summaryrefslogtreecommitdiff
path: root/gcc/config/microblaze/microblaze.c
blob: 199d1b8d46fe23fb1ae7e0c5cf732923f48b2749 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
/* Subroutines used for code generation on Xilinx MicroBlaze.
   Copyright 2009, 2010, 2011 Free Software Foundation, Inc.

   Contributed by Michael Eager <eager@eagercon.com>.

   This file is part of GCC.

   GCC is free software; you can redistribute it and/or modify it
   under the terms of the GNU General Public License as published
   by the Free Software Foundation; either version 3, or (at your
   option) any later version.

   GCC is distributed in the hope that it will be useful, but WITHOUT
   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
   or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public
   License for more details.

   You should have received a copy of the GNU General Public License
   along with GCC; see the file COPYING3.  If not see
   <http://www.gnu.org/licenses/>.  */

#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "rtl.h"
#include "regs.h"
#include "hard-reg-set.h"
#include "real.h"
#include "insn-config.h"
#include "conditions.h"
#include "insn-flags.h"
#include "insn-attr.h"
#include "recog.h"
#include "tree.h"
#include "function.h"
#include "expr.h"
#include "flags.h"
#include "reload.h"
#include "output.h"
#include "ggc.h"
#include "hashtab.h"
#include "target.h"
#include "target-def.h"
#include "tm_p.h"
#include "gstab.h"
#include "df.h"
#include "optabs.h"
#include "diagnostic-core.h"
#include "cgraph.h"

#define MICROBLAZE_VERSION_COMPARE(VA,VB) strcasecmp (VA, VB)

/* Classifies an address.

ADDRESS_INVALID
An invalid address.

ADDRESS_REG

A natural register or a register + const_int offset address.  
The register satisfies microblaze_valid_base_register_p and the 
offset is a const_arith_operand.

ADDRESS_REG_INDEX

A natural register offset by the index contained in an index register. The base
register satisfies microblaze_valid_base_register_p and the index register
satisfies microblaze_valid_index_register_p

ADDRESS_CONST_INT

A signed 16/32-bit constant address.

ADDRESS_SYMBOLIC:

A constant symbolic address or a (register + symbol).  */

enum microblaze_address_type
{
  ADDRESS_INVALID,
  ADDRESS_REG,
  ADDRESS_REG_INDEX,
  ADDRESS_CONST_INT,
  ADDRESS_SYMBOLIC,
  ADDRESS_GOTOFF,
  ADDRESS_PLT
};

/* Classifies symbols

SYMBOL_TYPE_GENERAL
        
A general symbol.  */
enum microblaze_symbol_type
{
  SYMBOL_TYPE_INVALID,
  SYMBOL_TYPE_GENERAL
};

/* Classification of a MicroBlaze address.  */
struct microblaze_address_info
{
  enum microblaze_address_type type;
  rtx regA; 	/* Contains valid values on ADDRESS_REG, ADDRESS_REG_INDEX, 
     		   ADDRESS_SYMBOLIC.  */
  rtx regB; 	/* Contains valid values on ADDRESS_REG_INDEX.  */
  rtx offset; 	/* Contains valid values on ADDRESS_CONST_INT and ADDRESS_REG.  */
  rtx symbol; 	/* Contains valid values on ADDRESS_SYMBOLIC.  */
  enum microblaze_symbol_type symbol_type;
};

/* Structure to be filled in by compute_frame_size with register
   save masks, and offsets for the current function.  */

struct GTY(()) microblaze_frame_info {
  long total_size;		/* # bytes that the entire frame takes up.  */
  long var_size;		/* # bytes that variables take up.  */
  long args_size;		/* # bytes that outgoing arguments take up.  */
  int link_debug_size;		/* # bytes for the link reg and back pointer.  */
  int gp_reg_size;		/* # bytes needed to store gp regs.  */
  long gp_offset;		/* offset from new sp to store gp registers.  */
  long mask;			/* mask of saved gp registers.  */
  int initialized;		/* != 0 if frame size already calculated.  */
  int num_gp;			/* number of gp registers saved.  */
  long insns_len;		/* length of insns.  */
  int alloc_stack;		/* Flag to indicate if the current function 
				   must not create stack space. (As an optimization).  */
};

/* Global variables for machine-dependent things.  */

/* Toggle which pipleline interface to use.  */
static GTY(()) int microblaze_sched_use_dfa = 0;

/* Threshold for data being put into the small data/bss area, instead
   of the normal data area (references to the small data/bss area take
   1 instruction, and use the global pointer, references to the normal
   data area takes 2 instructions).  */
int microblaze_section_threshold = -1;

/* Prevent scheduling potentially exception causing instructions in 
   delay slots.  -mcpu=v3.00.a or v4.00.a turns this on.  */
int microblaze_no_unsafe_delay;

/* Which CPU pipeline do we use. We haven't really standardized on a CPU 
   version having only a particular type of pipeline. There can still be 
   options on the CPU to scale pipeline features up or down. :( 
   Bad Presentation (??), so we let the MD file rely on the value of 
   this variable instead Making PIPE_5 the default. It should be backward 
   optimal with PIPE_3 MicroBlazes.  */
enum pipeline_type microblaze_pipe = MICROBLAZE_PIPE_5;

/* High and low marks for floating point values which we will accept
   as legitimate constants for TARGET_LEGITIMATE_CONSTANT_P.  These are
   initialized in override_options.  */
REAL_VALUE_TYPE dfhigh, dflow, sfhigh, sflow;

/* Array giving truth value on whether or not a given hard register
   can support a given mode.  */
char microblaze_hard_regno_mode_ok[(int)MAX_MACHINE_MODE]
				  [FIRST_PSEUDO_REGISTER];

/* Current frame information calculated by compute_frame_size.  */
struct microblaze_frame_info current_frame_info;

/* Zero structure to initialize current_frame_info.  */
struct microblaze_frame_info zero_frame_info;

/* List of all MICROBLAZE punctuation characters used by print_operand.  */
char microblaze_print_operand_punct[256];

/* Map GCC register number to debugger register number.  */
int microblaze_dbx_regno[FIRST_PSEUDO_REGISTER];

/* Map hard register number to register class.  */
enum reg_class microblaze_regno_to_class[] =
{
  GR_REGS,	GR_REGS,	GR_REGS,	GR_REGS,
  GR_REGS,	GR_REGS,	GR_REGS,	GR_REGS,
  GR_REGS,	GR_REGS,	GR_REGS,	GR_REGS,
  GR_REGS,	GR_REGS,	GR_REGS,	GR_REGS,
  GR_REGS,	GR_REGS,	GR_REGS,	GR_REGS,
  GR_REGS,	GR_REGS,	GR_REGS,	GR_REGS,
  GR_REGS,	GR_REGS,	GR_REGS,	GR_REGS,
  GR_REGS,	GR_REGS,	GR_REGS,	GR_REGS,
  ST_REGS,	GR_REGS,	GR_REGS,	GR_REGS
};

/* MicroBlaze specific machine attributes.
   interrupt_handler - Interrupt handler attribute to add interrupt prologue 
		       and epilogue and use appropriate interrupt return.
   save_volatiles    - Similar to interrupt handler, but use normal return.  */
int interrupt_handler;
int save_volatiles;

const struct attribute_spec microblaze_attribute_table[] = {
  /* name         min_len, max_len, decl_req, type_req, fn_type, req_handler,
     affects_type_identity */
  {"interrupt_handler", 0,       0,     true,    false,   false,        NULL,
    false },
  {"save_volatiles"   , 0,       0,     true,    false,   false,        NULL,
    false },
  { NULL,        	0,       0,    false,    false,   false,        NULL,
    false }
};

static int microblaze_interrupt_function_p (tree);

section *sdata2_section;

/* Return truth value if a CONST_DOUBLE is ok to be a legitimate constant.  */
static bool
microblaze_const_double_ok (rtx op, enum machine_mode mode)
{
  REAL_VALUE_TYPE d;

  if (GET_CODE (op) != CONST_DOUBLE)
    return 0;

  if (GET_MODE (op) == VOIDmode)
    return 1;

  if (mode != SFmode && mode != DFmode)
    return 0;

  if (op == CONST0_RTX (mode))
    return 1;

  REAL_VALUE_FROM_CONST_DOUBLE (d, op);

  if (REAL_VALUE_ISNAN (d))
    return FALSE;

  if (REAL_VALUE_NEGATIVE (d))
    d = real_value_negate (&d);

  if (mode == DFmode)
    {
      if (REAL_VALUES_LESS (d, dfhigh) && REAL_VALUES_LESS (dflow, d))
	return 1;
    }
  else
    {
      if (REAL_VALUES_LESS (d, sfhigh) && REAL_VALUES_LESS (sflow, d))
	return 1;
    }

  return 0;
}

/* Return truth value if a memory operand fits in a single instruction
   (ie, register + small offset) or (register + register).  */

int
simple_memory_operand (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
{
  rtx addr, plus0, plus1;

  /* Eliminate non-memory operations.  */
  if (GET_CODE (op) != MEM)
    return 0;

  /* dword operations really put out 2 instructions, so eliminate them.  */
  /* ??? This isn't strictly correct.  It is OK to accept multiword modes
     here, since the length attributes are being set correctly, but only
     if the address is offsettable.  */
  if (GET_MODE_SIZE (GET_MODE (op)) > UNITS_PER_WORD)
    return 0;


  /* Decode the address now.  */
  addr = XEXP (op, 0);
  switch (GET_CODE (addr))

    {
    case REG:
      return 1;

    case PLUS:
      plus0 = XEXP (addr, 0);
      plus1 = XEXP (addr, 1);

      if (GET_CODE (plus0) == REG && GET_CODE (plus1) == CONST_INT
	  && SMALL_INT (plus1))
	{
	  return 1;
	}
      else if (GET_CODE (plus1) == REG && GET_CODE (plus0) == CONST_INT)
	{
	  return 1;
	}
      else if (GET_CODE (plus0) == REG && GET_CODE (plus1) == REG)
	{
	  return 1;
	}
      else
	return 0;

    case SYMBOL_REF:
      return 0;

    default:
      break;
    }

  return 0;
}

/* Return nonzero for a memory address that can be used to load or store
   a doubleword.  */

int
double_memory_operand (rtx op, enum machine_mode mode)
{
  rtx addr;

  if (GET_CODE (op) != MEM || !memory_operand (op, mode))
    {
      /* During reload, we accept a pseudo register if it has an
         appropriate memory address.  If we don't do this, we will
         wind up reloading into a register, and then reloading that
         register from memory, when we could just reload directly from
         memory.  */
      if (reload_in_progress
	  && GET_CODE (op) == REG
	  && REGNO (op) >= FIRST_PSEUDO_REGISTER
	  && reg_renumber[REGNO (op)] < 0
	  && reg_equiv_mem (REGNO (op)) != 0
	  && double_memory_operand (reg_equiv_mem (REGNO (op)), mode))
	return 1;
      return 0;
    }

  /* Make sure that 4 added to the address is a valid memory address.
     This essentially just checks for overflow in an added constant.  */

  addr = XEXP (op, 0);

  if (CONSTANT_ADDRESS_P (addr))
    return 1;

  return memory_address_p ((GET_MODE_CLASS (mode) == MODE_INT
			    ? SImode : SFmode),
			   plus_constant (Pmode, addr, 4));
}

/* Implement REG_OK_FOR_BASE_P -and- REG_OK_FOR_INDEX_P.  */
int
microblaze_regno_ok_for_base_p (int regno, int strict)
{
  if (regno >= FIRST_PSEUDO_REGISTER)
    {
      if (!strict)
	return true;
      regno = reg_renumber[regno];
    }

  /* These fake registers will be eliminated to either the stack or
     hard frame pointer, both of which are usually valid base registers.
     Reload deals with the cases where the eliminated form isn't valid.  */
  if (regno == ARG_POINTER_REGNUM || regno == FRAME_POINTER_REGNUM)
    return true;

  return GP_REG_P (regno);
}

/* Return true if X is a valid base register for the given mode.
   Allow only hard registers if STRICT.  */

static bool
microblaze_valid_base_register_p (rtx x,
				  enum machine_mode mode ATTRIBUTE_UNUSED,
				  int strict)
{
  if (!strict && GET_CODE (x) == SUBREG)
    x = SUBREG_REG (x);

  return (GET_CODE (x) == REG
	  && microblaze_regno_ok_for_base_p (REGNO (x), strict));
}

static bool
microblaze_classify_unspec (struct microblaze_address_info *info, rtx x)
{
  info->symbol_type = SYMBOL_TYPE_GENERAL;
  info->symbol = XVECEXP (x, 0, 0);

  if (XINT (x, 1) == UNSPEC_GOTOFF)
    {
      info->regA = gen_rtx_REG (SImode, PIC_OFFSET_TABLE_REGNUM);
      info->type = ADDRESS_GOTOFF;
    }
  else if (XINT (x, 1) == UNSPEC_PLT)
    {
      info->type = ADDRESS_PLT;
    }
  else
    {
      return false;
    }
  return true;
}


/* Return true if X is a valid index register for the given mode.
   Allow only hard registers if STRICT.  */

static bool
microblaze_valid_index_register_p (rtx x,
				   enum machine_mode mode ATTRIBUTE_UNUSED,
				   int strict)
{
  if (!strict && GET_CODE (x) == SUBREG)
    x = SUBREG_REG (x);

  return (GET_CODE (x) == REG
	  /* A base register is good enough to be an index register on MicroBlaze.  */
	  && microblaze_regno_ok_for_base_p (REGNO (x), strict));
}

/* Get the base register for accessing a value from the memory or
   Symbol ref. Used for MicroBlaze Small Data Area Pointer Optimization.  */
static int
get_base_reg (rtx x)
{
  tree decl;
  int base_reg = (flag_pic ? MB_ABI_PIC_ADDR_REGNUM : MB_ABI_BASE_REGNUM);

  if (TARGET_XLGPOPT
      && GET_CODE (x) == SYMBOL_REF
      && SYMBOL_REF_SMALL_P (x) && (decl = SYMBOL_REF_DECL (x)) != NULL)
    {
      if (TREE_READONLY (decl))
	base_reg = MB_ABI_GPRO_REGNUM;
      else
	base_reg = MB_ABI_GPRW_REGNUM;
    }

  return base_reg;
}

/* Return true if X is a valid address for machine mode MODE.  If it is,
   fill in INFO appropriately.  STRICT is true if we should only accept
   hard base registers.  

      type                     regA      regB    offset      symbol

   ADDRESS_INVALID             NULL      NULL     NULL        NULL

   ADDRESS_REG                 %0        NULL     const_0 /   NULL
                                                  const_int
   ADDRESS_REG_INDEX           %0        %1       NULL        NULL

   ADDRESS_SYMBOLIC            r0 /      NULL     NULL        symbol    
                           sda_base_reg 

   ADDRESS_CONST_INT           r0       NULL      const       NULL

   For modes spanning multiple registers (DFmode in 32-bit GPRs,
   DImode, TImode), indexed addressing cannot be used because
   adjacent memory cells are accessed by adding word-sized offsets
   during assembly output.  */

static bool
microblaze_classify_address (struct microblaze_address_info *info, rtx x,
			     enum machine_mode mode, int strict)
{
  rtx xplus0;
  rtx xplus1;

  info->type = ADDRESS_INVALID;
  info->regA = NULL;
  info->regB = NULL;
  info->offset = NULL;
  info->symbol = NULL;
  info->symbol_type = SYMBOL_TYPE_INVALID;

  switch (GET_CODE (x))
    {
    case REG:
    case SUBREG:
      {
	info->type = ADDRESS_REG;
	info->regA = x;
	info->offset = const0_rtx;
	return microblaze_valid_base_register_p (info->regA, mode, strict);
      }
    case PLUS:
      {
	xplus0 = XEXP (x, 0);
	xplus1 = XEXP (x, 1);

	if (microblaze_valid_base_register_p (xplus0, mode, strict))
	  {
	    info->type = ADDRESS_REG;
	    info->regA = xplus0;

	    if (GET_CODE (xplus1) == CONST_INT)
	      {
		info->offset = xplus1;
		return true;
	      }
	    else if (GET_CODE (xplus1) == UNSPEC)
	      {
		return microblaze_classify_unspec (info, xplus1);
	      }
	    else if ((GET_CODE (xplus1) == SYMBOL_REF ||
		      GET_CODE (xplus1) == LABEL_REF) && flag_pic == 2)
	      {
		return false;
	      }
	    else if (GET_CODE (xplus1) == SYMBOL_REF ||
		     GET_CODE (xplus1) == LABEL_REF ||
		     GET_CODE (xplus1) == CONST)
	      {
		if (GET_CODE (XEXP (xplus1, 0)) == UNSPEC)
		  return microblaze_classify_unspec (info, XEXP (xplus1, 0));
		else if (flag_pic == 2)
		  {
		    return false;
		  }
		info->type = ADDRESS_SYMBOLIC;
		info->symbol = xplus1;
		info->symbol_type = SYMBOL_TYPE_GENERAL;
		return true;
	      }
	    else if (GET_CODE (xplus1) == REG
		     && microblaze_valid_index_register_p (xplus1, mode,
							   strict)
		     && (GET_MODE_SIZE (mode) <= UNITS_PER_WORD))
	      {
		/* Restrict larger than word-width modes from using an index register.  */
		info->type = ADDRESS_REG_INDEX;
		info->regB = xplus1;
		return true;
	      }
	  }
	break;
      }
    case CONST_INT:
      {
	info->regA = gen_rtx_raw_REG (mode, 0);
	info->type = ADDRESS_CONST_INT;
	info->offset = x;
	return true;
      }
    case CONST:
    case LABEL_REF:
    case SYMBOL_REF:
      {
	info->type = ADDRESS_SYMBOLIC;
	info->symbol_type = SYMBOL_TYPE_GENERAL;
	info->symbol = x;
	info->regA = gen_rtx_raw_REG (mode, get_base_reg (x));

	if (GET_CODE (x) == CONST)
	  {
	    return !(flag_pic && pic_address_needs_scratch (x));
	  }
	else if (flag_pic == 2)
	  {
	    return false;
	  }

	return true;
      }

    case UNSPEC:
      {
	if (reload_in_progress)
	  df_set_regs_ever_live (PIC_OFFSET_TABLE_REGNUM, true);
	return microblaze_classify_unspec (info, x);
      }

    default:
      return false;
    }

  return false;
}

/* This function is used to implement GO_IF_LEGITIMATE_ADDRESS.  It
   returns a nonzero value if X is a legitimate address for a memory
   operand of the indicated MODE.  STRICT is nonzero if this function
   is called during reload.  */

bool
microblaze_legitimate_address_p (enum machine_mode mode, rtx x, bool strict)
{
  struct microblaze_address_info addr;

  return microblaze_classify_address (&addr, x, mode, strict);
}


/* Try machine-dependent ways of modifying an illegitimate address
   to be legitimate.  If we find one, return the new, valid address.
   This is used from only one place: `memory_address' in explow.c.

   OLDX is the address as it was before break_out_memory_refs was
   called.  In some cases it is useful to look at this to decide what
   needs to be done.

   It is always safe for this function to do nothing.  It exists to
   recognize opportunities to optimize the output.

   For the MicroBlaze, transform:

   memory(X + <large int>)

   into:

   Y = <large int> & ~0x7fff;
   Z = X + Y
   memory (Z + (<large int> & 0x7fff));

   This is for CSE to find several similar references, and only use one Z.

   When PIC, convert addresses of the form memory (symbol+large int) to
   memory (reg+large int).  */

static rtx
microblaze_legitimize_address (rtx x, rtx oldx ATTRIBUTE_UNUSED,
			       enum machine_mode mode ATTRIBUTE_UNUSED)
{
  register rtx xinsn = x, result;

  if (GET_CODE (xinsn) == CONST
      && flag_pic && pic_address_needs_scratch (xinsn))
    {
      rtx ptr_reg = gen_reg_rtx (Pmode);
      rtx constant = XEXP (XEXP (xinsn, 0), 1);

      emit_move_insn (ptr_reg, XEXP (XEXP (xinsn, 0), 0));

      result = gen_rtx_PLUS (Pmode, ptr_reg, constant);
      if (SMALL_INT (constant))
	return result;
      /* Otherwise we fall through so the code below will fix the 
         constant.  */
      xinsn = result;
    }

  if (GET_CODE (xinsn) == PLUS)
    {
      register rtx xplus0 = XEXP (xinsn, 0);
      register rtx xplus1 = XEXP (xinsn, 1);
      register enum rtx_code code0 = GET_CODE (xplus0);
      register enum rtx_code code1 = GET_CODE (xplus1);

      if (code0 != REG && code1 == REG)
	{
	  xplus0 = XEXP (xinsn, 1);
	  xplus1 = XEXP (xinsn, 0);
	  code0 = GET_CODE (xplus0);
	  code1 = GET_CODE (xplus1);
	}

      if (code0 == REG && REG_OK_FOR_BASE_P (xplus0)
	  && code1 == CONST_INT && !SMALL_INT (xplus1))
	{
	  rtx int_reg = gen_reg_rtx (Pmode);
	  rtx ptr_reg = gen_reg_rtx (Pmode);

	  emit_move_insn (int_reg, GEN_INT (INTVAL (xplus1) & ~0x7fff));

	  emit_insn (gen_rtx_SET (VOIDmode,
				  ptr_reg,
				  gen_rtx_PLUS (Pmode, xplus0, int_reg)));

	  result = gen_rtx_PLUS (Pmode, ptr_reg,
				 GEN_INT (INTVAL (xplus1) & 0x7fff));
	  return result;
	}

      if (code0 == REG && REG_OK_FOR_BASE_P (xplus0) && flag_pic == 2)
	{
	  if (reload_in_progress)
	    df_set_regs_ever_live (PIC_OFFSET_TABLE_REGNUM, true);
	  if (code1 == CONST)
	    {
	      xplus1 = XEXP (xplus1, 0);
	      code1 = GET_CODE (xplus1);
	    }
	  if (code1 == SYMBOL_REF)
	    {
	      result =
		gen_rtx_UNSPEC (Pmode, gen_rtvec (1, xplus1), UNSPEC_GOTOFF);
	      result = gen_rtx_CONST (Pmode, result);
	      result = gen_rtx_PLUS (Pmode, pic_offset_table_rtx, result);
	      result = gen_const_mem (Pmode, result);
	      result = gen_rtx_PLUS (Pmode, xplus0, result);
	      return result;
	    }
	}
    }

  if (GET_CODE (xinsn) == SYMBOL_REF)
    {
      if (reload_in_progress)
	df_set_regs_ever_live (PIC_OFFSET_TABLE_REGNUM, true);
      result = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, xinsn), UNSPEC_GOTOFF);
      result = gen_rtx_CONST (Pmode, result);
      result = gen_rtx_PLUS (Pmode, pic_offset_table_rtx, result);
      result = gen_const_mem (Pmode, result);
      return result;
    }

  return x;
}

/* Block Moves.  */

#define MAX_MOVE_REGS 8
#define MAX_MOVE_BYTES (MAX_MOVE_REGS * UNITS_PER_WORD)

/* Emit straight-line code to move LENGTH bytes from SRC to DEST.
   Assume that the areas do not overlap.  */

static void
microblaze_block_move_straight (rtx dest, rtx src, HOST_WIDE_INT length)
{
  HOST_WIDE_INT offset, delta;
  unsigned HOST_WIDE_INT bits;
  int i;
  enum machine_mode mode;
  rtx *regs;

  bits = BITS_PER_WORD;
  mode = mode_for_size (bits, MODE_INT, 0);
  delta = bits / BITS_PER_UNIT;

  /* Allocate a buffer for the temporary registers.  */
  regs = XALLOCAVEC (rtx, length / delta);

  /* Load as many BITS-sized chunks as possible.  Use a normal load if
     the source has enough alignment, otherwise use left/right pairs.  */
  for (offset = 0, i = 0; offset + delta <= length; offset += delta, i++)
    {
      regs[i] = gen_reg_rtx (mode);
      emit_move_insn (regs[i], adjust_address (src, mode, offset));
    }

  /* Copy the chunks to the destination.  */
  for (offset = 0, i = 0; offset + delta <= length; offset += delta, i++)
    emit_move_insn (adjust_address (dest, mode, offset), regs[i]);

  /* Mop up any left-over bytes.  */
  if (offset < length)
    {
      src = adjust_address (src, BLKmode, offset);
      dest = adjust_address (dest, BLKmode, offset);
      move_by_pieces (dest, src, length - offset,
		      MIN (MEM_ALIGN (src), MEM_ALIGN (dest)), 0);
    }
}

/* Helper function for doing a loop-based block operation on memory
   reference MEM.  Each iteration of the loop will operate on LENGTH
   bytes of MEM.

   Create a new base register for use within the loop and point it to
   the start of MEM.  Create a new memory reference that uses this
   register.  Store them in *LOOP_REG and *LOOP_MEM respectively.  */

static void
microblaze_adjust_block_mem (rtx mem, HOST_WIDE_INT length,
			     rtx * loop_reg, rtx * loop_mem)
{
  *loop_reg = copy_addr_to_reg (XEXP (mem, 0));

  /* Although the new mem does not refer to a known location,
     it does keep up to LENGTH bytes of alignment.  */
  *loop_mem = change_address (mem, BLKmode, *loop_reg);
  set_mem_align (*loop_mem,
		 MIN ((HOST_WIDE_INT) MEM_ALIGN (mem),
		      length * BITS_PER_UNIT));
}


/* Move LENGTH bytes from SRC to DEST using a loop that moves MAX_MOVE_BYTES
   per iteration.  LENGTH must be at least MAX_MOVE_BYTES.  Assume that the
   memory regions do not overlap.  */

static void
microblaze_block_move_loop (rtx dest, rtx src, HOST_WIDE_INT length)
{
  rtx label, src_reg, dest_reg, final_src;
  HOST_WIDE_INT leftover;

  leftover = length % MAX_MOVE_BYTES;
  length -= leftover;

  /* Create registers and memory references for use within the loop.  */
  microblaze_adjust_block_mem (src, MAX_MOVE_BYTES, &src_reg, &src);
  microblaze_adjust_block_mem (dest, MAX_MOVE_BYTES, &dest_reg, &dest);

  /* Calculate the value that SRC_REG should have after the last iteration
     of the loop.  */
  final_src = expand_simple_binop (Pmode, PLUS, src_reg, GEN_INT (length),
				   0, 0, OPTAB_WIDEN);

  /* Emit the start of the loop.  */
  label = gen_label_rtx ();
  emit_label (label);

  /* Emit the loop body.  */
  microblaze_block_move_straight (dest, src, MAX_MOVE_BYTES);

  /* Move on to the next block.  */
  emit_move_insn (src_reg, plus_constant (Pmode, src_reg, MAX_MOVE_BYTES));
  emit_move_insn (dest_reg, plus_constant (Pmode, dest_reg, MAX_MOVE_BYTES));

  /* Emit the test & branch.  */
  emit_insn (gen_cbranchsi4 (gen_rtx_NE (SImode, src_reg, final_src),
			     src_reg, final_src, label));

  /* Mop up any left-over bytes.  */
  if (leftover)
    microblaze_block_move_straight (dest, src, leftover);
}

/* Expand a movmemsi instruction.  */

bool
microblaze_expand_block_move (rtx dest, rtx src, rtx length, rtx align_rtx)
{

  if (GET_CODE (length) == CONST_INT)
    {
      HOST_WIDE_INT bytes = INTVAL (length);
      int align = INTVAL (align_rtx);

      if (align > UNITS_PER_WORD)
	{
	  align = UNITS_PER_WORD;	/* We can't do any better.  */
	}
      else if (align < UNITS_PER_WORD)
	{
	  if (INTVAL (length) <= MAX_MOVE_BYTES)
	    {
	      move_by_pieces (dest, src, bytes, align, 0);
	      return true;
	    }
	  else
	    return false;
	}

      if (INTVAL (length) <= 2 * MAX_MOVE_BYTES)
	{
	  microblaze_block_move_straight (dest, src, INTVAL (length));
	  return true;
	}
      else if (optimize)
	{
	  microblaze_block_move_loop (dest, src, INTVAL (length));
	  return true;
	}
    }
  return false;
}

static bool
microblaze_rtx_costs (rtx x, int code, int outer_code ATTRIBUTE_UNUSED,
		      int opno ATTRIBUTE_UNUSED, int *total,
		      bool speed ATTRIBUTE_UNUSED)
{
  enum machine_mode mode = GET_MODE (x);

  switch (code)
    {
    case MEM:
      {
	int num_words = (GET_MODE_SIZE (mode) > UNITS_PER_WORD) ? 2 : 1;
	if (simple_memory_operand (x, mode))
	  *total = COSTS_N_INSNS (2 * num_words);
	else
	  *total = COSTS_N_INSNS (2 * (2 * num_words));

	return true;
      }
    case NOT:
      {
	if (mode == DImode)
	  {
	    *total = COSTS_N_INSNS (2);
	  }
	else
	  *total = COSTS_N_INSNS (1);
	return false;
      }
    case AND:
    case IOR:
    case XOR:
      {
	if (mode == DImode)
	  {
	    *total = COSTS_N_INSNS (2);
	  }
	else
	  *total = COSTS_N_INSNS (1);

	return false;
      }
    case ASHIFT:
    case ASHIFTRT:
    case LSHIFTRT:
      {
	if (TARGET_BARREL_SHIFT)
	  {
	    if (MICROBLAZE_VERSION_COMPARE (microblaze_select_cpu, "v5.00.a")
		>= 0)
	      *total = COSTS_N_INSNS (1);
	    else
	      *total = COSTS_N_INSNS (2);
	  }
	else if (!TARGET_SOFT_MUL)
	  *total = COSTS_N_INSNS (1);
	else if (GET_CODE (XEXP (x, 1)) == CONST_INT)
	  {
	    /* Add 1 to make shift slightly more expensive than add.  */
	    *total = COSTS_N_INSNS (INTVAL (XEXP (x, 1))) + 1;
	    /* Reduce shift costs for special circumstances.  */
	    if (optimize_size && INTVAL (XEXP (x, 1)) > 5)
	      *total -= 2;
	    if (!optimize_size && INTVAL (XEXP (x, 1)) > 17)
	      *total -= 2;
	  }
	else
	  /* Double the worst cost of shifts when there is no barrel shifter and 
	     the shift amount is in a reg.  */
	  *total = COSTS_N_INSNS (32 * 4);
	return true;
      }
    case PLUS:
    case MINUS:
      {
	if (mode == SFmode || mode == DFmode)
	  {
	    if (TARGET_HARD_FLOAT)
	      *total = COSTS_N_INSNS (6);
	    return true;
	  }
	else if (mode == DImode)
	  {
	    *total = COSTS_N_INSNS (4);
	    return true;
	  }
	else
	  {
	    *total = COSTS_N_INSNS (1);
	    return true;
	  }

	return false;
      }
    case NEG:
      {
	if (mode == DImode)
	  *total = COSTS_N_INSNS (4);

	return false;
      }
    case MULT:
      {
	if (mode == SFmode)
	  {
	    if (TARGET_HARD_FLOAT)
	      *total = COSTS_N_INSNS (6);
	  }
	else if (!TARGET_SOFT_MUL)
	  {
	    if (MICROBLAZE_VERSION_COMPARE (microblaze_select_cpu, "v5.00.a")
		>= 0)
	      *total = COSTS_N_INSNS (1);
	    else
	      *total = COSTS_N_INSNS (3);
	  }
	else
	  *total = COSTS_N_INSNS (10);
	return true;
      }
    case DIV:
    case UDIV:
      {
	if (mode == SFmode)
	  {
	    if (TARGET_HARD_FLOAT)
	      *total = COSTS_N_INSNS (23);
	  }
	return false;
      }
    case SIGN_EXTEND:
      {
	*total = COSTS_N_INSNS (1);
	return false;
      }
    case ZERO_EXTEND:
      {
	*total = COSTS_N_INSNS (1);
	return false;
      }
    }

  return false;
}

/* Return the number of instructions needed to load or store a value
   of mode MODE at X.  Return 0 if X isn't valid for MODE.  */

static int
microblaze_address_insns (rtx x, enum machine_mode mode)
{
  struct microblaze_address_info addr;

  if (microblaze_classify_address (&addr, x, mode, false))
    {
      switch (addr.type)
	{
	case ADDRESS_REG:
	  if (SMALL_INT (addr.offset))
	    return 1;
	  else
	    return 2;
	case ADDRESS_CONST_INT:
	  if (SMALL_INT (x))
	    return 1;
	  else
	    return 2;
	case ADDRESS_REG_INDEX:
	case ADDRESS_SYMBOLIC:
	  return 1;
	case ADDRESS_GOTOFF:
	  return 2;
	default:
	  break;
	}
    }
  return 0;
}

/* Provide the costs of an addressing mode that contains ADDR.
   If ADDR is not a valid address, its cost is irrelevant.  */
static int
microblaze_address_cost (rtx addr, bool speed ATTRIBUTE_UNUSED)
{
  return COSTS_N_INSNS (microblaze_address_insns (addr, GET_MODE (addr)));
}

/* Return nonzero if X is an address which needs a temporary register when 
   reloaded while generating PIC code.  */

int
pic_address_needs_scratch (rtx x)
{
  /* An address which is a symbolic plus a non SMALL_INT needs a temp reg.  */
  if (GET_CODE (x) == CONST && GET_CODE (XEXP (x, 0)) == PLUS
      && GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF
      && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
      && (flag_pic == 2 || !SMALL_INT (XEXP (XEXP (x, 0), 1))))
    return 1;

  return 0;
}

/* Argument support functions.  */
/* Initialize CUMULATIVE_ARGS for a function.  */

void
init_cumulative_args (CUMULATIVE_ARGS * cum, tree fntype,
		      rtx libname ATTRIBUTE_UNUSED)
{
  static CUMULATIVE_ARGS zero_cum;
  tree param, next_param;

  *cum = zero_cum;

  /* Determine if this function has variable arguments.  This is
     indicated by the last argument being 'void_type_mode' if there
     are no variable arguments.  The standard MicroBlaze calling sequence
     passes all arguments in the general purpose registers in this case. */

  for (param = fntype ? TYPE_ARG_TYPES (fntype) : 0;
       param != 0; param = next_param)
    {
      next_param = TREE_CHAIN (param);
      if (next_param == 0 && TREE_VALUE (param) != void_type_node)
	cum->gp_reg_found = 1;
    }
}

/* Advance the argument to the next argument position.  */

static void
microblaze_function_arg_advance (cumulative_args_t cum_v,
				 enum machine_mode mode,
				 const_tree type, bool named ATTRIBUTE_UNUSED)
{
  CUMULATIVE_ARGS *cum = get_cumulative_args (cum_v);

  cum->arg_number++;
  switch (mode)
    {
    case VOIDmode:
      break;

    default:
      gcc_assert (GET_MODE_CLASS (mode) == MODE_COMPLEX_INT
	  || GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT);

      cum->gp_reg_found = 1;
      cum->arg_words += ((GET_MODE_SIZE (mode) + UNITS_PER_WORD - 1)
			 / UNITS_PER_WORD);
      break;

    case BLKmode:
      cum->gp_reg_found = 1;
      cum->arg_words += ((int_size_in_bytes (type) + UNITS_PER_WORD - 1)
			 / UNITS_PER_WORD);
      break;

    case SFmode:
      cum->arg_words++;
      if (!cum->gp_reg_found && cum->arg_number <= 2)
	cum->fp_code += 1 << ((cum->arg_number - 1) * 2);
      break;

    case DFmode:
      cum->arg_words += 2;
      if (!cum->gp_reg_found && cum->arg_number <= 2)
	cum->fp_code += 2 << ((cum->arg_number - 1) * 2);
      break;

    case DImode:
      cum->gp_reg_found = 1;
      cum->arg_words += 2;
      break;

    case QImode:
    case HImode:
    case SImode:
    case TImode:
      cum->gp_reg_found = 1;
      cum->arg_words++;
      break;
    }
}

/* Return an RTL expression containing the register for the given mode,
   or 0 if the argument is to be passed on the stack.  */

static rtx
microblaze_function_arg (cumulative_args_t cum_v, enum machine_mode mode, 
			 const_tree type ATTRIBUTE_UNUSED,
			 bool named ATTRIBUTE_UNUSED)
{
  CUMULATIVE_ARGS *cum = get_cumulative_args (cum_v);

  rtx ret;
  int regbase = -1;
  int *arg_words = &cum->arg_words;

  cum->last_arg_fp = 0;
  switch (mode)
    {
    case SFmode:
    case DFmode:
    case VOIDmode:
    case QImode:
    case HImode:
    case SImode:
    case DImode:
    case TImode:
      regbase = GP_ARG_FIRST;
      break;
    default:
      gcc_assert (GET_MODE_CLASS (mode) == MODE_COMPLEX_INT
	  || GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT);
      /* Drops through.  */
    case BLKmode:
      regbase = GP_ARG_FIRST;
      break;
    }

  if (*arg_words >= MAX_ARGS_IN_REGISTERS)
    ret = 0;
  else
    {
      gcc_assert (regbase != -1);

      ret = gen_rtx_REG (mode, regbase + *arg_words);
    }

  if (mode == VOIDmode)
    {
      if (cum->num_adjusts > 0)
	ret = gen_rtx_PARALLEL ((enum machine_mode) cum->fp_code,
				gen_rtvec_v (cum->num_adjusts, cum->adjust));
    }

  return ret;
}

/* Return number of bytes of argument to put in registers. */
static int
function_arg_partial_bytes (cumulative_args_t cum_v, enum machine_mode mode,	
			    tree type, bool named ATTRIBUTE_UNUSED)	
{
  CUMULATIVE_ARGS *cum = get_cumulative_args (cum_v);

  if ((mode == BLKmode
       || GET_MODE_CLASS (mode) != MODE_COMPLEX_INT
       || GET_MODE_CLASS (mode) != MODE_COMPLEX_FLOAT)
      && cum->arg_words < MAX_ARGS_IN_REGISTERS)
    {
      int words;
      if (mode == BLKmode)
	words = ((int_size_in_bytes (type) + UNITS_PER_WORD - 1)
		 / UNITS_PER_WORD);
      else
	words = (GET_MODE_SIZE (mode) + UNITS_PER_WORD - 1) / UNITS_PER_WORD;

      if (words + cum->arg_words <= MAX_ARGS_IN_REGISTERS)
	return 0;		/* structure fits in registers */

      return (MAX_ARGS_IN_REGISTERS - cum->arg_words) * UNITS_PER_WORD;
    }

  else if (mode == DImode && cum->arg_words == MAX_ARGS_IN_REGISTERS - 1)
    return UNITS_PER_WORD;

  return 0;
}

/*  Convert a version number of the form "vX.YY.Z" to an integer encoding 
    for easier range comparison.  */
static int
microblaze_version_to_int (const char *version)
{
  const char *p, *v;
  const char *tmpl = "vX.YY.Z";
  int iver = 0;

  p = version;
  v = tmpl;

  while (*v)
    {
      if (*v == 'X')
	{			/* Looking for major  */
	  if (!(*p >= '0' && *p <= '9'))
	    return -1;
	  iver += (int) (*p - '0');
	  iver *= 10;
	}
      else if (*v == 'Y')
	{			/* Looking for minor  */
	  if (!(*p >= '0' && *p <= '9'))
	    return -1;
	  iver += (int) (*p - '0');
	  iver *= 10;
	}
      else if (*v == 'Z')
	{			/* Looking for compat  */
	  if (!(*p >= 'a' && *p <= 'z'))
	    return -1;
	  iver *= 10;
	  iver += (int) (*p - 'a');
	}
      else
	{
	  if (*p != *v)
	    return -1;
	}

      v++;
      p++;
    }

  if (*p)
    return -1;

  return iver;
}


static void
microblaze_option_override (void)
{
  register int i, start;
  register int regno;
  register enum machine_mode mode;
  int ver;

  microblaze_section_threshold = (global_options_set.x_g_switch_value
				  ? g_switch_value
				  : MICROBLAZE_DEFAULT_GVALUE);

  /* Check the MicroBlaze CPU version for any special action to be done.  */
  if (microblaze_select_cpu == NULL)
    microblaze_select_cpu = MICROBLAZE_DEFAULT_CPU;
  ver = microblaze_version_to_int (microblaze_select_cpu);
  if (ver == -1)
    {
      error ("%qs is an invalid argument to -mcpu=", microblaze_select_cpu);
    }

  ver = MICROBLAZE_VERSION_COMPARE (microblaze_select_cpu, "v3.00.a");
  if (ver < 0)
    {
      /* No hardware exceptions in earlier versions. So no worries.  */
#if 0
      microblaze_select_flags &= ~(MICROBLAZE_MASK_NO_UNSAFE_DELAY);
#endif
      microblaze_no_unsafe_delay = 0;
      microblaze_pipe = MICROBLAZE_PIPE_3;
    }
  else if (ver == 0
	   || (MICROBLAZE_VERSION_COMPARE (microblaze_select_cpu, "v4.00.b")
	       == 0))
    {
#if 0
      microblaze_select_flags |= (MICROBLAZE_MASK_NO_UNSAFE_DELAY);
#endif
      microblaze_no_unsafe_delay = 1;
      microblaze_pipe = MICROBLAZE_PIPE_3;
    }
  else
    {
      /* We agree to use 5 pipe-stage model even on area optimized 3 
         pipe-stage variants.  */
#if 0
      microblaze_select_flags &= ~(MICROBLAZE_MASK_NO_UNSAFE_DELAY);
#endif
      microblaze_no_unsafe_delay = 0;
      microblaze_pipe = MICROBLAZE_PIPE_5;
      if (MICROBLAZE_VERSION_COMPARE (microblaze_select_cpu, "v5.00.a") == 0
	  || MICROBLAZE_VERSION_COMPARE (microblaze_select_cpu,
					 "v5.00.b") == 0
	  || MICROBLAZE_VERSION_COMPARE (microblaze_select_cpu,
					 "v5.00.c") == 0)
	{
	  /* Pattern compares are to be turned on by default only when 
 	     compiling for MB v5.00.'z'.  */
	  target_flags |= MASK_PATTERN_COMPARE;
	}
    }

  ver = MICROBLAZE_VERSION_COMPARE (microblaze_select_cpu, "v6.00.a");
  if (ver < 0)
    {
      if (TARGET_MULTIPLY_HIGH)
	warning (0,
		 "-mxl-multiply-high can be used only with -mcpu=v6.00.a or greater");
    }

  if (TARGET_MULTIPLY_HIGH && TARGET_SOFT_MUL)
    error ("-mxl-multiply-high requires -mno-xl-soft-mul");

  /* Always use DFA scheduler.  */
  microblaze_sched_use_dfa = 1;

#if 0
  microblaze_abicalls = MICROBLAZE_ABICALLS_NO;
#endif

  /* Initialize the high, low values for legit floating point constants.  */
  real_maxval (&dfhigh, 0, DFmode);
  real_maxval (&dflow, 1, DFmode);
  real_maxval (&sfhigh, 0, SFmode);
  real_maxval (&sflow, 1, SFmode);

  microblaze_print_operand_punct['?'] = 1;
  microblaze_print_operand_punct['#'] = 1;
  microblaze_print_operand_punct['&'] = 1;
  microblaze_print_operand_punct['!'] = 1;
  microblaze_print_operand_punct['*'] = 1;
  microblaze_print_operand_punct['@'] = 1;
  microblaze_print_operand_punct['.'] = 1;
  microblaze_print_operand_punct['('] = 1;
  microblaze_print_operand_punct[')'] = 1;
  microblaze_print_operand_punct['['] = 1;
  microblaze_print_operand_punct[']'] = 1;
  microblaze_print_operand_punct['<'] = 1;
  microblaze_print_operand_punct['>'] = 1;
  microblaze_print_operand_punct['{'] = 1;
  microblaze_print_operand_punct['}'] = 1;
  microblaze_print_operand_punct['^'] = 1;
  microblaze_print_operand_punct['$'] = 1;
  microblaze_print_operand_punct['+'] = 1;

  /* Set up array to map GCC register number to debug register number.
     Ignore the special purpose register numbers.  */

  for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
    microblaze_dbx_regno[i] = -1;

  start = GP_DBX_FIRST - GP_REG_FIRST;
  for (i = GP_REG_FIRST; i <= GP_REG_LAST; i++)
    microblaze_dbx_regno[i] = i + start;

  /* Set up array giving whether a given register can hold a given mode.   */

  for (mode = VOIDmode;
       mode != MAX_MACHINE_MODE; mode = (enum machine_mode) ((int) mode + 1))
    {
      register int size = GET_MODE_SIZE (mode);

      for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
	{
	  register int ok;

	  if (mode == CCmode)
	    {
	      ok = (ST_REG_P (regno) || GP_REG_P (regno));
	    }
	  else if (GP_REG_P (regno))
	    ok = ((regno & 1) == 0 || size <= UNITS_PER_WORD);
	  else
	    ok = 0;

	  microblaze_hard_regno_mode_ok[(int) mode][regno] = ok;
	}
    }
}

/* Return true if FUNC is an interrupt function as specified
   by the "interrupt_handler" attribute.  */

static int
microblaze_interrupt_function_p (tree func)
{
  tree a;

  if (TREE_CODE (func) != FUNCTION_DECL)
    return 0;

  a = lookup_attribute ("interrupt_handler", DECL_ATTRIBUTES (func));
  return a != NULL_TREE;
}

/* Return true if FUNC is an interrupt function which uses
   normal return, indicated by the "save_volatiles" attribute.  */

static int
microblaze_save_volatiles (tree func)
{
  tree a;

  if (TREE_CODE (func) != FUNCTION_DECL)
    return 0;

  a = lookup_attribute ("save_volatiles", DECL_ATTRIBUTES (func));
  return a != NULL_TREE;
}

/* Return whether function is tagged with 'interrupt_handler'
   attribute.  Return true if function should use return from
   interrupt rather than normal function return.  */
int
microblaze_is_interrupt_handler (void)
{
  return interrupt_handler;
}

/* Determine of register must be saved/restored in call.  */
static int
microblaze_must_save_register (int regno)
{
  if (pic_offset_table_rtx &&
      (regno == MB_ABI_PIC_ADDR_REGNUM) && df_regs_ever_live_p (regno))
    return 1;

  if (df_regs_ever_live_p (regno) && !call_used_regs[regno])
    return 1;

  if (frame_pointer_needed && (regno == HARD_FRAME_POINTER_REGNUM))
    return 1;

  if (!crtl->is_leaf)
    {
      if (regno == MB_ABI_SUB_RETURN_ADDR_REGNUM)
	return 1;
      if ((interrupt_handler || save_volatiles) &&
	  (regno >= 3 && regno <= 12))
	return 1;
    }

  if (interrupt_handler)
    {
      if (df_regs_ever_live_p (regno) 
	  || regno == MB_ABI_MSR_SAVE_REG
	  || regno == MB_ABI_ASM_TEMP_REGNUM
	  || regno == MB_ABI_EXCEPTION_RETURN_ADDR_REGNUM)
	return 1;
    }

  if (save_volatiles)
    {
      if (df_regs_ever_live_p (regno)
	  || regno == MB_ABI_ASM_TEMP_REGNUM
	  || regno == MB_ABI_EXCEPTION_RETURN_ADDR_REGNUM)
	return 1;
    }

  return 0;
}

/* Return the bytes needed to compute the frame pointer from the current
   stack pointer.

   MicroBlaze stack frames look like:



             Before call		        After call
        +-----------------------+	+-----------------------+
   high |			|       |      			|
   mem. |  local variables,     |	|  local variables,	|
        |  callee saved and     |       |  callee saved and    	|
	|  temps     		|       |  temps     	        |
        +-----------------------+	+-----------------------+
        |  arguments for called	|       |  arguments for called |
	|  subroutines		|	|  subroutines  	|
        |  (optional)           |       |  (optional)           |
        +-----------------------+	+-----------------------+
	|  Link register 	|	|  Link register        |
    SP->|                       |       |                       |
	+-----------------------+       +-----------------------+
					|		        |
                                        |  local variables,     |
                                        |  callee saved and     |
                                        |  temps                |
					+-----------------------+
                                        |   MSR (optional if,   |
                                        |   interrupt handler)  |
					+-----------------------+
					|			|
                                        |  alloca allocations   |
        				|			|
					+-----------------------+
					|			|
                                        |  arguments for called |
                                        |  subroutines          |
                                        |  (optional)           |
        				|		        |
					+-----------------------+
                                        |  Link register        |
   low                           FP,SP->|                       |
   memory        			+-----------------------+

*/

static HOST_WIDE_INT
compute_frame_size (HOST_WIDE_INT size)	
{
  int regno;
  HOST_WIDE_INT total_size;	/* # bytes that the entire frame takes up.  */
  HOST_WIDE_INT var_size;	/* # bytes that local variables take up.  */
  HOST_WIDE_INT args_size;	/* # bytes that outgoing arguments take up.  */
  int link_debug_size;		/* # bytes for link register.  */
  HOST_WIDE_INT gp_reg_size;	/* # bytes needed to store calle-saved gp regs.  */
  long mask;			/* mask of saved gp registers.  */

  interrupt_handler =
    microblaze_interrupt_function_p (current_function_decl);
  save_volatiles = microblaze_save_volatiles (current_function_decl);

  gp_reg_size = 0;
  mask = 0;
  var_size = size;
  args_size = crtl->outgoing_args_size;

  if ((args_size == 0) && cfun->calls_alloca)
    args_size = NUM_OF_ARGS * UNITS_PER_WORD;

  total_size = var_size + args_size;

  if (flag_pic == 2)
    /* force setting GOT.  */
    df_set_regs_ever_live (MB_ABI_PIC_ADDR_REGNUM, true);

  /* Calculate space needed for gp registers.  */
  for (regno = GP_REG_FIRST; regno <= GP_REG_LAST; regno++)
    {
      if (microblaze_must_save_register (regno))
	{

	  if (regno != MB_ABI_SUB_RETURN_ADDR_REGNUM)
	    /* Don't account for link register. It is accounted specially below.  */
	    gp_reg_size += GET_MODE_SIZE (SImode);

	  mask |= (1L << (regno - GP_REG_FIRST));
	}
    }

  total_size += gp_reg_size;

  /* Add 4 bytes for MSR.  */
  if (interrupt_handler)
    total_size += 4;

  /* No space to be allocated for link register in leaf functions with no other
     stack requirements.  */
  if (total_size == 0 && crtl->is_leaf)
    link_debug_size = 0;
  else
    link_debug_size = UNITS_PER_WORD;

  total_size += link_debug_size;

  /* Save other computed information.  */
  current_frame_info.total_size = total_size;
  current_frame_info.var_size = var_size;
  current_frame_info.args_size = args_size;
  current_frame_info.gp_reg_size = gp_reg_size;
  current_frame_info.mask = mask;
  current_frame_info.initialized = reload_completed;
  current_frame_info.num_gp = gp_reg_size / UNITS_PER_WORD;
  current_frame_info.link_debug_size = link_debug_size;

  if (mask)
    /* Offset from which to callee-save GP regs.  */
    current_frame_info.gp_offset = (total_size - gp_reg_size);
  else
    current_frame_info.gp_offset = 0;

  /* Ok, we're done.  */
  return total_size;
}

/* Make sure that we're not trying to eliminate to the wrong hard frame
   pointer.  */

static bool
microblaze_can_eliminate (const int from, const int to)
{
  return ((from == RETURN_ADDRESS_POINTER_REGNUM && !leaf_function_p())
   	  || (to == MB_ABI_SUB_RETURN_ADDR_REGNUM && leaf_function_p())
  	  || (from != RETURN_ADDRESS_POINTER_REGNUM
   	      && (to == HARD_FRAME_POINTER_REGNUM
		  || (to == STACK_POINTER_REGNUM && !frame_pointer_needed))));
}

/* Implement INITIAL_ELIMINATION_OFFSET.  FROM is either the frame
   pointer or argument pointer or the return address pointer.  TO is either 
   the stack pointer or hard frame pointer.  */

HOST_WIDE_INT
microblaze_initial_elimination_offset (int from, int to)
{
  HOST_WIDE_INT offset;

  switch (from)
    {
    case FRAME_POINTER_REGNUM:
      offset = 0;
      break;
    case ARG_POINTER_REGNUM:
      if (to == STACK_POINTER_REGNUM || to == HARD_FRAME_POINTER_REGNUM)
	offset = compute_frame_size (get_frame_size ());
      else
	gcc_unreachable ();
      break;
    case RETURN_ADDRESS_POINTER_REGNUM:
      if (crtl->is_leaf)
	offset = 0;
      else
	offset = current_frame_info.gp_offset +
	  ((UNITS_PER_WORD - (POINTER_SIZE / BITS_PER_UNIT)));
      break;
    default:
      gcc_unreachable ();
    }
  return offset;
}

/* Print operands using format code.
 
   The MicroBlaze specific codes are:

   'X'  X is CONST_INT, prints 32 bits in hexadecimal format = "0x%08x",
   'x'  X is CONST_INT, prints 16 bits in hexadecimal format = "0x%04x",
   'F'  op is CONST_DOUBLE, print 32 bits in hex,
   'd'  output integer constant in decimal,
   'z'	if the operand is 0, use $0 instead of normal operand.
   'D'  print second register of double-word register operand.
   'L'  print low-order register of double-word register operand.
   'M'  print high-order register of double-word register operand.
   'C'  print part of opcode for a branch condition.
   'N'  print part of opcode for a branch condition, inverted.
   'S'  X is CODE_LABEL, print with prefix of "LS" (for embedded switch).
   'B'  print 'z' for EQ, 'n' for NE
   'b'  print 'n' for EQ, 'z' for NE
   'T'  print 'f' for EQ, 't' for NE
   't'  print 't' for EQ, 'f' for NE
   'm'  Print 1<<operand.
   'i'  Print 'i' if MEM operand has immediate value
   'o'	Print operand address+4
   '?'	Print 'd' if we use a branch with delay slot instead of normal branch.
   'h'  Print high word of const_double (int or float) value as hex
   'j'  Print low word of const_double (int or float) value as hex
   's'  Print -1 if operand is negative, 0 if positive (sign extend)
   '@'	Print the name of the temporary register (rMB_ABI_ASM_TEMP_REGNUM).
   '#'	Print nop if the delay slot of a branch is not filled. 
*/

void
print_operand (FILE * file, rtx op, int letter)
{
  register enum rtx_code code;

  if (PRINT_OPERAND_PUNCT_VALID_P (letter))
    {
      switch (letter)
	{
	case '?':
	  /* Conditionally add a 'd' to indicate filled delay slot.  */
	  if (final_sequence != NULL)
	    fputs ("d", file);
	  break;

	case '#':
	  /* Conditionally add a nop in unfilled delay slot.  */
	  if (final_sequence == NULL)
	    fputs ("nop\t\t# Unfilled delay slot\n", file);
	  break;

	case '@':
	  fputs (reg_names[GP_REG_FIRST + MB_ABI_ASM_TEMP_REGNUM], file);
	  break;

	default:
	  output_operand_lossage ("unknown punctuation '%c'", letter);
	  break;
	}

      return;
    }

  if (!op)
    {
      output_operand_lossage ("null pointer");
      return;
    }

  code = GET_CODE (op);

  if (code == SIGN_EXTEND)
    op = XEXP (op, 0), code = GET_CODE (op);

  if (letter == 'C')
    switch (code)
      {
      case EQ:
	fputs ("eq", file);
	break;
      case NE:
	fputs ("ne", file);
	break;
      case GT:
      case GTU:
	fputs ("gt", file);
	break;
      case GE:
      case GEU:
	fputs ("ge", file);
	break;
      case LT:
      case LTU:
	fputs ("lt", file);
	break;
      case LE:
      case LEU:
	fputs ("le", file);
	break;
      default:
	fatal_insn ("PRINT_OPERAND, invalid insn for %%C", op);
      }

  else if (letter == 'N')
    switch (code)
      {
      case EQ:
	fputs ("ne", file);
	break;
      case NE:
	fputs ("eq", file);
	break;
      case GT:
      case GTU:
	fputs ("le", file);
	break;
      case GE:
      case GEU:
	fputs ("lt", file);
	break;
      case LT:
      case LTU:
	fputs ("ge", file);
	break;
      case LE:
      case LEU:
	fputs ("gt", file);
	break;
      default:
	fatal_insn ("PRINT_OPERAND, invalid insn for %%N", op);
      }

  else if (letter == 'S')
    {
      char buffer[100];

      ASM_GENERATE_INTERNAL_LABEL (buffer, "LS", CODE_LABEL_NUMBER (op));
      assemble_name (file, buffer);
    }

  /* Print 'i' for memory operands which have immediate values.  */
  else if (letter == 'i')
    {
      if (code == MEM)
	{
	  struct microblaze_address_info info;

	  if (!microblaze_classify_address
	      (&info, XEXP (op, 0), GET_MODE (op), 1))
	    fatal_insn ("insn contains an invalid address !", op);

	  switch (info.type)
	    {
	    case ADDRESS_REG:
	    case ADDRESS_CONST_INT:
	    case ADDRESS_SYMBOLIC:
	    case ADDRESS_GOTOFF:
	      fputs ("i", file);
	      break;
	    case ADDRESS_REG_INDEX:
	      break;
	    case ADDRESS_INVALID:
	    case ADDRESS_PLT:
	      fatal_insn ("invalid address", op);
	    }
	}
    }

  else if (code == REG || code == SUBREG)
    {
      register int regnum;

      if (code == REG)
	regnum = REGNO (op);
      else
	regnum = true_regnum (op);

      if ((letter == 'M' && !WORDS_BIG_ENDIAN)
	  || (letter == 'L' && WORDS_BIG_ENDIAN) || letter == 'D')
	regnum++;

      fprintf (file, "%s", reg_names[regnum]);
    }

  else if (code == MEM)
    if (letter == 'o')
      {
	rtx op4 = adjust_address (op, GET_MODE (op), 4);
	output_address (XEXP (op4, 0));
      }
    else
      output_address (XEXP (op, 0));

  else if (letter == 'h' || letter == 'j')
    {
      long val[2];
      if (code == CONST_DOUBLE)
	{
	  if (GET_MODE (op) == DFmode)
	    {
	      REAL_VALUE_TYPE value;
	      REAL_VALUE_FROM_CONST_DOUBLE (value, op);
	      REAL_VALUE_TO_TARGET_DOUBLE (value, val);
	    }
	  else
	    {
	      val[0] = CONST_DOUBLE_HIGH (op);
	      val[1] = CONST_DOUBLE_LOW (op);
	    }
	}
      else if (code == CONST_INT)
        {
	  val[0] = (INTVAL (op) & 0xffffffff00000000LL) >> 32;
	  val[1] = INTVAL (op) & 0x00000000ffffffffLL;
	  if (val[0] == 0 && val[1] < 0)
	    val[0] = -1;
	    
        }
      fprintf (file, "0x%8.8lx", (letter == 'h') ? val[0] : val[1]);
    }
  else if (code == CONST_DOUBLE)
    {
      if (letter == 'F')
	{
	  unsigned long value_long;
	  REAL_VALUE_TYPE value;
	  REAL_VALUE_FROM_CONST_DOUBLE (value, op);
	  REAL_VALUE_TO_TARGET_SINGLE (value, value_long);
	  fprintf (file, HOST_WIDE_INT_PRINT_HEX, value_long);
	}
      else
	{
	  char s[60];
	  real_to_decimal (s, CONST_DOUBLE_REAL_VALUE (op), sizeof (s), 0, 1);
	  fputs (s, file);
	}
    }

  else if (code == UNSPEC)
    {
      print_operand_address (file, op);
    }

  else if (letter == 'x' && GET_CODE (op) == CONST_INT)
    fprintf (file, HOST_WIDE_INT_PRINT_HEX, 0xffff & INTVAL (op));

  else if (letter == 'X' && GET_CODE (op) == CONST_INT)
    fprintf (file, HOST_WIDE_INT_PRINT_HEX, INTVAL (op));

  else if (letter == 'd' && GET_CODE (op) == CONST_INT)
    fprintf (file, HOST_WIDE_INT_PRINT_DEC, (INTVAL (op)));

  else if (letter == 'z' && GET_CODE (op) == CONST_INT && INTVAL (op) == 0)
    fputs (reg_names[GP_REG_FIRST], file);

  else if (letter == 's' && GET_CODE (op) == CONST_INT)
    if (INTVAL (op) < 0)
      fputs ("-1", file);
    else
      fputs ("0", file);

  else if (letter == 'd' || letter == 'x' || letter == 'X' || letter == 's')
    output_operand_lossage ("letter %c was found & insn was not CONST_INT", letter);

  else if (letter == 'B')
    fputs (code == EQ ? "z" : "n", file);
  else if (letter == 'b')
    fputs (code == EQ ? "n" : "z", file);
  else if (letter == 'T')
    fputs (code == EQ ? "f" : "t", file);
  else if (letter == 't')
    fputs (code == EQ ? "t" : "f", file);

  else if (code == CONST && GET_CODE (XEXP (op, 0)) == REG)
    {
      print_operand (file, XEXP (op, 0), letter);
    }
  else if (letter == 'm')
    fprintf (file, HOST_WIDE_INT_PRINT_DEC, (1L << INTVAL (op)));
  else
    output_addr_const (file, op);
}

/* A C compound statement to output to stdio stream STREAM the
   assembler syntax for an instruction operand that is a memory
   reference whose address is ADDR.  ADDR is an RTL expression.

   Possible address classifications and output formats are,
   
   ADDRESS_REG                  "%0, r0"

   ADDRESS_REG with non-zero    "%0, <addr_const>"
   offset       

   ADDRESS_REG_INDEX            "rA, RB"    
                                (if rA is r0, rA and rB are swapped)

   ADDRESS_CONST_INT            "r0, <addr_const>"

   ADDRESS_SYMBOLIC             "rBase, <addr_const>"   
                                (rBase is a base register suitable for the 
				 symbol's type)
*/

void
print_operand_address (FILE * file, rtx addr)
{
  struct microblaze_address_info info;
  enum microblaze_address_type type;
  if (!microblaze_classify_address (&info, addr, GET_MODE (addr), 1))
    fatal_insn ("insn contains an invalid address !", addr);

  type = info.type;
  switch (info.type)
    {
    case ADDRESS_REG:
      fprintf (file, "%s,", reg_names[REGNO (info.regA)]);
      output_addr_const (file, info.offset);
      break;
    case ADDRESS_REG_INDEX:
      if (REGNO (info.regA) == 0)
	/* Make rB == r0 instead of rA == r0. This helps reduce read port 
           congestion.  */
	fprintf (file, "%s,%s", reg_names[REGNO (info.regB)],
		 reg_names[REGNO (info.regA)]);
      else if (REGNO (info.regB) != 0)
	/* This is a silly swap to help Dhrystone.  */
	fprintf (file, "%s,%s", reg_names[REGNO (info.regB)],
		 reg_names[REGNO (info.regA)]);
      break;
    case ADDRESS_CONST_INT:
      fprintf (file, "%s,", reg_names[REGNO (info.regA)]);
      output_addr_const (file, info.offset);
      break;
    case ADDRESS_SYMBOLIC:
    case ADDRESS_GOTOFF:
    case ADDRESS_PLT:
      if (info.regA)
	fprintf (file, "%s,", reg_names[REGNO (info.regA)]);
      output_addr_const (file, info.symbol);
      if (type == ADDRESS_GOTOFF)
	{
	  fputs ("@GOT", file);
	}
      else if (type == ADDRESS_PLT)
	{
	  fputs ("@PLT", file);
	}
      break;
    case ADDRESS_INVALID:
      fatal_insn ("invalid address", addr);
      break;
    }
}

/* Emit either a label, .comm, or .lcomm directive, and mark that the symbol
   is used, so that we don't emit an .extern for it in 
   microblaze_asm_file_end.  */

void
microblaze_declare_object (FILE * stream, const char *name,
			   const char *section, const char *fmt, int size)
{

  fputs (section, stream);	
  assemble_name (stream, name);
  fprintf (stream, fmt, size);
}

/* Common code to emit the insns (or to write the instructions to a file)
   to save/restore registers.

   Other parts of the code assume that MICROBLAZE_TEMP1_REGNUM (aka large_reg)
   is not modified within save_restore_insns.  */

#define BITSET_P(VALUE,BIT) (((VALUE) & (1L << (BIT))) != 0)

/* Save or restore instructions based on whether this is the prologue or 
   epilogue.  prologue is 1 for the prologue.  */
static void
save_restore_insns (int prologue)
{
  rtx base_reg_rtx, reg_rtx, mem_rtx, /* msr_rtx, */ isr_reg_rtx =
    0, isr_mem_rtx = 0;
  rtx isr_msr_rtx = 0, insn;
  long mask = current_frame_info.mask;
  HOST_WIDE_INT gp_offset;
  int regno;

  if (frame_pointer_needed
      && !BITSET_P (mask, HARD_FRAME_POINTER_REGNUM - GP_REG_FIRST))
    gcc_unreachable ();

  if (mask == 0)
    return;

  /* Save registers starting from high to low.  The debuggers prefer at least
     the return register be stored at func+4, and also it allows us not to
     need a nop in the epilog if at least one register is reloaded in
     addition to return address.  */

  /* Pick which pointer to use as a base register.  For small frames, just
     use the stack pointer.  Otherwise, use a temporary register.  Save 2
     cycles if the save area is near the end of a large frame, by reusing
     the constant created in the prologue/epilogue to adjust the stack
     frame.  */

  gp_offset = current_frame_info.gp_offset;

  gcc_assert (gp_offset > 0);

  base_reg_rtx = stack_pointer_rtx;

  /* For interrupt_handlers, need to save/restore the MSR.  */
  if (interrupt_handler)
    {
      isr_mem_rtx = gen_rtx_MEM (SImode,
				 gen_rtx_PLUS (Pmode, base_reg_rtx,
					       GEN_INT (current_frame_info.
							gp_offset -
							UNITS_PER_WORD)));

      /* Do not optimize in flow analysis.  */
      MEM_VOLATILE_P (isr_mem_rtx) = 1;
      isr_reg_rtx = gen_rtx_REG (SImode, MB_ABI_MSR_SAVE_REG);
      isr_msr_rtx = gen_rtx_REG (SImode, ST_REG);
    }

  if (interrupt_handler && !prologue)
    {
      emit_move_insn (isr_reg_rtx, isr_mem_rtx);
      emit_move_insn (isr_msr_rtx, isr_reg_rtx);
      /* Do not optimize in flow analysis.  */
      emit_insn (gen_rtx_USE (SImode, isr_reg_rtx));
      emit_insn (gen_rtx_USE (SImode, isr_msr_rtx));
    }

  for (regno = GP_REG_FIRST; regno <= GP_REG_LAST; regno++)
    {
      if (BITSET_P (mask, regno - GP_REG_FIRST))
	{
	  if (regno == MB_ABI_SUB_RETURN_ADDR_REGNUM)
	    /* Don't handle here. Already handled as the first register.  */
	    continue;

	  reg_rtx = gen_rtx_REG (SImode, regno);
	  insn = gen_rtx_PLUS (Pmode, base_reg_rtx, GEN_INT (gp_offset));
	  mem_rtx = gen_rtx_MEM (SImode, insn);
	  if (interrupt_handler || save_volatiles)
	    /* Do not optimize in flow analysis.  */
	    MEM_VOLATILE_P (mem_rtx) = 1;

	  if (prologue)
	    {
	      insn = emit_move_insn (mem_rtx, reg_rtx);
	      RTX_FRAME_RELATED_P (insn) = 1;
	    }
	  else
	    {
	      insn = emit_move_insn (reg_rtx, mem_rtx);
	    }

	  gp_offset += GET_MODE_SIZE (SImode);
	}
    }

  if (interrupt_handler && prologue)
    {
      emit_move_insn (isr_reg_rtx, isr_msr_rtx);
      emit_move_insn (isr_mem_rtx, isr_reg_rtx);

      /* Do not optimize in flow analysis.  */
      emit_insn (gen_rtx_USE (SImode, isr_reg_rtx));
      emit_insn (gen_rtx_USE (SImode, isr_msr_rtx));
    }

  /* Done saving and restoring */
}


/* Set up the stack and frame (if desired) for the function.  */
static void
microblaze_function_prologue (FILE * file, HOST_WIDE_INT size ATTRIBUTE_UNUSED)
{
  const char *fnname;
  long fsiz = current_frame_info.total_size;

  /* Get the function name the same way that toplev.c does before calling
     assemble_start_function.  This is needed so that the name used here
     exactly matches the name used in ASM_DECLARE_FUNCTION_NAME.  */
  fnname = XSTR (XEXP (DECL_RTL (current_function_decl), 0), 0);
  if (!flag_inhibit_size_directive)
    {
      fputs ("\t.ent\t", file);
      if (interrupt_handler && strcmp (INTERRUPT_HANDLER_NAME, fnname))
	fputs ("_interrupt_handler", file);
      else
	assemble_name (file, fnname);
      fputs ("\n", file);
      if (!interrupt_handler)
	ASM_OUTPUT_TYPE_DIRECTIVE (file, fnname, "function");
    }

  assemble_name (file, fnname);
  fputs (":\n", file);

  if (interrupt_handler && strcmp (INTERRUPT_HANDLER_NAME, fnname))
    fputs ("_interrupt_handler:\n", file);

  if (!flag_inhibit_size_directive)
    {
      /* .frame FRAMEREG, FRAMESIZE, RETREG.  */
      fprintf (file,
	       "\t.frame\t%s,%ld,%s\t\t# vars= %ld, regs= %d, args= %d\n",
	       (reg_names[(frame_pointer_needed)
			  ? HARD_FRAME_POINTER_REGNUM :
			  STACK_POINTER_REGNUM]), fsiz,
	       reg_names[MB_ABI_SUB_RETURN_ADDR_REGNUM + GP_REG_FIRST],
	       current_frame_info.var_size, current_frame_info.num_gp,
	       crtl->outgoing_args_size);
      fprintf (file, "\t.mask\t0x%08lx\n", current_frame_info.mask);
    }
}

/* Output extra assembler code at the end of a prologue.  */
static void
microblaze_function_end_prologue (FILE * file)
{
  if (TARGET_STACK_CHECK)
    {
      fprintf (file, "\t# Stack Check Stub -- Start.\n\t");
      fprintf (file, "ori\tr18,r0,_stack_end\n\t");
      fprintf (file, "cmpu\tr18,r1,r18\n\t");
      fprintf (file, "bgei\tr18,_stack_overflow_exit\n\t");
      fprintf (file, "# Stack Check Stub -- End.\n");
    }
}

/* Expand the prologue into a bunch of separate insns.  */

void
microblaze_expand_prologue (void)
{
  int regno;
  HOST_WIDE_INT fsiz;
  const char *arg_name = 0;
  tree fndecl = current_function_decl;
  tree fntype = TREE_TYPE (fndecl);
  tree fnargs = DECL_ARGUMENTS (fndecl);
  rtx next_arg_reg;
  int i;
  tree next_arg;
  tree cur_arg;
  CUMULATIVE_ARGS args_so_far_v;
  cumulative_args_t args_so_far;
  rtx mem_rtx, reg_rtx;

  /* If struct value address is treated as the first argument, make it so.  */
  if (aggregate_value_p (DECL_RESULT (fndecl), fntype)
      && !cfun->returns_pcc_struct)
    {
      tree type = build_pointer_type (fntype);
      tree function_result_decl = build_decl (BUILTINS_LOCATION, PARM_DECL, 
					      NULL_TREE, type);

      DECL_ARG_TYPE (function_result_decl) = type;
      TREE_CHAIN (function_result_decl) = fnargs;
      fnargs = function_result_decl;
    }

  /* Determine the last argument, and get its name.  */

  INIT_CUMULATIVE_ARGS (args_so_far_v, fntype, NULL_RTX, 0, 0);
  args_so_far = pack_cumulative_args (&args_so_far_v);
  regno = GP_ARG_FIRST;

  for (cur_arg = fnargs; cur_arg != 0; cur_arg = next_arg)
    {
      tree passed_type = DECL_ARG_TYPE (cur_arg);
      enum machine_mode passed_mode = TYPE_MODE (passed_type);
      rtx entry_parm;

      if (TREE_ADDRESSABLE (passed_type))
	{
	  passed_type = build_pointer_type (passed_type);
	  passed_mode = Pmode;
	}

      entry_parm = targetm.calls.function_arg (args_so_far, passed_mode,
					       passed_type, true);

      if (entry_parm)
	{
	  int words;

	  /* passed in a register, so will get homed automatically.  */
	  if (GET_MODE (entry_parm) == BLKmode)
	    words = (int_size_in_bytes (passed_type) + 3) / 4;
	  else
	    words = (GET_MODE_SIZE (GET_MODE (entry_parm)) + 3) / 4;

	  regno = REGNO (entry_parm) + words - 1;
	}
      else
	{
	  regno = GP_ARG_LAST + 1;
	  break;
	}

      targetm.calls.function_arg_advance (args_so_far, passed_mode,
					  passed_type, true);

      next_arg = TREE_CHAIN (cur_arg);
      if (next_arg == 0)
	{
	  if (DECL_NAME (cur_arg))
	    arg_name = IDENTIFIER_POINTER (DECL_NAME (cur_arg));

	  break;
	}
    }

  /* Split parallel insn into a sequence of insns.  */

  next_arg_reg = targetm.calls.function_arg (args_so_far, VOIDmode,
					     void_type_node, true);
  if (next_arg_reg != 0 && GET_CODE (next_arg_reg) == PARALLEL)
    {
      rtvec adjust = XVEC (next_arg_reg, 0);
      int num = GET_NUM_ELEM (adjust);

      for (i = 0; i < num; i++)
	{
	  rtx pattern = RTVEC_ELT (adjust, i);
	  emit_insn (pattern);
	}
    }

  fsiz = compute_frame_size (get_frame_size ());

  /* If this function is a varargs function, store any registers that
     would normally hold arguments ($5 - $10) on the stack.  */
  if (((TYPE_ARG_TYPES (fntype) != 0
	&& (TREE_VALUE (tree_last (TYPE_ARG_TYPES (fntype)))
	    != void_type_node))
       || (arg_name != 0
	   && ((arg_name[0] == '_'
		&& strcmp (arg_name, "__builtin_va_alist") == 0)
	       || (arg_name[0] == 'v'
		   && strcmp (arg_name, "va_alist") == 0)))))
    {
      int offset = (regno - GP_ARG_FIRST + 1) * UNITS_PER_WORD;
      rtx ptr = stack_pointer_rtx;

      /* If we are doing svr4-abi, sp has already been decremented by fsiz. */
      for (; regno <= GP_ARG_LAST; regno++)
	{
	  if (offset != 0)
	    ptr = gen_rtx_PLUS (Pmode, stack_pointer_rtx, GEN_INT (offset));
	  emit_move_insn (gen_rtx_MEM (SImode, ptr),
			  gen_rtx_REG (SImode, regno));

	  offset += GET_MODE_SIZE (SImode);
	}

    }

  if (fsiz > 0)
    {
      rtx fsiz_rtx = GEN_INT (fsiz);

      rtx insn = NULL;
      insn = emit_insn (gen_subsi3 (stack_pointer_rtx, stack_pointer_rtx,
				    fsiz_rtx));
      if (insn)
	RTX_FRAME_RELATED_P (insn) = 1;

      /* Handle SUB_RETURN_ADDR_REGNUM specially at first.  */
      if (!crtl->is_leaf || interrupt_handler)
	{
	  mem_rtx = gen_rtx_MEM (SImode,
				 gen_rtx_PLUS (Pmode, stack_pointer_rtx,
					       const0_rtx));

	  if (interrupt_handler)
	    /* Do not optimize in flow analysis.  */
	    MEM_VOLATILE_P (mem_rtx) = 1;

	  reg_rtx = gen_rtx_REG (SImode, MB_ABI_SUB_RETURN_ADDR_REGNUM);
	  insn = emit_move_insn (mem_rtx, reg_rtx);
	  RTX_FRAME_RELATED_P (insn) = 1;
	}

      /* _save_ registers for prologue.  */
      save_restore_insns (1);

      if (frame_pointer_needed)
	{
	  rtx insn = 0;

	  insn = emit_insn (gen_movsi (hard_frame_pointer_rtx,
				       stack_pointer_rtx));

	  if (insn)
	    RTX_FRAME_RELATED_P (insn) = 1;
	}
    }

  if (flag_pic == 2 && df_regs_ever_live_p (MB_ABI_PIC_ADDR_REGNUM))
    {
      SET_REGNO (pic_offset_table_rtx, MB_ABI_PIC_ADDR_REGNUM);
      emit_insn (gen_set_got (pic_offset_table_rtx));	/* setting GOT.  */
    }

  /* If we are profiling, make sure no instructions are scheduled before
     the call to mcount.  */

  if (profile_flag)
    emit_insn (gen_blockage ());
}

/* Do necessary cleanup after a function to restore stack, frame, and regs.  */

#define RA_MASK ((long) 0x80000000)	/* 1 << 31 */
#define PIC_OFFSET_TABLE_MASK (1 << (PIC_OFFSET_TABLE_REGNUM - GP_REG_FIRST))

static void
microblaze_function_epilogue (FILE * file ATTRIBUTE_UNUSED,
			      HOST_WIDE_INT size ATTRIBUTE_UNUSED)
{
  const char *fnname;

  /* Get the function name the same way that toplev.c does before calling
     assemble_start_function.  This is needed so that the name used here
     exactly matches the name used in ASM_DECLARE_FUNCTION_NAME.  */
  fnname = XSTR (XEXP (DECL_RTL (current_function_decl), 0), 0);

  if (!flag_inhibit_size_directive)
    {
      fputs ("\t.end\t", file);
      if (interrupt_handler)
	fputs ("_interrupt_handler", file);
      else
	assemble_name (file, fnname);
      fputs ("\n", file);
    }

  /* Reset state info for each function.  */
  current_frame_info = zero_frame_info;

  /* Restore the output file if optimizing the GP (optimizing the GP causes
     the text to be diverted to a tempfile, so that data decls come before
     references to the data).  */
}

/* Expand the epilogue into a bunch of separate insns.  */

void
microblaze_expand_epilogue (void)
{
  HOST_WIDE_INT fsiz = current_frame_info.total_size;
  rtx fsiz_rtx = GEN_INT (fsiz);
  rtx reg_rtx;
  rtx mem_rtx;

  /* In case of interrupt handlers use addki instead of addi for changing the 
     stack pointer value.  */

  if (microblaze_can_use_return_insn ())
    {
      emit_jump_insn (gen_return_internal (gen_rtx_REG (Pmode,
							GP_REG_FIRST +
							MB_ABI_SUB_RETURN_ADDR_REGNUM)));
      return;
    }

  if (fsiz > 0)
    {
      /* Restore SUB_RETURN_ADDR_REGNUM at first. This is to prevent the 
         sequence of load-followed by a use (in rtsd) in every prologue. Saves 
         a load-use stall cycle  :)   This is also important to handle alloca. 
         (See comments for if (frame_pointer_needed) below.  */

      if (!crtl->is_leaf || interrupt_handler)
	{
	  mem_rtx =
	    gen_rtx_MEM (SImode,
			 gen_rtx_PLUS (Pmode, stack_pointer_rtx, const0_rtx));
	  if (interrupt_handler)
	    /* Do not optimize in flow analysis.  */
	    MEM_VOLATILE_P (mem_rtx) = 1;
	  reg_rtx = gen_rtx_REG (SImode, MB_ABI_SUB_RETURN_ADDR_REGNUM);
	  emit_move_insn (reg_rtx, mem_rtx);
	}

      /* It is important that this is done after we restore the return address 
         register (above).  When alloca is used, we want to restore the 
	 sub-routine return address only from the current stack top and not 
	 from the frame pointer (which we restore below). (frame_pointer + 0) 
	 might have been over-written since alloca allocates memory on the 
	 current stack.  */
      if (frame_pointer_needed)
	emit_insn (gen_movsi (stack_pointer_rtx, hard_frame_pointer_rtx));

      /* _restore_ registers for epilogue.  */
      save_restore_insns (0);
      emit_insn (gen_blockage ());
      emit_insn (gen_addsi3 (stack_pointer_rtx, stack_pointer_rtx, fsiz_rtx));
    }

  emit_jump_insn (gen_return_internal (gen_rtx_REG (Pmode, GP_REG_FIRST +
						    MB_ABI_SUB_RETURN_ADDR_REGNUM)));
}


/* Return nonzero if this function is known to have a null epilogue.
   This allows the optimizer to omit jumps to jumps if no stack
   was created.  */

int
microblaze_can_use_return_insn (void)
{
  if (!reload_completed)
    return 0;

  if (df_regs_ever_live_p (MB_ABI_SUB_RETURN_ADDR_REGNUM) || profile_flag)
    return 0;

  if (current_frame_info.initialized)
    return current_frame_info.total_size == 0;

  return compute_frame_size (get_frame_size ()) == 0;
}

/* Implement TARGET_SECONDARY_RELOAD.  */

static reg_class_t
microblaze_secondary_reload (bool in_p ATTRIBUTE_UNUSED, rtx x ATTRIBUTE_UNUSED, 
			     reg_class_t rclass, enum machine_mode mode ATTRIBUTE_UNUSED, 
			     secondary_reload_info *sri ATTRIBUTE_UNUSED)
{
  if (rclass == ST_REGS)
    return GR_REGS;

  return NO_REGS;
}

static void
microblaze_globalize_label (FILE * stream, const char *name)
{
  fputs ("\t.globl\t", stream);
  if (interrupt_handler && strcmp (name, INTERRUPT_HANDLER_NAME))
    {
      fputs (INTERRUPT_HANDLER_NAME, stream);
      fputs ("\n\t.globl\t", stream);
    }
  assemble_name (stream, name);
  fputs ("\n", stream);
}

/* Returns true if decl should be placed into a "small data" section.  */
static bool
microblaze_elf_in_small_data_p (const_tree decl)
{
  HOST_WIDE_INT size;

  if (!TARGET_XLGPOPT)
    return false;

  /* We want to merge strings, so we never consider them small data.  */
  if (TREE_CODE (decl) == STRING_CST)
    return false;

  /* Functions are never in the small data area.  */
  if (TREE_CODE (decl) == FUNCTION_DECL)
    return false;

  if (TREE_CODE (decl) == VAR_DECL && DECL_SECTION_NAME (decl))
    {
      const char *section = TREE_STRING_POINTER (DECL_SECTION_NAME (decl));
      if (strcmp (section, ".sdata") == 0
	  || strcmp (section, ".sdata2") == 0
	  || strcmp (section, ".sbss") == 0
	  || strcmp (section, ".sbss2") == 0)
	return true;
    }

  size = int_size_in_bytes (TREE_TYPE (decl));

  return (size > 0 && size <= microblaze_section_threshold);
}


static section *
microblaze_select_section (tree decl, int reloc, unsigned HOST_WIDE_INT align)
{
  switch (categorize_decl_for_section (decl, reloc))
    {
    case SECCAT_RODATA_MERGE_STR:
    case SECCAT_RODATA_MERGE_STR_INIT:
      /* MB binutils have various issues with mergeable string sections and
         relaxation/relocation. Currently, turning mergeable sections 
         into regular readonly sections.  */

      return readonly_data_section;
    default:
      return default_elf_select_section (decl, reloc, align);
    }
}

/*
  Encode info about sections into the RTL based on a symbol's declaration.
  The default definition of this hook, default_encode_section_info in 
  `varasm.c', sets a number of commonly-useful bits in SYMBOL_REF_FLAGS. */

static void
microblaze_encode_section_info (tree decl, rtx rtl, int first)
{
  default_encode_section_info (decl, rtl, first);
}

static rtx
expand_pic_symbol_ref (enum machine_mode mode ATTRIBUTE_UNUSED, rtx op)
{
  rtx result;
  result = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, op), UNSPEC_GOTOFF);
  result = gen_rtx_CONST (Pmode, result);
  result = gen_rtx_PLUS (Pmode, pic_offset_table_rtx, result);
  result = gen_const_mem (Pmode, result);
  return result;
}

bool
microblaze_expand_move (enum machine_mode mode, rtx operands[])
{
  /* If operands[1] is a constant address invalid for pic, then we need to
     handle it just like LEGITIMIZE_ADDRESS does.  */
  if (flag_pic)
    {
      if (GET_CODE (operands[0]) == MEM)
	{
	  rtx addr = XEXP (operands[0], 0);
	  if (GET_CODE (addr) == SYMBOL_REF)
	    {
	      rtx ptr_reg, result;

	      if (reload_in_progress)
		df_set_regs_ever_live (PIC_OFFSET_TABLE_REGNUM, true);

	      addr = expand_pic_symbol_ref (mode, addr);
	      ptr_reg = gen_reg_rtx (Pmode);
	      emit_move_insn (ptr_reg, addr);
	      result = gen_rtx_MEM (mode, ptr_reg);
	      operands[0] = result;
	    }
	}
      if (GET_CODE (operands[1]) == SYMBOL_REF
	  || GET_CODE (operands[1]) == LABEL_REF)
	{
	  rtx result;
	  if (reload_in_progress)
	    df_set_regs_ever_live (PIC_OFFSET_TABLE_REGNUM, true);
	  result = expand_pic_symbol_ref (mode, operands[1]);
	  if (GET_CODE (operands[0]) != REG)
	    {
	      rtx ptr_reg = gen_reg_rtx (Pmode);
	      emit_move_insn (ptr_reg, result);
	      emit_move_insn (operands[0], ptr_reg);
	    }
	  else
	    {
	      emit_move_insn (operands[0], result);
	    }
	  return true;
	}
      else if (GET_CODE (operands[1]) == MEM &&
	       GET_CODE (XEXP (operands[1], 0)) == SYMBOL_REF)
	{
	  rtx result;
	  rtx ptr_reg;
	  if (reload_in_progress)
	    df_set_regs_ever_live (PIC_OFFSET_TABLE_REGNUM, true);
	  result = expand_pic_symbol_ref (mode, XEXP (operands[1], 0));

	  ptr_reg = gen_reg_rtx (Pmode);

	  emit_move_insn (ptr_reg, result);
	  result = gen_rtx_MEM (mode, ptr_reg);
	  emit_move_insn (operands[0], result);
	  return true;
	}
      else if (pic_address_needs_scratch (operands[1]))
	{
	  rtx temp = force_reg (SImode, XEXP (XEXP (operands[1], 0), 0));
	  rtx temp2 = XEXP (XEXP (operands[1], 0), 1);

	  if (reload_in_progress)
	    df_set_regs_ever_live (PIC_OFFSET_TABLE_REGNUM, true);
	  emit_move_insn (operands[0], gen_rtx_PLUS (SImode, temp, temp2));
	  return true;
	}
    }

  if ((reload_in_progress | reload_completed) == 0
      && !register_operand (operands[0], SImode)
      && !register_operand (operands[1], SImode)
      && (GET_CODE (operands[1]) != CONST_INT || INTVAL (operands[1]) != 0))
    {
      rtx temp = force_reg (SImode, operands[1]);
      emit_move_insn (operands[0], temp);
      return true;
    }
  return false;
}

/* Expand shift operations.  */
int
microblaze_expand_shift (rtx operands[])
{
  gcc_assert ((GET_CODE (operands[2]) == CONST_INT)
	      || (GET_CODE (operands[2]) == REG)
	      || (GET_CODE (operands[2]) == SUBREG));

  /* Shift by one -- generate pattern.  */
  if ((GET_CODE (operands[2]) == CONST_INT) && (INTVAL (operands[2]) == 1))
    return 0;

  /* Have barrel shifter and shift > 1: use it.  */
  if (TARGET_BARREL_SHIFT)
    return 0;

  gcc_assert ((GET_CODE (operands[0]) == REG)
	      || (GET_CODE (operands[0]) == SUBREG)
	      || (GET_CODE (operands[1]) == REG)
	      || (GET_CODE (operands[1]) == SUBREG));

  /* Shift by zero -- copy regs if necessary.  */
  if ((GET_CODE (operands[2]) == CONST_INT) && (INTVAL (operands[2]) == 0))
    {
      if (REGNO (operands[0]) != REGNO (operands[1]))
	emit_insn (gen_movsi (operands[0], operands[1]));
      return 1;
    }

  return 0;
}

/* Return an RTX indicating where the return address to the
   calling function can be found.  */
rtx
microblaze_return_addr (int count, rtx frame ATTRIBUTE_UNUSED)
{
  if (count != 0)
    return NULL_RTX;

  return gen_rtx_PLUS (Pmode,
		       get_hard_reg_initial_val (Pmode,
						 MB_ABI_SUB_RETURN_ADDR_REGNUM),
		       GEN_INT (8));
}

/* Queue an .ident string in the queue of top-level asm statements.
   If the string size is below the threshold, put it into .sdata2.
   If the front-end is done, we must be being called from toplev.c.
   In that case, do nothing.  */
void 
microblaze_asm_output_ident (const char *string)
{
  const char *section_asm_op;
  int size;
  char *buf;

  if (cgraph_state != CGRAPH_STATE_PARSING)
    return;

  size = strlen (string) + 1;
  if (size <= microblaze_section_threshold)
    section_asm_op = SDATA2_SECTION_ASM_OP;
  else
    section_asm_op = READONLY_DATA_SECTION_ASM_OP;

  buf = ACONCAT ((section_asm_op, "\n\t.ascii \"", string, "\\0\"\n", NULL));
  add_asm_node (build_string (strlen (buf), buf));
}

static void
microblaze_elf_asm_init_sections (void)
{
  sdata2_section
    = get_unnamed_section (SECTION_WRITE, output_section_asm_op,
			   SDATA2_SECTION_ASM_OP);
}

/*  Generate assembler code for constant parts of a trampoline.  */

static void
microblaze_asm_trampoline_template (FILE *f)
{
  fprintf (f, "\t.word\t0x03e00821\t\t# move   $1,$31\n");
  fprintf (f, "\t.word\t0x04110001\t\t# bgezal $0,.+8\n");
  fprintf (f, "\t.word\t0x00000000\t\t# nop\n");
  fprintf (f, "\t.word\t0x8fe30014\t\t# lw     $3,20($31)\n");
  fprintf (f, "\t.word\t0x8fe20018\t\t# lw     $2,24($31)\n");
  fprintf (f, "\t.word\t0x0060c821\t\t# move   $25,$3 (abicalls)\n");
  fprintf (f, "\t.word\t0x00600008\t\t# jr     $3\n");
  fprintf (f, "\t.word\t0x0020f821\t\t# move   $31,$1\n");
  /* fprintf (f, "\t.word\t0x00000000\t\t# <function address>\n");  */
  /* fprintf (f, "\t.word\t0x00000000\t\t# <static chain value>\n");  */
}

/* Implement TARGET_TRAMPOLINE_INIT.  */

static void
microblaze_trampoline_init (rtx m_tramp, tree fndecl, rtx chain_value)
{
  rtx fnaddr = XEXP (DECL_RTL (fndecl), 0);
  rtx mem;

  emit_block_move (m_tramp, assemble_trampoline_template (),
		   GEN_INT (8*UNITS_PER_WORD), BLOCK_OP_NORMAL);

  mem = adjust_address (m_tramp, SImode, 8);
  emit_move_insn (mem, chain_value);
  mem = adjust_address (m_tramp, SImode, 12);
  emit_move_insn (mem, fnaddr);
}

/* Emit instruction to perform compare.  
   cmp is (compare_op op0 op1).  */
static rtx
microblaze_emit_compare (enum machine_mode mode, rtx cmp, enum rtx_code *cmp_code)
{
  rtx cmp_op0 = XEXP (cmp, 0);
  rtx cmp_op1 = XEXP (cmp, 1);
  rtx comp_reg = gen_reg_rtx (SImode);
  enum rtx_code code = *cmp_code;
  
  gcc_assert ((GET_CODE (cmp_op0) == REG) || (GET_CODE (cmp_op0) == SUBREG));

  /* If comparing against zero, just test source reg.  */
  if (cmp_op1 == const0_rtx) 
    return cmp_op0;

  if (code == EQ || code == NE)
    {
      if (TARGET_PATTERN_COMPARE && GET_CODE(cmp_op1) == REG) 
        {
          if (code == EQ) 
	    {
	      emit_insn (gen_seq_internal_pat (comp_reg, cmp_op0, cmp_op1));
	      *cmp_code = NE;
	    }
	  else
	    {    
	      emit_insn (gen_sne_internal_pat (comp_reg, cmp_op0, cmp_op1));
	    }
        }
      else
	/* Use xor for equal/not-equal comparison.  */
	emit_insn (gen_xorsi3 (comp_reg, cmp_op0, cmp_op1));
    }
  else if (code == GT || code == GTU || code == LE || code == LEU)
    {
      /* MicroBlaze compare is not symmetrical.  */
      /* Swap argument order.  */
      cmp_op1 = force_reg (mode, cmp_op1);
      if (code == GT || code == LE) 
        emit_insn (gen_signed_compare (comp_reg, cmp_op0, cmp_op1));
      else
        emit_insn (gen_unsigned_compare (comp_reg, cmp_op0, cmp_op1));
      /* Translate test condition.  */
      *cmp_code = swap_condition (code);
    }
  else /* if (code == GE || code == GEU || code == LT || code == LTU) */
    {
      cmp_op1 = force_reg (mode, cmp_op1);
      if (code == GE || code == LT) 
        emit_insn (gen_signed_compare (comp_reg, cmp_op1, cmp_op0));
      else
        emit_insn (gen_unsigned_compare (comp_reg, cmp_op1, cmp_op0));
    }

  return comp_reg;
}

/* Generate conditional branch -- first, generate test condition,
   second, generate correct branch instruction.  */

void
microblaze_expand_conditional_branch (enum machine_mode mode, rtx operands[])
{
  enum rtx_code code = GET_CODE (operands[0]);
  rtx comp;
  rtx condition;

  comp = microblaze_emit_compare (mode, operands[0], &code);
  condition = gen_rtx_fmt_ee (signed_condition (code), SImode, comp, const0_rtx);
  emit_jump_insn (gen_condjump (condition, operands[3]));
}

void
microblaze_expand_conditional_branch_sf (rtx operands[])
{
  rtx condition;
  rtx cmp_op0 = XEXP (operands[0], 0);
  rtx cmp_op1 = XEXP (operands[0], 1);
  rtx comp_reg = gen_reg_rtx (SImode);

  emit_insn (gen_cstoresf4 (comp_reg, operands[0], cmp_op0, cmp_op1));
  condition = gen_rtx_NE (SImode, comp_reg, const0_rtx);
  emit_jump_insn (gen_condjump (condition, operands[3]));
}

/* Implement TARGET_FRAME_POINTER_REQUIRED.  */

static bool
microblaze_frame_pointer_required (void)
{
  /* If the function contains dynamic stack allocations, we need to
     use the frame pointer to access the static parts of the frame.  */
  if (cfun->calls_alloca)
    return true;
  return false;
}

void
microblaze_expand_divide (rtx operands[])
{
  /* Table lookup software divides. Works for all (nr/dr) where (0 <= nr,dr <= 15).  */

  rtx regt1 = gen_reg_rtx (SImode); 
  rtx reg18 = gen_rtx_REG (SImode, R_TMP);
  rtx regqi = gen_reg_rtx (QImode);
  rtx div_label = gen_label_rtx ();
  rtx div_end_label = gen_label_rtx ();
  rtx div_table_rtx = gen_rtx_SYMBOL_REF (QImode,"_divsi3_table");
  rtx mem_rtx;
  rtx ret;
  rtx jump, cjump, insn;

  insn = emit_insn (gen_iorsi3 (regt1, operands[1], operands[2]));
  cjump = emit_jump_insn_after (gen_cbranchsi4 (
					gen_rtx_GTU (SImode, regt1, GEN_INT (15)), 
					regt1, GEN_INT (15), div_label), insn);
  LABEL_NUSES (div_label) = 1; 
  JUMP_LABEL (cjump) = div_label;
  emit_insn (gen_rtx_CLOBBER (SImode, reg18));

  emit_insn (gen_ashlsi3_bshift (regt1, operands[1], GEN_INT(4)));
  emit_insn (gen_addsi3 (regt1, regt1, operands[2]));
  mem_rtx = gen_rtx_MEM (QImode,
                            gen_rtx_PLUS (Pmode, regt1, div_table_rtx));

  insn = emit_insn (gen_movqi (regqi, mem_rtx)); 
  insn = emit_insn (gen_movsi (operands[0], gen_rtx_SUBREG (SImode, regqi, 0)));
  jump = emit_jump_insn_after (gen_jump (div_end_label), insn); 
  JUMP_LABEL (jump) = div_end_label;
  LABEL_NUSES (div_end_label) = 1; 
  emit_barrier ();

  emit_label (div_label);
  ret = emit_library_call_value (gen_rtx_SYMBOL_REF (Pmode, "__divsi3"), 
				       operands[0], LCT_NORMAL, 
				       GET_MODE (operands[0]), 2, operands[1], 
				       GET_MODE (operands[1]), operands[2], 
				       GET_MODE (operands[2]));
  if (ret != operands[0])
                emit_move_insn (operands[0], ret);    

  emit_label (div_end_label);
  emit_insn (gen_blockage ());
}

/* Implement TARGET_FUNCTION_VALUE.  */
static rtx
microblaze_function_value (const_tree valtype,
			   const_tree func ATTRIBUTE_UNUSED,
			   bool outgoing ATTRIBUTE_UNUSED)
{
  return LIBCALL_VALUE (TYPE_MODE (valtype));
}

/* Implement TARGET_SCHED_ADJUST_COST.  */
static int
microblaze_adjust_cost (rtx insn ATTRIBUTE_UNUSED, rtx link,
			rtx dep ATTRIBUTE_UNUSED, int cost)
{
  if (REG_NOTE_KIND (link) == REG_DEP_OUTPUT)
    return cost;
  if (REG_NOTE_KIND (link) != 0)
    return 0;
  return cost;
}

/* Implement TARGET_LEGITIMATE_CONSTANT_P.

   At present, GAS doesn't understand li.[sd], so don't allow it
   to be generated at present.  */
static bool
microblaze_legitimate_constant_p (enum machine_mode mode, rtx x)
{
  return GET_CODE (x) != CONST_DOUBLE || microblaze_const_double_ok (x, mode);
}

#undef TARGET_ENCODE_SECTION_INFO
#define TARGET_ENCODE_SECTION_INFO      microblaze_encode_section_info

#undef TARGET_ASM_GLOBALIZE_LABEL
#define TARGET_ASM_GLOBALIZE_LABEL      microblaze_globalize_label

#undef TARGET_ASM_FUNCTION_PROLOGUE
#define TARGET_ASM_FUNCTION_PROLOGUE    microblaze_function_prologue

#undef TARGET_ASM_FUNCTION_EPILOGUE
#define TARGET_ASM_FUNCTION_EPILOGUE    microblaze_function_epilogue

#undef TARGET_RTX_COSTS
#define TARGET_RTX_COSTS                microblaze_rtx_costs

#undef TARGET_ADDRESS_COST
#define TARGET_ADDRESS_COST             microblaze_address_cost

#undef TARGET_ATTRIBUTE_TABLE
#define TARGET_ATTRIBUTE_TABLE          microblaze_attribute_table

#undef TARGET_IN_SMALL_DATA_P
#define TARGET_IN_SMALL_DATA_P          microblaze_elf_in_small_data_p

#undef TARGET_ASM_SELECT_SECTION
#define TARGET_ASM_SELECT_SECTION       microblaze_select_section

#undef TARGET_HAVE_SRODATA_SECTION
#define TARGET_HAVE_SRODATA_SECTION     true

#undef TARGET_ASM_FUNCTION_END_PROLOGUE
#define TARGET_ASM_FUNCTION_END_PROLOGUE \
                                        microblaze_function_end_prologue

#undef TARGET_ARG_PARTIAL_BYTES
#define TARGET_ARG_PARTIAL_BYTES	function_arg_partial_bytes

#undef TARGET_FUNCTION_ARG
#define TARGET_FUNCTION_ARG		microblaze_function_arg

#undef TARGET_FUNCTION_ARG_ADVANCE
#define TARGET_FUNCTION_ARG_ADVANCE	microblaze_function_arg_advance

#undef TARGET_CAN_ELIMINATE
#define TARGET_CAN_ELIMINATE 		microblaze_can_eliminate

#undef TARGET_LEGITIMIZE_ADDRESS
#define TARGET_LEGITIMIZE_ADDRESS 	microblaze_legitimize_address

#undef TARGET_LEGITIMATE_ADDRESS_P
#define TARGET_LEGITIMATE_ADDRESS_P 	microblaze_legitimate_address_p 

#undef TARGET_FRAME_POINTER_REQUIRED
#define TARGET_FRAME_POINTER_REQUIRED	microblaze_frame_pointer_required

#undef  TARGET_ASM_TRAMPOLINE_TEMPLATE
#define TARGET_ASM_TRAMPOLINE_TEMPLATE	microblaze_asm_trampoline_template

#undef  TARGET_TRAMPOLINE_INIT
#define TARGET_TRAMPOLINE_INIT		microblaze_trampoline_init

#undef  TARGET_PROMOTE_FUNCTION_MODE
#define TARGET_PROMOTE_FUNCTION_MODE 	default_promote_function_mode_always_promote

#undef TARGET_FUNCTION_VALUE
#define TARGET_FUNCTION_VALUE		microblaze_function_value 

#undef TARGET_SECONDARY_RELOAD
#define TARGET_SECONDARY_RELOAD		microblaze_secondary_reload

#undef TARGET_SCHED_ADJUST_COST
#define TARGET_SCHED_ADJUST_COST	microblaze_adjust_cost

#undef TARGET_ASM_INIT_SECTIONS
#define TARGET_ASM_INIT_SECTIONS	microblaze_elf_asm_init_sections

#undef  TARGET_OPTION_OVERRIDE
#define TARGET_OPTION_OVERRIDE		microblaze_option_override 

#undef TARGET_LEGITIMATE_CONSTANT_P
#define TARGET_LEGITIMATE_CONSTANT_P microblaze_legitimate_constant_p

struct gcc_target targetm = TARGET_INITIALIZER;

#include "gt-microblaze.h"