summaryrefslogtreecommitdiff
path: root/gcc/config/mips/mips.h
blob: f254f8ca0c5ec43e308e506d48a3f555abd06119 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
/* Definitions of target machine for GNU compiler.  MIPS version.
   Copyright (C) 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998
   1999, 2000, 2001, 2002 Free Software Foundation, Inc.
   Contributed by A. Lichnewsky (lich@inria.inria.fr).
   Changed by Michael Meissner	(meissner@osf.org).
   64 bit r4000 support by Ian Lance Taylor (ian@cygnus.com) and
   Brendan Eich (brendan@microunity.com).

This file is part of GNU CC.

GNU CC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.

GNU CC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with GNU CC; see the file COPYING.  If not, write to
the Free Software Foundation, 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA.  */


/* Standard GCC variables that we reference.  */

extern char    *asm_file_name;
extern char	call_used_regs[];
extern int	may_call_alloca;
extern char   **save_argv;
extern int	target_flags;

/* MIPS external variables defined in mips.c.  */

/* comparison type */
enum cmp_type {
  CMP_SI,				/* compare four byte integers */
  CMP_DI,				/* compare eight byte integers */
  CMP_SF,				/* compare single precision floats */
  CMP_DF,				/* compare double precision floats */
  CMP_MAX				/* max comparison type */
};

/* types of delay slot */
enum delay_type {
  DELAY_NONE,				/* no delay slot */
  DELAY_LOAD,				/* load from memory delay */
  DELAY_HILO,				/* move from/to hi/lo registers */
  DELAY_FCMP				/* delay after doing c.<xx>.{d,s} */
};

/* Which processor to schedule for.  Since there is no difference between
   a R2000 and R3000 in terms of the scheduler, we collapse them into
   just an R3000.  The elements of the enumeration must match exactly
   the cpu attribute in the mips.md machine description.  */

enum processor_type {
  PROCESSOR_DEFAULT,
  PROCESSOR_R3000,
  PROCESSOR_R3900,
  PROCESSOR_R6000,
  PROCESSOR_R4000,
  PROCESSOR_R4100,
  PROCESSOR_R4111,
  PROCESSOR_R4121,
  PROCESSOR_R4300,
  PROCESSOR_R4320,
  PROCESSOR_R4600,
  PROCESSOR_R4650,
  PROCESSOR_R5000,
  PROCESSOR_R5400,
  PROCESSOR_R5500,
  PROCESSOR_R8000,
  PROCESSOR_R4KC,
  PROCESSOR_R5KC,
  PROCESSOR_R20KC,
  PROCESSOR_SR71000,
  PROCESSOR_SB1
};

/* Recast the cpu class to be the cpu attribute.  */
#define mips_cpu_attr ((enum attr_cpu)mips_tune)

/* Which ABI to use.  ABI_32 (original 32, or o32), ABI_N32 (n32),
   ABI_64 (n64) are all defined by SGI.  ABI_O64 is o32 extended
   to work on a 64 bit machine.  */

#define ABI_32  0
#define ABI_N32 1
#define ABI_64  2
#define ABI_EABI 3
#define ABI_O64  4
/* MEABI is gcc's internal name for MIPS' new EABI (defined by MIPS)
   which is not the same as the above EABI (defined by Cygnus,
   Greenhills, and Toshiba?).  MEABI is not yet complete or published,
   but at this point it looks like N32 as far as calling conventions go,
   but allows for either 32 or 64 bit registers.

   Currently MIPS is calling their EABI "the" MIPS EABI, and Cygnus'
   EABI the legacy EABI.  In the end we may end up calling both ABI's
   EABI but give them different version numbers, but for now I'm going
   with different names.  */
#define ABI_MEABI 5

/* Whether to emit abicalls code sequences or not.  */

enum mips_abicalls_type {
  MIPS_ABICALLS_NO,
  MIPS_ABICALLS_YES
};

/* Recast the abicalls class to be the abicalls attribute.  */
#define mips_abicalls_attr ((enum attr_abicalls)mips_abicalls)

/* Which type of block move to do (whether or not the last store is
   split out so it can fill a branch delay slot).  */

enum block_move_type {
  BLOCK_MOVE_NORMAL,			/* generate complete block move */
  BLOCK_MOVE_NOT_LAST,			/* generate all but last store */
  BLOCK_MOVE_LAST			/* generate just the last store */
};

/* Information about one recognized processor.  Defined here for the
   benefit of TARGET_CPU_CPP_BUILTINS.  */
struct mips_cpu_info {
  /* The 'canonical' name of the processor as far as GCC is concerned.
     It's typically a manufacturer's prefix followed by a numerical
     designation.  It should be lower case.  */
  const char *name;

  /* The internal processor number that most closely matches this
     entry.  Several processors can have the same value, if there's no
     difference between them from GCC's point of view.  */
  enum processor_type cpu;

  /* The ISA level that the processor implements.  */
  int isa;
};

extern char mips_reg_names[][8];	/* register names (a0 vs. $4).  */
extern char mips_print_operand_punct[256]; /* print_operand punctuation chars */
extern const char *current_function_file; /* filename current function is in */
extern int num_source_filenames;	/* current .file # */
extern int inside_function;		/* != 0 if inside of a function */
extern int ignore_line_number;		/* != 0 if we are to ignore next .loc */
extern int file_in_function_warning;	/* warning given about .file in func */
extern int sdb_label_count;		/* block start/end next label # */
extern int sdb_begin_function_line;     /* Starting Line of current function */
extern int mips_section_threshold;	/* # bytes of data/sdata cutoff */
extern int g_switch_value;		/* value of the -G xx switch */
extern int g_switch_set;		/* whether -G xx was passed.  */
extern int sym_lineno;			/* sgi next label # for each stmt */
extern int set_noreorder;		/* # of nested .set noreorder's  */
extern int set_nomacro;			/* # of nested .set nomacro's  */
extern int set_noat;			/* # of nested .set noat's  */
extern int set_volatile;		/* # of nested .set volatile's  */
extern int mips_branch_likely;		/* emit 'l' after br (branch likely) */
extern int mips_dbx_regno[];		/* Map register # to debug register # */
extern GTY(()) rtx branch_cmp[2];	/* operands for compare */
extern enum cmp_type branch_type;	/* what type of branch to use */
extern enum processor_type mips_arch;   /* which cpu to codegen for */
extern enum processor_type mips_tune;   /* which cpu to schedule for */
extern enum mips_abicalls_type mips_abicalls;/* for svr4 abi pic calls */
extern int mips_isa;			/* architectural level */
extern int mips16;			/* whether generating mips16 code */
extern int mips16_hard_float;		/* mips16 without -msoft-float */
extern int mips_entry;			/* generate entry/exit for mips16 */
extern const char *mips_arch_string;    /* for -march=<xxx> */
extern const char *mips_tune_string;    /* for -mtune=<xxx> */
extern const char *mips_isa_string;	/* for -mips{1,2,3,4} */
extern const char *mips_abi_string;	/* for -mabi={32,n32,64} */
extern const char *mips_entry_string;	/* for -mentry */
extern const char *mips_no_mips16_string;/* for -mno-mips16 */
extern const char *mips_cache_flush_func;/* for -mflush-func= and -mno-flush-func */
extern int mips_split_addresses;	/* perform high/lo_sum support */
extern int dslots_load_total;		/* total # load related delay slots */
extern int dslots_load_filled;		/* # filled load delay slots */
extern int dslots_jump_total;		/* total # jump related delay slots */
extern int dslots_jump_filled;		/* # filled jump delay slots */
extern int dslots_number_nops;		/* # of nops needed by previous insn */
extern int num_refs[3];			/* # 1/2/3 word references */
extern GTY(()) rtx mips_load_reg;	/* register to check for load delay */
extern GTY(()) rtx mips_load_reg2;	/* 2nd reg to check for load delay */
extern GTY(()) rtx mips_load_reg3;	/* 3rd reg to check for load delay */
extern GTY(()) rtx mips_load_reg4;	/* 4th reg to check for load delay */
extern int mips_string_length;		/* length of strings for mips16 */
extern const struct mips_cpu_info mips_cpu_info_table[];
extern const struct mips_cpu_info *mips_arch_info;
extern const struct mips_cpu_info *mips_tune_info;

/* Functions to change what output section we are using.  */
extern void		sdata_section PARAMS ((void));
extern void		sbss_section PARAMS ((void));

/* Macros to silence warnings about numbers being signed in traditional
   C and unsigned in ISO C when compiled on 32-bit hosts.  */

#define BITMASK_HIGH	(((unsigned long)1) << 31)	/* 0x80000000 */
#define BITMASK_UPPER16	((unsigned long)0xffff << 16)	/* 0xffff0000 */
#define BITMASK_LOWER16	((unsigned long)0xffff)		/* 0x0000ffff */


/* Run-time compilation parameters selecting different hardware subsets.  */

/* Macros used in the machine description to test the flags.  */

					/* Bits for real switches */
#define MASK_INT64	   0x00000001	/* ints are 64 bits */
#define MASK_LONG64	   0x00000002	/* longs are 64 bits */
#define MASK_SPLIT_ADDR	   0x00000004	/* Address splitting is enabled.  */
#define MASK_GPOPT	   0x00000008	/* Optimize for global pointer */
#define MASK_GAS	   0x00000010	/* Gas used instead of MIPS as */
#define MASK_NAME_REGS	   0x00000020	/* Use MIPS s/w reg name convention */
#define MASK_STATS	   0x00000040	/* print statistics to stderr */
#define MASK_MEMCPY	   0x00000080	/* call memcpy instead of inline code*/
#define MASK_SOFT_FLOAT	   0x00000100	/* software floating point */
#define MASK_FLOAT64	   0x00000200	/* fp registers are 64 bits */
#define MASK_ABICALLS	   0x00000400	/* emit .abicalls/.cprestore/.cpload */
#define MASK_UNUSED1	   0x00000800	/* Unused Mask.  */
#define MASK_LONG_CALLS	   0x00001000	/* Always call through a register */
#define MASK_64BIT	   0x00002000	/* Use 64 bit GP registers and insns */
#define MASK_EMBEDDED_PIC  0x00004000	/* Generate embedded PIC code */
#define MASK_EMBEDDED_DATA 0x00008000	/* Reduce RAM usage, not fast code */
#define MASK_BIG_ENDIAN	   0x00010000	/* Generate big endian code */
#define MASK_SINGLE_FLOAT  0x00020000	/* Only single precision FPU.  */
#define MASK_MAD	   0x00040000	/* Generate mad/madu as on 4650.  */
#define MASK_4300_MUL_FIX  0x00080000   /* Work-around early Vr4300 CPU bug */
#define MASK_MIPS16	   0x00100000	/* Generate mips16 code */
#define MASK_NO_CHECK_ZERO_DIV \
			   0x00200000	/* divide by zero checking */
#define MASK_CHECK_RANGE_DIV \
			   0x00400000	/* divide result range checking */
#define MASK_UNINIT_CONST_IN_RODATA \
			   0x00800000	/* Store uninitialized
					   consts in rodata */
#define MASK_NO_FUSED_MADD 0x01000000   /* Don't generate floating point
					   multiply-add operations.  */
#define MASK_BRANCHLIKELY  0x02000000   /* Generate Branch Likely
					   instructions.  */

					/* Debug switches, not documented */
#define MASK_DEBUG	0		/* unused */
#define MASK_DEBUG_A	0		/* don't allow <label>($reg) addrs */
#define MASK_DEBUG_B	0		/* GO_IF_LEGITIMATE_ADDRESS debug */
#define MASK_DEBUG_C	0		/* don't expand seq, etc.  */
#define MASK_DEBUG_D	0		/* don't do define_split's */
#define MASK_DEBUG_E	0		/* function_arg debug */
#define MASK_DEBUG_F	0		/* ??? */
#define MASK_DEBUG_G	0		/* don't support 64 bit arithmetic */
#define MASK_DEBUG_I	0		/* unused */

					/* Dummy switches used only in specs */
#define MASK_MIPS_TFILE	0		/* flag for mips-tfile usage */

					/* r4000 64 bit sizes */
#define TARGET_INT64		(target_flags & MASK_INT64)
#define TARGET_LONG64		(target_flags & MASK_LONG64)
#define TARGET_FLOAT64		(target_flags & MASK_FLOAT64)
#define TARGET_64BIT		(target_flags & MASK_64BIT)

					/* Mips vs. GNU linker */
#define TARGET_SPLIT_ADDRESSES	(target_flags & MASK_SPLIT_ADDR)

					/* Mips vs. GNU assembler */
#define TARGET_GAS		(target_flags & MASK_GAS)
#define TARGET_MIPS_AS		(!TARGET_GAS)

					/* Debug Modes */
#define TARGET_DEBUG_MODE	(target_flags & MASK_DEBUG)
#define TARGET_DEBUG_A_MODE	(target_flags & MASK_DEBUG_A)
#define TARGET_DEBUG_B_MODE	(target_flags & MASK_DEBUG_B)
#define TARGET_DEBUG_C_MODE	(target_flags & MASK_DEBUG_C)
#define TARGET_DEBUG_D_MODE	(target_flags & MASK_DEBUG_D)
#define TARGET_DEBUG_E_MODE	(target_flags & MASK_DEBUG_E)
#define TARGET_DEBUG_F_MODE	(target_flags & MASK_DEBUG_F)
#define TARGET_DEBUG_G_MODE	(target_flags & MASK_DEBUG_G)
#define TARGET_DEBUG_I_MODE	(target_flags & MASK_DEBUG_I)

					/* Reg. Naming in .s ($21 vs. $a0) */
#define TARGET_NAME_REGS	(target_flags & MASK_NAME_REGS)

					/* Optimize for Sdata/Sbss */
#define TARGET_GP_OPT		(target_flags & MASK_GPOPT)

					/* print program statistics */
#define TARGET_STATS		(target_flags & MASK_STATS)

					/* call memcpy instead of inline code */
#define TARGET_MEMCPY		(target_flags & MASK_MEMCPY)

					/* .abicalls, etc from Pyramid V.4 */
#define TARGET_ABICALLS		(target_flags & MASK_ABICALLS)

					/* software floating point */
#define TARGET_SOFT_FLOAT	(target_flags & MASK_SOFT_FLOAT)
#define TARGET_HARD_FLOAT	(! TARGET_SOFT_FLOAT)

					/* always call through a register */
#define TARGET_LONG_CALLS	(target_flags & MASK_LONG_CALLS)

					/* generate embedded PIC code;
					   requires gas.  */
#define TARGET_EMBEDDED_PIC	(target_flags & MASK_EMBEDDED_PIC)

					/* for embedded systems, optimize for
					   reduced RAM space instead of for
					   fastest code.  */
#define TARGET_EMBEDDED_DATA	(target_flags & MASK_EMBEDDED_DATA)

					/* always store uninitialized const
					   variables in rodata, requires
					   TARGET_EMBEDDED_DATA.  */
#define TARGET_UNINIT_CONST_IN_RODATA	(target_flags & MASK_UNINIT_CONST_IN_RODATA)

					/* generate big endian code.  */
#define TARGET_BIG_ENDIAN	(target_flags & MASK_BIG_ENDIAN)

#define TARGET_SINGLE_FLOAT	(target_flags & MASK_SINGLE_FLOAT)
#define TARGET_DOUBLE_FLOAT	(! TARGET_SINGLE_FLOAT)

#define TARGET_MAD		(target_flags & MASK_MAD)

#define TARGET_FUSED_MADD	(! (target_flags & MASK_NO_FUSED_MADD))

#define TARGET_4300_MUL_FIX     (target_flags & MASK_4300_MUL_FIX)

#define TARGET_NO_CHECK_ZERO_DIV (target_flags & MASK_NO_CHECK_ZERO_DIV)
#define TARGET_CHECK_RANGE_DIV  (target_flags & MASK_CHECK_RANGE_DIV)

#define TARGET_BRANCHLIKELY	(target_flags & MASK_BRANCHLIKELY)

/* This is true if we must enable the assembly language file switching
   code.  */

#define TARGET_FILE_SWITCHING \
  (TARGET_GP_OPT && ! TARGET_GAS && ! TARGET_MIPS16)

/* We must disable the function end stabs when doing the file switching trick,
   because the Lscope stabs end up in the wrong place, making it impossible
   to debug the resulting code.  */
#define NO_DBX_FUNCTION_END TARGET_FILE_SWITCHING

					/* Generate mips16 code */
#define TARGET_MIPS16		(target_flags & MASK_MIPS16)

/* Generic ISA defines.  */
#define ISA_MIPS1		    (mips_isa == 1)
#define ISA_MIPS2		    (mips_isa == 2)
#define ISA_MIPS3                   (mips_isa == 3)
#define ISA_MIPS4		    (mips_isa == 4)
#define ISA_MIPS32		    (mips_isa == 32)
#define ISA_MIPS64                  (mips_isa == 64)

/* Architecture target defines.  */
#define TARGET_MIPS3900             (mips_arch == PROCESSOR_R3900)
#define TARGET_MIPS4000             (mips_arch == PROCESSOR_R4000)
#define TARGET_MIPS4100             (mips_arch == PROCESSOR_R4100
#define TARGET_MIPS4121             (mips_arch == PROCESSOR_R4121)
#define TARGET_MIPS4300             (mips_arch == PROCESSOR_R4300)
#define TARGET_MIPS4320             (mips_arch == PROCESSOR_R4320)
#define TARGET_MIPS4KC              (mips_arch == PROCESSOR_R4KC)
#define TARGET_MIPS5KC              (mips_arch == PROCESSOR_R5KC)
#define TARGET_MIPS5400             (mips_arch == PROCESSOR_R5400)
#define TARGET_MIPS5500             (mips_arch == PROCESSOR_R5500)
#define TARGET_SB1                  (mips_arch == PROCESSOR_SB1)
#define TARGET_SR71K                (mips_arch == PROCESSOR_SR71000)

/* Scheduling target defines.  */
#define TUNE_MIPS3000               (mips_tune == PROCESSOR_R3000)
#define TUNE_MIPS3900               (mips_tune == PROCESSOR_R3900)
#define TUNE_MIPS4000               (mips_tune == PROCESSOR_R4000)
#define TUNE_MIPS5000               (mips_tune == PROCESSOR_R5000)
#define TUNE_MIPS5400               (mips_tune == PROCESSOR_R5400)
#define TUNE_MIPS5500               (mips_tune == PROCESSOR_R5500)
#define TUNE_MIPS6000               (mips_tune == PROCESSOR_R6000)
#define TUNE_SB1                    (mips_tune == PROCESSOR_SB1)
#define TUNE_SR71K                  (mips_tune == PROCESSOR_SR71000)

/* Define preprocessor macros for the -march and -mtune options.
   PREFIX is either _MIPS_ARCH or _MIPS_TUNE, INFO is the selected
   processor.  If INFO's canonical name is "foo", define PREFIX to
   be "foo", and define an additional macro PREFIX_FOO.  */
#define MIPS_CPP_SET_PROCESSOR(PREFIX, INFO)			\
  do								\
    {								\
      char *macro, *p;						\
								\
      macro = concat ((PREFIX), "_", (INFO)->name, NULL);	\
      for (p = macro; *p != 0; p++)				\
	*p = TOUPPER (*p);					\
								\
      builtin_define (macro);					\
      builtin_define_with_value ((PREFIX), (INFO)->name, 1);	\
      free (macro);						\
    }								\
  while (0)

/* Target CPU builtins.  */
#define TARGET_CPU_CPP_BUILTINS()				\
  do								\
    {								\
      builtin_assert ("cpu=mips");				\
      builtin_define ("__mips__");     				\
      builtin_define ("_mips");					\
								\
      /* We do this here because __mips is defined below	\
	 and so we can't use builtin_define_std.  */		\
      if (!flag_iso)						\
	  builtin_define ("mips");				\
								\
      /* Treat _R3000 and _R4000 like register-size defines,	\
	 which is how they've historically been used.  */	\
      if (TARGET_64BIT)						\
	{							\
	  builtin_define ("__mips64");     			\
	  builtin_define_std ("R4000");				\
	  builtin_define ("_R4000");				\
	}							\
      else							\
	{							\
	  builtin_define_std ("R3000");				\
	  builtin_define ("_R3000");				\
	}							\
      if (TARGET_FLOAT64)					\
	  builtin_define ("__mips_fpr=64");			\
      else							\
	  builtin_define ("__mips_fpr=32");			\
								\
      if (TARGET_MIPS16)					\
	  builtin_define ("__mips16");				\
								\
      MIPS_CPP_SET_PROCESSOR ("_MIPS_ARCH", mips_arch_info);	\
      MIPS_CPP_SET_PROCESSOR ("_MIPS_TUNE", mips_tune_info);	\
								\
      if (ISA_MIPS1)						\
	{							\
	  builtin_define ("__mips=1");				\
	  builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS1");		\
	}							\
      else if (ISA_MIPS2)					\
	{							\
	  builtin_define ("__mips=2");				\
	  builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS2");		\
	}							\
      else if (ISA_MIPS3)					\
	{							\
	  builtin_define ("__mips=3");				\
	  builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS3");		\
	}							\
      else if (ISA_MIPS4)					\
	{							\
	  builtin_define ("__mips=4");				\
	  builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS4");		\
	}							\
      else if (ISA_MIPS32)					\
	{							\
	  builtin_define ("__mips=32");				\
	  builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS32");	\
	}							\
      else if (ISA_MIPS64)					\
	{							\
	  builtin_define ("__mips=64");				\
	  builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS64");	\
	}							\
								\
      if (TARGET_HARD_FLOAT)					\
	  builtin_define ("__mips_hard_float");			\
      else if (TARGET_SOFT_FLOAT)				\
	  builtin_define ("__mips_soft_float");			\
								\
      if (TARGET_SINGLE_FLOAT)					\
	  builtin_define ("__mips_single_float");		\
								\
      if (TARGET_BIG_ENDIAN)					\
	{							\
	  builtin_define_std ("MIPSEB");			\
	  builtin_define ("_MIPSEB");				\
	}							\
      else							\
	{							\
	  builtin_define_std ("MIPSEL");			\
	  builtin_define ("_MIPSEL");				\
	}							\
								\
        /* Macros dependent on the C dialect.  */		\
      if (preprocessing_asm_p ())				\
	{							\
          builtin_define_std ("LANGUAGE_ASSEMBLY");		\
	  builtin_define ("_LANGUAGE_ASSEMBLY");		\
	}							\
      else if (c_language == clk_c)				\
	{							\
          builtin_define_std ("LANGUAGE_C");			\
	  builtin_define ("_LANGUAGE_C");			\
	}							\
      else if (c_language == clk_cplusplus)			\
        {							\
	  builtin_define ("_LANGUAGE_C_PLUS_PLUS");		\
          builtin_define ("__LANGUAGE_C_PLUS_PLUS");		\
          builtin_define ("__LANGUAGE_C_PLUS_PLUS__");		\
        }							\
      if (flag_objc)						\
        {							\
	  builtin_define ("_LANGUAGE_OBJECTIVE_C");		\
          builtin_define ("__LANGUAGE_OBJECTIVE_C");		\
	  /* Bizzare, but needed at least for Irix.  */		\
	  builtin_define_std ("LANGUAGE_C");			\
	  builtin_define ("_LANGUAGE_C");			\
        }							\
								\
      if (mips_abi == ABI_EABI)					\
	builtin_define ("__mips_eabi");				\
								\
} while (0)



/* Macro to define tables used to set the flags.
   This is a list in braces of pairs in braces,
   each pair being { "NAME", VALUE }
   where VALUE is the bits to set or minus the bits to clear.
   An empty string NAME is used to identify the default VALUE.  */

#define TARGET_SWITCHES							\
{									\
  {"no-crt0",          0,                                               \
     N_("No default crt0.o") },					 	\
  {"int64",		  MASK_INT64 | MASK_LONG64,			\
     N_("Use 64-bit int type")},					\
  {"long64",		  MASK_LONG64,					\
     N_("Use 64-bit long type")},					\
  {"long32",		 -(MASK_LONG64 | MASK_INT64),			\
     N_("Use 32-bit long type")},					\
  {"split-addresses",	  MASK_SPLIT_ADDR,				\
     N_("Optimize lui/addiu address loads")},				\
  {"no-split-addresses", -MASK_SPLIT_ADDR,				\
     N_("Don't optimize lui/addiu address loads")},			\
  {"mips-as",		 -MASK_GAS,					\
     N_("Use MIPS as")},						\
  {"gas",		  MASK_GAS,					\
     N_("Use GNU as")},							\
  {"rnames",		  MASK_NAME_REGS,				\
     N_("Use symbolic register names")},				\
  {"no-rnames",		 -MASK_NAME_REGS,				\
     N_("Don't use symbolic register names")},				\
  {"gpOPT",		  MASK_GPOPT,					\
     N_("Use GP relative sdata/sbss sections")},			\
  {"gpopt",		  MASK_GPOPT,					\
     N_("Use GP relative sdata/sbss sections")},			\
  {"no-gpOPT",		 -MASK_GPOPT,					\
     N_("Don't use GP relative sdata/sbss sections")},			\
  {"no-gpopt",		 -MASK_GPOPT,					\
     N_("Don't use GP relative sdata/sbss sections")},			\
  {"stats",		  MASK_STATS,					\
     N_("Output compiler statistics")},					\
  {"no-stats",		 -MASK_STATS,					\
     N_("Don't output compiler statistics")},				\
  {"memcpy",		  MASK_MEMCPY,					\
     N_("Don't optimize block moves")},					\
  {"no-memcpy",		 -MASK_MEMCPY,					\
     N_("Optimize block moves")},					\
  {"mips-tfile",	  MASK_MIPS_TFILE,				\
     N_("Use mips-tfile asm postpass")},				\
  {"no-mips-tfile",	 -MASK_MIPS_TFILE,				\
     N_("Don't use mips-tfile asm postpass")},				\
  {"soft-float",	  MASK_SOFT_FLOAT,				\
     N_("Use software floating point")},				\
  {"hard-float",	 -MASK_SOFT_FLOAT,				\
     N_("Use hardware floating point")},				\
  {"fp64",		  MASK_FLOAT64,					\
     N_("Use 64-bit FP registers")},					\
  {"fp32",		 -MASK_FLOAT64,					\
     N_("Use 32-bit FP registers")},					\
  {"gp64",		  MASK_64BIT,					\
     N_("Use 64-bit general registers")},				\
  {"gp32",		 -MASK_64BIT,					\
     N_("Use 32-bit general registers")},				\
  {"abicalls",		  MASK_ABICALLS,				\
     N_("Use Irix PIC")},						\
  {"no-abicalls",	 -MASK_ABICALLS,				\
     N_("Don't use Irix PIC")},						\
  {"long-calls",	  MASK_LONG_CALLS,				\
     N_("Use indirect calls")},						\
  {"no-long-calls",	 -MASK_LONG_CALLS,				\
     N_("Don't use indirect calls")},					\
  {"embedded-pic",	  MASK_EMBEDDED_PIC,				\
     N_("Use embedded PIC")},						\
  {"no-embedded-pic",	 -MASK_EMBEDDED_PIC,				\
     N_("Don't use embedded PIC")},					\
  {"embedded-data",	  MASK_EMBEDDED_DATA,				\
     N_("Use ROM instead of RAM")},					\
  {"no-embedded-data",	 -MASK_EMBEDDED_DATA,				\
     N_("Don't use ROM instead of RAM")},				\
  {"uninit-const-in-rodata", MASK_UNINIT_CONST_IN_RODATA,		\
     N_("Put uninitialized constants in ROM (needs -membedded-data)")},	\
  {"no-uninit-const-in-rodata", -MASK_UNINIT_CONST_IN_RODATA,		\
     N_("Don't put uninitialized constants in ROM")},			\
  {"eb",		  MASK_BIG_ENDIAN,				\
     N_("Use big-endian byte order")},					\
  {"el",		 -MASK_BIG_ENDIAN,				\
     N_("Use little-endian byte order")},				\
  {"single-float",	  MASK_SINGLE_FLOAT,				\
     N_("Use single (32-bit) FP only")},				\
  {"double-float",	 -MASK_SINGLE_FLOAT,				\
     N_("Don't use single (32-bit) FP only")},				\
  {"mad",		  MASK_MAD,					\
     N_("Use multiply accumulate")},					\
  {"no-mad",		 -MASK_MAD,					\
     N_("Don't use multiply accumulate")},				\
  {"no-fused-madd",       MASK_NO_FUSED_MADD,                           \
     N_("Don't generate fused multiply/add instructions")},		\
  {"fused-madd",         -MASK_NO_FUSED_MADD,                           \
     N_("Generate fused multiply/add instructions")},			\
  {"fix4300",             MASK_4300_MUL_FIX,				\
     N_("Work around early 4300 hardware bug")},			\
  {"no-fix4300",         -MASK_4300_MUL_FIX,				\
     N_("Don't work around early 4300 hardware bug")},			\
  {"check-zero-division",-MASK_NO_CHECK_ZERO_DIV,			\
     N_("Trap on integer divide by zero")},				\
  {"no-check-zero-division", MASK_NO_CHECK_ZERO_DIV,			\
     N_("Don't trap on integer divide by zero")},			\
  {"check-range-division",MASK_CHECK_RANGE_DIV,				\
     N_("Trap on integer divide overflow")},				\
  {"no-check-range-division",-MASK_CHECK_RANGE_DIV,			\
     N_("Don't trap on integer divide overflow")},			\
  { "branch-likely",      MASK_BRANCHLIKELY,				\
      N_("Use Branch Likely instructions, overriding default for arch")}, \
  { "no-branch-likely",  -MASK_BRANCHLIKELY,				\
      N_("Don't use Branch Likely instructions, overriding default for arch")}, \
  {"debug",		  MASK_DEBUG,					\
     NULL},								\
  {"debuga",		  MASK_DEBUG_A,					\
     NULL},								\
  {"debugb",		  MASK_DEBUG_B,					\
     NULL},								\
  {"debugc",		  MASK_DEBUG_C,					\
     NULL},								\
  {"debugd",		  MASK_DEBUG_D,					\
     NULL},								\
  {"debuge",		  MASK_DEBUG_E,					\
     NULL},								\
  {"debugf",		  MASK_DEBUG_F,					\
     NULL},								\
  {"debugg",		  MASK_DEBUG_G,					\
     NULL},								\
  {"debugi",		  MASK_DEBUG_I,					\
     NULL},								\
  {"",			  (TARGET_DEFAULT				\
			   | TARGET_CPU_DEFAULT				\
			   | TARGET_ENDIAN_DEFAULT),			\
     NULL},								\
}

/* Default target_flags if no switches are specified  */

#ifndef TARGET_DEFAULT
#define TARGET_DEFAULT 0
#endif

#ifndef TARGET_CPU_DEFAULT
#define TARGET_CPU_DEFAULT 0
#endif

#ifndef TARGET_ENDIAN_DEFAULT
#define TARGET_ENDIAN_DEFAULT MASK_BIG_ENDIAN
#endif

/* 'from-abi' makes a good default: you get whatever the ABI requires.  */
#ifndef MIPS_ISA_DEFAULT
#ifndef MIPS_CPU_STRING_DEFAULT
#define MIPS_CPU_STRING_DEFAULT "from-abi"
#endif
#endif

#ifdef IN_LIBGCC2
#undef TARGET_64BIT
/* Make this compile time constant for libgcc2 */
#ifdef __mips64
#define TARGET_64BIT		1
#else
#define TARGET_64BIT		0
#endif
#endif /* IN_LIBGCC2 */

#ifndef MULTILIB_ENDIAN_DEFAULT
#if TARGET_ENDIAN_DEFAULT == 0
#define MULTILIB_ENDIAN_DEFAULT "EL"
#else
#define MULTILIB_ENDIAN_DEFAULT "EB"
#endif
#endif

#ifndef MULTILIB_ISA_DEFAULT
#  if MIPS_ISA_DEFAULT == 1
#    define MULTILIB_ISA_DEFAULT "mips1"
#  else
#    if MIPS_ISA_DEFAULT == 2
#      define MULTILIB_ISA_DEFAULT "mips2"
#    else
#      if MIPS_ISA_DEFAULT == 3
#        define MULTILIB_ISA_DEFAULT "mips3"
#      else
#        if MIPS_ISA_DEFAULT == 4
#          define MULTILIB_ISA_DEFAULT "mips4"
#        else
#          if MIPS_ISA_DEFAULT == 32
#            define MULTILIB_ISA_DEFAULT "mips32"
#          else
#            if MIPS_ISA_DEFAULT == 64
#              define MULTILIB_ISA_DEFAULT "mips64"
#            else
#          define MULTILIB_ISA_DEFAULT "mips1"
#         endif
#        endif
#       endif
#      endif
#    endif
#  endif
#endif

#ifndef MULTILIB_DEFAULTS
#define MULTILIB_DEFAULTS \
    { MULTILIB_ENDIAN_DEFAULT, MULTILIB_ISA_DEFAULT, MULTILIB_ABI_DEFAULT }
#endif

/* We must pass -EL to the linker by default for little endian embedded
   targets using linker scripts with a OUTPUT_FORMAT line.  Otherwise, the
   linker will default to using big-endian output files.  The OUTPUT_FORMAT
   line must be in the linker script, otherwise -EB/-EL will not work.  */

#ifndef ENDIAN_SPEC
#if TARGET_ENDIAN_DEFAULT == 0
#define ENDIAN_SPEC "%{!EB:%{!meb:-EL}} %{EB|meb:-EB}"
#else
#define ENDIAN_SPEC "%{!EL:%{!mel:-EB}} %{EL|mel:-EL}"
#endif
#endif

#define TARGET_OPTIONS							\
{									\
  SUBTARGET_TARGET_OPTIONS						\
  { "tune=",    &mips_tune_string,			                \
      N_("Specify CPU for scheduling purposes")},                       \
  { "arch=",    &mips_arch_string,                                      \
      N_("Specify CPU for code generation purposes")},                  \
  { "abi=", &mips_abi_string,						\
      N_("Specify an ABI")},						\
  { "ips",	&mips_isa_string,					\
      N_("Specify a Standard MIPS ISA")},				\
  { "entry",	&mips_entry_string,					\
      N_("Use mips16 entry/exit psuedo ops")},				\
  { "no-mips16", &mips_no_mips16_string,				\
      N_("Don't use MIPS16 instructions")},				\
  { "no-flush-func", &mips_cache_flush_func,				\
      N_("Don't call any cache flush functions")},			\
  { "flush-func=", &mips_cache_flush_func,				\
      N_("Specify cache flush function")},				\
}

/* This is meant to be redefined in the host dependent files.  */
#define SUBTARGET_TARGET_OPTIONS

#define GENERATE_BRANCHLIKELY   (TARGET_BRANCHLIKELY                    \
				 && !TARGET_SR71K                       \
				 && !TARGET_MIPS16)

/* Generate three-operand multiply instructions for SImode.  */
#define GENERATE_MULT3_SI       ((TARGET_MIPS3900                       \
                                  || TARGET_MIPS4320                    \
                                  || TARGET_MIPS5400                    \
                                  || TARGET_MIPS5500                    \
                                  || ISA_MIPS32	                        \
                                  || ISA_MIPS64)                        \
                                 && !TARGET_MIPS16)

/* Generate three-operand multiply instructions for DImode.  */
#define GENERATE_MULT3_DI       ((TARGET_MIPS3900)                      \
				 && !TARGET_MIPS16)

/* Macros to decide whether certain features are available or not,
   depending on the instruction set architecture level.  */

#define HAVE_SQRT_P()		(!ISA_MIPS1)

/* True if the ABI can only work with 64-bit integer registers.  We
   generally allow ad-hoc variations for TARGET_SINGLE_FLOAT, but
   otherwise floating-point registers must also be 64-bit.  */
#define ABI_NEEDS_64BIT_REGS	(mips_abi == ABI_64			\
				 || mips_abi == ABI_O64			\
				 || mips_abi == ABI_N32)

/* Likewise for 32-bit regs.  */
#define ABI_NEEDS_32BIT_REGS	(mips_abi == ABI_32)

/* ISA has instructions for managing 64 bit fp and gp regs (eg. mips3).  */
#define ISA_HAS_64BIT_REGS	(ISA_MIPS3				\
				 || ISA_MIPS4				\
                                 || ISA_MIPS64)

/* ISA has branch likely instructions (eg. mips2).  */
/* Disable branchlikely for tx39 until compare rewrite.  They haven't
   been generated up to this point.  */
#define ISA_HAS_BRANCHLIKELY	(!ISA_MIPS1                             \
				 && !TARGET_MIPS5500)

/* ISA has the conditional move instructions introduced in mips4.  */
#define ISA_HAS_CONDMOVE        ((ISA_MIPS4				\
				  || ISA_MIPS32	                        \
				  || ISA_MIPS64)			\
                                 && !TARGET_MIPS5500                    \
				 && !TARGET_MIPS16)

/* ISA has just the integer condition move instructions (movn,movz) */
#define ISA_HAS_INT_CONDMOVE     0

/* ISA has the mips4 FP condition code instructions: FP-compare to CC,
   branch on CC, and move (both FP and non-FP) on CC.  */
#define ISA_HAS_8CC		(ISA_MIPS4				\
                         	 || ISA_MIPS32	                        \
				 || ISA_MIPS64)

/* This is a catch all for the other new mips4 instructions: indexed load and
   indexed prefetch instructions, the FP madd and msub instructions,
   and the FP recip and recip sqrt instructions */
#define ISA_HAS_FP4             ((ISA_MIPS4				\
				  || ISA_MIPS64)       			\
 				 && !TARGET_MIPS16)

/* ISA has conditional trap instructions.  */
#define ISA_HAS_COND_TRAP	(!ISA_MIPS1				\
				 && !TARGET_MIPS16)

/* ISA has integer multiply-accumulate instructions, madd and msub.  */
#define ISA_HAS_MADD_MSUB       ((ISA_MIPS32				\
				  || ISA_MIPS64				\
				  ) && !TARGET_MIPS16)

/* ISA has floating-point nmadd and nmsub instructions.  */
#define ISA_HAS_NMADD_NMSUB	((ISA_MIPS4				\
				  || ISA_MIPS64)       			\
                                 && (!TARGET_MIPS5400 || TARGET_MAD)    \
				 && ! TARGET_MIPS16)

/* ISA has count leading zeroes/ones instruction (not implemented).  */
#define ISA_HAS_CLZ_CLO         ((ISA_MIPS32				\
                                  || ISA_MIPS64				\
                                 ) && !TARGET_MIPS16)

/* ISA has double-word count leading zeroes/ones instruction (not
   implemented).  */
#define ISA_HAS_DCLZ_DCLO       (ISA_MIPS64				\
				 && !TARGET_MIPS16)

/* ISA has three operand multiply instructions that put
   the high part in an accumulator: mulhi or mulhiu.  */
#define ISA_HAS_MULHI           (TARGET_MIPS5400                        \
                                 || TARGET_MIPS5500                     \
                                 || TARGET_SR71K                        \
                                 )

/* ISA has three operand multiply instructions that
   negates the result and puts the result in an accumulator.  */
#define ISA_HAS_MULS            (TARGET_MIPS5400                        \
                                 || TARGET_MIPS5500                     \
                                 || TARGET_SR71K                        \
                                 )

/* ISA has three operand multiply instructions that subtracts the
   result from a 4th operand and puts the result in an accumulator.  */
#define ISA_HAS_MSAC            (TARGET_MIPS5400                        \
                                 || TARGET_MIPS5500                     \
                                 || TARGET_SR71K                        \
                                 )
/* ISA has three operand multiply instructions that  the result
   from a 4th operand and puts the result in an accumulator.  */
#define ISA_HAS_MACC            (TARGET_MIPS5400                        \
                                 || TARGET_MIPS5500                     \
                                 || TARGET_SR71K                        \
                                 )

/* ISA has 32-bit rotate right instruction.  */
#define ISA_HAS_ROTR_SI         (TARGET_MIPS5400                        \
                                 || TARGET_MIPS5500                     \
                                 || TARGET_SR71K                        \
                                 )

/* ISA has 32-bit rotate right instruction.  */
#define ISA_HAS_ROTR_DI         (TARGET_64BIT                           \
                                 && (TARGET_MIPS5400                    \
                                     || TARGET_MIPS5500                 \
                                     || TARGET_SR71K                    \
                                     ))


/* ISA has data prefetch instruction.  */
#define ISA_HAS_PREFETCH	((ISA_MIPS4				\
				  || ISA_MIPS32				\
				  || ISA_MIPS64)	       		\
				 && !TARGET_MIPS16)

/* True if trunc.w.s and trunc.w.d are real (not synthetic)
   instructions.  Both require TARGET_HARD_FLOAT, and trunc.w.d
   also requires TARGET_DOUBLE_FLOAT.  */
#define ISA_HAS_TRUNC_W		(!ISA_MIPS1)

/* CC1_SPEC causes -mips3 and -mips4 to set -mfp64 and -mgp64; -mips1 or
   -mips2 sets -mfp32 and -mgp32.  This can be overridden by an explicit
   -mfp32, -mfp64, -mgp32 or -mgp64.  -mfp64 sets MASK_FLOAT64 in
   target_flags, and -mgp64 sets MASK_64BIT.

   Setting MASK_64BIT in target_flags will cause gcc to assume that
   registers are 64 bits wide.  int, long and void * will be 32 bit;
   this may be changed with -mint64 or -mlong64.

   The gen* programs link code that refers to MASK_64BIT.  They don't
   actually use the information in target_flags; they just refer to
   it.  */

/* Switch  Recognition by gcc.c.  Add -G xx support */

#undef  SWITCH_TAKES_ARG
#define SWITCH_TAKES_ARG(CHAR)						\
  (DEFAULT_SWITCH_TAKES_ARG (CHAR) || (CHAR) == 'G')

/* Sometimes certain combinations of command options do not make sense
   on a particular target machine.  You can define a macro
   `OVERRIDE_OPTIONS' to take account of this.  This macro, if
   defined, is executed once just after all the command options have
   been parsed.

   On the MIPS, it is used to handle -G.  We also use it to set up all
   of the tables referenced in the other macros.  */

#define OVERRIDE_OPTIONS override_options ()

#define CONDITIONAL_REGISTER_USAGE mips_conditional_register_usage ()

/* Show we can debug even without a frame pointer.  */
#define CAN_DEBUG_WITHOUT_FP

/* Tell collect what flags to pass to nm.  */
#ifndef NM_FLAGS
#define NM_FLAGS "-Bn"
#endif


/* Assembler specs.  */

/* MIPS_AS_ASM_SPEC is passed when using the MIPS assembler rather
   than gas.  */

#define MIPS_AS_ASM_SPEC "\
%{!.s:-nocpp} %{.s: %{cpp} %{nocpp}} \
%{pipe: %e-pipe is not supported} \
%{K} %(subtarget_mips_as_asm_spec)"

/* SUBTARGET_MIPS_AS_ASM_SPEC is passed when using the MIPS assembler
   rather than gas.  It may be overridden by subtargets.  */

#ifndef SUBTARGET_MIPS_AS_ASM_SPEC
#define SUBTARGET_MIPS_AS_ASM_SPEC "%{v}"
#endif

/* GAS_ASM_SPEC is passed when using gas, rather than the MIPS
   assembler.  */

#define GAS_ASM_SPEC "%{mtune=*} %{v}"


extern int mips_abi;

#ifndef MIPS_ABI_DEFAULT
#define MIPS_ABI_DEFAULT ABI_32
#endif

/* Use the most portable ABI flag for the ASM specs.  */

#if MIPS_ABI_DEFAULT == ABI_32
#define MULTILIB_ABI_DEFAULT "mabi=32"
#define ASM_ABI_DEFAULT_SPEC "-32"
#endif

#if MIPS_ABI_DEFAULT == ABI_O64
#define MULTILIB_ABI_DEFAULT "mabi=o64"
#define ASM_ABI_DEFAULT_SPEC "-mabi=o64"
#endif

#if MIPS_ABI_DEFAULT == ABI_N32
#define MULTILIB_ABI_DEFAULT "mabi=n32"
#define ASM_ABI_DEFAULT_SPEC "-n32"
#endif

#if MIPS_ABI_DEFAULT == ABI_64
#define MULTILIB_ABI_DEFAULT "mabi=64"
#define ASM_ABI_DEFAULT_SPEC "-64"
#endif

#if MIPS_ABI_DEFAULT == ABI_EABI
#define MULTILIB_ABI_DEFAULT "mabi=eabi"
#define ASM_ABI_DEFAULT_SPEC "-mabi=eabi"
#endif

#if MIPS_ABI_DEFAULT == ABI_MEABI
/* Most GAS don't know about MEABI.  */
#define MULTILIB_ABI_DEFAULT "mabi=meabi"
#define ASM_ABI_DEFAULT_SPEC ""
#endif

/* Only ELF targets can switch the ABI.  */
#ifndef OBJECT_FORMAT_ELF
#undef ASM_ABI_DEFAULT_SPEC
#define ASM_ABI_DEFAULT_SPEC ""
#endif

/* TARGET_ASM_SPEC is used to select either MIPS_AS_ASM_SPEC or
   GAS_ASM_SPEC as the default, depending upon the value of
   TARGET_DEFAULT.  */

#if ((TARGET_CPU_DEFAULT | TARGET_DEFAULT) & MASK_GAS) != 0
/* GAS */

#define TARGET_ASM_SPEC "\
%{mmips-as: %(mips_as_asm_spec)} \
%{!mmips-as: %(gas_asm_spec)}"

#else /* not GAS */

#define TARGET_ASM_SPEC "\
%{!mgas: %(mips_as_asm_spec)} \
%{mgas: %(gas_asm_spec)}"

#endif /* not GAS */

/* SUBTARGET_ASM_OPTIMIZING_SPEC handles passing optimization options
   to the assembler.  It may be overridden by subtargets.  */
#ifndef SUBTARGET_ASM_OPTIMIZING_SPEC
#define SUBTARGET_ASM_OPTIMIZING_SPEC "\
%{noasmopt:-O0} \
%{!noasmopt:%{O:-O2} %{O1:-O2} %{O2:-O2} %{O3:-O3}}"
#endif

/* SUBTARGET_ASM_DEBUGGING_SPEC handles passing debugging options to
   the assembler.  It may be overridden by subtargets.  */
#ifndef SUBTARGET_ASM_DEBUGGING_SPEC
#define SUBTARGET_ASM_DEBUGGING_SPEC "\
%{g} %{g0} %{g1} %{g2} %{g3} \
%{ggdb:-g} %{ggdb0:-g0} %{ggdb1:-g1} %{ggdb2:-g2} %{ggdb3:-g3} \
%{gstabs:-g} %{gstabs0:-g0} %{gstabs1:-g1} %{gstabs2:-g2} %{gstabs3:-g3} \
%{gstabs+:-g} %{gstabs+0:-g0} %{gstabs+1:-g1} %{gstabs+2:-g2} %{gstabs+3:-g3} \
%{gcoff:-g} %{gcoff0:-g0} %{gcoff1:-g1} %{gcoff2:-g2} %{gcoff3:-g3} \
%{!gdwarf*:-mdebug} %{gdwarf*:-no-mdebug}"
#endif

/* SUBTARGET_ASM_SPEC is always passed to the assembler.  It may be
   overridden by subtargets.  */

#ifndef SUBTARGET_ASM_SPEC
#define SUBTARGET_ASM_SPEC ""
#endif

/* ASM_SPEC is the set of arguments to pass to the assembler.  Note: we
   pass -mgp32, -mgp64, -march, -mabi=eabi and -meabi=o64 regardless of
   whether we're using GAS.  These options can only be used properly
   with GAS, and it is better to get an error from a non-GAS assembler
   than to silently generate bad code.  */

#undef ASM_SPEC
#define ASM_SPEC "\
%{G*} %(endian_spec) %{mips1} %{mips2} %{mips3} %{mips4} %{mips32} %{mips64}\
%{mips16:%{!mno-mips16:-mips16}} %{mno-mips16:-no-mips16} \
%(subtarget_asm_optimizing_spec) \
%(subtarget_asm_debugging_spec) \
%{membedded-pic} \
%{mabi=32:-32}%{mabi=n32:-n32}%{mabi=64:-64}%{mabi=n64:-64} \
%{mabi=eabi} %{mabi=o64} %{!mabi*: %(asm_abi_default_spec)} \
%{mgp32} %{mgp64} %{march=*} \
%(target_asm_spec) \
%(subtarget_asm_spec)"

/* Specify to run a post-processor, mips-tfile after the assembler
   has run to stuff the mips debug information into the object file.
   This is needed because the $#!%^ MIPS assembler provides no way
   of specifying such information in the assembly file.  If we are
   cross compiling, disable mips-tfile unless the user specifies
   -mmips-tfile.  */

#ifndef ASM_FINAL_SPEC
#if ((TARGET_CPU_DEFAULT | TARGET_DEFAULT) & MASK_GAS) != 0
/* GAS */
#define ASM_FINAL_SPEC "\
%{mmips-as: %{!mno-mips-tfile: \
	\n mips-tfile %{v*: -v} \
		%{K: -I %b.o~} \
		%{!K: %{save-temps: -I %b.o~}} \
		%{c:%W{o*}%{!o*:-o %b.o}}%{!c:-o %U.o} \
		%{.s:%i} %{!.s:%g.s}}}"

#else
/* not GAS */
#define ASM_FINAL_SPEC "\
%{!mgas: %{!mno-mips-tfile: \
	\n mips-tfile %{v*: -v} \
		%{K: -I %b.o~} \
		%{!K: %{save-temps: -I %b.o~}} \
		%{c:%W{o*}%{!o*:-o %b.o}}%{!c:-o %U.o} \
		%{.s:%i} %{!.s:%g.s}}}"

#endif
#endif	/* ASM_FINAL_SPEC */

/* Redefinition of libraries used.  Mips doesn't support normal
   UNIX style profiling via calling _mcount.  It does offer
   profiling that samples the PC, so do what we can...  */

#ifndef LIB_SPEC
#define LIB_SPEC "%{pg:-lprof1} %{p:-lprof1} -lc"
#endif

/* Extra switches sometimes passed to the linker.  */
/* ??? The bestGnum will never be passed to the linker, because the gcc driver
  will interpret it as a -b option.  */

#ifndef LINK_SPEC
#define LINK_SPEC "\
%(endian_spec) \
%{G*} %{mips1} %{mips2} %{mips3} %{mips4} %{mips32} %{mips64} \
%{bestGnum} %{shared} %{non_shared}"
#endif  /* LINK_SPEC defined */


/* Specs for the compiler proper */

/* SUBTARGET_CC1_SPEC is passed to the compiler proper.  It may be
   overridden by subtargets.  */
#ifndef SUBTARGET_CC1_SPEC
#define SUBTARGET_CC1_SPEC ""
#endif

/* CC1_SPEC is the set of arguments to pass to the compiler proper.  */
/* Note, we will need to adjust the following if we ever find a MIPS variant
   that has 32-bit GPRs and 64-bit FPRs as well as fix all of the reload bugs
   that show up in this case.  */

#ifndef CC1_SPEC
#define CC1_SPEC "\
%{gline:%{!g:%{!g0:%{!g1:%{!g2: -g1}}}}} \
%{G*} %{EB:-meb} %{EL:-mel} %{EB:%{EL:%emay not use both -EB and -EL}} \
%{save-temps: } \
%(subtarget_cc1_spec)"
#endif

/* Preprocessor specs.  */

/* SUBTARGET_CPP_SPEC is passed to the preprocessor.  It may be
   overridden by subtargets.  */
#ifndef SUBTARGET_CPP_SPEC
#define SUBTARGET_CPP_SPEC ""
#endif

#define CPP_SPEC "%(subtarget_cpp_spec)"

/* This macro defines names of additional specifications to put in the specs
   that can be used in various specifications like CC1_SPEC.  Its definition
   is an initializer with a subgrouping for each command option.

   Each subgrouping contains a string constant, that defines the
   specification name, and a string constant that used by the GNU CC driver
   program.

   Do not define this macro if it does not need to do anything.  */

#define EXTRA_SPECS							\
  { "subtarget_cc1_spec", SUBTARGET_CC1_SPEC },				\
  { "subtarget_cpp_spec", SUBTARGET_CPP_SPEC },				\
  { "mips_as_asm_spec", MIPS_AS_ASM_SPEC },				\
  { "gas_asm_spec", GAS_ASM_SPEC },					\
  { "target_asm_spec", TARGET_ASM_SPEC },				\
  { "subtarget_mips_as_asm_spec", SUBTARGET_MIPS_AS_ASM_SPEC }, 	\
  { "subtarget_asm_optimizing_spec", SUBTARGET_ASM_OPTIMIZING_SPEC },	\
  { "subtarget_asm_debugging_spec", SUBTARGET_ASM_DEBUGGING_SPEC },	\
  { "subtarget_asm_spec", SUBTARGET_ASM_SPEC },				\
  { "asm_abi_default_spec", ASM_ABI_DEFAULT_SPEC },			\
  { "endian_spec", ENDIAN_SPEC },					\
  SUBTARGET_EXTRA_SPECS

#ifndef SUBTARGET_EXTRA_SPECS
#define SUBTARGET_EXTRA_SPECS
#endif

/* If defined, this macro is an additional prefix to try after
   `STANDARD_EXEC_PREFIX'.  */

#ifndef MD_EXEC_PREFIX
#define MD_EXEC_PREFIX "/usr/lib/cmplrs/cc/"
#endif

#ifndef MD_STARTFILE_PREFIX
#define MD_STARTFILE_PREFIX "/usr/lib/cmplrs/cc/"
#endif


/* Print subsidiary information on the compiler version in use.  */

#define MIPS_VERSION "[AL 1.1, MM 40]"

#ifndef MACHINE_TYPE
#define MACHINE_TYPE "BSD Mips"
#endif

#ifndef TARGET_VERSION_INTERNAL
#define TARGET_VERSION_INTERNAL(STREAM)					\
  fprintf (STREAM, " %s %s", MIPS_VERSION, MACHINE_TYPE)
#endif

#ifndef TARGET_VERSION
#define TARGET_VERSION TARGET_VERSION_INTERNAL (stderr)
#endif


#define SDB_DEBUGGING_INFO 1		/* generate info for mips-tfile */
#define DBX_DEBUGGING_INFO 1		/* generate stabs (OSF/rose) */
#define MIPS_DEBUGGING_INFO 1		/* MIPS specific debugging info */

#ifndef PREFERRED_DEBUGGING_TYPE	/* assume SDB_DEBUGGING_INFO */
#define PREFERRED_DEBUGGING_TYPE SDB_DEBUG
#endif

/* By default, turn on GDB extensions.  */
#define DEFAULT_GDB_EXTENSIONS 1

/* If we are passing smuggling stabs through the MIPS ECOFF object
   format, put a comment in front of the .stab<x> operation so
   that the MIPS assembler does not choke.  The mips-tfile program
   will correctly put the stab into the object file.  */

#define ASM_STABS_OP	((TARGET_GAS) ? "\t.stabs\t" : " #.stabs\t")
#define ASM_STABN_OP	((TARGET_GAS) ? "\t.stabn\t" : " #.stabn\t")
#define ASM_STABD_OP	((TARGET_GAS) ? "\t.stabd\t" : " #.stabd\t")

/* Local compiler-generated symbols must have a prefix that the assembler
   understands.   By default, this is $, although some targets (e.g.,
   NetBSD-ELF) need to override this.  */

#ifndef LOCAL_LABEL_PREFIX
#define LOCAL_LABEL_PREFIX	"$"
#endif

/* By default on the mips, external symbols do not have an underscore
   prepended, but some targets (e.g., NetBSD) require this.  */

#ifndef USER_LABEL_PREFIX
#define USER_LABEL_PREFIX	""
#endif

/* Forward references to tags are allowed.  */
#define SDB_ALLOW_FORWARD_REFERENCES

/* Unknown tags are also allowed.  */
#define SDB_ALLOW_UNKNOWN_REFERENCES

/* On Sun 4, this limit is 2048.  We use 1500 to be safe,
   since the length can run past this up to a continuation point.  */
#undef DBX_CONTIN_LENGTH
#define DBX_CONTIN_LENGTH 1500

/* How to renumber registers for dbx and gdb.  */
#define DBX_REGISTER_NUMBER(REGNO) mips_dbx_regno[ (REGNO) ]

/* The mapping from gcc register number to DWARF 2 CFA column number.
   This mapping does not allow for tracking register 0, since SGI's broken
   dwarf reader thinks column 0 is used for the frame address, but since
   register 0 is fixed this is not a problem.  */
#define DWARF_FRAME_REGNUM(REG)				\
  (REG == GP_REG_FIRST + 31 ? DWARF_FRAME_RETURN_COLUMN : REG)

/* The DWARF 2 CFA column which tracks the return address.  */
#define DWARF_FRAME_RETURN_COLUMN (FP_REG_LAST + 1)

/* Before the prologue, RA lives in r31.  */
#define INCOMING_RETURN_ADDR_RTX  gen_rtx_REG (VOIDmode, GP_REG_FIRST + 31)

/* Describe how we implement __builtin_eh_return.  */
#define EH_RETURN_DATA_REGNO(N) ((N) < (TARGET_MIPS16 ? 2 : 4) ? (N) + GP_ARG_FIRST : INVALID_REGNUM)
#define EH_RETURN_STACKADJ_RTX  gen_rtx_REG (Pmode, GP_REG_FIRST + 3)

/* Offsets recorded in opcodes are a multiple of this alignment factor.
   The default for this in 64-bit mode is 8, which causes problems with
   SFmode register saves.  */
#define DWARF_CIE_DATA_ALIGNMENT 4

/* Overrides for the COFF debug format.  */
#define PUT_SDB_SCL(a)					\
do {							\
  extern FILE *asm_out_text_file;			\
  fprintf (asm_out_text_file, "\t.scl\t%d;", (a));	\
} while (0)

#define PUT_SDB_INT_VAL(a)				\
do {							\
  extern FILE *asm_out_text_file;			\
  fprintf (asm_out_text_file, "\t.val\t");		\
  fprintf (asm_out_text_file, HOST_WIDE_INT_PRINT_DEC, (HOST_WIDE_INT)(a)); \
  fprintf (asm_out_text_file, ";");			\
} while (0)

#define PUT_SDB_VAL(a)					\
do {							\
  extern FILE *asm_out_text_file;			\
  fputs ("\t.val\t", asm_out_text_file);		\
  output_addr_const (asm_out_text_file, (a));		\
  fputc (';', asm_out_text_file);			\
} while (0)

#define PUT_SDB_DEF(a)					\
do {							\
  extern FILE *asm_out_text_file;			\
  fprintf (asm_out_text_file, "\t%s.def\t",		\
	   (TARGET_GAS) ? "" : "#");			\
  ASM_OUTPUT_LABELREF (asm_out_text_file, a); 		\
  fputc (';', asm_out_text_file);			\
} while (0)

#define PUT_SDB_PLAIN_DEF(a)				\
do {							\
  extern FILE *asm_out_text_file;			\
  fprintf (asm_out_text_file, "\t%s.def\t.%s;",		\
	   (TARGET_GAS) ? "" : "#", (a));		\
} while (0)

#define PUT_SDB_ENDEF					\
do {							\
  extern FILE *asm_out_text_file;			\
  fprintf (asm_out_text_file, "\t.endef\n");		\
} while (0)

#define PUT_SDB_TYPE(a)					\
do {							\
  extern FILE *asm_out_text_file;			\
  fprintf (asm_out_text_file, "\t.type\t0x%x;", (a));	\
} while (0)

#define PUT_SDB_SIZE(a)					\
do {							\
  extern FILE *asm_out_text_file;			\
  fprintf (asm_out_text_file, "\t.size\t");		\
  fprintf (asm_out_text_file, HOST_WIDE_INT_PRINT_DEC, (HOST_WIDE_INT)(a)); \
  fprintf (asm_out_text_file, ";");			\
} while (0)

#define PUT_SDB_DIM(a)					\
do {							\
  extern FILE *asm_out_text_file;			\
  fprintf (asm_out_text_file, "\t.dim\t%d;", (a));	\
} while (0)

#ifndef PUT_SDB_START_DIM
#define PUT_SDB_START_DIM				\
do {							\
  extern FILE *asm_out_text_file;			\
  fprintf (asm_out_text_file, "\t.dim\t");		\
} while (0)
#endif

#ifndef PUT_SDB_NEXT_DIM
#define PUT_SDB_NEXT_DIM(a)				\
do {							\
  extern FILE *asm_out_text_file;			\
  fprintf (asm_out_text_file, "%d,", a);		\
} while (0)
#endif

#ifndef PUT_SDB_LAST_DIM
#define PUT_SDB_LAST_DIM(a)				\
do {							\
  extern FILE *asm_out_text_file;			\
  fprintf (asm_out_text_file, "%d;", a);		\
} while (0)
#endif

#define PUT_SDB_TAG(a)					\
do {							\
  extern FILE *asm_out_text_file;			\
  fprintf (asm_out_text_file, "\t.tag\t");		\
  ASM_OUTPUT_LABELREF (asm_out_text_file, a); 		\
  fputc (';', asm_out_text_file);			\
} while (0)

/* For block start and end, we create labels, so that
   later we can figure out where the correct offset is.
   The normal .ent/.end serve well enough for functions,
   so those are just commented out.  */

#define PUT_SDB_BLOCK_START(LINE)			\
do {							\
  extern FILE *asm_out_text_file;			\
  fprintf (asm_out_text_file,				\
	   "%sLb%d:\n\t%s.begin\t%sLb%d\t%d\n",		\
	   LOCAL_LABEL_PREFIX,				\
	   sdb_label_count,				\
	   (TARGET_GAS) ? "" : "#",			\
	   LOCAL_LABEL_PREFIX,				\
	   sdb_label_count,				\
	   (LINE));					\
  sdb_label_count++;					\
} while (0)

#define PUT_SDB_BLOCK_END(LINE)				\
do {							\
  extern FILE *asm_out_text_file;			\
  fprintf (asm_out_text_file,				\
	   "%sLe%d:\n\t%s.bend\t%sLe%d\t%d\n",		\
	   LOCAL_LABEL_PREFIX,				\
	   sdb_label_count,				\
	   (TARGET_GAS) ? "" : "#",			\
	   LOCAL_LABEL_PREFIX,				\
	   sdb_label_count,				\
	   (LINE));					\
  sdb_label_count++;					\
} while (0)

#define PUT_SDB_FUNCTION_START(LINE)

#define PUT_SDB_FUNCTION_END(LINE)			\
do {							\
  extern FILE *asm_out_text_file;			\
  ASM_OUTPUT_SOURCE_LINE (asm_out_text_file, LINE + sdb_begin_function_line); \
} while (0)

#define PUT_SDB_EPILOGUE_END(NAME)

#define PUT_SDB_SRC_FILE(FILENAME)			\
do {							\
  extern FILE *asm_out_text_file;			\
  output_file_directive (asm_out_text_file, (FILENAME));\
} while (0)

#define SDB_GENERATE_FAKE(BUFFER, NUMBER)		\
  sprintf ((BUFFER), ".%dfake", (NUMBER));

/* Correct the offset of automatic variables and arguments.  Note that
   the MIPS debug format wants all automatic variables and arguments
   to be in terms of the virtual frame pointer (stack pointer before
   any adjustment in the function), while the MIPS 3.0 linker wants
   the frame pointer to be the stack pointer after the initial
   adjustment.  */

#define DEBUGGER_AUTO_OFFSET(X)				\
  mips_debugger_offset (X, (HOST_WIDE_INT) 0)
#define DEBUGGER_ARG_OFFSET(OFFSET, X)			\
  mips_debugger_offset (X, (HOST_WIDE_INT) OFFSET)

/* Tell collect that the object format is ECOFF */
#define OBJECT_FORMAT_COFF	/* Object file looks like COFF */
#define EXTENDED_COFF		/* ECOFF, not normal coff */

/* Target machine storage layout */

/* Define this if most significant bit is lowest numbered
   in instructions that operate on numbered bit-fields.
*/
#define BITS_BIG_ENDIAN 0

/* Define this if most significant byte of a word is the lowest numbered.  */
#define BYTES_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0)

/* Define this if most significant word of a multiword number is the lowest.  */
#define WORDS_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0)

/* Define this to set the endianness to use in libgcc2.c, which can
   not depend on target_flags.  */
#if !defined(MIPSEL) && !defined(__MIPSEL__)
#define LIBGCC2_WORDS_BIG_ENDIAN 1
#else
#define LIBGCC2_WORDS_BIG_ENDIAN 0
#endif

#define MAX_BITS_PER_WORD 64

/* Width of a word, in units (bytes).  */
#define UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
#define MIN_UNITS_PER_WORD 4

/* For MIPS, width of a floating point register.  */
#define UNITS_PER_FPREG (TARGET_FLOAT64 ? 8 : 4)

/* If register $f0 holds a floating-point value, $f(0 + FP_INC) is
   the next available register.  */
#define FP_INC (TARGET_FLOAT64 || TARGET_SINGLE_FLOAT ? 1 : 2)

/* The largest size of value that can be held in floating-point registers.  */
#define UNITS_PER_FPVALUE (TARGET_SOFT_FLOAT ? 0 : FP_INC * UNITS_PER_FPREG)

/* The number of bytes in a double.  */
#define UNITS_PER_DOUBLE (TYPE_PRECISION (double_type_node) / BITS_PER_UNIT)

/* A C expression for the size in bits of the type `int' on the
   target machine.  If you don't define this, the default is one
   word.  */
#define INT_TYPE_SIZE (TARGET_INT64 ? 64 : 32)

/* Tell the preprocessor the maximum size of wchar_t.  */
#ifndef MAX_WCHAR_TYPE_SIZE
#ifndef WCHAR_TYPE_SIZE
#define MAX_WCHAR_TYPE_SIZE 64
#endif
#endif

/* A C expression for the size in bits of the type `short' on the
   target machine.  If you don't define this, the default is half a
   word.  (If this would be less than one storage unit, it is
   rounded up to one unit.)  */
#define SHORT_TYPE_SIZE 16

/* A C expression for the size in bits of the type `long' on the
   target machine.  If you don't define this, the default is one
   word.  */
#define LONG_TYPE_SIZE (TARGET_LONG64 ? 64 : 32)
#define MAX_LONG_TYPE_SIZE 64

/* A C expression for the size in bits of the type `long long' on the
   target machine.  If you don't define this, the default is two
   words.  */
#define LONG_LONG_TYPE_SIZE 64

/* A C expression for the size in bits of the type `float' on the
   target machine.  If you don't define this, the default is one
   word.  */
#define FLOAT_TYPE_SIZE 32

/* A C expression for the size in bits of the type `double' on the
   target machine.  If you don't define this, the default is two
   words.  */
#define DOUBLE_TYPE_SIZE 64

/* A C expression for the size in bits of the type `long double' on
   the target machine.  If you don't define this, the default is two
   words.  */
#define LONG_DOUBLE_TYPE_SIZE 64

/* Width in bits of a pointer.
   See also the macro `Pmode' defined below.  */
#ifndef POINTER_SIZE
#define POINTER_SIZE (Pmode == DImode ? 64 : 32)
#endif

/* Allocation boundary (in *bits*) for storing pointers in memory.  */
#define POINTER_BOUNDARY (Pmode == DImode ? 64 : 32)

/* Allocation boundary (in *bits*) for storing arguments in argument list.  */
#define PARM_BOUNDARY ((mips_abi == ABI_O64 || mips_abi == ABI_N32 \
			|| mips_abi == ABI_64 \
			|| (mips_abi == ABI_EABI && TARGET_64BIT)) ? 64 : 32)

/* Allocation boundary (in *bits*) for the code of a function.  */
#define FUNCTION_BOUNDARY 32

/* Alignment of field after `int : 0' in a structure.  */
#define EMPTY_FIELD_BOUNDARY 32

/* Every structure's size must be a multiple of this.  */
/* 8 is observed right on a DECstation and on riscos 4.02.  */
#define STRUCTURE_SIZE_BOUNDARY 8

/* There is no point aligning anything to a rounder boundary than this.  */
#define BIGGEST_ALIGNMENT 64

/* Set this nonzero if move instructions will actually fail to work
   when given unaligned data.  */
#define STRICT_ALIGNMENT 1

/* Define this if you wish to imitate the way many other C compilers
   handle alignment of bitfields and the structures that contain
   them.

   The behavior is that the type written for a bitfield (`int',
   `short', or other integer type) imposes an alignment for the
   entire structure, as if the structure really did contain an
   ordinary field of that type.  In addition, the bitfield is placed
   within the structure so that it would fit within such a field,
   not crossing a boundary for it.

   Thus, on most machines, a bitfield whose type is written as `int'
   would not cross a four-byte boundary, and would force four-byte
   alignment for the whole structure.  (The alignment used may not
   be four bytes; it is controlled by the other alignment
   parameters.)

   If the macro is defined, its definition should be a C expression;
   a nonzero value for the expression enables this behavior.  */

#define PCC_BITFIELD_TYPE_MATTERS 1

/* If defined, a C expression to compute the alignment given to a
   constant that is being placed in memory.  CONSTANT is the constant
   and ALIGN is the alignment that the object would ordinarily have.
   The value of this macro is used instead of that alignment to align
   the object.

   If this macro is not defined, then ALIGN is used.

   The typical use of this macro is to increase alignment for string
   constants to be word aligned so that `strcpy' calls that copy
   constants can be done inline.  */

#define CONSTANT_ALIGNMENT(EXP, ALIGN)					\
  ((TREE_CODE (EXP) == STRING_CST  || TREE_CODE (EXP) == CONSTRUCTOR)	\
   && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))

/* If defined, a C expression to compute the alignment for a static
   variable.  TYPE is the data type, and ALIGN is the alignment that
   the object would ordinarily have.  The value of this macro is used
   instead of that alignment to align the object.

   If this macro is not defined, then ALIGN is used.

   One use of this macro is to increase alignment of medium-size
   data to make it all fit in fewer cache lines.  Another is to
   cause character arrays to be word-aligned so that `strcpy' calls
   that copy constants to character arrays can be done inline.  */

#undef DATA_ALIGNMENT
#define DATA_ALIGNMENT(TYPE, ALIGN)					\
  ((((ALIGN) < BITS_PER_WORD)						\
    && (TREE_CODE (TYPE) == ARRAY_TYPE					\
	|| TREE_CODE (TYPE) == UNION_TYPE				\
	|| TREE_CODE (TYPE) == RECORD_TYPE)) ? BITS_PER_WORD : (ALIGN))


/* Force right-alignment for small varargs in 32 bit little_endian mode */

#define PAD_VARARGS_DOWN (TARGET_64BIT                                  \
			  || mips_abi == ABI_MEABI                      \
			     ? BYTES_BIG_ENDIAN : !BYTES_BIG_ENDIAN)

/* Define this macro if an argument declared as `char' or `short' in a
   prototype should actually be passed as an `int'.  In addition to
   avoiding errors in certain cases of mismatch, it also makes for
   better code on certain machines.  */

#define PROMOTE_PROTOTYPES 1

/* Define if operations between registers always perform the operation
   on the full register even if a narrower mode is specified.  */
#define WORD_REGISTER_OPERATIONS

/* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
   will either zero-extend or sign-extend.  The value of this macro should
   be the code that says which one of the two operations is implicitly
   done, NIL if none.

   When in 64 bit mode, mips_move_1word will sign extend SImode and CCmode
   moves.  All other referces are zero extended.  */
#define LOAD_EXTEND_OP(MODE) \
  (TARGET_64BIT && ((MODE) == SImode || (MODE) == CCmode) \
   ? SIGN_EXTEND : ZERO_EXTEND)

/* Define this macro if it is advisable to hold scalars in registers
   in a wider mode than that declared by the program.  In such cases,
   the value is constrained to be within the bounds of the declared
   type, but kept valid in the wider mode.  The signedness of the
   extension may differ from that of the type.

   We promote any value smaller than SImode up to SImode.  We don't
   want to promote to DImode when in 64 bit mode, because that would
   prevent us from using the faster SImode multiply and divide
   instructions.  */

#define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE)	\
  if (GET_MODE_CLASS (MODE) == MODE_INT		\
      && GET_MODE_SIZE (MODE) < 4)		\
    (MODE) = SImode;

/* Define this if function arguments should also be promoted using the above
   procedure.  */

#define PROMOTE_FUNCTION_ARGS

/* Likewise, if the function return value is promoted.  */

#define PROMOTE_FUNCTION_RETURN

/* Standard register usage.  */

/* Number of actual hardware registers.
   The hardware registers are assigned numbers for the compiler
   from 0 to just below FIRST_PSEUDO_REGISTER.
   All registers that the compiler knows about must be given numbers,
   even those that are not normally considered general registers.

   On the Mips, we have 32 integer registers, 32 floating point
   registers, 8 condition code registers, and the special registers
   hi, lo, hilo, and rap.  Afetr that we have 32 COP0 registers, 32
   COP2 registers, and 32 COp3 registers.  (COP1 is the floating-point
   processor.)  The 8 condition code registers are only used if
   mips_isa >= 4.  The hilo register is only used in 64 bit mode.  It
   represents a 64 bit value stored as two 32 bit values in the hi and
   lo registers; this is the result of the mult instruction.  rap is a
   pointer to the stack where the return address reg ($31) was stored.
   This is needed for C++ exception handling.  */

#define FIRST_PSEUDO_REGISTER 176

/* 1 for registers that have pervasive standard uses
   and are not available for the register allocator.

   On the MIPS, see conventions, page D-2  */

/* Regarding coprocessor registers: without evidence to the contrary,
   it's best to assume that each coprocessor register has a unique
   use.  This can be overridden, in, e.g., override_options() or
   CONDITIONAL_REGISTER_USAGE should the assumption be inappropriate
   for a particular target.  */

#define FIXED_REGISTERS							\
{									\
  1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,			\
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1,			\
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,			\
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,			\
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0,			\
  /* COP0 registers */							\
  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,			\
  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,			\
  /* COP2 registers */							\
  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,			\
  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,			\
  /* COP3 registers */							\
  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,			\
  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1			\
}


/* 1 for registers not available across function calls.
   These must include the FIXED_REGISTERS and also any
   registers that can be used without being saved.
   The latter must include the registers where values are returned
   and the register where structure-value addresses are passed.
   Aside from that, you can include as many other registers as you like.  */

#define CALL_USED_REGISTERS						\
{									\
  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,			\
  0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1,			\
  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,			\
  1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,			\
  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0,			\
  /* COP0 registers */							\
  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,			\
  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,			\
  /* COP2 registers */							\
  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,			\
  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,			\
  /* COP3 registers */							\
  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,			\
  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1			\
}

/* Like `CALL_USED_REGISTERS' but used to overcome a historical
   problem which makes CALL_USED_REGISTERS *always* include
   all the FIXED_REGISTERS.  Until this problem has been
   resolved this macro can be used to overcome this situation.
   In particular, block_propagate() requires this list
   be acurate, or we can remove registers which should be live.
   This macro is used in regs_invalidated_by_call.  */


#define CALL_REALLY_USED_REGISTERS                                      \
{ /* General registers.  */                                             \
  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,                       \
  0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 1,                       \
  /* Floating-point registers.  */                                      \
  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,			\
  1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,			\
  /* Others.  */                                                        \
  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0,			\
  /* COP0 registers */							\
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,			\
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,			\
  /* COP2 registers */							\
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,			\
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,			\
  /* COP3 registers */							\
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,			\
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0			\
}

/* Internal macros to classify a register number as to whether it's a
   general purpose register, a floating point register, a
   multiply/divide register, or a status register.  */

#define GP_REG_FIRST 0
#define GP_REG_LAST  31
#define GP_REG_NUM   (GP_REG_LAST - GP_REG_FIRST + 1)
#define GP_DBX_FIRST 0

#define FP_REG_FIRST 32
#define FP_REG_LAST  63
#define FP_REG_NUM   (FP_REG_LAST - FP_REG_FIRST + 1)
#define FP_DBX_FIRST ((write_symbols == DBX_DEBUG) ? 38 : 32)

#define MD_REG_FIRST 64
#define MD_REG_LAST  66
#define MD_REG_NUM   (MD_REG_LAST - MD_REG_FIRST + 1)

#define ST_REG_FIRST 67
#define ST_REG_LAST  74
#define ST_REG_NUM   (ST_REG_LAST - ST_REG_FIRST + 1)

#define RAP_REG_NUM   75

#define COP0_REG_FIRST 80
#define COP0_REG_LAST 111
#define COP0_REG_NUM (COP0_REG_LAST - COP0_REG_FIRST + 1)

#define COP2_REG_FIRST 112
#define COP2_REG_LAST 143
#define COP2_REG_NUM (COP2_REG_LAST - COP2_REG_FIRST + 1)

#define COP3_REG_FIRST 144
#define COP3_REG_LAST 175
#define COP3_REG_NUM (COP3_REG_LAST - COP3_REG_FIRST + 1)
/* ALL_COP_REG_NUM assumes that COP0,2,and 3 are numbered consecutively.  */
#define ALL_COP_REG_NUM (COP3_REG_LAST - COP0_REG_FIRST + 1)

#define AT_REGNUM	(GP_REG_FIRST + 1)
#define HI_REGNUM	(MD_REG_FIRST + 0)
#define LO_REGNUM	(MD_REG_FIRST + 1)
#define HILO_REGNUM	(MD_REG_FIRST + 2)

/* FPSW_REGNUM is the single condition code used if mips_isa < 4.  If
   mips_isa >= 4, it should not be used, and an arbitrary ST_REG
   should be used instead.  */
#define FPSW_REGNUM	ST_REG_FIRST

#define GP_REG_P(REGNO)	\
  ((unsigned int) ((int) (REGNO) - GP_REG_FIRST) < GP_REG_NUM)
#define M16_REG_P(REGNO) \
  (((REGNO) >= 2 && (REGNO) <= 7) || (REGNO) == 16 || (REGNO) == 17)
#define FP_REG_P(REGNO)  \
  ((unsigned int) ((int) (REGNO) - FP_REG_FIRST) < FP_REG_NUM)
#define MD_REG_P(REGNO) \
  ((unsigned int) ((int) (REGNO) - MD_REG_FIRST) < MD_REG_NUM)
#define ST_REG_P(REGNO) \
  ((unsigned int) ((int) (REGNO) - ST_REG_FIRST) < ST_REG_NUM)
#define COP0_REG_P(REGNO) \
  ((unsigned int) ((int) (REGNO) - COP0_REG_FIRST) < COP0_REG_NUM)
#define COP2_REG_P(REGNO) \
  ((unsigned int) ((int) (REGNO) - COP2_REG_FIRST) < COP2_REG_NUM)
#define COP3_REG_P(REGNO) \
  ((unsigned int) ((int) (REGNO) - COP3_REG_FIRST) < COP3_REG_NUM)
#define ALL_COP_REG_P(REGNO) \
  ((unsigned int) ((int) (REGNO) - COP0_REG_FIRST) < ALL_COP_REG_NUM)

/* Return coprocessor number from register number.  */

#define COPNUM_AS_CHAR_FROM_REGNUM(REGNO) 				\
  (COP0_REG_P (REGNO) ? '0' : COP2_REG_P (REGNO) ? '2'			\
   : COP3_REG_P (REGNO) ? '3' : '?')

/* Return number of consecutive hard regs needed starting at reg REGNO
   to hold something of mode MODE.
   This is ordinarily the length in words of a value of mode MODE
   but can be less for certain modes in special long registers.

   On the MIPS, all general registers are one word long.  Except on
   the R4000 with the FR bit set, the floating point uses register
   pairs, with the second register not being allocable.  */

#define HARD_REGNO_NREGS(REGNO, MODE) mips_hard_regno_nregs (REGNO, MODE)

/* Value is 1 if hard register REGNO can hold a value of machine-mode
   MODE.  In 32 bit mode, require that DImode and DFmode be in even
   registers.  For DImode, this makes some of the insns easier to
   write, since you don't have to worry about a DImode value in
   registers 3 & 4, producing a result in 4 & 5.

   To make the code simpler HARD_REGNO_MODE_OK now just references an
   array built in override_options.  Because machmodes.h is not yet
   included before this file is processed, the MODE bound can't be
   expressed here.  */

extern char mips_hard_regno_mode_ok[][FIRST_PSEUDO_REGISTER];

#define HARD_REGNO_MODE_OK(REGNO, MODE)					\
  mips_hard_regno_mode_ok[ (int)(MODE) ][ (REGNO) ]

/* Value is 1 if it is a good idea to tie two pseudo registers
   when one has mode MODE1 and one has mode MODE2.
   If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
   for any hard reg, then this must be 0 for correct output.  */
#define MODES_TIEABLE_P(MODE1, MODE2)					\
  ((GET_MODE_CLASS (MODE1) == MODE_FLOAT ||				\
    GET_MODE_CLASS (MODE1) == MODE_COMPLEX_FLOAT)			\
   == (GET_MODE_CLASS (MODE2) == MODE_FLOAT ||				\
       GET_MODE_CLASS (MODE2) == MODE_COMPLEX_FLOAT))

/* MIPS pc is not overloaded on a register.	*/
/* #define PC_REGNUM xx				*/

/* Register to use for pushing function arguments.  */
#define STACK_POINTER_REGNUM (GP_REG_FIRST + 29)

/* Offset from the stack pointer to the first available location.  Use
   the default value zero.  */
/* #define STACK_POINTER_OFFSET 0 */

/* Base register for access to local variables of the function.  We
   pretend that the frame pointer is $1, and then eliminate it to
   HARD_FRAME_POINTER_REGNUM.  We can get away with this because $1 is
   a fixed register, and will not be used for anything else.  */
#define FRAME_POINTER_REGNUM (GP_REG_FIRST + 1)

/* Temporary scratch register for use by the assembler.  */
#define ASSEMBLER_SCRATCH_REGNUM (GP_REG_FIRST + 1)

/* $30 is not available on the mips16, so we use $17 as the frame
   pointer.  */
#define HARD_FRAME_POINTER_REGNUM \
  (TARGET_MIPS16 ? GP_REG_FIRST + 17 : GP_REG_FIRST + 30)

/* Value should be nonzero if functions must have frame pointers.
   Zero means the frame pointer need not be set up (and parms
   may be accessed via the stack pointer) in functions that seem suitable.
   This is computed in `reload', in reload1.c.  */
#define FRAME_POINTER_REQUIRED (current_function_calls_alloca)

/* Base register for access to arguments of the function.  */
#define ARG_POINTER_REGNUM GP_REG_FIRST

/* Fake register that holds the address on the stack of the
   current function's return address.  */
#define RETURN_ADDRESS_POINTER_REGNUM RAP_REG_NUM

/* Register in which static-chain is passed to a function.  */
#define STATIC_CHAIN_REGNUM (GP_REG_FIRST + 2)

/* If the structure value address is passed in a register, then
   `STRUCT_VALUE_REGNUM' should be the number of that register.  */
/* #define STRUCT_VALUE_REGNUM (GP_REG_FIRST + 4) */

/* If the structure value address is not passed in a register, define
   `STRUCT_VALUE' as an expression returning an RTX for the place
   where the address is passed.  If it returns 0, the address is
   passed as an "invisible" first argument.  */
#define STRUCT_VALUE 0

/* Mips registers used in prologue/epilogue code when the stack frame
   is larger than 32K bytes.  These registers must come from the
   scratch register set, and not used for passing and returning
   arguments and any other information used in the calling sequence
   (such as pic).  Must start at 12, since t0/t3 are parameter passing
   registers in the 64 bit ABI.  */

#define MIPS_TEMP1_REGNUM (GP_REG_FIRST + 12)
#define MIPS_TEMP2_REGNUM (GP_REG_FIRST + 13)

/* Define this macro if it is as good or better to call a constant
   function address than to call an address kept in a register.  */
#define NO_FUNCTION_CSE 1

/* Define this macro if it is as good or better for a function to
   call itself with an explicit address than to call an address
   kept in a register.  */
#define NO_RECURSIVE_FUNCTION_CSE 1

/* The register number of the register used to address a table of
   static data addresses in memory.  In some cases this register is
   defined by a processor's "application binary interface" (ABI).
   When this macro is defined, RTL is generated for this register
   once, as with the stack pointer and frame pointer registers.  If
   this macro is not defined, it is up to the machine-dependent
   files to allocate such a register (if necessary).  */
#define PIC_OFFSET_TABLE_REGNUM (GP_REG_FIRST + 28)

#define PIC_FUNCTION_ADDR_REGNUM (GP_REG_FIRST + 25)

/* Define the classes of registers for register constraints in the
   machine description.  Also define ranges of constants.

   One of the classes must always be named ALL_REGS and include all hard regs.
   If there is more than one class, another class must be named NO_REGS
   and contain no registers.

   The name GENERAL_REGS must be the name of a class (or an alias for
   another name such as ALL_REGS).  This is the class of registers
   that is allowed by "g" or "r" in a register constraint.
   Also, registers outside this class are allocated only when
   instructions express preferences for them.

   The classes must be numbered in nondecreasing order; that is,
   a larger-numbered class must never be contained completely
   in a smaller-numbered class.

   For any two classes, it is very desirable that there be another
   class that represents their union.  */

enum reg_class
{
  NO_REGS,			/* no registers in set */
  M16_NA_REGS,			/* mips16 regs not used to pass args */
  M16_REGS,			/* mips16 directly accessible registers */
  T_REG,			/* mips16 T register ($24) */
  M16_T_REGS,			/* mips16 registers plus T register */
  GR_REGS,			/* integer registers */
  FP_REGS,			/* floating point registers */
  HI_REG,			/* hi register */
  LO_REG,			/* lo register */
  HILO_REG,			/* hilo register pair for 64 bit mode mult */
  MD_REGS,			/* multiply/divide registers (hi/lo) */
  COP0_REGS,			/* generic coprocessor classes */
  COP2_REGS,
  COP3_REGS,
  HI_AND_GR_REGS,		/* union classes */
  LO_AND_GR_REGS,
  HILO_AND_GR_REGS,
  HI_AND_FP_REGS,
  COP0_AND_GR_REGS,
  COP2_AND_GR_REGS,
  COP3_AND_GR_REGS,
  ALL_COP_REGS,
  ALL_COP_AND_GR_REGS,
  ST_REGS,			/* status registers (fp status) */
  ALL_REGS,			/* all registers */
  LIM_REG_CLASSES		/* max value + 1 */
};

#define N_REG_CLASSES (int) LIM_REG_CLASSES

#define GENERAL_REGS GR_REGS

/* An initializer containing the names of the register classes as C
   string constants.  These names are used in writing some of the
   debugging dumps.  */

#define REG_CLASS_NAMES							\
{									\
  "NO_REGS",								\
  "M16_NA_REGS",							\
  "M16_REGS",								\
  "T_REG",								\
  "M16_T_REGS",								\
  "GR_REGS",								\
  "FP_REGS",								\
  "HI_REG",								\
  "LO_REG",								\
  "HILO_REG",								\
  "MD_REGS",								\
  /* coprocessor registers */						\
  "COP0_REGS",								\
  "COP2_REGS",								\
  "COP3_REGS",								\
  "HI_AND_GR_REGS",							\
  "LO_AND_GR_REGS",							\
  "HILO_AND_GR_REGS",							\
  "HI_AND_FP_REGS",							\
  "COP0_AND_GR_REGS",							\
  "COP2_AND_GR_REGS",							\
  "COP3_AND_GR_REGS",							\
  "ALL_COP_REGS",							\
  "ALL_COP_AND_GR_REGS",						\
  "ST_REGS",								\
  "ALL_REGS"								\
}

/* An initializer containing the contents of the register classes,
   as integers which are bit masks.  The Nth integer specifies the
   contents of class N.  The way the integer MASK is interpreted is
   that register R is in the class if `MASK & (1 << R)' is 1.

   When the machine has more than 32 registers, an integer does not
   suffice.  Then the integers are replaced by sub-initializers,
   braced groupings containing several integers.  Each
   sub-initializer must be suitable as an initializer for the type
   `HARD_REG_SET' which is defined in `hard-reg-set.h'.  */

#define REG_CLASS_CONTENTS						\
{									\
  { 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 },	/* no registers */	\
  { 0x0003000c, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 },	/* mips16 nonarg regs */\
  { 0x000300fc, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 },	/* mips16 registers */	\
  { 0x01000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 },	/* mips16 T register */	\
  { 0x010300fc, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 },	/* mips16 and T regs */ \
  { 0xffffffff, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 },	/* integer registers */	\
  { 0x00000000, 0xffffffff, 0x00000000, 0x00000000, 0x00000000, 0x00000000 },	/* floating registers*/	\
  { 0x00000000, 0x00000000, 0x00000001, 0x00000000, 0x00000000, 0x00000000 },	/* hi register */	\
  { 0x00000000, 0x00000000, 0x00000002, 0x00000000, 0x00000000, 0x00000000 },	/* lo register */	\
  { 0x00000000, 0x00000000, 0x00000004, 0x00000000, 0x00000000, 0x00000000 },	/* hilo register */	\
  { 0x00000000, 0x00000000, 0x00000003, 0x00000000, 0x00000000, 0x00000000 },	/* mul/div registers */	\
  { 0x00000000, 0x00000000, 0xffff0000, 0x0000ffff, 0x00000000, 0x00000000 }, /* cop0 registers */ \
  { 0x00000000, 0x00000000, 0x00000000, 0xffff0000, 0x0000ffff, 0x00000000 }, /* cop2 registers */ \
  { 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0xffff0000, 0x0000ffff }, /* cop3 registers */ \
  { 0xffffffff, 0x00000000, 0x00000001, 0x00000000, 0x00000000, 0x00000000 },	/* union classes */     \
  { 0xffffffff, 0x00000000, 0x00000002, 0x00000000, 0x00000000, 0x00000000 },				\
  { 0xffffffff, 0x00000000, 0x00000004, 0x00000000, 0x00000000, 0x00000000 },				\
  { 0x00000000, 0xffffffff, 0x00000001, 0x00000000, 0x00000000, 0x00000000 },				\
  { 0xffffffff, 0x00000000, 0xffff0000, 0x0000ffff, 0x00000000, 0x00000000 },			\
  { 0xffffffff, 0x00000000, 0x00000000, 0xffff0000, 0x0000ffff, 0x00000000 },	\
  { 0xffffffff, 0x00000000, 0x00000000, 0x00000000, 0xffff0000, 0x0000ffff }, \
  { 0x00000000, 0x00000000, 0xffff0000, 0xffffffff, 0xffffffff, 0x0000ffff }, \
  { 0xffffffff, 0x00000000, 0xffff0000, 0xffffffff, 0xffffffff, 0x0000ffff }, \
  { 0x00000000, 0x00000000, 0x000007f8, 0x00000000, 0x00000000, 0x00000000 },	/* status registers */	\
  { 0xffffffff, 0xffffffff, 0xffff07ff, 0xffffffff, 0xffffffff, 0x0000ffff }	/* all registers */	\
}


/* A C expression whose value is a register class containing hard
   register REGNO.  In general there is more that one such class;
   choose a class which is "minimal", meaning that no smaller class
   also contains the register.  */

extern const enum reg_class mips_regno_to_class[];

#define REGNO_REG_CLASS(REGNO) mips_regno_to_class[ (REGNO) ]

/* A macro whose definition is the name of the class to which a
   valid base register must belong.  A base register is one used in
   an address which is the register value plus a displacement.  */

#define BASE_REG_CLASS  (TARGET_MIPS16 ? M16_REGS : GR_REGS)

/* A macro whose definition is the name of the class to which a
   valid index register must belong.  An index register is one used
   in an address where its value is either multiplied by a scale
   factor or added to another register (as well as added to a
   displacement).  */

#define INDEX_REG_CLASS NO_REGS

/* When SMALL_REGISTER_CLASSES is nonzero, the compiler allows
   registers explicitly used in the rtl to be used as spill registers
   but prevents the compiler from extending the lifetime of these
   registers.  */

#define SMALL_REGISTER_CLASSES (TARGET_MIPS16)

/* This macro is used later on in the file.  */
#define GR_REG_CLASS_P(CLASS)						\
  ((CLASS) == GR_REGS || (CLASS) == M16_REGS || (CLASS) == T_REG	\
   || (CLASS) == M16_T_REGS || (CLASS) == M16_NA_REGS)

/* This macro is also used later on in the file.  */
#define COP_REG_CLASS_P(CLASS)						\
  ((CLASS)  == COP0_REGS || (CLASS) == COP2_REGS || (CLASS) == COP3_REGS)

/* REG_ALLOC_ORDER is to order in which to allocate registers.  This
   is the default value (allocate the registers in numeric order).  We
   define it just so that we can override it for the mips16 target in
   ORDER_REGS_FOR_LOCAL_ALLOC.  */

#define REG_ALLOC_ORDER							\
{  0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14, 15,	\
  16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,	\
  32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47,	\
  48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,	\
  64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79,	\
  80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95,	\
  96, 97, 98, 99, 100,101,102,103,104,105,106,107,108,109,110,111,	\
  112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,	\
  128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,	\
  144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,	\
  160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175	\
}

/* ORDER_REGS_FOR_LOCAL_ALLOC is a macro which permits reg_alloc_order
   to be rearranged based on a particular function.  On the mips16, we
   want to allocate $24 (T_REG) before other registers for
   instructions for which it is possible.  */

#define ORDER_REGS_FOR_LOCAL_ALLOC mips_order_regs_for_local_alloc ()

/* REGISTER AND CONSTANT CLASSES */

/* Get reg_class from a letter such as appears in the machine
   description.

   DEFINED REGISTER CLASSES:

   'd'  General (aka integer) registers
        Normally this is GR_REGS, but in mips16 mode this is M16_REGS
   'y'  General registers (in both mips16 and non mips16 mode)
   'e'	mips16 non argument registers (M16_NA_REGS)
   't'  mips16 temporary register ($24)
   'f'	Floating point registers
   'h'	Hi register
   'l'	Lo register
   'x'	Multiply/divide registers
   'a'	HILO_REG
   'z'	FP Status register
   'B'  Cop0 register
   'C'  Cop2 register
   'D'  Cop3 register
   'b'	All registers */

extern enum reg_class mips_char_to_class[256];

#define REG_CLASS_FROM_LETTER(C) mips_char_to_class[(unsigned char)(C)]

/* The letters I, J, K, L, M, N, O, and P in a register constraint
   string can be used to stand for particular ranges of immediate
   operands.  This macro defines what the ranges are.  C is the
   letter, and VALUE is a constant value.  Return 1 if VALUE is
   in the range specified by C.  */

/* For MIPS:

   `I'	is used for the range of constants an arithmetic insn can
	actually contain (16 bits signed integers).

   `J'	is used for the range which is just zero (ie, $r0).

   `K'	is used for the range of constants a logical insn can actually
	contain (16 bit zero-extended integers).

   `L'	is used for the range of constants that be loaded with lui
	(ie, the bottom 16 bits are zero).

   `M'	is used for the range of constants that take two words to load
	(ie, not matched by `I', `K', and `L').

   `N'	is used for negative 16 bit constants other than -65536.

   `O'	is a 15 bit signed integer.

   `P'	is used for positive 16 bit constants.  */

#define SMALL_INT(X) ((unsigned HOST_WIDE_INT) (INTVAL (X) + 0x8000) < 0x10000)
#define SMALL_INT_UNSIGNED(X) ((unsigned HOST_WIDE_INT) (INTVAL (X)) < 0x10000)

#define CONST_OK_FOR_LETTER_P(VALUE, C)					\
  ((C) == 'I' ? ((unsigned HOST_WIDE_INT) ((VALUE) + 0x8000) < 0x10000)	\
   : (C) == 'J' ? ((VALUE) == 0)					\
   : (C) == 'K' ? ((unsigned HOST_WIDE_INT) (VALUE) < 0x10000)		\
   : (C) == 'L' ? (((VALUE) & 0x0000ffff) == 0				\
		   && (((VALUE) & ~2147483647) == 0			\
		       || ((VALUE) & ~2147483647) == ~2147483647))	\
   : (C) == 'M' ? ((((VALUE) & ~0x0000ffff) != 0)			\
		   && (((VALUE) & ~0x0000ffff) != ~0x0000ffff)		\
		   && (((VALUE) & 0x0000ffff) != 0			\
		       || (((VALUE) & ~2147483647) != 0			\
			   && ((VALUE) & ~2147483647) != ~2147483647)))	\
   : (C) == 'N' ? ((unsigned HOST_WIDE_INT) ((VALUE) + 0xffff) < 0xffff) \
   : (C) == 'O' ? ((unsigned HOST_WIDE_INT) ((VALUE) + 0x4000) < 0x8000) \
   : (C) == 'P' ? ((VALUE) != 0 && (((VALUE) & ~0x0000ffff) == 0))	\
   : 0)

/* Similar, but for floating constants, and defining letters G and H.
   Here VALUE is the CONST_DOUBLE rtx itself.  */

/* For Mips

  'G'	: Floating point 0 */

#define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C)				\
  ((C) == 'G'								\
   && (VALUE) == CONST0_RTX (GET_MODE (VALUE)))

/* Letters in the range `Q' through `U' may be defined in a
   machine-dependent fashion to stand for arbitrary operand types.
   The machine description macro `EXTRA_CONSTRAINT' is passed the
   operand as its first argument and the constraint letter as its
   second operand.

   `Q'	is for mips16 GP relative constants
   `R'	is for memory references which take 1 word for the instruction.
   `T'	is for memory addresses that can be used to load two words.  */

#define EXTRA_CONSTRAINT(OP,CODE)					\
  (((CODE) == 'T')	  ? double_memory_operand (OP, GET_MODE (OP))	\
   : ((CODE) == 'Q')	  ? (GET_CODE (OP) == CONST			\
			     && mips16_gp_offset_p (OP))		\
   : (GET_CODE (OP) != MEM) ? FALSE					\
   : ((CODE) == 'R')	  ? simple_memory_operand (OP, GET_MODE (OP))	\
   : FALSE)

/* Given an rtx X being reloaded into a reg required to be
   in class CLASS, return the class of reg to actually use.
   In general this is just CLASS; but on some machines
   in some cases it is preferable to use a more restrictive class.  */

#define PREFERRED_RELOAD_CLASS(X,CLASS)					\
  ((CLASS) != ALL_REGS							\
   ? (! TARGET_MIPS16							\
      ? (CLASS)								\
      : ((CLASS) != GR_REGS						\
	 ? (CLASS)							\
	 : M16_REGS))							\
   : ((GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT			\
       || GET_MODE_CLASS (GET_MODE (X)) == MODE_COMPLEX_FLOAT)		\
      ? (TARGET_SOFT_FLOAT						\
	 ? (TARGET_MIPS16 ? M16_REGS : GR_REGS)				\
	 : FP_REGS)							\
      : ((GET_MODE_CLASS (GET_MODE (X)) == MODE_INT			\
	  || GET_MODE (X) == VOIDmode)					\
	 ? (TARGET_MIPS16 ? M16_REGS : GR_REGS)				\
	 : (CLASS))))

/* Certain machines have the property that some registers cannot be
   copied to some other registers without using memory.  Define this
   macro on those machines to be a C expression that is non-zero if
   objects of mode MODE in registers of CLASS1 can only be copied to
   registers of class CLASS2 by storing a register of CLASS1 into
   memory and loading that memory location into a register of CLASS2.

   Do not define this macro if its value would always be zero.  */
#if 0
#define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE)			\
  ((!TARGET_DEBUG_H_MODE						\
    && GET_MODE_CLASS (MODE) == MODE_INT				\
    && ((CLASS1 == FP_REGS && GR_REG_CLASS_P (CLASS2))			\
	|| (GR_REG_CLASS_P (CLASS1) && CLASS2 == FP_REGS)))		\
   || (TARGET_FLOAT64 && !TARGET_64BIT && (MODE) == DFmode		\
       && ((GR_REG_CLASS_P (CLASS1) && CLASS2 == FP_REGS)		\
	   || (GR_REG_CLASS_P (CLASS2) && CLASS1 == FP_REGS))))
#endif
/* The HI and LO registers can only be reloaded via the general
   registers.  Condition code registers can only be loaded to the
   general registers, and from the floating point registers.  */

#define SECONDARY_INPUT_RELOAD_CLASS(CLASS, MODE, X)			\
  mips_secondary_reload_class (CLASS, MODE, X, 1)
#define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, X)			\
  mips_secondary_reload_class (CLASS, MODE, X, 0)

/* Return the maximum number of consecutive registers
   needed to represent mode MODE in a register of class CLASS.  */

#define CLASS_MAX_NREGS(CLASS, MODE) mips_class_max_nregs (CLASS, MODE)

/* If defined, gives a class of registers that cannot be used as the
   operand of a SUBREG that changes the mode of the object illegally.

   In little-endian mode, the hi-lo registers are numbered backwards,
   so (subreg:SI (reg:DI hi) 0) gets the high word instead of the low
   word as intended.

   Similarly, when using paired floating-point registers, the first
   register holds the low word, regardless of endianness.  So in big
   endian mode, (subreg:SI (reg:DF $f0) 0) does not get the high word
   as intended.

   Also, loading a 32-bit value into a 64-bit floating-point register
   will not sign-extend the value, despite what LOAD_EXTEND_OP says.
   We can't allow 64-bit float registers to change from a 32-bit
   mode to a 64-bit mode.  */

#define CLASS_CANNOT_CHANGE_MODE					\
  (TARGET_BIG_ENDIAN ? FP_REGS						\
   : (TARGET_FLOAT64 ? HI_AND_FP_REGS : HI_REG))

/* Defines illegal mode changes for CLASS_CANNOT_CHANGE_MODE.  */

#define CLASS_CANNOT_CHANGE_MODE_P(FROM,TO) \
  (GET_MODE_SIZE (FROM) != GET_MODE_SIZE (TO))

/* Stack layout; function entry, exit and calling.  */

/* Define this if pushing a word on the stack
   makes the stack pointer a smaller address.  */
#define STACK_GROWS_DOWNWARD

/* Define this if the nominal address of the stack frame
   is at the high-address end of the local variables;
   that is, each additional local variable allocated
   goes at a more negative offset in the frame.  */
/* #define FRAME_GROWS_DOWNWARD */

/* Offset within stack frame to start allocating local variables at.
   If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
   first local allocated.  Otherwise, it is the offset to the BEGINNING
   of the first local allocated.  */
#define STARTING_FRAME_OFFSET						\
  (current_function_outgoing_args_size					\
   + (TARGET_ABICALLS ? MIPS_STACK_ALIGN (UNITS_PER_WORD) : 0))

/* Offset from the stack pointer register to an item dynamically
   allocated on the stack, e.g., by `alloca'.

   The default value for this macro is `STACK_POINTER_OFFSET' plus the
   length of the outgoing arguments.  The default is correct for most
   machines.  See `function.c' for details.

   The MIPS ABI states that functions which dynamically allocate the
   stack must not have 0 for STACK_DYNAMIC_OFFSET, since it looks like
   we are trying to create a second frame pointer to the function, so
   allocate some stack space to make it happy.

   However, the linker currently complains about linking any code that
   dynamically allocates stack space, and there seems to be a bug in
   STACK_DYNAMIC_OFFSET, so don't define this right now.  */

#if 0
#define STACK_DYNAMIC_OFFSET(FUNDECL)					\
  ((current_function_outgoing_args_size == 0 && current_function_calls_alloca) \
	? 4*UNITS_PER_WORD						\
	: current_function_outgoing_args_size)
#endif

/* The return address for the current frame is in r31 if this is a leaf
   function.  Otherwise, it is on the stack.  It is at a variable offset
   from sp/fp/ap, so we define a fake hard register rap which is a
   poiner to the return address on the stack.  This always gets eliminated
   during reload to be either the frame pointer or the stack pointer plus
   an offset.  */

/* ??? This definition fails for leaf functions.  There is currently no
   general solution for this problem.  */

/* ??? There appears to be no way to get the return address of any previous
   frame except by disassembling instructions in the prologue/epilogue.
   So currently we support only the current frame.  */

#define RETURN_ADDR_RTX(count, frame)					\
  (((count) == 0)							\
   ? (leaf_function_p ()						\
      ? gen_rtx_REG (Pmode, GP_REG_FIRST + 31)				\
      : gen_rtx_MEM (Pmode, gen_rtx_REG (Pmode,				\
					 RETURN_ADDRESS_POINTER_REGNUM))) \
   : (rtx) 0)

/* Since the mips16 ISA mode is encoded in the least-significant bit
   of the address, mask it off return addresses for purposes of
   finding exception handling regions.  */

#define MASK_RETURN_ADDR GEN_INT (-2)

/* Similarly, don't use the least-significant bit to tell pointers to
   code from vtable index.  */

#define TARGET_PTRMEMFUNC_VBIT_LOCATION ptrmemfunc_vbit_in_delta

/* If defined, this macro specifies a table of register pairs used to
   eliminate unneeded registers that point into the stack frame.  If
   it is not defined, the only elimination attempted by the compiler
   is to replace references to the frame pointer with references to
   the stack pointer.

   The definition of this macro is a list of structure
   initializations, each of which specifies an original and
   replacement register.

   On some machines, the position of the argument pointer is not
   known until the compilation is completed.  In such a case, a
   separate hard register must be used for the argument pointer.
   This register can be eliminated by replacing it with either the
   frame pointer or the argument pointer, depending on whether or not
   the frame pointer has been eliminated.

   In this case, you might specify:
        #define ELIMINABLE_REGS  \
        {{ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
         {ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM}, \
         {FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}}

   Note that the elimination of the argument pointer with the stack
   pointer is specified first since that is the preferred elimination.

   The eliminations to $17 are only used on the mips16.  See the
   definition of HARD_FRAME_POINTER_REGNUM.  */

#define ELIMINABLE_REGS							\
{{ ARG_POINTER_REGNUM,   STACK_POINTER_REGNUM},				\
 { ARG_POINTER_REGNUM,   GP_REG_FIRST + 30},				\
 { ARG_POINTER_REGNUM,   GP_REG_FIRST + 17},				\
 { RETURN_ADDRESS_POINTER_REGNUM, STACK_POINTER_REGNUM},		\
 { RETURN_ADDRESS_POINTER_REGNUM, GP_REG_FIRST + 30},			\
 { RETURN_ADDRESS_POINTER_REGNUM, GP_REG_FIRST + 17},			\
 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM},				\
 { FRAME_POINTER_REGNUM, GP_REG_FIRST + 30},				\
 { FRAME_POINTER_REGNUM, GP_REG_FIRST + 17}}

/* A C expression that returns non-zero if the compiler is allowed to
   try to replace register number FROM-REG with register number
   TO-REG.  This macro need only be defined if `ELIMINABLE_REGS' is
   defined, and will usually be the constant 1, since most of the
   cases preventing register elimination are things that the compiler
   already knows about.

   When not in mips16 and mips64, we can always eliminate to the
   frame pointer.  We can eliminate to the stack pointer unless
   a frame pointer is needed.  In mips16 mode, we need a frame
   pointer for a large frame; otherwise, reload may be unable
   to compute the address of a local variable, since there is
   no way to add a large constant to the stack pointer
   without using a temporary register.

   In mips16, for some instructions (eg lwu), we can't eliminate the
   frame pointer for the stack pointer.  These instructions are
   only generated in TARGET_64BIT mode.
   */

#define CAN_ELIMINATE(FROM, TO)						\
  (((FROM) == RETURN_ADDRESS_POINTER_REGNUM				\
    && (((TO) == STACK_POINTER_REGNUM && ! frame_pointer_needed)	\
 	|| (TO) == HARD_FRAME_POINTER_REGNUM))				\
   || ((FROM) != RETURN_ADDRESS_POINTER_REGNUM				\
      && ((TO) == HARD_FRAME_POINTER_REGNUM 				\
	  || ((TO) == STACK_POINTER_REGNUM && ! frame_pointer_needed	\
	      && ! (TARGET_MIPS16 && TARGET_64BIT)			\
	      && (! TARGET_MIPS16					\
	          || compute_frame_size (get_frame_size ()) < 32768)))))

#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
	(OFFSET) = mips_initial_elimination_offset ((FROM), (TO))

/* If we generate an insn to push BYTES bytes,
   this says how many the stack pointer really advances by.
   On the VAX, sp@- in a byte insn really pushes a word.  */

/* #define PUSH_ROUNDING(BYTES) 0 */

/* If defined, the maximum amount of space required for outgoing
   arguments will be computed and placed into the variable
   `current_function_outgoing_args_size'.  No space will be pushed
   onto the stack for each call; instead, the function prologue
   should increase the stack frame size by this amount.

   It is not proper to define both `PUSH_ROUNDING' and
   `ACCUMULATE_OUTGOING_ARGS'.  */
#define ACCUMULATE_OUTGOING_ARGS 1

/* Offset from the argument pointer register to the first argument's
   address.  On some machines it may depend on the data type of the
   function.

   If `ARGS_GROW_DOWNWARD', this is the offset to the location above
   the first argument's address.

   On the MIPS, we must skip the first argument position if we are
   returning a structure or a union, to account for its address being
   passed in $4.  However, at the current time, this produces a compiler
   that can't bootstrap, so comment it out for now.  */

#if 0
#define FIRST_PARM_OFFSET(FNDECL)					\
  (FNDECL != 0								\
   && TREE_TYPE (FNDECL) != 0						\
   && TREE_TYPE (TREE_TYPE (FNDECL)) != 0				\
   && (TREE_CODE (TREE_TYPE (TREE_TYPE (FNDECL))) == RECORD_TYPE	\
       || TREE_CODE (TREE_TYPE (TREE_TYPE (FNDECL))) == UNION_TYPE)	\
		? UNITS_PER_WORD					\
		: 0)
#else
#define FIRST_PARM_OFFSET(FNDECL) 0
#endif

/* When a parameter is passed in a register, stack space is still
   allocated for it.  For the MIPS, stack space must be allocated, cf
   Asm Lang Prog Guide page 7-8.

   BEWARE that some space is also allocated for non existing arguments
   in register. In case an argument list is of form GF used registers
   are a0 (a2,a3), but we should push over a1...  */

#define REG_PARM_STACK_SPACE(FNDECL) 					 \
  ((mips_abi == ABI_32 || mips_abi == ABI_O64)				 \
   ? (MAX_ARGS_IN_REGISTERS * UNITS_PER_WORD) - FIRST_PARM_OFFSET (FNDECL) \
   : 0)

/* Define this if it is the responsibility of the caller to
   allocate the area reserved for arguments passed in registers.
   If `ACCUMULATE_OUTGOING_ARGS' is also defined, the only effect
   of this macro is to determine whether the space is included in
   `current_function_outgoing_args_size'.  */
#define OUTGOING_REG_PARM_STACK_SPACE

#define STACK_BOUNDARY \
  ((mips_abi == ABI_32 || mips_abi == ABI_O64 || mips_abi == ABI_EABI) \
   ? 64 : 128)

/* Make sure 4 words are always allocated on the stack.  */

#ifndef STACK_ARGS_ADJUST
#define STACK_ARGS_ADJUST(SIZE)						\
{									\
  if (SIZE.constant < 4 * UNITS_PER_WORD)				\
    SIZE.constant = 4 * UNITS_PER_WORD;					\
}
#endif


/* A C expression that should indicate the number of bytes of its
   own arguments that a function pops on returning, or 0
   if the function pops no arguments and the caller must therefore
   pop them all after the function returns.

   FUNDECL is the declaration node of the function (as a tree).

   FUNTYPE is a C variable whose value is a tree node that
   describes the function in question.  Normally it is a node of
   type `FUNCTION_TYPE' that describes the data type of the function.
   From this it is possible to obtain the data types of the value
   and arguments (if known).

   When a call to a library function is being considered, FUNTYPE
   will contain an identifier node for the library function.  Thus,
   if you need to distinguish among various library functions, you
   can do so by their names.  Note that "library function" in this
   context means a function used to perform arithmetic, whose name
   is known specially in the compiler and was not mentioned in the
   C code being compiled.

   STACK-SIZE is the number of bytes of arguments passed on the
   stack.  If a variable number of bytes is passed, it is zero, and
   argument popping will always be the responsibility of the
   calling function.  */

#define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0


/* Symbolic macros for the registers used to return integer and floating
   point values.  */

#define GP_RETURN (GP_REG_FIRST + 2)
#define FP_RETURN ((TARGET_SOFT_FLOAT) ? GP_RETURN : (FP_REG_FIRST + 0))

#define MAX_ARGS_IN_REGISTERS \
  ((mips_abi == ABI_32 || mips_abi == ABI_O64) ? 4 : 8)

/* Largest possible value of MAX_ARGS_IN_REGISTERS.  */

#define BIGGEST_MAX_ARGS_IN_REGISTERS 8

/* Symbolic macros for the first/last argument registers.  */

#define GP_ARG_FIRST (GP_REG_FIRST + 4)
#define GP_ARG_LAST  (GP_ARG_FIRST + MAX_ARGS_IN_REGISTERS - 1)
#define FP_ARG_FIRST (FP_REG_FIRST + 12)
#define FP_ARG_LAST  (FP_ARG_FIRST + MAX_ARGS_IN_REGISTERS - 1)

/* Define how to find the value returned by a library function
   assuming the value has mode MODE.  Because we define
   PROMOTE_FUNCTION_RETURN, we must promote the mode just as
   PROMOTE_MODE does.  */

#define LIBCALL_VALUE(MODE) \
  mips_function_value (NULL_TREE, NULL, (MODE))

/* Define how to find the value returned by a function.
   VALTYPE is the data type of the value (as a tree).
   If the precise function being called is known, FUNC is its FUNCTION_DECL;
   otherwise, FUNC is 0.  */

#define FUNCTION_VALUE(VALTYPE, FUNC) \
  mips_function_value ((VALTYPE), (FUNC), VOIDmode)

/* 1 if N is a possible register number for a function value.
   On the MIPS, R2 R3 and F0 F2 are the only register thus used.
   Currently, R2 and F0 are only implemented  here (C has no complex type)  */

#define FUNCTION_VALUE_REGNO_P(N) ((N) == GP_RETURN || (N) == FP_RETURN)

/* 1 if N is a possible register number for function argument passing.
   We have no FP argument registers when soft-float.  When FP registers
   are 32 bits, we can't directly reference the odd numbered ones.  */

#define FUNCTION_ARG_REGNO_P(N)					\
  ((IN_RANGE((N), GP_ARG_FIRST, GP_ARG_LAST)			\
    || (IN_RANGE((N), FP_ARG_FIRST, FP_ARG_LAST)		\
	&& ((N) % FP_INC == 0) && mips_abi != ABI_O64))		\
   && !fixed_regs[N])

/* A C expression which can inhibit the returning of certain function
   values in registers, based on the type of value.  A nonzero value says
   to return the function value in memory, just as large structures are
   always returned.  Here TYPE will be a C expression of type
   `tree', representing the data type of the value.

   Note that values of mode `BLKmode' must be explicitly
   handled by this macro.  Also, the option `-fpcc-struct-return'
   takes effect regardless of this macro.  On most systems, it is
   possible to leave the macro undefined; this causes a default
   definition to be used, whose value is the constant 1 for BLKmode
   values, and 0 otherwise.

   GCC normally converts 1 byte structures into chars, 2 byte
   structs into shorts, and 4 byte structs into ints, and returns
   them this way.  Defining the following macro overrides this,
   to give us MIPS cc compatibility.  */

#define RETURN_IN_MEMORY(TYPE)	\
	mips_return_in_memory (TYPE)

#define SETUP_INCOMING_VARARGS(CUM,MODE,TYPE,PRETEND_SIZE,NO_RTL)	\
	(PRETEND_SIZE) = mips_setup_incoming_varargs (&(CUM), (MODE),	\
						      (TYPE), (NO_RTL))

#define STRICT_ARGUMENT_NAMING (mips_abi != ABI_32 && mips_abi != ABI_O64)

/* Define a data type for recording info about an argument list
   during the scan of that argument list.  This data type should
   hold all necessary information about the function itself
   and about the args processed so far, enough to enable macros
   such as FUNCTION_ARG to determine where the next arg should go.

   This structure has to cope with two different argument allocation
   schemes.  Most MIPS ABIs view the arguments as a struct, of which the
   first N words go in registers and the rest go on the stack.  If I < N,
   the Ith word might go in Ith integer argument register or the
   Ith floating-point one.  In some cases, it has to go in both (see
   function_arg).  For these ABIs, we only need to remember the number
   of words passed so far.

   The EABI instead allocates the integer and floating-point arguments
   separately.  The first N words of FP arguments go in FP registers,
   the rest go on the stack.  Likewise, the first N words of the other
   arguments go in integer registers, and the rest go on the stack.  We
   need to maintain three counts: the number of integer registers used,
   the number of floating-point registers used, and the number of words
   passed on the stack.

   We could keep separate information for the two ABIs (a word count for
   the standard ABIs, and three separate counts for the EABI).  But it
   seems simpler to view the standard ABIs as forms of EABI that do not
   allocate floating-point registers.

   So for the standard ABIs, the first N words are allocated to integer
   registers, and function_arg decides on an argument-by-argument basis
   whether that argument should really go in an integer register, or in
   a floating-point one.  */

typedef struct mips_args {
  /* Always true for varargs functions.  Otherwise true if at least
     one argument has been passed in an integer register.  */
  int gp_reg_found;

  /* The number of arguments seen so far.  */
  unsigned int arg_number;

  /* For EABI, the number of integer registers used so far.  For other
     ABIs, the number of words passed in registers (whether integer
     or floating-point).  */
  unsigned int num_gprs;

  /* For EABI, the number of floating-point registers used so far.  */
  unsigned int num_fprs;

  /* The number of words passed on the stack.  */
  unsigned int stack_words;

  /* On the mips16, we need to keep track of which floating point
     arguments were passed in general registers, but would have been
     passed in the FP regs if this were a 32 bit function, so that we
     can move them to the FP regs if we wind up calling a 32 bit
     function.  We record this information in fp_code, encoded in base
     four.  A zero digit means no floating point argument, a one digit
     means an SFmode argument, and a two digit means a DFmode argument,
     and a three digit is not used.  The low order digit is the first
     argument.  Thus 6 == 1 * 4 + 2 means a DFmode argument followed by
     an SFmode argument.  ??? A more sophisticated approach will be
     needed if MIPS_ABI != ABI_32.  */
  int fp_code;

  /* True if the function has a prototype.  */
  int prototype;

  /* When a structure does not take up a full register, the argument
     should sometimes be shifted left so that it occupies the high part
     of the register.  These two fields describe an array of ashl
     patterns for doing this.  See function_arg_advance, which creates
     the shift patterns, and function_arg, which returns them when given
     a VOIDmode argument.  */
  unsigned int num_adjusts;
  rtx adjust[BIGGEST_MAX_ARGS_IN_REGISTERS];
} CUMULATIVE_ARGS;

/* Initialize a variable CUM of type CUMULATIVE_ARGS
   for a call to a function whose data type is FNTYPE.
   For a library call, FNTYPE is 0.

*/

#define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME,INDIRECT)		\
  init_cumulative_args (&CUM, FNTYPE, LIBNAME)				\

/* Update the data in CUM to advance over an argument
   of mode MODE and data type TYPE.
   (TYPE is null for libcalls where that information may not be available.)  */

#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED)			\
  function_arg_advance (&CUM, MODE, TYPE, NAMED)

/* Determine where to put an argument to a function.
   Value is zero to push the argument on the stack,
   or a hard register in which to store the argument.

   MODE is the argument's machine mode.
   TYPE is the data type of the argument (as a tree).
    This is null for libcalls where that information may
    not be available.
   CUM is a variable of type CUMULATIVE_ARGS which gives info about
    the preceding args and about the function being called.
   NAMED is nonzero if this argument is a named parameter
    (otherwise it is an extra parameter matching an ellipsis).  */

#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
  function_arg( &CUM, MODE, TYPE, NAMED)

/* For an arg passed partly in registers and partly in memory,
   this is the number of registers used.
   For args passed entirely in registers or entirely in memory, zero.  */

#define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \
  function_arg_partial_nregs (&CUM, MODE, TYPE, NAMED)

/* If defined, a C expression that gives the alignment boundary, in
   bits, of an argument with the specified mode and type.  If it is
   not defined,  `PARM_BOUNDARY' is used for all arguments.  */

#define FUNCTION_ARG_BOUNDARY(MODE, TYPE)				\
  (((TYPE) != 0)							\
	? ((TYPE_ALIGN(TYPE) <= PARM_BOUNDARY)				\
		? PARM_BOUNDARY						\
		: TYPE_ALIGN(TYPE))					\
	: ((GET_MODE_ALIGNMENT(MODE) <= PARM_BOUNDARY)			\
		? PARM_BOUNDARY						\
		: GET_MODE_ALIGNMENT(MODE)))

#define FUNCTION_ARG_PASS_BY_REFERENCE(CUM, MODE, TYPE, NAMED)		\
  function_arg_pass_by_reference (&CUM, MODE, TYPE, NAMED)

#define FUNCTION_ARG_PADDING(MODE, TYPE)				\
  (! BYTES_BIG_ENDIAN							\
   ? upward								\
   : (((MODE) == BLKmode						\
       ? ((TYPE) && TREE_CODE (TYPE_SIZE (TYPE)) == INTEGER_CST		\
	  && int_size_in_bytes (TYPE) < (PARM_BOUNDARY / BITS_PER_UNIT))\
       : (GET_MODE_BITSIZE (MODE) < PARM_BOUNDARY			\
	  && (mips_abi == ABI_32					\
	      || mips_abi == ABI_O64					\
	      || mips_abi == ABI_EABI					\
	      || GET_MODE_CLASS (MODE) == MODE_INT)))			\
      ? downward : upward))

#define FUNCTION_ARG_CALLEE_COPIES(CUM, MODE, TYPE, NAMED)		\
  (mips_abi == ABI_EABI && (NAMED)					\
   && FUNCTION_ARG_PASS_BY_REFERENCE (CUM, MODE, TYPE, NAMED))

/* Modified version of the macro in expr.h.  */
#define MUST_PASS_IN_STACK(MODE,TYPE)			\
  ((TYPE) != 0						\
   && (TREE_CODE (TYPE_SIZE (TYPE)) != INTEGER_CST	\
       || TREE_ADDRESSABLE (TYPE)			\
       || ((MODE) == BLKmode 				\
	   && mips_abi != ABI_32 && mips_abi != ABI_O64 \
	   && ! ((TYPE) != 0 && TREE_CODE (TYPE_SIZE (TYPE)) == INTEGER_CST \
		 && 0 == (int_size_in_bytes (TYPE)	\
			  % (PARM_BOUNDARY / BITS_PER_UNIT))) \
	   && (FUNCTION_ARG_PADDING (MODE, TYPE)	\
	       == (BYTES_BIG_ENDIAN ? upward : downward)))))

/* True if using EABI and varargs can be passed in floating-point
   registers.  Under these conditions, we need a more complex form
   of va_list, which tracks GPR, FPR and stack arguments separately.  */
#define EABI_FLOAT_VARARGS_P \
	(mips_abi == ABI_EABI && UNITS_PER_FPVALUE >= UNITS_PER_DOUBLE)


/* Tell prologue and epilogue if register REGNO should be saved / restored.  */

#define MUST_SAVE_REGISTER(regno) \
 ((regs_ever_live[regno] && !call_used_regs[regno])			\
  || (regno == HARD_FRAME_POINTER_REGNUM && frame_pointer_needed)	\
  || (regno == (GP_REG_FIRST + 31) && regs_ever_live[GP_REG_FIRST + 31]))

/* Treat LOC as a byte offset from the stack pointer and round it up
   to the next fully-aligned offset.  */
#define MIPS_STACK_ALIGN(LOC)						\
  ((mips_abi == ABI_32 || mips_abi == ABI_O64 || mips_abi == ABI_EABI)	\
   ? ((LOC) + 7) & ~7							\
   : ((LOC) + 15) & ~15)


/* Define the `__builtin_va_list' type for the ABI.  */
#define BUILD_VA_LIST_TYPE(VALIST) \
  (VALIST) = mips_build_va_list ()

/* Implement `va_start' for varargs and stdarg.  */
#define EXPAND_BUILTIN_VA_START(valist, nextarg) \
  mips_va_start (valist, nextarg)

/* Implement `va_arg'.  */
#define EXPAND_BUILTIN_VA_ARG(valist, type) \
  mips_va_arg (valist, type)

/* Output assembler code to FILE to increment profiler label # LABELNO
   for profiling a function entry.  */

#define FUNCTION_PROFILER(FILE, LABELNO)				\
{									\
  if (TARGET_MIPS16)							\
    sorry ("mips16 function profiling");				\
  fprintf (FILE, "\t.set\tnoat\n");					\
  fprintf (FILE, "\tmove\t%s,%s\t\t# save current return address\n",	\
	   reg_names[GP_REG_FIRST + 1], reg_names[GP_REG_FIRST + 31]);	\
  fprintf (FILE,							\
	   "\t%s\t%s,%s,%d\t\t# _mcount pops 2 words from  stack\n",	\
	   TARGET_64BIT ? "dsubu" : "subu",				\
	   reg_names[STACK_POINTER_REGNUM],				\
	   reg_names[STACK_POINTER_REGNUM],				\
	   Pmode == DImode ? 16 : 8);					\
  fprintf (FILE, "\tjal\t_mcount\n");                                   \
  fprintf (FILE, "\t.set\tat\n");					\
}

/* Define this macro if the code for function profiling should come
   before the function prologue.  Normally, the profiling code comes
   after.  */

/* #define PROFILE_BEFORE_PROLOGUE */

/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
   the stack pointer does not matter.  The value is tested only in
   functions that have frame pointers.
   No definition is equivalent to always zero.  */

#define EXIT_IGNORE_STACK 1


/* A C statement to output, on the stream FILE, assembler code for a
   block of data that contains the constant parts of a trampoline.
   This code should not include a label--the label is taken care of
   automatically.  */

#define TRAMPOLINE_TEMPLATE(STREAM)					 \
{									 \
  fprintf (STREAM, "\t.word\t0x03e00821\t\t# move   $1,$31\n");		\
  fprintf (STREAM, "\t.word\t0x04110001\t\t# bgezal $0,.+8\n");		\
  fprintf (STREAM, "\t.word\t0x00000000\t\t# nop\n");			\
  if (Pmode == DImode)							\
    {									\
      fprintf (STREAM, "\t.word\t0xdfe30014\t\t# ld     $3,20($31)\n");	\
      fprintf (STREAM, "\t.word\t0xdfe2001c\t\t# ld     $2,28($31)\n");	\
    }									\
  else									\
    {									\
      fprintf (STREAM, "\t.word\t0x8fe30014\t\t# lw     $3,20($31)\n");	\
      fprintf (STREAM, "\t.word\t0x8fe20018\t\t# lw     $2,24($31)\n");	\
    }									\
  fprintf (STREAM, "\t.word\t0x0060c821\t\t# move   $25,$3 (abicalls)\n"); \
  fprintf (STREAM, "\t.word\t0x00600008\t\t# jr     $3\n");		\
  fprintf (STREAM, "\t.word\t0x0020f821\t\t# move   $31,$1\n");		\
  if (Pmode == DImode)							\
    {									\
      fprintf (STREAM, "\t.dword\t0x00000000\t\t# <function address>\n"); \
      fprintf (STREAM, "\t.dword\t0x00000000\t\t# <static chain value>\n"); \
    }									\
  else									\
    {									\
      fprintf (STREAM, "\t.word\t0x00000000\t\t# <function address>\n"); \
      fprintf (STREAM, "\t.word\t0x00000000\t\t# <static chain value>\n"); \
    }									\
}

/* A C expression for the size in bytes of the trampoline, as an
   integer.  */

#define TRAMPOLINE_SIZE (32 + (Pmode == DImode ? 16 : 8))

/* Alignment required for trampolines, in bits.  */

#define TRAMPOLINE_ALIGNMENT (Pmode == DImode ? 64 : 32)

/* INITIALIZE_TRAMPOLINE calls this library function to flush
   program and data caches.  */

#ifndef CACHE_FLUSH_FUNC
#define CACHE_FLUSH_FUNC "_flush_cache"
#endif

/* A C statement to initialize the variable parts of a trampoline.
   ADDR is an RTX for the address of the trampoline; FNADDR is an
   RTX for the address of the nested function; STATIC_CHAIN is an
   RTX for the static chain value that should be passed to the
   function when it is called.  */

#define INITIALIZE_TRAMPOLINE(ADDR, FUNC, CHAIN)			    \
{									    \
  rtx addr = ADDR;							    \
  if (Pmode == DImode)							    \
    {									    \
      emit_move_insn (gen_rtx_MEM (DImode, plus_constant (addr, 32)), FUNC); \
      emit_move_insn (gen_rtx_MEM (DImode, plus_constant (addr, 40)), CHAIN);\
    }									    \
  else									    \
    {									    \
      emit_move_insn (gen_rtx_MEM (SImode, plus_constant (addr, 32)), FUNC); \
      emit_move_insn (gen_rtx_MEM (SImode, plus_constant (addr, 36)), CHAIN);\
    }									    \
									    \
  /* Flush both caches.  We need to flush the data cache in case	    \
     the system has a write-back cache.  */				    \
  /* ??? Should check the return value for errors.  */			    \
  if (mips_cache_flush_func && mips_cache_flush_func[0])		    \
    emit_library_call (gen_rtx_SYMBOL_REF (Pmode, mips_cache_flush_func),   \
		       0, VOIDmode, 3, addr, Pmode,			    \
		       GEN_INT (TRAMPOLINE_SIZE), TYPE_MODE (integer_type_node),\
		       GEN_INT (3), TYPE_MODE (integer_type_node));	    \
}

/* Addressing modes, and classification of registers for them.  */

/* #define HAVE_POST_INCREMENT 0 */
/* #define HAVE_POST_DECREMENT 0 */

/* #define HAVE_PRE_DECREMENT 0 */
/* #define HAVE_PRE_INCREMENT 0 */

/* These assume that REGNO is a hard or pseudo reg number.
   They give nonzero only if REGNO is a hard reg of the suitable class
   or a pseudo reg currently allocated to a suitable hard reg.
   These definitions are NOT overridden anywhere.  */

#define BASE_REG_P(regno, mode)					\
  (TARGET_MIPS16						\
   ? (M16_REG_P (regno)						\
      || (regno) == FRAME_POINTER_REGNUM			\
      || (regno) == ARG_POINTER_REGNUM				\
      || ((regno) == STACK_POINTER_REGNUM			\
	  && (GET_MODE_SIZE (mode) == 4				\
	      || GET_MODE_SIZE (mode) == 8)))			\
   : GP_REG_P (regno))

#define GP_REG_OR_PSEUDO_STRICT_P(regno, mode)				    \
  BASE_REG_P((regno < FIRST_PSEUDO_REGISTER) ? (int) regno : reg_renumber[regno], \
	     (mode))

#define GP_REG_OR_PSEUDO_NONSTRICT_P(regno, mode) \
  (((regno) >= FIRST_PSEUDO_REGISTER) || (BASE_REG_P ((regno), (mode))))

#define REGNO_OK_FOR_INDEX_P(regno)	0
#define REGNO_MODE_OK_FOR_BASE_P(regno, mode) \
  GP_REG_OR_PSEUDO_STRICT_P ((regno), (mode))

/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
   and check its validity for a certain class.
   We have two alternate definitions for each of them.
   The usual definition accepts all pseudo regs; the other rejects them all.
   The symbol REG_OK_STRICT causes the latter definition to be used.

   Most source files want to accept pseudo regs in the hope that
   they will get allocated to the class that the insn wants them to be in.
   Some source files that are used after register allocation
   need to be strict.  */

#ifndef REG_OK_STRICT
#define REG_MODE_OK_FOR_BASE_P(X, MODE) \
  mips_reg_mode_ok_for_base_p (X, MODE, 0)
#else
#define REG_MODE_OK_FOR_BASE_P(X, MODE) \
  mips_reg_mode_ok_for_base_p (X, MODE, 1)
#endif

#define REG_OK_FOR_INDEX_P(X) 0


/* Maximum number of registers that can appear in a valid memory address.  */

#define MAX_REGS_PER_ADDRESS 1

/* A C compound statement with a conditional `goto LABEL;' executed
   if X (an RTX) is a legitimate memory address on the target
   machine for a memory operand of mode MODE.  */

#if 1
#define GO_PRINTF(x)	fprintf(stderr, (x))
#define GO_PRINTF2(x,y)	fprintf(stderr, (x), (y))
#define GO_DEBUG_RTX(x) debug_rtx(x)

#else
#define GO_PRINTF(x)
#define GO_PRINTF2(x,y)
#define GO_DEBUG_RTX(x)
#endif

#ifdef REG_OK_STRICT
#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR)	\
{						\
  if (mips_legitimate_address_p (MODE, X, 1))	\
    goto ADDR;					\
}
#else
#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR)	\
{						\
  if (mips_legitimate_address_p (MODE, X, 0))	\
    goto ADDR;					\
}
#endif

/* A C expression that is 1 if the RTX X is a constant which is a
   valid address.  This is defined to be the same as `CONSTANT_P (X)',
   but rejecting CONST_DOUBLE.  */
/* When pic, we must reject addresses of the form symbol+large int.
   This is because an instruction `sw $4,s+70000' needs to be converted
   by the assembler to `lw $at,s($gp);sw $4,70000($at)'.  Normally the
   assembler would use $at as a temp to load in the large offset.  In this
   case $at is already in use.  We convert such problem addresses to
   `la $5,s;sw $4,70000($5)' via LEGITIMIZE_ADDRESS.  */
/* ??? SGI Irix 6 assembler fails for CONST address, so reject them
   when !TARGET_GAS.  */
/* We should be rejecting everything but const addresses.  */
#define CONSTANT_ADDRESS_P(X)						\
  (GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF		\
    || GET_CODE (X) == CONST_INT || GET_CODE (X) == HIGH		\
    || (GET_CODE (X) == CONST						\
	&& ! (flag_pic && pic_address_needs_scratch (X))		\
	&& (TARGET_GAS)							\
	&& (mips_abi != ABI_N32 					\
	    && mips_abi != ABI_64)))


/* Define this, so that when PIC, reload won't try to reload invalid
   addresses which require two reload registers.  */

#define LEGITIMATE_PIC_OPERAND_P(X)  (! pic_address_needs_scratch (X))

/* Nonzero if the constant value X is a legitimate general operand.
   It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE.

   At present, GAS doesn't understand li.[sd], so don't allow it
   to be generated at present.  Also, the MIPS assembler does not
   grok li.d Infinity.  */

/* ??? SGI Irix 6 assembler fails for CONST address, so reject them.
   Note that the Irix 6 assembler problem may already be fixed.
   Note also that the GET_CODE (X) == CONST test catches the mips16
   gp pseudo reg (see mips16_gp_pseudo_reg) deciding it is not
   a LEGITIMATE_CONSTANT.  If we ever want mips16 and ABI_N32 or
   ABI_64 to work together, we'll need to fix this.  */
#define LEGITIMATE_CONSTANT_P(X)					\
  ((GET_CODE (X) != CONST_DOUBLE					\
    || mips_const_double_ok (X, GET_MODE (X)))				\
   && ! (GET_CODE (X) == CONST 						\
	 && ! TARGET_GAS						\
	 && (mips_abi == ABI_N32 					\
	     || mips_abi == ABI_64))					\
   && (! TARGET_MIPS16 || mips16_constant (X, GET_MODE (X), 0, 0)))

/* A C compound statement that attempts to replace X with a valid
   memory address for an operand of mode MODE.  WIN will be a C
   statement label elsewhere in the code; the macro definition may
   use

          GO_IF_LEGITIMATE_ADDRESS (MODE, X, WIN);

   to avoid further processing if the address has become legitimate.

   X will always be the result of a call to `break_out_memory_refs',
   and OLDX will be the operand that was given to that function to
   produce X.

   The code generated by this macro should not alter the
   substructure of X.  If it transforms X into a more legitimate
   form, it should assign X (which will always be a C variable) a
   new value.

   It is not necessary for this macro to come up with a legitimate
   address.  The compiler has standard ways of doing so in all
   cases.  In fact, it is safe for this macro to do nothing.  But
   often a machine-dependent strategy can generate better code.

   For the MIPS, transform:

	memory(X + <large int>)

   into:

	Y = <large int> & ~0x7fff;
	Z = X + Y
	memory (Z + (<large int> & 0x7fff));

   This is for CSE to find several similar references, and only use one Z.

   When PIC, convert addresses of the form memory (symbol+large int) to
   memory (reg+large int).  */


#define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN)				\
{									\
  register rtx xinsn = (X);						\
									\
  if (TARGET_DEBUG_B_MODE)						\
    {									\
      GO_PRINTF ("\n========== LEGITIMIZE_ADDRESS\n");			\
      GO_DEBUG_RTX (xinsn);						\
    }									\
									\
  if (mips_split_addresses && mips_check_split (X, MODE))		\
    {									\
      /* ??? Is this ever executed?  */					\
      X = gen_rtx_LO_SUM (Pmode,					\
			  copy_to_mode_reg (Pmode,			\
					    gen_rtx (HIGH, Pmode, X)),	\
			  X);						\
      goto WIN;								\
    }									\
									\
  if (GET_CODE (xinsn) == CONST						\
      && ((flag_pic && pic_address_needs_scratch (xinsn))		\
	  /* ??? SGI's Irix 6 assembler can't handle CONST.  */		\
	  || (!TARGET_GAS						\
	      && (mips_abi == ABI_N32 					\
	          || mips_abi == ABI_64))))    				\
    {									\
      rtx ptr_reg = gen_reg_rtx (Pmode);				\
      rtx constant = XEXP (XEXP (xinsn, 0), 1);				\
									\
      emit_move_insn (ptr_reg, XEXP (XEXP (xinsn, 0), 0));		\
									\
      X = gen_rtx_PLUS (Pmode, ptr_reg, constant);			\
      if (SMALL_INT (constant))						\
	goto WIN;							\
      /* Otherwise we fall through so the code below will fix the	\
	 constant.  */							\
      xinsn = X;							\
    }									\
									\
  if (GET_CODE (xinsn) == PLUS)						\
    {									\
      register rtx xplus0 = XEXP (xinsn, 0);				\
      register rtx xplus1 = XEXP (xinsn, 1);				\
      register enum rtx_code code0 = GET_CODE (xplus0);			\
      register enum rtx_code code1 = GET_CODE (xplus1);			\
									\
      if (code0 != REG && code1 == REG)					\
	{								\
	  xplus0 = XEXP (xinsn, 1);					\
	  xplus1 = XEXP (xinsn, 0);					\
	  code0 = GET_CODE (xplus0);					\
	  code1 = GET_CODE (xplus1);					\
	}								\
									\
      if (code0 == REG && REG_MODE_OK_FOR_BASE_P (xplus0, MODE)		\
	  && code1 == CONST_INT && !SMALL_INT (xplus1))			\
	{								\
	  rtx int_reg = gen_reg_rtx (Pmode);				\
	  rtx ptr_reg = gen_reg_rtx (Pmode);				\
									\
	  emit_move_insn (int_reg,					\
			  GEN_INT (INTVAL (xplus1) & ~ 0x7fff));	\
									\
	  emit_insn (gen_rtx_SET (VOIDmode,				\
				  ptr_reg,				\
				  gen_rtx_PLUS (Pmode, xplus0, int_reg))); \
									\
	  X = plus_constant (ptr_reg, INTVAL (xplus1) & 0x7fff);	\
	  goto WIN;							\
	}								\
    }									\
									\
  if (TARGET_DEBUG_B_MODE)						\
    GO_PRINTF ("LEGITIMIZE_ADDRESS could not fix.\n");			\
}


/* A C statement or compound statement with a conditional `goto
   LABEL;' executed if memory address X (an RTX) can have different
   meanings depending on the machine mode of the memory reference it
   is used for.

   Autoincrement and autodecrement addresses typically have
   mode-dependent effects because the amount of the increment or
   decrement is the size of the operand being addressed.  Some
   machines have other mode-dependent addresses.  Many RISC machines
   have no mode-dependent addresses.

   You may assume that ADDR is a valid address for the machine.  */

#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) {}

/* This handles the magic '..CURRENT_FUNCTION' symbol, which means
   'the start of the function that this code is output in'.  */

#define ASM_OUTPUT_LABELREF(FILE,NAME)  \
  if (strcmp (NAME, "..CURRENT_FUNCTION") == 0)				\
    asm_fprintf ((FILE), "%U%s",					\
		 XSTR (XEXP (DECL_RTL (current_function_decl), 0), 0));	\
  else									\
    asm_fprintf ((FILE), "%U%s", (NAME))

/* The mips16 wants the constant pool to be after the function,
   because the PC relative load instructions use unsigned offsets.  */

#define CONSTANT_POOL_BEFORE_FUNCTION (! TARGET_MIPS16)

#define ASM_OUTPUT_POOL_EPILOGUE(FILE, FNNAME, FNDECL, SIZE)	\
  mips_string_length = 0;

#if 0
/* In mips16 mode, put most string constants after the function.  */
#define CONSTANT_AFTER_FUNCTION_P(tree)				\
  (TARGET_MIPS16 && mips16_constant_after_function_p (tree))
#endif

/* Specify the machine mode that this machine uses
   for the index in the tablejump instruction.
   ??? Using HImode in mips16 mode can cause overflow.  However, the
   overflow is no more likely than the overflow in a branch
   instruction.  Large functions can currently break in both ways.  */
#define CASE_VECTOR_MODE \
  (TARGET_MIPS16 ? HImode : Pmode == DImode ? DImode : SImode)

/* Define as C expression which evaluates to nonzero if the tablejump
   instruction expects the table to contain offsets from the address of the
   table.
   Do not define this if the table should contain absolute addresses.  */
#define CASE_VECTOR_PC_RELATIVE (TARGET_MIPS16)

/* Define this as 1 if `char' should by default be signed; else as 0.  */
#ifndef DEFAULT_SIGNED_CHAR
#define DEFAULT_SIGNED_CHAR 1
#endif

/* Max number of bytes we can move from memory to memory
   in one reasonably fast instruction.  */
#define MOVE_MAX (TARGET_64BIT ? 8 : 4)
#define MAX_MOVE_MAX 8

/* Define this macro as a C expression which is nonzero if
   accessing less than a word of memory (i.e. a `char' or a
   `short') is no faster than accessing a word of memory, i.e., if
   such access require more than one instruction or if there is no
   difference in cost between byte and (aligned) word loads.

   On RISC machines, it tends to generate better code to define
   this as 1, since it avoids making a QI or HI mode register.  */
#define SLOW_BYTE_ACCESS 1

/* We assume that the store-condition-codes instructions store 0 for false
   and some other value for true.  This is the value stored for true.  */

#define STORE_FLAG_VALUE 1

/* Define this to be nonzero if shift instructions ignore all but the low-order
   few bits.  */
#define SHIFT_COUNT_TRUNCATED 1

/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
   is done just by pretending it is already truncated.  */
/* In 64 bit mode, 32 bit instructions require that register values be properly
   sign-extended to 64 bits.  As a result, a truncate is not a no-op if it
   converts a value >32 bits to a value <32 bits.  */
/* ??? This results in inefficient code for 64 bit to 32 conversions.
   Something needs to be done about this.  Perhaps not use any 32 bit
   instructions?  Perhaps use PROMOTE_MODE?  */
#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) \
  (TARGET_64BIT ? ((INPREC) <= 32 || (OUTPREC) > 32) : 1)

/* Specify the machine mode that pointers have.
   After generation of rtl, the compiler makes no further distinction
   between pointers and any other objects of this machine mode.

   For MIPS we make pointers are the smaller of longs and gp-registers.  */

#ifndef Pmode
#define Pmode ((TARGET_LONG64 && TARGET_64BIT) ? DImode : SImode)
#endif

/* A function address in a call instruction
   is a word address (for indexing purposes)
   so give the MEM rtx a words's mode.  */

#define FUNCTION_MODE (Pmode == DImode ? DImode : SImode)


/* A part of a C `switch' statement that describes the relative
   costs of constant RTL expressions.  It must contain `case'
   labels for expression codes `const_int', `const', `symbol_ref',
   `label_ref' and `const_double'.  Each case must ultimately reach
   a `return' statement to return the relative cost of the use of
   that kind of constant value in an expression.  The cost may
   depend on the precise value of the constant, which is available
   for examination in X.

   CODE is the expression code--redundant, since it can be obtained
   with `GET_CODE (X)'.  */

#define CONST_COSTS(X,CODE,OUTER_CODE)					\
  case CONST_INT:							\
    if (! TARGET_MIPS16)						\
      {									\
	/* Always return 0, since we don't have different sized		\
	   instructions, hence different costs according to Richard	\
	   Kenner */							\
	return 0;							\
      }									\
    if ((OUTER_CODE) == SET)						\
      {									\
	if (INTVAL (X) >= 0 && INTVAL (X) < 0x100)			\
	  return 0;							\
	else if ((INTVAL (X) >= 0 && INTVAL (X) < 0x10000)		\
		 || (INTVAL (X) < 0 && INTVAL (X) > -0x100))		\
	  return COSTS_N_INSNS (1);					\
	else								\
	  return COSTS_N_INSNS (2);					\
      }									\
    /* A PLUS could be an address.  We don't want to force an address	\
       to use a register, so accept any signed 16 bit value without	\
       complaint.  */							\
    if ((OUTER_CODE) == PLUS						\
	&& INTVAL (X) >= -0x8000 && INTVAL (X) < 0x8000)		\
      return 0;								\
    /* A number between 1 and 8 inclusive is efficient for a shift.	\
       Otherwise, we will need an extended instruction.  */		\
    if ((OUTER_CODE) == ASHIFT || (OUTER_CODE) == ASHIFTRT		\
	|| (OUTER_CODE) == LSHIFTRT)					\
      {									\
	if (INTVAL (X) >= 1 && INTVAL (X) <= 8)				\
	  return 0;							\
	return COSTS_N_INSNS (1);					\
      }									\
    /* We can use cmpi for an xor with an unsigned 16 bit value.  */	\
    if ((OUTER_CODE) == XOR						\
	&& INTVAL (X) >= 0 && INTVAL (X) < 0x10000)			\
      return 0;								\
    /* We may be able to use slt or sltu for a comparison with a	\
       signed 16 bit value.  (The boundary conditions aren't quite	\
       right, but this is just a heuristic anyhow.)  */			\
    if (((OUTER_CODE) == LT || (OUTER_CODE) == LE			\
	 || (OUTER_CODE) == GE || (OUTER_CODE) == GT			\
	 || (OUTER_CODE) == LTU || (OUTER_CODE) == LEU			\
	 || (OUTER_CODE) == GEU || (OUTER_CODE) == GTU)			\
	&& INTVAL (X) >= -0x8000 && INTVAL (X) < 0x8000)		\
      return 0;								\
    /* Equality comparisons with 0 are cheap.  */			\
    if (((OUTER_CODE) == EQ || (OUTER_CODE) == NE)			\
	&& INTVAL (X) == 0)						\
      return 0;								\
									\
    /* Otherwise, work out the cost to load the value into a		\
       register.  */							\
    if (INTVAL (X) >= 0 && INTVAL (X) < 0x100)				\
      return COSTS_N_INSNS (1);						\
    else if ((INTVAL (X) >= 0 && INTVAL (X) < 0x10000)			\
	     || (INTVAL (X) < 0 && INTVAL (X) > -0x100))		\
      return COSTS_N_INSNS (2);						\
    else								\
      return COSTS_N_INSNS (3);						\
									\
  case LABEL_REF:							\
    return COSTS_N_INSNS (2);						\
									\
  case CONST:								\
    {									\
      rtx offset = const0_rtx;						\
      rtx symref = eliminate_constant_term (XEXP (X, 0), &offset);	\
									\
      if (TARGET_MIPS16 && mips16_gp_offset_p (X))			\
	{								\
	  /* Treat this like a signed 16 bit CONST_INT.  */		\
	  if ((OUTER_CODE) == PLUS)					\
	    return 0;							\
	  else if ((OUTER_CODE) == SET)					\
	    return COSTS_N_INSNS (1);					\
	  else								\
	    return COSTS_N_INSNS (2);					\
	}								\
									\
      if (GET_CODE (symref) == LABEL_REF)				\
	return COSTS_N_INSNS (2);					\
									\
      if (GET_CODE (symref) != SYMBOL_REF)				\
	return COSTS_N_INSNS (4);					\
									\
      /* let's be paranoid....  */					\
      if (INTVAL (offset) < -32768 || INTVAL (offset) > 32767)		\
	return COSTS_N_INSNS (2);					\
									\
      return COSTS_N_INSNS (SYMBOL_REF_FLAG (symref) ? 1 : 2);		\
    }									\
									\
  case SYMBOL_REF:							\
    return COSTS_N_INSNS (SYMBOL_REF_FLAG (X) ? 1 : 2);			\
									\
  case CONST_DOUBLE:							\
    {									\
      rtx high, low;							\
      if (TARGET_MIPS16)						\
	return COSTS_N_INSNS (4);					\
      split_double (X, &high, &low);					\
      return COSTS_N_INSNS ((high == CONST0_RTX (GET_MODE (high))	\
			     || low == CONST0_RTX (GET_MODE (low)))	\
			    ? 2 : 4);					\
    }

/* Like `CONST_COSTS' but applies to nonconstant RTL expressions.
   This can be used, for example, to indicate how costly a multiply
   instruction is.  In writing this macro, you can use the construct
   `COSTS_N_INSNS (N)' to specify a cost equal to N fast instructions.

   This macro is optional; do not define it if the default cost
   assumptions are adequate for the target machine.

   If -mdebugd is used, change the multiply cost to 2, so multiply by
   a constant isn't converted to a series of shifts.  This helps
   strength reduction, and also makes it easier to identify what the
   compiler is doing.  */

/* ??? Fix this to be right for the R8000.  */
#define RTX_COSTS(X,CODE,OUTER_CODE)					\
  case MEM:								\
    {									\
      int num_words = (GET_MODE_SIZE (GET_MODE (X)) > UNITS_PER_WORD) ? 2 : 1; \
      if (simple_memory_operand (X, GET_MODE (X)))			\
	return COSTS_N_INSNS (num_words);				\
									\
      return COSTS_N_INSNS (2*num_words);				\
    }									\
									\
  case FFS:								\
    return COSTS_N_INSNS (6);						\
									\
  case NOT:								\
    return COSTS_N_INSNS ((GET_MODE (X) == DImode && !TARGET_64BIT) ? 2 : 1); \
									\
  case AND:								\
  case IOR:								\
  case XOR:								\
    if (GET_MODE (X) == DImode && !TARGET_64BIT)			\
      return COSTS_N_INSNS (2);						\
									\
    break;								\
									\
  case ASHIFT:								\
  case ASHIFTRT:							\
  case LSHIFTRT:							\
    if (GET_MODE (X) == DImode && !TARGET_64BIT)			\
      return COSTS_N_INSNS ((GET_CODE (XEXP (X, 1)) == CONST_INT) ? 4 : 12); \
									\
    break;								\
									\
  case ABS:								\
    {									\
      enum machine_mode xmode = GET_MODE (X);				\
      if (xmode == SFmode || xmode == DFmode)				\
	return COSTS_N_INSNS (1);					\
									\
      return COSTS_N_INSNS (4);						\
    }									\
									\
  case PLUS:								\
  case MINUS:								\
    {									\
      enum machine_mode xmode = GET_MODE (X);				\
      if (xmode == SFmode || xmode == DFmode)				\
	{								\
	  if (TUNE_MIPS3000                                             \
              || TUNE_MIPS3900)         				\
	    return COSTS_N_INSNS (2);					\
	  else if (TUNE_MIPS6000)       				\
	    return COSTS_N_INSNS (3);					\
	  else								\
	    return COSTS_N_INSNS (6);					\
	}								\
									\
      if (xmode == DImode && !TARGET_64BIT)				\
	return COSTS_N_INSNS (4);					\
									\
      break;								\
    }									\
									\
  case NEG:								\
    if (GET_MODE (X) == DImode && !TARGET_64BIT)			\
      return 4;								\
									\
    break;								\
									\
  case MULT:								\
    {									\
      enum machine_mode xmode = GET_MODE (X);				\
      if (xmode == SFmode)						\
	{								\
	  if (TUNE_MIPS3000						\
	      || TUNE_MIPS3900						\
	      || TUNE_MIPS5000)						\
	    return COSTS_N_INSNS (4);					\
	  else if (TUNE_MIPS6000                                        \
		   || TUNE_MIPS5400                                     \
		   || TUNE_MIPS5500)					\
	    return COSTS_N_INSNS (5);					\
	  else								\
	    return COSTS_N_INSNS (7);					\
	}								\
									\
      if (xmode == DFmode)						\
	{								\
	  if (TUNE_MIPS3000						\
	      || TUNE_MIPS3900						\
	      || TUNE_MIPS5000)						\
	    return COSTS_N_INSNS (5);					\
	  else if (TUNE_MIPS6000                                        \
		   || TUNE_MIPS5400                                     \
		   || TUNE_MIPS5500)					\
	    return COSTS_N_INSNS (6);					\
	  else								\
	    return COSTS_N_INSNS (8);					\
	}								\
									\
      if (TUNE_MIPS3000)						\
	return COSTS_N_INSNS (12);					\
      else if (TUNE_MIPS3900)						\
	return COSTS_N_INSNS (2);					\
     else if (TUNE_MIPS5400 || TUNE_MIPS5500)                           \
        return COSTS_N_INSNS ((xmode == DImode) ? 4 : 3);               \
      else if (TUNE_MIPS6000)						\
	return COSTS_N_INSNS (17);					\
      else if (TUNE_MIPS5000)						\
	return COSTS_N_INSNS (5);					\
      else								\
	return COSTS_N_INSNS (10);					\
    }									\
									\
  case DIV:								\
  case MOD:								\
    {									\
      enum machine_mode xmode = GET_MODE (X);				\
      if (xmode == SFmode)						\
	{								\
	  if (TUNE_MIPS3000						\
              || TUNE_MIPS3900)						\
	    return COSTS_N_INSNS (12);					\
	  else if (TUNE_MIPS6000)					\
	    return COSTS_N_INSNS (15);					\
         else if (TUNE_MIPS5400 || TUNE_MIPS5500)                       \
            return COSTS_N_INSNS (30);                                  \
	  else								\
	    return COSTS_N_INSNS (23);					\
	}								\
									\
      if (xmode == DFmode)						\
	{								\
	  if (TUNE_MIPS3000						\
              || TUNE_MIPS3900)						\
	    return COSTS_N_INSNS (19);					\
          else if (TUNE_MIPS5400 || TUNE_MIPS5500)                      \
            return COSTS_N_INSNS (59);                                  \
	  else if (TUNE_MIPS6000)					\
	    return COSTS_N_INSNS (16);					\
	  else								\
	    return COSTS_N_INSNS (36);					\
	}								\
    }									\
    /* fall through */							\
									\
  case UDIV:								\
  case UMOD:								\
    if (TUNE_MIPS3000							\
        || TUNE_MIPS3900)						\
      return COSTS_N_INSNS (35);					\
    else if (TUNE_MIPS6000)						\
      return COSTS_N_INSNS (38);					\
    else if (TUNE_MIPS5000)						\
      return COSTS_N_INSNS (36);					\
    else if (TUNE_MIPS5400 || TUNE_MIPS5500)                            \
      return COSTS_N_INSNS ((GET_MODE (X) == SImode) ? 42 : 74);        \
    else								\
      return COSTS_N_INSNS (69);					\
									\
  case SIGN_EXTEND:							\
    /* A sign extend from SImode to DImode in 64 bit mode is often	\
       zero instructions, because the result can often be used		\
       directly by another instruction; we'll call it one.  */		\
    if (TARGET_64BIT && GET_MODE (X) == DImode				\
	&& GET_MODE (XEXP (X, 0)) == SImode)				\
      return COSTS_N_INSNS (1);						\
    else								\
      return COSTS_N_INSNS (2);						\
									\
  case ZERO_EXTEND:							\
    if (TARGET_64BIT && GET_MODE (X) == DImode				\
	&& GET_MODE (XEXP (X, 0)) == SImode)				\
      return COSTS_N_INSNS (2);						\
    else								\
      return COSTS_N_INSNS (1);

/* An expression giving the cost of an addressing mode that
   contains ADDRESS.  If not defined, the cost is computed from the
   form of the ADDRESS expression and the `CONST_COSTS' values.

   For most CISC machines, the default cost is a good approximation
   of the true cost of the addressing mode.  However, on RISC
   machines, all instructions normally have the same length and
   execution time.  Hence all addresses will have equal costs.

   In cases where more than one form of an address is known, the
   form with the lowest cost will be used.  If multiple forms have
   the same, lowest, cost, the one that is the most complex will be
   used.

   For example, suppose an address that is equal to the sum of a
   register and a constant is used twice in the same basic block.
   When this macro is not defined, the address will be computed in
   a register and memory references will be indirect through that
   register.  On machines where the cost of the addressing mode
   containing the sum is no higher than that of a simple indirect
   reference, this will produce an additional instruction and
   possibly require an additional register.  Proper specification
   of this macro eliminates this overhead for such machines.

   Similar use of this macro is made in strength reduction of loops.

   ADDRESS need not be valid as an address.  In such a case, the
   cost is not relevant and can be any value; invalid addresses
   need not be assigned a different cost.

   On machines where an address involving more than one register is
   as cheap as an address computation involving only one register,
   defining `ADDRESS_COST' to reflect this can cause two registers
   to be live over a region of code where only one would have been
   if `ADDRESS_COST' were not defined in that manner.  This effect
   should be considered in the definition of this macro.
   Equivalent costs should probably only be given to addresses with
   different numbers of registers on machines with lots of registers.

   This macro will normally either not be defined or be defined as
   a constant.  */

#define ADDRESS_COST(ADDR) (REG_P (ADDR) ? 1 : mips_address_cost (ADDR))

/* A C expression for the cost of moving data from a register in
   class FROM to one in class TO.  The classes are expressed using
   the enumeration values such as `GENERAL_REGS'.  A value of 2 is
   the default; other values are interpreted relative to that.

   It is not required that the cost always equal 2 when FROM is the
   same as TO; on some machines it is expensive to move between
   registers if they are not general registers.

   If reload sees an insn consisting of a single `set' between two
   hard registers, and if `REGISTER_MOVE_COST' applied to their
   classes returns a value of 2, reload does not check to ensure
   that the constraints of the insn are met.  Setting a cost of
   other than 2 will allow reload to verify that the constraints are
   met.  You should do this if the `movM' pattern's constraints do
   not allow such copying. */

#define REGISTER_MOVE_COST(MODE, FROM, TO)				\
  mips_register_move_cost (MODE, FROM, TO)

/* ??? Fix this to be right for the R8000.  */
#define MEMORY_MOVE_COST(MODE,CLASS,TO_P) \
  (((TUNE_MIPS4000 || TUNE_MIPS6000) ? 6 : 4) \
   + memory_move_secondary_cost ((MODE), (CLASS), (TO_P)))

/* Define if copies to/from condition code registers should be avoided.

   This is needed for the MIPS because reload_outcc is not complete;
   it needs to handle cases where the source is a general or another
   condition code register.  */
#define AVOID_CCMODE_COPIES

/* A C expression for the cost of a branch instruction.  A value of
   1 is the default; other values are interpreted relative to that.  */

/* ??? Fix this to be right for the R8000.  */
#define BRANCH_COST							\
  ((! TARGET_MIPS16							\
    && (TUNE_MIPS4000 || TUNE_MIPS6000))	\
   ? 2 : 1)

/* If defined, modifies the length assigned to instruction INSN as a
   function of the context in which it is used.  LENGTH is an lvalue
   that contains the initially computed length of the insn and should
   be updated with the correct length of the insn.  */
#define ADJUST_INSN_LENGTH(INSN, LENGTH) \
  ((LENGTH) = mips_adjust_insn_length ((INSN), (LENGTH)))


/* Optionally define this if you have added predicates to
   `MACHINE.c'.  This macro is called within an initializer of an
   array of structures.  The first field in the structure is the
   name of a predicate and the second field is an array of rtl
   codes.  For each predicate, list all rtl codes that can be in
   expressions matched by the predicate.  The list should have a
   trailing comma.  Here is an example of two entries in the list
   for a typical RISC machine:

   #define PREDICATE_CODES \
     {"gen_reg_rtx_operand", {SUBREG, REG}},  \
     {"reg_or_short_cint_operand", {SUBREG, REG, CONST_INT}},

   Defining this macro does not affect the generated code (however,
   incorrect definitions that omit an rtl code that may be matched
   by the predicate can cause the compiler to malfunction).
   Instead, it allows the table built by `genrecog' to be more
   compact and efficient, thus speeding up the compiler.  The most
   important predicates to include in the list specified by this
   macro are thoses used in the most insn patterns.  */

#define PREDICATE_CODES							\
  {"uns_arith_operand",		{ REG, CONST_INT, SUBREG }},		\
  {"arith_operand",		{ REG, CONST_INT, SUBREG }},		\
  {"arith32_operand",		{ REG, CONST_INT, SUBREG }},		\
  {"reg_or_0_operand",		{ REG, CONST_INT, CONST_DOUBLE, SUBREG }}, \
  {"true_reg_or_0_operand",	{ REG, CONST_INT, CONST_DOUBLE, SUBREG }}, \
  {"small_int",			{ CONST_INT }},				\
  {"large_int",			{ CONST_INT }},				\
  {"mips_const_double_ok",	{ CONST_DOUBLE }},			\
  {"const_float_1_operand",	{ CONST_DOUBLE }},			\
  {"simple_memory_operand",	{ MEM, SUBREG }},			\
  {"equality_op",		{ EQ, NE }},				\
  {"cmp_op",			{ EQ, NE, GT, GE, GTU, GEU, LT, LE,	\
				  LTU, LEU }},				\
  {"trap_cmp_op",		{ EQ, NE, GE, GEU, LT, LTU }},		\
  {"pc_or_label_operand",	{ PC, LABEL_REF }},			\
  {"call_insn_operand",		{ CONST_INT, CONST, SYMBOL_REF, REG}},	\
  {"move_operand", 		{ CONST_INT, CONST_DOUBLE, CONST,	\
				  SYMBOL_REF, LABEL_REF, SUBREG,	\
				  REG, MEM}},				\
  {"movdi_operand",		{ CONST_INT, CONST_DOUBLE, CONST,	\
				  SYMBOL_REF, LABEL_REF, SUBREG, REG,	\
				  MEM, SIGN_EXTEND }},			\
  {"se_register_operand",	{ SUBREG, REG, SIGN_EXTEND }},		\
  {"se_reg_or_0_operand",	{ REG, CONST_INT, CONST_DOUBLE, SUBREG,	\
				  SIGN_EXTEND }},			\
  {"se_uns_arith_operand",	{ REG, CONST_INT, SUBREG,		\
				  SIGN_EXTEND }},			\
  {"se_arith_operand",		{ REG, CONST_INT, SUBREG,		\
				  SIGN_EXTEND }},			\
  {"se_nonmemory_operand",	{ CONST_INT, CONST_DOUBLE, CONST,	\
				  SYMBOL_REF, LABEL_REF, SUBREG,	\
				  REG, SIGN_EXTEND }},			\
  {"consttable_operand",	{ LABEL_REF, SYMBOL_REF, CONST_INT,	\
				  CONST_DOUBLE, CONST }},		\
  {"extend_operator",           { SIGN_EXTEND, ZERO_EXTEND }},          \
  {"highpart_shift_operator",   { ASHIFTRT, LSHIFTRT, ROTATERT, ROTATE }},

/* A list of predicates that do special things with modes, and so
   should not elicit warnings for VOIDmode match_operand.  */

#define SPECIAL_MODE_PREDICATES \
  "pc_or_label_operand",


/* If defined, a C statement to be executed just prior to the
   output of assembler code for INSN, to modify the extracted
   operands so they will be output differently.

   Here the argument OPVEC is the vector containing the operands
   extracted from INSN, and NOPERANDS is the number of elements of
   the vector which contain meaningful data for this insn.  The
   contents of this vector are what will be used to convert the
   insn template into assembler code, so you can change the
   assembler output by changing the contents of the vector.

   We use it to check if the current insn needs a nop in front of it
   because of load delays, and also to update the delay slot
   statistics.  */

#define FINAL_PRESCAN_INSN(INSN, OPVEC, NOPERANDS)			\
  final_prescan_insn (INSN, OPVEC, NOPERANDS)


/* Control the assembler format that we output.  */

/* Output at beginning of assembler file.
   If we are optimizing to use the global pointer, create a temporary
   file to hold all of the text stuff, and write it out to the end.
   This is needed because the MIPS assembler is evidently one pass,
   and if it hasn't seen the relevant .comm/.lcomm/.extern/.sdata
   declaration when the code is processed, it generates a two
   instruction sequence.  */

#undef ASM_FILE_START
#define ASM_FILE_START(STREAM) mips_asm_file_start (STREAM)

/* Output to assembler file text saying following lines
   may contain character constants, extra white space, comments, etc.  */

#ifndef ASM_APP_ON
#define ASM_APP_ON " #APP\n"
#endif

/* Output to assembler file text saying following lines
   no longer contain unusual constructs.  */

#ifndef ASM_APP_OFF
#define ASM_APP_OFF " #NO_APP\n"
#endif

/* How to refer to registers in assembler output.
   This sequence is indexed by compiler's hard-register-number (see above).

   In order to support the two different conventions for register names,
   we use the name of a table set up in mips.c, which is overwritten
   if -mrnames is used.  */

#define REGISTER_NAMES							\
{									\
  &mips_reg_names[ 0][0],						\
  &mips_reg_names[ 1][0],						\
  &mips_reg_names[ 2][0],						\
  &mips_reg_names[ 3][0],						\
  &mips_reg_names[ 4][0],						\
  &mips_reg_names[ 5][0],						\
  &mips_reg_names[ 6][0],						\
  &mips_reg_names[ 7][0],						\
  &mips_reg_names[ 8][0],						\
  &mips_reg_names[ 9][0],						\
  &mips_reg_names[10][0],						\
  &mips_reg_names[11][0],						\
  &mips_reg_names[12][0],						\
  &mips_reg_names[13][0],						\
  &mips_reg_names[14][0],						\
  &mips_reg_names[15][0],						\
  &mips_reg_names[16][0],						\
  &mips_reg_names[17][0],						\
  &mips_reg_names[18][0],						\
  &mips_reg_names[19][0],						\
  &mips_reg_names[20][0],						\
  &mips_reg_names[21][0],						\
  &mips_reg_names[22][0],						\
  &mips_reg_names[23][0],						\
  &mips_reg_names[24][0],						\
  &mips_reg_names[25][0],						\
  &mips_reg_names[26][0],						\
  &mips_reg_names[27][0],						\
  &mips_reg_names[28][0],						\
  &mips_reg_names[29][0],						\
  &mips_reg_names[30][0],						\
  &mips_reg_names[31][0],						\
  &mips_reg_names[32][0],						\
  &mips_reg_names[33][0],						\
  &mips_reg_names[34][0],						\
  &mips_reg_names[35][0],						\
  &mips_reg_names[36][0],						\
  &mips_reg_names[37][0],						\
  &mips_reg_names[38][0],						\
  &mips_reg_names[39][0],						\
  &mips_reg_names[40][0],						\
  &mips_reg_names[41][0],						\
  &mips_reg_names[42][0],						\
  &mips_reg_names[43][0],						\
  &mips_reg_names[44][0],						\
  &mips_reg_names[45][0],						\
  &mips_reg_names[46][0],						\
  &mips_reg_names[47][0],						\
  &mips_reg_names[48][0],						\
  &mips_reg_names[49][0],						\
  &mips_reg_names[50][0],						\
  &mips_reg_names[51][0],						\
  &mips_reg_names[52][0],						\
  &mips_reg_names[53][0],						\
  &mips_reg_names[54][0],						\
  &mips_reg_names[55][0],						\
  &mips_reg_names[56][0],						\
  &mips_reg_names[57][0],						\
  &mips_reg_names[58][0],						\
  &mips_reg_names[59][0],						\
  &mips_reg_names[60][0],						\
  &mips_reg_names[61][0],						\
  &mips_reg_names[62][0],						\
  &mips_reg_names[63][0],						\
  &mips_reg_names[64][0],						\
  &mips_reg_names[65][0],						\
  &mips_reg_names[66][0],						\
  &mips_reg_names[67][0],						\
  &mips_reg_names[68][0],						\
  &mips_reg_names[69][0],						\
  &mips_reg_names[70][0],						\
  &mips_reg_names[71][0],						\
  &mips_reg_names[72][0],						\
  &mips_reg_names[73][0],						\
  &mips_reg_names[74][0],						\
  &mips_reg_names[75][0],						\
  &mips_reg_names[76][0],						\
  &mips_reg_names[77][0],						\
  &mips_reg_names[78][0],						\
  &mips_reg_names[79][0],						\
  &mips_reg_names[80][0],						\
  &mips_reg_names[81][0],						\
  &mips_reg_names[82][0],						\
  &mips_reg_names[83][0],						\
  &mips_reg_names[84][0],						\
  &mips_reg_names[85][0],						\
  &mips_reg_names[86][0],						\
  &mips_reg_names[87][0],						\
  &mips_reg_names[88][0],						\
  &mips_reg_names[89][0],						\
  &mips_reg_names[90][0],						\
  &mips_reg_names[91][0],						\
  &mips_reg_names[92][0],						\
  &mips_reg_names[93][0],						\
  &mips_reg_names[94][0],						\
  &mips_reg_names[95][0],						\
  &mips_reg_names[96][0],						\
  &mips_reg_names[97][0],						\
  &mips_reg_names[98][0],						\
  &mips_reg_names[99][0],						\
  &mips_reg_names[100][0],						\
  &mips_reg_names[101][0],						\
  &mips_reg_names[102][0],						\
  &mips_reg_names[103][0],						\
  &mips_reg_names[104][0],						\
  &mips_reg_names[105][0],						\
  &mips_reg_names[106][0],						\
  &mips_reg_names[107][0],						\
  &mips_reg_names[108][0],						\
  &mips_reg_names[109][0],						\
  &mips_reg_names[110][0],						\
  &mips_reg_names[111][0],						\
  &mips_reg_names[112][0],						\
  &mips_reg_names[113][0],						\
  &mips_reg_names[114][0],						\
  &mips_reg_names[115][0],						\
  &mips_reg_names[116][0],						\
  &mips_reg_names[117][0],						\
  &mips_reg_names[118][0],						\
  &mips_reg_names[119][0],						\
  &mips_reg_names[120][0],						\
  &mips_reg_names[121][0],						\
  &mips_reg_names[122][0],						\
  &mips_reg_names[123][0],						\
  &mips_reg_names[124][0],						\
  &mips_reg_names[125][0],						\
  &mips_reg_names[126][0],						\
  &mips_reg_names[127][0],						\
  &mips_reg_names[128][0],						\
  &mips_reg_names[129][0],						\
  &mips_reg_names[130][0],						\
  &mips_reg_names[131][0],						\
  &mips_reg_names[132][0],						\
  &mips_reg_names[133][0],						\
  &mips_reg_names[134][0],						\
  &mips_reg_names[135][0],						\
  &mips_reg_names[136][0],						\
  &mips_reg_names[137][0],						\
  &mips_reg_names[138][0],						\
  &mips_reg_names[139][0],						\
  &mips_reg_names[140][0],						\
  &mips_reg_names[141][0],						\
  &mips_reg_names[142][0],						\
  &mips_reg_names[143][0],						\
  &mips_reg_names[144][0],						\
  &mips_reg_names[145][0],						\
  &mips_reg_names[146][0],						\
  &mips_reg_names[147][0],						\
  &mips_reg_names[148][0],						\
  &mips_reg_names[149][0],						\
  &mips_reg_names[150][0],						\
  &mips_reg_names[151][0],						\
  &mips_reg_names[152][0],						\
  &mips_reg_names[153][0],						\
  &mips_reg_names[154][0],						\
  &mips_reg_names[155][0],						\
  &mips_reg_names[156][0],						\
  &mips_reg_names[157][0],						\
  &mips_reg_names[158][0],						\
  &mips_reg_names[159][0],						\
  &mips_reg_names[160][0],						\
  &mips_reg_names[161][0],						\
  &mips_reg_names[162][0],						\
  &mips_reg_names[163][0],						\
  &mips_reg_names[164][0],						\
  &mips_reg_names[165][0],						\
  &mips_reg_names[166][0],						\
  &mips_reg_names[167][0],						\
  &mips_reg_names[168][0],						\
  &mips_reg_names[169][0],						\
  &mips_reg_names[170][0],						\
  &mips_reg_names[171][0],						\
  &mips_reg_names[172][0],						\
  &mips_reg_names[173][0],						\
  &mips_reg_names[174][0],						\
  &mips_reg_names[175][0]						\
}

/* print-rtl.c can't use REGISTER_NAMES, since it depends on mips.c.
   So define this for it.  */
#define DEBUG_REGISTER_NAMES						\
{									\
  "$0",   "at",   "v0",   "v1",   "a0",   "a1",   "a2",   "a3",		\
  "t0",   "t1",   "t2",   "t3",   "t4",   "t5",   "t6",   "t7",		\
  "s0",   "s1",   "s2",   "s3",   "s4",   "s5",   "s6",   "s7",		\
  "t8",   "t9",   "k0",   "k1",   "gp",   "sp",   "$fp",  "ra",		\
  "$f0",  "$f1",  "$f2",  "$f3",  "$f4",  "$f5",  "$f6",  "$f7",	\
  "$f8",  "$f9",  "$f10", "$f11", "$f12", "$f13", "$f14", "$f15",	\
  "$f16", "$f17", "$f18", "$f19", "$f20", "$f21", "$f22", "$f23",	\
  "$f24", "$f25", "$f26", "$f27", "$f28", "$f29", "$f30", "$f31",	\
  "hi",   "lo",   "accum","$fcc0","$fcc1","$fcc2","$fcc3","$fcc4",	\
  "$fcc5","$fcc6","$fcc7","$rap", "",     "",     "",     "",		\
  "$c0r0", "$c0r1", "$c0r2", "$c0r3", "$c0r4", "$c0r5", "$c0r6", "$c0r7",\
  "$c0r8", "$c0r9", "$c0r10","$c0r11","$c0r12","$c0r13","$c0r14","$c0r15",\
  "$c0r16","$c0r17","$c0r18","$c0r19","$c0r20","$c0r21","$c0r22","$c0r23",\
  "$c0r24","$c0r25","$c0r26","$c0r27","$c0r28","$c0r29","$c0r30","$c0r31",\
  "$c2r0", "$c2r1", "$c2r2", "$c2r3", "$c2r4", "$c2r5", "$c2r6", "$c2r7",\
  "$c2r8", "$c2r9", "$c2r10","$c2r11","$c2r12","$c2r13","$c2r14","$c2r15",\
  "$c2r16","$c2r17","$c2r18","$c2r19","$c2r20","$c2r21","$c2r22","$c2r23",\
  "$c2r24","$c2r25","$c2r26","$c2r27","$c2r28","$c2r29","$c2r30","$c2r31",\
  "$c3r0", "$c3r1", "$c3r2", "$c3r3", "$c3r4", "$c3r5", "$c3r6", "$c3r7",\
  "$c3r8", "$c3r9", "$c3r10","$c3r11","$c3r12","$c3r13","$c3r14","$c3r15",\
  "$c3r16","$c3r17","$c3r18","$c3r19","$c3r20","$c3r21","$c3r22","$c3r23",\
  "$c3r24","$c3r25","$c3r26","$c3r27","$c3r28","$c3r29","$c3r30","$c3r31"\
}

/* If defined, a C initializer for an array of structures
   containing a name and a register number.  This macro defines
   additional names for hard registers, thus allowing the `asm'
   option in declarations to refer to registers using alternate
   names.

   We define both names for the integer registers here.  */

#define ADDITIONAL_REGISTER_NAMES					\
{									\
  { "$0",	 0 + GP_REG_FIRST },					\
  { "$1",	 1 + GP_REG_FIRST },					\
  { "$2",	 2 + GP_REG_FIRST },					\
  { "$3",	 3 + GP_REG_FIRST },					\
  { "$4",	 4 + GP_REG_FIRST },					\
  { "$5",	 5 + GP_REG_FIRST },					\
  { "$6",	 6 + GP_REG_FIRST },					\
  { "$7",	 7 + GP_REG_FIRST },					\
  { "$8",	 8 + GP_REG_FIRST },					\
  { "$9",	 9 + GP_REG_FIRST },					\
  { "$10",	10 + GP_REG_FIRST },					\
  { "$11",	11 + GP_REG_FIRST },					\
  { "$12",	12 + GP_REG_FIRST },					\
  { "$13",	13 + GP_REG_FIRST },					\
  { "$14",	14 + GP_REG_FIRST },					\
  { "$15",	15 + GP_REG_FIRST },					\
  { "$16",	16 + GP_REG_FIRST },					\
  { "$17",	17 + GP_REG_FIRST },					\
  { "$18",	18 + GP_REG_FIRST },					\
  { "$19",	19 + GP_REG_FIRST },					\
  { "$20",	20 + GP_REG_FIRST },					\
  { "$21",	21 + GP_REG_FIRST },					\
  { "$22",	22 + GP_REG_FIRST },					\
  { "$23",	23 + GP_REG_FIRST },					\
  { "$24",	24 + GP_REG_FIRST },					\
  { "$25",	25 + GP_REG_FIRST },					\
  { "$26",	26 + GP_REG_FIRST },					\
  { "$27",	27 + GP_REG_FIRST },					\
  { "$28",	28 + GP_REG_FIRST },					\
  { "$29",	29 + GP_REG_FIRST },					\
  { "$30",	30 + GP_REG_FIRST },					\
  { "$31",	31 + GP_REG_FIRST },					\
  { "$sp",	29 + GP_REG_FIRST },					\
  { "$fp",	30 + GP_REG_FIRST },					\
  { "at",	 1 + GP_REG_FIRST },					\
  { "v0",	 2 + GP_REG_FIRST },					\
  { "v1",	 3 + GP_REG_FIRST },					\
  { "a0",	 4 + GP_REG_FIRST },					\
  { "a1",	 5 + GP_REG_FIRST },					\
  { "a2",	 6 + GP_REG_FIRST },					\
  { "a3",	 7 + GP_REG_FIRST },					\
  { "t0",	 8 + GP_REG_FIRST },					\
  { "t1",	 9 + GP_REG_FIRST },					\
  { "t2",	10 + GP_REG_FIRST },					\
  { "t3",	11 + GP_REG_FIRST },					\
  { "t4",	12 + GP_REG_FIRST },					\
  { "t5",	13 + GP_REG_FIRST },					\
  { "t6",	14 + GP_REG_FIRST },					\
  { "t7",	15 + GP_REG_FIRST },					\
  { "s0",	16 + GP_REG_FIRST },					\
  { "s1",	17 + GP_REG_FIRST },					\
  { "s2",	18 + GP_REG_FIRST },					\
  { "s3",	19 + GP_REG_FIRST },					\
  { "s4",	20 + GP_REG_FIRST },					\
  { "s5",	21 + GP_REG_FIRST },					\
  { "s6",	22 + GP_REG_FIRST },					\
  { "s7",	23 + GP_REG_FIRST },					\
  { "t8",	24 + GP_REG_FIRST },					\
  { "t9",	25 + GP_REG_FIRST },					\
  { "k0",	26 + GP_REG_FIRST },					\
  { "k1",	27 + GP_REG_FIRST },					\
  { "gp",	28 + GP_REG_FIRST },					\
  { "sp",	29 + GP_REG_FIRST },					\
  { "fp",	30 + GP_REG_FIRST },					\
  { "ra",	31 + GP_REG_FIRST },					\
  { "$sp",	29 + GP_REG_FIRST },					\
  { "$fp",	30 + GP_REG_FIRST }					\
  ALL_COP_ADDITIONAL_REGISTER_NAMES					\
}

/* This is meant to be redefined in the host dependent files.  It is a
   set of alternative names and regnums for mips coprocessors.  */

#define ALL_COP_ADDITIONAL_REGISTER_NAMES

/* A C compound statement to output to stdio stream STREAM the
   assembler syntax for an instruction operand X.  X is an RTL
   expression.

   CODE is a value that can be used to specify one of several ways
   of printing the operand.  It is used when identical operands
   must be printed differently depending on the context.  CODE
   comes from the `%' specification that was used to request
   printing of the operand.  If the specification was just `%DIGIT'
   then CODE is 0; if the specification was `%LTR DIGIT' then CODE
   is the ASCII code for LTR.

   If X is a register, this macro should print the register's name.
   The names can be found in an array `reg_names' whose type is
   `char *[]'.  `reg_names' is initialized from `REGISTER_NAMES'.

   When the machine description has a specification `%PUNCT' (a `%'
   followed by a punctuation character), this macro is called with
   a null pointer for X and the punctuation character for CODE.

   See mips.c for the MIPS specific codes.  */

#define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)

/* A C expression which evaluates to true if CODE is a valid
   punctuation character for use in the `PRINT_OPERAND' macro.  If
   `PRINT_OPERAND_PUNCT_VALID_P' is not defined, it means that no
   punctuation characters (except for the standard one, `%') are
   used in this way.  */

#define PRINT_OPERAND_PUNCT_VALID_P(CODE) mips_print_operand_punct[CODE]

/* A C compound statement to output to stdio stream STREAM the
   assembler syntax for an instruction operand that is a memory
   reference whose address is ADDR.  ADDR is an RTL expression.  */

#define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address (FILE, ADDR)


/* A C statement, to be executed after all slot-filler instructions
   have been output.  If necessary, call `dbr_sequence_length' to
   determine the number of slots filled in a sequence (zero if not
   currently outputting a sequence), to decide how many no-ops to
   output, or whatever.

   Don't define this macro if it has nothing to do, but it is
   helpful in reading assembly output if the extent of the delay
   sequence is made explicit (e.g. with white space).

   Note that output routines for instructions with delay slots must
   be prepared to deal with not being output as part of a sequence
   (i.e.  when the scheduling pass is not run, or when no slot
   fillers could be found.)  The variable `final_sequence' is null
   when not processing a sequence, otherwise it contains the
   `sequence' rtx being output.  */

#define DBR_OUTPUT_SEQEND(STREAM)					\
do									\
  {									\
    if (set_nomacro > 0 && --set_nomacro == 0)				\
      fputs ("\t.set\tmacro\n", STREAM);				\
									\
    if (set_noreorder > 0 && --set_noreorder == 0)			\
      fputs ("\t.set\treorder\n", STREAM);				\
									\
    dslots_jump_filled++;						\
    fputs ("\n", STREAM);						\
  }									\
while (0)


/* How to tell the debugger about changes of source files.  Note, the
   mips ECOFF format cannot deal with changes of files inside of
   functions, which means the output of parser generators like bison
   is generally not debuggable without using the -l switch.  Lose,
   lose, lose.  Silicon graphics seems to want all .file's hardwired
   to 1.  */

#ifndef SET_FILE_NUMBER
#define SET_FILE_NUMBER() ++num_source_filenames
#endif

#define ASM_OUTPUT_SOURCE_FILENAME(STREAM, NAME)			\
  mips_output_filename (STREAM, NAME)

/* This is defined so that it can be overridden in iris6.h.  */
#define ASM_OUTPUT_FILENAME(STREAM, NUM_SOURCE_FILENAMES, NAME) \
do								\
  {								\
    fprintf (STREAM, "\t.file\t%d ", NUM_SOURCE_FILENAMES);	\
    output_quoted_string (STREAM, NAME);			\
    fputs ("\n", STREAM);					\
  }								\
while (0)

/* This is how to output a note the debugger telling it the line number
   to which the following sequence of instructions corresponds.
   Silicon graphics puts a label after each .loc.  */

#ifndef LABEL_AFTER_LOC
#define LABEL_AFTER_LOC(STREAM)
#endif

#ifndef ASM_OUTPUT_SOURCE_LINE
#define ASM_OUTPUT_SOURCE_LINE(STREAM, LINE)				\
  mips_output_lineno (STREAM, LINE)
#endif

/* The MIPS implementation uses some labels for its own purpose.  The
   following lists what labels are created, and are all formed by the
   pattern $L[a-z].*.  The machine independent portion of GCC creates
   labels matching:  $L[A-Z][0-9]+ and $L[0-9]+.

	LM[0-9]+	Silicon Graphics/ECOFF stabs label before each stmt.
	$Lb[0-9]+	Begin blocks for MIPS debug support
	$Lc[0-9]+	Label for use in s<xx> operation.
	$Le[0-9]+	End blocks for MIPS debug support  */

/* A C statement (sans semicolon) to output to the stdio stream
   STREAM any text necessary for declaring the name NAME of an
   initialized variable which is being defined.  This macro must
   output the label definition (perhaps using `ASM_OUTPUT_LABEL').
   The argument DECL is the `VAR_DECL' tree node representing the
   variable.

   If this macro is not defined, then the variable name is defined
   in the usual manner as a label (by means of `ASM_OUTPUT_LABEL').  */

#undef ASM_DECLARE_OBJECT_NAME
#define ASM_DECLARE_OBJECT_NAME(STREAM, NAME, DECL)			\
do									\
 {									\
   mips_declare_object (STREAM, NAME, "", ":\n", 0);			\
 }									\
while (0)

/* Globalizing directive for a label.  */
#define GLOBAL_ASM_OP "\t.globl\t"

/* This says how to define a global common symbol.  */

#define ASM_OUTPUT_ALIGNED_DECL_COMMON(STREAM, DECL, NAME, SIZE, ALIGN) \
  do {									\
    /* If the target wants uninitialized const declarations in		\
       .rdata then don't put them in .comm */				\
    if (TARGET_EMBEDDED_DATA && TARGET_UNINIT_CONST_IN_RODATA		\
	&& TREE_CODE (DECL) == VAR_DECL && TREE_READONLY (DECL)		\
	&& (DECL_INITIAL (DECL) == 0					\
	    || DECL_INITIAL (DECL) == error_mark_node))			\
      {									\
	if (TREE_PUBLIC (DECL) && DECL_NAME (DECL))			\
	  (*targetm.asm_out.globalize_label) (STREAM, NAME);		\
	    								\
	readonly_data_section ();					\
	ASM_OUTPUT_ALIGN (STREAM, floor_log2 (ALIGN / BITS_PER_UNIT));	\
	mips_declare_object (STREAM, NAME, "", ":\n\t.space\t%u\n",	\
	    (SIZE));							\
      }									\
    else								\
	mips_declare_object (STREAM, NAME, "\n\t.comm\t", ",%u\n",	\
	  (SIZE));							\
  } while (0)


/* This says how to define a local common symbol (ie, not visible to
   linker).  */

#define ASM_OUTPUT_LOCAL(STREAM, NAME, SIZE, ROUNDED)			\
  mips_declare_object (STREAM, NAME, "\n\t.lcomm\t", ",%u\n", (SIZE))


/* This says how to output an external.  It would be possible not to
   output anything and let undefined symbol become external. However
   the assembler uses length information on externals to allocate in
   data/sdata bss/sbss, thereby saving exec time.  */

#define ASM_OUTPUT_EXTERNAL(STREAM,DECL,NAME) \
  mips_output_external(STREAM,DECL,NAME)

/* This says what to print at the end of the assembly file */
#undef ASM_FILE_END
#define ASM_FILE_END(STREAM) mips_asm_file_end(STREAM)


/* Play switch file games if we're optimizing the global pointer.  */

#undef TEXT_SECTION
#define TEXT_SECTION()					\
do {							\
  extern FILE *asm_out_text_file;			\
  if (TARGET_FILE_SWITCHING)				\
    asm_out_file = asm_out_text_file;			\
  fputs (TEXT_SECTION_ASM_OP, asm_out_file);		\
  fputc ('\n', asm_out_file);            		\
} while (0)


/* This is how to declare a function name.  The actual work of
   emitting the label is moved to function_prologue, so that we can
   get the line number correctly emitted before the .ent directive,
   and after any .file directives.  Define as empty so that the function
   is not declared before the .ent directive elsewhere.  */

#undef ASM_DECLARE_FUNCTION_NAME
#define ASM_DECLARE_FUNCTION_NAME(STREAM,NAME,DECL)


/* This is how to output an internal numbered label where
   PREFIX is the class of label and NUM is the number within the class.  */

#undef ASM_OUTPUT_INTERNAL_LABEL
#define ASM_OUTPUT_INTERNAL_LABEL(STREAM,PREFIX,NUM)			\
  fprintf (STREAM, "%s%s%d:\n", LOCAL_LABEL_PREFIX, PREFIX, NUM)

/* This is how to store into the string LABEL
   the symbol_ref name of an internal numbered label where
   PREFIX is the class of label and NUM is the number within the class.
   This is suitable for output with `assemble_name'.  */

#undef ASM_GENERATE_INTERNAL_LABEL
#define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM)			\
  sprintf ((LABEL), "*%s%s%ld", (LOCAL_LABEL_PREFIX), (PREFIX), (long)(NUM))

/* This is how to output an element of a case-vector that is absolute.  */

#define ASM_OUTPUT_ADDR_VEC_ELT(STREAM, VALUE)				\
  fprintf (STREAM, "\t%s\t%sL%d\n",					\
	   Pmode == DImode ? ".dword" : ".word",			\
	   LOCAL_LABEL_PREFIX,						\
	   VALUE)

/* This is how to output an element of a case-vector that is relative.
   This is used for pc-relative code (e.g. when TARGET_ABICALLS or
   TARGET_EMBEDDED_PIC).  */

#define ASM_OUTPUT_ADDR_DIFF_ELT(STREAM, BODY, VALUE, REL)		\
do {									\
  if (TARGET_MIPS16)							\
    fprintf (STREAM, "\t.half\t%sL%d-%sL%d\n",				\
	     LOCAL_LABEL_PREFIX, VALUE, LOCAL_LABEL_PREFIX, REL);	\
  else if (TARGET_EMBEDDED_PIC)						\
    fprintf (STREAM, "\t%s\t%sL%d-%sLS%d\n",				\
	     Pmode == DImode ? ".dword" : ".word",			\
	     LOCAL_LABEL_PREFIX, VALUE, LOCAL_LABEL_PREFIX, REL);	\
  else if (mips_abi == ABI_32 || mips_abi == ABI_O64)			\
    fprintf (STREAM, "\t%s\t%sL%d\n",					\
	     Pmode == DImode ? ".gpdword" : ".gpword",			\
	     LOCAL_LABEL_PREFIX, VALUE);				\
  else									\
    fprintf (STREAM, "\t%s\t%sL%d\n",					\
	     Pmode == DImode ? ".dword" : ".word",			\
	     LOCAL_LABEL_PREFIX, VALUE);				\
} while (0)

/* When generating embedded PIC or mips16 code we want to put the jump
   table in the .text section.  In all other cases, we want to put the
   jump table in the .rdata section.  Unfortunately, we can't use
   JUMP_TABLES_IN_TEXT_SECTION, because it is not conditional.
   Instead, we use ASM_OUTPUT_CASE_LABEL to switch back to the .text
   section if appropriate.  */
#undef ASM_OUTPUT_CASE_LABEL
#define ASM_OUTPUT_CASE_LABEL(FILE, PREFIX, NUM, INSN)			\
do {									\
  if (TARGET_EMBEDDED_PIC || TARGET_MIPS16)				\
    function_section (current_function_decl);				\
  ASM_OUTPUT_INTERNAL_LABEL (FILE, PREFIX, NUM);			\
} while (0)

/* This is how to output an assembler line
   that says to advance the location counter
   to a multiple of 2**LOG bytes.  */

#define ASM_OUTPUT_ALIGN(STREAM,LOG)					\
  fprintf (STREAM, "\t.align\t%d\n", (LOG))

/* This is how to output an assembler line to advance the location
   counter by SIZE bytes.  */

#undef ASM_OUTPUT_SKIP
#define ASM_OUTPUT_SKIP(STREAM,SIZE)					\
  fprintf (STREAM, "\t.space\t%u\n", (SIZE))

/* This is how to output a string.  */
#undef ASM_OUTPUT_ASCII
#define ASM_OUTPUT_ASCII(STREAM, STRING, LEN)				\
  mips_output_ascii (STREAM, STRING, LEN)

/* Output #ident as a in the read-only data section.  */
#undef  ASM_OUTPUT_IDENT
#define ASM_OUTPUT_IDENT(FILE, STRING)					\
{									\
  const char *p = STRING;						\
  int size = strlen (p) + 1;						\
  readonly_data_section ();						\
  assemble_string (p, size);						\
}

/* Default to -G 8 */
#ifndef MIPS_DEFAULT_GVALUE
#define MIPS_DEFAULT_GVALUE 8
#endif

/* Define the strings to put out for each section in the object file.  */
#define TEXT_SECTION_ASM_OP	"\t.text"	/* instructions */
#define DATA_SECTION_ASM_OP	"\t.data"	/* large data */
#define SDATA_SECTION_ASM_OP	"\t.sdata"	/* small data */

#undef READONLY_DATA_SECTION_ASM_OP
#define READONLY_DATA_SECTION_ASM_OP	"\t.rdata"	/* read-only data */

#define SMALL_DATA_SECTION	sdata_section

/* What other sections we support other than the normal .data/.text.  */

#undef EXTRA_SECTIONS
#define EXTRA_SECTIONS in_sdata

/* Define the additional functions to select our additional sections.  */

/* on the MIPS it is not a good idea to put constants in the text
   section, since this defeats the sdata/data mechanism. This is
   especially true when -O is used. In this case an effort is made to
   address with faster (gp) register relative addressing, which can
   only get at sdata and sbss items (there is no stext !!)  However,
   if the constant is too large for sdata, and it's readonly, it
   will go into the .rdata section.  */

#undef EXTRA_SECTION_FUNCTIONS
#define EXTRA_SECTION_FUNCTIONS						\
void									\
sdata_section ()							\
{									\
  if (in_section != in_sdata)						\
    {									\
      fprintf (asm_out_file, "%s\n", SDATA_SECTION_ASM_OP);		\
      in_section = in_sdata;						\
    }									\
}

/* Given a decl node or constant node, choose the section to output it in
   and select that section.  */

#undef  TARGET_ASM_SELECT_SECTION
#define TARGET_ASM_SELECT_SECTION  mips_select_section

/* Store in OUTPUT a string (made with alloca) containing
   an assembler-name for a local static variable named NAME.
   LABELNO is an integer which is different for each call.  */

#define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO)			\
( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10),			\
  sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO)))

#define ASM_OUTPUT_REG_PUSH(STREAM,REGNO)				\
do									\
  {									\
    fprintf (STREAM, "\t%s\t%s,%s,8\n\t%s\t%s,0(%s)\n",			\
	     TARGET_64BIT ? "dsubu" : "subu",				\
	     reg_names[STACK_POINTER_REGNUM],				\
	     reg_names[STACK_POINTER_REGNUM],				\
	     TARGET_64BIT ? "sd" : "sw",				\
	     reg_names[REGNO],						\
	     reg_names[STACK_POINTER_REGNUM]);				\
  }									\
while (0)

#define ASM_OUTPUT_REG_POP(STREAM,REGNO)				\
do									\
  {									\
    if (! set_noreorder)						\
      fprintf (STREAM, "\t.set\tnoreorder\n");				\
									\
    dslots_load_total++;						\
    dslots_load_filled++;						\
    fprintf (STREAM, "\t%s\t%s,0(%s)\n\t%s\t%s,%s,8\n",			\
	     TARGET_64BIT ? "ld" : "lw",				\
	     reg_names[REGNO],						\
	     reg_names[STACK_POINTER_REGNUM],				\
	     TARGET_64BIT ? "daddu" : "addu",				\
	     reg_names[STACK_POINTER_REGNUM],				\
	     reg_names[STACK_POINTER_REGNUM]);				\
									\
    if (! set_noreorder)						\
      fprintf (STREAM, "\t.set\treorder\n");				\
  }									\
while (0)

/* How to start an assembler comment.
   The leading space is important (the mips native assembler requires it).  */
#ifndef ASM_COMMENT_START
#define ASM_COMMENT_START " #"
#endif


/* Macros for mips-tfile.c to encapsulate stabs in ECOFF, and for
   and mips-tdump.c to print them out.

   These must match the corresponding definitions in gdb/mipsread.c.
   Unfortunately, gcc and gdb do not currently share any directories.  */

#define CODE_MASK 0x8F300
#define MIPS_IS_STAB(sym) (((sym)->index & 0xFFF00) == CODE_MASK)
#define MIPS_MARK_STAB(code) ((code)+CODE_MASK)
#define MIPS_UNMARK_STAB(code) ((code)-CODE_MASK)


/* Default definitions for size_t and ptrdiff_t.  */

#ifndef SIZE_TYPE
#define SIZE_TYPE (Pmode == DImode ? "long unsigned int" : "unsigned int")
#endif

#ifndef PTRDIFF_TYPE
#define PTRDIFF_TYPE (Pmode == DImode ? "long int" : "int")
#endif

/* See mips_expand_prologue's use of loadgp for when this should be
   true.  */

#define DONT_ACCESS_GBLS_AFTER_EPILOGUE (TARGET_ABICALLS 		\
					 && mips_abi != ABI_32		\
					 && mips_abi != ABI_O64)

/* In mips16 mode, we need to look through the function to check for
   PC relative loads that are out of range.  */
#define MACHINE_DEPENDENT_REORG(X) machine_dependent_reorg (X)

/* We need to use a special set of functions to handle hard floating
   point code in mips16 mode.  */

#ifndef INIT_SUBTARGET_OPTABS
#define INIT_SUBTARGET_OPTABS
#endif

#define INIT_TARGET_OPTABS						\
do									\
  {									\
    if (! TARGET_MIPS16 || ! mips16_hard_float)				\
      INIT_SUBTARGET_OPTABS;						\
    else								\
      {									\
	add_optab->handlers[(int) SFmode].libfunc =			\
	  init_one_libfunc ("__mips16_addsf3");				\
	sub_optab->handlers[(int) SFmode].libfunc =			\
	  init_one_libfunc ("__mips16_subsf3");				\
	smul_optab->handlers[(int) SFmode].libfunc =			\
	  init_one_libfunc ("__mips16_mulsf3");				\
	sdiv_optab->handlers[(int) SFmode].libfunc =			\
	  init_one_libfunc ("__mips16_divsf3");				\
									\
	eqsf2_libfunc = init_one_libfunc ("__mips16_eqsf2");		\
	nesf2_libfunc = init_one_libfunc ("__mips16_nesf2");		\
	gtsf2_libfunc = init_one_libfunc ("__mips16_gtsf2");		\
	gesf2_libfunc = init_one_libfunc ("__mips16_gesf2");		\
	ltsf2_libfunc = init_one_libfunc ("__mips16_ltsf2");		\
	lesf2_libfunc = init_one_libfunc ("__mips16_lesf2");		\
									\
	floatsisf_libfunc =						\
	  init_one_libfunc ("__mips16_floatsisf");			\
	fixsfsi_libfunc =						\
	  init_one_libfunc ("__mips16_fixsfsi");			\
									\
	if (TARGET_DOUBLE_FLOAT)					\
	  {								\
	    add_optab->handlers[(int) DFmode].libfunc =			\
	      init_one_libfunc ("__mips16_adddf3");			\
	    sub_optab->handlers[(int) DFmode].libfunc =			\
	      init_one_libfunc ("__mips16_subdf3");			\
	    smul_optab->handlers[(int) DFmode].libfunc =		\
	      init_one_libfunc ("__mips16_muldf3");			\
	    sdiv_optab->handlers[(int) DFmode].libfunc =		\
	      init_one_libfunc ("__mips16_divdf3");			\
									\
	    extendsfdf2_libfunc =					\
	      init_one_libfunc ("__mips16_extendsfdf2");		\
	    truncdfsf2_libfunc =					\
	      init_one_libfunc ("__mips16_truncdfsf2");			\
									\
	    eqdf2_libfunc =						\
	      init_one_libfunc ("__mips16_eqdf2");			\
	    nedf2_libfunc =						\
	      init_one_libfunc ("__mips16_nedf2");			\
	    gtdf2_libfunc =						\
	      init_one_libfunc ("__mips16_gtdf2");			\
	    gedf2_libfunc =						\
	      init_one_libfunc ("__mips16_gedf2");			\
	    ltdf2_libfunc =						\
	      init_one_libfunc ("__mips16_ltdf2");			\
	    ledf2_libfunc =						\
	      init_one_libfunc ("__mips16_ledf2");			\
									\
	    floatsidf_libfunc =						\
	      init_one_libfunc ("__mips16_floatsidf");			\
	    fixdfsi_libfunc =						\
	      init_one_libfunc ("__mips16_fixdfsi");			\
	  }								\
      }									\
  }									\
while (0)

#define DFMODE_NAN \
	unsigned short DFbignan[4] = {0x7ff7, 0xffff, 0xffff, 0xffff}; \
	unsigned short DFlittlenan[4] = {0xffff, 0xffff, 0xffff, 0xfff7}
#define SFMODE_NAN \
	unsigned short SFbignan[2] = {0x7fbf, 0xffff}; \
	unsigned short SFlittlenan[2] = {0xffff, 0xffbf}

/* Generate calls to memcpy, etc., not bcopy, etc.  */
#define TARGET_MEM_FUNCTIONS