summaryrefslogtreecommitdiff
path: root/gcc/config/mn10200/mn10200.c
blob: 4dd1a01b39335b742485423c8e4f4207cd09d1c1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
/* Subroutines for insn-output.c for Matsushita MN10200 series
   Copyright (C) 1997, 1998, 1999, 2000, 2001, 2002
   Free Software Foundation, Inc.
   Contributed by Jeff Law (law@cygnus.com).

This file is part of GNU CC.

GNU CC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.

GNU CC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with GNU CC; see the file COPYING.  If not, write to
the Free Software Foundation, 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA.  */

#include "config.h"
#include "system.h"
#include "rtl.h"
#include "tree.h"
#include "regs.h"
#include "hard-reg-set.h"
#include "real.h"
#include "insn-config.h"
#include "conditions.h"
#include "output.h"
#include "insn-attr.h"
#include "flags.h"
#include "recog.h"
#include "expr.h"
#include "function.h"
#include "obstack.h"
#include "ggc.h"
#include "toplev.h"
#include "tm_p.h"
#include "target.h"
#include "target-def.h"

/* Global registers known to hold the value zero.

   Normally we'd depend on CSE and combine to put zero into a
   register and re-use it.

   However, on the mn10x00 processors we implicitly use the constant
   zero in tst instructions, so we might be able to do better by
   loading the value into a register in the prologue, then re-useing
   that register throughout the function.

   We could perform similar optimizations for other constants, but with
   gcse due soon, it doesn't seem worth the effort.

   These variables hold a rtx for a register known to hold the value
   zero throughout the entire function, or NULL if no register of
   the appropriate class has such a value throughout the life of the
   function.  */
rtx zero_dreg;
rtx zero_areg;

static void count_tst_insns PARAMS ((int *));

/* Note whether or not we need an out of line epilogue.  */
static int out_of_line_epilogue;

/* Initialize the GCC target structure.  */
#undef TARGET_ASM_ALIGNED_HI_OP
#define TARGET_ASM_ALIGNED_HI_OP "\t.hword\t"

struct gcc_target targetm = TARGET_INITIALIZER;

/* Indicate this file was compiled by gcc and what optimization
   level was used.  */
void
asm_file_start (file)
     FILE *file;
{
  fprintf (file, "#\tGCC For the Matsushita MN10200\n");
  if (optimize)
    fprintf (file, "# -O%d\n", optimize);
  else
    fprintf (file, "\n\n");
  output_file_directive (file, main_input_filename);
}

/* Print operand X using operand code CODE to assembly language output file
   FILE.  */

void
print_operand (file, x, code)
     FILE *file;
     rtx x;
     int code;
{
  switch (code)
    {
      case 'b':
      case 'B':
	/* These are normal and reversed branches.  */
	switch (code == 'b' ? GET_CODE (x) : reverse_condition (GET_CODE (x)))
	  {
	  case NE:
	    fprintf (file, "ne");
	    break;
	  case EQ:
	    fprintf (file, "eq");
	    break;
	  case GE:
	    fprintf (file, "ge");
	    break;
	  case GT:
	    fprintf (file, "gt");
	    break;
	  case LE:
	    fprintf (file, "le");
	    break;
	  case LT:
	    fprintf (file, "lt");
	    break;
	  case GEU:
	    fprintf (file, "cc");
	    break;
	  case GTU:
	    fprintf (file, "hi");
	    break;
	  case LEU:
	    fprintf (file, "ls");
	    break;
	  case LTU:
	    fprintf (file, "cs");
	    break;
	  default:
	    abort ();
	  }
	break;
      case 'C':
	/* This is used for the operand to a call instruction;
	   if it's a REG, enclose it in parens, else output
	   the operand normally.  */
	if (GET_CODE (x) == REG)
	  {
	    fputc ('(', file);
	    print_operand (file, x, 0);
	    fputc (')', file);
	  }
	else
	  print_operand (file, x, 0);
	break;
     
      /* These are the least significant word in a 32bit value.
	 'o' allows us to sign extend a constant if doing so
	 makes for more compact code.  */
      case 'L':
      case 'o':
	switch (GET_CODE (x))
	  {
	  case MEM:
	    fputc ('(', file);
	    output_address (XEXP (x, 0));
	    fputc (')', file);
	    break;

	  case REG:
	    fprintf (file, "%s", reg_names[REGNO (x)]);
	    break;

	  case SUBREG:
	    fprintf (file, "%s", reg_names[subreg_regno (x)]);
	    break;

	  case CONST_DOUBLE:
	    if (code == 'L')
	      {
		long val;
		REAL_VALUE_TYPE rv;

		REAL_VALUE_FROM_CONST_DOUBLE (rv, x);
		REAL_VALUE_TO_TARGET_SINGLE (rv, val);
		print_operand_address (file, GEN_INT (val & 0xffff));
	      }
	    else
	      {
		long val;
		REAL_VALUE_TYPE rv;

		REAL_VALUE_FROM_CONST_DOUBLE (rv, x);
		REAL_VALUE_TO_TARGET_SINGLE (rv, val);

		val &= 0xffff;
		val = (((val) & 0xffff) ^ (~0x7fff)) + 0x8000;
		print_operand_address (file, GEN_INT (val));
	      }
	    break;

	  case CONST_INT:
	    if (code == 'L')
	      print_operand_address (file, GEN_INT ((INTVAL (x) & 0xffff)));
	    else
	      {
	        unsigned int val = INTVAL (x) & 0xffff;
		val = (((val) & 0xffff) ^ (~0x7fff)) + 0x8000;
		print_operand_address (file, GEN_INT (val));
	      }
	    break;
	  default:
	    abort ();
	  }
	break;

      /* Similarly, but for the most significant word.  */
      case 'H':
      case 'h':
	switch (GET_CODE (x))
	  {
	  case MEM:
	    fputc ('(', file);
	    x = adjust_address (x, HImode, 2);
	    output_address (XEXP (x, 0));
	    fputc (')', file);
	    break;

	  case REG:
	    fprintf (file, "%s", reg_names[REGNO (x) + 1]);
	    break;

	  case SUBREG:
	    fprintf (file, "%s", reg_names[subreg_regno (x) + 1]);
	    break;

	  case CONST_DOUBLE:
	    if (code == 'H')
	      {
		long val;
		REAL_VALUE_TYPE rv;

		REAL_VALUE_FROM_CONST_DOUBLE (rv, x);
		REAL_VALUE_TO_TARGET_SINGLE (rv, val);

		print_operand_address (file, GEN_INT ((val >> 16) & 0xffff));
	      }
	    else
	      {
		long val;
		REAL_VALUE_TYPE rv;

		REAL_VALUE_FROM_CONST_DOUBLE (rv, x);
		REAL_VALUE_TO_TARGET_SINGLE (rv, val);

		val = (val >> 16) & 0xffff;
		val = (((val) & 0xffff) ^ (~0x7fff)) + 0x8000;

		print_operand_address (file, GEN_INT (val));
	      }
	    break;

	  case CONST_INT:
	    if (code == 'H')
	      print_operand_address (file,
				     GEN_INT ((INTVAL (x) >> 16) & 0xffff));
	    else
	      {
	        unsigned int val = (INTVAL (x) >> 16) & 0xffff;
		val = (((val) & 0xffff) ^ (~0x7fff)) + 0x8000;

		print_operand_address (file, GEN_INT (val));
	      }
	    break;
	  default:
	    abort ();
	  }
	break;

      /* Output ~CONST_INT.  */
      case 'N':
	if (GET_CODE (x) != CONST_INT)
	  abort ();
        fprintf (file, "%d", ~INTVAL (x));
        break;

      /* An address which can not be register indirect, if it is
	 register indirect, then turn it into reg + disp.  */
      case 'A':
	if (GET_CODE (x) != MEM)
	  abort ();
	if (GET_CODE (XEXP (x, 0)) == REG)
	  x = gen_rtx_PLUS (PSImode, XEXP (x, 0), GEN_INT (0));
	else
	  x = XEXP (x, 0);
	fputc ('(', file);
	output_address (x);
	fputc (')', file);
	break;

      case 'Z':
        print_operand (file, XEXP (x, 1), 0);
	break;

      /* More cases where we can sign-extend a CONST_INT if it
	 results in more compact code.  */
      case 's':
      case 'S':
	if (GET_CODE (x) == CONST_INT)
	  {
	    int val = INTVAL (x);

	    if (code == 's')
	      x = GEN_INT (((val & 0xffff) ^ (~0x7fff)) + 0x8000);
	    else
	      x = GEN_INT (((val & 0xff) ^ (~0x7f)) + 0x80);
	  }
        /* FALL THROUGH */
      default:
	switch (GET_CODE (x))
	  {
	  case MEM:
	    fputc ('(', file);
	    output_address (XEXP (x, 0));
	    fputc (')', file);
	    break;

	  case REG:
	    fprintf (file, "%s", reg_names[REGNO (x)]);
	    break;

	  case SUBREG:
	    fprintf (file, "%s", reg_names[subreg_regno (x)]);
	    break;

	  case CONST_INT:
	  case CONST_DOUBLE:
	  case SYMBOL_REF:
	  case CONST:
	  case LABEL_REF:
	  case CODE_LABEL:
	    print_operand_address (file, x);
	    break;
	  default:
	    abort ();
	  }
	break;
   }
}

/* Output assembly language output for the address ADDR to FILE.  */

void
print_operand_address (file, addr)
     FILE *file;
     rtx addr;
{
  switch (GET_CODE (addr))
    {
    case REG:
      print_operand (file, addr, 0);
      break;
    case PLUS:
      {
	rtx base, index;
	/* The base and index could be in any order, so we have
	   to figure out which is the base and which is the index.
	   Uses the same code as GO_IF_LEGITIMATE_ADDRESS.  */
	if (REG_P (XEXP (addr, 0))
	    && REG_OK_FOR_BASE_P (XEXP (addr, 0)))
	  base = XEXP (addr, 0), index = XEXP (addr, 1);
	else if (REG_P (XEXP (addr, 1))
	    && REG_OK_FOR_BASE_P (XEXP (addr, 1)))
	  base = XEXP (addr, 1), index = XEXP (addr, 0);
      	else
	  abort ();
	print_operand (file, index, 0);
	fputc (',', file);
	print_operand (file, base, 0);;
	break;
      }
    case SYMBOL_REF:
      output_addr_const (file, addr);
      break;
    default:
      output_addr_const (file, addr);
      break;
    }
}

/* Count the number of tst insns which compare an address register
   with zero.  */
static void 
count_tst_insns (areg_countp)
     int *areg_countp;
{
  rtx insn;

  /* Assume no tst insns exist.  */
  *areg_countp = 0;

  /* If not optimizing, then quit now.  */
  if (!optimize)
    return;

  /* Walk through all the insns.  */
  for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
    {
      rtx pat;

      /* Ignore anything that is not a normal INSN.  */
      if (GET_CODE (insn) != INSN)
	continue;

      /* Ignore anything that isn't a SET.  */
      pat = PATTERN (insn);
      if (GET_CODE (pat) != SET)
	continue;

      /* Check for a tst insn.  */
      if (SET_DEST (pat) == cc0_rtx
	  && GET_CODE (SET_SRC (pat)) == REG
	  && REGNO_REG_CLASS (REGNO (SET_SRC (pat))) == ADDRESS_REGS)
	(*areg_countp)++;
    }
}

/* Return the total size (in bytes) of the current function's frame.
   This is the size of the register save area + the size of locals,
   spills, etc.  */
int
total_frame_size ()
{
  unsigned int size = get_frame_size ();
  unsigned int outgoing_args_size = current_function_outgoing_args_size;
  int i;

  /* First figure out if we're going to use an out of line
     prologue, if so we have to make space for all the
     registers, even if we don't use them.  */
  if (optimize && !current_function_needs_context && !frame_pointer_needed)
    {
      int inline_count, outline_count;

      /* Compute how many bytes an inline prologue would take.

         Each address register store takes two bytes, each data register
	 store takes three bytes.  */
      inline_count = 0;
      if (regs_ever_live[5])
	inline_count += 2;
      if (regs_ever_live[6])
	inline_count += 2;
      if (regs_ever_live[2])
	inline_count += 3;
      if (regs_ever_live[3])
	inline_count += 3;

      /* If this function has any stack, then the stack adjustment
	 will take two (or more) bytes.  */
      if (size || outgoing_args_size
	  || regs_ever_live[5] || regs_ever_live[6]
	  || regs_ever_live[2] || regs_ever_live[3])
      inline_count += 2;

      /* Multiply the current count by two and add one to account for the
	 epilogue insns.  */
      inline_count = inline_count * 2 + 1;
    
      /* Now compute how many bytes an out of line sequence would take.  */
      /* A relaxed jsr will be three bytes.  */
      outline_count = 3;

      /* If there are outgoing arguments, then we will need a stack
	 pointer adjustment after the call to the prologue, two
	 more bytes.  */
      outline_count += (outgoing_args_size == 0 ? 0 : 2);

      /* If there is some local frame to allocate, it will need to be
	 done before the call to the prologue, two more bytes.  */
      if (get_frame_size () != 0)
	outline_count += 2;

      /* Now account for the epilogue, multiply the base count by two,
	 then deal with optimizing away the rts instruction.  */
      outline_count = outline_count * 2 + 1;

      if (get_frame_size () == 0 && outgoing_args_size == 0)
	outline_count -= 1;

      /* If an out of line prologue is smaller, use it.  */
      if (inline_count > outline_count)
	return size + outgoing_args_size + 16;
    }


  for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
    {
      if ((regs_ever_live[i] && !call_used_regs[i] && ! fixed_regs[i])
	  || (i == FRAME_POINTER_REGNUM && frame_pointer_needed))
	size += 4;
    }

  return (size + outgoing_args_size);
}

/* Expand the prologue into RTL.  */
void
expand_prologue ()
{
  unsigned int size = total_frame_size ();
  unsigned int outgoing_args_size = current_function_outgoing_args_size;
  int offset, i;

  zero_areg = NULL_RTX;
  zero_dreg = NULL_RTX;

  /* If optimizing, see if we should do an out of line prologue/epilogue
     sequence.

     We don't support out of line prologues if the current function
     needs a context or frame pointer.  */
  if (optimize && !current_function_needs_context && !frame_pointer_needed)
    {
      int inline_count, outline_count, areg_count;

      /* We need to end the current sequence so that count_tst_insns can
	 look at all the insns in this function.  Normally this would be
	 unsafe, but it's OK in the prologue/epilogue expanders.  */
      end_sequence ();

      /* Get a count of the number of tst insns which use address
	 registers (it's not profitable to try and improve tst insns
	 which use data registers).  */
      count_tst_insns (&areg_count);

      /* Now start a new sequence.  */
      start_sequence ();

      /* Compute how many bytes an inline prologue would take.

         Each address register store takes two bytes, each data register
	 store takes three bytes.  */
      inline_count = 0;
      if (regs_ever_live[5])
	inline_count += 2;
      if (regs_ever_live[6])
	inline_count += 2;
      if (regs_ever_live[2])
	inline_count += 3;
      if (regs_ever_live[3])
	inline_count += 3;

      /* If this function has any stack, then the stack adjustment
	 will take two (or more) bytes.  */
      if (size || outgoing_args_size
	  || regs_ever_live[5] || regs_ever_live[6]
	  || regs_ever_live[2] || regs_ever_live[3])
      inline_count += 2;

      /* Multiply the current count by two and add one to account for the
	 epilogue insns.  */
      inline_count = inline_count * 2 + 1;
    
      /* Now compute how many bytes an out of line sequence would take.  */
      /* A relaxed jsr will be three bytes.  */
      outline_count = 3;

      /* If there are outgoing arguments, then we will need a stack
	 pointer adjustment after the call to the prologue, two
	 more bytes.  */
      outline_count += (outgoing_args_size == 0 ? 0 : 2);

      /* If there is some local frame to allocate, it will need to be
	 done before the call to the prologue, two more bytes.  */
      if (get_frame_size () != 0)
	outline_count += 2;

      /* Now account for the epilogue, multiply the base count by two,
	 then deal with optimizing away the rts instruction.  */
      outline_count = outline_count * 2 + 1;

      if (get_frame_size () == 0 && outgoing_args_size == 0)
	outline_count -= 1;
     
      /* If an out of line prologue is smaller, use it.  */
      if (inline_count > outline_count)
	{
	  if (get_frame_size () != 0)
	    emit_insn (gen_addpsi3 (stack_pointer_rtx, stack_pointer_rtx,
				    GEN_INT (-size + outgoing_args_size + 16)));
	  emit_insn (gen_outline_prologue_call ());

	  if (outgoing_args_size)
	    emit_insn (gen_addpsi3 (stack_pointer_rtx, stack_pointer_rtx,
				    GEN_INT (-outgoing_args_size)));
	
	  out_of_line_epilogue = 1;

	  /* Determine if it is profitable to put the value zero into a register
	     for the entire function.  If so, set ZERO_DREG and ZERO_AREG.  */

	  /* First see if we could load the value into a data register
	     since that's the most efficient way.  */
	  if (areg_count > 1
	      && (!regs_ever_live[2] || !regs_ever_live[3]))
	    {
	      if (!regs_ever_live[2])
		{
		  regs_ever_live[2] = 1;
		  zero_dreg = gen_rtx_REG (HImode, 2);
		}
	      if (!regs_ever_live[3])
		{
		  regs_ever_live[3] = 1;
		  zero_dreg = gen_rtx_REG (HImode, 3);
		}
	    }

	  /* Now see if we could load the value into an address register.  */
	  if (zero_dreg == NULL_RTX
	      && areg_count > 2
	      && (!regs_ever_live[5] || !regs_ever_live[6]))
	    {
	      if (!regs_ever_live[5])
		{
		  regs_ever_live[5] = 1;
		  zero_areg = gen_rtx_REG (HImode, 5);
		}
	      if (!regs_ever_live[6])
		{
		  regs_ever_live[6] = 1;
		  zero_areg = gen_rtx_REG (HImode, 6);
		}
	    }

	  if (zero_dreg)
	    emit_move_insn (zero_dreg, const0_rtx);

	  if (zero_areg)
	    emit_move_insn (zero_areg, const0_rtx);

	  return;
	}
    }

  out_of_line_epilogue = 0;

  /* Temporarily stuff the static chain onto the stack so we can
     use a0 as a scratch register during the prologue.  */
  if (current_function_needs_context)
    {
      emit_insn (gen_addpsi3 (stack_pointer_rtx, stack_pointer_rtx,
			      GEN_INT (-4)));
      emit_move_insn (gen_rtx_MEM (PSImode, stack_pointer_rtx),
		      gen_rtx_REG (PSImode, STATIC_CHAIN_REGNUM));
    }

  if (frame_pointer_needed)
    {
      /* Store a2 into a0 temporarily.  */
      emit_move_insn (gen_rtx_REG (PSImode, 4), frame_pointer_rtx);

      /* Set up the frame pointer.  */
      emit_move_insn (frame_pointer_rtx, stack_pointer_rtx);
    }

  /* Make any necessary space for the saved registers and local frame.  */
  if (size)
    emit_insn (gen_addpsi3 (stack_pointer_rtx, stack_pointer_rtx,
			    GEN_INT (-size)));

  /* Save the callee saved registers.  They're saved into the top
     of the frame, using the stack pointer.  */
  for (i = 0, offset = outgoing_args_size;
       i < FIRST_PSEUDO_REGISTER; i++)
    {
      if ((regs_ever_live[i] && !call_used_regs[i] && ! fixed_regs[i])
	  || (i == FRAME_POINTER_REGNUM && frame_pointer_needed))
	{
	  int regno;

	  /* If we're saving the frame pointer, then it will be found in
	     register 4 (a0).  */
	  regno = (i == FRAME_POINTER_REGNUM && frame_pointer_needed) ? 4 : i;
	
	  emit_move_insn (gen_rtx_MEM (PSImode,
				       plus_constant (stack_pointer_rtx,
						      offset)),
			  gen_rtx_REG (PSImode, regno));
	  offset += 4;
	}
    }

  /* Now put the static chain back where the rest of the function
     expects to find it.  */
  if (current_function_needs_context)
    {
      emit_move_insn (gen_rtx_REG (PSImode, STATIC_CHAIN_REGNUM),
		      gen_rtx (MEM, PSImode,
			       gen_rtx_PLUS (PSImode, stack_pointer_rtx,
					     GEN_INT (size))));
    }
}

/* Expand the epilogue into RTL.  */
void
expand_epilogue ()
{
  unsigned int size;
  unsigned int outgoing_args_size = current_function_outgoing_args_size;
  int offset, i, temp_regno;
  rtx basereg;

  size = total_frame_size ();

  if (DECL_RESULT (current_function_decl)
      && DECL_RTL (DECL_RESULT (current_function_decl))
      && REG_P (DECL_RTL (DECL_RESULT (current_function_decl))))
    temp_regno = (REGNO (DECL_RTL (DECL_RESULT (current_function_decl))) == 4
		  ? 0 : 4);
  else
    temp_regno = 4;

  /* Emit an out of line epilogue sequence if it's profitable to do so.  */
  if (out_of_line_epilogue)
    {
      /* If there were no outgoing arguments and no local frame, then
	 we will be able to omit the rts at the end of this function,
	 so just jump to the epilogue_noreturn routine.  */
      if (get_frame_size () == 0 && outgoing_args_size == 0)
	{
	  emit_jump_insn (gen_outline_epilogue_jump ());
	  return;
	}

      if (outgoing_args_size)
	emit_insn (gen_addpsi3 (stack_pointer_rtx, stack_pointer_rtx,
				GEN_INT (outgoing_args_size)));

      if (temp_regno == 0)
	emit_insn (gen_outline_epilogue_call_d0 ());
      else if (temp_regno == 4)
	emit_insn (gen_outline_epilogue_call_a0 ());

      if (get_frame_size () != 0)
	emit_insn (gen_addpsi3 (stack_pointer_rtx, stack_pointer_rtx,
				GEN_INT (size - outgoing_args_size - 16)));
      emit_jump_insn (gen_return_internal ());
      return;
    }

  /* Registers are restored from the frame pointer if we have one,
     else they're restored from the stack pointer.  Figure out
     the appropriate offset to the register save area for both cases.  */
  if (frame_pointer_needed)
    {
      basereg = frame_pointer_rtx;
      offset = -(size - outgoing_args_size);
    }
  else
    {
      basereg = stack_pointer_rtx;
      offset = outgoing_args_size;
    }

  /* Restore each register.  */
  for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
    {
      if ((regs_ever_live[i] && !call_used_regs[i] && ! fixed_regs[i])
	  || (i == FRAME_POINTER_REGNUM && frame_pointer_needed))
	{
	  int regno;

	  /* Restore the frame pointer (if it exists) into a temporary
	     register.  */
	  regno = ((i == FRAME_POINTER_REGNUM && frame_pointer_needed)
		   ? temp_regno : i);
	
	  emit_move_insn (gen_rtx_REG (PSImode, regno),
			  gen_rtx_MEM (PSImode,
				       plus_constant (basereg, offset)));
	  offset += 4;
	}
    }

  if (frame_pointer_needed)
    {
      /* Deallocate this frame's stack.  */
      emit_move_insn (stack_pointer_rtx, frame_pointer_rtx);
      /* Restore the old frame pointer.  */
      emit_move_insn (frame_pointer_rtx, gen_rtx_REG (PSImode, temp_regno));
    }
  else if (size)
    {
      /* Deallocate this function's stack.  */
      emit_insn (gen_addpsi3 (stack_pointer_rtx, stack_pointer_rtx,
			      GEN_INT (size)));
    }

  /* If we had to allocate a slot to save the context pointer,
     then it must be deallocated here.  */
  if (current_function_needs_context)
    emit_insn (gen_addpsi3 (stack_pointer_rtx, stack_pointer_rtx, GEN_INT (4)));

  /* Emit the return insn, if this function had no stack, then we
     can use the standard return (which allows more optimizations),
     else we have to use the special one which inhibits optimizations.  */
  if (size == 0 && !current_function_needs_context)
    emit_jump_insn (gen_return ());
  else
    emit_jump_insn (gen_return_internal ());
}

/* Update the condition code from the insn.  */

void
notice_update_cc (body, insn)
     rtx body;
     rtx insn;
{
  switch (get_attr_cc (insn))
    {
    case CC_NONE:
      /* Insn does not affect CC at all.  */
      break;

    case CC_NONE_0HIT:
      /* Insn does not change CC, but the 0'th operand has been changed.  */
      if (cc_status.value1 != 0
	  && reg_overlap_mentioned_p (recog_data.operand[0], cc_status.value1))
	cc_status.value1 = 0;
      break;

    case CC_SET_ZN:
      /* Insn sets the Z,N flags of CC to recog_data.operand[0].
	 V,C is in an unusable state.  */
      CC_STATUS_INIT;
      cc_status.flags |= CC_OVERFLOW_UNUSABLE | CC_NO_CARRY;
      cc_status.value1 = recog_data.operand[0];
      break;

    case CC_SET_ZNV:
      /* Insn sets the Z,N,V flags of CC to recog_data.operand[0].
	 C is in an unusable state.  */
      CC_STATUS_INIT;
      cc_status.flags |= CC_NO_CARRY;
      cc_status.value1 = recog_data.operand[0];
      break;

    case CC_COMPARE:
      /* The insn is a compare instruction.  */
      CC_STATUS_INIT;
      cc_status.value1 = SET_SRC (body);
      break;

    case CC_CLOBBER:
      /* Insn doesn't leave CC in a usable state.  */
      CC_STATUS_INIT;
      break;

    default:
      CC_STATUS_INIT;
      break;
    }
}

/* Return true if OP is a valid call operand.  Valid call operands
   are SYMBOL_REFs and REGs.  */
int
call_address_operand (op, mode)
     rtx op;
     enum machine_mode mode ATTRIBUTE_UNUSED;
{
  return (GET_CODE (op) == SYMBOL_REF || GET_CODE (op) == REG);
}

/* Return true if OP is a memory operand with a constant address.
   A special PSImode move pattern uses this predicate.  */
int
constant_memory_operand (op, mode)
     rtx op;
     enum machine_mode mode ATTRIBUTE_UNUSED;
{
  return GET_CODE (op) == MEM && CONSTANT_ADDRESS_P (XEXP (op, 0));
}

/* Return true if OP is valid for a psi mode truncation operand.
   It must either be a memory operand which is valid for a PSImode
   address, or if it is not a memory operand at all.  */
int
psimode_truncation_operand (op, mode)
     rtx op;
     enum machine_mode mode;
{
  return (general_operand (op, mode)
	  && (GET_CODE (op) != MEM
	      || memory_address_p (PSImode, XEXP (op, 0))));
}

/* What (if any) secondary registers are needed to move IN with mode
   MODE into a register from in register class CLASS. 

   We might be able to simplify this.  */
enum reg_class
secondary_reload_class (class, mode, in, input)
     enum reg_class class;
     enum machine_mode mode;
     rtx in;
     int input;
{
  /* Memory loads less than a full word wide can't have an
     address or stack pointer destination.  They must use
     a data register as an intermediate register.  */
  if (input
      && GET_CODE (in) == MEM
      && (mode == QImode)
      && class == ADDRESS_REGS)
    return DATA_REGS;

  /* Address register stores which are not PSImode need a scratch register.  */
  if (! input
      && GET_CODE (in) == MEM
      && (mode != PSImode)
      && class == ADDRESS_REGS)
    return DATA_REGS;

  /* Otherwise assume no secondary reloads are needed.  */
  return NO_REGS;
}


/* Shifts.

   We devote a fair bit of code to getting efficient shifts since we can only
   shift one bit at a time, and each single bit shift may take multiple
   instructions.

   The basic shift methods:

     * loop shifts -- emit a loop using one (or two on H8/S) bit shifts;
     this is the default.  SHIFT_LOOP

     * inlined shifts -- emit straight line code for the shift; this is
     used when a straight line shift is about the same size or smaller
     than a loop.  We allow the inline version to be slightly longer in
     some cases as it saves a register.  SHIFT_INLINE

     * There other oddballs.  Not worth explaining.  SHIFT_SPECIAL


   HImode shifts:

     1-4    do them inline

     5-7    If ashift, then multiply, else loop.
	
     8-14 - If ashift, then multiply, if lshiftrt, then divide, else loop.
     15   - rotate the bit we want into the carry, clear the destination,
	    (use mov 0,dst, not sub as sub will clobber the carry), then
	    move bit into place.

   Don't Panic, it's not nearly as bad as the H8 shifting code!!!  */

int
nshift_operator (x, mode)
     rtx x;
     enum machine_mode mode ATTRIBUTE_UNUSED;
{
  switch (GET_CODE (x))
    {
    case ASHIFTRT:
    case LSHIFTRT:
    case ASHIFT:
      return 1;

    default:
      return 0;
    }
}

/* Called from the .md file to emit code to do shifts.
   Returns a boolean indicating success
   (currently this is always TRUE).  */

int
expand_a_shift (mode, code, operands)
     enum machine_mode mode;
     int code;
     rtx operands[];
{
  emit_move_insn (operands[0], operands[1]);

  /* need a loop to get all the bits we want  - we generate the
     code at emit time, but need to allocate a scratch reg now  */

  emit_insn (gen_rtx_PARALLEL
	     (VOIDmode,
	      gen_rtvec (2,
			 gen_rtx_SET (VOIDmode, operands[0],
				      gen_rtx (code, mode,
					       operands[0], operands[2])),
			 gen_rtx_CLOBBER (VOIDmode,
					  gen_rtx_SCRATCH (HImode)))));

  return 1;
}

/* Shift algorithm determination.

   There are various ways of doing a shift:
   SHIFT_INLINE: If the amount is small enough, just generate as many one-bit
                 shifts as we need.
   SHIFT_SPECIAL: Hand crafted assembler.
   SHIFT_LOOP:    If the above methods fail, just loop.  */

enum shift_alg
{
  SHIFT_INLINE,
  SHIFT_SPECIAL,
  SHIFT_LOOP,
  SHIFT_MAX
};

/* Symbols of the various shifts which can be used as indices.  */

enum shift_type
  {
    SHIFT_ASHIFT, SHIFT_LSHIFTRT, SHIFT_ASHIFTRT
  };

/* Symbols of the various modes which can be used as indices.  */

enum shift_mode
  {
    HIshift
  };

/* For single bit shift insns, record assembler and what bits of the
   condition code are valid afterwards (represented as various CC_FOO
   bits, 0 means CC isn't left in a usable state).  */

struct shift_insn
{
  const char *assembler;
  int cc_valid;
};

/* Assembler instruction shift table.

   These tables are used to look up the basic shifts.
   They are indexed by cpu, shift_type, and mode.
*/

static const struct shift_insn shift_one[3][3] =
{
  {
/* SHIFT_ASHIFT */
      { "add\t%0,%0", CC_OVERFLOW_UNUSABLE | CC_NO_CARRY },
  },
/* SHIFT_LSHIFTRT */
  {
      { "lsr\t%0", CC_NO_CARRY },
  },
/* SHIFT_ASHIFTRT */
  {
      { "asr\t%0", CC_NO_CARRY },
  },
};

static enum shift_alg get_shift_alg PARAMS ((enum shift_type,
					     enum machine_mode, int,
					     const char **, int *));

/* Given CPU, MODE, SHIFT_TYPE, and shift count COUNT, determine the best
   algorithm for doing the shift.  The assembler code is stored in ASSEMBLER.
   We don't achieve maximum efficiency in all cases, but the hooks are here
   to do so.

   For now we just use lots of switch statements.  Since we don't even come
   close to supporting all the cases, this is simplest.  If this function ever
   gets too big, perhaps resort to a more table based lookup.  Of course,
   at this point you may just wish to do it all in rtl.  */

static enum shift_alg
get_shift_alg (shift_type, mode, count, assembler_p, cc_valid_p)
     enum shift_type shift_type;
     enum machine_mode mode;
     int count;
     const char **assembler_p;
     int *cc_valid_p;
{
  /* The default is to loop.  */
  enum shift_alg alg = SHIFT_LOOP;
  enum shift_mode shift_mode;

  /* We don't handle negative shifts or shifts greater than the word size,
     they should have been handled already.  */

  if (count < 0 || count > GET_MODE_BITSIZE (mode))
    abort ();

  switch (mode)
    {
    case HImode:
      shift_mode = HIshift;
      break;
    default:
      abort ();
    }

  /* Assume either SHIFT_LOOP or SHIFT_INLINE.
     It is up to the caller to know that looping clobbers cc.  */
  *assembler_p = shift_one[shift_type][shift_mode].assembler;
  *cc_valid_p = shift_one[shift_type][shift_mode].cc_valid;

  /* Now look for cases we want to optimize.  */

  switch (shift_mode)
    {
    case HIshift:
      if (count <= 4)
	return SHIFT_INLINE;
      else if (count < 15 && shift_type != SHIFT_ASHIFTRT)
	{
	  switch (count)
	    {
	    case 5:
	      if (shift_type == SHIFT_ASHIFT)
		*assembler_p = "mov 32,%4\n\tmul %4,%0";
	      else if (shift_type == SHIFT_LSHIFTRT)
		*assembler_p
		  = "sub %4,%4\n\tmov %4,mdr\n\tmov 32,%4\n\tdivu %4,%0";
	      *cc_valid_p = CC_NO_CARRY;
	      return SHIFT_SPECIAL;
	    case 6:
	      if (shift_type == SHIFT_ASHIFT)
		*assembler_p = "mov 64,%4\n\tmul %4,%0";
	      else if (shift_type == SHIFT_LSHIFTRT)
		*assembler_p
		  = "sub %4,%4\n\tmov %4,mdr\n\tmov 64,%4\n\tdivu %4,%0";
	      *cc_valid_p = CC_NO_CARRY;
	      return SHIFT_SPECIAL;
	    case 7:
	      if (shift_type == SHIFT_ASHIFT)
		*assembler_p = "mov 128,%4\n\tmul %4,%0";
	      else if (shift_type == SHIFT_LSHIFTRT)
		*assembler_p
		  = "sub %4,%4\n\tmov %4,mdr\n\tmov 128,%4\n\tdivu %4,%0";
	      *cc_valid_p = CC_NO_CARRY;
	      return SHIFT_SPECIAL;
	    case 8:
	      if (shift_type == SHIFT_ASHIFT)
		*assembler_p = "mov 256,%4\n\tmul %4,%0";
	      else if (shift_type == SHIFT_LSHIFTRT)
		*assembler_p
		  = "sub %4,%4\n\tmov %4,mdr\n\tmov 256,%4\n\tdivu %4,%0";
	      *cc_valid_p = CC_NO_CARRY;
	      return SHIFT_SPECIAL;
	    case 9:
	      if (shift_type == SHIFT_ASHIFT)
		*assembler_p = "mov 512,%4\n\tmul %4,%0";
	      else if (shift_type == SHIFT_LSHIFTRT)
		*assembler_p
		  = "sub %4,%4\n\tmov %4,mdr\n\tmov 512,%4\n\tdivu %4,%0";
	      *cc_valid_p = CC_NO_CARRY;
	      return SHIFT_SPECIAL;
	    case 10:
	      if (shift_type == SHIFT_ASHIFT)
		*assembler_p = "mov 1024,%4\n\tmul %4,%0";
	      else if (shift_type == SHIFT_LSHIFTRT)
		*assembler_p
		  = "sub %4,%4\n\tmov %4,mdr\n\tmov 1024,%4\n\tdivu %4,%0";
	      *cc_valid_p = CC_NO_CARRY;
	      return SHIFT_SPECIAL;
	    case 11:
	      if (shift_type == SHIFT_ASHIFT)
		*assembler_p = "mov 2048,%4\n\tmul %4,%0";
	      else if (shift_type == SHIFT_LSHIFTRT)
		*assembler_p
		  = "sub %4,%4\n\tmov %4,mdr\n\tmov 2048,%4\n\tdivu %4,%0";
	      *cc_valid_p = CC_NO_CARRY;
	      return SHIFT_SPECIAL;
	    case 12:
	      if (shift_type == SHIFT_ASHIFT)
		*assembler_p = "mov 4096,%4\n\tmul %4,%0";
	      else if (shift_type == SHIFT_LSHIFTRT)
		*assembler_p
		  = "sub %4,%4\n\tmov %4,mdr\n\tmov 4096,%4\n\tdivu %4,%0";
	      *cc_valid_p = CC_NO_CARRY;
	      return SHIFT_SPECIAL;
	    case 13:
	      if (shift_type == SHIFT_ASHIFT)
		*assembler_p = "mov 8192,%4\n\tmul %4,%0";
	      else if (shift_type == SHIFT_LSHIFTRT)
		*assembler_p
		  = "sub %4,%4\n\tmov %4,mdr\n\tmov 8192,%4\n\tdivu %4,%0";
	      *cc_valid_p = CC_NO_CARRY;
	      return SHIFT_SPECIAL;
	    case 14:
	      if (shift_type == SHIFT_ASHIFT)
		*assembler_p = "mov 16384,%4\n\tmul %4,%0";
	      else if (shift_type == SHIFT_LSHIFTRT)
		*assembler_p
		  = "sub %4,%4\n\tmov %4,mdr\n\tmov 16384,%4\n\tdivu %4,%0";
	      *cc_valid_p = CC_NO_CARRY;
	      return SHIFT_SPECIAL;
	    }
	}
      else if (count == 15)
	{
          if (shift_type == SHIFT_ASHIFTRT)
            {
              *assembler_p = "add\t%0,%0\n\tsubc\t%0,%0\n";
              *cc_valid_p = CC_NO_CARRY;
              return SHIFT_SPECIAL;
	    }
          if (shift_type == SHIFT_LSHIFTRT)
            {
              *assembler_p = "add\t%0,%0\n\tmov 0,%0\n\trol %0\n";
              *cc_valid_p = CC_NO_CARRY;
              return SHIFT_SPECIAL;
	    }
          if (shift_type == SHIFT_ASHIFT)
            {
              *assembler_p = "ror\t%0\n\tmov 0,%0\n\tror %0\n";
              *cc_valid_p = CC_NO_CARRY;
              return SHIFT_SPECIAL;
	    }
	}
      break;

    default:
      abort ();
    }

  return alg;
}

/* Emit the assembler code for doing shifts.  */

const char *
emit_a_shift (insn, operands)
     rtx insn ATTRIBUTE_UNUSED;
     rtx *operands;
{
  static int loopend_lab;
  const char *assembler;
  int cc_valid;
  rtx shift = operands[3];
  enum machine_mode mode = GET_MODE (shift);
  enum rtx_code code = GET_CODE (shift);
  enum shift_type shift_type;
  enum shift_mode shift_mode;

  loopend_lab++;

  switch (mode)
    {
    case HImode:
      shift_mode = HIshift;
      break;
    default:
      abort ();
    }

  switch (code)
    {
    case ASHIFTRT:
      shift_type = SHIFT_ASHIFTRT;
      break;
    case LSHIFTRT:
      shift_type = SHIFT_LSHIFTRT;
      break;
    case ASHIFT:
      shift_type = SHIFT_ASHIFT;
      break;
    default:
      abort ();
    }

  if (GET_CODE (operands[2]) != CONST_INT)
    {
      /* Indexing by reg, so have to loop and test at top */
      output_asm_insn ("mov	%2,%4", operands);
      output_asm_insn ("cmp	0,%4", operands);
      fprintf (asm_out_file, "\tble	.Lle%d\n", loopend_lab);

      /* Get the assembler code to do one shift.  */
      get_shift_alg (shift_type, mode, 1, &assembler, &cc_valid);
    }
  else
    {
      int n = INTVAL (operands[2]);
      enum shift_alg alg;

      /* If the count is negative, make it 0.  */
      if (n < 0)
	n = 0;
      /* If the count is too big, truncate it.
         ANSI says shifts of GET_MODE_BITSIZE are undefined - we choose to
	 do the intuitive thing.  */
      else if (n > GET_MODE_BITSIZE (mode))
	n = GET_MODE_BITSIZE (mode);

      alg = get_shift_alg (shift_type, mode, n, &assembler, &cc_valid);


      switch (alg)
	{
	case SHIFT_INLINE:
	  /* Emit one bit shifts.  */
	  while (n > 0)
	    {
	      output_asm_insn (assembler, operands);
	      n -= 1;
	    }

	  /* Keep track of CC.  */
	  if (cc_valid)
	    {
	      cc_status.value1 = operands[0];
	      cc_status.flags |= cc_valid;
	    }
	  return "";

	case SHIFT_SPECIAL:
	  output_asm_insn (assembler, operands);

	  /* Keep track of CC.  */
	  if (cc_valid)
	    {
	      cc_status.value1 = operands[0];
	      cc_status.flags |= cc_valid;
	    }
	  return "";
	}

	{
	  fprintf (asm_out_file, "\tmov	%d,%s\n", n,
		   reg_names[REGNO (operands[4])]);
	  fprintf (asm_out_file, ".Llt%d:\n", loopend_lab);
	  output_asm_insn (assembler, operands);
	  output_asm_insn ("add	-1,%4", operands);
	  fprintf (asm_out_file, "\tbne	.Llt%d\n", loopend_lab);
	  return "";
	}
    }

  fprintf (asm_out_file, ".Llt%d:\n", loopend_lab);
  output_asm_insn (assembler, operands);
  output_asm_insn ("add	-1,%4", operands);
  fprintf (asm_out_file, "\tbne	.Llt%d\n", loopend_lab);
  fprintf (asm_out_file, ".Lle%d:\n", loopend_lab);

  return "";
}

/* Return an RTX to represent where a value with mode MODE will be returned
   from a function.  If the result is 0, the argument is pushed.  */

rtx
function_arg (cum, mode, type, named)
     CUMULATIVE_ARGS *cum;
     enum machine_mode mode;
     tree type;
     int named;
{
  rtx result = 0;
  int size, align;

  /* We only support using 2 data registers as argument registers.  */
  int nregs = 2;

  /* Only pass named arguments in registers.  */
  if (!named)
    return NULL_RTX;

  /* Figure out the size of the object to be passed.  We lie and claim
     PSImode values are only two bytes since they fit in a single
     register.  */
  if (mode == BLKmode)
    size = int_size_in_bytes (type);
  else if (mode == PSImode)
    size = 2;
  else
    size = GET_MODE_SIZE (mode);

  /* Figure out the alignment of the object to be passed.  */
    align = size;

  cum->nbytes = (cum->nbytes + 1) & ~1;

  /* Don't pass this arg via a register if all the argument registers
     are used up.  */
  if (cum->nbytes + size > nregs * UNITS_PER_WORD)
    return 0;

  switch (cum->nbytes / UNITS_PER_WORD)
    {
    case 0:
      result = gen_rtx_REG (mode, 0);
      break;
    case 1:
      result = gen_rtx_REG (mode, 1);
      break;
    default:
      result = 0;
    }

  return result;
}

/* Return the number of registers to use for an argument passed partially
   in registers and partially in memory.  */

int
function_arg_partial_nregs (cum, mode, type, named)
     CUMULATIVE_ARGS *cum;
     enum machine_mode mode;
     tree type;
     int named;
{
  int size, align;

  /* We only support using 2 data registers as argument registers.  */
  int nregs = 2;

  return 0;
  /* Only pass named arguments in registers.  */
  if (!named)
    return 0;

  /* Figure out the size of the object to be passed.  */
  if (mode == BLKmode)
    size = int_size_in_bytes (type);
  else if (mode == PSImode)
    size = 2;
  else
    size = GET_MODE_SIZE (mode);

  /* Figure out the alignment of the object to be passed.  */
  align = size;

  cum->nbytes = (cum->nbytes + 1) & ~1;

  /* Don't pass this arg via a register if all the argument registers
     are used up.  */
  if (cum->nbytes > nregs * UNITS_PER_WORD)
    return 0;

  if (cum->nbytes + size <= nregs * UNITS_PER_WORD)
    return 0;

  /* Don't pass this arg via a register if it would be split between
     registers and memory.  */
  if (type == NULL_TREE
      && cum->nbytes + size > nregs * UNITS_PER_WORD)
    return 0;

  return (nregs * UNITS_PER_WORD - cum->nbytes) / UNITS_PER_WORD;
}

rtx
mn10200_va_arg (valist, type)
     tree valist, type;
{
  HOST_WIDE_INT align, rsize;
  tree t, ptr, pptr;

  /* Compute the rounded size of the type.  */
  align = PARM_BOUNDARY / BITS_PER_UNIT;
  rsize = (((int_size_in_bytes (type) + align - 1) / align) * align);

  t = build (POSTINCREMENT_EXPR, TREE_TYPE (valist), valist, 
	     build_int_2 ((rsize > 8 ? 4 : rsize), 0));
  TREE_SIDE_EFFECTS (t) = 1;

  ptr = build_pointer_type (type);

  /* "Large" types are passed by reference.  */
  if (rsize > 8)
    {
      pptr = build_pointer_type (ptr);
      t = build1 (NOP_EXPR, pptr, t);
      TREE_SIDE_EFFECTS (t) = 1;

      t = build1 (INDIRECT_REF, ptr, t);
      TREE_SIDE_EFFECTS (t) = 1;
    }
  else
    {
      t = build1 (NOP_EXPR, ptr, t);
      TREE_SIDE_EFFECTS (t) = 1;
    }

  /* Calculate!  */
  return force_reg (Pmode, expand_expr (t, NULL_RTX, Pmode, EXPAND_NORMAL));
}

const char *
output_tst (operand, insn)
     rtx operand, insn;
{
  
  rtx temp;
  int past_call = 0;

  /* Only tst insns using address registers can be optimized.  */
  if (REGNO_REG_CLASS (REGNO (operand)) != ADDRESS_REGS)
    return "cmp 0,%0";

  /* If testing an address register against zero, we can do better if
     we know there's a register already holding the value zero.  First
     see if a global register has been set to zero, else we do a search
     for a register holding zero, if both of those fail, then we use a
     compare against zero.  */
  if (zero_dreg || zero_areg)
    {
      rtx xoperands[2];
      xoperands[0] = operand;
      xoperands[1] = zero_dreg ? zero_dreg : zero_areg;

      output_asm_insn ("cmp %1,%0", xoperands);
      return "";
    }

  /* We can save a byte if we can find a register which has the value
     zero in it.  */
  temp = PREV_INSN (insn);
  while (temp)
    {
      rtx set;

      /* We allow the search to go through call insns.  We record
	 the fact that we've past a CALL_INSN and reject matches which
	 use call clobbered registers.  */
      if (GET_CODE (temp) == CODE_LABEL
	  || GET_CODE (temp) == JUMP_INSN
	  || GET_CODE (temp) == BARRIER)
	break;

      if (GET_CODE (temp) == CALL_INSN)
	past_call = 1;

      if (GET_CODE (temp) == NOTE)
	{
	  temp = PREV_INSN (temp);
	  continue;
	}

      /* It must be an insn, see if it is a simple set. */
      set = single_set (temp);
      if (!set)
	{
	  temp = PREV_INSN (temp);
	  continue;
	}

      /* Are we setting a register to zero?

	 If it's a call clobbered register, have we past a call?  */
      if (REG_P (SET_DEST (set))
	  && SET_SRC (set) == CONST0_RTX (GET_MODE (SET_DEST (set)))
	  && !reg_set_between_p (SET_DEST (set), temp, insn)
	  && (!past_call 
	      || !call_used_regs[REGNO (SET_DEST (set))]))
	{
	  rtx xoperands[2];
	  xoperands[0] = operand;
	  xoperands[1] = SET_DEST (set);

	  output_asm_insn ("cmp %1,%0", xoperands);
	  return "";
	}
      temp = PREV_INSN (temp);
    }
  return "cmp 0,%0";
}

/* Return nonzero if OP is a valid operand for a {zero,sign}_extendpsisi
   instruction.

   It accepts anything that is a general operand or the sum of the
   stack pointer and a general operand.  */
int
extendpsi_operand (op, mode)
     rtx op;
     enum machine_mode mode;
{
  return (general_operand (op, mode)
	  || (GET_CODE (op) == PLUS
	      && XEXP (op, 0) == stack_pointer_rtx
	      && general_operand (XEXP (op, 1), VOIDmode)));
}