmode));
}
/* Return true if X is a valid comparison operator for the dbcc
instruction.
Note it rejects floating point comparison operators.
(In the future we could use Fdbcc).
It also rejects some comparisons when CC_NO_OVERFLOW is set. */
int
valid_dbcc_comparison_p_2 (rtx x, enum machine_mode mode ATTRIBUTE_UNUSED)
{
switch (GET_CODE (x))
{
case EQ: case NE: case GTU: case LTU:
case GEU: case LEU:
return 1;
/* Reject some when CC_NO_OVERFLOW is set. This may be over
conservative */
case GT: case LT: case GE: case LE:
return ! (cc_prev_status.flags & CC_NO_OVERFLOW);
default:
return 0;
}
}
/* Return nonzero if flags are currently in the 68881 flag register. */
int
flags_in_68881 (void)
{
/* We could add support for these in the future */
return cc_status.flags & CC_IN_68881;
}
/* Implement TARGET_FUNCTION_OK_FOR_SIBCALL_P. We cannot use sibcalls
for nested functions because we use the static chain register for
indirect calls. */
static bool
m68k_ok_for_sibcall_p (tree decl ATTRIBUTE_UNUSED, tree exp)
{
return TREE_OPERAND (exp, 2) == NULL;
}
/* Convert X to a legitimate function call memory reference and return the
result. */
rtx
m68k_legitimize_call_address (rtx x)
{
gcc_assert (MEM_P (x));
if (call_operand (XEXP (x, 0), VOIDmode))
return x;
return replace_equiv_address (x, force_reg (Pmode, XEXP (x, 0)));
}
/* Likewise for sibling calls. */
rtx
m68k_legitimize_sibcall_address (rtx x)
{
gcc_assert (MEM_P (x));
if (sibcall_operand (XEXP (x, 0), VOIDmode))
return x;
emit_move_insn (gen_rtx_REG (Pmode, STATIC_CHAIN_REGNUM), XEXP (x, 0));
return replace_equiv_address (x, gen_rtx_REG (Pmode, STATIC_CHAIN_REGNUM));
}
/* Output a dbCC; jCC sequence. Note we do not handle the
floating point version of this sequence (Fdbcc). We also
do not handle alternative conditions when CC_NO_OVERFLOW is
set. It is assumed that valid_dbcc_comparison_p and flags_in_68881 will
kick those out before we get here. */
void
output_dbcc_and_branch (rtx *operands)
{
switch (GET_CODE (operands[3]))
{
case EQ:
output_asm_insn (MOTOROLA
? "dbeq %0,%l1\n\tjbeq %l2"
: "dbeq %0,%l1\n\tjeq %l2",
operands);
break;
case NE:
output_asm_insn (MOTOROLA
? "dbne %0,%l1\n\tjbne %l2"
: "dbne %0,%l1\n\tjne %l2",
operands);
break;
case GT:
output_asm_insn (MOTOROLA
? "dbgt %0,%l1\n\tjbgt %l2"
: "dbgt %0,%l1\n\tjgt %l2",
operands);
break;
case GTU:
output_asm_insn (MOTOROLA
? "dbhi %0,%l1\n\tjbhi %l2"
: "dbhi %0,%l1\n\tjhi %l2",
operands);
break;
case LT:
output_asm_insn (MOTOROLA
? "dblt %0,%l1\n\tjblt %l2"
: "dblt %0,%l1\n\tjlt %l2",
operands);
break;
case LTU:
output_asm_insn (MOTOROLA
? "dbcs %0,%l1\n\tjbcs %l2"
: "dbcs %0,%l1\n\tjcs %l2",
operands);
break;
case GE:
output_asm_insn (MOTOROLA
? "dbge %0,%l1\n\tjbge %l2"
: "dbge %0,%l1\n\tjge %l2",
operands);
break;
case GEU:
output_asm_insn (MOTOROLA
? "dbcc %0,%l1\n\tjbcc %l2"
: "dbcc %0,%l1\n\tjcc %l2",
operands);
break;
case LE:
output_asm_insn (MOTOROLA
? "dble %0,%l1\n\tjble %l2"
: "dble %0,%l1\n\tjle %l2",
operands);
break;
case LEU:
output_asm_insn (MOTOROLA
? "dbls %0,%l1\n\tjbls %l2"
: "dbls %0,%l1\n\tjls %l2",
operands);
break;
default:
gcc_unreachable ();
}
/* If the decrement is to be done in SImode, then we have
to compensate for the fact that dbcc decrements in HImode. */
switch (GET_MODE (operands[0]))
{
case SImode:
output_asm_insn (MOTOROLA
? "clr%.w %0\n\tsubq%.l #1,%0\n\tjbpl %l1"
: "clr%.w %0\n\tsubq%.l #1,%0\n\tjpl %l1",
operands);
break;
case HImode:
break;
default:
gcc_unreachable ();
}
}
const char *
output_scc_di (rtx op, rtx operand1, rtx operand2, rtx dest)
{
rtx loperands[7];
enum rtx_code op_code = GET_CODE (op);
/* This does not produce a useful cc. */
CC_STATUS_INIT;
/* The m68k cmp.l instruction requires operand1 to be a reg as used
below. Swap the operands and change the op if these requirements
are not fulfilled. */
if (GET_CODE (operand2) == REG && GET_CODE (operand1) != REG)
{
rtx tmp = operand1;
operand1 = operand2;
operand2 = tmp;
op_code = swap_condition (op_code);
}
loperands[0] = operand1;
if (GET_CODE (operand1) == REG)
loperands[1] = gen_rtx_REG (SImode, REGNO (operand1) + 1);
else
loperands[1] = adjust_address (operand1, SImode, 4);
if (operand2 != const0_rtx)
{
loperands[2] = operand2;
if (GET_CODE (operand2) == REG)
loperands[3] = gen_rtx_REG (SImode, REGNO (operand2) + 1);
else
loperands[3] = adjust_address (operand2, SImode, 4);
}
loperands[4] = gen_label_rtx ();
if (operand2 != const0_rtx)
{
output_asm_insn (MOTOROLA
? "cmp%.l %2,%0\n\tjbne %l4\n\tcmp%.l %3,%1"
: "cmp%.l %2,%0\n\tjne %l4\n\tcmp%.l %3,%1",
loperands);
}
else
{
if (TARGET_68020 || TARGET_COLDFIRE || ! ADDRESS_REG_P (loperands[0]))
output_asm_insn ("tst%.l %0", loperands);
else
output_asm_insn ("cmp%.w #0,%0", loperands);
output_asm_insn (MOTOROLA ? "jbne %l4" : "jne %l4", loperands);
if (TARGET_68020 || TARGET_COLDFIRE || ! ADDRESS_REG_P (loperands[1]))
output_asm_insn ("tst%.l %1", loperands);
else
output_asm_insn ("cmp%.w #0,%1", loperands);
}
loperands[5] = dest;
switch (op_code)
{
case EQ:
(*targetm.asm_out.internal_label) (asm_out_file, "L",
CODE_LABEL_NUMBER (loperands[4]));
output_asm_insn ("seq %5", loperands);
break;
case NE:
(*targetm.asm_out.internal_label) (asm_out_file, "L",
CODE_LABEL_NUMBER (loperands[4]));
output_asm_insn ("sne %5", loperands);
break;
case GT:
loperands[6] = gen_label_rtx ();
output_asm_insn (MOTOROLA ? "shi %5\n\tjbra %l6" : "shi %5\n\tjra %l6",
loperands);
(*targetm.asm_out.internal_label) (asm_out_file, "L",
CODE_LABEL_NUMBER (loperands[4]));
output_asm_insn ("sgt %5", loperands);
(*targetm.asm_out.internal_label) (asm_out_file, "L",
CODE_LABEL_NUMBER (loperands[6]));
break;
case GTU:
(*targetm.asm_out.internal_label) (asm_out_file, "L",
CODE_LABEL_NUMBER (loperands[4]));
output_asm_insn ("shi %5", loperands);
break;
case LT:
loperands[6] = gen_label_rtx ();
output_asm_insn (MOTOROLA ? "scs %5\n\tjbra %l6" : "scs %5\n\tjra %l6",
loperands);
(*targetm.asm_out.internal_label) (asm_out_file, "L",
CODE_LABEL_NUMBER (loperands[4]));
output_asm_insn ("slt %5", loperands);
(*targetm.asm_out.internal_label) (asm_out_file, "L",
CODE_LABEL_NUMBER (loperands[6]));
break;
case LTU:
(*targetm.asm_out.internal_label) (asm_out_file, "L",
CODE_LABEL_NUMBER (loperands[4]));
output_asm_insn ("scs %5", loperands);
break;
case GE:
loperands[6] = gen_label_rtx ();
output_asm_insn (MOTOROLA ? "scc %5\n\tjbra %l6" : "scc %5\n\tjra %l6",
loperands);
(*targetm.asm_out.internal_label) (asm_out_file, "L",
CODE_LABEL_NUMBER (loperands[4]));
output_asm_insn ("sge %5", loperands);
(*targetm.asm_out.internal_label) (asm_out_file, "L",
CODE_LABEL_NUMBER (loperands[6]));
break;
case GEU:
(*targetm.asm_out.internal_label) (asm_out_file, "L",
CODE_LABEL_NUMBER (loperands[4]));
output_asm_insn ("scc %5", loperands);
break;
case LE:
loperands[6] = gen_label_rtx ();
output_asm_insn (MOTOROLA ? "sls %5\n\tjbra %l6" : "sls %5\n\tjra %l6",
loperands);
(*targetm.asm_out.internal_label) (asm_out_file, "L",
CODE_LABEL_NUMBER (loperands[4]));
output_asm_insn ("sle %5", loperands);
(*targetm.asm_out.internal_label) (asm_out_file, "L",
CODE_LABEL_NUMBER (loperands[6]));
break;
case LEU:
(*targetm.asm_out.internal_label) (asm_out_file, "L",
CODE_LABEL_NUMBER (loperands[4]));
output_asm_insn ("sls %5", loperands);
break;
default:
gcc_unreachable ();
}
return "";
}
const char *
output_btst (rtx *operands, rtx countop, rtx dataop, rtx insn, int signpos)
{
operands[0] = countop;
operands[1] = dataop;
if (GET_CODE (countop) == CONST_INT)
{
register int count = INTVAL (countop);
/* If COUNT is bigger than size of storage unit in use,
advance to the containing unit of same size. */
if (count > signpos)
{
int offset = (count & ~signpos) / 8;
count = count & signpos;
operands[1] = dataop = adjust_address (dataop, QImode, offset);
}
if (count == signpos)
cc_status.flags = CC_NOT_POSITIVE | CC_Z_IN_NOT_N;
else
cc_status.flags = CC_NOT_NEGATIVE | CC_Z_IN_NOT_N;
/* These three statements used to use next_insns_test_no...
but it appears that this should do the same job. */
if (count == 31
&& next_insn_tests_no_inequality (insn))
return "tst%.l %1";
if (count == 15
&& next_insn_tests_no_inequality (insn))
return "tst%.w %1";
if (count == 7
&& next_insn_tests_no_inequality (insn))
return "tst%.b %1";
/* Try to use `movew to ccr' followed by the appropriate branch insn.
On some m68k variants unfortunately that's slower than btst.
On 68000 and higher, that should also work for all HImode operands. */
if (TUNE_CPU32 || TARGET_COLDFIRE || optimize_size)
{
if (count == 3 && DATA_REG_P (operands[1])
&& next_insn_tests_no_inequality (insn))
{
cc_status.flags = CC_NOT_NEGATIVE | CC_Z_IN_NOT_N | CC_NO_OVERFLOW;
return "move%.w %1,%%ccr";
}
if (count == 2 && DATA_REG_P (operands[1])
&& next_insn_tests_no_inequality (insn))
{
cc_status.flags = CC_NOT_NEGATIVE | CC_INVERTED | CC_NO_OVERFLOW;
return "move%.w %1,%%ccr";
}
/* count == 1 followed by bvc/bvs and
count == 0 followed by bcc/bcs are also possible, but need
m68k-specific CC_Z_IN_NOT_V and CC_Z_IN_NOT_C flags. */
}
cc_status.flags = CC_NOT_NEGATIVE;
}
return "btst %0,%1";
}
/* Return true if X is a legitimate base register. STRICT_P says
whether we need strict checking. */
bool
m68k_legitimate_base_reg_p (rtx x, bool strict_p)
{
/* Allow SUBREG everywhere we allow REG. This results in better code. */
if (!strict_p && GET_CODE (x) == SUBREG)
x = SUBREG_REG (x);
return (REG_P (x)
&& (strict_p
? REGNO_OK_FOR_BASE_P (REGNO (x))
: !DATA_REGNO_P (REGNO (x)) && !FP_REGNO_P (REGNO (x))));
}
/* Return true if X is a legitimate index register. STRICT_P says
whether we need strict checking. */
bool
m68k_legitimate_index_reg_p (rtx x, bool strict_p)
{
if (!strict_p && GET_CODE (x) == SUBREG)
x = SUBREG_REG (x);
return (REG_P (x)
&& (strict_p
? REGNO_OK_FOR_INDEX_P (REGNO (x))
: !FP_REGNO_P (REGNO (x))));
}
/* Return true if X is a legitimate index expression for a (d8,An,Xn) or
(bd,An,Xn) addressing mode. Fill in the INDEX and SCALE fields of
ADDRESS if so. STRICT_P says whether we need strict checking. */
static bool
m68k_decompose_index (rtx x, bool strict_p, struct m68k_address *address)
{
int scale;
/* Check for a scale factor. */
scale = 1;
if ((TARGET_68020 || TARGET_COLDFIRE)
&& GET_CODE (x) == MULT
&& GET_CODE (XEXP (x, 1)) == CONST_INT
&& (INTVAL (XEXP (x, 1)) == 2
|| INTVAL (XEXP (x, 1)) == 4
|| (INTVAL (XEXP (x, 1)) == 8
&& (TARGET_COLDFIRE_FPU || !TARGET_COLDFIRE))))
{
scale = INTVAL (XEXP (x, 1));
x = XEXP (x, 0);
}
/* Check for a word extension. */
if (!TARGET_COLDFIRE
&& GET_CODE (x) == SIGN_EXTEND
&& GET_MODE (XEXP (x, 0)) == HImode)
x = XEXP (x, 0);
if (m68k_legitimate_index_reg_p (x, strict_p))
{
address->scale = scale;
address->index = x;
return true;
}
return false;
}
/* Return true if X is an illegitimate symbolic constant. */
bool
m68k_illegitimate_symbolic_constant_p (rtx x)
{
rtx base, offset;
if (M68K_OFFSETS_MUST_BE_WITHIN_SECTIONS_P)
{
split_const (x, &base, &offset);
if (GET_CODE (base) == SYMBOL_REF
&& !offset_within_block_p (base, INTVAL (offset)))
return true;
}
return false;
}
/* Return true if X is a legitimate constant address that can reach
bytes in the range [X, X + REACH). STRICT_P says whether we need
strict checking. */
static bool
m68k_legitimate_constant_address_p (rtx x, unsigned int reach, bool strict_p)
{
rtx base, offset;
if (!CONSTANT_ADDRESS_P (x))
return false;
if (flag_pic
&& !(strict_p && TARGET_PCREL)
&& symbolic_operand (x, VOIDmode))
return false;
if (M68K_OFFSETS_MUST_BE_WITHIN_SECTIONS_P && reach > 1)
{
split_const (x, &base, &offset);
if (GET_CODE (base) == SYMBOL_REF
&& !offset_within_block_p (base, INTVAL (offset) + reach - 1))
return false;
}
return true;
}
/* Return true if X is a LABEL_REF for a jump table. Assume that unplaced
labels will become jump tables. */
static bool
m68k_jump_table_ref_p (rtx x)
{
if (GET_CODE (x) != LABEL_REF)
return false;
x = XEXP (x, 0);
if (!NEXT_INSN (x) && !PREV_INSN (x))
return true;
x = next_nonnote_insn (x);
return x && JUMP_TABLE_DATA_P (x);
}
/* Return true if X is a legitimate address for values of mode MODE.
STRICT_P says whether strict checking is needed. If the address
is valid, describe its components in *ADDRESS. */
static bool
m68k_decompose_address (enum machine_mode mode, rtx x,
bool strict_p, struct m68k_address *address)
{
unsigned int reach;
memset (address, 0, sizeof (*address));
if (mode == BLKmode)
reach = 1;
else
reach = GET_MODE_SIZE (mode);
/* Check for (An) (mode 2). */
if (m68k_legitimate_base_reg_p (x, strict_p))
{
address->base = x;
return true;
}
/* Check for -(An) and (An)+ (modes 3 and 4). */
if ((GET_CODE (x) == PRE_DEC || GET_CODE (x) == POST_INC)
&& m68k_legitimate_base_reg_p (XEXP (x, 0), strict_p))
{
address->code = GET_CODE (x);
address->base = XEXP (x, 0);
return true;
}
/* Check for (d16,An) (mode 5). */
if (GET_CODE (x) == PLUS
&& GET_CODE (XEXP (x, 1)) == CONST_INT
&& IN_RANGE (INTVAL (XEXP (x, 1)), -0x8000, 0x8000 - reach)
&& m68k_legitimate_base_reg_p (XEXP (x, 0), strict_p))
{
address->base = XEXP (x, 0);
address->offset = XEXP (x, 1);
return true;
}
/* Check for GOT loads. These are (bd,An,Xn) addresses if
TARGET_68020 && flag_pic == 2, otherwise they are (d16,An)
addresses. */
if (flag_pic
&& GET_CODE (x) == PLUS
&& XEXP (x, 0) == pic_offset_table_rtx
&& (GET_CODE (XEXP (x, 1)) == SYMBOL_REF
|| GET_CODE (XEXP (x, 1)) == LABEL_REF))
{
address->base = XEXP (x, 0);
address->offset = XEXP (x, 1);
return true;
}
/* The ColdFire FPU only accepts addressing modes 2-5. */
if (TARGET_COLDFIRE_FPU && GET_MODE_CLASS (mode) == MODE_FLOAT)
return false;
/* Check for (xxx).w and (xxx).l. Also, in the TARGET_PCREL case,
check for (d16,PC) or (bd,PC,Xn) with a suppressed index register.
All these modes are variations of mode 7. */
if (m68k_legitimate_constant_address_p (x, reach, strict_p))
{
address->offset = x;
return true;
}
/* Check for (d8,PC,Xn), a mode 7 form. This case is needed for
tablejumps.
??? do_tablejump creates these addresses before placing the target
label, so we have to assume that unplaced labels are jump table
references. It seems unlikely that we would ever generate indexed
accesses to unplaced labels in other cases. */
if (GET_CODE (x) == PLUS
&& m68k_jump_table_ref_p (XEXP (x, 1))
&& m68k_decompose_index (XEXP (x, 0), strict_p, address))
{
address->offset = XEXP (x, 1);
return true;
}
/* Everything hereafter deals with (d8,An,Xn.SIZE*SCALE) or
(bd,An,Xn.SIZE*SCALE) addresses. */
if (TARGET_68020)
{
/* Check for a nonzero base displacement. */
if (GET_CODE (x) == PLUS
&& m68k_legitimate_constant_address_p (XEXP (x, 1), reach, strict_p))
{
address->offset = XEXP (x, 1);
x = XEXP (x, 0);
}
/* Check for a suppressed index register. */
if (m68k_legitimate_base_reg_p (x, strict_p))
{
address->base = x;
return true;
}
/* Check for a suppressed base register. Do not allow this case
for non-symbolic offsets as it effectively gives gcc freedom
to treat data registers as base registers, which can generate
worse code. */
if (address->offset
&& symbolic_operand (address->offset, VOIDmode)
&& m68k_decompose_index (x, strict_p, address))
return true;
}
else
{
/* Check for a nonzero base displacement. */
if (GET_CODE (x) == PLUS
&& GET_CODE (XEXP (x, 1)) == CONST_INT
&& IN_RANGE (INTVAL (XEXP (x, 1)), -0x80, 0x80 - reach))
{
address->offset = XEXP (x, 1);
x = XEXP (x, 0);
}
}
/* We now expect the sum of a base and an index. */
if (GET_CODE (x) == PLUS)
{
if (m68k_legitimate_base_reg_p (XEXP (x, 0), strict_p)
&& m68k_decompose_index (XEXP (x, 1), strict_p, address))
{
address->base = XEXP (x, 0);
return true;
}
if (m68k_legitimate_base_reg_p (XEXP (x, 1), strict_p)
&& m68k_decompose_index (XEXP (x, 0), strict_p, address))
{
address->base = XEXP (x, 1);
return true;
}
}
return false;
}
/* Return true if X is a legitimate address for values of mode MODE.
STRICT_P says whether strict checking is needed. */
bool
m68k_legitimate_address_p (enum machine_mode mode, rtx x, bool strict_p)
{
struct m68k_address address;
return m68k_decompose_address (mode, x, strict_p, &address);
}
/* Return true if X is a memory, describing its address in ADDRESS if so.
Apply strict checking if called during or after reload. */
static bool
m68k_legitimate_mem_p (rtx x, struct m68k_address *address)
{
return (MEM_P (x)
&& m68k_decompose_address (GET_MODE (x), XEXP (x, 0),
reload_in_progress || reload_completed,
address));
}
/* Return true if X matches the 'Q' constraint. It must be a memory
with a base address and no constant offset or index. */
bool
m68k_matches_q_p (rtx x)
{
struct m68k_address address;
return (m68k_legitimate_mem_p (x, &address)
&& address.code == UNKNOWN
&& address.base
&& !address.offset
&& !address.index);
}
/* Return true if X matches the 'U' constraint. It must be a base address
with a constant offset and no index. */
bool
m68k_matches_u_p (rtx x)
{
struct m68k_address address;
return (m68k_legitimate_mem_p (x, &address)
&& address.code == UNKNOWN
&& address.base
&& address.offset
&& !address.index);
}
/* Legitimize PIC addresses. If the address is already
position-independent, we return ORIG. Newly generated
position-independent addresses go to REG. If we need more
than one register, we lose.
An address is legitimized by making an indirect reference
through the Global Offset Table with the name of the symbol
used as an offset.
The assembler and linker are responsible for placing the
address of the symbol in the GOT. The function prologue
is responsible for initializing a5 to the starting address
of the GOT.
The assembler is also responsible for translating a symbol name
into a constant displacement from the start of the GOT.
A quick example may make things a little clearer:
When not generating PIC code to store the value 12345 into _foo
we would generate the following code:
movel #12345, _foo
When generating PIC two transformations are made. First, the compiler
loads the address of foo into a register. So the first transformation makes:
lea _foo, a0
movel #12345, a0@
The code in movsi will intercept the lea instruction and call this
routine which will transform the instructions into:
movel a5@(_foo:w), a0
movel #12345, a0@
That (in a nutshell) is how *all* symbol and label references are
handled. */
rtx
legitimize_pic_address (rtx orig, enum machine_mode mode ATTRIBUTE_UNUSED,
rtx reg)
{
rtx pic_ref = orig;
/* First handle a simple SYMBOL_REF or LABEL_REF */
if (GET_CODE (orig) == SYMBOL_REF || GET_CODE (orig) == LABEL_REF)
{
gcc_assert (reg);
pic_ref = gen_rtx_MEM (Pmode,
gen_rtx_PLUS (Pmode,
pic_offset_table_rtx, orig));
current_function_uses_pic_offset_table = 1;
MEM_READONLY_P (pic_ref) = 1;
emit_move_insn (reg, pic_ref);
return reg;
}
else if (GET_CODE (orig) == CONST)
{
rtx base;
/* Make sure this has not already been legitimized. */
if (GET_CODE (XEXP (orig, 0)) == PLUS
&& XEXP (XEXP (orig, 0), 0) == pic_offset_table_rtx)
return orig;
gcc_assert (reg);
/* legitimize both operands of the PLUS */
gcc_assert (GET_CODE (XEXP (orig, 0)) == PLUS);
base = legitimize_pic_address (XEXP (XEXP (orig, 0), 0), Pmode, reg);
orig = legitimize_pic_address (XEXP (XEXP (orig, 0), 1), Pmode,
base == reg ? 0 : reg);
if (GET_CODE (orig) == CONST_INT)
return plus_constant (base, INTVAL (orig));
pic_ref = gen_rtx_PLUS (Pmode, base, orig);
/* Likewise, should we set special REG_NOTEs here? */
}
return pic_ref;
}
typedef enum { MOVL, SWAP, NEGW, NOTW, NOTB, MOVQ, MVS, MVZ } CONST_METHOD;
#define USE_MOVQ(i) ((unsigned) ((i) + 128) <= 255)
/* Return the type of move that should be used for integer I. */
static CONST_METHOD
const_method (HOST_WIDE_INT i)
{
unsigned u;
if (USE_MOVQ (i))
return MOVQ;
/* The ColdFire doesn't have byte or word operations. */
/* FIXME: This may not be useful for the m68060 either. */
if (!TARGET_COLDFIRE)
{
/* if -256 < N < 256 but N is not in range for a moveq
N^ff will be, so use moveq #N^ff, dreg; not.b dreg. */
if (USE_MOVQ (i ^ 0xff))
return NOTB;
/* Likewise, try with not.w */
if (USE_MOVQ (i ^ 0xffff))
return NOTW;
/* This is the only value where neg.w is useful */
if (i == -65408)
return NEGW;
}
/* Try also with swap. */
u = i;
if (USE_MOVQ ((u >> 16) | (u << 16)))
return SWAP;
if (TARGET_ISAB)
{
/* Try using MVZ/MVS with an immediate value to load constants. */
if (i >= 0 && i <= 65535)
return MVZ;
if (i >= -32768 && i <= 32767)
return MVS;
}
/* Otherwise, use move.l */
return MOVL;
}
/* Return the cost of moving constant I into a data register. */
static int
const_int_cost (HOST_WIDE_INT i)
{
switch (const_method (i))
{
case MOVQ:
/* Constants between -128 and 127 are cheap due to moveq. */
return 0;
case MVZ:
case MVS:
case NOTB:
case NOTW:
case NEGW:
case SWAP:
/* Constants easily generated by moveq + not.b/not.w/neg.w/swap. */
return 1;
case MOVL:
return 2;
default:
gcc_unreachable ();
}
}
static bool
m68k_rtx_costs (rtx x, int code, int outer_code, int *total)
{
switch (code)
{
case CONST_INT:
/* Constant zero is super cheap due to clr instruction. */
if (x == const0_rtx)
*total = 0;
else
*total = const_int_cost (INTVAL (x));
return true;
case CONST:
case LABEL_REF:
case SYMBOL_REF:
*total = 3;
return true;
case CONST_DOUBLE:
/* Make 0.0 cheaper than other floating constants to
encourage creating tstsf and tstdf insns. */
if (outer_code == COMPARE
&& (x == CONST0_RTX (SFmode) || x == CONST0_RTX (DFmode)))
*total = 4;
else
*total = 5;
return true;
/* These are vaguely right for a 68020. */
/* The costs for long multiply have been adjusted to work properly
in synth_mult on the 68020, relative to an average of the time
for add and the time for shift, taking away a little more because
sometimes move insns are needed. */
/* div?.w is relatively cheaper on 68000 counted in COSTS_N_INSNS
terms. */
#define MULL_COST \
(TUNE_68060 ? 2 \
: TUNE_68040 ? 5 \
: TUNE_CFV2 ? 10 \
: TARGET_COLDFIRE ? 3 : 13)
#define MULW_COST \
(TUNE_68060 ? 2 \
: TUNE_68040 ? 3 \
: TUNE_68000_10 || TUNE_CFV2 ? 5 \
: TARGET_COLDFIRE ? 2 : 8)
#define DIVW_COST \
(TARGET_CF_HWDIV ? 11 \
: TUNE_68000_10 || TARGET_COLDFIRE ? 12 : 27)
case PLUS:
/* An lea costs about three times as much as a simple add. */
if (GET_MODE (x) == SImode
&& GET_CODE (XEXP (x, 1)) == REG
&& GET_CODE (XEXP (x, 0)) == MULT
&& GET_CODE (XEXP (XEXP (x, 0), 0)) == REG
&& GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
&& (INTVAL (XEXP (XEXP (x, 0), 1)) == 2
|| INTVAL (XEXP (XEXP (x, 0), 1)) == 4
|| INTVAL (XEXP (XEXP (x, 0), 1)) == 8))
{
/* lea an@(dx:l:i),am */
*total = COSTS_N_INSNS (TARGET_COLDFIRE ? 2 : 3);
return true;
}
return false;
case ASHIFT:
case ASHIFTRT:
case LSHIFTRT:
if (TUNE_68060)
{
*total = COSTS_N_INSNS(1);
return true;
}
if (TUNE_68000_10)
{
if (GET_CODE (XEXP (x, 1)) == CONST_INT)
{
if (INTVAL (XEXP (x, 1)) < 16)
*total = COSTS_N_INSNS (2) + INTVAL (XEXP (x, 1)) / 2;
else
/* We're using clrw + swap for these cases. */
*total = COSTS_N_INSNS (4) + (INTVAL (XEXP (x, 1)) - 16) / 2;
}
else
*total = COSTS_N_INSNS (10); /* Worst case. */
return true;
}
/* A shift by a big integer takes an extra instruction. */
if (GET_CODE (XEXP (x, 1)) == CONST_INT
&& (INTVAL (XEXP (x, 1)) == 16))
{
*total = COSTS_N_INSNS (2); /* clrw;swap */
return true;
}
if (GET_CODE (XEXP (x, 1)) == CONST_INT
&& !(INTVAL (XEXP (x, 1)) > 0
&& INTVAL (XEXP (x, 1)) <= 8))
{
*total = COSTS_N_INSNS (TARGET_COLDFIRE ? 1 : 3); /* lsr #i,dn */
return true;
}
return false;
case MULT:
if ((GET_CODE (XEXP (x, 0)) == ZERO_EXTEND
|| GET_CODE (XEXP (x, 0)) == SIGN_EXTEND)
&& GET_MODE (x) == SImode)
*total = COSTS_N_INSNS (MULW_COST);
else if (GET_MODE (x) == QImode || GET_MODE (x) == HImode)
*total = COSTS_N_INSNS (MULW_COST);
else
*total = COSTS_N_INSNS (MULL_COST);
return true;
case DIV:
case UDIV:
case MOD:
case UMOD:
if (GET_MODE (x) == QImode || GET_MODE (x) == HImode)
*total = COSTS_N_INSNS (DIVW_COST); /* div.w */
else if (TARGET_CF_HWDIV)
*total = COSTS_N_INSNS (18);
else
*total = COSTS_N_INSNS (43); /* div.l */
return true;
default:
return false;
}
}
/* Return an instruction to move CONST_INT OPERANDS[1] into data register
OPERANDS[0]. */
static const char *
output_move_const_into_data_reg (rtx *operands)
{
HOST_WIDE_INT i;
i = INTVAL (operands[1]);
switch (const_method (i))
{
case MVZ:
return "mvzw %1,%0";
case MVS:
return "mvsw %1,%0";
case MOVQ:
return "moveq %1,%0";
case NOTB:
CC_STATUS_INIT;
operands[1] = GEN_INT (i ^ 0xff);
return "moveq %1,%0\n\tnot%.b %0";
case NOTW:
CC_STATUS_INIT;
operands[1] = GEN_INT (i ^ 0xffff);
return "moveq %1,%0\n\tnot%.w %0";
case NEGW:
CC_STATUS_INIT;
return "moveq #-128,%0\n\tneg%.w %0";
case SWAP:
{
unsigned u = i;
operands[1] = GEN_INT ((u << 16) | (u >> 16));
return "moveq %1,%0\n\tswap %0";
}
case MOVL:
return "move%.l %1,%0";
default:
gcc_unreachable ();
}
}
/* Return true if I can be handled by ISA B's mov3q instruction. */
bool
valid_mov3q_const (HOST_WIDE_INT i)
{
return TARGET_ISAB && (i == -1 || IN_RANGE (i, 1, 7));
}
/* Return an instruction to move CONST_INT OPERANDS[1] into OPERANDS[0].
I is the value of OPERANDS[1]. */
static const char *
output_move_simode_const (rtx *operands)
{
rtx dest;
HOST_WIDE_INT src;
dest = operands[0];
src = INTVAL (operands[1]);
if (src == 0
&& (DATA_REG_P (dest) || MEM_P (dest))
/* clr insns on 68000 read before writing. */
&& ((TARGET_68010 || TARGET_COLDFIRE)
|| !(MEM_P (dest) && MEM_VOLATILE_P (dest))))
return "clr%.l %0";
else if (GET_MODE (dest) == SImode && valid_mov3q_const (src))
return "mov3q%.l %1,%0";
else if (src == 0 && ADDRESS_REG_P (dest))
return "sub%.l %0,%0";
else if (DATA_REG_P (dest))
return output_move_const_into_data_reg (operands);
else if (ADDRESS_REG_P (dest) && IN_RANGE (src, -0x8000, 0x7fff))
{
if (valid_mov3q_const (src))
return "mov3q%.l %1,%0";
return "move%.w %1,%0";
}
else if (MEM_P (dest)
&& GET_CODE (XEXP (dest, 0)) == PRE_DEC
&& REGNO (XEXP (XEXP (dest, 0), 0)) == STACK_POINTER_REGNUM
&& IN_RANGE (src, -0x8000, 0x7fff))
{
if (valid_mov3q_const (src))
return "mov3q%.l %1,%-";
return "pea %a1";
}
return "move%.l %1,%0";
}
const char *
output_move_simode (rtx *operands)
{
if (GET_CODE (operands[1]) == CONST_INT)
return output_move_simode_const (operands);
else if ((GET_CODE (operands[1]) == SYMBOL_REF
|| GET_CODE (operands[1]) == CONST)
&& push_operand (operands[0], SImode))
return "pea %a1";
else if ((GET_CODE (operands[1]) == SYMBOL_REF
|| GET_CODE (operands[1]) == CONST)
&& ADDRESS_REG_P (operands[0]))
return "lea %a1,%0";
return "move%.l %1,%0";
}
const char *
output_move_himode (rtx *operands)
{
if (GET_CODE (operands[1]) == CONST_INT)
{
if (operands[1] == const0_rtx
&& (DATA_REG_P (operands[0])
|| GET_CODE (operands[0]) == MEM)
/* clr insns on 68000 read before writing. */
&& ((TARGET_68010 || TARGET_COLDFIRE)
|| !(GET_CODE (operands[0]) == MEM
&& MEM_VOLATILE_P (operands[0]))))
return "clr%.w %0";
else if (operands[1] == const0_rtx
&& ADDRESS_REG_P (operands[0]))
return "sub%.l %0,%0";
else if (DATA_REG_P (operands[0])
&& INTVAL (operands[1]) < 128
&& INTVAL (operands[1]) >= -128)
return "moveq %1,%0";
else if (INTVAL (operands[1]) < 0x8000
&& INTVAL (operands[1]) >= -0x8000)
return "move%.w %1,%0";
}
else if (CONSTANT_P (operands[1]))
return "move%.l %1,%0";
/* Recognize the insn before a tablejump, one that refers
to a table of offsets. Such an insn will need to refer
to a label on the insn. So output one. Use the label-number
of the table of offsets to generate this label. This code,
and similar code below, assumes that there will be at most one
reference to each table. */
if (GET_CODE (operands[1]) == MEM
&& GET_CODE (XEXP (operands[1], 0)) == PLUS
&& GET_CODE (XEXP (XEXP (operands[1], 0), 1)) == LABEL_REF
&& GET_CODE (XEXP (XEXP (operands[1], 0), 0)) != PLUS)
{
rtx labelref = XEXP (XEXP (operands[1], 0), 1);
if (MOTOROLA)
asm_fprintf (asm_out_file, "\t.set %LLI%d,.+2\n",
CODE_LABEL_NUMBER (XEXP (labelref, 0)));
else
(*targetm.asm_out.internal_label) (asm_out_file, "LI",
CODE_LABEL_NUMBER (XEXP (labelref, 0)));
}
return "move%.w %1,%0";
}
const char *
output_move_qimode (rtx *operands)
{
/* 68k family always modifies the stack pointer by at least 2, even for
byte pushes. The 5200 (ColdFire) does not do this. */
/* This case is generated by pushqi1 pattern now. */
gcc_assert (!(GET_CODE (operands[0]) == MEM
&& GET_CODE (XEXP (operands[0], 0)) == PRE_DEC
&& XEXP (XEXP (operands[0], 0), 0) == stack_pointer_rtx
&& ! ADDRESS_REG_P (operands[1])
&& ! TARGET_COLDFIRE));
/* clr and st insns on 68000 read before writing. */
if (!ADDRESS_REG_P (operands[0])
&& ((TARGET_68010 || TARGET_COLDFIRE)
|| !(GET_CODE (operands[0]) == MEM && MEM_VOLATILE_P (operands[0]))))
{
if (operands[1] == const0_rtx)
return "clr%.b %0";
if ((!TARGET_COLDFIRE || DATA_REG_P (operands[0]))
&& GET_CODE (operands[1]) == CONST_INT
&& (INTVAL (operands[1]) & 255) == 255)
{
CC_STATUS_INIT;
return "st %0";
}
}
if (GET_CODE (operands[1]) == CONST_INT
&& DATA_REG_P (operands[0])
&& INTVAL (operands[1]) < 128
&& INTVAL (operands[1]) >= -128)
return "moveq %1,%0";
if (operands[1] == const0_rtx && ADDRESS_REG_P (operands[0]))
return "sub%.l %0,%0";
if (GET_CODE (operands[1]) != CONST_INT && CONSTANT_P (operands[1]))
return "move%.l %1,%0";
/* 68k family (including the 5200 ColdFire) does not support byte moves to
from address registers. */
if (ADDRESS_REG_P (operands[0]) || ADDRESS_REG_P (operands[1]))
return "move%.w %1,%0";
return "move%.b %1,%0";
}
const char *
output_move_stricthi (rtx *operands)
{
if (operands[1] == const0_rtx
/* clr insns on 68000 read before writing. */
&& ((TARGET_68010 || TARGET_COLDFIRE)
|| !(GET_CODE (operands[0]) == MEM && MEM_VOLATILE_P (operands[0]))))
return "clr%.w %0";
return "move%.w %1,%0";
}
const char *
output_move_strictqi (rtx *operands)
{
if (operands[1] == const0_rtx
/* clr insns on 68000 read before writing. */
&& ((TARGET_68010 || TARGET_COLDFIRE)
|| !(GET_CODE (operands[0]) == MEM && MEM_VOLATILE_P (operands[0]))))
return "clr%.b %0";
return "move%.b %1,%0";
}
/* Return the best assembler insn template
for moving operands[1] into operands[0] as a fullword. */
static const char *
singlemove_string (rtx *operands)
{
if (GET_CODE (operands[1]) == CONST_INT)
return output_move_simode_const (operands);
return "move%.l %1,%0";
}
/* Output assembler code to perform a doubleword move insn
with operands OPERANDS. */
const char *
output_move_double (rtx *operands)
{
enum
{
REGOP, OFFSOP, MEMOP, PUSHOP, POPOP, CNSTOP, RNDOP
} optype0, optype1;
rtx latehalf[2];
rtx middlehalf[2];
rtx xops[2];
rtx addreg0 = 0, addreg1 = 0;
int dest_overlapped_low = 0;
int size = GET_MODE_SIZE (GET_MODE (operands[0]));
middlehalf[0] = 0;
middlehalf[1] = 0;
/* First classify both operands. */
if (REG_P (operands[0]))
optype0 = REGOP;
else if (offsettable_memref_p (operands[0]))
optype0 = OFFSOP;
else if (GET_CODE (XEXP (operands[0], 0)) == POST_INC)
optype0 = POPOP;
else if (GET_CODE (XEXP (operands[0], 0)) == PRE_DEC)
optype0 = PUSHOP;
else if (GET_CODE (operands[0]) == MEM)
optype0 = MEMOP;
else
optype0 = RNDOP;
if (REG_P (operands[1]))
optype1 = REGOP;
else if (CONSTANT_P (operands[1]))
optype1 = CNSTOP;
else if (offsettable_memref_p (operands[1]))
optype1 = OFFSOP;
else if (GET_CODE (XEXP (operands[1], 0)) == POST_INC)
optype1 = POPOP;
else if (GET_CODE (XEXP (operands[1], 0)) == PRE_DEC)
optype1 = PUSHOP;
else if (GET_CODE (operands[1]) == MEM)
optype1 = MEMOP;
else
optype1 = RNDOP;
/* Check for the cases that the operand constraints are not supposed
to allow to happen. Generating code for these cases is
painful. */
gcc_assert (optype0 != RNDOP && optype1 != RNDOP);
/* If one operand is decrementing and one is incrementing
decrement the former register explicitly
and change that operand into ordinary indexing. */
if (optype0 == PUSHOP && optype1 == POPOP)
{
operands[0] = XEXP (XEXP (operands[0], 0), 0);
if (size == 12)
output_asm_insn ("sub%.l #12,%0", operands);
else
output_asm_insn ("subq%.l #8,%0", operands);
if (GET_MODE (operands[1]) == XFmode)
operands[0] = gen_rtx_MEM (XFmode, operands[0]);
else if (GET_MODE (operands[0]) == DFmode)
operands[0] = gen_rtx_MEM (DFmode, operands[0]);
else
operands[0] = gen_rtx_MEM (DImode, operands[0]);
optype0 = OFFSOP;
}
if (optype0 == POPOP && optype1 == PUSHOP)
{
operands[1] = XEXP (XEXP (operands[1], 0), 0);
if (size == 12)
output_asm_insn ("sub%.l #12,%1", operands);
else
output_asm_insn ("subq%.l #8,%1", operands);
if (GET_MODE (operands[1]) == XFmode)
operands[1] = gen_rtx_MEM (XFmode, operands[1]);
else if (GET_MODE (operands[1]) == DFmode)
operands[1] = gen_rtx_MEM (DFmode, operands[1]);
else
operands[1] = gen_rtx_MEM (DImode, operands[1]);
optype1 = OFFSOP;
}
/* If an operand is an unoffsettable memory ref, find a register
we can increment temporarily to make it refer to the second word. */
if (optype0 == MEMOP)
addreg0 = find_addr_reg (XEXP (operands[0], 0));
if (optype1 == MEMOP)
addreg1 = find_addr_reg (XEXP (operands[1], 0));
/* Ok, we can do one word at a time.
Normally we do the low-numbered word first,
but if either operand is autodecrementing then we
do the high-numbered word first.
In either case, set up in LATEHALF the operands to use
for the high-numbered word and in some cases alter the
operands in OPERANDS to be suitable for the low-numbered word. */
if (size == 12)
{
if (optype0 == REGOP)
{
latehalf[0] = gen_rtx_REG (SImode, REGNO (operands[0]) + 2);
middlehalf[0] = gen_rtx_REG (SImode, REGNO (operands[0]) + 1);
}
else if (optype0 == OFFSOP)
{
middlehalf[0] = adjust_address (operands[0], SImode, 4);
latehalf[0] = adjust_address (operands[0], SImode, size - 4);
}
else
{
middlehalf[0] = operands[0];
latehalf[0] = operands[0];
}
if (optype1 == REGOP)
{
latehalf[1] = gen_rtx_REG (SImode, REGNO (operands[1]) + 2);
middlehalf[1] = gen_rtx_REG (SImode, REGNO (operands[1]) + 1);
}
else if (optype1 == OFFSOP)
{
middlehalf[1] = adjust_address (operands[1], SImode, 4);
latehalf[1] = adjust_address (operands[1], SImode, size - 4);
}
else if (optype1 == CNSTOP)
{
if (GET_CODE (operands[1]) == CONST_DOUBLE)
{
REAL_VALUE_TYPE r;
long l[3];
REAL_VALUE_FROM_CONST_DOUBLE (r, operands[1]);
REAL_VALUE_TO_TARGET_LONG_DOUBLE (r, l);
operands[1] = GEN_INT (l[0]);
middlehalf[1] = GEN_INT (l[1]);
latehalf[1] = GEN_INT (l[2]);
}
else
{
/* No non-CONST_DOUBLE constant should ever appear
here. */
gcc_assert (!CONSTANT_P (operands[1]));
}
}
else
{
middlehalf[1] = operands[1];
latehalf[1] = operands[1];
}
}
else
/* size is not 12: */
{
if (optype0 == REGOP)
latehalf[0] = gen_rtx_REG (SImode, REGNO (operands[0]) + 1);
else if (optype0 == OFFSOP)
latehalf[0] = adjust_address (operands[0], SImode, size - 4);
else
latehalf[0] = operands[0];
if (optype1 == REGOP)
latehalf[1] = gen_rtx_REG (SImode, REGNO (operands[1]) + 1);
else if (optype1 == OFFSOP)
latehalf[1] = adjust_address (operands[1], SImode, size - 4);
else if (optype1 == CNSTOP)
split_double (operands[1], &operands[1], &latehalf[1]);
else
latehalf[1] = operands[1];
}
/* If insn is effectively movd N(sp),-(sp) then we will do the
high word first. We should use the adjusted operand 1 (which is N+4(sp))
for the low word as well, to compensate for the first decrement of sp. */
if (optype0 == PUSHOP
&& REGNO (XEXP (XEXP (operands[0], 0), 0)) == STACK_POINTER_REGNUM
&& reg_overlap_mentioned_p (stack_pointer_rtx, operands[1]))
operands[1] = middlehalf[1] = latehalf[1];
/* For (set (reg:DI N) (mem:DI ... (reg:SI N) ...)),
if the upper part of reg N does not appear in the MEM, arrange to
emit the move late-half first. Otherwise, compute the MEM address
into the upper part of N and use that as a pointer to the memory
operand. */
if (optype0 == REGOP
&& (optype1 == OFFSOP || optype1 == MEMOP))
{
rtx testlow = gen_rtx_REG (SImode, REGNO (operands[0]));
if (reg_overlap_mentioned_p (testlow, XEXP (operands[1], 0))
&& reg_overlap_mentioned_p (latehalf[0], XEXP (operands[1], 0)))
{
/* If both halves of dest are used in the src memory address,
compute the address into latehalf of dest.
Note that this can't happen if the dest is two data regs. */
compadr:
xops[0] = latehalf[0];
xops[1] = XEXP (operands[1], 0);
output_asm_insn ("lea %a1,%0", xops);
if (GET_MODE (operands[1]) == XFmode )
{
operands[1] = gen_rtx_MEM (XFmode, latehalf[0]);
middlehalf[1] = adjust_address (operands[1], DImode, size - 8);
latehalf[1] = adjust_address (operands[1], DImode, size - 4);
}
else
{
operands[1] = gen_rtx_MEM (DImode, latehalf[0]);
latehalf[1] = adjust_address (operands[1], DImode, size - 4);
}
}
else if (size == 12
&& reg_overlap_mentioned_p (middlehalf[0],
XEXP (operands[1], 0)))
{
/* Check for two regs used by both source and dest.
Note that this can't happen if the dest is all data regs.
It can happen if the dest is d6, d7, a0.
But in that case, latehalf is an addr reg, so
the code at compadr does ok. */
if (reg_overlap_mentioned_p (testlow, XEXP (operands[1], 0))
|| reg_overlap_mentioned_p (latehalf[0], XEXP (operands[1], 0)))
goto compadr;
/* JRV says this can't happen: */
gcc_assert (!addreg0 && !addreg1);
/* Only the middle reg conflicts; simply put it last. */
output_asm_insn (singlemove_string (operands), operands);
output_asm_insn (singlemove_string (latehalf), latehalf);
output_asm_insn (singlemove_string (middlehalf), middlehalf);
return "";
}
else if (reg_overlap_mentioned_p (testlow, XEXP (operands[1], 0)))
/* If the low half of dest is mentioned in the source memory
address, the arrange to emit the move late half first. */
dest_overlapped_low = 1;
}
/* If one or both operands autodecrementing,
do the two words, high-numbered first. */
/* Likewise, the first move would clobber the source of the second one,
do them in the other order. This happens only for registers;
such overlap can't happen in memory unless the user explicitly
sets it up, and that is an undefined circumstance. */
if (optype0 == PUSHOP || optype1 == PUSHOP
|| (optype0 == REGOP && optype1 == REGOP
&& ((middlehalf[1] && REGNO (operands[0]) == REGNO (middlehalf[1]))
|| REGNO (operands[0]) == REGNO (latehalf[1])))
|| dest_overlapped_low)
{
/* Make any unoffsettable addresses point at high-numbered word. */
if (addreg0)
{
if (size == 12)
output_asm_insn ("addq%.l #8,%0", &addreg0);
else
output_asm_insn ("addq%.l #4,%0", &addreg0);
}
if (addreg1)
{
if (size == 12)
output_asm_insn ("addq%.l #8,%0", &addreg1);
else
output_asm_insn ("addq%.l #4,%0", &addreg1);
}
/* Do that word. */
output_asm_insn (singlemove_string (latehalf), latehalf);
/* Undo the adds we just did. */
if (addreg0)
output_asm_insn ("subq%.l #4,%0", &addreg0);
if (addreg1)
output_asm_insn ("subq%.l #4,%0", &addreg1);
if (size == 12)
{
output_asm_insn (singlemove_string (middlehalf), middlehalf);
if (addreg0)
output_asm_insn ("subq%.l #4,%0", &addreg0);
if (addreg1)
output_asm_insn ("subq%.l #4,%0", &addreg1);
}
/* Do low-numbered word. */
return singlemove_string (operands);
}
/* Normal case: do the two words, low-numbered first. */
output_asm_insn (singlemove_string (operands), operands);
/* Do the middle one of the three words for long double */
if (size == 12)
{
if (addreg0)
output_asm_insn ("addq%.l #4,%0", &addreg0);
if (addreg1)
output_asm_insn ("addq%.l #4,%0", &addreg1);
output_asm_insn (singlemove_string (middlehalf), middlehalf);
}
/* Make any unoffsettable addresses point at high-numbered word. */
if (addreg0)
output_asm_insn ("addq%.l #4,%0", &addreg0);
if (addreg1)
output_asm_insn ("addq%.l #4,%0", &addreg1);
/* Do that word. */
output_asm_insn (singlemove_string (latehalf), latehalf);
/* Undo the adds we just did. */
if (addreg0)
{
if (size == 12)
output_asm_insn ("subq%.l #8,%0", &addreg0);
else
output_asm_insn ("subq%.l #4,%0", &addreg0);
}
if (addreg1)
{
if (size == 12)
output_asm_insn ("subq%.l #8,%0", &addreg1);
else
output_asm_insn ("subq%.l #4,%0", &addreg1);
}
return "";
}
/* Ensure mode of ORIG, a REG rtx, is MODE. Returns either ORIG or a
new rtx with the correct mode. */
static rtx
force_mode (enum machine_mode mode, rtx orig)
{
if (mode == GET_MODE (orig))
return orig;
if (REGNO (orig) >= FIRST_PSEUDO_REGISTER)
abort ();
return gen_rtx_REG (mode, REGNO (orig));
}
static int
fp_reg_operand (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
{
return reg_renumber && FP_REG_P (op);
}
/* Emit insns to move operands[1] into operands[0].
Return 1 if we have written out everything that needs to be done to
do the move. Otherwise, return 0 and the caller will emit the move
normally.
Note SCRATCH_REG may not be in the proper mode depending on how it
will be used. This routine is responsible for creating a new copy
of SCRATCH_REG in the proper mode. */
int
emit_move_sequence (rtx *operands, enum machine_mode mode, rtx scratch_reg)
{
register rtx operand0 = operands[0];
register rtx operand1 = operands[1];
register rtx tem;
if (scratch_reg
&& reload_in_progress && GET_CODE (operand0) == REG
&& REGNO (operand0) >= FIRST_PSEUDO_REGISTER)
operand0 = reg_equiv_mem[REGNO (operand0)];
else if (scratch_reg
&& reload_in_progress && GET_CODE (operand0) == SUBREG
&& GET_CODE (SUBREG_REG (operand0)) == REG
&& REGNO (SUBREG_REG (operand0)) >= FIRST_PSEUDO_REGISTER)
{
/* We must not alter SUBREG_BYTE (operand0) since that would confuse
the code which tracks sets/uses for delete_output_reload. */
rtx temp = gen_rtx_SUBREG (GET_MODE (operand0),
reg_equiv_mem [REGNO (SUBREG_REG (operand0))],
SUBREG_BYTE (operand0));
operand0 = alter_subreg (&temp);
}
if (scratch_reg
&& reload_in_progress && GET_CODE (operand1) == REG
&& REGNO (operand1) >= FIRST_PSEUDO_REGISTER)
operand1 = reg_equiv_mem[REGNO (operand1)];
else if (scratch_reg
&& reload_in_progress && GET_CODE (operand1) == SUBREG
&& GET_CODE (SUBREG_REG (operand1)) == REG
&& REGNO (SUBREG_REG (operand1)) >= FIRST_PSEUDO_REGISTER)
{
/* We must not alter SUBREG_BYTE (operand0) since that would confuse
the code which tracks sets/uses for delete_output_reload. */
rtx temp = gen_rtx_SUBREG (GET_MODE (operand1),
reg_equiv_mem [REGNO (SUBREG_REG (operand1))],
SUBREG_BYTE (operand1));
operand1 = alter_subreg (&temp);
}
if (scratch_reg && reload_in_progress && GET_CODE (operand0) == MEM
&& ((tem = find_replacement (&XEXP (operand0, 0)))
!= XEXP (operand0, 0)))
operand0 = gen_rtx_MEM (GET_MODE (operand0), tem);
if (scratch_reg && reload_in_progress && GET_CODE (operand1) == MEM
&& ((tem = find_replacement (&XEXP (operand1, 0)))
!= XEXP (operand1, 0)))
operand1 = gen_rtx_MEM (GET_MODE (operand1), tem);
/* Handle secondary reloads for loads/stores of FP registers where
the address is symbolic by using the scratch register */
if (fp_reg_operand (operand0, mode)
&& ((GET_CODE (operand1) == MEM
&& ! memory_address_p (DFmode, XEXP (operand1, 0)))
|| ((GET_CODE (operand1) == SUBREG
&& GET_CODE (XEXP (operand1, 0)) == MEM
&& !memory_address_p (DFmode, XEXP (XEXP (operand1, 0), 0)))))
&& scratch_reg)
{
if (GET_CODE (operand1) == SUBREG)
operand1 = XEXP (operand1, 0);
/* SCRATCH_REG will hold an address. We want
it in SImode regardless of what mode it was originally given
to us. */
scratch_reg = force_mode (SImode, scratch_reg);
/* D might not fit in 14 bits either; for such cases load D into
scratch reg. */
if (!memory_address_p (Pmode, XEXP (operand1, 0)))
{
emit_move_insn (scratch_reg, XEXP (XEXP (operand1, 0), 1));
emit_move_insn (scratch_reg, gen_rtx_fmt_ee (GET_CODE (XEXP (operand1, 0)),
Pmode,
XEXP (XEXP (operand1, 0), 0),
scratch_reg));
}
else
emit_move_insn (scratch_reg, XEXP (operand1, 0));
emit_insn (gen_rtx_SET (VOIDmode, operand0,
gen_rtx_MEM (mode, scratch_reg)));
return 1;
}
else if (fp_reg_operand (operand1, mode)
&& ((GET_CODE (operand0) == MEM
&& ! memory_address_p (DFmode, XEXP (operand0, 0)))
|| ((GET_CODE (operand0) == SUBREG)
&& GET_CODE (XEXP (operand0, 0)) == MEM
&& !memory_address_p (DFmode, XEXP (XEXP (operand0, 0), 0))))
&& scratch_reg)
{
if (GET_CODE (operand0) == SUBREG)
operand0 = XEXP (operand0, 0);
/* SCRATCH_REG will hold an address and maybe the actual data. We want
it in SIMODE regardless of what mode it was originally given
to us. */
scratch_reg = force_mode (SImode, scratch_reg);
/* D might not fit in 14 bits either; for such cases load D into
scratch reg. */
if (!memory_address_p (Pmode, XEXP (operand0, 0)))
{
emit_move_insn (scratch_reg, XEXP (XEXP (operand0, 0), 1));
emit_move_insn (scratch_reg, gen_rtx_fmt_ee (GET_CODE (XEXP (operand0,
0)),
Pmode,
XEXP (XEXP (operand0, 0),
0),
scratch_reg));
}
else
emit_move_insn (scratch_reg, XEXP (operand0, 0));
emit_insn (gen_rtx_SET (VOIDmode, gen_rtx_MEM (mode, scratch_reg),
operand1));
return 1;
}
/* Handle secondary reloads for loads of FP registers from constant
expressions by forcing the constant into memory.
use scratch_reg to hold the address of the memory location.
The proper fix is to change PREFERRED_RELOAD_CLASS to return
NO_REGS when presented with a const_int and an register class
containing only FP registers. Doing so unfortunately creates
more problems than it solves. Fix this for 2.5. */
else if (fp_reg_operand (operand0, mode)
&& CONSTANT_P (operand1)
&& scratch_reg)
{
rtx xoperands[2];
/* SCRATCH_REG will hold an address and maybe the actual data. We want
it in SIMODE regardless of what mode it was originally given
to us. */
scratch_reg = force_mode (SImode, scratch_reg);
/* Force the constant into memory and put the address of the
memory location into scratch_reg. */
xoperands[0] = scratch_reg;
xoperands[1] = XEXP (force_const_mem (mode, operand1), 0);
emit_insn (gen_rtx_SET (mode, scratch_reg, xoperands[1]));
/* Now load the destination register. */
emit_insn (gen_rtx_SET (mode, operand0,
gen_rtx_MEM (mode, scratch_reg)));
return 1;
}
/* Now have insn-emit do whatever it normally does. */
return 0;
}
/* Split one or more DImode RTL references into pairs of SImode
references. The RTL can be REG, offsettable MEM, integer constant, or
CONST_DOUBLE. "operands" is a pointer to an array of DImode RTL to
split and "num" is its length. lo_half and hi_half are output arrays
that parallel "operands". */
void
split_di (rtx operands[], int num, rtx lo_half[], rtx hi_half[])
{
while (num--)
{
rtx op = operands[num];
/* simplify_subreg refuses to split volatile memory addresses,
but we still have to handle it. */
if (GET_CODE (op) == MEM)
{
lo_half[num] = adjust_address (op, SImode, 4);
hi_half[num] = adjust_address (op, SImode, 0);
}
else
{
lo_half[num] = simplify_gen_subreg (SImode, op,
GET_MODE (op) == VOIDmode
? DImode : GET_MODE (op), 4);
hi_half[num] = simplify_gen_subreg (SImode, op,
GET_MODE (op) == VOIDmode
? DImode : GET_MODE (op), 0);
}
}
}
/* Split X into a base and a constant offset, storing them in *BASE
and *OFFSET respectively. */
static void
m68k_split_offset (rtx x, rtx *base, HOST_WIDE_INT *offset)
{
*offset = 0;
if (GET_CODE (x) == PLUS && GET_CODE (XEXP (x, 1)) == CONST_INT)
{
*offset += INTVAL (XEXP (x, 1));
x = XEXP (x, 0);
}
*base = x;
}
/* Return true if PATTERN is a PARALLEL suitable for a movem or fmovem
instruction. STORE_P says whether the move is a load or store.
If the instruction uses post-increment or pre-decrement addressing,
AUTOMOD_BASE is the base register and AUTOMOD_OFFSET is the total
adjustment. This adjustment will be made by the first element of
PARALLEL, with the loads or stores starting at element 1. If the
instruction does not use post-increment or pre-decrement addressing,
AUTOMOD_BASE is null, AUTOMOD_OFFSET is 0, and the loads or stores
start at element 0. */
bool
m68k_movem_pattern_p (rtx pattern, rtx automod_base,
HOST_WIDE_INT automod_offset, bool store_p)
{
rtx base, mem_base, set, mem, reg, last_reg;
HOST_WIDE_INT offset, mem_offset;
int i, first, len;
enum reg_class rclass;
len = XVECLEN (pattern, 0);
first = (automod_base != NULL);
if (automod_base)
{
/* Stores must be pre-decrement and loads must be post-increment. */
if (store_p != (automod_offset < 0))
return false;
/* Work out the base and offset for lowest memory location. */
base = automod_base;
offset = (automod_offset < 0 ? automod_offset : 0);
}
else
{
/* Allow any valid base and offset in the first access. */
base = NULL;
offset = 0;
}
last_reg = NULL;
rclass = NO_REGS;
for (i = first; i < len; i++)
{
/* We need a plain SET. */
set = XVECEXP (pattern, 0, i);
if (GET_CODE (set) != SET)
return false;
/* Check that we have a memory location... */
mem = XEXP (set, !store_p);
if (!MEM_P (mem) || !memory_operand (mem, VOIDmode))
return false;
/* ...with the right address. */
if (base == NULL)
{
m68k_split_offset (XEXP (mem, 0), &base, &offset);
/* The ColdFire instruction only allows (An) and (d16,An) modes.
There are no mode restrictions for 680x0 besides the
automodification rules enforced above. */
if (TARGET_COLDFIRE
&& !m68k_legitimate_base_reg_p (base, reload_completed))
return false;
}
else
{
m68k_split_offset (XEXP (mem, 0), &mem_base, &mem_offset);
if (!rtx_equal_p (base, mem_base) || offset != mem_offset)
return false;
}
/* Check that we have a register of the required mode and class. */
reg = XEXP (set, store_p);
if (!REG_P (reg)
|| !HARD_REGISTER_P (reg)
|| GET_MODE (reg) != reg_raw_mode[REGNO (reg)])
return false;
if (last_reg)
{
/* The register must belong to RCLASS and have a higher number
than the register in the previous SET. */
if (!TEST_HARD_REG_BIT (reg_class_contents[rclass], REGNO (reg))
|| REGNO (last_reg) >= REGNO (reg))
return false;
}
else
{
/* Work out which register class we need. */
if (INT_REGNO_P (REGNO (reg)))
rclass = GENERAL_REGS;
else if (FP_REGNO_P (REGNO (reg)))
rclass = FP_REGS;
else
return false;
}
last_reg = reg;
offset += GET_MODE_SIZE (GET_MODE (reg));
}
/* If we have an automodification, check whether the final offset is OK. */
if (automod_base && offset != (automod_offset < 0 ? 0 : automod_offset))
return false;
/* Reject unprofitable cases. */
if (len < first + (rclass == FP_REGS ? MIN_FMOVEM_REGS : MIN_MOVEM_REGS))
return false;
return true;
}
/* Return the assembly code template for a movem or fmovem instruction
whose pattern is given by PATTERN. Store the template's operands
in OPERANDS.
If the instruction uses post-increment or pre-decrement addressing,
AUTOMOD_OFFSET is the total adjustment, otherwise it is 0. STORE_P
is true if this is a store instruction. */
const char *
m68k_output_movem (rtx *operands, rtx pattern,
HOST_WIDE_INT automod_offset, bool store_p)
{
unsigned int mask;
int i, first;
gcc_assert (GET_CODE (pattern) == PARALLEL);
mask = 0;
first = (automod_offset != 0);
for (i = first; i < XVECLEN (pattern, 0); i++)
{
/* When using movem with pre-decrement addressing, register X + D0_REG
is controlled by bit 15 - X. For all other addressing modes,
register X + D0_REG is controlled by bit X. Confusingly, the
register mask for fmovem is in the opposite order to that for
movem. */
unsigned int regno;
gcc_assert (MEM_P (XEXP (XVECEXP (pattern, 0, i), !store_p)));
gcc_assert (REG_P (XEXP (XVECEXP (pattern, 0, i), store_p)));
regno = REGNO (XEXP (XVECEXP (pattern, 0, i), store_p));
if (automod_offset < 0)
{
if (FP_REGNO_P (regno))
mask |= 1 << (regno - FP0_REG);
else
mask |= 1 << (15 - (regno - D0_REG));
}
else
{
if (FP_REGNO_P (regno))
mask |= 1 << (7 - (regno - FP0_REG));
else
mask |= 1 << (regno - D0_REG);
}
}
CC_STATUS_INIT;
if (automod_offset == 0)
operands[0] = XEXP (XEXP (XVECEXP (pattern, 0, first), !store_p), 0);
else if (automod_offset < 0)
operands[0] = gen_rtx_PRE_DEC (Pmode, SET_DEST (XVECEXP (pattern, 0, 0)));
else
operands[0] = gen_rtx_POST_INC (Pmode, SET_DEST (XVECEXP (pattern, 0, 0)));
operands[1] = GEN_INT (mask);
if (FP_REGNO_P (REGNO (XEXP (XVECEXP (pattern, 0, first), store_p))))
{
if (store_p)
return MOTOROLA ? "fmovm %1,%a0" : "fmovem %1,%a0";
else
return MOTOROLA ? "fmovm %a0,%1" : "fmovem %a0,%1";
}
else
{
if (store_p)
return MOTOROLA ? "movm.l %1,%a0" : "moveml %1,%a0";
else
return MOTOROLA ? "movm.l %a0,%1" : "moveml %a0,%1";
}
}
/* Return a REG that occurs in ADDR with coefficient 1.
ADDR can be effectively incremented by incrementing REG. */
static rtx
find_addr_reg (rtx addr)
{
while (GET_CODE (addr) == PLUS)
{
if (GET_CODE (XEXP (addr, 0)) == REG)
addr = XEXP (addr, 0);
else if (GET_CODE (XEXP (addr, 1)) == REG)
addr = XEXP (addr, 1);
else if (CONSTANT_P (XEXP (addr, 0)))
addr = XEXP (addr, 1);
else if (CONSTANT_P (XEXP (addr, 1)))
addr = XEXP (addr, 0);
else
gcc_unreachable ();
}
gcc_assert (GET_CODE (addr) == REG);
return addr;
}
/* Output assembler code to perform a 32-bit 3-operand add. */
const char *
output_addsi3 (rtx *operands)
{
if (! operands_match_p (operands[0], operands[1]))
{
if (!ADDRESS_REG_P (operands[1]))
{
rtx tmp = operands[1];
operands[1] = operands[2];
operands[2] = tmp;
}
/* These insns can result from reloads to access
stack slots over 64k from the frame pointer. */
if (GET_CODE (operands[2]) == CONST_INT
&& (INTVAL (operands[2]) < -32768 || INTVAL (operands[2]) > 32767))
return "move%.l %2,%0\n\tadd%.l %1,%0";
if (GET_CODE (operands[2]) == REG)
return MOTOROLA ? "lea (%1,%2.l),%0" : "lea %1@(0,%2:l),%0";
return MOTOROLA ? "lea (%c2,%1),%0" : "lea %1@(%c2),%0";
}
if (GET_CODE (operands[2]) == CONST_INT)
{
if (INTVAL (operands[2]) > 0
&& INTVAL (operands[2]) <= 8)
return "addq%.l %2,%0";
if (INTVAL (operands[2]) < 0
&& INTVAL (operands[2]) >= -8)
{
operands[2] = GEN_INT (- INTVAL (operands[2]));
return "subq%.l %2,%0";
}
/* On the CPU32 it is faster to use two addql instructions to
add a small integer (8 < N <= 16) to a register.
Likewise for subql. */
if (TUNE_CPU32 && REG_P (operands[0]))
{
if (INTVAL (operands[2]) > 8
&& INTVAL (operands[2]) <= 16)
{
operands[2] = GEN_INT (INTVAL (operands[2]) - 8);
return "addq%.l #8,%0\n\taddq%.l %2,%0";
}
if (INTVAL (operands[2]) < -8
&& INTVAL (operands[2]) >= -16)
{
operands[2] = GEN_INT (- INTVAL (operands[2]) - 8);
return "subq%.l #8,%0\n\tsubq%.l %2,%0";
}
}
if (ADDRESS_REG_P (operands[0])
&& INTVAL (operands[2]) >= -0x8000
&& INTVAL (operands[2]) < 0x8000)
{
if (TUNE_68040)
return "add%.w %2,%0";
else
return MOTOROLA ? "lea (%c2,%0),%0" : "lea %0@(%c2),%0";
}
}
return "add%.l %2,%0";
}
/* Store in cc_status the expressions that the condition codes will
describe after execution of an instruction whose pattern is EXP.
Do not alter them if the instruction would not alter the cc's. */
/* On the 68000, all the insns to store in an address register fail to
set the cc's. However, in some cases these instructions can make it
possibly invalid to use the saved cc's. In those cases we clear out
some or all of the saved cc's so they won't be used. */
void
notice_update_cc (rtx exp, rtx insn)
{
if (GET_CODE (exp) == SET)
{
if (GET_CODE (SET_SRC (exp)) == CALL)
CC_STATUS_INIT;
else if (ADDRESS_REG_P (SET_DEST (exp)))
{
if (cc_status.value1 && modified_in_p (cc_status.value1, insn))
cc_status.value1 = 0;
if (cc_status.value2 && modified_in_p (cc_status.value2, insn))
cc_status.value2 = 0;
}
/* fmoves to memory or data registers do not set the condition
codes. Normal moves _do_ set the condition codes, but not in
a way that is appropriate for comparison with 0, because -0.0
would be treated as a negative nonzero number. Note that it
isn't appropriate to conditionalize this restriction on
HONOR_SIGNED_ZEROS because that macro merely indicates whether
we care about the difference between -0.0 and +0.0. */
else if (!FP_REG_P (SET_DEST (exp))
&& SET_DEST (exp) != cc0_rtx
&& (FP_REG_P (SET_SRC (exp))
|| GET_CODE (SET_SRC (exp)) == FIX
|| FLOAT_MODE_P (GET_MODE (SET_DEST (exp)))))
CC_STATUS_INIT;
/* A pair of move insns doesn't produce a useful overall cc. */
else if (!FP_REG_P (SET_DEST (exp))
&& !FP_REG_P (SET_SRC (exp))
&& GET_MODE_SIZE (GET_MODE (SET_SRC (exp))) > 4
&& (GET_CODE (SET_SRC (exp)) == REG
|| GET_CODE (SET_SRC (exp)) == MEM
|| GET_CODE (SET_SRC (exp)) == CONST_DOUBLE))
CC_STATUS_INIT;
else if (SET_DEST (exp) != pc_rtx)
{
cc_status.flags = 0;
cc_status.value1 = SET_DEST (exp);
cc_status.value2 = SET_SRC (exp);
}
}
else if (GET_CODE (exp) == PARALLEL
&& GET_CODE (XVECEXP (exp, 0, 0)) == SET)
{
rtx dest = SET_DEST (XVECEXP (exp, 0, 0));
rtx src = SET_SRC (XVECEXP (exp, 0, 0));
if (ADDRESS_REG_P (dest))
CC_STATUS_INIT;
else if (dest != pc_rtx)
{
cc_status.flags = 0;
cc_status.value1 = dest;
cc_status.value2 = src;
}
}
else
CC_STATUS_INIT;
if (cc_status.value2 != 0
&& ADDRESS_REG_P (cc_status.value2)
&& GET_MODE (cc_status.value2) == QImode)
CC_STATUS_INIT;
if (cc_status.value2 != 0)
switch (GET_CODE (cc_status.value2))
{
case ASHIFT: case ASHIFTRT: case LSHIFTRT:
case ROTATE: case ROTATERT:
/* These instructions always clear the overflow bit, and set
the carry to the bit shifted out. */
/* ??? We don't currently have a way to signal carry not valid,
nor do we check for it in the branch insns. */
CC_STATUS_INIT;
break;
case PLUS: case MINUS: case MULT:
case DIV: case UDIV: case MOD: case UMOD: case NEG:
if (GET_MODE (cc_status.value2) != VOIDmode)
cc_status.flags |= CC_NO_OVERFLOW;
break;
case ZERO_EXTEND:
/* (SET r1 (ZERO_EXTEND r2)) on this machine
ends with a move insn moving r2 in r2's mode.
Thus, the cc's are set for r2.
This can set N bit spuriously. */
cc_status.flags |= CC_NOT_NEGATIVE;
default:
break;
}
if (cc_status.value1 && GET_CODE (cc_status.value1) == REG
&& cc_status.value2
&& reg_overlap_mentioned_p (cc_status.value1, cc_status.value2))
cc_status.value2 = 0;
if (((cc_status.value1 && FP_REG_P (cc_status.value1))
|| (cc_status.value2 && FP_REG_P (cc_status.value2))))
cc_status.flags = CC_IN_68881;
}
const char *
output_move_const_double (rtx *operands)
{
int code = standard_68881_constant_p (operands[1]);
if (code != 0)
{
static char buf[40];
sprintf (buf, "fmovecr #0x%x,%%0", code & 0xff);
return buf;
}
return "fmove%.d %1,%0";
}
const char *
output_move_const_single (rtx *operands)
{
int code = standard_68881_constant_p (operands[1]);
if (code != 0)
{
static char buf[40];
sprintf (buf, "fmovecr #0x%x,%%0", code & 0xff);
return buf;
}
return "fmove%.s %f1,%0";
}
/* Return nonzero if X, a CONST_DOUBLE, has a value that we can get
from the "fmovecr" instruction.
The value, anded with 0xff, gives the code to use in fmovecr
to get the desired constant. */
/* This code has been fixed for cross-compilation. */
static int inited_68881_table = 0;
static const char *const strings_68881[7] = {
"0.0",
"1.0",
"10.0",
"100.0",
"10000.0",
"1e8",
"1e16"
};
static const int codes_68881[7] = {
0x0f,
0x32,
0x33,
0x34,
0x35,
0x36,
0x37
};
REAL_VALUE_TYPE values_68881[7];
/* Set up values_68881 array by converting the decimal values
strings_68881 to binary. */
void
init_68881_table (void)
{
int i;
REAL_VALUE_TYPE r;
enum machine_mode mode;
mode = SFmode;
for (i = 0; i < 7; i++)
{
if (i == 6)
mode = DFmode;
r = REAL_VALUE_ATOF (strings_68881[i], mode);
values_68881[i] = r;
}
inited_68881_table = 1;
}
int
standard_68881_constant_p (rtx x)
{
REAL_VALUE_TYPE r;
int i;
/* fmovecr must be emulated on the 68040 and 68060, so it shouldn't be
used at all on those chips. */
if (TUNE_68040_60)
return 0;
if (! inited_68881_table)
init_68881_table ();
REAL_VALUE_FROM_CONST_DOUBLE (r, x);
/* Use REAL_VALUES_IDENTICAL instead of REAL_VALUES_EQUAL so that -0.0
is rejected. */
for (i = 0; i < 6; i++)
{
if (REAL_VALUES_IDENTICAL (r, values_68881[i]))
return (codes_68881[i]);
}
if (GET_MODE (x) == SFmode)
return 0;
if (REAL_VALUES_EQUAL (r, values_68881[6]))
return (codes_68881[6]);
/* larger powers of ten in the constants ram are not used
because they are not equal to a `double' C constant. */
return 0;
}
/* If X is a floating-point constant, return the logarithm of X base 2,
or 0 if X is not a power of 2. */
int
floating_exact_log2 (rtx x)
{
REAL_VALUE_TYPE r, r1;
int exp;
REAL_VALUE_FROM_CONST_DOUBLE (r, x);
if (REAL_VALUES_LESS (r, dconst1))
return 0;
exp = real_exponent (&r);
real_2expN (&r1, exp);
if (REAL_VALUES_EQUAL (r1, r))
return exp;
return 0;
}
/* A C compound statement to output to stdio stream STREAM the
assembler syntax for an instruction operand X. X is an RTL
expression.
CODE is a value that can be used to specify one of several ways
of printing the operand. It is used when identical operands
must be printed differently depending on the context. CODE
comes from the `%' specification that was used to request
printing of the operand. If the specification was just `%DIGIT'
then CODE is 0; if the specification was `%LTR DIGIT' then CODE
is the ASCII code for LTR.
If X is a register, this macro should print the register's name.
The names can be found in an array `reg_names' whose type is
`char *[]'. `reg_names' is initialized from `REGISTER_NAMES'.
When the machine description has a specification `%PUNCT' (a `%'
followed by a punctuation character), this macro is called with
a null pointer for X and the punctuation character for CODE.
The m68k specific codes are:
'.' for dot needed in Motorola-style opcode names.
'-' for an operand pushing on the stack:
sp@-, -(sp) or -(%sp) depending on the style of syntax.
'+' for an operand pushing on the stack:
sp@+, (sp)+ or (%sp)+ depending on the style of syntax.
'@' for a reference to the top word on the stack:
sp@, (sp) or (%sp) depending on the style of syntax.
'#' for an immediate operand prefix (# in MIT and Motorola syntax
but & in SGS syntax).
'!' for the cc register (used in an `and to cc' insn).
'$' for the letter `s' in an op code, but only on the 68040.
'&' for the letter `d' in an op code, but only on the 68040.
'/' for register prefix needed by longlong.h.
'?' for m68k_library_id_string
'b' for byte insn (no effect, on the Sun; this is for the ISI).
'd' to force memory addressing to be absolute, not relative.
'f' for float insn (print a CONST_DOUBLE as a float rather than in hex)
'x' for float insn (print a CONST_DOUBLE as a float rather than in hex),
or print pair of registers as rx:ry.
'p' print an address with @PLTPC attached, but only if the operand
is not locally-bound. */
void
print_operand (FILE *file, rtx op, int letter)
{
if (letter == '.')
{
if (MOTOROLA)
fprintf (file, ".");
}
else if (letter == '#')
asm_fprintf (file, "%I");
else if (letter == '-')
asm_fprintf (file, MOTOROLA ? "-(%Rsp)" : "%Rsp@-");
else if (letter == '+')
asm_fprintf (file, MOTOROLA ? "(%Rsp)+" : "%Rsp@+");
else if (letter == '@')
asm_fprintf (file, MOTOROLA ? "(%Rsp)" : "%Rsp@");
else if (letter == '!')
asm_fprintf (file, "%Rfpcr");
else if (letter == '$')
{
if (TARGET_68040)
fprintf (file, "s");
}
else if (letter == '&')
{
if (TARGET_68040)
fprintf (file, "d");
}
else if (letter == '/')
asm_fprintf (file, "%R");
else if (letter == '?')
asm_fprintf (file, m68k_library_id_string);
else if (letter == 'p')
{
output_addr_const (file, op);
if (!(GET_CODE (op) == SYMBOL_REF && SYMBOL_REF_LOCAL_P (op)))
fprintf (file, "@PLTPC");
}
else if (GET_CODE (op) == REG)
{
if (letter == 'R')
/* Print out the second register name of a register pair.
I.e., R (6) => 7. */
fputs (M68K_REGNAME(REGNO (op) + 1), file);
else
fputs (M68K_REGNAME(REGNO (op)), file);
}
else if (GET_CODE (op) == MEM)
{
output_address (XEXP (op, 0));
if (letter == 'd' && ! TARGET_68020
&& CONSTANT_ADDRESS_P (XEXP (op, 0))
&& !(GET_CODE (XEXP (op, 0)) == CONST_INT
&& INTVAL (XEXP (op, 0)) < 0x8000
&& INTVAL (XEXP (op, 0)) >= -0x8000))
fprintf (file, MOTOROLA ? ".l" : ":l");
}
else if (GET_CODE (op) == CONST_DOUBLE && GET_MODE (op) == SFmode)
{
REAL_VALUE_TYPE r;
REAL_VALUE_FROM_CONST_DOUBLE (r, op);
ASM_OUTPUT_FLOAT_OPERAND (letter, file, r);
}
else if (GET_CODE (op) == CONST_DOUBLE && GET_MODE (op) == XFmode)
{
REAL_VALUE_TYPE r;
REAL_VALUE_FROM_CONST_DOUBLE (r, op);
ASM_OUTPUT_LONG_DOUBLE_OPERAND (file, r);
}
else if (GET_CODE (op) == CONST_DOUBLE && GET_MODE (op) == DFmode)
{
REAL_VALUE_TYPE r;
REAL_VALUE_FROM_CONST_DOUBLE (r, op);
ASM_OUTPUT_DOUBLE_OPERAND (file, r);
}
else
{
/* Use `print_operand_address' instead of `output_addr_const'
to ensure that we print relevant PIC stuff. */
asm_fprintf (file, "%I");
if (TARGET_PCREL
&& (GET_CODE (op) == SYMBOL_REF || GET_CODE (op) == CONST))
print_operand_address (file, op);
else
output_addr_const (file, op);
}
}
/* A C compound statement to output to stdio stream STREAM the
assembler syntax for an instruction operand that is a memory
reference whose address is ADDR. ADDR is an RTL expression.
Note that this contains a kludge that knows that the only reason
we have an address (plus (label_ref...) (reg...)) when not generating
PIC code is in the insn before a tablejump, and we know that m68k.md
generates a label LInnn: on such an insn.
It is possible for PIC to generate a (plus (label_ref...) (reg...))
and we handle that just like we would a (plus (symbol_ref...) (reg...)).
Some SGS assemblers have a bug such that "Lnnn-LInnn-2.b(pc,d0.l*2)"
fails to assemble. Luckily "Lnnn(pc,d0.l*2)" produces the results
we want. This difference can be accommodated by using an assembler
define such "LDnnn" to be either "Lnnn-LInnn-2.b", "Lnnn", or any other
string, as necessary. This is accomplished via the ASM_OUTPUT_CASE_END
macro. See m68k/sgs.h for an example; for versions without the bug.
Some assemblers refuse all the above solutions. The workaround is to
emit "K(pc,d0.l*2)" with K being a small constant known to give the
right behavior.
They also do not like things like "pea 1.w", so we simple leave off
the .w on small constants.
This routine is responsible for distinguishing between -fpic and -fPIC
style relocations in an address. When generating -fpic code the
offset is output in word mode (e.g. movel a5@(_foo:w), a0). When generating
-fPIC code the offset is output in long mode (e.g. movel a5@(_foo:l), a0) */
void
print_operand_address (FILE *file, rtx addr)
{
struct m68k_address address;
if (!m68k_decompose_address (QImode, addr, true, &address))
gcc_unreachable ();
if (address.code == PRE_DEC)
fprintf (file, MOTOROLA ? "-(%s)" : "%s@-",
M68K_REGNAME (REGNO (address.base)));
else if (address.code == POST_INC)
fprintf (file, MOTOROLA ? "(%s)+" : "%s@+",
M68K_REGNAME (REGNO (address.base)));
else if (!address.base && !address.index)
{
/* A constant address. */
gcc_assert (address.offset == addr);
if (GET_CODE (addr) == CONST_INT)
{
/* (xxx).w or (xxx).l. */
if (IN_RANGE (INTVAL (addr), -0x8000, 0x7fff))
fprintf (file, MOTOROLA ? "%d.w" : "%d:w", (int) INTVAL (addr));
else
fprintf (file, HOST_WIDE_INT_PRINT_DEC, INTVAL (addr));
}
else if (TARGET_PCREL)
{
/* (d16,PC) or (bd,PC,Xn) (with suppressed index register). */
fputc ('(', file);
output_addr_const (file, addr);
asm_fprintf (file, flag_pic == 1 ? ":w,%Rpc)" : ":l,%Rpc)");
}
else
{
/* (xxx).l. We need a special case for SYMBOL_REF if the symbol
name ends in `.<letter>', as the last 2 characters can be
mistaken as a size suffix. Put the name in parentheses. */
if (GET_CODE (addr) == SYMBOL_REF
&& strlen (XSTR (addr, 0)) > 2
&& XSTR (addr, 0)[strlen (XSTR (addr, 0)) - 2] == '.')
{
putc ('(', file);
output_addr_const (file, addr);
putc (')', file);
}
else
output_addr_const (file, addr);
}
}
else
{
int labelno;
/* If ADDR is a (d8,pc,Xn) address, this is the number of the
label being accessed, otherwise it is -1. */
labelno = (address.offset
&& !address.base
&& GET_CODE (address.offset) == LABEL_REF
? CODE_LABEL_NUMBER (XEXP (address.offset, 0))
: -1);
if (MOTOROLA)
{
/* Print the "offset(base" component. */
if (labelno >= 0)
asm_fprintf (file, "%LL%d-%LLI%d.b(%Rpc,", labelno, labelno);
else
{
if (address.offset)
{
output_addr_const (file, address.offset);
if (flag_pic && address.base == pic_offset_table_rtx)
{
fprintf (file, "@GOT");
if (flag_pic == 1 && TARGET_68020)
fprintf (file, ".w");
}
}
putc ('(', file);
if (address.base)
fputs (M68K_REGNAME (REGNO (address.base)), file);
}
/* Print the ",index" component, if any. */
if (address.index)
{
if (address.base)
putc (',', file);
fprintf (file, "%s.%c",
M68K_REGNAME (REGNO (address.index)),
GET_MODE (address.index) == HImode ? 'w' : 'l');
if (address.scale != 1)
fprintf (file, "*%d", address.scale);
}
putc (')', file);
}
else /* !MOTOROLA */
{
if (!address.offset && !address.index)
fprintf (file, "%s@", M68K_REGNAME (REGNO (address.base)));
else
{
/* Print the "base@(offset" component. */
if (labelno >= 0)
asm_fprintf (file, "%Rpc@(%LL%d-%LLI%d-2:b", labelno, labelno);
else
{
if (address.base)
fputs (M68K_REGNAME (REGNO (address.base)), file);
fprintf (file, "@(");
if (address.offset)
{
output_addr_const (file, address.offset);
if (address.base == pic_offset_table_rtx && TARGET_68020)
switch (flag_pic)
{
case 1:
fprintf (file, ":w"); break;
case 2:
fprintf (file, ":l"); break;
default:
break;
}
}
}
/* Print the ",index" component, if any. */
if (address.index)
{
fprintf (file, ",%s:%c",
M68K_REGNAME (REGNO (address.index)),
GET_MODE (address.index) == HImode ? 'w' : 'l');
if (address.scale != 1)
fprintf (file, ":%d", address.scale);
}
putc (')', file);
}
}
}
}
/* Check for cases where a clr insns can be omitted from code using
strict_low_part sets. For example, the second clrl here is not needed:
clrl d0; movw a0@+,d0; use d0; clrl d0; movw a0@+; use d0; ...
MODE is the mode of this STRICT_LOW_PART set. FIRST_INSN is the clear
insn we are checking for redundancy. TARGET is the register set by the
clear insn. */
bool
strict_low_part_peephole_ok (enum machine_mode mode, rtx first_insn,
rtx target)
{
rtx p;
p = prev_nonnote_insn (first_insn);
while (p)
{
/* If it isn't an insn, then give up. */
if (GET_CODE (p) != INSN)
return false;
if (reg_set_p (target, p))
{
rtx set = single_set (p);
rtx dest;
/* If it isn't an easy to recognize insn, then give up. */
if (! set)
return false;
dest = SET_DEST (set);
/* If this sets the entire target register to zero, then our
first_insn is redundant. */
if (rtx_equal_p (dest, target)
&& SET_SRC (set) == const0_rtx)
return true;
else if (GET_CODE (dest) == STRICT_LOW_PART
&& GET_CODE (XEXP (dest, 0)) == REG
&& REGNO (XEXP (dest, 0)) == REGNO (target)
&& (GET_MODE_SIZE (GET_MODE (XEXP (dest, 0)))
<= GET_MODE_SIZE (mode)))
/* This is a strict low part set which modifies less than
we are using, so it is safe. */
;
else
return false;
}
p = prev_nonnote_insn (p);
}
return false;
}
/* Operand predicates for implementing asymmetric pc-relative addressing
on m68k. The m68k supports pc-relative addressing (mode 7, register 2)
when used as a source operand, but not as a destination operand.
We model this by restricting the meaning of the basic predicates
(general_operand, memory_operand, etc) to forbid the use of this
addressing mode, and then define the following predicates that permit
this addressing mode. These predicates can then be used for the
source operands of the appropriate instructions.
n.b. While it is theoretically possible to change all machine patterns
to use this addressing more where permitted by the architecture,
it has only been implemented for "common" cases: SImode, HImode, and
QImode operands, and only for the principle operations that would
require this addressing mode: data movement and simple integer operations.
In parallel with these new predicates, two new constraint letters
were defined: 'S' and 'T'. 'S' is the -mpcrel analog of 'm'.
'T' replaces 's' in the non-pcrel case. It is a no-op in the pcrel case.
In the pcrel case 's' is only valid in combination with 'a' registers.
See addsi3, subsi3, cmpsi, and movsi patterns for a better understanding
of how these constraints are used.
The use of these predicates is strictly optional, though patterns that
don't will cause an extra reload register to be allocated where one
was not necessary:
lea (abc:w,%pc),%a0 ; need to reload address
moveq &1,%d1 ; since write to pc-relative space
movel %d1,%a0@ ; is not allowed
...
lea (abc:w,%pc),%a1 ; no need to reload address here
movel %a1@,%d0 ; since "movel (abc:w,%pc),%d0" is ok
For more info, consult tiemann@cygnus.com.
All of the ugliness with predicates and constraints is due to the
simple fact that the m68k does not allow a pc-relative addressing
mode as a destination. gcc does not distinguish between source and
destination addresses. Hence, if we claim that pc-relative address
modes are valid, e.g. GO_IF_LEGITIMATE_ADDRESS accepts them, then we
end up with invalid code. To get around this problem, we left
pc-relative modes as invalid addresses, and then added special
predicates and constraints to accept them.
A cleaner way to handle this is to modify gcc to distinguish
between source and destination addresses. We can then say that
pc-relative is a valid source address but not a valid destination
address, and hopefully avoid a lot of the predicate and constraint
hackery. Unfortunately, this would be a pretty big change. It would
be a useful change for a number of ports, but there aren't any current
plans to undertake this.
***************************************************************************/
const char *
output_andsi3 (rtx *operands)
{
int logval;
if (GET_CODE (operands[2]) == CONST_INT
&& (INTVAL (operands[2]) | 0xffff) == -1
&& (DATA_REG_P (operands[0])
|| offsettable_memref_p (operands[0]))
&& !TARGET_COLDFIRE)
{
if (GET_CODE (operands[0]) != REG)
operands[0] = adjust_address (operands[0], HImode, 2);
operands[2] = GEN_INT (INTVAL (operands[2]) & 0xffff);
/* Do not delete a following tstl %0 insn; that would be incorrect. */
CC_STATUS_INIT;
if (operands[2] == const0_rtx)
return "clr%.w %0";
return "and%.w %2,%0";
}
if (GET_CODE (operands[2]) == CONST_INT
&& (logval = exact_log2 (~ INTVAL (operands[2]))) >= 0
&& (DATA_REG_P (operands[0])
|| offsettable_memref_p (operands[0])))
{
if (DATA_REG_P (operands[0]))
operands[1] = GEN_INT (logval);
else
{
operands[0] = adjust_address (operands[0], SImode, 3 - (logval / 8));
operands[1] = GEN_INT (logval % 8);
}
/* This does not set condition codes in a standard way. */
CC_STATUS_INIT;
return "bclr %1,%0";
}
return "and%.l %2,%0";
}
const char *
output_iorsi3 (rtx *operands)
{
register int logval;
if (GET_CODE (operands[2]) == CONST_INT
&& INTVAL (operands[2]) >> 16 == 0
&& (DATA_REG_P (operands[0])
|| offsettable_memref_p (operands[0]))
&& !TARGET_COLDFIRE)
{
if (GET_CODE (operands[0]) != REG)
operands[0] = adjust_address (operands[0], HImode, 2);
/* Do not delete a following tstl %0 insn; that would be incorrect. */
CC_STATUS_INIT;
if (INTVAL (operands[2]) == 0xffff)
return "mov%.w %2,%0";
return "or%.w %2,%0";
}
if (GET_CODE (operands[2]) == CONST_INT
&& (logval = exact_log2 (INTVAL (operands[2]))) >= 0
&& (DATA_REG_P (operands[0])
|| offsettable_memref_p (operands[0])))
{
if (DATA_REG_P (operands[0]))
operands[1] = GEN_INT (logval);
else
{
operands[0] = adjust_address (operands[0], SImode, 3 - (logval / 8));
operands[1] = GEN_INT (logval % 8);
}
CC_STATUS_INIT;
return "bset %1,%0";
}
return "or%.l %2,%0";
}
const char *
output_xorsi3 (rtx *operands)
{
register int logval;
if (GET_CODE (operands[2]) == CONST_INT
&& INTVAL (operands[2]) >> 16 == 0
&& (offsettable_memref_p (operands[0]) || DATA_REG_P (operands[0]))
&& !TARGET_COLDFIRE)
{
if (! DATA_REG_P (operands[0]))
operands[0] = adjust_address (operands[0], HImode, 2);
/* Do not delete a following tstl %0 insn; that would be incorrect. */
CC_STATUS_INIT;
if (INTVAL (operands[2]) == 0xffff)
return "not%.w %0";
return "eor%.w %2,%0";
}
if (GET_CODE (operands[2]) == CONST_INT
&& (logval = exact_log2 (INTVAL (operands[2]))) >= 0
&& (DATA_REG_P (operands[0])
|| offsettable_memref_p (operands[0])))
{
if (DATA_REG_P (operands[0]))
operands[1] = GEN_INT (logval);
else
{
operands[0] = adjust_address (operands[0], SImode, 3 - (logval / 8));
operands[1] = GEN_INT (logval % 8);
}
CC_STATUS_INIT;
return "bchg %1,%0";
}
return "eor%.l %2,%0";
}
/* Return the instruction that should be used for a call to address X,
which is known to be in operand 0. */
const char *
output_call (rtx x)
{
if (symbolic_operand (x, VOIDmode))
return m68k_symbolic_call;
else
return "jsr %a0";
}
/* Likewise sibling calls. */
const char *
output_sibcall (rtx x)
{
if (symbolic_operand (x, VOIDmode))
return m68k_symbolic_jump;
else
return "jmp %a0";
}
#ifdef M68K_TARGET_COFF
/* Output assembly to switch to section NAME with attribute FLAGS. */
static void
m68k_coff_asm_named_section (const char *name, unsigned int flags,
tree decl ATTRIBUTE_UNUSED)
{
char flagchar;
if (flags & SECTION_WRITE)
flagchar = 'd';
else
flagchar = 'x';
fprintf (asm_out_file, "\t.section\t%s,\"%c\"\n", name, flagchar);
}
#endif /* M68K_TARGET_COFF */
static void
m68k_output_mi_thunk (FILE *file, tree thunk ATTRIBUTE_UNUSED,
HOST_WIDE_INT delta, HOST_WIDE_INT vcall_offset,
tree function)
{
rtx this_slot, offset, addr, mem, insn;
/* Pretend to be a post-reload pass while generating rtl. */
no_new_pseudos = 1;
reload_completed = 1;
allocate_reg_info (FIRST_PSEUDO_REGISTER, true, true);
/* The "this" pointer is stored at 4(%sp). */
this_slot = gen_rtx_MEM (Pmode, plus_constant (stack_pointer_rtx, 4));
/* Add DELTA to THIS. */
if (delta != 0)
{
/* Make the offset a legitimate operand for memory addition. */
offset = GEN_INT (delta);
if ((delta < -8 || delta > 8)
&& (TARGET_COLDFIRE || USE_MOVQ (delta)))
{
emit_move_insn (gen_rtx_REG (Pmode, D0_REG), offset);
offset = gen_rtx_REG (Pmode, D0_REG);
}
emit_insn (gen_add3_insn (copy_rtx (this_slot),
copy_rtx (this_slot), offset));
}
/* If needed, add *(*THIS + VCALL_OFFSET) to THIS. */
if (vcall_offset != 0)
{
/* Set the static chain register to *THIS. */
emit_move_insn (static_chain_rtx, this_slot);
emit_move_insn (static_chain_rtx, gen_rtx_MEM (Pmode, static_chain_rtx));
/* Set ADDR to a legitimate address for *THIS + VCALL_OFFSET. */
addr = plus_constant (static_chain_rtx, vcall_offset);
if (!m68k_legitimate_address_p (Pmode, addr, true))
{
emit_insn (gen_rtx_SET (VOIDmode, static_chain_rtx, addr));
addr = static_chain_rtx;
}
/* Load the offset into %d0 and add it to THIS. */
emit_move_insn (gen_rtx_REG (Pmode, D0_REG),
gen_rtx_MEM (Pmode, addr));
emit_insn (gen_add3_insn (copy_rtx (this_slot),
copy_rtx (this_slot),
gen_rtx_REG (Pmode, D0_REG)));
}
/* Jump to the target function. Use a sibcall if direct jumps are
allowed, otherwise load the address into a register first. */
mem = DECL_RTL (function);
if (!sibcall_operand (XEXP (mem, 0), VOIDmode))
{
gcc_assert (flag_pic);
if (!TARGET_SEP_DATA)
{
/* Use the static chain register as a temporary (call-clobbered)
GOT pointer for this function. We can use the static chain
register because it isn't live on entry to the thunk. */
REGNO (pic_offset_table_rtx) = STATIC_CHAIN_REGNUM;
emit_insn (gen_load_got (pic_offset_table_rtx));
}
legitimize_pic_address (XEXP (mem, 0), Pmode, static_chain_rtx);
mem = replace_equiv_address (mem, static_chain_rtx);
}
insn = emit_call_insn (gen_sibcall (mem, const0_rtx));
SIBLING_CALL_P (insn) = 1;
/* Run just enough of rest_of_compilation. */
insn = get_insns ();
split_all_insns_noflow ();
final_start_function (insn, file, 1);
final (insn, file, 1);
final_end_function ();
/* Clean up the vars set above. */
reload_completed = 0;
no_new_pseudos = 0;
/* Restore the original PIC register. */
if (flag_pic)
REGNO (pic_offset_table_rtx) = PIC_REG;
}
/* Worker function for TARGET_STRUCT_VALUE_RTX. */
static rtx
m68k_struct_value_rtx (tree fntype ATTRIBUTE_UNUSED,
int incoming ATTRIBUTE_UNUSED)
{
return gen_rtx_REG (Pmode, M68K_STRUCT_VALUE_REGNUM);
}
/* Return nonzero if register old_reg can be renamed to register new_reg. */
int
m68k_hard_regno_rename_ok (unsigned int old_reg ATTRIBUTE_UNUSED,
unsigned int new_reg)
{
/* Interrupt functions can only use registers that have already been
saved by the prologue, even if they would normally be
call-clobbered. */
if ((m68k_get_function_kind (current_function_decl)
== m68k_fk_interrupt_handler)
&& !regs_ever_live[new_reg])
return 0;
return 1;
}
/* Value is true if hard register REGNO can hold a value of machine-mode
MODE. On the 68000, we let the cpu registers can hold any mode, but
restrict the 68881 registers to floating-point modes. */
bool
m68k_regno_mode_ok (int regno, enum machine_mode mode)
{
if (DATA_REGNO_P (regno))
{
/* Data Registers, can hold aggregate if fits in. */
if (regno + GET_MODE_SIZE (mode) / 4 <= 8)
return true;
}
else if (ADDRESS_REGNO_P (regno))
{
if (regno + GET_MODE_SIZE (mode) / 4 <= 16)
return true;
}
else if (FP_REGNO_P (regno))
{
/* FPU registers, hold float or complex float of long double or
smaller. */
if ((GET_MODE_CLASS (mode) == MODE_FLOAT
|| GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT)
&& GET_MODE_UNIT_SIZE (mode) <= TARGET_FP_REG_SIZE)
return true;
}
return false;
}
/* Implement SECONDARY_RELOAD_CLASS. */
enum reg_class
m68k_secondary_reload_class (enum reg_class rclass,
enum machine_mode mode, rtx x)
{
int regno;
regno = true_regnum (x);
/* If one operand of a movqi is an address register, the other
operand must be a general register or constant. Other types
of operand must be reloaded through a data register. */
if (GET_MODE_SIZE (mode) == 1
&& reg_classes_intersect_p (rclass, ADDR_REGS)
&& !(INT_REGNO_P (regno) || CONSTANT_P (x)))
return DATA_REGS;
/* PC-relative addresses must be loaded into an address register first. */
if (TARGET_PCREL
&& !reg_class_subset_p (rclass, ADDR_REGS)
&& symbolic_operand (x, VOIDmode))
return ADDR_REGS;
return NO_REGS;
}
/* Implement PREFERRED_RELOAD_CLASS. */
enum reg_class
m68k_preferred_reload_class (rtx x, enum reg_class rclass)
{
enum reg_class secondary_class;
/* If RCLASS might need a secondary reload, try restricting it to
a class that doesn't. */
secondary_class = m68k_secondary_reload_class (rclass, GET_MODE (x), x);
if (secondary_class != NO_REGS
&& reg_class_subset_p (secondary_class, rclass))
return secondary_class;
/* Prefer to use moveq for in-range constants. */
if (GET_CODE (x) == CONST_INT
&& reg_class_subset_p (DATA_REGS, rclass)
&& IN_RANGE (INTVAL (x), -0x80, 0x7f))
return DATA_REGS;
/* ??? Do we really need this now? */
if (GET_CODE (x) == CONST_DOUBLE
&& GET_MODE_CLASS (GET_MODE (x)) == MODE_FLOAT)
{
if (TARGET_HARD_FLOAT && reg_class_subset_p (FP_REGS, rclass))
return FP_REGS;
return NO_REGS;
}
return rclass;
}
/* Return floating point values in a 68881 register. This makes 68881 code
a little bit faster. It also makes -msoft-float code incompatible with
hard-float code, so people have to be careful not to mix the two.
For ColdFire it was decided the ABI incompatibility is undesirable.
If there is need for a hard-float ABI it is probably worth doing it
properly and also passing function arguments in FP registers. */
rtx
m68k_libcall_value (enum machine_mode mode)
{
switch (mode) {
case SFmode:
case DFmode:
case XFmode:
if (TARGET_68881)
return gen_rtx_REG (mode, FP0_REG);
break;
default:
break;
}
return gen_rtx_REG (mode, D0_REG);
}
rtx
m68k_function_value (tree valtype, tree func ATTRIBUTE_UNUSED)
{
enum machine_mode mode;
mode = TYPE_MODE (valtype);
switch (mode) {
case SFmode:
case DFmode:
case XFmode:
if (TARGET_68881)
return gen_rtx_REG (mode, FP0_REG);
break;
default:
break;
}
/* If the function returns a pointer, push that into %a0. */
if (func && POINTER_TYPE_P (TREE_TYPE (TREE_TYPE (func))))
/* For compatibility with the large body of existing code which
does not always properly declare external functions returning
pointer types, the m68k/SVR4 convention is to copy the value
returned for pointer functions from a0 to d0 in the function
epilogue, so that callers that have neglected to properly
declare the callee can still find the correct return value in
d0. */
return gen_rtx_PARALLEL
(mode,
gen_rtvec (2,
gen_rtx_EXPR_LIST (VOIDmode,
gen_rtx_REG (mode, A0_REG),
const0_rtx),
gen_rtx_EXPR_LIST (VOIDmode,
gen_rtx_REG (mode, D0_REG),
const0_rtx)));
else if (POINTER_TYPE_P (valtype))
return gen_rtx_REG (mode, A0_REG);
else
return gen_rtx_REG (mode, D0_REG);
}
|