1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
|
/* Definitions of target machine for GNU compiler. MIPS version.
Copyright (C) 1989-2014 Free Software Foundation, Inc.
Contributed by A. Lichnewsky (lich@inria.inria.fr).
Changed by Michael Meissner (meissner@osf.org).
64-bit r4000 support by Ian Lance Taylor (ian@cygnus.com) and
Brendan Eich (brendan@microunity.com).
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3, or (at your option)
any later version.
GCC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
#include "config/vxworks-dummy.h"
#ifdef GENERATOR_FILE
/* This is used in some insn conditions, so needs to be declared, but
does not need to be defined. */
extern int target_flags_explicit;
#endif
/* MIPS external variables defined in mips.c. */
/* Which ABI to use. ABI_32 (original 32, or o32), ABI_N32 (n32),
ABI_64 (n64) are all defined by SGI. ABI_O64 is o32 extended
to work on a 64-bit machine. */
#define ABI_32 0
#define ABI_N32 1
#define ABI_64 2
#define ABI_EABI 3
#define ABI_O64 4
/* Masks that affect tuning.
PTF_AVOID_BRANCHLIKELY
Set if it is usually not profitable to use branch-likely instructions
for this target, typically because the branches are always predicted
taken and so incur a large overhead when not taken.
PTF_AVOID_IMADD
Set if it is usually not profitable to use the integer MADD or MSUB
instructions because of the overhead of getting the result out of
the HI/LO registers. */
#define PTF_AVOID_BRANCHLIKELY 0x1
#define PTF_AVOID_IMADD 0x2
/* Information about one recognized processor. Defined here for the
benefit of TARGET_CPU_CPP_BUILTINS. */
struct mips_cpu_info {
/* The 'canonical' name of the processor as far as GCC is concerned.
It's typically a manufacturer's prefix followed by a numerical
designation. It should be lowercase. */
const char *name;
/* The internal processor number that most closely matches this
entry. Several processors can have the same value, if there's no
difference between them from GCC's point of view. */
enum processor cpu;
/* The ISA level that the processor implements. */
int isa;
/* A mask of PTF_* values. */
unsigned int tune_flags;
};
#include "config/mips/mips-opts.h"
/* Macros to silence warnings about numbers being signed in traditional
C and unsigned in ISO C when compiled on 32-bit hosts. */
#define BITMASK_HIGH (((unsigned long)1) << 31) /* 0x80000000 */
#define BITMASK_UPPER16 ((unsigned long)0xffff << 16) /* 0xffff0000 */
#define BITMASK_LOWER16 ((unsigned long)0xffff) /* 0x0000ffff */
/* Run-time compilation parameters selecting different hardware subsets. */
/* True if we are generating position-independent VxWorks RTP code. */
#define TARGET_RTP_PIC (TARGET_VXWORKS_RTP && flag_pic)
/* True if the output file is marked as ".abicalls; .option pic0"
(-call_nonpic). */
#define TARGET_ABICALLS_PIC0 \
(TARGET_ABSOLUTE_ABICALLS && TARGET_PLT)
/* True if the output file is marked as ".abicalls; .option pic2" (-KPIC). */
#define TARGET_ABICALLS_PIC2 \
(TARGET_ABICALLS && !TARGET_ABICALLS_PIC0)
/* True if the call patterns should be split into a jalr followed by
an instruction to restore $gp. It is only safe to split the load
from the call when every use of $gp is explicit.
See mips_must_initialize_gp_p for details about how we manage the
global pointer. */
#define TARGET_SPLIT_CALLS \
(TARGET_EXPLICIT_RELOCS && TARGET_CALL_CLOBBERED_GP && epilogue_completed)
/* True if we're generating a form of -mabicalls in which we can use
operators like %hi and %lo to refer to locally-binding symbols.
We can only do this for -mno-shared, and only then if we can use
relocation operations instead of assembly macros. It isn't really
worth using absolute sequences for 64-bit symbols because GOT
accesses are so much shorter. */
#define TARGET_ABSOLUTE_ABICALLS \
(TARGET_ABICALLS \
&& !TARGET_SHARED \
&& TARGET_EXPLICIT_RELOCS \
&& !ABI_HAS_64BIT_SYMBOLS)
/* True if we can optimize sibling calls. For simplicity, we only
handle cases in which call_insn_operand will reject invalid
sibcall addresses. There are two cases in which this isn't true:
- TARGET_MIPS16. call_insn_operand accepts constant addresses
but there is no direct jump instruction. It isn't worth
using sibling calls in this case anyway; they would usually
be longer than normal calls.
- TARGET_USE_GOT && !TARGET_EXPLICIT_RELOCS. call_insn_operand
accepts global constants, but all sibcalls must be indirect. */
#define TARGET_SIBCALLS \
(!TARGET_MIPS16 && (!TARGET_USE_GOT || TARGET_EXPLICIT_RELOCS))
/* True if we need to use a global offset table to access some symbols. */
#define TARGET_USE_GOT (TARGET_ABICALLS || TARGET_RTP_PIC)
/* True if TARGET_USE_GOT and if $gp is a call-clobbered register. */
#define TARGET_CALL_CLOBBERED_GP (TARGET_ABICALLS && TARGET_OLDABI)
/* True if TARGET_USE_GOT and if $gp is a call-saved register. */
#define TARGET_CALL_SAVED_GP (TARGET_USE_GOT && !TARGET_CALL_CLOBBERED_GP)
/* True if we should use .cprestore to store to the cprestore slot.
We continue to use .cprestore for explicit-reloc code so that JALs
inside inline asms will work correctly. */
#define TARGET_CPRESTORE_DIRECTIVE \
(TARGET_ABICALLS_PIC2 && !TARGET_MIPS16)
/* True if we can use the J and JAL instructions. */
#define TARGET_ABSOLUTE_JUMPS \
(!flag_pic || TARGET_ABSOLUTE_ABICALLS)
/* True if indirect calls must use register class PIC_FN_ADDR_REG.
This is true for both the PIC and non-PIC VxWorks RTP modes. */
#define TARGET_USE_PIC_FN_ADDR_REG (TARGET_ABICALLS || TARGET_VXWORKS_RTP)
/* True if .gpword or .gpdword should be used for switch tables. */
#define TARGET_GPWORD \
(TARGET_ABICALLS && !TARGET_ABSOLUTE_ABICALLS)
/* True if the output must have a writable .eh_frame.
See ASM_PREFERRED_EH_DATA_FORMAT for details. */
#ifdef HAVE_LD_PERSONALITY_RELAXATION
#define TARGET_WRITABLE_EH_FRAME 0
#else
#define TARGET_WRITABLE_EH_FRAME (flag_pic && TARGET_SHARED)
#endif
/* Test the assembler to set ISA_HAS_DSP_MULT to DSP Rev 1 or 2. */
#ifdef HAVE_AS_DSPR1_MULT
#define ISA_HAS_DSP_MULT ISA_HAS_DSP
#else
#define ISA_HAS_DSP_MULT ISA_HAS_DSPR2
#endif
/* The ISA compression flags that are currently in effect. */
#define TARGET_COMPRESSION (target_flags & (MASK_MIPS16 | MASK_MICROMIPS))
/* Generate mips16 code */
#define TARGET_MIPS16 ((target_flags & MASK_MIPS16) != 0)
/* Generate mips16e code. Default 16bit ASE for mips32* and mips64* */
#define GENERATE_MIPS16E (TARGET_MIPS16 && mips_isa >= 32)
/* Generate mips16e register save/restore sequences. */
#define GENERATE_MIPS16E_SAVE_RESTORE (GENERATE_MIPS16E && mips_abi == ABI_32)
/* True if we're generating a form of MIPS16 code in which general
text loads are allowed. */
#define TARGET_MIPS16_TEXT_LOADS \
(TARGET_MIPS16 && mips_code_readable == CODE_READABLE_YES)
/* True if we're generating a form of MIPS16 code in which PC-relative
loads are allowed. */
#define TARGET_MIPS16_PCREL_LOADS \
(TARGET_MIPS16 && mips_code_readable >= CODE_READABLE_PCREL)
/* Generic ISA defines. */
#define ISA_MIPS1 (mips_isa == 1)
#define ISA_MIPS2 (mips_isa == 2)
#define ISA_MIPS3 (mips_isa == 3)
#define ISA_MIPS4 (mips_isa == 4)
#define ISA_MIPS32 (mips_isa == 32)
#define ISA_MIPS32R2 (mips_isa == 33)
#define ISA_MIPS32R3 (mips_isa == 34)
#define ISA_MIPS32R5 (mips_isa == 36)
#define ISA_MIPS64 (mips_isa == 64)
#define ISA_MIPS64R2 (mips_isa == 65)
#define ISA_MIPS64R3 (mips_isa == 66)
#define ISA_MIPS64R5 (mips_isa == 68)
/* Architecture target defines. */
#define TARGET_LOONGSON_2E (mips_arch == PROCESSOR_LOONGSON_2E)
#define TARGET_LOONGSON_2F (mips_arch == PROCESSOR_LOONGSON_2F)
#define TARGET_LOONGSON_2EF (TARGET_LOONGSON_2E || TARGET_LOONGSON_2F)
#define TARGET_LOONGSON_3A (mips_arch == PROCESSOR_LOONGSON_3A)
#define TARGET_MIPS3900 (mips_arch == PROCESSOR_R3900)
#define TARGET_MIPS4000 (mips_arch == PROCESSOR_R4000)
#define TARGET_MIPS4120 (mips_arch == PROCESSOR_R4120)
#define TARGET_MIPS4130 (mips_arch == PROCESSOR_R4130)
#define TARGET_MIPS5400 (mips_arch == PROCESSOR_R5400)
#define TARGET_MIPS5500 (mips_arch == PROCESSOR_R5500)
#define TARGET_MIPS5900 (mips_arch == PROCESSOR_R5900)
#define TARGET_MIPS7000 (mips_arch == PROCESSOR_R7000)
#define TARGET_MIPS9000 (mips_arch == PROCESSOR_R9000)
#define TARGET_OCTEON (mips_arch == PROCESSOR_OCTEON \
|| mips_arch == PROCESSOR_OCTEON2 \
|| mips_arch == PROCESSOR_OCTEON3)
#define TARGET_OCTEON2 (mips_arch == PROCESSOR_OCTEON2 \
|| mips_arch == PROCESSOR_OCTEON3)
#define TARGET_SB1 (mips_arch == PROCESSOR_SB1 \
|| mips_arch == PROCESSOR_SB1A)
#define TARGET_SR71K (mips_arch == PROCESSOR_SR71000)
#define TARGET_XLP (mips_arch == PROCESSOR_XLP)
/* Scheduling target defines. */
#define TUNE_20KC (mips_tune == PROCESSOR_20KC)
#define TUNE_24K (mips_tune == PROCESSOR_24KC \
|| mips_tune == PROCESSOR_24KF2_1 \
|| mips_tune == PROCESSOR_24KF1_1)
#define TUNE_74K (mips_tune == PROCESSOR_74KC \
|| mips_tune == PROCESSOR_74KF2_1 \
|| mips_tune == PROCESSOR_74KF1_1 \
|| mips_tune == PROCESSOR_74KF3_2)
#define TUNE_LOONGSON_2EF (mips_tune == PROCESSOR_LOONGSON_2E \
|| mips_tune == PROCESSOR_LOONGSON_2F)
#define TUNE_LOONGSON_3A (mips_tune == PROCESSOR_LOONGSON_3A)
#define TUNE_MIPS3000 (mips_tune == PROCESSOR_R3000)
#define TUNE_MIPS3900 (mips_tune == PROCESSOR_R3900)
#define TUNE_MIPS4000 (mips_tune == PROCESSOR_R4000)
#define TUNE_MIPS4120 (mips_tune == PROCESSOR_R4120)
#define TUNE_MIPS4130 (mips_tune == PROCESSOR_R4130)
#define TUNE_MIPS5000 (mips_tune == PROCESSOR_R5000)
#define TUNE_MIPS5400 (mips_tune == PROCESSOR_R5400)
#define TUNE_MIPS5500 (mips_tune == PROCESSOR_R5500)
#define TUNE_MIPS6000 (mips_tune == PROCESSOR_R6000)
#define TUNE_MIPS7000 (mips_tune == PROCESSOR_R7000)
#define TUNE_MIPS9000 (mips_tune == PROCESSOR_R9000)
#define TUNE_OCTEON (mips_tune == PROCESSOR_OCTEON \
|| mips_tune == PROCESSOR_OCTEON2 \
|| mips_tune == PROCESSOR_OCTEON3)
#define TUNE_SB1 (mips_tune == PROCESSOR_SB1 \
|| mips_tune == PROCESSOR_SB1A)
#define TUNE_P5600 (mips_tune == PROCESSOR_P5600)
/* Whether vector modes and intrinsics for ST Microelectronics
Loongson-2E/2F processors should be enabled. In o32 pairs of
floating-point registers provide 64-bit values. */
#define TARGET_LOONGSON_VECTORS (TARGET_HARD_FLOAT_ABI \
&& (TARGET_LOONGSON_2EF \
|| TARGET_LOONGSON_3A))
/* True if the pre-reload scheduler should try to create chains of
multiply-add or multiply-subtract instructions. For example,
suppose we have:
t1 = a * b
t2 = t1 + c * d
t3 = e * f
t4 = t3 - g * h
t1 will have a higher priority than t2 and t3 will have a higher
priority than t4. However, before reload, there is no dependence
between t1 and t3, and they can often have similar priorities.
The scheduler will then tend to prefer:
t1 = a * b
t3 = e * f
t2 = t1 + c * d
t4 = t3 - g * h
which stops us from making full use of macc/madd-style instructions.
This sort of situation occurs frequently in Fourier transforms and
in unrolled loops.
To counter this, the TUNE_MACC_CHAINS code will reorder the ready
queue so that chained multiply-add and multiply-subtract instructions
appear ahead of any other instruction that is likely to clobber lo.
In the example above, if t2 and t3 become ready at the same time,
the code ensures that t2 is scheduled first.
Multiply-accumulate instructions are a bigger win for some targets
than others, so this macro is defined on an opt-in basis. */
#define TUNE_MACC_CHAINS (TUNE_MIPS5500 \
|| TUNE_MIPS4120 \
|| TUNE_MIPS4130 \
|| TUNE_24K \
|| TUNE_P5600)
#define TARGET_OLDABI (mips_abi == ABI_32 || mips_abi == ABI_O64)
#define TARGET_NEWABI (mips_abi == ABI_N32 || mips_abi == ABI_64)
/* TARGET_HARD_FLOAT and TARGET_SOFT_FLOAT reflect whether the FPU is
directly accessible, while the command-line options select
TARGET_HARD_FLOAT_ABI and TARGET_SOFT_FLOAT_ABI to reflect the ABI
in use. */
#define TARGET_HARD_FLOAT (TARGET_HARD_FLOAT_ABI && !TARGET_MIPS16)
#define TARGET_SOFT_FLOAT (TARGET_SOFT_FLOAT_ABI || TARGET_MIPS16)
/* False if SC acts as a memory barrier with respect to itself,
otherwise a SYNC will be emitted after SC for atomic operations
that require ordering between the SC and following loads and
stores. It does not tell anything about ordering of loads and
stores prior to and following the SC, only about the SC itself and
those loads and stores follow it. */
#define TARGET_SYNC_AFTER_SC (!TARGET_OCTEON && !TARGET_XLP)
/* Define preprocessor macros for the -march and -mtune options.
PREFIX is either _MIPS_ARCH or _MIPS_TUNE, INFO is the selected
processor. If INFO's canonical name is "foo", define PREFIX to
be "foo", and define an additional macro PREFIX_FOO. */
#define MIPS_CPP_SET_PROCESSOR(PREFIX, INFO) \
do \
{ \
char *macro, *p; \
\
macro = concat ((PREFIX), "_", (INFO)->name, NULL); \
for (p = macro; *p != 0; p++) \
if (*p == '+') \
*p = 'P'; \
else \
*p = TOUPPER (*p); \
\
builtin_define (macro); \
builtin_define_with_value ((PREFIX), (INFO)->name, 1); \
free (macro); \
} \
while (0)
/* Target CPU builtins. */
#define TARGET_CPU_CPP_BUILTINS() \
do \
{ \
builtin_assert ("machine=mips"); \
builtin_assert ("cpu=mips"); \
builtin_define ("__mips__"); \
builtin_define ("_mips"); \
\
/* We do this here because __mips is defined below and so we \
can't use builtin_define_std. We don't ever want to define \
"mips" for VxWorks because some of the VxWorks headers \
construct include filenames from a root directory macro, \
an architecture macro and a filename, where the architecture \
macro expands to 'mips'. If we define 'mips' to 1, the \
architecture macro expands to 1 as well. */ \
if (!flag_iso && !TARGET_VXWORKS) \
builtin_define ("mips"); \
\
if (TARGET_64BIT) \
builtin_define ("__mips64"); \
\
/* Treat _R3000 and _R4000 like register-size \
defines, which is how they've historically \
been used. */ \
if (TARGET_64BIT) \
{ \
builtin_define_std ("R4000"); \
builtin_define ("_R4000"); \
} \
else \
{ \
builtin_define_std ("R3000"); \
builtin_define ("_R3000"); \
} \
\
if (TARGET_FLOAT64) \
builtin_define ("__mips_fpr=64"); \
else \
builtin_define ("__mips_fpr=32"); \
\
if (mips_base_compression_flags & MASK_MIPS16) \
builtin_define ("__mips16"); \
\
if (TARGET_MIPS3D) \
builtin_define ("__mips3d"); \
\
if (TARGET_SMARTMIPS) \
builtin_define ("__mips_smartmips"); \
\
if (mips_base_compression_flags & MASK_MICROMIPS) \
builtin_define ("__mips_micromips"); \
\
if (TARGET_MCU) \
builtin_define ("__mips_mcu"); \
\
if (TARGET_EVA) \
builtin_define ("__mips_eva"); \
\
if (TARGET_DSP) \
{ \
builtin_define ("__mips_dsp"); \
if (TARGET_DSPR2) \
{ \
builtin_define ("__mips_dspr2"); \
builtin_define ("__mips_dsp_rev=2"); \
} \
else \
builtin_define ("__mips_dsp_rev=1"); \
} \
\
MIPS_CPP_SET_PROCESSOR ("_MIPS_ARCH", mips_arch_info); \
MIPS_CPP_SET_PROCESSOR ("_MIPS_TUNE", mips_tune_info); \
\
if (ISA_MIPS1) \
{ \
builtin_define ("__mips=1"); \
builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS1"); \
} \
else if (ISA_MIPS2) \
{ \
builtin_define ("__mips=2"); \
builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS2"); \
} \
else if (ISA_MIPS3) \
{ \
builtin_define ("__mips=3"); \
builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS3"); \
} \
else if (ISA_MIPS4) \
{ \
builtin_define ("__mips=4"); \
builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS4"); \
} \
else if (ISA_MIPS32) \
{ \
builtin_define ("__mips=32"); \
builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS32"); \
} \
else if (ISA_MIPS32R2) \
{ \
builtin_define ("__mips=32"); \
builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS32"); \
} \
else if (ISA_MIPS32R3) \
{ \
builtin_define ("__mips=32"); \
builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS32"); \
} \
else if (ISA_MIPS32R5) \
{ \
builtin_define ("__mips=32"); \
builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS32"); \
} \
else if (ISA_MIPS64) \
{ \
builtin_define ("__mips=64"); \
builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS64"); \
} \
else if (ISA_MIPS64R2) \
{ \
builtin_define ("__mips=64"); \
builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS64"); \
} \
else if (ISA_MIPS64R3) \
{ \
builtin_define ("__mips=64"); \
builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS64"); \
} \
else if (ISA_MIPS64R5) \
{ \
builtin_define ("__mips=64"); \
builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS64"); \
} \
if (mips_isa_rev > 0) \
builtin_define_with_int_value ("__mips_isa_rev", \
mips_isa_rev); \
\
switch (mips_abi) \
{ \
case ABI_32: \
builtin_define ("_ABIO32=1"); \
builtin_define ("_MIPS_SIM=_ABIO32"); \
break; \
\
case ABI_N32: \
builtin_define ("_ABIN32=2"); \
builtin_define ("_MIPS_SIM=_ABIN32"); \
break; \
\
case ABI_64: \
builtin_define ("_ABI64=3"); \
builtin_define ("_MIPS_SIM=_ABI64"); \
break; \
\
case ABI_O64: \
builtin_define ("_ABIO64=4"); \
builtin_define ("_MIPS_SIM=_ABIO64"); \
break; \
} \
\
builtin_define_with_int_value ("_MIPS_SZINT", INT_TYPE_SIZE); \
builtin_define_with_int_value ("_MIPS_SZLONG", LONG_TYPE_SIZE); \
builtin_define_with_int_value ("_MIPS_SZPTR", POINTER_SIZE); \
builtin_define_with_int_value ("_MIPS_FPSET", \
32 / MAX_FPRS_PER_FMT); \
\
/* These defines reflect the ABI in use, not whether the \
FPU is directly accessible. */ \
if (TARGET_NO_FLOAT) \
builtin_define ("__mips_no_float"); \
else if (TARGET_HARD_FLOAT_ABI) \
builtin_define ("__mips_hard_float"); \
else \
builtin_define ("__mips_soft_float"); \
\
if (TARGET_SINGLE_FLOAT) \
builtin_define ("__mips_single_float"); \
\
if (TARGET_PAIRED_SINGLE_FLOAT) \
builtin_define ("__mips_paired_single_float"); \
\
if (mips_abs == MIPS_IEEE_754_2008) \
builtin_define ("__mips_abs2008"); \
\
if (mips_nan == MIPS_IEEE_754_2008) \
builtin_define ("__mips_nan2008"); \
\
if (TARGET_BIG_ENDIAN) \
{ \
builtin_define_std ("MIPSEB"); \
builtin_define ("_MIPSEB"); \
} \
else \
{ \
builtin_define_std ("MIPSEL"); \
builtin_define ("_MIPSEL"); \
} \
\
/* Whether calls should go through $25. The separate __PIC__ \
macro indicates whether abicalls code might use a GOT. */ \
if (TARGET_ABICALLS) \
builtin_define ("__mips_abicalls"); \
\
/* Whether Loongson vector modes are enabled. */ \
if (TARGET_LOONGSON_VECTORS) \
builtin_define ("__mips_loongson_vector_rev"); \
\
/* Historical Octeon macro. */ \
if (TARGET_OCTEON) \
builtin_define ("__OCTEON__"); \
\
if (TARGET_SYNCI) \
builtin_define ("__mips_synci"); \
\
/* Macros dependent on the C dialect. */ \
if (preprocessing_asm_p ()) \
{ \
builtin_define_std ("LANGUAGE_ASSEMBLY"); \
builtin_define ("_LANGUAGE_ASSEMBLY"); \
} \
else if (c_dialect_cxx ()) \
{ \
builtin_define ("_LANGUAGE_C_PLUS_PLUS"); \
builtin_define ("__LANGUAGE_C_PLUS_PLUS"); \
builtin_define ("__LANGUAGE_C_PLUS_PLUS__"); \
} \
else \
{ \
builtin_define_std ("LANGUAGE_C"); \
builtin_define ("_LANGUAGE_C"); \
} \
if (c_dialect_objc ()) \
{ \
builtin_define ("_LANGUAGE_OBJECTIVE_C"); \
builtin_define ("__LANGUAGE_OBJECTIVE_C"); \
/* Bizarre, but retained for backwards compatibility. */ \
builtin_define_std ("LANGUAGE_C"); \
builtin_define ("_LANGUAGE_C"); \
} \
\
if (mips_abi == ABI_EABI) \
builtin_define ("__mips_eabi"); \
\
if (TARGET_CACHE_BUILTIN) \
builtin_define ("__GCC_HAVE_BUILTIN_MIPS_CACHE"); \
} \
while (0)
/* Default target_flags if no switches are specified */
#ifndef TARGET_DEFAULT
#define TARGET_DEFAULT 0
#endif
#ifndef TARGET_CPU_DEFAULT
#define TARGET_CPU_DEFAULT 0
#endif
#ifndef TARGET_ENDIAN_DEFAULT
#define TARGET_ENDIAN_DEFAULT MASK_BIG_ENDIAN
#endif
#ifdef IN_LIBGCC2
#undef TARGET_64BIT
/* Make this compile time constant for libgcc2 */
#ifdef __mips64
#define TARGET_64BIT 1
#else
#define TARGET_64BIT 0
#endif
#endif /* IN_LIBGCC2 */
/* Force the call stack unwinders in unwind.inc not to be MIPS16 code
when compiled with hardware floating point. This is because MIPS16
code cannot save and restore the floating-point registers, which is
important if in a mixed MIPS16/non-MIPS16 environment. */
#ifdef IN_LIBGCC2
#if __mips_hard_float
#define LIBGCC2_UNWIND_ATTRIBUTE __attribute__((__nomips16__))
#endif
#endif /* IN_LIBGCC2 */
#define TARGET_LIBGCC_SDATA_SECTION ".sdata"
#ifndef MULTILIB_ENDIAN_DEFAULT
#if TARGET_ENDIAN_DEFAULT == 0
#define MULTILIB_ENDIAN_DEFAULT "EL"
#else
#define MULTILIB_ENDIAN_DEFAULT "EB"
#endif
#endif
#ifndef MULTILIB_ISA_DEFAULT
#if MIPS_ISA_DEFAULT == 1
#define MULTILIB_ISA_DEFAULT "mips1"
#elif MIPS_ISA_DEFAULT == 2
#define MULTILIB_ISA_DEFAULT "mips2"
#elif MIPS_ISA_DEFAULT == 3
#define MULTILIB_ISA_DEFAULT "mips3"
#elif MIPS_ISA_DEFAULT == 4
#define MULTILIB_ISA_DEFAULT "mips4"
#elif MIPS_ISA_DEFAULT == 32
#define MULTILIB_ISA_DEFAULT "mips32"
#elif MIPS_ISA_DEFAULT == 33
#define MULTILIB_ISA_DEFAULT "mips32r2"
#elif MIPS_ISA_DEFAULT == 64
#define MULTILIB_ISA_DEFAULT "mips64"
#elif MIPS_ISA_DEFAULT == 65
#define MULTILIB_ISA_DEFAULT "mips64r2"
#else
#define MULTILIB_ISA_DEFAULT "mips1"
#endif
#endif
#ifndef MIPS_ABI_DEFAULT
#define MIPS_ABI_DEFAULT ABI_32
#endif
/* Use the most portable ABI flag for the ASM specs. */
#if MIPS_ABI_DEFAULT == ABI_32
#define MULTILIB_ABI_DEFAULT "mabi=32"
#elif MIPS_ABI_DEFAULT == ABI_O64
#define MULTILIB_ABI_DEFAULT "mabi=o64"
#elif MIPS_ABI_DEFAULT == ABI_N32
#define MULTILIB_ABI_DEFAULT "mabi=n32"
#elif MIPS_ABI_DEFAULT == ABI_64
#define MULTILIB_ABI_DEFAULT "mabi=64"
#elif MIPS_ABI_DEFAULT == ABI_EABI
#define MULTILIB_ABI_DEFAULT "mabi=eabi"
#endif
#ifndef MULTILIB_DEFAULTS
#define MULTILIB_DEFAULTS \
{ MULTILIB_ENDIAN_DEFAULT, MULTILIB_ISA_DEFAULT, MULTILIB_ABI_DEFAULT }
#endif
/* We must pass -EL to the linker by default for little endian embedded
targets using linker scripts with a OUTPUT_FORMAT line. Otherwise, the
linker will default to using big-endian output files. The OUTPUT_FORMAT
line must be in the linker script, otherwise -EB/-EL will not work. */
#ifndef ENDIAN_SPEC
#if TARGET_ENDIAN_DEFAULT == 0
#define ENDIAN_SPEC "%{!EB:%{!meb:-EL}} %{EB|meb:-EB}"
#else
#define ENDIAN_SPEC "%{!EL:%{!mel:-EB}} %{EL|mel:-EL}"
#endif
#endif
/* A spec condition that matches all non-mips16 -mips arguments. */
#define MIPS_ISA_LEVEL_OPTION_SPEC \
"mips1|mips2|mips3|mips4|mips32*|mips64*"
/* A spec condition that matches all non-mips16 architecture arguments. */
#define MIPS_ARCH_OPTION_SPEC \
MIPS_ISA_LEVEL_OPTION_SPEC "|march=*"
/* A spec that infers a -mips argument from an -march argument,
or injects the default if no architecture is specified. */
#define MIPS_ISA_LEVEL_SPEC \
"%{" MIPS_ISA_LEVEL_OPTION_SPEC ":;: \
%{march=mips1|march=r2000|march=r3000|march=r3900:-mips1} \
%{march=mips2|march=r6000:-mips2} \
%{march=mips3|march=r4*|march=vr4*|march=orion|march=loongson2*:-mips3} \
%{march=mips4|march=r8000|march=vr5*|march=rm7000|march=rm9000 \
|march=r10000|march=r12000|march=r14000|march=r16000:-mips4} \
%{march=mips32|march=4kc|march=4km|march=4kp|march=4ksc:-mips32} \
%{march=mips32r2|march=m4k|march=4ke*|march=4ksd|march=24k* \
|march=34k*|march=74k*|march=m14k*|march=1004k*: -mips32r2} \
%{march=mips32r3: -mips32r3} \
%{march=mips32r5|march=p5600: -mips32r5} \
%{march=mips64|march=5k*|march=20k*|march=sb1*|march=sr71000 \
|march=xlr: -mips64} \
%{march=mips64r2|march=loongson3a|march=octeon|march=xlp: -mips64r2} \
%{march=mips64r3: -mips64r3} \
%{march=mips64r5: -mips64r5} \
%{!march=*: -" MULTILIB_ISA_DEFAULT "}}"
/* A spec that infers a -mhard-float or -msoft-float setting from an
-march argument. Note that soft-float and hard-float code are not
link-compatible. */
#define MIPS_ARCH_FLOAT_SPEC \
"%{mhard-float|msoft-float|mno-float|march=mips*:; \
march=vr41*|march=m4k|march=4k*|march=24kc|march=24kec \
|march=34kc|march=34kn|march=74kc|march=1004kc|march=5kc \
|march=m14k*|march=octeon|march=xlr: -msoft-float; \
march=*: -mhard-float}"
/* A spec condition that matches 32-bit options. It only works if
MIPS_ISA_LEVEL_SPEC has been applied. */
#define MIPS_32BIT_OPTION_SPEC \
"mips1|mips2|mips32*|mgp32"
/* Infer a -msynci setting from a -mips argument, on the assumption that
-msynci is desired where possible. */
#define MIPS_ISA_SYNCI_SPEC \
"%{msynci|mno-synci:;:%{mips32r2|mips32r3|mips32r5|mips64r2|mips64r3 \
|mips64r5:-msynci;:-mno-synci}}"
#if (MIPS_ABI_DEFAULT == ABI_O64 \
|| MIPS_ABI_DEFAULT == ABI_N32 \
|| MIPS_ABI_DEFAULT == ABI_64)
#define OPT_ARCH64 "mabi=32|mgp32:;"
#define OPT_ARCH32 "mabi=32|mgp32"
#else
#define OPT_ARCH64 "mabi=o64|mabi=n32|mabi=64|mgp64"
#define OPT_ARCH32 "mabi=o64|mabi=n32|mabi=64|mgp64:;"
#endif
/* Support for a compile-time default CPU, et cetera. The rules are:
--with-arch is ignored if -march is specified or a -mips is specified
(other than -mips16); likewise --with-arch-32 and --with-arch-64.
--with-tune is ignored if -mtune is specified; likewise
--with-tune-32 and --with-tune-64.
--with-abi is ignored if -mabi is specified.
--with-float is ignored if -mhard-float or -msoft-float are
specified.
--with-nan is ignored if -mnan is specified.
--with-divide is ignored if -mdivide-traps or -mdivide-breaks are
specified. */
#define OPTION_DEFAULT_SPECS \
{"arch", "%{" MIPS_ARCH_OPTION_SPEC ":;: -march=%(VALUE)}" }, \
{"arch_32", "%{" OPT_ARCH32 ":%{" MIPS_ARCH_OPTION_SPEC ":;: -march=%(VALUE)}}" }, \
{"arch_64", "%{" OPT_ARCH64 ":%{" MIPS_ARCH_OPTION_SPEC ":;: -march=%(VALUE)}}" }, \
{"tune", "%{!mtune=*:-mtune=%(VALUE)}" }, \
{"tune_32", "%{" OPT_ARCH32 ":%{!mtune=*:-mtune=%(VALUE)}}" }, \
{"tune_64", "%{" OPT_ARCH64 ":%{!mtune=*:-mtune=%(VALUE)}}" }, \
{"abi", "%{!mabi=*:-mabi=%(VALUE)}" }, \
{"float", "%{!msoft-float:%{!mhard-float:-m%(VALUE)-float}}" }, \
{"fpu", "%{!msingle-float:%{!mdouble-float:-m%(VALUE)-float}}" }, \
{"nan", "%{!mnan=*:-mnan=%(VALUE)}" }, \
{"divide", "%{!mdivide-traps:%{!mdivide-breaks:-mdivide-%(VALUE)}}" }, \
{"llsc", "%{!mllsc:%{!mno-llsc:-m%(VALUE)}}" }, \
{"mips-plt", "%{!mplt:%{!mno-plt:-m%(VALUE)}}" }, \
{"synci", "%{!msynci:%{!mno-synci:-m%(VALUE)}}" }
/* A spec that infers the -mdsp setting from an -march argument. */
#define BASE_DRIVER_SELF_SPECS \
"%{!mno-dsp: \
%{march=24ke*|march=34kc*|march=34kf*|march=34kx*|march=1004k*: -mdsp} \
%{march=74k*|march=m14ke*: %{!mno-dspr2: -mdspr2 -mdsp}}}"
#define DRIVER_SELF_SPECS BASE_DRIVER_SELF_SPECS
#define GENERATE_DIVIDE_TRAPS (TARGET_DIVIDE_TRAPS \
&& ISA_HAS_COND_TRAP)
#define GENERATE_BRANCHLIKELY (TARGET_BRANCHLIKELY && !TARGET_MIPS16)
/* True if the ABI can only work with 64-bit integer registers. We
generally allow ad-hoc variations for TARGET_SINGLE_FLOAT, but
otherwise floating-point registers must also be 64-bit. */
#define ABI_NEEDS_64BIT_REGS (TARGET_NEWABI || mips_abi == ABI_O64)
/* Likewise for 32-bit regs. */
#define ABI_NEEDS_32BIT_REGS (mips_abi == ABI_32)
/* True if the file format uses 64-bit symbols. At present, this is
only true for n64, which uses 64-bit ELF. */
#define FILE_HAS_64BIT_SYMBOLS (mips_abi == ABI_64)
/* True if symbols are 64 bits wide. This is usually determined by
the ABI's file format, but it can be overridden by -msym32. Note that
overriding the size with -msym32 changes the ABI of relocatable objects,
although it doesn't change the ABI of a fully-linked object. */
#define ABI_HAS_64BIT_SYMBOLS (FILE_HAS_64BIT_SYMBOLS \
&& Pmode == DImode \
&& !TARGET_SYM32)
/* ISA has instructions for managing 64-bit fp and gp regs (e.g. mips3). */
#define ISA_HAS_64BIT_REGS (ISA_MIPS3 \
|| ISA_MIPS4 \
|| ISA_MIPS64 \
|| ISA_MIPS64R2 \
|| ISA_MIPS64R3 \
|| ISA_MIPS64R5)
/* ISA has branch likely instructions (e.g. mips2). */
/* Disable branchlikely for tx39 until compare rewrite. They haven't
been generated up to this point. */
#define ISA_HAS_BRANCHLIKELY (!ISA_MIPS1)
/* ISA has a three-operand multiplication instruction (usually spelt "mul"). */
#define ISA_HAS_MUL3 ((TARGET_MIPS3900 \
|| TARGET_MIPS5400 \
|| TARGET_MIPS5500 \
|| TARGET_MIPS5900 \
|| TARGET_MIPS7000 \
|| TARGET_MIPS9000 \
|| TARGET_MAD \
|| mips_isa_rev >= 1) \
&& !TARGET_MIPS16)
/* ISA has a three-operand multiplication instruction. */
#define ISA_HAS_DMUL3 (TARGET_64BIT \
&& TARGET_OCTEON \
&& !TARGET_MIPS16)
/* ISA supports instructions DMULT and DMULTU. */
#define ISA_HAS_DMULT (TARGET_64BIT && !TARGET_MIPS5900)
/* ISA supports instructions MULT and MULTU.
This is always true, but the macro is needed for ISA_HAS_<D>MULT
in mips.md. */
#define ISA_HAS_MULT (1)
/* ISA supports instructions DDIV and DDIVU. */
#define ISA_HAS_DDIV (TARGET_64BIT && !TARGET_MIPS5900)
/* ISA supports instructions DIV and DIVU.
This is always true, but the macro is needed for ISA_HAS_<D>DIV
in mips.md. */
#define ISA_HAS_DIV (1)
#define ISA_HAS_DIV3 ((TARGET_LOONGSON_2EF \
|| TARGET_LOONGSON_3A) \
&& !TARGET_MIPS16)
/* ISA has the floating-point conditional move instructions introduced
in mips4. */
#define ISA_HAS_FP_CONDMOVE ((ISA_MIPS4 \
|| mips_isa_rev >= 1) \
&& !TARGET_MIPS5500 \
&& !TARGET_MIPS16)
/* ISA has the integer conditional move instructions introduced in mips4 and
ST Loongson 2E/2F. */
#define ISA_HAS_CONDMOVE (ISA_HAS_FP_CONDMOVE \
|| TARGET_MIPS5900 \
|| TARGET_LOONGSON_2EF)
/* ISA has LDC1 and SDC1. */
#define ISA_HAS_LDC1_SDC1 (!ISA_MIPS1 \
&& !TARGET_MIPS5900 \
&& !TARGET_MIPS16)
/* ISA has the mips4 FP condition code instructions: FP-compare to CC,
branch on CC, and move (both FP and non-FP) on CC. */
#define ISA_HAS_8CC (ISA_MIPS4 || mips_isa_rev >= 1)
/* This is a catch all for other mips4 instructions: indexed load, the
FP madd and msub instructions, and the FP recip and recip sqrt
instructions. Note that this macro should only be used by other
ISA_HAS_* macros. */
#define ISA_HAS_FP4 ((ISA_MIPS4 \
|| ISA_MIPS64 \
|| mips_isa_rev >= 2) \
&& !TARGET_MIPS16)
/* ISA has floating-point indexed load and store instructions
(LWXC1, LDXC1, SWXC1 and SDXC1). */
#define ISA_HAS_LXC1_SXC1 ISA_HAS_FP4
/* ISA has paired-single instructions. */
#define ISA_HAS_PAIRED_SINGLE (ISA_MIPS64 || mips_isa_rev >= 2)
/* ISA has conditional trap instructions. */
#define ISA_HAS_COND_TRAP (!ISA_MIPS1 \
&& !TARGET_MIPS16)
/* ISA has integer multiply-accumulate instructions, madd and msub. */
#define ISA_HAS_MADD_MSUB (mips_isa_rev >= 1)
/* Integer multiply-accumulate instructions should be generated. */
#define GENERATE_MADD_MSUB (TARGET_IMADD && !TARGET_MIPS16)
/* ISA has floating-point madd and msub instructions 'd = a * b [+-] c'. */
#define ISA_HAS_FP_MADD4_MSUB4 ISA_HAS_FP4
/* ISA has floating-point madd and msub instructions 'c = a * b [+-] c'. */
#define ISA_HAS_FP_MADD3_MSUB3 TARGET_LOONGSON_2EF
/* ISA has floating-point nmadd and nmsub instructions
'd = -((a * b) [+-] c)'. */
#define ISA_HAS_NMADD4_NMSUB4 ISA_HAS_FP4
/* ISA has floating-point nmadd and nmsub instructions
'c = -((a * b) [+-] c)'. */
#define ISA_HAS_NMADD3_NMSUB3 TARGET_LOONGSON_2EF
/* ISA has floating-point RECIP.fmt and RSQRT.fmt instructions. The
MIPS64 rev. 1 ISA says that RECIP.D and RSQRT.D are unpredictable when
doubles are stored in pairs of FPRs, so for safety's sake, we apply
this restriction to the MIPS IV ISA too. */
#define ISA_HAS_FP_RECIP_RSQRT(MODE) \
(((ISA_HAS_FP4 \
&& ((MODE) == SFmode \
|| ((TARGET_FLOAT64 \
|| mips_isa_rev >= 2) \
&& (MODE) == DFmode))) \
|| (TARGET_SB1 \
&& (MODE) == V2SFmode)) \
&& !TARGET_MIPS16)
/* ISA has count leading zeroes/ones instruction (not implemented). */
#define ISA_HAS_CLZ_CLO (mips_isa_rev >= 1 && !TARGET_MIPS16)
/* ISA has three operand multiply instructions that put
the high part in an accumulator: mulhi or mulhiu. */
#define ISA_HAS_MULHI ((TARGET_MIPS5400 \
|| TARGET_MIPS5500 \
|| TARGET_SR71K) \
&& !TARGET_MIPS16)
/* ISA has three operand multiply instructions that negate the
result and put the result in an accumulator. */
#define ISA_HAS_MULS ((TARGET_MIPS5400 \
|| TARGET_MIPS5500 \
|| TARGET_SR71K) \
&& !TARGET_MIPS16)
/* ISA has three operand multiply instructions that subtract the
result from a 4th operand and put the result in an accumulator. */
#define ISA_HAS_MSAC ((TARGET_MIPS5400 \
|| TARGET_MIPS5500 \
|| TARGET_SR71K) \
&& !TARGET_MIPS16)
/* ISA has three operand multiply instructions that add the result
to a 4th operand and put the result in an accumulator. */
#define ISA_HAS_MACC ((TARGET_MIPS4120 \
|| TARGET_MIPS4130 \
|| TARGET_MIPS5400 \
|| TARGET_MIPS5500 \
|| TARGET_SR71K) \
&& !TARGET_MIPS16)
/* ISA has NEC VR-style MACC, MACCHI, DMACC and DMACCHI instructions. */
#define ISA_HAS_MACCHI ((TARGET_MIPS4120 \
|| TARGET_MIPS4130) \
&& !TARGET_MIPS16)
/* ISA has the "ror" (rotate right) instructions. */
#define ISA_HAS_ROR ((mips_isa_rev >= 2 \
|| TARGET_MIPS5400 \
|| TARGET_MIPS5500 \
|| TARGET_SR71K \
|| TARGET_SMARTMIPS) \
&& !TARGET_MIPS16)
/* ISA has the WSBH (word swap bytes within halfwords) instruction.
64-bit targets also provide DSBH and DSHD. */
#define ISA_HAS_WSBH (mips_isa_rev >= 2 && !TARGET_MIPS16)
/* ISA has data prefetch instructions. This controls use of 'pref'. */
#define ISA_HAS_PREFETCH ((ISA_MIPS4 \
|| TARGET_LOONGSON_2EF \
|| TARGET_MIPS5900 \
|| mips_isa_rev >= 1) \
&& !TARGET_MIPS16)
/* ISA has data indexed prefetch instructions. This controls use of
'prefx', along with TARGET_HARD_FLOAT and TARGET_DOUBLE_FLOAT.
(prefx is a cop1x instruction, so can only be used if FP is
enabled.) */
#define ISA_HAS_PREFETCHX ISA_HAS_FP4
/* True if trunc.w.s and trunc.w.d are real (not synthetic)
instructions. Both require TARGET_HARD_FLOAT, and trunc.w.d
also requires TARGET_DOUBLE_FLOAT. */
#define ISA_HAS_TRUNC_W (!ISA_MIPS1)
/* ISA includes the MIPS32r2 seb and seh instructions. */
#define ISA_HAS_SEB_SEH (mips_isa_rev >= 2 && !TARGET_MIPS16)
/* ISA includes the MIPS32/64 rev 2 ext and ins instructions. */
#define ISA_HAS_EXT_INS (mips_isa_rev >= 2 && !TARGET_MIPS16)
/* ISA has instructions for accessing top part of 64-bit fp regs. */
#define ISA_HAS_MXHC1 (TARGET_FLOAT64 && mips_isa_rev >= 2)
/* ISA has lwxs instruction (load w/scaled index address. */
#define ISA_HAS_LWXS ((TARGET_SMARTMIPS || TARGET_MICROMIPS) \
&& !TARGET_MIPS16)
/* ISA has lbx, lbux, lhx, lhx, lhux, lwx, lwux, or ldx instruction. */
#define ISA_HAS_LBX (TARGET_OCTEON2)
#define ISA_HAS_LBUX (ISA_HAS_DSP || TARGET_OCTEON2)
#define ISA_HAS_LHX (ISA_HAS_DSP || TARGET_OCTEON2)
#define ISA_HAS_LHUX (TARGET_OCTEON2)
#define ISA_HAS_LWX (ISA_HAS_DSP || TARGET_OCTEON2)
#define ISA_HAS_LWUX (TARGET_OCTEON2 && TARGET_64BIT)
#define ISA_HAS_LDX ((ISA_HAS_DSP || TARGET_OCTEON2) \
&& TARGET_64BIT)
/* The DSP ASE is available. */
#define ISA_HAS_DSP (TARGET_DSP && !TARGET_MIPS16)
/* Revision 2 of the DSP ASE is available. */
#define ISA_HAS_DSPR2 (TARGET_DSPR2 && !TARGET_MIPS16)
/* True if the result of a load is not available to the next instruction.
A nop will then be needed between instructions like "lw $4,..."
and "addiu $4,$4,1". */
#define ISA_HAS_LOAD_DELAY (ISA_MIPS1 \
&& !TARGET_MIPS3900 \
&& !TARGET_MIPS5900 \
&& !TARGET_MIPS16 \
&& !TARGET_MICROMIPS)
/* Likewise mtc1 and mfc1. */
#define ISA_HAS_XFER_DELAY (mips_isa <= 3 \
&& !TARGET_MIPS5900 \
&& !TARGET_LOONGSON_2EF)
/* Likewise floating-point comparisons. */
#define ISA_HAS_FCMP_DELAY (mips_isa <= 3 \
&& !TARGET_MIPS5900 \
&& !TARGET_LOONGSON_2EF)
/* True if mflo and mfhi can be immediately followed by instructions
which write to the HI and LO registers.
According to MIPS specifications, MIPS ISAs I, II, and III need
(at least) two instructions between the reads of HI/LO and
instructions which write them, and later ISAs do not. Contradicting
the MIPS specifications, some MIPS IV processor user manuals (e.g.
the UM for the NEC Vr5000) document needing the instructions between
HI/LO reads and writes, as well. Therefore, we declare only MIPS32,
MIPS64 and later ISAs to have the interlocks, plus any specific
earlier-ISA CPUs for which CPU documentation declares that the
instructions are really interlocked. */
#define ISA_HAS_HILO_INTERLOCKS (mips_isa_rev >= 1 \
|| TARGET_MIPS5500 \
|| TARGET_MIPS5900 \
|| TARGET_LOONGSON_2EF)
/* ISA includes synci, jr.hb and jalr.hb. */
#define ISA_HAS_SYNCI (mips_isa_rev >= 2 && !TARGET_MIPS16)
/* ISA includes sync. */
#define ISA_HAS_SYNC ((mips_isa >= 2 || TARGET_MIPS3900) && !TARGET_MIPS16)
#define GENERATE_SYNC \
(target_flags_explicit & MASK_LLSC \
? TARGET_LLSC && !TARGET_MIPS16 \
: ISA_HAS_SYNC)
/* ISA includes ll and sc. Note that this implies ISA_HAS_SYNC
because the expanders use both ISA_HAS_SYNC and ISA_HAS_LL_SC
instructions. */
#define ISA_HAS_LL_SC (mips_isa >= 2 && !TARGET_MIPS5900 && !TARGET_MIPS16)
#define GENERATE_LL_SC \
(target_flags_explicit & MASK_LLSC \
? TARGET_LLSC && !TARGET_MIPS16 \
: ISA_HAS_LL_SC)
#define ISA_HAS_SWAP (TARGET_XLP)
#define ISA_HAS_LDADD (TARGET_XLP)
/* ISA includes the baddu instruction. */
#define ISA_HAS_BADDU (TARGET_OCTEON && !TARGET_MIPS16)
/* ISA includes the bbit* instructions. */
#define ISA_HAS_BBIT (TARGET_OCTEON && !TARGET_MIPS16)
/* ISA includes the cins instruction. */
#define ISA_HAS_CINS (TARGET_OCTEON && !TARGET_MIPS16)
/* ISA includes the exts instruction. */
#define ISA_HAS_EXTS (TARGET_OCTEON && !TARGET_MIPS16)
/* ISA includes the seq and sne instructions. */
#define ISA_HAS_SEQ_SNE (TARGET_OCTEON && !TARGET_MIPS16)
/* ISA includes the pop instruction. */
#define ISA_HAS_POP (TARGET_OCTEON && !TARGET_MIPS16)
/* The CACHE instruction is available in non-MIPS16 code. */
#define TARGET_CACHE_BUILTIN (mips_isa >= 3)
/* The CACHE instruction is available. */
#define ISA_HAS_CACHE (TARGET_CACHE_BUILTIN && !TARGET_MIPS16)
/* Tell collect what flags to pass to nm. */
#ifndef NM_FLAGS
#define NM_FLAGS "-Bn"
#endif
/* SUBTARGET_ASM_DEBUGGING_SPEC handles passing debugging options to
the assembler. It may be overridden by subtargets.
Beginning with gas 2.13, -mdebug must be passed to correctly handle
COFF debugging info. */
#ifndef SUBTARGET_ASM_DEBUGGING_SPEC
#define SUBTARGET_ASM_DEBUGGING_SPEC "\
%{g} %{g0} %{g1} %{g2} %{g3} \
%{ggdb:-g} %{ggdb0:-g0} %{ggdb1:-g1} %{ggdb2:-g2} %{ggdb3:-g3} \
%{gstabs:-g} %{gstabs0:-g0} %{gstabs1:-g1} %{gstabs2:-g2} %{gstabs3:-g3} \
%{gstabs+:-g} %{gstabs+0:-g0} %{gstabs+1:-g1} %{gstabs+2:-g2} %{gstabs+3:-g3} \
%{gcoff:-g} %{gcoff0:-g0} %{gcoff1:-g1} %{gcoff2:-g2} %{gcoff3:-g3} \
%{gcoff*:-mdebug} %{!gcoff*:-no-mdebug}"
#endif
/* SUBTARGET_ASM_SPEC is always passed to the assembler. It may be
overridden by subtargets. */
#ifndef SUBTARGET_ASM_SPEC
#define SUBTARGET_ASM_SPEC ""
#endif
#undef ASM_SPEC
#define ASM_SPEC "\
%{G*} %(endian_spec) %{mips1} %{mips2} %{mips3} %{mips4} \
%{mips32*} %{mips64*} \
%{mips16} %{mno-mips16:-no-mips16} \
%{mmicromips} %{mno-micromips} \
%{mips3d} %{mno-mips3d:-no-mips3d} \
%{mdmx} %{mno-mdmx:-no-mdmx} \
%{mdsp} %{mno-dsp} \
%{mdspr2} %{mno-dspr2} \
%{mmcu} %{mno-mcu} \
%{meva} %{mno-eva} \
%{mvirt} %{mno-virt} \
%{mxpa} %{mno-xpa} \
%{msmartmips} %{mno-smartmips} \
%{mmt} %{mno-mt} \
%{mfix-rm7000} %{mno-fix-rm7000} \
%{mfix-vr4120} %{mfix-vr4130} \
%{mfix-24k} \
%{noasmopt:-O0; O0|fno-delayed-branch:-O1; O*:-O2; :-O1} \
%(subtarget_asm_debugging_spec) \
%{mabi=*} %{!mabi=*: %(asm_abi_default_spec)} \
%{mgp32} %{mgp64} %{march=*} %{mxgot:-xgot} \
%{mfp32} %{mfp64} %{mnan=*} \
%{mshared} %{mno-shared} \
%{msym32} %{mno-sym32} \
%{mtune=*} \
%{mhard-float} %{msoft-float} \
%{msingle-float} %{mdouble-float} \
%(subtarget_asm_spec)"
/* Extra switches sometimes passed to the linker. */
#ifndef LINK_SPEC
#define LINK_SPEC "\
%(endian_spec) \
%{G*} %{mips1} %{mips2} %{mips3} %{mips4} %{mips32*} %{mips64*} \
%{shared}"
#endif /* LINK_SPEC defined */
/* Specs for the compiler proper */
/* SUBTARGET_CC1_SPEC is passed to the compiler proper. It may be
overridden by subtargets. */
#ifndef SUBTARGET_CC1_SPEC
#define SUBTARGET_CC1_SPEC ""
#endif
/* CC1_SPEC is the set of arguments to pass to the compiler proper. */
#undef CC1_SPEC
#define CC1_SPEC "\
%{G*} %{EB:-meb} %{EL:-mel} %{EB:%{EL:%emay not use both -EB and -EL}} \
%(subtarget_cc1_spec)"
/* Preprocessor specs. */
/* SUBTARGET_CPP_SPEC is passed to the preprocessor. It may be
overridden by subtargets. */
#ifndef SUBTARGET_CPP_SPEC
#define SUBTARGET_CPP_SPEC ""
#endif
#define CPP_SPEC "%(subtarget_cpp_spec)"
/* This macro defines names of additional specifications to put in the specs
that can be used in various specifications like CC1_SPEC. Its definition
is an initializer with a subgrouping for each command option.
Each subgrouping contains a string constant, that defines the
specification name, and a string constant that used by the GCC driver
program.
Do not define this macro if it does not need to do anything. */
#define EXTRA_SPECS \
{ "subtarget_cc1_spec", SUBTARGET_CC1_SPEC }, \
{ "subtarget_cpp_spec", SUBTARGET_CPP_SPEC }, \
{ "subtarget_asm_debugging_spec", SUBTARGET_ASM_DEBUGGING_SPEC }, \
{ "subtarget_asm_spec", SUBTARGET_ASM_SPEC }, \
{ "asm_abi_default_spec", "-" MULTILIB_ABI_DEFAULT }, \
{ "endian_spec", ENDIAN_SPEC }, \
SUBTARGET_EXTRA_SPECS
#ifndef SUBTARGET_EXTRA_SPECS
#define SUBTARGET_EXTRA_SPECS
#endif
#define DBX_DEBUGGING_INFO 1 /* generate stabs (OSF/rose) */
#define DWARF2_DEBUGGING_INFO 1 /* dwarf2 debugging info */
#ifndef PREFERRED_DEBUGGING_TYPE
#define PREFERRED_DEBUGGING_TYPE DWARF2_DEBUG
#endif
/* The size of DWARF addresses should be the same as the size of symbols
in the target file format. They shouldn't depend on things like -msym32,
because many DWARF consumers do not allow the mixture of address sizes
that one would then get from linking -msym32 code with -msym64 code.
Note that the default POINTER_SIZE test is not appropriate for MIPS.
EABI64 has 64-bit pointers but uses 32-bit ELF. */
#define DWARF2_ADDR_SIZE (FILE_HAS_64BIT_SYMBOLS ? 8 : 4)
/* By default, turn on GDB extensions. */
#define DEFAULT_GDB_EXTENSIONS 1
/* Registers may have a prefix which can be ignored when matching
user asm and register definitions. */
#ifndef REGISTER_PREFIX
#define REGISTER_PREFIX "$"
#endif
/* Local compiler-generated symbols must have a prefix that the assembler
understands. By default, this is $, although some targets (e.g.,
NetBSD-ELF) need to override this. */
#ifndef LOCAL_LABEL_PREFIX
#define LOCAL_LABEL_PREFIX "$"
#endif
/* By default on the mips, external symbols do not have an underscore
prepended, but some targets (e.g., NetBSD) require this. */
#ifndef USER_LABEL_PREFIX
#define USER_LABEL_PREFIX ""
#endif
/* On Sun 4, this limit is 2048. We use 1500 to be safe,
since the length can run past this up to a continuation point. */
#undef DBX_CONTIN_LENGTH
#define DBX_CONTIN_LENGTH 1500
/* How to renumber registers for dbx and gdb. */
#define DBX_REGISTER_NUMBER(REGNO) mips_dbx_regno[REGNO]
/* The mapping from gcc register number to DWARF 2 CFA column number. */
#define DWARF_FRAME_REGNUM(REGNO) mips_dwarf_regno[REGNO]
/* The DWARF 2 CFA column which tracks the return address. */
#define DWARF_FRAME_RETURN_COLUMN RETURN_ADDR_REGNUM
/* Before the prologue, RA lives in r31. */
#define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (VOIDmode, RETURN_ADDR_REGNUM)
/* Describe how we implement __builtin_eh_return. */
#define EH_RETURN_DATA_REGNO(N) \
((N) < (TARGET_MIPS16 ? 2 : 4) ? (N) + GP_ARG_FIRST : INVALID_REGNUM)
#define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, GP_REG_FIRST + 3)
#define EH_USES(N) mips_eh_uses (N)
/* Offsets recorded in opcodes are a multiple of this alignment factor.
The default for this in 64-bit mode is 8, which causes problems with
SFmode register saves. */
#define DWARF_CIE_DATA_ALIGNMENT -4
/* Correct the offset of automatic variables and arguments. Note that
the MIPS debug format wants all automatic variables and arguments
to be in terms of the virtual frame pointer (stack pointer before
any adjustment in the function), while the MIPS 3.0 linker wants
the frame pointer to be the stack pointer after the initial
adjustment. */
#define DEBUGGER_AUTO_OFFSET(X) \
mips_debugger_offset (X, (HOST_WIDE_INT) 0)
#define DEBUGGER_ARG_OFFSET(OFFSET, X) \
mips_debugger_offset (X, (HOST_WIDE_INT) OFFSET)
/* Target machine storage layout */
#define BITS_BIG_ENDIAN 0
#define BYTES_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0)
#define WORDS_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0)
#define MAX_BITS_PER_WORD 64
/* Width of a word, in units (bytes). */
#define UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
#ifndef IN_LIBGCC2
#define MIN_UNITS_PER_WORD 4
#endif
/* For MIPS, width of a floating point register. */
#define UNITS_PER_FPREG (TARGET_FLOAT64 ? 8 : 4)
/* The number of consecutive floating-point registers needed to store the
largest format supported by the FPU. */
#define MAX_FPRS_PER_FMT (TARGET_FLOAT64 || TARGET_SINGLE_FLOAT ? 1 : 2)
/* The number of consecutive floating-point registers needed to store the
smallest format supported by the FPU. */
#define MIN_FPRS_PER_FMT \
(mips_isa_rev >= 1 ? 1 : MAX_FPRS_PER_FMT)
/* The largest size of value that can be held in floating-point
registers and moved with a single instruction. */
#define UNITS_PER_HWFPVALUE \
(TARGET_SOFT_FLOAT_ABI ? 0 : MAX_FPRS_PER_FMT * UNITS_PER_FPREG)
/* The largest size of value that can be held in floating-point
registers. */
#define UNITS_PER_FPVALUE \
(TARGET_SOFT_FLOAT_ABI ? 0 \
: TARGET_SINGLE_FLOAT ? UNITS_PER_FPREG \
: LONG_DOUBLE_TYPE_SIZE / BITS_PER_UNIT)
/* The number of bytes in a double. */
#define UNITS_PER_DOUBLE (TYPE_PRECISION (double_type_node) / BITS_PER_UNIT)
/* Set the sizes of the core types. */
#define SHORT_TYPE_SIZE 16
#define INT_TYPE_SIZE 32
#define LONG_TYPE_SIZE (TARGET_LONG64 ? 64 : 32)
#define LONG_LONG_TYPE_SIZE 64
#define FLOAT_TYPE_SIZE 32
#define DOUBLE_TYPE_SIZE 64
#define LONG_DOUBLE_TYPE_SIZE (TARGET_NEWABI ? 128 : 64)
/* Define the sizes of fixed-point types. */
#define SHORT_FRACT_TYPE_SIZE 8
#define FRACT_TYPE_SIZE 16
#define LONG_FRACT_TYPE_SIZE 32
#define LONG_LONG_FRACT_TYPE_SIZE 64
#define SHORT_ACCUM_TYPE_SIZE 16
#define ACCUM_TYPE_SIZE 32
#define LONG_ACCUM_TYPE_SIZE 64
/* FIXME. LONG_LONG_ACCUM_TYPE_SIZE should be 128 bits, but GCC
doesn't support 128-bit integers for MIPS32 currently. */
#define LONG_LONG_ACCUM_TYPE_SIZE (TARGET_64BIT ? 128 : 64)
/* long double is not a fixed mode, but the idea is that, if we
support long double, we also want a 128-bit integer type. */
#define MAX_FIXED_MODE_SIZE LONG_DOUBLE_TYPE_SIZE
/* Width in bits of a pointer. */
#ifndef POINTER_SIZE
#define POINTER_SIZE ((TARGET_LONG64 && TARGET_64BIT) ? 64 : 32)
#endif
/* Allocation boundary (in *bits*) for storing arguments in argument list. */
#define PARM_BOUNDARY BITS_PER_WORD
/* Allocation boundary (in *bits*) for the code of a function. */
#define FUNCTION_BOUNDARY 32
/* Alignment of field after `int : 0' in a structure. */
#define EMPTY_FIELD_BOUNDARY 32
/* Every structure's size must be a multiple of this. */
/* 8 is observed right on a DECstation and on riscos 4.02. */
#define STRUCTURE_SIZE_BOUNDARY 8
/* There is no point aligning anything to a rounder boundary than this. */
#define BIGGEST_ALIGNMENT LONG_DOUBLE_TYPE_SIZE
/* All accesses must be aligned. */
#define STRICT_ALIGNMENT 1
/* Define this if you wish to imitate the way many other C compilers
handle alignment of bitfields and the structures that contain
them.
The behavior is that the type written for a bit-field (`int',
`short', or other integer type) imposes an alignment for the
entire structure, as if the structure really did contain an
ordinary field of that type. In addition, the bit-field is placed
within the structure so that it would fit within such a field,
not crossing a boundary for it.
Thus, on most machines, a bit-field whose type is written as `int'
would not cross a four-byte boundary, and would force four-byte
alignment for the whole structure. (The alignment used may not
be four bytes; it is controlled by the other alignment
parameters.)
If the macro is defined, its definition should be a C expression;
a nonzero value for the expression enables this behavior. */
#define PCC_BITFIELD_TYPE_MATTERS 1
/* If defined, a C expression to compute the alignment given to a
constant that is being placed in memory. CONSTANT is the constant
and ALIGN is the alignment that the object would ordinarily have.
The value of this macro is used instead of that alignment to align
the object.
If this macro is not defined, then ALIGN is used.
The typical use of this macro is to increase alignment for string
constants to be word aligned so that `strcpy' calls that copy
constants can be done inline. */
#define CONSTANT_ALIGNMENT(EXP, ALIGN) \
((TREE_CODE (EXP) == STRING_CST || TREE_CODE (EXP) == CONSTRUCTOR) \
&& (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
/* If defined, a C expression to compute the alignment for a static
variable. TYPE is the data type, and ALIGN is the alignment that
the object would ordinarily have. The value of this macro is used
instead of that alignment to align the object.
If this macro is not defined, then ALIGN is used.
One use of this macro is to increase alignment of medium-size
data to make it all fit in fewer cache lines. Another is to
cause character arrays to be word-aligned so that `strcpy' calls
that copy constants to character arrays can be done inline. */
#undef DATA_ALIGNMENT
#define DATA_ALIGNMENT(TYPE, ALIGN) \
((((ALIGN) < BITS_PER_WORD) \
&& (TREE_CODE (TYPE) == ARRAY_TYPE \
|| TREE_CODE (TYPE) == UNION_TYPE \
|| TREE_CODE (TYPE) == RECORD_TYPE)) ? BITS_PER_WORD : (ALIGN))
/* We need this for the same reason as DATA_ALIGNMENT, namely to cause
character arrays to be word-aligned so that `strcpy' calls that copy
constants to character arrays can be done inline, and 'strcmp' can be
optimised to use word loads. */
#define LOCAL_ALIGNMENT(TYPE, ALIGN) \
DATA_ALIGNMENT (TYPE, ALIGN)
#define PAD_VARARGS_DOWN \
(FUNCTION_ARG_PADDING (TYPE_MODE (type), type) == downward)
/* Define if operations between registers always perform the operation
on the full register even if a narrower mode is specified. */
#define WORD_REGISTER_OPERATIONS
/* When in 64-bit mode, move insns will sign extend SImode and CCmode
moves. All other references are zero extended. */
#define LOAD_EXTEND_OP(MODE) \
(TARGET_64BIT && ((MODE) == SImode || (MODE) == CCmode) \
? SIGN_EXTEND : ZERO_EXTEND)
/* Define this macro if it is advisable to hold scalars in registers
in a wider mode than that declared by the program. In such cases,
the value is constrained to be within the bounds of the declared
type, but kept valid in the wider mode. The signedness of the
extension may differ from that of the type. */
#define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
if (GET_MODE_CLASS (MODE) == MODE_INT \
&& GET_MODE_SIZE (MODE) < UNITS_PER_WORD) \
{ \
if ((MODE) == SImode) \
(UNSIGNEDP) = 0; \
(MODE) = Pmode; \
}
/* Pmode is always the same as ptr_mode, but not always the same as word_mode.
Extensions of pointers to word_mode must be signed. */
#define POINTERS_EXTEND_UNSIGNED false
/* Define if loading short immediate values into registers sign extends. */
#define SHORT_IMMEDIATES_SIGN_EXTEND
/* The [d]clz instructions have the natural values at 0. */
#define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
((VALUE) = GET_MODE_BITSIZE (MODE), 2)
/* Standard register usage. */
/* Number of hardware registers. We have:
- 32 integer registers
- 32 floating point registers
- 8 condition code registers
- 2 accumulator registers (hi and lo)
- 32 registers each for coprocessors 0, 2 and 3
- 4 fake registers:
- ARG_POINTER_REGNUM
- FRAME_POINTER_REGNUM
- GOT_VERSION_REGNUM (see the comment above load_call<mode> for details)
- CPRESTORE_SLOT_REGNUM
- 2 dummy entries that were used at various times in the past.
- 6 DSP accumulator registers (3 hi-lo pairs) for MIPS DSP ASE
- 6 DSP control registers */
#define FIRST_PSEUDO_REGISTER 188
/* By default, fix the kernel registers ($26 and $27), the global
pointer ($28) and the stack pointer ($29). This can change
depending on the command-line options.
Regarding coprocessor registers: without evidence to the contrary,
it's best to assume that each coprocessor register has a unique
use. This can be overridden, in, e.g., mips_option_override or
TARGET_CONDITIONAL_REGISTER_USAGE should the assumption be
inappropriate for a particular target. */
#define FIXED_REGISTERS \
{ \
1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, \
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, \
/* COP0 registers */ \
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
/* COP2 registers */ \
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
/* COP3 registers */ \
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
/* 6 DSP accumulator registers & 6 control registers */ \
0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1 \
}
/* Set up this array for o32 by default.
Note that we don't mark $31 as a call-clobbered register. The idea is
that it's really the call instructions themselves which clobber $31.
We don't care what the called function does with it afterwards.
This approach makes it easier to implement sibcalls. Unlike normal
calls, sibcalls don't clobber $31, so the register reaches the
called function in tact. EPILOGUE_USES says that $31 is useful
to the called function. */
#define CALL_USED_REGISTERS \
{ \
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, \
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
/* COP0 registers */ \
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
/* COP2 registers */ \
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
/* COP3 registers */ \
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
/* 6 DSP accumulator registers & 6 control registers */ \
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 \
}
/* Define this since $28, though fixed, is call-saved in many ABIs. */
#define CALL_REALLY_USED_REGISTERS \
{ /* General registers. */ \
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, \
/* Floating-point registers. */ \
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
/* Others. */ \
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, \
/* COP0 registers */ \
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
/* COP2 registers */ \
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
/* COP3 registers */ \
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
/* 6 DSP accumulator registers & 6 control registers */ \
1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0 \
}
/* Internal macros to classify a register number as to whether it's a
general purpose register, a floating point register, a
multiply/divide register, or a status register. */
#define GP_REG_FIRST 0
#define GP_REG_LAST 31
#define GP_REG_NUM (GP_REG_LAST - GP_REG_FIRST + 1)
#define GP_DBX_FIRST 0
#define K0_REG_NUM (GP_REG_FIRST + 26)
#define K1_REG_NUM (GP_REG_FIRST + 27)
#define KERNEL_REG_P(REGNO) (IN_RANGE (REGNO, K0_REG_NUM, K1_REG_NUM))
#define FP_REG_FIRST 32
#define FP_REG_LAST 63
#define FP_REG_NUM (FP_REG_LAST - FP_REG_FIRST + 1)
#define FP_DBX_FIRST ((write_symbols == DBX_DEBUG) ? 38 : 32)
#define MD_REG_FIRST 64
#define MD_REG_LAST 65
#define MD_REG_NUM (MD_REG_LAST - MD_REG_FIRST + 1)
#define MD_DBX_FIRST (FP_DBX_FIRST + FP_REG_NUM)
/* The DWARF 2 CFA column which tracks the return address from a
signal handler context. This means that to maintain backwards
compatibility, no hard register can be assigned this column if it
would need to be handled by the DWARF unwinder. */
#define DWARF_ALT_FRAME_RETURN_COLUMN 66
#define ST_REG_FIRST 67
#define ST_REG_LAST 74
#define ST_REG_NUM (ST_REG_LAST - ST_REG_FIRST + 1)
/* FIXME: renumber. */
#define COP0_REG_FIRST 80
#define COP0_REG_LAST 111
#define COP0_REG_NUM (COP0_REG_LAST - COP0_REG_FIRST + 1)
#define COP0_STATUS_REG_NUM (COP0_REG_FIRST + 12)
#define COP0_CAUSE_REG_NUM (COP0_REG_FIRST + 13)
#define COP0_EPC_REG_NUM (COP0_REG_FIRST + 14)
#define COP2_REG_FIRST 112
#define COP2_REG_LAST 143
#define COP2_REG_NUM (COP2_REG_LAST - COP2_REG_FIRST + 1)
#define COP3_REG_FIRST 144
#define COP3_REG_LAST 175
#define COP3_REG_NUM (COP3_REG_LAST - COP3_REG_FIRST + 1)
/* These definitions assume that COP0, 2 and 3 are numbered consecutively. */
#define ALL_COP_REG_FIRST COP0_REG_FIRST
#define ALL_COP_REG_LAST COP3_REG_LAST
#define ALL_COP_REG_NUM (ALL_COP_REG_LAST - ALL_COP_REG_FIRST + 1)
#define DSP_ACC_REG_FIRST 176
#define DSP_ACC_REG_LAST 181
#define DSP_ACC_REG_NUM (DSP_ACC_REG_LAST - DSP_ACC_REG_FIRST + 1)
#define AT_REGNUM (GP_REG_FIRST + 1)
#define HI_REGNUM (TARGET_BIG_ENDIAN ? MD_REG_FIRST : MD_REG_FIRST + 1)
#define LO_REGNUM (TARGET_BIG_ENDIAN ? MD_REG_FIRST + 1 : MD_REG_FIRST)
/* A few bitfield locations for the coprocessor registers. */
/* Request Interrupt Priority Level is from bit 10 to bit 15 of
the cause register for the EIC interrupt mode. */
#define CAUSE_IPL 10
/* Interrupt Priority Level is from bit 10 to bit 15 of the status register. */
#define SR_IPL 10
/* Exception Level is at bit 1 of the status register. */
#define SR_EXL 1
/* Interrupt Enable is at bit 0 of the status register. */
#define SR_IE 0
/* FPSW_REGNUM is the single condition code used if !ISA_HAS_8CC.
If ISA_HAS_8CC, it should not be used, and an arbitrary ST_REG
should be used instead. */
#define FPSW_REGNUM ST_REG_FIRST
#define GP_REG_P(REGNO) \
((unsigned int) ((int) (REGNO) - GP_REG_FIRST) < GP_REG_NUM)
#define M16_REG_P(REGNO) \
(((REGNO) >= 2 && (REGNO) <= 7) || (REGNO) == 16 || (REGNO) == 17)
#define M16STORE_REG_P(REGNO) \
(((REGNO) >= 2 && (REGNO) <= 7) || (REGNO) == 0 || (REGNO) == 17)
#define FP_REG_P(REGNO) \
((unsigned int) ((int) (REGNO) - FP_REG_FIRST) < FP_REG_NUM)
#define MD_REG_P(REGNO) \
((unsigned int) ((int) (REGNO) - MD_REG_FIRST) < MD_REG_NUM)
#define ST_REG_P(REGNO) \
((unsigned int) ((int) (REGNO) - ST_REG_FIRST) < ST_REG_NUM)
#define COP0_REG_P(REGNO) \
((unsigned int) ((int) (REGNO) - COP0_REG_FIRST) < COP0_REG_NUM)
#define COP2_REG_P(REGNO) \
((unsigned int) ((int) (REGNO) - COP2_REG_FIRST) < COP2_REG_NUM)
#define COP3_REG_P(REGNO) \
((unsigned int) ((int) (REGNO) - COP3_REG_FIRST) < COP3_REG_NUM)
#define ALL_COP_REG_P(REGNO) \
((unsigned int) ((int) (REGNO) - COP0_REG_FIRST) < ALL_COP_REG_NUM)
/* Test if REGNO is one of the 6 new DSP accumulators. */
#define DSP_ACC_REG_P(REGNO) \
((unsigned int) ((int) (REGNO) - DSP_ACC_REG_FIRST) < DSP_ACC_REG_NUM)
/* Test if REGNO is hi, lo, or one of the 6 new DSP accumulators. */
#define ACC_REG_P(REGNO) \
(MD_REG_P (REGNO) || DSP_ACC_REG_P (REGNO))
#define FP_REG_RTX_P(X) (REG_P (X) && FP_REG_P (REGNO (X)))
/* True if X is (const (unspec [(const_int 0)] UNSPEC_GP)). This is used
to initialize the mips16 gp pseudo register. */
#define CONST_GP_P(X) \
(GET_CODE (X) == CONST \
&& GET_CODE (XEXP (X, 0)) == UNSPEC \
&& XINT (XEXP (X, 0), 1) == UNSPEC_GP)
/* Return coprocessor number from register number. */
#define COPNUM_AS_CHAR_FROM_REGNUM(REGNO) \
(COP0_REG_P (REGNO) ? '0' : COP2_REG_P (REGNO) ? '2' \
: COP3_REG_P (REGNO) ? '3' : '?')
#define HARD_REGNO_NREGS(REGNO, MODE) mips_hard_regno_nregs (REGNO, MODE)
#define HARD_REGNO_MODE_OK(REGNO, MODE) \
mips_hard_regno_mode_ok[ (int)(MODE) ][ (REGNO) ]
#define MODES_TIEABLE_P mips_modes_tieable_p
/* Register to use for pushing function arguments. */
#define STACK_POINTER_REGNUM (GP_REG_FIRST + 29)
/* These two registers don't really exist: they get eliminated to either
the stack or hard frame pointer. */
#define ARG_POINTER_REGNUM 77
#define FRAME_POINTER_REGNUM 78
/* $30 is not available on the mips16, so we use $17 as the frame
pointer. */
#define HARD_FRAME_POINTER_REGNUM \
(TARGET_MIPS16 ? GP_REG_FIRST + 17 : GP_REG_FIRST + 30)
#define HARD_FRAME_POINTER_IS_FRAME_POINTER 0
#define HARD_FRAME_POINTER_IS_ARG_POINTER 0
/* Register in which static-chain is passed to a function. */
#define STATIC_CHAIN_REGNUM (GP_REG_FIRST + 15)
/* Registers used as temporaries in prologue/epilogue code:
- If a MIPS16 PIC function needs access to _gp, it first loads
the value into MIPS16_PIC_TEMP and then copies it to $gp.
- The prologue can use MIPS_PROLOGUE_TEMP as a general temporary
register. The register must not conflict with MIPS16_PIC_TEMP.
- If we aren't generating MIPS16 code, the prologue can also use
MIPS_PROLOGUE_TEMP2 as a general temporary register.
- The epilogue can use MIPS_EPILOGUE_TEMP as a general temporary
register.
If we're generating MIPS16 code, these registers must come from the
core set of 8. The prologue registers mustn't conflict with any
incoming arguments, the static chain pointer, or the frame pointer.
The epilogue temporary mustn't conflict with the return registers,
the PIC call register ($25), the frame pointer, the EH stack adjustment,
or the EH data registers.
If we're generating interrupt handlers, we use K0 as a temporary register
in prologue/epilogue code. */
#define MIPS16_PIC_TEMP_REGNUM (GP_REG_FIRST + 2)
#define MIPS_PROLOGUE_TEMP_REGNUM \
(cfun->machine->interrupt_handler_p ? K0_REG_NUM : GP_REG_FIRST + 3)
#define MIPS_PROLOGUE_TEMP2_REGNUM \
(TARGET_MIPS16 \
? (gcc_unreachable (), INVALID_REGNUM) \
: cfun->machine->interrupt_handler_p ? K1_REG_NUM : GP_REG_FIRST + 12)
#define MIPS_EPILOGUE_TEMP_REGNUM \
(cfun->machine->interrupt_handler_p \
? K0_REG_NUM \
: GP_REG_FIRST + (TARGET_MIPS16 ? 6 : 8))
#define MIPS16_PIC_TEMP gen_rtx_REG (Pmode, MIPS16_PIC_TEMP_REGNUM)
#define MIPS_PROLOGUE_TEMP(MODE) gen_rtx_REG (MODE, MIPS_PROLOGUE_TEMP_REGNUM)
#define MIPS_PROLOGUE_TEMP2(MODE) \
gen_rtx_REG (MODE, MIPS_PROLOGUE_TEMP2_REGNUM)
#define MIPS_EPILOGUE_TEMP(MODE) gen_rtx_REG (MODE, MIPS_EPILOGUE_TEMP_REGNUM)
/* Define this macro if it is as good or better to call a constant
function address than to call an address kept in a register. */
#define NO_FUNCTION_CSE 1
/* The ABI-defined global pointer. Sometimes we use a different
register in leaf functions: see PIC_OFFSET_TABLE_REGNUM. */
#define GLOBAL_POINTER_REGNUM (GP_REG_FIRST + 28)
/* We normally use $28 as the global pointer. However, when generating
n32/64 PIC, it is better for leaf functions to use a call-clobbered
register instead. They can then avoid saving and restoring $28
and perhaps avoid using a frame at all.
When a leaf function uses something other than $28, mips_expand_prologue
will modify pic_offset_table_rtx in place. Take the register number
from there after reload. */
#define PIC_OFFSET_TABLE_REGNUM \
(reload_completed ? REGNO (pic_offset_table_rtx) : GLOBAL_POINTER_REGNUM)
/* Define the classes of registers for register constraints in the
machine description. Also define ranges of constants.
One of the classes must always be named ALL_REGS and include all hard regs.
If there is more than one class, another class must be named NO_REGS
and contain no registers.
The name GENERAL_REGS must be the name of a class (or an alias for
another name such as ALL_REGS). This is the class of registers
that is allowed by "g" or "r" in a register constraint.
Also, registers outside this class are allocated only when
instructions express preferences for them.
The classes must be numbered in nondecreasing order; that is,
a larger-numbered class must never be contained completely
in a smaller-numbered class.
For any two classes, it is very desirable that there be another
class that represents their union. */
enum reg_class
{
NO_REGS, /* no registers in set */
M16_STORE_REGS, /* microMIPS store registers */
M16_REGS, /* mips16 directly accessible registers */
M16_SP_REGS, /* mips16 + $sp */
T_REG, /* mips16 T register ($24) */
M16_T_REGS, /* mips16 registers plus T register */
PIC_FN_ADDR_REG, /* SVR4 PIC function address register */
V1_REG, /* Register $v1 ($3) used for TLS access. */
SPILL_REGS, /* All but $sp and call preserved regs are in here */
LEA_REGS, /* Every GPR except $25 */
GR_REGS, /* integer registers */
FP_REGS, /* floating point registers */
MD0_REG, /* first multiply/divide register */
MD1_REG, /* second multiply/divide register */
MD_REGS, /* multiply/divide registers (hi/lo) */
COP0_REGS, /* generic coprocessor classes */
COP2_REGS,
COP3_REGS,
ST_REGS, /* status registers (fp status) */
DSP_ACC_REGS, /* DSP accumulator registers */
ACC_REGS, /* Hi/Lo and DSP accumulator registers */
FRAME_REGS, /* $arg and $frame */
GR_AND_MD0_REGS, /* union classes */
GR_AND_MD1_REGS,
GR_AND_MD_REGS,
GR_AND_ACC_REGS,
ALL_REGS, /* all registers */
LIM_REG_CLASSES /* max value + 1 */
};
#define N_REG_CLASSES (int) LIM_REG_CLASSES
#define GENERAL_REGS GR_REGS
/* An initializer containing the names of the register classes as C
string constants. These names are used in writing some of the
debugging dumps. */
#define REG_CLASS_NAMES \
{ \
"NO_REGS", \
"M16_STORE_REGS", \
"M16_REGS", \
"M16_SP_REGS", \
"T_REG", \
"M16_T_REGS", \
"PIC_FN_ADDR_REG", \
"V1_REG", \
"SPILL_REGS", \
"LEA_REGS", \
"GR_REGS", \
"FP_REGS", \
"MD0_REG", \
"MD1_REG", \
"MD_REGS", \
/* coprocessor registers */ \
"COP0_REGS", \
"COP2_REGS", \
"COP3_REGS", \
"ST_REGS", \
"DSP_ACC_REGS", \
"ACC_REGS", \
"FRAME_REGS", \
"GR_AND_MD0_REGS", \
"GR_AND_MD1_REGS", \
"GR_AND_MD_REGS", \
"GR_AND_ACC_REGS", \
"ALL_REGS" \
}
/* An initializer containing the contents of the register classes,
as integers which are bit masks. The Nth integer specifies the
contents of class N. The way the integer MASK is interpreted is
that register R is in the class if `MASK & (1 << R)' is 1.
When the machine has more than 32 registers, an integer does not
suffice. Then the integers are replaced by sub-initializers,
braced groupings containing several integers. Each
sub-initializer must be suitable as an initializer for the type
`HARD_REG_SET' which is defined in `hard-reg-set.h'. */
#define REG_CLASS_CONTENTS \
{ \
{ 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* NO_REGS */ \
{ 0x000200fc, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* M16_STORE_REGS */ \
{ 0x000300fc, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* M16_REGS */ \
{ 0x200300fc, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* M16_SP_REGS */ \
{ 0x01000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* T_REG */ \
{ 0x010300fc, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* M16_T_REGS */ \
{ 0x02000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* PIC_FN_ADDR_REG */ \
{ 0x00000008, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* V1_REG */ \
{ 0x0303fffc, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* SPILL_REGS */ \
{ 0xfdffffff, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* LEA_REGS */ \
{ 0xffffffff, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* GR_REGS */ \
{ 0x00000000, 0xffffffff, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* FP_REGS */ \
{ 0x00000000, 0x00000000, 0x00000001, 0x00000000, 0x00000000, 0x00000000 }, /* MD0_REG */ \
{ 0x00000000, 0x00000000, 0x00000002, 0x00000000, 0x00000000, 0x00000000 }, /* MD1_REG */ \
{ 0x00000000, 0x00000000, 0x00000003, 0x00000000, 0x00000000, 0x00000000 }, /* MD_REGS */ \
{ 0x00000000, 0x00000000, 0xffff0000, 0x0000ffff, 0x00000000, 0x00000000 }, /* COP0_REGS */ \
{ 0x00000000, 0x00000000, 0x00000000, 0xffff0000, 0x0000ffff, 0x00000000 }, /* COP2_REGS */ \
{ 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0xffff0000, 0x0000ffff }, /* COP3_REGS */ \
{ 0x00000000, 0x00000000, 0x000007f8, 0x00000000, 0x00000000, 0x00000000 }, /* ST_REGS */ \
{ 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x003f0000 }, /* DSP_ACC_REGS */ \
{ 0x00000000, 0x00000000, 0x00000003, 0x00000000, 0x00000000, 0x003f0000 }, /* ACC_REGS */ \
{ 0x00000000, 0x00000000, 0x00006000, 0x00000000, 0x00000000, 0x00000000 }, /* FRAME_REGS */ \
{ 0xffffffff, 0x00000000, 0x00000001, 0x00000000, 0x00000000, 0x00000000 }, /* GR_AND_MD0_REGS */ \
{ 0xffffffff, 0x00000000, 0x00000002, 0x00000000, 0x00000000, 0x00000000 }, /* GR_AND_MD1_REGS */ \
{ 0xffffffff, 0x00000000, 0x00000003, 0x00000000, 0x00000000, 0x00000000 }, /* GR_AND_MD_REGS */ \
{ 0xffffffff, 0x00000000, 0x00000003, 0x00000000, 0x00000000, 0x003f0000 }, /* GR_AND_ACC_REGS */ \
{ 0xffffffff, 0xffffffff, 0xffff67ff, 0xffffffff, 0xffffffff, 0x0fffffff } /* ALL_REGS */ \
}
/* A C expression whose value is a register class containing hard
register REGNO. In general there is more that one such class;
choose a class which is "minimal", meaning that no smaller class
also contains the register. */
#define REGNO_REG_CLASS(REGNO) mips_regno_to_class[ (REGNO) ]
/* A macro whose definition is the name of the class to which a
valid base register must belong. A base register is one used in
an address which is the register value plus a displacement. */
#define BASE_REG_CLASS (TARGET_MIPS16 ? M16_SP_REGS : GR_REGS)
/* A macro whose definition is the name of the class to which a
valid index register must belong. An index register is one used
in an address where its value is either multiplied by a scale
factor or added to another register (as well as added to a
displacement). */
#define INDEX_REG_CLASS NO_REGS
/* We generally want to put call-clobbered registers ahead of
call-saved ones. (IRA expects this.) */
#define REG_ALLOC_ORDER \
{ /* Accumulator registers. When GPRs and accumulators have equal \
cost, we generally prefer to use accumulators. For example, \
a division of multiplication result is better allocated to LO, \
so that we put the MFLO at the point of use instead of at the \
point of definition. It's also needed if we're to take advantage \
of the extra accumulators available with -mdspr2. In some cases, \
it can also help to reduce register pressure. */ \
64, 65,176,177,178,179,180,181, \
/* Call-clobbered GPRs. */ \
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, \
24, 25, 31, \
/* The global pointer. This is call-clobbered for o32 and o64 \
abicalls, call-saved for n32 and n64 abicalls, and a program \
invariant otherwise. Putting it between the call-clobbered \
and call-saved registers should cope with all eventualities. */ \
28, \
/* Call-saved GPRs. */ \
16, 17, 18, 19, 20, 21, 22, 23, 30, \
/* GPRs that can never be exposed to the register allocator. */ \
0, 26, 27, 29, \
/* Call-clobbered FPRs. */ \
32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, \
48, 49, 50, 51, \
/* FPRs that are usually call-saved. The odd ones are actually \
call-clobbered for n32, but listing them ahead of the even \
registers might encourage the register allocator to fragment \
the available FPR pairs. We need paired FPRs to store long \
doubles, so it isn't clear that using a different order \
for n32 would be a win. */ \
52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, \
/* None of the remaining classes have defined call-saved \
registers. */ \
66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, \
80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, \
96, 97, 98, 99, 100,101,102,103,104,105,106,107,108,109,110,111, \
112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127, \
128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143, \
144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159, \
160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175, \
182,183,184,185,186,187 \
}
/* True if VALUE is an unsigned 6-bit number. */
#define UIMM6_OPERAND(VALUE) \
(((VALUE) & ~(unsigned HOST_WIDE_INT) 0x3f) == 0)
/* True if VALUE is a signed 10-bit number. */
#define IMM10_OPERAND(VALUE) \
((unsigned HOST_WIDE_INT) (VALUE) + 0x200 < 0x400)
/* True if VALUE is a signed 16-bit number. */
#define SMALL_OPERAND(VALUE) \
((unsigned HOST_WIDE_INT) (VALUE) + 0x8000 < 0x10000)
/* True if VALUE is an unsigned 16-bit number. */
#define SMALL_OPERAND_UNSIGNED(VALUE) \
(((VALUE) & ~(unsigned HOST_WIDE_INT) 0xffff) == 0)
/* True if VALUE can be loaded into a register using LUI. */
#define LUI_OPERAND(VALUE) \
(((VALUE) | 0x7fff0000) == 0x7fff0000 \
|| ((VALUE) | 0x7fff0000) + 0x10000 == 0)
/* Return a value X with the low 16 bits clear, and such that
VALUE - X is a signed 16-bit value. */
#define CONST_HIGH_PART(VALUE) \
(((VALUE) + 0x8000) & ~(unsigned HOST_WIDE_INT) 0xffff)
#define CONST_LOW_PART(VALUE) \
((VALUE) - CONST_HIGH_PART (VALUE))
#define SMALL_INT(X) SMALL_OPERAND (INTVAL (X))
#define SMALL_INT_UNSIGNED(X) SMALL_OPERAND_UNSIGNED (INTVAL (X))
#define LUI_INT(X) LUI_OPERAND (INTVAL (X))
#define UMIPS_12BIT_OFFSET_P(OFFSET) (IN_RANGE (OFFSET, -2048, 2047))
/* The HI and LO registers can only be reloaded via the general
registers. Condition code registers can only be loaded to the
general registers, and from the floating point registers. */
#define SECONDARY_INPUT_RELOAD_CLASS(CLASS, MODE, X) \
mips_secondary_reload_class (CLASS, MODE, X, true)
#define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, X) \
mips_secondary_reload_class (CLASS, MODE, X, false)
/* Return the maximum number of consecutive registers
needed to represent mode MODE in a register of class CLASS. */
#define CLASS_MAX_NREGS(CLASS, MODE) mips_class_max_nregs (CLASS, MODE)
#define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) \
mips_cannot_change_mode_class (FROM, TO, CLASS)
/* Stack layout; function entry, exit and calling. */
#define STACK_GROWS_DOWNWARD
#define FRAME_GROWS_DOWNWARD flag_stack_protect
/* Size of the area allocated in the frame to save the GP. */
#define MIPS_GP_SAVE_AREA_SIZE \
(TARGET_CALL_CLOBBERED_GP ? MIPS_STACK_ALIGN (UNITS_PER_WORD) : 0)
/* The offset of the first local variable from the frame pointer. See
mips_compute_frame_info for details about the frame layout. */
#define STARTING_FRAME_OFFSET \
(FRAME_GROWS_DOWNWARD \
? 0 \
: crtl->outgoing_args_size + MIPS_GP_SAVE_AREA_SIZE)
#define RETURN_ADDR_RTX mips_return_addr
/* Mask off the MIPS16 ISA bit in unwind addresses.
The reason for this is a little subtle. When unwinding a call,
we are given the call's return address, which on most targets
is the address of the following instruction. However, what we
actually want to find is the EH region for the call itself.
The target-independent unwind code therefore searches for "RA - 1".
In the MIPS16 case, RA is always an odd-valued (ISA-encoded) address.
RA - 1 is therefore the real (even-valued) start of the return
instruction. EH region labels are usually odd-valued MIPS16 symbols
too, so a search for an even address within a MIPS16 region would
usually work.
However, there is an exception. If the end of an EH region is also
the end of a function, the end label is allowed to be even. This is
necessary because a following non-MIPS16 function may also need EH
information for its first instruction.
Thus a MIPS16 region may be terminated by an ISA-encoded or a
non-ISA-encoded address. This probably isn't ideal, but it is
the traditional (legacy) behavior. It is therefore only safe
to search MIPS EH regions for an _odd-valued_ address.
Masking off the ISA bit means that the target-independent code
will search for "(RA & -2) - 1", which is guaranteed to be odd. */
#define MASK_RETURN_ADDR GEN_INT (-2)
/* Similarly, don't use the least-significant bit to tell pointers to
code from vtable index. */
#define TARGET_PTRMEMFUNC_VBIT_LOCATION ptrmemfunc_vbit_in_delta
/* The eliminations to $17 are only used for mips16 code. See the
definition of HARD_FRAME_POINTER_REGNUM. */
#define ELIMINABLE_REGS \
{{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
{ ARG_POINTER_REGNUM, GP_REG_FIRST + 30}, \
{ ARG_POINTER_REGNUM, GP_REG_FIRST + 17}, \
{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
{ FRAME_POINTER_REGNUM, GP_REG_FIRST + 30}, \
{ FRAME_POINTER_REGNUM, GP_REG_FIRST + 17}}
#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
(OFFSET) = mips_initial_elimination_offset ((FROM), (TO))
/* Allocate stack space for arguments at the beginning of each function. */
#define ACCUMULATE_OUTGOING_ARGS 1
/* The argument pointer always points to the first argument. */
#define FIRST_PARM_OFFSET(FNDECL) 0
/* o32 and o64 reserve stack space for all argument registers. */
#define REG_PARM_STACK_SPACE(FNDECL) \
(TARGET_OLDABI \
? (MAX_ARGS_IN_REGISTERS * UNITS_PER_WORD) \
: 0)
/* Define this if it is the responsibility of the caller to
allocate the area reserved for arguments passed in registers.
If `ACCUMULATE_OUTGOING_ARGS' is also defined, the only effect
of this macro is to determine whether the space is included in
`crtl->outgoing_args_size'. */
#define OUTGOING_REG_PARM_STACK_SPACE(FNTYPE) 1
#define STACK_BOUNDARY (TARGET_NEWABI ? 128 : 64)
/* Symbolic macros for the registers used to return integer and floating
point values. */
#define GP_RETURN (GP_REG_FIRST + 2)
#define FP_RETURN ((TARGET_SOFT_FLOAT) ? GP_RETURN : (FP_REG_FIRST + 0))
#define MAX_ARGS_IN_REGISTERS (TARGET_OLDABI ? 4 : 8)
/* Symbolic macros for the first/last argument registers. */
#define GP_ARG_FIRST (GP_REG_FIRST + 4)
#define GP_ARG_LAST (GP_ARG_FIRST + MAX_ARGS_IN_REGISTERS - 1)
#define FP_ARG_FIRST (FP_REG_FIRST + 12)
#define FP_ARG_LAST (FP_ARG_FIRST + MAX_ARGS_IN_REGISTERS - 1)
/* Temporary register that is used when restoring $gp after a call. $4 and $5
are used for returning complex double values in soft-float code, so $6 is the
first suitable candidate for TARGET_MIPS16. For !TARGET_MIPS16 we can use
$gp itself as the temporary. */
#define POST_CALL_TMP_REG \
(TARGET_MIPS16 ? GP_ARG_FIRST + 2 : PIC_OFFSET_TABLE_REGNUM)
/* 1 if N is a possible register number for function argument passing.
We have no FP argument registers when soft-float. When FP registers
are 32 bits, we can't directly reference the odd numbered ones. */
#define FUNCTION_ARG_REGNO_P(N) \
((IN_RANGE((N), GP_ARG_FIRST, GP_ARG_LAST) \
|| (IN_RANGE((N), FP_ARG_FIRST, FP_ARG_LAST))) \
&& !fixed_regs[N])
/* This structure has to cope with two different argument allocation
schemes. Most MIPS ABIs view the arguments as a structure, of which
the first N words go in registers and the rest go on the stack. If I
< N, the Ith word might go in Ith integer argument register or in a
floating-point register. For these ABIs, we only need to remember
the offset of the current argument into the structure.
The EABI instead allocates the integer and floating-point arguments
separately. The first N words of FP arguments go in FP registers,
the rest go on the stack. Likewise, the first N words of the other
arguments go in integer registers, and the rest go on the stack. We
need to maintain three counts: the number of integer registers used,
the number of floating-point registers used, and the number of words
passed on the stack.
We could keep separate information for the two ABIs (a word count for
the standard ABIs, and three separate counts for the EABI). But it
seems simpler to view the standard ABIs as forms of EABI that do not
allocate floating-point registers.
So for the standard ABIs, the first N words are allocated to integer
registers, and mips_function_arg decides on an argument-by-argument
basis whether that argument should really go in an integer register,
or in a floating-point one. */
typedef struct mips_args {
/* Always true for varargs functions. Otherwise true if at least
one argument has been passed in an integer register. */
int gp_reg_found;
/* The number of arguments seen so far. */
unsigned int arg_number;
/* The number of integer registers used so far. For all ABIs except
EABI, this is the number of words that have been added to the
argument structure, limited to MAX_ARGS_IN_REGISTERS. */
unsigned int num_gprs;
/* For EABI, the number of floating-point registers used so far. */
unsigned int num_fprs;
/* The number of words passed on the stack. */
unsigned int stack_words;
/* On the mips16, we need to keep track of which floating point
arguments were passed in general registers, but would have been
passed in the FP regs if this were a 32-bit function, so that we
can move them to the FP regs if we wind up calling a 32-bit
function. We record this information in fp_code, encoded in base
four. A zero digit means no floating point argument, a one digit
means an SFmode argument, and a two digit means a DFmode argument,
and a three digit is not used. The low order digit is the first
argument. Thus 6 == 1 * 4 + 2 means a DFmode argument followed by
an SFmode argument. ??? A more sophisticated approach will be
needed if MIPS_ABI != ABI_32. */
int fp_code;
/* True if the function has a prototype. */
int prototype;
} CUMULATIVE_ARGS;
/* Initialize a variable CUM of type CUMULATIVE_ARGS
for a call to a function whose data type is FNTYPE.
For a library call, FNTYPE is 0. */
#define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT, N_NAMED_ARGS) \
mips_init_cumulative_args (&CUM, FNTYPE)
#define FUNCTION_ARG_PADDING(MODE, TYPE) \
(mips_pad_arg_upward (MODE, TYPE) ? upward : downward)
#define BLOCK_REG_PADDING(MODE, TYPE, FIRST) \
(mips_pad_reg_upward (MODE, TYPE) ? upward : downward)
/* True if using EABI and varargs can be passed in floating-point
registers. Under these conditions, we need a more complex form
of va_list, which tracks GPR, FPR and stack arguments separately. */
#define EABI_FLOAT_VARARGS_P \
(mips_abi == ABI_EABI && UNITS_PER_FPVALUE >= UNITS_PER_DOUBLE)
#define EPILOGUE_USES(REGNO) mips_epilogue_uses (REGNO)
/* Treat LOC as a byte offset from the stack pointer and round it up
to the next fully-aligned offset. */
#define MIPS_STACK_ALIGN(LOC) \
(TARGET_NEWABI ? ((LOC) + 15) & -16 : ((LOC) + 7) & -8)
/* Output assembler code to FILE to increment profiler label # LABELNO
for profiling a function entry. */
#define FUNCTION_PROFILER(FILE, LABELNO) mips_function_profiler ((FILE))
/* The profiler preserves all interesting registers, including $31. */
#define MIPS_SAVE_REG_FOR_PROFILING_P(REGNO) false
/* No mips port has ever used the profiler counter word, so don't emit it
or the label for it. */
#define NO_PROFILE_COUNTERS 1
/* Define this macro if the code for function profiling should come
before the function prologue. Normally, the profiling code comes
after. */
/* #define PROFILE_BEFORE_PROLOGUE */
/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
the stack pointer does not matter. The value is tested only in
functions that have frame pointers.
No definition is equivalent to always zero. */
#define EXIT_IGNORE_STACK 1
/* Trampolines are a block of code followed by two pointers. */
#define TRAMPOLINE_SIZE \
(mips_trampoline_code_size () + GET_MODE_SIZE (ptr_mode) * 2)
/* Forcing a 64-bit alignment for 32-bit targets allows us to load two
pointers from a single LUI base. */
#define TRAMPOLINE_ALIGNMENT 64
/* mips_trampoline_init calls this library function to flush
program and data caches. */
#ifndef CACHE_FLUSH_FUNC
#define CACHE_FLUSH_FUNC "_flush_cache"
#endif
#define MIPS_ICACHE_SYNC(ADDR, SIZE) \
/* Flush both caches. We need to flush the data cache in case \
the system has a write-back cache. */ \
emit_library_call (gen_rtx_SYMBOL_REF (Pmode, mips_cache_flush_func), \
LCT_NORMAL, VOIDmode, 3, ADDR, Pmode, SIZE, Pmode, \
GEN_INT (3), TYPE_MODE (integer_type_node))
/* Addressing modes, and classification of registers for them. */
#define REGNO_OK_FOR_INDEX_P(REGNO) 0
#define REGNO_MODE_OK_FOR_BASE_P(REGNO, MODE) \
mips_regno_mode_ok_for_base_p (REGNO, MODE, 1)
/* Maximum number of registers that can appear in a valid memory address. */
#define MAX_REGS_PER_ADDRESS 1
/* Check for constness inline but use mips_legitimate_address_p
to check whether a constant really is an address. */
#define CONSTANT_ADDRESS_P(X) \
(CONSTANT_P (X) && memory_address_p (SImode, X))
/* This handles the magic '..CURRENT_FUNCTION' symbol, which means
'the start of the function that this code is output in'. */
#define ASM_OUTPUT_LABELREF(FILE,NAME) \
if (strcmp (NAME, "..CURRENT_FUNCTION") == 0) \
asm_fprintf ((FILE), "%U%s", \
XSTR (XEXP (DECL_RTL (current_function_decl), 0), 0)); \
else \
asm_fprintf ((FILE), "%U%s", (NAME))
/* Flag to mark a function decl symbol that requires a long call. */
#define SYMBOL_FLAG_LONG_CALL (SYMBOL_FLAG_MACH_DEP << 0)
#define SYMBOL_REF_LONG_CALL_P(X) \
((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_LONG_CALL) != 0)
/* This flag marks functions that cannot be lazily bound. */
#define SYMBOL_FLAG_BIND_NOW (SYMBOL_FLAG_MACH_DEP << 1)
#define SYMBOL_REF_BIND_NOW_P(RTX) \
((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_BIND_NOW) != 0)
/* True if we're generating a form of MIPS16 code in which jump tables
are stored in the text section and encoded as 16-bit PC-relative
offsets. This is only possible when general text loads are allowed,
since the table access itself will be an "lh" instruction. If the
PC-relative offsets grow too large, 32-bit offsets are used instead. */
#define TARGET_MIPS16_SHORT_JUMP_TABLES TARGET_MIPS16_TEXT_LOADS
#define JUMP_TABLES_IN_TEXT_SECTION TARGET_MIPS16_SHORT_JUMP_TABLES
#define CASE_VECTOR_MODE (TARGET_MIPS16_SHORT_JUMP_TABLES ? SImode : ptr_mode)
/* Only use short offsets if their range will not overflow. */
#define CASE_VECTOR_SHORTEN_MODE(MIN, MAX, BODY) \
(!TARGET_MIPS16_SHORT_JUMP_TABLES ? ptr_mode \
: ((MIN) >= -32768 && (MAX) < 32768) ? HImode \
: SImode)
#define CASE_VECTOR_PC_RELATIVE TARGET_MIPS16_SHORT_JUMP_TABLES
/* Define this as 1 if `char' should by default be signed; else as 0. */
#ifndef DEFAULT_SIGNED_CHAR
#define DEFAULT_SIGNED_CHAR 1
#endif
/* Although LDC1 and SDC1 provide 64-bit moves on 32-bit targets,
we generally don't want to use them for copying arbitrary data.
A single N-word move is usually the same cost as N single-word moves. */
#define MOVE_MAX UNITS_PER_WORD
#define MAX_MOVE_MAX 8
/* Define this macro as a C expression which is nonzero if
accessing less than a word of memory (i.e. a `char' or a
`short') is no faster than accessing a word of memory, i.e., if
such access require more than one instruction or if there is no
difference in cost between byte and (aligned) word loads.
On RISC machines, it tends to generate better code to define
this as 1, since it avoids making a QI or HI mode register.
But, generating word accesses for -mips16 is generally bad as shifts
(often extended) would be needed for byte accesses. */
#define SLOW_BYTE_ACCESS (!TARGET_MIPS16)
/* Standard MIPS integer shifts truncate the shift amount to the
width of the shifted operand. However, Loongson vector shifts
do not truncate the shift amount at all. */
#define SHIFT_COUNT_TRUNCATED (!TARGET_LOONGSON_VECTORS)
/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
is done just by pretending it is already truncated. */
#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) \
(TARGET_64BIT ? ((INPREC) <= 32 || (OUTPREC) > 32) : 1)
/* Specify the machine mode that pointers have.
After generation of rtl, the compiler makes no further distinction
between pointers and any other objects of this machine mode. */
#ifndef Pmode
#define Pmode (TARGET_64BIT && TARGET_LONG64 ? DImode : SImode)
#endif
/* Give call MEMs SImode since it is the "most permissive" mode
for both 32-bit and 64-bit targets. */
#define FUNCTION_MODE SImode
/* We allocate $fcc registers by hand and can't cope with moves of
CCmode registers to and from pseudos (or memory). */
#define AVOID_CCMODE_COPIES
/* A C expression for the cost of a branch instruction. A value of
1 is the default; other values are interpreted relative to that. */
#define BRANCH_COST(speed_p, predictable_p) mips_branch_cost
#define LOGICAL_OP_NON_SHORT_CIRCUIT 0
/* The MIPS port has several functions that return an instruction count.
Multiplying the count by this value gives the number of bytes that
the instructions occupy. */
#define BASE_INSN_LENGTH (TARGET_MIPS16 ? 2 : 4)
/* The length of a NOP in bytes. */
#define NOP_INSN_LENGTH (TARGET_COMPRESSION ? 2 : 4)
/* If defined, modifies the length assigned to instruction INSN as a
function of the context in which it is used. LENGTH is an lvalue
that contains the initially computed length of the insn and should
be updated with the correct length of the insn. */
#define ADJUST_INSN_LENGTH(INSN, LENGTH) \
((LENGTH) = mips_adjust_insn_length ((INSN), (LENGTH)))
/* Return the asm template for a non-MIPS16 conditional branch instruction.
OPCODE is the opcode's mnemonic and OPERANDS is the asm template for
its operands. */
#define MIPS_BRANCH(OPCODE, OPERANDS) \
"%*" OPCODE "%?\t" OPERANDS "%/"
/* Return an asm string that forces INSN to be treated as an absolute
J or JAL instruction instead of an assembler macro. */
#define MIPS_ABSOLUTE_JUMP(INSN) \
(TARGET_ABICALLS_PIC2 \
? ".option\tpic0\n\t" INSN "\n\t.option\tpic2" \
: INSN)
/* Return the asm template for a call. INSN is the instruction's mnemonic
("j" or "jal"), OPERANDS are its operands, TARGET_OPNO is the operand
number of the target. SIZE_OPNO is the operand number of the argument size
operand that can optionally hold the call attributes. If SIZE_OPNO is not
-1 and the call is indirect, use the function symbol from the call
attributes to attach a R_MIPS_JALR relocation to the call.
When generating GOT code without explicit relocation operators,
all calls should use assembly macros. Otherwise, all indirect
calls should use "jr" or "jalr"; we will arrange to restore $gp
afterwards if necessary. Finally, we can only generate direct
calls for -mabicalls by temporarily switching to non-PIC mode.
For microMIPS jal(r), we try to generate jal(r)s when a 16-bit
instruction is in the delay slot of jal(r). */
#define MIPS_CALL(INSN, OPERANDS, TARGET_OPNO, SIZE_OPNO) \
(TARGET_USE_GOT && !TARGET_EXPLICIT_RELOCS \
? "%*" INSN "\t%" #TARGET_OPNO "%/" \
: REG_P (OPERANDS[TARGET_OPNO]) \
? (mips_get_pic_call_symbol (OPERANDS, SIZE_OPNO) \
? ("%*.reloc\t1f,R_MIPS_JALR,%" #SIZE_OPNO "\n" \
"1:\t" INSN "r\t%" #TARGET_OPNO "%/") \
: TARGET_MICROMIPS && !TARGET_INTERLINK_COMPRESSED \
? "%*" INSN "r%!\t%" #TARGET_OPNO "%/" \
: "%*" INSN "r\t%" #TARGET_OPNO "%/") \
: TARGET_MICROMIPS && !TARGET_INTERLINK_COMPRESSED \
? MIPS_ABSOLUTE_JUMP ("%*" INSN "%!\t%" #TARGET_OPNO "%/") \
: MIPS_ABSOLUTE_JUMP ("%*" INSN "\t%" #TARGET_OPNO "%/")) \
/* Similar to MIPS_CALL, but this is for MICROMIPS "j" to generate
"jrc" when nop is in the delay slot of "jr". */
#define MICROMIPS_J(INSN, OPERANDS, OPNO) \
(TARGET_USE_GOT && !TARGET_EXPLICIT_RELOCS \
? "%*j\t%" #OPNO "%/" \
: REG_P (OPERANDS[OPNO]) \
? "%*jr%:\t%" #OPNO \
: MIPS_ABSOLUTE_JUMP ("%*" INSN "\t%" #OPNO "%/"))
/* Control the assembler format that we output. */
/* Output to assembler file text saying following lines
may contain character constants, extra white space, comments, etc. */
#ifndef ASM_APP_ON
#define ASM_APP_ON " #APP\n"
#endif
/* Output to assembler file text saying following lines
no longer contain unusual constructs. */
#ifndef ASM_APP_OFF
#define ASM_APP_OFF " #NO_APP\n"
#endif
#define REGISTER_NAMES \
{ "$0", "$1", "$2", "$3", "$4", "$5", "$6", "$7", \
"$8", "$9", "$10", "$11", "$12", "$13", "$14", "$15", \
"$16", "$17", "$18", "$19", "$20", "$21", "$22", "$23", \
"$24", "$25", "$26", "$27", "$28", "$sp", "$fp", "$31", \
"$f0", "$f1", "$f2", "$f3", "$f4", "$f5", "$f6", "$f7", \
"$f8", "$f9", "$f10", "$f11", "$f12", "$f13", "$f14", "$f15", \
"$f16", "$f17", "$f18", "$f19", "$f20", "$f21", "$f22", "$f23", \
"$f24", "$f25", "$f26", "$f27", "$f28", "$f29", "$f30", "$f31", \
"hi", "lo", "", "$fcc0","$fcc1","$fcc2","$fcc3","$fcc4", \
"$fcc5","$fcc6","$fcc7","", "$cprestore", "$arg", "$frame", "$fakec", \
"$c0r0", "$c0r1", "$c0r2", "$c0r3", "$c0r4", "$c0r5", "$c0r6", "$c0r7", \
"$c0r8", "$c0r9", "$c0r10","$c0r11","$c0r12","$c0r13","$c0r14","$c0r15", \
"$c0r16","$c0r17","$c0r18","$c0r19","$c0r20","$c0r21","$c0r22","$c0r23", \
"$c0r24","$c0r25","$c0r26","$c0r27","$c0r28","$c0r29","$c0r30","$c0r31", \
"$c2r0", "$c2r1", "$c2r2", "$c2r3", "$c2r4", "$c2r5", "$c2r6", "$c2r7", \
"$c2r8", "$c2r9", "$c2r10","$c2r11","$c2r12","$c2r13","$c2r14","$c2r15", \
"$c2r16","$c2r17","$c2r18","$c2r19","$c2r20","$c2r21","$c2r22","$c2r23", \
"$c2r24","$c2r25","$c2r26","$c2r27","$c2r28","$c2r29","$c2r30","$c2r31", \
"$c3r0", "$c3r1", "$c3r2", "$c3r3", "$c3r4", "$c3r5", "$c3r6", "$c3r7", \
"$c3r8", "$c3r9", "$c3r10","$c3r11","$c3r12","$c3r13","$c3r14","$c3r15", \
"$c3r16","$c3r17","$c3r18","$c3r19","$c3r20","$c3r21","$c3r22","$c3r23", \
"$c3r24","$c3r25","$c3r26","$c3r27","$c3r28","$c3r29","$c3r30","$c3r31", \
"$ac1hi","$ac1lo","$ac2hi","$ac2lo","$ac3hi","$ac3lo","$dsp_po","$dsp_sc", \
"$dsp_ca","$dsp_ou","$dsp_cc","$dsp_ef" }
/* List the "software" names for each register. Also list the numerical
names for $fp and $sp. */
#define ADDITIONAL_REGISTER_NAMES \
{ \
{ "$29", 29 + GP_REG_FIRST }, \
{ "$30", 30 + GP_REG_FIRST }, \
{ "at", 1 + GP_REG_FIRST }, \
{ "v0", 2 + GP_REG_FIRST }, \
{ "v1", 3 + GP_REG_FIRST }, \
{ "a0", 4 + GP_REG_FIRST }, \
{ "a1", 5 + GP_REG_FIRST }, \
{ "a2", 6 + GP_REG_FIRST }, \
{ "a3", 7 + GP_REG_FIRST }, \
{ "t0", 8 + GP_REG_FIRST }, \
{ "t1", 9 + GP_REG_FIRST }, \
{ "t2", 10 + GP_REG_FIRST }, \
{ "t3", 11 + GP_REG_FIRST }, \
{ "t4", 12 + GP_REG_FIRST }, \
{ "t5", 13 + GP_REG_FIRST }, \
{ "t6", 14 + GP_REG_FIRST }, \
{ "t7", 15 + GP_REG_FIRST }, \
{ "s0", 16 + GP_REG_FIRST }, \
{ "s1", 17 + GP_REG_FIRST }, \
{ "s2", 18 + GP_REG_FIRST }, \
{ "s3", 19 + GP_REG_FIRST }, \
{ "s4", 20 + GP_REG_FIRST }, \
{ "s5", 21 + GP_REG_FIRST }, \
{ "s6", 22 + GP_REG_FIRST }, \
{ "s7", 23 + GP_REG_FIRST }, \
{ "t8", 24 + GP_REG_FIRST }, \
{ "t9", 25 + GP_REG_FIRST }, \
{ "k0", 26 + GP_REG_FIRST }, \
{ "k1", 27 + GP_REG_FIRST }, \
{ "gp", 28 + GP_REG_FIRST }, \
{ "sp", 29 + GP_REG_FIRST }, \
{ "fp", 30 + GP_REG_FIRST }, \
{ "ra", 31 + GP_REG_FIRST } \
}
#define DBR_OUTPUT_SEQEND(STREAM) \
do \
{ \
/* Undo the effect of '%*'. */ \
mips_pop_asm_switch (&mips_nomacro); \
mips_pop_asm_switch (&mips_noreorder); \
/* Emit a blank line after the delay slot for emphasis. */ \
fputs ("\n", STREAM); \
} \
while (0)
/* The MIPS implementation uses some labels for its own purpose. The
following lists what labels are created, and are all formed by the
pattern $L[a-z].*. The machine independent portion of GCC creates
labels matching: $L[A-Z][0-9]+ and $L[0-9]+.
LM[0-9]+ Silicon Graphics/ECOFF stabs label before each stmt.
$Lb[0-9]+ Begin blocks for MIPS debug support
$Lc[0-9]+ Label for use in s<xx> operation.
$Le[0-9]+ End blocks for MIPS debug support */
#undef ASM_DECLARE_OBJECT_NAME
#define ASM_DECLARE_OBJECT_NAME(STREAM, NAME, DECL) \
mips_declare_object (STREAM, NAME, "", ":\n")
/* Globalizing directive for a label. */
#define GLOBAL_ASM_OP "\t.globl\t"
/* This says how to define a global common symbol. */
#define ASM_OUTPUT_ALIGNED_DECL_COMMON mips_output_aligned_decl_common
/* This says how to define a local common symbol (i.e., not visible to
linker). */
#ifndef ASM_OUTPUT_ALIGNED_LOCAL
#define ASM_OUTPUT_ALIGNED_LOCAL(STREAM, NAME, SIZE, ALIGN) \
mips_declare_common_object (STREAM, NAME, "\n\t.lcomm\t", SIZE, ALIGN, false)
#endif
/* This says how to output an external. It would be possible not to
output anything and let undefined symbol become external. However
the assembler uses length information on externals to allocate in
data/sdata bss/sbss, thereby saving exec time. */
#undef ASM_OUTPUT_EXTERNAL
#define ASM_OUTPUT_EXTERNAL(STREAM,DECL,NAME) \
mips_output_external(STREAM,DECL,NAME)
/* This is how to declare a function name. The actual work of
emitting the label is moved to function_prologue, so that we can
get the line number correctly emitted before the .ent directive,
and after any .file directives. Define as empty so that the function
is not declared before the .ent directive elsewhere. */
#undef ASM_DECLARE_FUNCTION_NAME
#define ASM_DECLARE_FUNCTION_NAME(STREAM,NAME,DECL)
/* This is how to store into the string LABEL
the symbol_ref name of an internal numbered label where
PREFIX is the class of label and NUM is the number within the class.
This is suitable for output with `assemble_name'. */
#undef ASM_GENERATE_INTERNAL_LABEL
#define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
sprintf ((LABEL), "*%s%s%ld", (LOCAL_LABEL_PREFIX), (PREFIX), (long)(NUM))
/* Print debug labels as "foo = ." rather than "foo:" because they should
represent a byte pointer rather than an ISA-encoded address. This is
particularly important for code like:
$LFBxxx = .
.cfi_startproc
...
.section .gcc_except_table,...
...
.uleb128 foo-$LFBxxx
The .uleb128 requies $LFBxxx to match the FDE start address, which is
likewise a byte pointer rather than an ISA-encoded address.
At the time of writing, this hook is not used for the function end
label:
$LFExxx:
.end foo
But this doesn't matter, because GAS doesn't treat a pre-.end label
as a MIPS16 one anyway. */
#define ASM_OUTPUT_DEBUG_LABEL(FILE, PREFIX, NUM) \
fprintf (FILE, "%s%s%d = .\n", LOCAL_LABEL_PREFIX, PREFIX, NUM)
/* This is how to output an element of a case-vector that is absolute. */
#define ASM_OUTPUT_ADDR_VEC_ELT(STREAM, VALUE) \
fprintf (STREAM, "\t%s\t%sL%d\n", \
ptr_mode == DImode ? ".dword" : ".word", \
LOCAL_LABEL_PREFIX, \
VALUE)
/* This is how to output an element of a case-vector. We can make the
entries PC-relative in MIPS16 code and GP-relative when .gp(d)word
is supported. */
#define ASM_OUTPUT_ADDR_DIFF_ELT(STREAM, BODY, VALUE, REL) \
do { \
if (TARGET_MIPS16_SHORT_JUMP_TABLES) \
{ \
if (GET_MODE (BODY) == HImode) \
fprintf (STREAM, "\t.half\t%sL%d-%sL%d\n", \
LOCAL_LABEL_PREFIX, VALUE, LOCAL_LABEL_PREFIX, REL); \
else \
fprintf (STREAM, "\t.word\t%sL%d-%sL%d\n", \
LOCAL_LABEL_PREFIX, VALUE, LOCAL_LABEL_PREFIX, REL); \
} \
else if (TARGET_GPWORD) \
fprintf (STREAM, "\t%s\t%sL%d\n", \
ptr_mode == DImode ? ".gpdword" : ".gpword", \
LOCAL_LABEL_PREFIX, VALUE); \
else if (TARGET_RTP_PIC) \
{ \
/* Make the entry relative to the start of the function. */ \
rtx fnsym = XEXP (DECL_RTL (current_function_decl), 0); \
fprintf (STREAM, "\t%s\t%sL%d-", \
Pmode == DImode ? ".dword" : ".word", \
LOCAL_LABEL_PREFIX, VALUE); \
assemble_name (STREAM, XSTR (fnsym, 0)); \
fprintf (STREAM, "\n"); \
} \
else \
fprintf (STREAM, "\t%s\t%sL%d\n", \
ptr_mode == DImode ? ".dword" : ".word", \
LOCAL_LABEL_PREFIX, VALUE); \
} while (0)
/* This is how to output an assembler line
that says to advance the location counter
to a multiple of 2**LOG bytes. */
#define ASM_OUTPUT_ALIGN(STREAM,LOG) \
fprintf (STREAM, "\t.align\t%d\n", (LOG))
/* This is how to output an assembler line to advance the location
counter by SIZE bytes. */
#undef ASM_OUTPUT_SKIP
#define ASM_OUTPUT_SKIP(STREAM,SIZE) \
fprintf (STREAM, "\t.space\t"HOST_WIDE_INT_PRINT_UNSIGNED"\n", (SIZE))
/* This is how to output a string. */
#undef ASM_OUTPUT_ASCII
#define ASM_OUTPUT_ASCII mips_output_ascii
/* Default to -G 8 */
#ifndef MIPS_DEFAULT_GVALUE
#define MIPS_DEFAULT_GVALUE 8
#endif
/* Define the strings to put out for each section in the object file. */
#define TEXT_SECTION_ASM_OP "\t.text" /* instructions */
#define DATA_SECTION_ASM_OP "\t.data" /* large data */
#undef READONLY_DATA_SECTION_ASM_OP
#define READONLY_DATA_SECTION_ASM_OP "\t.rdata" /* read-only data */
#define ASM_OUTPUT_REG_PUSH(STREAM,REGNO) \
do \
{ \
fprintf (STREAM, "\t%s\t%s,%s,-8\n\t%s\t%s,0(%s)\n", \
TARGET_64BIT ? "daddiu" : "addiu", \
reg_names[STACK_POINTER_REGNUM], \
reg_names[STACK_POINTER_REGNUM], \
TARGET_64BIT ? "sd" : "sw", \
reg_names[REGNO], \
reg_names[STACK_POINTER_REGNUM]); \
} \
while (0)
#define ASM_OUTPUT_REG_POP(STREAM,REGNO) \
do \
{ \
mips_push_asm_switch (&mips_noreorder); \
fprintf (STREAM, "\t%s\t%s,0(%s)\n\t%s\t%s,%s,8\n", \
TARGET_64BIT ? "ld" : "lw", \
reg_names[REGNO], \
reg_names[STACK_POINTER_REGNUM], \
TARGET_64BIT ? "daddu" : "addu", \
reg_names[STACK_POINTER_REGNUM], \
reg_names[STACK_POINTER_REGNUM]); \
mips_pop_asm_switch (&mips_noreorder); \
} \
while (0)
/* How to start an assembler comment.
The leading space is important (the mips native assembler requires it). */
#ifndef ASM_COMMENT_START
#define ASM_COMMENT_START " #"
#endif
#undef SIZE_TYPE
#define SIZE_TYPE (POINTER_SIZE == 64 ? "long unsigned int" : "unsigned int")
#undef PTRDIFF_TYPE
#define PTRDIFF_TYPE (POINTER_SIZE == 64 ? "long int" : "int")
/* The maximum number of bytes that can be copied by one iteration of
a movmemsi loop; see mips_block_move_loop. */
#define MIPS_MAX_MOVE_BYTES_PER_LOOP_ITER \
(UNITS_PER_WORD * 4)
/* The maximum number of bytes that can be copied by a straight-line
implementation of movmemsi; see mips_block_move_straight. We want
to make sure that any loop-based implementation will iterate at
least twice. */
#define MIPS_MAX_MOVE_BYTES_STRAIGHT \
(MIPS_MAX_MOVE_BYTES_PER_LOOP_ITER * 2)
/* The base cost of a memcpy call, for MOVE_RATIO and friends. These
values were determined experimentally by benchmarking with CSiBE.
In theory, the call overhead is higher for TARGET_ABICALLS (especially
for o32 where we have to restore $gp afterwards as well as make an
indirect call), but in practice, bumping this up higher for
TARGET_ABICALLS doesn't make much difference to code size. */
#define MIPS_CALL_RATIO 8
/* Any loop-based implementation of movmemsi will have at least
MIPS_MAX_MOVE_BYTES_STRAIGHT / UNITS_PER_WORD memory-to-memory
moves, so allow individual copies of fewer elements.
When movmemsi is not available, use a value approximating
the length of a memcpy call sequence, so that move_by_pieces
will generate inline code if it is shorter than a function call.
Since move_by_pieces_ninsns counts memory-to-memory moves, but
we'll have to generate a load/store pair for each, halve the
value of MIPS_CALL_RATIO to take that into account. */
#define MOVE_RATIO(speed) \
(HAVE_movmemsi \
? MIPS_MAX_MOVE_BYTES_STRAIGHT / MOVE_MAX \
: MIPS_CALL_RATIO / 2)
/* For CLEAR_RATIO, when optimizing for size, give a better estimate
of the length of a memset call, but use the default otherwise. */
#define CLEAR_RATIO(speed)\
((speed) ? 15 : MIPS_CALL_RATIO)
/* This is similar to CLEAR_RATIO, but for a non-zero constant, so when
optimizing for size adjust the ratio to account for the overhead of
loading the constant and replicating it across the word. */
#define SET_RATIO(speed) \
((speed) ? 15 : MIPS_CALL_RATIO - 2)
/* Since the bits of the _init and _fini function is spread across
many object files, each potentially with its own GP, we must assume
we need to load our GP. We don't preserve $gp or $ra, since each
init/fini chunk is supposed to initialize $gp, and crti/crtn
already take care of preserving $ra and, when appropriate, $gp. */
#if (defined _ABIO32 && _MIPS_SIM == _ABIO32)
#define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \
asm (SECTION_OP "\n\
.set push\n\
.set nomips16\n\
.set noreorder\n\
bal 1f\n\
nop\n\
1: .cpload $31\n\
.set reorder\n\
jal " USER_LABEL_PREFIX #FUNC "\n\
.set pop\n\
" TEXT_SECTION_ASM_OP);
#elif ((defined _ABIN32 && _MIPS_SIM == _ABIN32) \
|| (defined _ABI64 && _MIPS_SIM == _ABI64))
#define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \
asm (SECTION_OP "\n\
.set push\n\
.set nomips16\n\
.set noreorder\n\
bal 1f\n\
nop\n\
1: .set reorder\n\
.cpsetup $31, $2, 1b\n\
jal " USER_LABEL_PREFIX #FUNC "\n\
.set pop\n\
" TEXT_SECTION_ASM_OP);
#endif
#ifndef HAVE_AS_TLS
#define HAVE_AS_TLS 0
#endif
#ifndef HAVE_AS_NAN
#define HAVE_AS_NAN 0
#endif
#ifndef USED_FOR_TARGET
/* Information about ".set noFOO; ...; .set FOO" blocks. */
struct mips_asm_switch {
/* The FOO in the description above. */
const char *name;
/* The current block nesting level, or 0 if we aren't in a block. */
int nesting_level;
};
extern const enum reg_class mips_regno_to_class[];
extern bool mips_hard_regno_mode_ok[][FIRST_PSEUDO_REGISTER];
extern const char *current_function_file; /* filename current function is in */
extern int num_source_filenames; /* current .file # */
extern struct mips_asm_switch mips_noreorder;
extern struct mips_asm_switch mips_nomacro;
extern struct mips_asm_switch mips_noat;
extern int mips_dbx_regno[];
extern int mips_dwarf_regno[];
extern bool mips_split_p[];
extern bool mips_split_hi_p[];
extern bool mips_use_pcrel_pool_p[];
extern const char *mips_lo_relocs[];
extern const char *mips_hi_relocs[];
extern enum processor mips_arch; /* which cpu to codegen for */
extern enum processor mips_tune; /* which cpu to schedule for */
extern int mips_isa; /* architectural level */
extern int mips_isa_rev;
extern const struct mips_cpu_info *mips_arch_info;
extern const struct mips_cpu_info *mips_tune_info;
extern unsigned int mips_base_compression_flags;
extern GTY(()) struct target_globals *mips16_globals;
#endif
/* Enable querying of DFA units. */
#define CPU_UNITS_QUERY 1
#define FINAL_PRESCAN_INSN(INSN, OPVEC, NOPERANDS) \
mips_final_prescan_insn (INSN, OPVEC, NOPERANDS)
/* As on most targets, we want the .eh_frame section to be read-only where
possible. And as on most targets, this means two things:
(a) Non-locally-binding pointers must have an indirect encoding,
so that the addresses in the .eh_frame section itself become
locally-binding.
(b) A shared library's .eh_frame section must encode locally-binding
pointers in a relative (relocation-free) form.
However, MIPS has traditionally not allowed directives like:
.long x-.
in cases where "x" is in a different section, or is not defined in the
same assembly file. We are therefore unable to emit the PC-relative
form required by (b) at assembly time.
Fortunately, the linker is able to convert absolute addresses into
PC-relative addresses on our behalf. Unfortunately, only certain
versions of the linker know how to do this for indirect pointers,
and for personality data. We must fall back on using writable
.eh_frame sections for shared libraries if the linker does not
support this feature. */
#define ASM_PREFERRED_EH_DATA_FORMAT(CODE,GLOBAL) \
(((GLOBAL) ? DW_EH_PE_indirect : 0) | DW_EH_PE_absptr)
/* For switching between MIPS16 and non-MIPS16 modes. */
#define SWITCHABLE_TARGET 1
/* Several named MIPS patterns depend on Pmode. These patterns have the
form <NAME>_si for Pmode == SImode and <NAME>_di for Pmode == DImode.
Add the appropriate suffix to generator function NAME and invoke it
with arguments ARGS. */
#define PMODE_INSN(NAME, ARGS) \
(Pmode == SImode ? NAME ## _si ARGS : NAME ## _di ARGS)
/* If we are *not* using multilibs and the default ABI is not ABI_32 we
need to change these from /lib and /usr/lib. */
#if MIPS_ABI_DEFAULT == ABI_N32
#define STANDARD_STARTFILE_PREFIX_1 "/lib32/"
#define STANDARD_STARTFILE_PREFIX_2 "/usr/lib32/"
#elif MIPS_ABI_DEFAULT == ABI_64
#define STANDARD_STARTFILE_PREFIX_1 "/lib64/"
#define STANDARD_STARTFILE_PREFIX_2 "/usr/lib64/"
#endif
|