1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
|
/* Subroutines used for code generation of Andes NDS32 cpu for GNU compiler
Copyright (C) 2012-2015 Free Software Foundation, Inc.
Contributed by Andes Technology Corporation.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published
by the Free Software Foundation; either version 3, or (at your
option) any later version.
GCC is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
License for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
/* ------------------------------------------------------------------------ */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "alias.h"
#include "symtab.h"
#include "tree.h"
#include "stor-layout.h"
#include "varasm.h"
#include "calls.h"
#include "rtl.h"
#include "regs.h"
#include "hard-reg-set.h"
#include "insn-config.h" /* Required by recog.h. */
#include "conditions.h"
#include "output.h"
#include "insn-attr.h" /* For DFA state_t. */
#include "insn-codes.h" /* For CODE_FOR_xxx. */
#include "reload.h" /* For push_reload(). */
#include "flags.h"
#include "function.h"
#include "insn-config.h"
#include "expmed.h"
#include "dojump.h"
#include "explow.h"
#include "emit-rtl.h"
#include "stmt.h"
#include "expr.h"
#include "recog.h"
#include "diagnostic-core.h"
#include "dominance.h"
#include "cfg.h"
#include "cfgrtl.h"
#include "cfganal.h"
#include "lcm.h"
#include "cfgbuild.h"
#include "cfgcleanup.h"
#include "predict.h"
#include "basic-block.h"
#include "df.h"
#include "tm_p.h"
#include "tm-constrs.h"
#include "optabs.h" /* For GEN_FCN. */
#include "target.h"
#include "target-def.h"
#include "langhooks.h" /* For add_builtin_function(). */
#include "builtins.h"
/* ------------------------------------------------------------------------ */
/* This file is divided into five parts:
PART 1: Auxiliary static variable definitions and
target hook static variable definitions.
PART 2: Auxiliary static function definitions.
PART 3: Implement target hook stuff definitions.
PART 4: Implemet extern function definitions,
the prototype is in nds32-protos.h.
PART 5: Initialize target hook structure and definitions. */
/* ------------------------------------------------------------------------ */
/* PART 1: Auxiliary static variable definitions and
target hook static variable definitions. */
/* Define intrinsic register names.
Please refer to nds32_intrinsic.h file, the index is corresponding to
'enum nds32_intrinsic_registers' data type values.
NOTE that the base value starting from 1024. */
static const char * const nds32_intrinsic_register_names[] =
{
"$PSW", "$IPSW", "$ITYPE", "$IPC"
};
/* Defining target-specific uses of __attribute__. */
static const struct attribute_spec nds32_attribute_table[] =
{
/* Syntax: { name, min_len, max_len, decl_required, type_required,
function_type_required, handler, affects_type_identity } */
/* The interrupt vid: [0-63]+ (actual vector number starts from 9 to 72). */
{ "interrupt", 1, 64, false, false, false, NULL, false },
/* The exception vid: [1-8]+ (actual vector number starts from 1 to 8). */
{ "exception", 1, 8, false, false, false, NULL, false },
/* Argument is user's interrupt numbers. The vector number is always 0. */
{ "reset", 1, 1, false, false, false, NULL, false },
/* The attributes describing isr nested type. */
{ "nested", 0, 0, false, false, false, NULL, false },
{ "not_nested", 0, 0, false, false, false, NULL, false },
{ "nested_ready", 0, 0, false, false, false, NULL, false },
/* The attributes describing isr register save scheme. */
{ "save_all", 0, 0, false, false, false, NULL, false },
{ "partial_save", 0, 0, false, false, false, NULL, false },
/* The attributes used by reset attribute. */
{ "nmi", 1, 1, false, false, false, NULL, false },
{ "warm", 1, 1, false, false, false, NULL, false },
/* The attribute telling no prologue/epilogue. */
{ "naked", 0, 0, false, false, false, NULL, false },
/* The last attribute spec is set to be NULL. */
{ NULL, 0, 0, false, false, false, NULL, false }
};
/* ------------------------------------------------------------------------ */
/* PART 2: Auxiliary static function definitions. */
/* Function to save and restore machine-specific function data. */
static struct machine_function *
nds32_init_machine_status (void)
{
struct machine_function *machine;
machine = ggc_cleared_alloc<machine_function> ();
/* Initially assume this function needs prologue/epilogue. */
machine->naked_p = 0;
/* Initially assume this function does NOT use fp_as_gp optimization. */
machine->fp_as_gp_p = 0;
return machine;
}
/* Function to compute stack frame size and
store into cfun->machine structure. */
static void
nds32_compute_stack_frame (void)
{
int r;
int block_size;
/* Because nds32_compute_stack_frame() will be called from different place,
everytime we enter this function, we have to assume this function
needs prologue/epilogue. */
cfun->machine->naked_p = 0;
/* Get variadic arguments size to prepare pretend arguments and
we will push them into stack at prologue by ourself. */
cfun->machine->va_args_size = crtl->args.pretend_args_size;
if (cfun->machine->va_args_size != 0)
{
cfun->machine->va_args_first_regno
= NDS32_GPR_ARG_FIRST_REGNUM
+ NDS32_MAX_GPR_REGS_FOR_ARGS
- (crtl->args.pretend_args_size / UNITS_PER_WORD);
cfun->machine->va_args_last_regno
= NDS32_GPR_ARG_FIRST_REGNUM + NDS32_MAX_GPR_REGS_FOR_ARGS - 1;
}
else
{
cfun->machine->va_args_first_regno = SP_REGNUM;
cfun->machine->va_args_last_regno = SP_REGNUM;
}
/* Important: We need to make sure that varargs area is 8-byte alignment. */
block_size = cfun->machine->va_args_size;
if (!NDS32_DOUBLE_WORD_ALIGN_P (block_size))
{
cfun->machine->va_args_area_padding_bytes
= NDS32_ROUND_UP_DOUBLE_WORD (block_size) - block_size;
}
/* Get local variables, incoming variables, and temporary variables size.
Note that we need to make sure it is 8-byte alignment because
there may be no padding bytes if we are using LRA. */
cfun->machine->local_size = NDS32_ROUND_UP_DOUBLE_WORD (get_frame_size ());
/* Get outgoing arguments size. */
cfun->machine->out_args_size = crtl->outgoing_args_size;
/* If $fp value is required to be saved on stack, it needs 4 bytes space.
Check whether $fp is ever live. */
cfun->machine->fp_size = (df_regs_ever_live_p (FP_REGNUM)) ? 4 : 0;
/* If $gp value is required to be saved on stack, it needs 4 bytes space.
Check whether we are using PIC code genration. */
cfun->machine->gp_size = (flag_pic) ? 4 : 0;
/* If $lp value is required to be saved on stack, it needs 4 bytes space.
Check whether $lp is ever live. */
cfun->machine->lp_size = (df_regs_ever_live_p (LP_REGNUM)) ? 4 : 0;
/* Initially there is no padding bytes. */
cfun->machine->callee_saved_area_gpr_padding_bytes = 0;
/* Calculate the bytes of saving callee-saved registers on stack. */
cfun->machine->callee_saved_gpr_regs_size = 0;
cfun->machine->callee_saved_first_gpr_regno = SP_REGNUM;
cfun->machine->callee_saved_last_gpr_regno = SP_REGNUM;
/* Currently, there is no need to check $r28~$r31
because we will save them in another way. */
for (r = 0; r < 28; r++)
{
if (NDS32_REQUIRED_CALLEE_SAVED_P (r))
{
/* Mark the first required callee-saved register
(only need to set it once).
If first regno == SP_REGNUM, we can tell that
it is the first time to be here. */
if (cfun->machine->callee_saved_first_gpr_regno == SP_REGNUM)
cfun->machine->callee_saved_first_gpr_regno = r;
/* Mark the last required callee-saved register. */
cfun->machine->callee_saved_last_gpr_regno = r;
}
}
/* Check if this function can omit prologue/epilogue code fragment.
If there is 'naked' attribute in this function,
we can set 'naked_p' flag to indicate that
we do not have to generate prologue/epilogue.
Or, if all the following conditions succeed,
we can set this function 'naked_p' as well:
condition 1: first_regno == last_regno == SP_REGNUM,
which means we do not have to save
any callee-saved registers.
condition 2: Both $lp and $fp are NOT live in this function,
which means we do not need to save them and there
is no outgoing size.
condition 3: There is no local_size, which means
we do not need to adjust $sp. */
if (lookup_attribute ("naked", DECL_ATTRIBUTES (current_function_decl))
|| (cfun->machine->callee_saved_first_gpr_regno == SP_REGNUM
&& cfun->machine->callee_saved_last_gpr_regno == SP_REGNUM
&& !df_regs_ever_live_p (FP_REGNUM)
&& !df_regs_ever_live_p (LP_REGNUM)
&& cfun->machine->local_size == 0))
{
/* Set this function 'naked_p' and other functions can check this flag.
Note that in nds32 port, the 'naked_p = 1' JUST means there is no
callee-saved, local size, and outgoing size.
The varargs space and ret instruction may still present in
the prologue/epilogue expanding. */
cfun->machine->naked_p = 1;
/* No need to save $fp, $gp, and $lp.
We should set these value to be zero
so that nds32_initial_elimination_offset() can work properly. */
cfun->machine->fp_size = 0;
cfun->machine->gp_size = 0;
cfun->machine->lp_size = 0;
/* If stack usage computation is required,
we need to provide the static stack size. */
if (flag_stack_usage_info)
current_function_static_stack_size = 0;
/* No need to do following adjustment, return immediately. */
return;
}
/* Adjustment for v3push instructions:
If we are using v3push (push25/pop25) instructions,
we need to make sure Rb is $r6 and Re is
located on $r6, $r8, $r10, or $r14.
Some results above will be discarded and recomputed.
Note that it is only available under V3/V3M ISA and we
DO NOT setup following stuff for isr or variadic function. */
if (TARGET_V3PUSH
&& !nds32_isr_function_p (current_function_decl)
&& (cfun->machine->va_args_size == 0))
{
/* Recompute:
cfun->machine->fp_size
cfun->machine->gp_size
cfun->machine->lp_size
cfun->machine->callee_saved_regs_first_regno
cfun->machine->callee_saved_regs_last_regno */
/* For v3push instructions, $fp, $gp, and $lp are always saved. */
cfun->machine->fp_size = 4;
cfun->machine->gp_size = 4;
cfun->machine->lp_size = 4;
/* Remember to set Rb = $r6. */
cfun->machine->callee_saved_first_gpr_regno = 6;
if (cfun->machine->callee_saved_last_gpr_regno <= 6)
{
/* Re = $r6 */
cfun->machine->callee_saved_last_gpr_regno = 6;
}
else if (cfun->machine->callee_saved_last_gpr_regno <= 8)
{
/* Re = $r8 */
cfun->machine->callee_saved_last_gpr_regno = 8;
}
else if (cfun->machine->callee_saved_last_gpr_regno <= 10)
{
/* Re = $r10 */
cfun->machine->callee_saved_last_gpr_regno = 10;
}
else if (cfun->machine->callee_saved_last_gpr_regno <= 14)
{
/* Re = $r14 */
cfun->machine->callee_saved_last_gpr_regno = 14;
}
else if (cfun->machine->callee_saved_last_gpr_regno == SP_REGNUM)
{
/* If last_regno is SP_REGNUM, which means
it is never changed, so set it to Re = $r6. */
cfun->machine->callee_saved_last_gpr_regno = 6;
}
else
{
/* The program flow should not go here. */
gcc_unreachable ();
}
}
/* We have correctly set callee_saved_regs_first_regno
and callee_saved_regs_last_regno.
Initially, the callee_saved_regs_size is supposed to be 0.
As long as callee_saved_regs_last_regno is not SP_REGNUM,
we can update callee_saved_regs_size with new size. */
if (cfun->machine->callee_saved_last_gpr_regno != SP_REGNUM)
{
/* Compute pushed size of callee-saved registers. */
cfun->machine->callee_saved_gpr_regs_size
= 4 * (cfun->machine->callee_saved_last_gpr_regno
- cfun->machine->callee_saved_first_gpr_regno
+ 1);
}
/* Important: We need to make sure that
(fp_size + gp_size + lp_size + callee_saved_regs_size)
is 8-byte alignment.
If it is not, calculate the padding bytes. */
block_size = cfun->machine->fp_size
+ cfun->machine->gp_size
+ cfun->machine->lp_size
+ cfun->machine->callee_saved_gpr_regs_size;
if (!NDS32_DOUBLE_WORD_ALIGN_P (block_size))
{
cfun->machine->callee_saved_area_gpr_padding_bytes
= NDS32_ROUND_UP_DOUBLE_WORD (block_size) - block_size;
}
/* If stack usage computation is required,
we need to provide the static stack size. */
if (flag_stack_usage_info)
{
current_function_static_stack_size
= NDS32_ROUND_UP_DOUBLE_WORD (block_size)
+ cfun->machine->local_size
+ cfun->machine->out_args_size;
}
}
/* Function to create a parallel rtx pattern
which presents stack push multiple behavior.
The overall concept are:
"push registers to memory",
"adjust stack pointer". */
static void
nds32_emit_stack_push_multiple (rtx Rb, rtx Re, rtx En4, bool vaarg_p)
{
int regno;
int extra_count;
int num_use_regs;
int par_index;
int offset;
int save_fp, save_gp, save_lp;
rtx reg;
rtx mem;
rtx push_rtx;
rtx adjust_sp_rtx;
rtx parallel_insn;
rtx dwarf;
/* We need to provide a customized rtx which contains
necessary information for data analysis,
so we create a parallel rtx like this:
(parallel [(set (mem (plus (reg:SI SP_REGNUM) (const_int -32)))
(reg:SI Rb))
(set (mem (plus (reg:SI SP_REGNUM) (const_int -28)))
(reg:SI Rb+1))
...
(set (mem (plus (reg:SI SP_REGNUM) (const_int -16)))
(reg:SI Re))
(set (mem (plus (reg:SI SP_REGNUM) (const_int -12)))
(reg:SI FP_REGNUM))
(set (mem (plus (reg:SI SP_REGNUM) (const_int -8)))
(reg:SI GP_REGNUM))
(set (mem (plus (reg:SI SP_REGNUM) (const_int -4)))
(reg:SI LP_REGNUM))
(set (reg:SI SP_REGNUM)
(plus (reg:SI SP_REGNUM) (const_int -32)))]) */
/* Determine whether we need to save $fp, $gp, or $lp. */
save_fp = INTVAL (En4) & 0x8;
save_gp = INTVAL (En4) & 0x4;
save_lp = INTVAL (En4) & 0x2;
/* Calculate the number of registers that will be pushed. */
extra_count = 0;
if (save_fp)
extra_count++;
if (save_gp)
extra_count++;
if (save_lp)
extra_count++;
/* Note that Rb and Re may be SP_REGNUM. DO NOT count it in. */
if (REGNO (Rb) == SP_REGNUM && REGNO (Re) == SP_REGNUM)
num_use_regs = extra_count;
else
num_use_regs = REGNO (Re) - REGNO (Rb) + 1 + extra_count;
/* In addition to used registers,
we need one more space for (set sp sp-x) rtx. */
parallel_insn = gen_rtx_PARALLEL (VOIDmode,
rtvec_alloc (num_use_regs + 1));
par_index = 0;
/* Initialize offset and start to create push behavior. */
offset = -(num_use_regs * 4);
/* Create (set mem regX) from Rb, Rb+1 up to Re. */
for (regno = REGNO (Rb); regno <= (int) REGNO (Re); regno++)
{
/* Rb and Re may be SP_REGNUM.
We need to break this loop immediately. */
if (regno == SP_REGNUM)
break;
reg = gen_rtx_REG (SImode, regno);
mem = gen_frame_mem (SImode, plus_constant (Pmode,
stack_pointer_rtx,
offset));
push_rtx = gen_rtx_SET (mem, reg);
XVECEXP (parallel_insn, 0, par_index) = push_rtx;
RTX_FRAME_RELATED_P (push_rtx) = 1;
offset = offset + 4;
par_index++;
}
/* Create (set mem fp), (set mem gp), and (set mem lp) if necessary. */
if (save_fp)
{
reg = gen_rtx_REG (SImode, FP_REGNUM);
mem = gen_frame_mem (SImode, plus_constant (Pmode,
stack_pointer_rtx,
offset));
push_rtx = gen_rtx_SET (mem, reg);
XVECEXP (parallel_insn, 0, par_index) = push_rtx;
RTX_FRAME_RELATED_P (push_rtx) = 1;
offset = offset + 4;
par_index++;
}
if (save_gp)
{
reg = gen_rtx_REG (SImode, GP_REGNUM);
mem = gen_frame_mem (SImode, plus_constant (Pmode,
stack_pointer_rtx,
offset));
push_rtx = gen_rtx_SET (mem, reg);
XVECEXP (parallel_insn, 0, par_index) = push_rtx;
RTX_FRAME_RELATED_P (push_rtx) = 1;
offset = offset + 4;
par_index++;
}
if (save_lp)
{
reg = gen_rtx_REG (SImode, LP_REGNUM);
mem = gen_frame_mem (SImode, plus_constant (Pmode,
stack_pointer_rtx,
offset));
push_rtx = gen_rtx_SET (mem, reg);
XVECEXP (parallel_insn, 0, par_index) = push_rtx;
RTX_FRAME_RELATED_P (push_rtx) = 1;
offset = offset + 4;
par_index++;
}
/* Create (set sp sp-x). */
/* We need to re-calculate the offset value again for adjustment. */
offset = -(num_use_regs * 4);
adjust_sp_rtx
= gen_rtx_SET (stack_pointer_rtx,
plus_constant (Pmode, stack_pointer_rtx, offset));
XVECEXP (parallel_insn, 0, par_index) = adjust_sp_rtx;
RTX_FRAME_RELATED_P (adjust_sp_rtx) = 1;
parallel_insn = emit_insn (parallel_insn);
/* The insn rtx 'parallel_insn' will change frame layout.
We need to use RTX_FRAME_RELATED_P so that GCC is able to
generate CFI (Call Frame Information) stuff. */
RTX_FRAME_RELATED_P (parallel_insn) = 1;
/* Don't use GCC's logic for CFI info if we are generate a push for VAARG
since we will not restore those register at epilogue. */
if (vaarg_p)
{
dwarf = alloc_reg_note (REG_CFA_ADJUST_CFA,
copy_rtx (adjust_sp_rtx), NULL_RTX);
REG_NOTES (parallel_insn) = dwarf;
}
}
/* Function to create a parallel rtx pattern
which presents stack pop multiple behavior.
The overall concept are:
"pop registers from memory",
"adjust stack pointer". */
static void
nds32_emit_stack_pop_multiple (rtx Rb, rtx Re, rtx En4)
{
int regno;
int extra_count;
int num_use_regs;
int par_index;
int offset;
int save_fp, save_gp, save_lp;
rtx reg;
rtx mem;
rtx pop_rtx;
rtx adjust_sp_rtx;
rtx parallel_insn;
rtx dwarf = NULL_RTX;
/* We need to provide a customized rtx which contains
necessary information for data analysis,
so we create a parallel rtx like this:
(parallel [(set (reg:SI Rb)
(mem (reg:SI SP_REGNUM)))
(set (reg:SI Rb+1)
(mem (plus (reg:SI SP_REGNUM) (const_int 4))))
...
(set (reg:SI Re)
(mem (plus (reg:SI SP_REGNUM) (const_int 16))))
(set (reg:SI FP_REGNUM)
(mem (plus (reg:SI SP_REGNUM) (const_int 20))))
(set (reg:SI GP_REGNUM)
(mem (plus (reg:SI SP_REGNUM) (const_int 24))))
(set (reg:SI LP_REGNUM)
(mem (plus (reg:SI SP_REGNUM) (const_int 28))))
(set (reg:SI SP_REGNUM)
(plus (reg:SI SP_REGNUM) (const_int 32)))]) */
/* Determine whether we need to restore $fp, $gp, or $lp. */
save_fp = INTVAL (En4) & 0x8;
save_gp = INTVAL (En4) & 0x4;
save_lp = INTVAL (En4) & 0x2;
/* Calculate the number of registers that will be poped. */
extra_count = 0;
if (save_fp)
extra_count++;
if (save_gp)
extra_count++;
if (save_lp)
extra_count++;
/* Note that Rb and Re may be SP_REGNUM. DO NOT count it in. */
if (REGNO (Rb) == SP_REGNUM && REGNO (Re) == SP_REGNUM)
num_use_regs = extra_count;
else
num_use_regs = REGNO (Re) - REGNO (Rb) + 1 + extra_count;
/* In addition to used registers,
we need one more space for (set sp sp+x) rtx. */
parallel_insn = gen_rtx_PARALLEL (VOIDmode,
rtvec_alloc (num_use_regs + 1));
par_index = 0;
/* Initialize offset and start to create pop behavior. */
offset = 0;
/* Create (set regX mem) from Rb, Rb+1 up to Re. */
for (regno = REGNO (Rb); regno <= (int) REGNO (Re); regno++)
{
/* Rb and Re may be SP_REGNUM.
We need to break this loop immediately. */
if (regno == SP_REGNUM)
break;
reg = gen_rtx_REG (SImode, regno);
mem = gen_frame_mem (SImode, plus_constant (Pmode,
stack_pointer_rtx,
offset));
pop_rtx = gen_rtx_SET (reg, mem);
XVECEXP (parallel_insn, 0, par_index) = pop_rtx;
RTX_FRAME_RELATED_P (pop_rtx) = 1;
offset = offset + 4;
par_index++;
dwarf = alloc_reg_note (REG_CFA_RESTORE, reg, dwarf);
}
/* Create (set fp mem), (set gp mem), and (set lp mem) if necessary. */
if (save_fp)
{
reg = gen_rtx_REG (SImode, FP_REGNUM);
mem = gen_frame_mem (SImode, plus_constant (Pmode,
stack_pointer_rtx,
offset));
pop_rtx = gen_rtx_SET (reg, mem);
XVECEXP (parallel_insn, 0, par_index) = pop_rtx;
RTX_FRAME_RELATED_P (pop_rtx) = 1;
offset = offset + 4;
par_index++;
dwarf = alloc_reg_note (REG_CFA_RESTORE, reg, dwarf);
}
if (save_gp)
{
reg = gen_rtx_REG (SImode, GP_REGNUM);
mem = gen_frame_mem (SImode, plus_constant (Pmode,
stack_pointer_rtx,
offset));
pop_rtx = gen_rtx_SET (reg, mem);
XVECEXP (parallel_insn, 0, par_index) = pop_rtx;
RTX_FRAME_RELATED_P (pop_rtx) = 1;
offset = offset + 4;
par_index++;
dwarf = alloc_reg_note (REG_CFA_RESTORE, reg, dwarf);
}
if (save_lp)
{
reg = gen_rtx_REG (SImode, LP_REGNUM);
mem = gen_frame_mem (SImode, plus_constant (Pmode,
stack_pointer_rtx,
offset));
pop_rtx = gen_rtx_SET (reg, mem);
XVECEXP (parallel_insn, 0, par_index) = pop_rtx;
RTX_FRAME_RELATED_P (pop_rtx) = 1;
offset = offset + 4;
par_index++;
dwarf = alloc_reg_note (REG_CFA_RESTORE, reg, dwarf);
}
/* Create (set sp sp+x). */
/* The offset value is already in place. No need to re-calculate it. */
adjust_sp_rtx
= gen_rtx_SET (stack_pointer_rtx,
plus_constant (Pmode, stack_pointer_rtx, offset));
XVECEXP (parallel_insn, 0, par_index) = adjust_sp_rtx;
/* Tell gcc we adjust SP in this insn. */
dwarf = alloc_reg_note (REG_CFA_ADJUST_CFA, copy_rtx (adjust_sp_rtx), dwarf);
parallel_insn = emit_insn (parallel_insn);
/* The insn rtx 'parallel_insn' will change frame layout.
We need to use RTX_FRAME_RELATED_P so that GCC is able to
generate CFI (Call Frame Information) stuff. */
RTX_FRAME_RELATED_P (parallel_insn) = 1;
/* Add CFI info by manual. */
REG_NOTES (parallel_insn) = dwarf;
}
/* Function to create a parallel rtx pattern
which presents stack v3push behavior.
The overall concept are:
"push registers to memory",
"adjust stack pointer". */
static void
nds32_emit_stack_v3push (rtx Rb,
rtx Re,
rtx En4 ATTRIBUTE_UNUSED,
rtx imm8u)
{
int regno;
int num_use_regs;
int par_index;
int offset;
rtx reg;
rtx mem;
rtx push_rtx;
rtx adjust_sp_rtx;
rtx parallel_insn;
/* We need to provide a customized rtx which contains
necessary information for data analysis,
so we create a parallel rtx like this:
(parallel [(set (mem (plus (reg:SI SP_REGNUM) (const_int -32)))
(reg:SI Rb))
(set (mem (plus (reg:SI SP_REGNUM) (const_int -28)))
(reg:SI Rb+1))
...
(set (mem (plus (reg:SI SP_REGNUM) (const_int -16)))
(reg:SI Re))
(set (mem (plus (reg:SI SP_REGNUM) (const_int -12)))
(reg:SI FP_REGNUM))
(set (mem (plus (reg:SI SP_REGNUM) (const_int -8)))
(reg:SI GP_REGNUM))
(set (mem (plus (reg:SI SP_REGNUM) (const_int -4)))
(reg:SI LP_REGNUM))
(set (reg:SI SP_REGNUM)
(plus (reg:SI SP_REGNUM) (const_int -32-imm8u)))]) */
/* Calculate the number of registers that will be pushed.
Since $fp, $gp, and $lp is always pushed with v3push instruction,
we need to count these three registers.
Under v3push, Rb is $r6, while Re is $r6, $r8, $r10, or $r14.
So there is no need to worry about Rb=Re=SP_REGNUM case. */
num_use_regs = REGNO (Re) - REGNO (Rb) + 1 + 3;
/* In addition to used registers,
we need one more space for (set sp sp-x-imm8u) rtx. */
parallel_insn = gen_rtx_PARALLEL (VOIDmode,
rtvec_alloc (num_use_regs + 1));
par_index = 0;
/* Initialize offset and start to create push behavior. */
offset = -(num_use_regs * 4);
/* Create (set mem regX) from Rb, Rb+1 up to Re.
Under v3push, Rb is $r6, while Re is $r6, $r8, $r10, or $r14.
So there is no need to worry about Rb=Re=SP_REGNUM case. */
for (regno = REGNO (Rb); regno <= (int) REGNO (Re); regno++)
{
reg = gen_rtx_REG (SImode, regno);
mem = gen_frame_mem (SImode, plus_constant (Pmode,
stack_pointer_rtx,
offset));
push_rtx = gen_rtx_SET (mem, reg);
XVECEXP (parallel_insn, 0, par_index) = push_rtx;
RTX_FRAME_RELATED_P (push_rtx) = 1;
offset = offset + 4;
par_index++;
}
/* Create (set mem fp). */
reg = gen_rtx_REG (SImode, FP_REGNUM);
mem = gen_frame_mem (SImode, plus_constant (Pmode,
stack_pointer_rtx,
offset));
push_rtx = gen_rtx_SET (mem, reg);
XVECEXP (parallel_insn, 0, par_index) = push_rtx;
RTX_FRAME_RELATED_P (push_rtx) = 1;
offset = offset + 4;
par_index++;
/* Create (set mem gp). */
reg = gen_rtx_REG (SImode, GP_REGNUM);
mem = gen_frame_mem (SImode, plus_constant (Pmode,
stack_pointer_rtx,
offset));
push_rtx = gen_rtx_SET (mem, reg);
XVECEXP (parallel_insn, 0, par_index) = push_rtx;
RTX_FRAME_RELATED_P (push_rtx) = 1;
offset = offset + 4;
par_index++;
/* Create (set mem lp). */
reg = gen_rtx_REG (SImode, LP_REGNUM);
mem = gen_frame_mem (SImode, plus_constant (Pmode,
stack_pointer_rtx,
offset));
push_rtx = gen_rtx_SET (mem, reg);
XVECEXP (parallel_insn, 0, par_index) = push_rtx;
RTX_FRAME_RELATED_P (push_rtx) = 1;
offset = offset + 4;
par_index++;
/* Create (set sp sp-x-imm8u). */
/* We need to re-calculate the offset value again for adjustment. */
offset = -(num_use_regs * 4);
adjust_sp_rtx
= gen_rtx_SET (stack_pointer_rtx,
plus_constant (Pmode,
stack_pointer_rtx,
offset - INTVAL (imm8u)));
XVECEXP (parallel_insn, 0, par_index) = adjust_sp_rtx;
RTX_FRAME_RELATED_P (adjust_sp_rtx) = 1;
parallel_insn = emit_insn (parallel_insn);
/* The insn rtx 'parallel_insn' will change frame layout.
We need to use RTX_FRAME_RELATED_P so that GCC is able to
generate CFI (Call Frame Information) stuff. */
RTX_FRAME_RELATED_P (parallel_insn) = 1;
}
/* Function to create a parallel rtx pattern
which presents stack v3pop behavior.
The overall concept are:
"pop registers from memory",
"adjust stack pointer". */
static void
nds32_emit_stack_v3pop (rtx Rb,
rtx Re,
rtx En4 ATTRIBUTE_UNUSED,
rtx imm8u)
{
int regno;
int num_use_regs;
int par_index;
int offset;
rtx reg;
rtx mem;
rtx pop_rtx;
rtx adjust_sp_rtx;
rtx parallel_insn;
rtx dwarf = NULL_RTX;
/* We need to provide a customized rtx which contains
necessary information for data analysis,
so we create a parallel rtx like this:
(parallel [(set (reg:SI Rb)
(mem (reg:SI SP_REGNUM)))
(set (reg:SI Rb+1)
(mem (plus (reg:SI SP_REGNUM) (const_int 4))))
...
(set (reg:SI Re)
(mem (plus (reg:SI SP_REGNUM) (const_int 16))))
(set (reg:SI FP_REGNUM)
(mem (plus (reg:SI SP_REGNUM) (const_int 20))))
(set (reg:SI GP_REGNUM)
(mem (plus (reg:SI SP_REGNUM) (const_int 24))))
(set (reg:SI LP_REGNUM)
(mem (plus (reg:SI SP_REGNUM) (const_int 28))))
(set (reg:SI SP_REGNUM)
(plus (reg:SI SP_REGNUM) (const_int 32+imm8u)))]) */
/* Calculate the number of registers that will be poped.
Since $fp, $gp, and $lp is always poped with v3pop instruction,
we need to count these three registers.
Under v3push, Rb is $r6, while Re is $r6, $r8, $r10, or $r14.
So there is no need to worry about Rb=Re=SP_REGNUM case. */
num_use_regs = REGNO (Re) - REGNO (Rb) + 1 + 3;
/* In addition to used registers,
we need one more space for (set sp sp+x+imm8u) rtx. */
parallel_insn = gen_rtx_PARALLEL (VOIDmode,
rtvec_alloc (num_use_regs + 1));
par_index = 0;
/* Initialize offset and start to create pop behavior. */
offset = 0;
/* Create (set regX mem) from Rb, Rb+1 up to Re.
Under v3pop, Rb is $r6, while Re is $r6, $r8, $r10, or $r14.
So there is no need to worry about Rb=Re=SP_REGNUM case. */
for (regno = REGNO (Rb); regno <= (int) REGNO (Re); regno++)
{
reg = gen_rtx_REG (SImode, regno);
mem = gen_frame_mem (SImode, plus_constant (Pmode,
stack_pointer_rtx,
offset));
pop_rtx = gen_rtx_SET (reg, mem);
XVECEXP (parallel_insn, 0, par_index) = pop_rtx;
RTX_FRAME_RELATED_P (pop_rtx) = 1;
offset = offset + 4;
par_index++;
dwarf = alloc_reg_note (REG_CFA_RESTORE, reg, dwarf);
}
/* Create (set fp mem). */
reg = gen_rtx_REG (SImode, FP_REGNUM);
mem = gen_frame_mem (SImode, plus_constant (Pmode,
stack_pointer_rtx,
offset));
pop_rtx = gen_rtx_SET (reg, mem);
XVECEXP (parallel_insn, 0, par_index) = pop_rtx;
RTX_FRAME_RELATED_P (pop_rtx) = 1;
offset = offset + 4;
par_index++;
dwarf = alloc_reg_note (REG_CFA_RESTORE, reg, dwarf);
/* Create (set gp mem). */
reg = gen_rtx_REG (SImode, GP_REGNUM);
mem = gen_frame_mem (SImode, plus_constant (Pmode,
stack_pointer_rtx,
offset));
pop_rtx = gen_rtx_SET (reg, mem);
XVECEXP (parallel_insn, 0, par_index) = pop_rtx;
RTX_FRAME_RELATED_P (pop_rtx) = 1;
offset = offset + 4;
par_index++;
dwarf = alloc_reg_note (REG_CFA_RESTORE, reg, dwarf);
/* Create (set lp mem ). */
reg = gen_rtx_REG (SImode, LP_REGNUM);
mem = gen_frame_mem (SImode, plus_constant (Pmode,
stack_pointer_rtx,
offset));
pop_rtx = gen_rtx_SET (reg, mem);
XVECEXP (parallel_insn, 0, par_index) = pop_rtx;
RTX_FRAME_RELATED_P (pop_rtx) = 1;
offset = offset + 4;
par_index++;
dwarf = alloc_reg_note (REG_CFA_RESTORE, reg, dwarf);
/* Create (set sp sp+x+imm8u). */
/* The offset value is already in place. No need to re-calculate it. */
adjust_sp_rtx
= gen_rtx_SET (stack_pointer_rtx,
plus_constant (Pmode,
stack_pointer_rtx,
offset + INTVAL (imm8u)));
XVECEXP (parallel_insn, 0, par_index) = adjust_sp_rtx;
/* Tell gcc we adjust SP in this insn. */
dwarf = alloc_reg_note (REG_CFA_ADJUST_CFA, copy_rtx (adjust_sp_rtx), dwarf);
parallel_insn = emit_insn (parallel_insn);
/* The insn rtx 'parallel_insn' will change frame layout.
We need to use RTX_FRAME_RELATED_P so that GCC is able to
generate CFI (Call Frame Information) stuff. */
RTX_FRAME_RELATED_P (parallel_insn) = 1;
/* Add CFI info by manual. */
REG_NOTES (parallel_insn) = dwarf;
}
/* Function that may creates more instructions
for large value on adjusting stack pointer.
In nds32 target, 'addi' can be used for stack pointer
adjustment in prologue/epilogue stage.
However, sometimes there are too many local variables so that
the adjustment value is not able to be fit in the 'addi' instruction.
One solution is to move value into a register
and then use 'add' instruction.
In practice, we use TA_REGNUM ($r15) to accomplish this purpose.
Also, we need to return zero for sp adjustment so that
proglogue/epilogue knows there is no need to create 'addi' instruction. */
static int
nds32_force_addi_stack_int (int full_value)
{
int adjust_value;
rtx tmp_reg;
rtx sp_adjust_insn;
if (!satisfies_constraint_Is15 (GEN_INT (full_value)))
{
/* The value is not able to fit in single addi instruction.
Create more instructions of moving value into a register
and then add stack pointer with it. */
/* $r15 is going to be temporary register to hold the value. */
tmp_reg = gen_rtx_REG (SImode, TA_REGNUM);
/* Create one more instruction to move value
into the temporary register. */
emit_move_insn (tmp_reg, GEN_INT (full_value));
/* Create new 'add' rtx. */
sp_adjust_insn = gen_addsi3 (stack_pointer_rtx,
stack_pointer_rtx,
tmp_reg);
/* Emit rtx into insn list and receive its transformed insn rtx. */
sp_adjust_insn = emit_insn (sp_adjust_insn);
/* At prologue, we need to tell GCC that this is frame related insn,
so that we can consider this instruction to output debug information.
If full_value is NEGATIVE, it means this function
is invoked by expand_prologue. */
if (full_value < 0)
{
/* Because (tmp_reg <- full_value) may be split into two
rtl patterns, we can not set its RTX_FRAME_RELATED_P.
We need to construct another (sp <- sp + full_value)
and then insert it into sp_adjust_insn's reg note to
represent a frame related expression.
GCC knows how to refer it and output debug information. */
rtx plus_rtx;
rtx set_rtx;
plus_rtx = plus_constant (Pmode, stack_pointer_rtx, full_value);
set_rtx = gen_rtx_SET (stack_pointer_rtx, plus_rtx);
add_reg_note (sp_adjust_insn, REG_FRAME_RELATED_EXPR, set_rtx);
RTX_FRAME_RELATED_P (sp_adjust_insn) = 1;
}
/* We have used alternative way to adjust stack pointer value.
Return zero so that prologue/epilogue
will not generate other instructions. */
return 0;
}
else
{
/* The value is able to fit in addi instruction.
However, remember to make it to be positive value
because we want to return 'adjustment' result. */
adjust_value = (full_value < 0) ? (-full_value) : (full_value);
return adjust_value;
}
}
/* Return true if MODE/TYPE need double word alignment. */
static bool
nds32_needs_double_word_align (machine_mode mode, const_tree type)
{
unsigned int align;
/* Pick up the alignment according to the mode or type. */
align = NDS32_MODE_TYPE_ALIGN (mode, type);
return (align > PARM_BOUNDARY);
}
/* Return true if FUNC is a naked function. */
static bool
nds32_naked_function_p (tree func)
{
tree t;
if (TREE_CODE (func) != FUNCTION_DECL)
abort ();
t = lookup_attribute ("naked", DECL_ATTRIBUTES (func));
return (t != NULL_TREE);
}
/* Function that check if 'X' is a valid address register.
The variable 'STRICT' is very important to
make decision for register number.
STRICT : true
=> We are in reload pass or after reload pass.
The register number should be strictly limited in general registers.
STRICT : false
=> Before reload pass, we are free to use any register number. */
static bool
nds32_address_register_rtx_p (rtx x, bool strict)
{
int regno;
if (GET_CODE (x) != REG)
return false;
regno = REGNO (x);
if (strict)
return REGNO_OK_FOR_BASE_P (regno);
else
return true;
}
/* Function that check if 'INDEX' is valid to be a index rtx for address.
OUTER_MODE : Machine mode of outer address rtx.
INDEX : Check if this rtx is valid to be a index for address.
STRICT : If it is true, we are in reload pass or after reload pass. */
static bool
nds32_legitimate_index_p (machine_mode outer_mode,
rtx index,
bool strict)
{
int regno;
rtx op0;
rtx op1;
switch (GET_CODE (index))
{
case REG:
regno = REGNO (index);
/* If we are in reload pass or after reload pass,
we need to limit it to general register. */
if (strict)
return REGNO_OK_FOR_INDEX_P (regno);
else
return true;
case CONST_INT:
/* The alignment of the integer value is determined by 'outer_mode'. */
if (GET_MODE_SIZE (outer_mode) == 1)
{
/* Further check if the value is legal for the 'outer_mode'. */
if (!satisfies_constraint_Is15 (index))
return false;
/* Pass all test, the value is valid, return true. */
return true;
}
if (GET_MODE_SIZE (outer_mode) == 2
&& NDS32_HALF_WORD_ALIGN_P (INTVAL (index)))
{
/* Further check if the value is legal for the 'outer_mode'. */
if (!satisfies_constraint_Is16 (index))
return false;
/* Pass all test, the value is valid, return true. */
return true;
}
if (GET_MODE_SIZE (outer_mode) == 4
&& NDS32_SINGLE_WORD_ALIGN_P (INTVAL (index)))
{
/* Further check if the value is legal for the 'outer_mode'. */
if (!satisfies_constraint_Is17 (index))
return false;
/* Pass all test, the value is valid, return true. */
return true;
}
if (GET_MODE_SIZE (outer_mode) == 8
&& NDS32_SINGLE_WORD_ALIGN_P (INTVAL (index)))
{
/* Further check if the value is legal for the 'outer_mode'. */
if (!satisfies_constraint_Is17 (gen_int_mode (INTVAL (index) + 4,
SImode)))
return false;
/* Pass all test, the value is valid, return true. */
return true;
}
return false;
case MULT:
op0 = XEXP (index, 0);
op1 = XEXP (index, 1);
if (REG_P (op0) && CONST_INT_P (op1))
{
int multiplier;
multiplier = INTVAL (op1);
/* We only allow (mult reg const_int_1)
or (mult reg const_int_2) or (mult reg const_int_4). */
if (multiplier != 1 && multiplier != 2 && multiplier != 4)
return false;
regno = REGNO (op0);
/* Limit it in general registers if we are
in reload pass or after reload pass. */
if(strict)
return REGNO_OK_FOR_INDEX_P (regno);
else
return true;
}
return false;
case ASHIFT:
op0 = XEXP (index, 0);
op1 = XEXP (index, 1);
if (REG_P (op0) && CONST_INT_P (op1))
{
int sv;
/* op1 is already the sv value for use to do left shift. */
sv = INTVAL (op1);
/* We only allow (ashift reg const_int_0)
or (ashift reg const_int_1) or (ashift reg const_int_2). */
if (sv != 0 && sv != 1 && sv !=2)
return false;
regno = REGNO (op0);
/* Limit it in general registers if we are
in reload pass or after reload pass. */
if(strict)
return REGNO_OK_FOR_INDEX_P (regno);
else
return true;
}
return false;
default:
return false;
}
}
/* ------------------------------------------------------------------------ */
/* PART 3: Implement target hook stuff definitions. */
/* Register Classes. */
static unsigned char
nds32_class_max_nregs (reg_class_t rclass ATTRIBUTE_UNUSED,
machine_mode mode)
{
/* Return the maximum number of consecutive registers
needed to represent "mode" in a register of "rclass". */
return ((GET_MODE_SIZE (mode) + UNITS_PER_WORD - 1) / UNITS_PER_WORD);
}
static int
nds32_register_priority (int hard_regno)
{
/* Encourage to use r0-r7 for LRA when optimize for size. */
if (optimize_size && hard_regno < 8)
return 4;
return 3;
}
/* Stack Layout and Calling Conventions. */
/* There are three kinds of pointer concepts using in GCC compiler:
frame pointer: A pointer to the first location of local variables.
stack pointer: A pointer to the top of a stack frame.
argument pointer: A pointer to the incoming arguments.
In nds32 target calling convention, we are using 8-byte alignment.
Besides, we would like to have each stack frame of a function includes:
[Block A]
1. previous hard frame pointer
2. return address
3. callee-saved registers
4. <padding bytes> (we will calculte in nds32_compute_stack_frame()
and save it at
cfun->machine->callee_saved_area_padding_bytes)
[Block B]
1. local variables
2. spilling location
3. <padding bytes> (it will be calculated by GCC itself)
4. incoming arguments
5. <padding bytes> (it will be calculated by GCC itself)
[Block C]
1. <padding bytes> (it will be calculated by GCC itself)
2. outgoing arguments
We 'wrap' these blocks together with
hard frame pointer ($r28) and stack pointer ($r31).
By applying the basic frame/stack/argument pointers concept,
the layout of a stack frame shoule be like this:
| |
old stack pointer -> ----
| | \
| | saved arguments for
| | vararg functions
| | /
hard frame pointer -> --
& argument pointer | | \
| | previous hardware frame pointer
| | return address
| | callee-saved registers
| | /
frame pointer -> --
| | \
| | local variables
| | and incoming arguments
| | /
--
| | \
| | outgoing
| | arguments
| | /
stack pointer -> ----
$SFP and $AP are used to represent frame pointer and arguments pointer,
which will be both eliminated as hard frame pointer. */
/* -- Eliminating Frame Pointer and Arg Pointer. */
static bool
nds32_can_eliminate (const int from_reg, const int to_reg)
{
if (from_reg == ARG_POINTER_REGNUM && to_reg == STACK_POINTER_REGNUM)
return true;
if (from_reg == ARG_POINTER_REGNUM && to_reg == HARD_FRAME_POINTER_REGNUM)
return true;
if (from_reg == FRAME_POINTER_REGNUM && to_reg == STACK_POINTER_REGNUM)
return true;
if (from_reg == FRAME_POINTER_REGNUM && to_reg == HARD_FRAME_POINTER_REGNUM)
return true;
return false;
}
/* -- Passing Arguments in Registers. */
static rtx
nds32_function_arg (cumulative_args_t ca, machine_mode mode,
const_tree type, bool named)
{
unsigned int regno;
CUMULATIVE_ARGS *cum = get_cumulative_args (ca);
/* The last time this hook is called,
it is called with MODE == VOIDmode. */
if (mode == VOIDmode)
return NULL_RTX;
/* For nameless arguments, we need to take care it individually. */
if (!named)
{
/* If we are under hard float abi, we have arguments passed on the
stack and all situation can be handled by GCC itself. */
if (TARGET_HARD_FLOAT)
return NULL_RTX;
if (NDS32_ARG_PARTIAL_IN_GPR_REG_P (cum->gpr_offset, mode, type))
{
/* If we still have enough registers to pass argument, pick up
next available register number. */
regno
= NDS32_AVAILABLE_REGNUM_FOR_GPR_ARG (cum->gpr_offset, mode, type);
return gen_rtx_REG (mode, regno);
}
/* No register available, return NULL_RTX.
The compiler will use stack to pass argument instead. */
return NULL_RTX;
}
/* The following is to handle named argument.
Note that the strategies of TARGET_HARD_FLOAT and !TARGET_HARD_FLOAT
are different. */
if (TARGET_HARD_FLOAT)
{
/* Currently we have not implemented hard float yet. */
gcc_unreachable ();
}
else
{
/* For !TARGET_HARD_FLOAT calling convention, we always use GPR to pass
argument. Since we allow to pass argument partially in registers,
we can just return it if there are still registers available. */
if (NDS32_ARG_PARTIAL_IN_GPR_REG_P (cum->gpr_offset, mode, type))
{
/* Pick up the next available register number. */
regno
= NDS32_AVAILABLE_REGNUM_FOR_GPR_ARG (cum->gpr_offset, mode, type);
return gen_rtx_REG (mode, regno);
}
}
/* No register available, return NULL_RTX.
The compiler will use stack to pass argument instead. */
return NULL_RTX;
}
static bool
nds32_must_pass_in_stack (machine_mode mode, const_tree type)
{
/* Return true if a type must be passed in memory.
If it is NOT using hard float abi, small aggregates can be
passed in a register even we are calling a variadic function.
So there is no need to take padding into consideration. */
if (TARGET_HARD_FLOAT)
return must_pass_in_stack_var_size_or_pad (mode, type);
else
return must_pass_in_stack_var_size (mode, type);
}
static int
nds32_arg_partial_bytes (cumulative_args_t ca, machine_mode mode,
tree type, bool named ATTRIBUTE_UNUSED)
{
/* Returns the number of bytes at the beginning of an argument that
must be put in registers. The value must be zero for arguments that are
passed entirely in registers or that are entirely pushed on the stack.
Besides, TARGET_FUNCTION_ARG for these arguments should return the
first register to be used by the caller for this argument. */
unsigned int needed_reg_count;
unsigned int remaining_reg_count;
CUMULATIVE_ARGS *cum;
cum = get_cumulative_args (ca);
/* Under hard float abi, we better have argument entirely passed in
registers or pushed on the stack so that we can reduce the complexity
of dealing with cum->gpr_offset and cum->fpr_offset. */
if (TARGET_HARD_FLOAT)
return 0;
/* If we have already runned out of argument registers, return zero
so that the argument will be entirely pushed on the stack. */
if (NDS32_AVAILABLE_REGNUM_FOR_GPR_ARG (cum->gpr_offset, mode, type)
>= NDS32_GPR_ARG_FIRST_REGNUM + NDS32_MAX_GPR_REGS_FOR_ARGS)
return 0;
/* Calculate how many registers do we need for this argument. */
needed_reg_count = NDS32_NEED_N_REGS_FOR_ARG (mode, type);
/* Calculate how many argument registers have left for passing argument.
Note that we should count it from next available register number. */
remaining_reg_count
= NDS32_MAX_GPR_REGS_FOR_ARGS
- (NDS32_AVAILABLE_REGNUM_FOR_GPR_ARG (cum->gpr_offset, mode, type)
- NDS32_GPR_ARG_FIRST_REGNUM);
/* Note that we have to return the nubmer of bytes, not registers count. */
if (needed_reg_count > remaining_reg_count)
return remaining_reg_count * UNITS_PER_WORD;
return 0;
}
static void
nds32_function_arg_advance (cumulative_args_t ca, machine_mode mode,
const_tree type, bool named)
{
machine_mode sub_mode;
CUMULATIVE_ARGS *cum = get_cumulative_args (ca);
if (named)
{
/* We need to further check TYPE and MODE so that we can determine
which kind of register we shall advance. */
if (type && TREE_CODE (type) == COMPLEX_TYPE)
sub_mode = TYPE_MODE (TREE_TYPE (type));
else
sub_mode = mode;
/* Under hard float abi, we may advance FPR registers. */
if (TARGET_HARD_FLOAT && GET_MODE_CLASS (sub_mode) == MODE_FLOAT)
{
/* Currently we have not implemented hard float yet. */
gcc_unreachable ();
}
else
{
cum->gpr_offset
= NDS32_AVAILABLE_REGNUM_FOR_GPR_ARG (cum->gpr_offset, mode, type)
- NDS32_GPR_ARG_FIRST_REGNUM
+ NDS32_NEED_N_REGS_FOR_ARG (mode, type);
}
}
else
{
/* If this nameless argument is NOT under TARGET_HARD_FLOAT,
we can advance next register as well so that caller is
able to pass arguments in registers and callee must be
in charge of pushing all of them into stack. */
if (!TARGET_HARD_FLOAT)
{
cum->gpr_offset
= NDS32_AVAILABLE_REGNUM_FOR_GPR_ARG (cum->gpr_offset, mode, type)
- NDS32_GPR_ARG_FIRST_REGNUM
+ NDS32_NEED_N_REGS_FOR_ARG (mode, type);
}
}
}
static unsigned int
nds32_function_arg_boundary (machine_mode mode, const_tree type)
{
return (nds32_needs_double_word_align (mode, type)
? NDS32_DOUBLE_WORD_ALIGNMENT
: PARM_BOUNDARY);
}
/* -- How Scalar Function Values Are Returned. */
static rtx
nds32_function_value (const_tree ret_type,
const_tree fn_decl_or_type ATTRIBUTE_UNUSED,
bool outgoing ATTRIBUTE_UNUSED)
{
machine_mode mode;
int unsignedp;
mode = TYPE_MODE (ret_type);
unsignedp = TYPE_UNSIGNED (ret_type);
mode = promote_mode (ret_type, mode, &unsignedp);
return gen_rtx_REG (mode, NDS32_GPR_RET_FIRST_REGNUM);
}
static rtx
nds32_libcall_value (machine_mode mode,
const_rtx fun ATTRIBUTE_UNUSED)
{
return gen_rtx_REG (mode, NDS32_GPR_RET_FIRST_REGNUM);
}
static bool
nds32_function_value_regno_p (const unsigned int regno)
{
return (regno == NDS32_GPR_RET_FIRST_REGNUM);
}
/* -- Function Entry and Exit. */
/* The content produced from this function
will be placed before prologue body. */
static void
nds32_asm_function_prologue (FILE *file,
HOST_WIDE_INT size ATTRIBUTE_UNUSED)
{
int r;
const char *func_name;
tree attrs;
tree name;
/* All stack frame information is supposed to be
already computed when expanding prologue.
The result is in cfun->machine.
DO NOT call nds32_compute_stack_frame() here
because it may corrupt the essential information. */
fprintf (file, "\t! BEGIN PROLOGUE\n");
fprintf (file, "\t! fp needed: %d\n", frame_pointer_needed);
fprintf (file, "\t! pretend_args: %d\n", cfun->machine->va_args_size);
fprintf (file, "\t! local_size: %d\n", cfun->machine->local_size);
fprintf (file, "\t! out_args_size: %d\n", cfun->machine->out_args_size);
/* Use df_regs_ever_live_p() to detect if the register
is ever used in the current function. */
fprintf (file, "\t! registers ever_live: ");
for (r = 0; r < 32; r++)
{
if (df_regs_ever_live_p (r))
fprintf (file, "%s, ", reg_names[r]);
}
fputc ('\n', file);
/* Display the attributes of this function. */
fprintf (file, "\t! function attributes: ");
/* Get the attributes tree list.
Note that GCC builds attributes list with reverse order. */
attrs = DECL_ATTRIBUTES (current_function_decl);
/* If there is no any attribute, print out "None". */
if (!attrs)
fprintf (file, "None");
/* If there are some attributes, try if we need to
construct isr vector information. */
func_name = IDENTIFIER_POINTER (DECL_NAME (current_function_decl));
nds32_construct_isr_vectors_information (attrs, func_name);
/* Display all attributes of this function. */
while (attrs)
{
name = TREE_PURPOSE (attrs);
fprintf (file, "%s ", IDENTIFIER_POINTER (name));
/* Pick up the next attribute. */
attrs = TREE_CHAIN (attrs);
}
fputc ('\n', file);
}
/* After rtl prologue has been expanded, this function is used. */
static void
nds32_asm_function_end_prologue (FILE *file)
{
fprintf (file, "\t! END PROLOGUE\n");
/* If frame pointer is NOT needed and -mfp-as-gp is issued,
we can generate special directive: ".omit_fp_begin"
to guide linker doing fp-as-gp optimization.
However, for a naked function, which means
it should not have prologue/epilogue,
using fp-as-gp still requires saving $fp by push/pop behavior and
there is no benefit to use fp-as-gp on such small function.
So we need to make sure this function is NOT naked as well. */
if (!frame_pointer_needed
&& !cfun->machine->naked_p
&& cfun->machine->fp_as_gp_p)
{
fprintf (file, "\t! ----------------------------------------\n");
fprintf (file, "\t! Guide linker to do "
"link time optimization: fp-as-gp\n");
fprintf (file, "\t! We add one more instruction to "
"initialize $fp near to $gp location.\n");
fprintf (file, "\t! If linker fails to use fp-as-gp transformation,\n");
fprintf (file, "\t! this extra instruction should be "
"eliminated at link stage.\n");
fprintf (file, "\t.omit_fp_begin\n");
fprintf (file, "\tla\t$fp,_FP_BASE_\n");
fprintf (file, "\t! ----------------------------------------\n");
}
}
/* Before rtl epilogue has been expanded, this function is used. */
static void
nds32_asm_function_begin_epilogue (FILE *file)
{
/* If frame pointer is NOT needed and -mfp-as-gp is issued,
we can generate special directive: ".omit_fp_end"
to claim fp-as-gp optimization range.
However, for a naked function,
which means it should not have prologue/epilogue,
using fp-as-gp still requires saving $fp by push/pop behavior and
there is no benefit to use fp-as-gp on such small function.
So we need to make sure this function is NOT naked as well. */
if (!frame_pointer_needed
&& !cfun->machine->naked_p
&& cfun->machine->fp_as_gp_p)
{
fprintf (file, "\t! ----------------------------------------\n");
fprintf (file, "\t! Claim the range of fp-as-gp "
"link time optimization\n");
fprintf (file, "\t.omit_fp_end\n");
fprintf (file, "\t! ----------------------------------------\n");
}
fprintf (file, "\t! BEGIN EPILOGUE\n");
}
/* The content produced from this function
will be placed after epilogue body. */
static void
nds32_asm_function_epilogue (FILE *file,
HOST_WIDE_INT size ATTRIBUTE_UNUSED)
{
fprintf (file, "\t! END EPILOGUE\n");
}
static void
nds32_asm_output_mi_thunk (FILE *file, tree thunk ATTRIBUTE_UNUSED,
HOST_WIDE_INT delta,
HOST_WIDE_INT vcall_offset ATTRIBUTE_UNUSED,
tree function)
{
int this_regno;
/* Make sure unwind info is emitted for the thunk if needed. */
final_start_function (emit_barrier (), file, 1);
this_regno = (aggregate_value_p (TREE_TYPE (TREE_TYPE (function)), function)
? 1
: 0);
if (delta != 0)
{
if (satisfies_constraint_Is15 (GEN_INT (delta)))
{
fprintf (file, "\taddi\t$r%d, $r%d, %ld\n",
this_regno, this_regno, delta);
}
else if (satisfies_constraint_Is20 (GEN_INT (delta)))
{
fprintf (file, "\tmovi\t$ta, %ld\n", delta);
fprintf (file, "\tadd\t$r%d, $r%d, $ta\n", this_regno, this_regno);
}
else
{
fprintf (file, "\tsethi\t$ta, hi20(%ld)\n", delta);
fprintf (file, "\tori\t$ta, $ta, lo12(%ld)\n", delta);
fprintf (file, "\tadd\t$r%d, $r%d, $ta\n", this_regno, this_regno);
}
}
fprintf (file, "\tb\t");
assemble_name (file, XSTR (XEXP (DECL_RTL (function), 0), 0));
fprintf (file, "\n");
final_end_function ();
}
/* -- Permitting tail calls. */
/* Determine whether we need to enable warning for function return check. */
static bool
nds32_warn_func_return (tree decl)
{
/* Naked functions are implemented entirely in assembly, including the
return sequence, so suppress warnings about this. */
return !nds32_naked_function_p (decl);
}
/* Implementing the Varargs Macros. */
static void
nds32_setup_incoming_varargs (cumulative_args_t ca,
machine_mode mode,
tree type,
int *pretend_args_size,
int second_time ATTRIBUTE_UNUSED)
{
unsigned int total_args_regs;
unsigned int num_of_used_regs;
unsigned int remaining_reg_count;
CUMULATIVE_ARGS *cum;
/* If we are under hard float abi, we do not need to set *pretend_args_size.
So that all nameless arguments are pushed by caller and all situation
can be handled by GCC itself. */
if (TARGET_HARD_FLOAT)
return;
/* We are using NDS32_MAX_GPR_REGS_FOR_ARGS registers,
counting from NDS32_GPR_ARG_FIRST_REGNUM, for saving incoming arguments.
However, for nameless(anonymous) arguments, we should push them on the
stack so that all the nameless arguments appear to have been passed
consecutively in the memory for accessing. Hence, we need to check and
exclude the registers that are used for named arguments. */
cum = get_cumulative_args (ca);
/* The MODE and TYPE describe the last argument.
We need those information to determine the remaining registers
for varargs. */
total_args_regs
= NDS32_MAX_GPR_REGS_FOR_ARGS + NDS32_GPR_ARG_FIRST_REGNUM;
num_of_used_regs
= NDS32_AVAILABLE_REGNUM_FOR_GPR_ARG (cum->gpr_offset, mode, type)
+ NDS32_NEED_N_REGS_FOR_ARG (mode, type);
remaining_reg_count = total_args_regs - num_of_used_regs;
*pretend_args_size = remaining_reg_count * UNITS_PER_WORD;
return;
}
static bool
nds32_strict_argument_naming (cumulative_args_t ca ATTRIBUTE_UNUSED)
{
/* If this hook returns true, the named argument of FUNCTION_ARG is always
true for named arguments, and false for unnamed arguments. */
return true;
}
/* Trampolines for Nested Functions. */
static void
nds32_asm_trampoline_template (FILE *f)
{
if (TARGET_REDUCED_REGS)
{
/* Trampoline is not supported on reduced-set registers yet. */
sorry ("a nested function is not supported for reduced registers");
}
else
{
asm_fprintf (f, "\t! Trampoline code template\n");
asm_fprintf (f, "\t! This code fragment will be copied "
"into stack on demand\n");
asm_fprintf (f, "\tmfusr\t$r16,$pc\n");
asm_fprintf (f, "\tlwi\t$r15,[$r16 + 20] "
"! load nested function address\n");
asm_fprintf (f, "\tlwi\t$r16,[$r16 + 16] "
"! load chain_value\n");
asm_fprintf (f, "\tjr\t$r15\n");
}
/* Preserve space ($pc + 16) for saving chain_value,
nds32_trampoline_init will fill the value in this slot. */
asm_fprintf (f, "\t! space for saving chain_value\n");
assemble_aligned_integer (UNITS_PER_WORD, const0_rtx);
/* Preserve space ($pc + 20) for saving nested function address,
nds32_trampoline_init will fill the value in this slot. */
asm_fprintf (f, "\t! space for saving nested function address\n");
assemble_aligned_integer (UNITS_PER_WORD, const0_rtx);
}
/* Emit RTL insns to initialize the variable parts of a trampoline. */
static void
nds32_trampoline_init (rtx m_tramp, tree fndecl, rtx chain_value)
{
int i;
/* Nested function address. */
rtx fnaddr;
/* The memory rtx that is going to
be filled with chain_value. */
rtx chain_value_mem;
/* The memory rtx that is going to
be filled with nested function address. */
rtx nested_func_mem;
/* Start address of trampoline code in stack, for doing cache sync. */
rtx sync_cache_addr;
/* Temporary register for sync instruction. */
rtx tmp_reg;
/* Instruction-cache sync instruction,
requesting an argument as starting address. */
rtx isync_insn;
/* For convenience reason of doing comparison. */
int tramp_align_in_bytes;
/* Trampoline is not supported on reduced-set registers yet. */
if (TARGET_REDUCED_REGS)
sorry ("a nested function is not supported for reduced registers");
/* STEP 1: Copy trampoline code template into stack,
fill up essential data into stack. */
/* Extract nested function address rtx. */
fnaddr = XEXP (DECL_RTL (fndecl), 0);
/* m_tramp is memory rtx that is going to be filled with trampoline code.
We have nds32_asm_trampoline_template() to emit template pattern. */
emit_block_move (m_tramp, assemble_trampoline_template (),
GEN_INT (TRAMPOLINE_SIZE), BLOCK_OP_NORMAL);
/* After copying trampoline code into stack,
fill chain_value into stack. */
chain_value_mem = adjust_address (m_tramp, SImode, 16);
emit_move_insn (chain_value_mem, chain_value);
/* After copying trampoline code int stack,
fill nested function address into stack. */
nested_func_mem = adjust_address (m_tramp, SImode, 20);
emit_move_insn (nested_func_mem, fnaddr);
/* STEP 2: Sync instruction-cache. */
/* We have successfully filled trampoline code into stack.
However, in order to execute code in stack correctly,
we must sync instruction cache. */
sync_cache_addr = XEXP (m_tramp, 0);
tmp_reg = gen_reg_rtx (SImode);
isync_insn = gen_unspec_volatile_isync (tmp_reg);
/* Because nds32_cache_block_size is in bytes,
we get trampoline alignment in bytes for convenient comparison. */
tramp_align_in_bytes = TRAMPOLINE_ALIGNMENT / BITS_PER_UNIT;
if (tramp_align_in_bytes >= nds32_cache_block_size
&& (tramp_align_in_bytes % nds32_cache_block_size) == 0)
{
/* Under this condition, the starting address of trampoline
must be aligned to the starting address of each cache block
and we do not have to worry about cross-boundary issue. */
for (i = 0;
i < (TRAMPOLINE_SIZE + nds32_cache_block_size - 1)
/ nds32_cache_block_size;
i++)
{
emit_move_insn (tmp_reg,
plus_constant (Pmode, sync_cache_addr,
nds32_cache_block_size * i));
emit_insn (isync_insn);
}
}
else if (TRAMPOLINE_SIZE > nds32_cache_block_size)
{
/* The starting address of trampoline code
may not be aligned to the cache block,
so the trampoline code may be across two cache block.
We need to sync the last element, which is 4-byte size,
of trampoline template. */
for (i = 0;
i < (TRAMPOLINE_SIZE + nds32_cache_block_size - 1)
/ nds32_cache_block_size;
i++)
{
emit_move_insn (tmp_reg,
plus_constant (Pmode, sync_cache_addr,
nds32_cache_block_size * i));
emit_insn (isync_insn);
}
/* The last element of trampoline template is 4-byte size. */
emit_move_insn (tmp_reg,
plus_constant (Pmode, sync_cache_addr,
TRAMPOLINE_SIZE - 4));
emit_insn (isync_insn);
}
else
{
/* This is the simplest case.
Because TRAMPOLINE_SIZE is less than or
equal to nds32_cache_block_size,
we can just sync start address and
the last element of trampoline code. */
/* Sync starting address of tampoline code. */
emit_move_insn (tmp_reg, sync_cache_addr);
emit_insn (isync_insn);
/* Sync the last element, which is 4-byte size,
of trampoline template. */
emit_move_insn (tmp_reg,
plus_constant (Pmode, sync_cache_addr,
TRAMPOLINE_SIZE - 4));
emit_insn (isync_insn);
}
/* Set instruction serialization barrier
to guarantee the correct operations. */
emit_insn (gen_unspec_volatile_isb ());
}
/* Addressing Modes. */
static bool
nds32_legitimate_address_p (machine_mode mode, rtx x, bool strict)
{
/* For (mem:DI addr) or (mem:DF addr) case,
we only allow 'addr' to be [reg], [symbol_ref],
[const], or [reg + const_int] pattern. */
if (mode == DImode || mode == DFmode)
{
/* Allow [Reg + const_int] addressing mode. */
if (GET_CODE (x) == PLUS)
{
if (nds32_address_register_rtx_p (XEXP (x, 0), strict)
&& nds32_legitimate_index_p (mode, XEXP (x, 1), strict)
&& CONST_INT_P (XEXP (x, 1)))
return true;
else if (nds32_address_register_rtx_p (XEXP (x, 1), strict)
&& nds32_legitimate_index_p (mode, XEXP (x, 0), strict)
&& CONST_INT_P (XEXP (x, 0)))
return true;
}
/* Now check [reg], [symbol_ref], and [const]. */
if (GET_CODE (x) != REG
&& GET_CODE (x) != SYMBOL_REF
&& GET_CODE (x) != CONST)
return false;
}
/* Check if 'x' is a valid address. */
switch (GET_CODE (x))
{
case REG:
/* (mem (reg A)) => [Ra] */
return nds32_address_register_rtx_p (x, strict);
case SYMBOL_REF:
/* (mem (symbol_ref A)) => [symbol_ref] */
/* If -mcmodel=large, the 'symbol_ref' is not a valid address
during or after LRA/reload phase. */
if (TARGET_CMODEL_LARGE
&& (reload_completed
|| reload_in_progress
|| lra_in_progress))
return false;
/* If -mcmodel=medium and the symbol references to rodata section,
the 'symbol_ref' is not a valid address during or after
LRA/reload phase. */
if (TARGET_CMODEL_MEDIUM
&& NDS32_SYMBOL_REF_RODATA_P (x)
&& (reload_completed
|| reload_in_progress
|| lra_in_progress))
return false;
return true;
case CONST:
/* (mem (const (...)))
=> [ + const_addr ], where const_addr = symbol_ref + const_int */
if (GET_CODE (XEXP (x, 0)) == PLUS)
{
rtx plus_op = XEXP (x, 0);
rtx op0 = XEXP (plus_op, 0);
rtx op1 = XEXP (plus_op, 1);
if (GET_CODE (op0) == SYMBOL_REF && CONST_INT_P (op1))
{
/* Now we see the [ + const_addr ] pattern, but we need
some further checking. */
/* If -mcmodel=large, the 'const_addr' is not a valid address
during or after LRA/reload phase. */
if (TARGET_CMODEL_LARGE
&& (reload_completed
|| reload_in_progress
|| lra_in_progress))
return false;
/* If -mcmodel=medium and the symbol references to rodata section,
the 'const_addr' is not a valid address during or after
LRA/reload phase. */
if (TARGET_CMODEL_MEDIUM
&& NDS32_SYMBOL_REF_RODATA_P (op0)
&& (reload_completed
|| reload_in_progress
|| lra_in_progress))
return false;
/* At this point we can make sure 'const_addr' is a
valid address. */
return true;
}
}
return false;
case POST_MODIFY:
/* (mem (post_modify (reg) (plus (reg) (reg))))
=> [Ra], Rb */
/* (mem (post_modify (reg) (plus (reg) (const_int))))
=> [Ra], const_int */
if (GET_CODE (XEXP (x, 0)) == REG
&& GET_CODE (XEXP (x, 1)) == PLUS)
{
rtx plus_op = XEXP (x, 1);
rtx op0 = XEXP (plus_op, 0);
rtx op1 = XEXP (plus_op, 1);
if (nds32_address_register_rtx_p (op0, strict)
&& nds32_legitimate_index_p (mode, op1, strict))
return true;
else
return false;
}
return false;
case POST_INC:
case POST_DEC:
/* (mem (post_inc reg)) => [Ra], 1/2/4 */
/* (mem (post_dec reg)) => [Ra], -1/-2/-4 */
/* The 1/2/4 or -1/-2/-4 have been displayed in nds32.md.
We only need to deal with register Ra. */
if (nds32_address_register_rtx_p (XEXP (x, 0), strict))
return true;
else
return false;
case PLUS:
/* (mem (plus reg const_int))
=> [Ra + imm] */
/* (mem (plus reg reg))
=> [Ra + Rb] */
/* (mem (plus (mult reg const_int) reg))
=> [Ra + Rb << sv] */
if (nds32_address_register_rtx_p (XEXP (x, 0), strict)
&& nds32_legitimate_index_p (mode, XEXP (x, 1), strict))
return true;
else if (nds32_address_register_rtx_p (XEXP (x, 1), strict)
&& nds32_legitimate_index_p (mode, XEXP (x, 0), strict))
return true;
else
return false;
case LO_SUM:
/* (mem (lo_sum (reg) (symbol_ref))) */
/* (mem (lo_sum (reg) (const))) */
gcc_assert (REG_P (XEXP (x, 0)));
if (GET_CODE (XEXP (x, 1)) == SYMBOL_REF
|| GET_CODE (XEXP (x, 1)) == CONST)
return nds32_legitimate_address_p (mode, XEXP (x, 1), strict);
else
return false;
default:
return false;
}
}
/* Describing Relative Costs of Operations. */
static int
nds32_register_move_cost (machine_mode mode ATTRIBUTE_UNUSED,
reg_class_t from,
reg_class_t to)
{
if (from == HIGH_REGS || to == HIGH_REGS)
return 6;
return 2;
}
static int
nds32_memory_move_cost (machine_mode mode ATTRIBUTE_UNUSED,
reg_class_t rclass ATTRIBUTE_UNUSED,
bool in ATTRIBUTE_UNUSED)
{
return 8;
}
/* This target hook describes the relative costs of RTL expressions.
Return 'true' when all subexpressions of x have been processed.
Return 'false' to sum the costs of sub-rtx, plus cost of this operation.
Refer to gcc/rtlanal.c for more information. */
static bool
nds32_rtx_costs (rtx x,
int code,
int outer_code,
int opno,
int *total,
bool speed)
{
return nds32_rtx_costs_impl (x, code, outer_code, opno, total, speed);
}
static int
nds32_address_cost (rtx address,
machine_mode mode,
addr_space_t as,
bool speed)
{
return nds32_address_cost_impl (address, mode, as, speed);
}
/* Dividing the Output into Sections (Texts, Data, . . . ). */
/* If references to a symbol or a constant must be treated differently
depending on something about the variable or function named by the symbol
(such as what section it is in), we use this hook to store flags
in symbol_ref rtx. */
static void
nds32_encode_section_info (tree decl, rtx rtl, int new_decl_p)
{
default_encode_section_info (decl, rtl, new_decl_p);
/* For the memory rtx, if it references to rodata section, we can store
NDS32_SYMBOL_FLAG_RODATA flag into symbol_ref rtx so that the
nds32_legitimate_address_p() can determine how to treat such symbol_ref
based on -mcmodel=X and this information. */
if (MEM_P (rtl) && MEM_READONLY_P (rtl))
{
rtx addr = XEXP (rtl, 0);
if (GET_CODE (addr) == SYMBOL_REF)
{
/* For (mem (symbol_ref X)) case. */
SYMBOL_REF_FLAGS (addr) |= NDS32_SYMBOL_FLAG_RODATA;
}
else if (GET_CODE (addr) == CONST
&& GET_CODE (XEXP (addr, 0)) == PLUS)
{
/* For (mem (const (plus (symbol_ref X) (const_int N)))) case. */
rtx plus_op = XEXP (addr, 0);
rtx op0 = XEXP (plus_op, 0);
rtx op1 = XEXP (plus_op, 1);
if (GET_CODE (op0) == SYMBOL_REF && CONST_INT_P (op1))
SYMBOL_REF_FLAGS (op0) |= NDS32_SYMBOL_FLAG_RODATA;
}
}
}
/* Defining the Output Assembler Language. */
/* -- The Overall Framework of an Assembler File. */
static void
nds32_asm_file_start (void)
{
default_file_start ();
/* Tell assembler which ABI we are using. */
fprintf (asm_out_file, "\t! ABI version\n");
fprintf (asm_out_file, "\t.abi_2\n");
/* Tell assembler that this asm code is generated by compiler. */
fprintf (asm_out_file, "\t! This asm file is generated by compiler\n");
fprintf (asm_out_file, "\t.flag\tverbatim\n");
/* Give assembler the size of each vector for interrupt handler. */
fprintf (asm_out_file, "\t! This vector size directive is required "
"for checking inconsistency on interrupt handler\n");
fprintf (asm_out_file, "\t.vec_size\t%d\n", nds32_isr_vector_size);
fprintf (asm_out_file, "\t! ------------------------------------\n");
if (TARGET_ISA_V2)
fprintf (asm_out_file, "\t! ISA family\t\t: %s\n", "V2");
if (TARGET_ISA_V3)
fprintf (asm_out_file, "\t! ISA family\t\t: %s\n", "V3");
if (TARGET_ISA_V3M)
fprintf (asm_out_file, "\t! ISA family\t\t: %s\n", "V3M");
if (TARGET_CMODEL_SMALL)
fprintf (asm_out_file, "\t! Code model\t\t: %s\n", "SMALL");
if (TARGET_CMODEL_MEDIUM)
fprintf (asm_out_file, "\t! Code model\t\t: %s\n", "MEDIUM");
if (TARGET_CMODEL_LARGE)
fprintf (asm_out_file, "\t! Code model\t\t: %s\n", "LARGE");
fprintf (asm_out_file, "\t! Endian setting\t: %s\n",
((TARGET_BIG_ENDIAN) ? "big-endian"
: "little-endian"));
fprintf (asm_out_file, "\t! ------------------------------------\n");
fprintf (asm_out_file, "\t! Use conditional move\t\t: %s\n",
((TARGET_CMOV) ? "Yes"
: "No"));
fprintf (asm_out_file, "\t! Use performance extension\t: %s\n",
((TARGET_PERF_EXT) ? "Yes"
: "No"));
fprintf (asm_out_file, "\t! ------------------------------------\n");
fprintf (asm_out_file, "\t! V3PUSH instructions\t: %s\n",
((TARGET_V3PUSH) ? "Yes"
: "No"));
fprintf (asm_out_file, "\t! 16-bit instructions\t: %s\n",
((TARGET_16_BIT) ? "Yes"
: "No"));
fprintf (asm_out_file, "\t! Reduced registers set\t: %s\n",
((TARGET_REDUCED_REGS) ? "Yes"
: "No"));
fprintf (asm_out_file, "\t! ------------------------------------\n");
if (optimize_size)
fprintf (asm_out_file, "\t! Optimization level\t: -Os\n");
else
fprintf (asm_out_file, "\t! Optimization level\t: -O%d\n", optimize);
fprintf (asm_out_file, "\t! ------------------------------------\n");
fprintf (asm_out_file, "\t! Cache block size\t: %d\n",
nds32_cache_block_size);
fprintf (asm_out_file, "\t! ------------------------------------\n");
nds32_asm_file_start_for_isr ();
}
static void
nds32_asm_file_end (void)
{
nds32_asm_file_end_for_isr ();
fprintf (asm_out_file, "\t! ------------------------------------\n");
}
/* -- Output and Generation of Labels. */
static void
nds32_asm_globalize_label (FILE *stream, const char *name)
{
fputs ("\t.global\t", stream);
assemble_name (stream, name);
fputs ("\n", stream);
}
/* -- Output of Assembler Instructions. */
static void
nds32_print_operand (FILE *stream, rtx x, int code)
{
int op_value;
switch (code)
{
case 0 :
/* Do nothing special. */
break;
case 'V':
/* 'x' is supposed to be CONST_INT, get the value. */
gcc_assert (CONST_INT_P (x));
op_value = INTVAL (x);
/* According to the Andes architecture,
the system/user register index range is 0 ~ 1023.
In order to avoid conflict between user-specified-integer value
and enum-specified-register value,
the 'enum nds32_intrinsic_registers' value
in nds32_intrinsic.h starts from 1024. */
if (op_value < 1024 && op_value >= 0)
{
/* If user gives integer value directly (0~1023),
we just print out the value. */
fprintf (stream, "%d", op_value);
}
else if (op_value < 0
|| op_value >= ((int) ARRAY_SIZE (nds32_intrinsic_register_names)
+ 1024))
{
/* The enum index value for array size is out of range. */
error ("intrinsic register index is out of range");
}
else
{
/* If user applies normal way with __NDS32_REG_XXX__ enum data,
we can print out register name. Remember to substract 1024. */
fprintf (stream, "%s",
nds32_intrinsic_register_names[op_value - 1024]);
}
/* No need to handle following process, so return immediately. */
return;
default :
/* Unknown flag. */
output_operand_lossage ("invalid operand output code");
break;
}
switch (GET_CODE (x))
{
case LABEL_REF:
case SYMBOL_REF:
output_addr_const (stream, x);
break;
case REG:
/* Forbid using static chain register ($r16)
on reduced-set registers configuration. */
if (TARGET_REDUCED_REGS
&& REGNO (x) == STATIC_CHAIN_REGNUM)
sorry ("a nested function is not supported for reduced registers");
/* Normal cases, print out register name. */
fputs (reg_names[REGNO (x)], stream);
break;
case MEM:
output_address (XEXP (x, 0));
break;
case CODE_LABEL:
case CONST_INT:
case CONST:
output_addr_const (stream, x);
break;
default:
/* Generally, output_addr_const () is able to handle most cases.
We want to see what CODE could appear,
so we use gcc_unreachable() to stop it. */
debug_rtx (x);
gcc_unreachable ();
break;
}
}
static void
nds32_print_operand_address (FILE *stream, rtx x)
{
rtx op0, op1;
switch (GET_CODE (x))
{
case SYMBOL_REF:
case CONST:
/* [ + symbol_ref] */
/* [ + const_addr], where const_addr = symbol_ref + const_int */
fputs ("[ + ", stream);
output_addr_const (stream, x);
fputs ("]", stream);
break;
case REG:
/* Forbid using static chain register ($r16)
on reduced-set registers configuration. */
if (TARGET_REDUCED_REGS
&& REGNO (x) == STATIC_CHAIN_REGNUM)
sorry ("a nested function is not supported for reduced registers");
/* [Ra] */
fprintf (stream, "[%s]", reg_names[REGNO (x)]);
break;
case PLUS:
op0 = XEXP (x, 0);
op1 = XEXP (x, 1);
/* Checking op0, forbid using static chain register ($r16)
on reduced-set registers configuration. */
if (TARGET_REDUCED_REGS
&& REG_P (op0)
&& REGNO (op0) == STATIC_CHAIN_REGNUM)
sorry ("a nested function is not supported for reduced registers");
/* Checking op1, forbid using static chain register ($r16)
on reduced-set registers configuration. */
if (TARGET_REDUCED_REGS
&& REG_P (op1)
&& REGNO (op1) == STATIC_CHAIN_REGNUM)
sorry ("a nested function is not supported for reduced registers");
if (REG_P (op0) && CONST_INT_P (op1))
{
/* [Ra + imm] */
fprintf (stream, "[%s + (%d)]",
reg_names[REGNO (op0)], (int)INTVAL (op1));
}
else if (REG_P (op0) && REG_P (op1))
{
/* [Ra + Rb] */
fprintf (stream, "[%s + %s]",
reg_names[REGNO (op0)], reg_names[REGNO (op1)]);
}
else if (GET_CODE (op0) == MULT && REG_P (op1))
{
/* [Ra + Rb << sv]
From observation, the pattern looks like:
(plus:SI (mult:SI (reg:SI 58)
(const_int 4 [0x4]))
(reg/f:SI 57)) */
int sv;
/* We need to set sv to output shift value. */
if (INTVAL (XEXP (op0, 1)) == 1)
sv = 0;
else if (INTVAL (XEXP (op0, 1)) == 2)
sv = 1;
else if (INTVAL (XEXP (op0, 1)) == 4)
sv = 2;
else
gcc_unreachable ();
fprintf (stream, "[%s + %s << %d]",
reg_names[REGNO (op1)],
reg_names[REGNO (XEXP (op0, 0))],
sv);
}
else
{
/* The control flow is not supposed to be here. */
debug_rtx (x);
gcc_unreachable ();
}
break;
case POST_MODIFY:
/* (post_modify (regA) (plus (regA) (regB)))
(post_modify (regA) (plus (regA) (const_int)))
We would like to extract
regA and regB (or const_int) from plus rtx. */
op0 = XEXP (XEXP (x, 1), 0);
op1 = XEXP (XEXP (x, 1), 1);
/* Checking op0, forbid using static chain register ($r16)
on reduced-set registers configuration. */
if (TARGET_REDUCED_REGS
&& REG_P (op0)
&& REGNO (op0) == STATIC_CHAIN_REGNUM)
sorry ("a nested function is not supported for reduced registers");
/* Checking op1, forbid using static chain register ($r16)
on reduced-set registers configuration. */
if (TARGET_REDUCED_REGS
&& REG_P (op1)
&& REGNO (op1) == STATIC_CHAIN_REGNUM)
sorry ("a nested function is not supported for reduced registers");
if (REG_P (op0) && REG_P (op1))
{
/* [Ra], Rb */
fprintf (stream, "[%s], %s",
reg_names[REGNO (op0)], reg_names[REGNO (op1)]);
}
else if (REG_P (op0) && CONST_INT_P (op1))
{
/* [Ra], imm */
fprintf (stream, "[%s], %d",
reg_names[REGNO (op0)], (int)INTVAL (op1));
}
else
{
/* The control flow is not supposed to be here. */
debug_rtx (x);
gcc_unreachable ();
}
break;
case POST_INC:
case POST_DEC:
op0 = XEXP (x, 0);
/* Checking op0, forbid using static chain register ($r16)
on reduced-set registers configuration. */
if (TARGET_REDUCED_REGS
&& REG_P (op0)
&& REGNO (op0) == STATIC_CHAIN_REGNUM)
sorry ("a nested function is not supported for reduced registers");
if (REG_P (op0))
{
/* "[Ra], 1/2/4" or "[Ra], -1/-2/-4"
The 1/2/4 or -1/-2/-4 have been displayed in nds32.md.
We only need to deal with register Ra. */
fprintf (stream, "[%s]", reg_names[REGNO (op0)]);
}
else
{
/* The control flow is not supposed to be here. */
debug_rtx (x);
gcc_unreachable ();
}
break;
default :
/* Generally, output_addr_const () is able to handle most cases.
We want to see what CODE could appear,
so we use gcc_unreachable() to stop it. */
debug_rtx (x);
gcc_unreachable ();
break;
}
}
/* Defining target-specific uses of __attribute__. */
/* Add some checking after merging attributes. */
static tree
nds32_merge_decl_attributes (tree olddecl, tree newdecl)
{
tree combined_attrs;
/* Create combined attributes. */
combined_attrs = merge_attributes (DECL_ATTRIBUTES (olddecl),
DECL_ATTRIBUTES (newdecl));
/* Since newdecl is acutally a duplicate of olddecl,
we can take olddecl for some operations. */
if (TREE_CODE (olddecl) == FUNCTION_DECL)
{
/* Check isr-specific attributes conflict. */
nds32_check_isr_attrs_conflict (olddecl, combined_attrs);
}
return combined_attrs;
}
/* Add some checking when inserting attributes. */
static void
nds32_insert_attributes (tree decl, tree *attributes)
{
/* For function declaration, we need to check isr-specific attributes:
1. Call nds32_check_isr_attrs_conflict() to check any conflict.
2. Check valid integer value for interrupt/exception.
3. Check valid integer value for reset.
4. Check valid function for nmi/warm. */
if (TREE_CODE (decl) == FUNCTION_DECL)
{
tree func_attrs;
tree intr, excp, reset;
/* Pick up function attributes. */
func_attrs = *attributes;
/* 1. Call nds32_check_isr_attrs_conflict() to check any conflict. */
nds32_check_isr_attrs_conflict (decl, func_attrs);
/* Now we are starting to check valid id value
for interrupt/exception/reset.
Note that we ONLY check its validity here.
To construct isr vector information, it is still performed
by nds32_construct_isr_vectors_information(). */
intr = lookup_attribute ("interrupt", func_attrs);
excp = lookup_attribute ("exception", func_attrs);
reset = lookup_attribute ("reset", func_attrs);
if (intr || excp)
{
/* Deal with interrupt/exception. */
tree id_list;
unsigned int lower_bound, upper_bound;
/* The way to handle interrupt or exception is the same,
we just need to take care of actual vector number.
For interrupt(0..63), the actual vector number is (9..72).
For exception(1..8), the actual vector number is (1..8). */
lower_bound = (intr) ? (0) : (1);
upper_bound = (intr) ? (63) : (8);
/* Prepare id list so that we can traverse id value. */
id_list = (intr) ? (TREE_VALUE (intr)) : (TREE_VALUE (excp));
/* 2. Check valid integer value for interrupt/exception. */
while (id_list)
{
tree id;
/* Pick up each vector id value. */
id = TREE_VALUE (id_list);
/* Issue error if it is not a valid integer value. */
if (TREE_CODE (id) != INTEGER_CST
|| wi::ltu_p (id, lower_bound)
|| wi::gtu_p (id, upper_bound))
error ("invalid id value for interrupt/exception attribute");
/* Advance to next id. */
id_list = TREE_CHAIN (id_list);
}
}
else if (reset)
{
/* Deal with reset. */
tree id_list;
tree id;
tree nmi, warm;
unsigned int lower_bound;
unsigned int upper_bound;
/* Prepare id_list and identify id value so that
we can check if total number of vectors is valid. */
id_list = TREE_VALUE (reset);
id = TREE_VALUE (id_list);
/* The maximum numbers for user's interrupt is 64. */
lower_bound = 0;
upper_bound = 64;
/* 3. Check valid integer value for reset. */
if (TREE_CODE (id) != INTEGER_CST
|| wi::ltu_p (id, lower_bound)
|| wi::gtu_p (id, upper_bound))
error ("invalid id value for reset attribute");
/* 4. Check valid function for nmi/warm. */
nmi = lookup_attribute ("nmi", func_attrs);
warm = lookup_attribute ("warm", func_attrs);
if (nmi != NULL_TREE)
{
tree nmi_func_list;
tree nmi_func;
nmi_func_list = TREE_VALUE (nmi);
nmi_func = TREE_VALUE (nmi_func_list);
/* Issue error if it is not a valid nmi function. */
if (TREE_CODE (nmi_func) != IDENTIFIER_NODE)
error ("invalid nmi function for reset attribute");
}
if (warm != NULL_TREE)
{
tree warm_func_list;
tree warm_func;
warm_func_list = TREE_VALUE (warm);
warm_func = TREE_VALUE (warm_func_list);
/* Issue error if it is not a valid warm function. */
if (TREE_CODE (warm_func) != IDENTIFIER_NODE)
error ("invalid warm function for reset attribute");
}
}
else
{
/* No interrupt, exception, or reset attribute is set. */
return;
}
}
}
static bool
nds32_option_pragma_parse (tree args ATTRIBUTE_UNUSED,
tree pop_target ATTRIBUTE_UNUSED)
{
/* Currently, we do not parse any pragma target by ourself,
so just simply return false. */
return false;
}
static void
nds32_option_override (void)
{
/* After all the command options have been parsed,
we shall deal with some flags for changing compiler settings. */
/* At first, we check if we have to strictly
set some flags based on ISA family. */
if (TARGET_ISA_V2)
{
/* Under V2 ISA, we need to strictly disable TARGET_V3PUSH. */
target_flags &= ~MASK_V3PUSH;
}
if (TARGET_ISA_V3)
{
/* Under V3 ISA, currently nothing should be strictly set. */
}
if (TARGET_ISA_V3M)
{
/* Under V3M ISA, we need to strictly enable TARGET_REDUCED_REGS. */
target_flags |= MASK_REDUCED_REGS;
/* Under V3M ISA, we need to strictly disable TARGET_PERF_EXT. */
target_flags &= ~MASK_PERF_EXT;
}
/* See if we are using reduced-set registers:
$r0~$r5, $r6~$r10, $r15, $r28, $r29, $r30, $r31
If so, we must forbid using $r11~$r14, $r16~$r27. */
if (TARGET_REDUCED_REGS)
{
int r;
/* Prevent register allocator from
choosing it as doing register allocation. */
for (r = 11; r <= 14; r++)
fixed_regs[r] = call_used_regs[r] = 1;
for (r = 16; r <= 27; r++)
fixed_regs[r] = call_used_regs[r] = 1;
}
if (!TARGET_16_BIT)
{
/* Under no 16 bit ISA, we need to strictly disable TARGET_V3PUSH. */
target_flags &= ~MASK_V3PUSH;
}
/* Currently, we don't support PIC code generation yet. */
if (flag_pic)
sorry ("not support -fpic");
}
/* Miscellaneous Parameters. */
static void
nds32_init_builtins (void)
{
nds32_init_builtins_impl ();
}
static rtx
nds32_expand_builtin (tree exp,
rtx target,
rtx subtarget,
machine_mode mode,
int ignore)
{
return nds32_expand_builtin_impl (exp, target, subtarget, mode, ignore);
}
/* ------------------------------------------------------------------------ */
/* PART 4: Implemet extern function definitions,
the prototype is in nds32-protos.h. */
/* Defining Data Structures for Per-function Information. */
void
nds32_init_expanders (void)
{
/* Arrange to initialize and mark the machine per-function status. */
init_machine_status = nds32_init_machine_status;
}
/* Register Usage. */
/* -- How Values Fit in Registers. */
int
nds32_hard_regno_nregs (int regno ATTRIBUTE_UNUSED,
machine_mode mode)
{
return ((GET_MODE_SIZE (mode) + UNITS_PER_WORD - 1) / UNITS_PER_WORD);
}
int
nds32_hard_regno_mode_ok (int regno, machine_mode mode)
{
/* Restrict double-word quantities to even register pairs. */
if (HARD_REGNO_NREGS (regno, mode) == 1
|| !((regno) & 1))
return 1;
return 0;
}
/* Register Classes. */
enum reg_class
nds32_regno_reg_class (int regno)
{
/* Refer to nds32.h for more register class details. */
if (regno >= 0 && regno <= 7)
return LOW_REGS;
else if (regno >= 8 && regno <= 11)
return MIDDLE_REGS;
else if (regno >= 12 && regno <= 14)
return HIGH_REGS;
else if (regno == 15)
return R15_TA_REG;
else if (regno >= 16 && regno <= 19)
return MIDDLE_REGS;
else if (regno >= 20 && regno <= 31)
return HIGH_REGS;
else if (regno == 32 || regno == 33)
return FRAME_REGS;
else
return NO_REGS;
}
/* Stack Layout and Calling Conventions. */
/* -- Basic Stack Layout. */
rtx
nds32_return_addr_rtx (int count,
rtx frameaddr ATTRIBUTE_UNUSED)
{
/* There is no way to determine the return address
if frameaddr is the frame that has 'count' steps
up from current frame. */
if (count != 0)
return NULL_RTX;
/* If count == 0, it means we are at current frame,
the return address is $r30 ($lp). */
return get_hard_reg_initial_val (Pmode, LP_REGNUM);
}
/* -- Eliminating Frame Pointer and Arg Pointer. */
HOST_WIDE_INT
nds32_initial_elimination_offset (unsigned int from_reg, unsigned int to_reg)
{
HOST_WIDE_INT offset;
/* Compute and setup stack frame size.
The result will be in cfun->machine. */
nds32_compute_stack_frame ();
/* Remember to consider
cfun->machine->callee_saved_area_padding_bytes
when calculating offset. */
if (from_reg == ARG_POINTER_REGNUM && to_reg == STACK_POINTER_REGNUM)
{
offset = (cfun->machine->fp_size
+ cfun->machine->gp_size
+ cfun->machine->lp_size
+ cfun->machine->callee_saved_gpr_regs_size
+ cfun->machine->callee_saved_area_gpr_padding_bytes
+ cfun->machine->local_size
+ cfun->machine->out_args_size);
}
else if (from_reg == ARG_POINTER_REGNUM
&& to_reg == HARD_FRAME_POINTER_REGNUM)
{
offset = 0;
}
else if (from_reg == FRAME_POINTER_REGNUM
&& to_reg == STACK_POINTER_REGNUM)
{
offset = (cfun->machine->local_size + cfun->machine->out_args_size);
}
else if (from_reg == FRAME_POINTER_REGNUM
&& to_reg == HARD_FRAME_POINTER_REGNUM)
{
offset = (-1) * (cfun->machine->fp_size
+ cfun->machine->gp_size
+ cfun->machine->lp_size
+ cfun->machine->callee_saved_gpr_regs_size
+ cfun->machine->callee_saved_area_gpr_padding_bytes);
}
else
{
gcc_unreachable ();
}
return offset;
}
/* -- Passing Arguments in Registers. */
void
nds32_init_cumulative_args (CUMULATIVE_ARGS *cum,
tree fntype ATTRIBUTE_UNUSED,
rtx libname ATTRIBUTE_UNUSED,
tree fndecl ATTRIBUTE_UNUSED,
int n_named_args ATTRIBUTE_UNUSED)
{
/* Initial available registers
(in offset, corresponding to NDS32_GPR_ARG_FIRST_REGNUM)
for passing arguments. */
cum->gpr_offset = 0;
}
/* -- Function Entry and Exit. */
/* Function for normal multiple push prologue. */
void
nds32_expand_prologue (void)
{
int fp_adjust;
int sp_adjust;
int en4_const;
rtx Rb, Re;
rtx fp_adjust_insn, sp_adjust_insn;
/* Compute and setup stack frame size.
The result will be in cfun->machine. */
nds32_compute_stack_frame ();
/* If this is a variadic function, first we need to push argument
registers that hold the unnamed argument value. */
if (cfun->machine->va_args_size != 0)
{
Rb = gen_rtx_REG (SImode, cfun->machine->va_args_first_regno);
Re = gen_rtx_REG (SImode, cfun->machine->va_args_last_regno);
/* No need to push $fp, $gp, or $lp, so use GEN_INT(0). */
nds32_emit_stack_push_multiple (Rb, Re, GEN_INT (0), true);
/* We may also need to adjust stack pointer for padding bytes
because varargs may cause $sp not 8-byte aligned. */
if (cfun->machine->va_args_area_padding_bytes)
{
/* Generate sp adjustment instruction. */
sp_adjust = cfun->machine->va_args_area_padding_bytes;
sp_adjust_insn = gen_addsi3 (stack_pointer_rtx,
stack_pointer_rtx,
GEN_INT (-1 * sp_adjust));
/* Emit rtx into instructions list and receive INSN rtx form. */
sp_adjust_insn = emit_insn (sp_adjust_insn);
/* The insn rtx 'sp_adjust_insn' will change frame layout.
We need to use RTX_FRAME_RELATED_P so that GCC is able to
generate CFI (Call Frame Information) stuff. */
RTX_FRAME_RELATED_P (sp_adjust_insn) = 1;
}
}
/* If the function is 'naked',
we do not have to generate prologue code fragment. */
if (cfun->machine->naked_p)
return;
/* Get callee_first_regno and callee_last_regno. */
Rb = gen_rtx_REG (SImode, cfun->machine->callee_saved_first_gpr_regno);
Re = gen_rtx_REG (SImode, cfun->machine->callee_saved_last_gpr_regno);
/* nds32_emit_stack_push_multiple(first_regno, last_regno),
the pattern 'stack_push_multiple' is implemented in nds32.md.
For En4 field, we have to calculate its constant value.
Refer to Andes ISA for more information. */
en4_const = 0;
if (cfun->machine->fp_size)
en4_const += 8;
if (cfun->machine->gp_size)
en4_const += 4;
if (cfun->machine->lp_size)
en4_const += 2;
/* If $fp, $gp, $lp, and all callee-save registers are NOT required
to be saved, we don't have to create multiple push instruction.
Otherwise, a multiple push instruction is needed. */
if (!(REGNO (Rb) == SP_REGNUM && REGNO (Re) == SP_REGNUM && en4_const == 0))
{
/* Create multiple push instruction rtx. */
nds32_emit_stack_push_multiple (Rb, Re, GEN_INT (en4_const), false);
}
/* Check frame_pointer_needed to see
if we shall emit fp adjustment instruction. */
if (frame_pointer_needed)
{
/* adjust $fp = $sp + ($fp size) + ($gp size) + ($lp size)
+ (4 * callee-saved-registers)
Note: No need to adjust
cfun->machine->callee_saved_area_padding_bytes,
because, at this point, stack pointer is just
at the position after push instruction. */
fp_adjust = cfun->machine->fp_size
+ cfun->machine->gp_size
+ cfun->machine->lp_size
+ cfun->machine->callee_saved_gpr_regs_size;
fp_adjust_insn = gen_addsi3 (hard_frame_pointer_rtx,
stack_pointer_rtx,
GEN_INT (fp_adjust));
/* Emit rtx into instructions list and receive INSN rtx form. */
fp_adjust_insn = emit_insn (fp_adjust_insn);
/* The insn rtx 'fp_adjust_insn' will change frame layout. */
RTX_FRAME_RELATED_P (fp_adjust_insn) = 1;
}
/* Adjust $sp = $sp - local_size - out_args_size
- callee_saved_area_padding_bytes. */
sp_adjust = cfun->machine->local_size
+ cfun->machine->out_args_size
+ cfun->machine->callee_saved_area_gpr_padding_bytes;
/* sp_adjust value may be out of range of the addi instruction,
create alternative add behavior with TA_REGNUM if necessary,
using NEGATIVE value to tell that we are decreasing address. */
sp_adjust = nds32_force_addi_stack_int ( (-1) * sp_adjust);
if (sp_adjust)
{
/* Generate sp adjustment instruction if and only if sp_adjust != 0. */
sp_adjust_insn = gen_addsi3 (stack_pointer_rtx,
stack_pointer_rtx,
GEN_INT (-1 * sp_adjust));
/* Emit rtx into instructions list and receive INSN rtx form. */
sp_adjust_insn = emit_insn (sp_adjust_insn);
/* The insn rtx 'sp_adjust_insn' will change frame layout.
We need to use RTX_FRAME_RELATED_P so that GCC is able to
generate CFI (Call Frame Information) stuff. */
RTX_FRAME_RELATED_P (sp_adjust_insn) = 1;
}
/* Prevent the instruction scheduler from
moving instructions across the boundary. */
emit_insn (gen_blockage ());
}
/* Function for normal multiple pop epilogue. */
void
nds32_expand_epilogue (bool sibcall_p)
{
int sp_adjust;
int en4_const;
rtx Rb, Re;
rtx sp_adjust_insn;
/* Compute and setup stack frame size.
The result will be in cfun->machine. */
nds32_compute_stack_frame ();
/* Prevent the instruction scheduler from
moving instructions across the boundary. */
emit_insn (gen_blockage ());
/* If the function is 'naked', we do not have to generate
epilogue code fragment BUT 'ret' instruction.
However, if this function is also a variadic function,
we need to create adjust stack pointer before 'ret' instruction. */
if (cfun->machine->naked_p)
{
/* If this is a variadic function, we do not have to restore argument
registers but need to adjust stack pointer back to previous stack
frame location before return. */
if (cfun->machine->va_args_size != 0)
{
/* Generate sp adjustment instruction.
We need to consider padding bytes here. */
sp_adjust = cfun->machine->va_args_size
+ cfun->machine->va_args_area_padding_bytes;
sp_adjust_insn = gen_addsi3 (stack_pointer_rtx,
stack_pointer_rtx,
GEN_INT (sp_adjust));
/* Emit rtx into instructions list and receive INSN rtx form. */
sp_adjust_insn = emit_insn (sp_adjust_insn);
/* The insn rtx 'sp_adjust_insn' will change frame layout.
We need to use RTX_FRAME_RELATED_P so that GCC is able to
generate CFI (Call Frame Information) stuff. */
RTX_FRAME_RELATED_P (sp_adjust_insn) = 1;
}
/* Generate return instruction by using 'return_internal' pattern.
Make sure this instruction is after gen_blockage(). */
if (!sibcall_p)
emit_jump_insn (gen_return_internal ());
return;
}
if (frame_pointer_needed)
{
/* adjust $sp = $fp - ($fp size) - ($gp size) - ($lp size)
- (4 * callee-saved-registers)
Note: No need to adjust
cfun->machine->callee_saved_area_padding_bytes,
because we want to adjust stack pointer
to the position for pop instruction. */
sp_adjust = cfun->machine->fp_size
+ cfun->machine->gp_size
+ cfun->machine->lp_size
+ cfun->machine->callee_saved_gpr_regs_size;
sp_adjust_insn = gen_addsi3 (stack_pointer_rtx,
hard_frame_pointer_rtx,
GEN_INT (-1 * sp_adjust));
/* Emit rtx into instructions list and receive INSN rtx form. */
sp_adjust_insn = emit_insn (sp_adjust_insn);
/* The insn rtx 'sp_adjust_insn' will change frame layout. */
RTX_FRAME_RELATED_P (sp_adjust_insn) = 1;
}
else
{
/* If frame pointer is NOT needed,
we cannot calculate the sp adjustment from frame pointer.
Instead, we calculate the adjustment by local_size,
out_args_size, and callee_saved_area_padding_bytes.
Notice that such sp adjustment value may be out of range,
so we have to deal with it as well. */
/* Adjust $sp = $sp + local_size + out_args_size
+ callee_saved_area_padding_bytes. */
sp_adjust = cfun->machine->local_size
+ cfun->machine->out_args_size
+ cfun->machine->callee_saved_area_gpr_padding_bytes;
/* sp_adjust value may be out of range of the addi instruction,
create alternative add behavior with TA_REGNUM if necessary,
using POSITIVE value to tell that we are increasing address. */
sp_adjust = nds32_force_addi_stack_int (sp_adjust);
if (sp_adjust)
{
/* Generate sp adjustment instruction
if and only if sp_adjust != 0. */
sp_adjust_insn = gen_addsi3 (stack_pointer_rtx,
stack_pointer_rtx,
GEN_INT (sp_adjust));
/* Emit rtx into instructions list and receive INSN rtx form. */
sp_adjust_insn = emit_insn (sp_adjust_insn);
/* The insn rtx 'sp_adjust_insn' will change frame layout. */
RTX_FRAME_RELATED_P (sp_adjust_insn) = 1;
}
}
/* Get callee_first_regno and callee_last_regno. */
Rb = gen_rtx_REG (SImode, cfun->machine->callee_saved_first_gpr_regno);
Re = gen_rtx_REG (SImode, cfun->machine->callee_saved_last_gpr_regno);
/* nds32_emit_stack_pop_multiple(first_regno, last_regno),
the pattern 'stack_pop_multiple' is implementad in nds32.md.
For En4 field, we have to calculate its constant value.
Refer to Andes ISA for more information. */
en4_const = 0;
if (cfun->machine->fp_size)
en4_const += 8;
if (cfun->machine->gp_size)
en4_const += 4;
if (cfun->machine->lp_size)
en4_const += 2;
/* If $fp, $gp, $lp, and all callee-save registers are NOT required
to be saved, we don't have to create multiple pop instruction.
Otherwise, a multiple pop instruction is needed. */
if (!(REGNO (Rb) == SP_REGNUM && REGNO (Re) == SP_REGNUM && en4_const == 0))
{
/* Create multiple pop instruction rtx. */
nds32_emit_stack_pop_multiple (Rb, Re, GEN_INT (en4_const));
}
/* If this is a variadic function, we do not have to restore argument
registers but need to adjust stack pointer back to previous stack
frame location before return. */
if (cfun->machine->va_args_size != 0)
{
/* Generate sp adjustment instruction.
We need to consider padding bytes here. */
sp_adjust = cfun->machine->va_args_size
+ cfun->machine->va_args_area_padding_bytes;
sp_adjust_insn = gen_addsi3 (stack_pointer_rtx,
stack_pointer_rtx,
GEN_INT (sp_adjust));
/* Emit rtx into instructions list and receive INSN rtx form. */
sp_adjust_insn = emit_insn (sp_adjust_insn);
/* The insn rtx 'sp_adjust_insn' will change frame layout.
We need to use RTX_FRAME_RELATED_P so that GCC is able to
generate CFI (Call Frame Information) stuff. */
RTX_FRAME_RELATED_P (sp_adjust_insn) = 1;
}
/* Generate return instruction. */
if (!sibcall_p)
emit_jump_insn (gen_return_internal ());
}
/* Function for v3push prologue. */
void
nds32_expand_prologue_v3push (void)
{
int fp_adjust;
int sp_adjust;
rtx Rb, Re;
rtx fp_adjust_insn, sp_adjust_insn;
/* Compute and setup stack frame size.
The result will be in cfun->machine. */
nds32_compute_stack_frame ();
/* If the function is 'naked',
we do not have to generate prologue code fragment. */
if (cfun->machine->naked_p)
return;
/* Get callee_first_regno and callee_last_regno. */
Rb = gen_rtx_REG (SImode, cfun->machine->callee_saved_first_gpr_regno);
Re = gen_rtx_REG (SImode, cfun->machine->callee_saved_last_gpr_regno);
/* Calculate sp_adjust first to test if 'push25 Re,imm8u' is available,
where imm8u has to be 8-byte alignment. */
sp_adjust = cfun->machine->local_size
+ cfun->machine->out_args_size
+ cfun->machine->callee_saved_area_gpr_padding_bytes;
if (satisfies_constraint_Iu08 (GEN_INT (sp_adjust))
&& NDS32_DOUBLE_WORD_ALIGN_P (sp_adjust))
{
/* We can use 'push25 Re,imm8u'. */
/* nds32_emit_stack_v3push(last_regno, sp_adjust),
the pattern 'stack_v3push' is implemented in nds32.md.
The (const_int 14) means v3push always push { $fp $gp $lp }. */
nds32_emit_stack_v3push (Rb, Re,
GEN_INT (14), GEN_INT (sp_adjust));
/* Check frame_pointer_needed to see
if we shall emit fp adjustment instruction. */
if (frame_pointer_needed)
{
/* adjust $fp = $sp + 4 ($fp size)
+ 4 ($gp size)
+ 4 ($lp size)
+ (4 * n) (callee-saved registers)
+ sp_adjust ('push25 Re,imm8u')
Note: Since we use 'push25 Re,imm8u',
the position of stack pointer is further
changed after push instruction.
Hence, we need to take sp_adjust value
into consideration. */
fp_adjust = cfun->machine->fp_size
+ cfun->machine->gp_size
+ cfun->machine->lp_size
+ cfun->machine->callee_saved_gpr_regs_size
+ sp_adjust;
fp_adjust_insn = gen_addsi3 (hard_frame_pointer_rtx,
stack_pointer_rtx,
GEN_INT (fp_adjust));
/* Emit rtx into instructions list and receive INSN rtx form. */
fp_adjust_insn = emit_insn (fp_adjust_insn);
}
}
else
{
/* We have to use 'push25 Re,0' and
expand one more instruction to adjust $sp later. */
/* nds32_emit_stack_v3push(last_regno, sp_adjust),
the pattern 'stack_v3push' is implemented in nds32.md.
The (const_int 14) means v3push always push { $fp $gp $lp }. */
nds32_emit_stack_v3push (Rb, Re,
GEN_INT (14), GEN_INT (0));
/* Check frame_pointer_needed to see
if we shall emit fp adjustment instruction. */
if (frame_pointer_needed)
{
/* adjust $fp = $sp + 4 ($fp size)
+ 4 ($gp size)
+ 4 ($lp size)
+ (4 * n) (callee-saved registers)
Note: Since we use 'push25 Re,0',
the stack pointer is just at the position
after push instruction.
No need to take sp_adjust into consideration. */
fp_adjust = cfun->machine->fp_size
+ cfun->machine->gp_size
+ cfun->machine->lp_size
+ cfun->machine->callee_saved_gpr_regs_size;
fp_adjust_insn = gen_addsi3 (hard_frame_pointer_rtx,
stack_pointer_rtx,
GEN_INT (fp_adjust));
/* Emit rtx into instructions list and receive INSN rtx form. */
fp_adjust_insn = emit_insn (fp_adjust_insn);
}
/* Because we use 'push25 Re,0',
we need to expand one more instruction to adjust $sp.
However, sp_adjust value may be out of range of the addi instruction,
create alternative add behavior with TA_REGNUM if necessary,
using NEGATIVE value to tell that we are decreasing address. */
sp_adjust = nds32_force_addi_stack_int ( (-1) * sp_adjust);
if (sp_adjust)
{
/* Generate sp adjustment instruction
if and only if sp_adjust != 0. */
sp_adjust_insn = gen_addsi3 (stack_pointer_rtx,
stack_pointer_rtx,
GEN_INT (-1 * sp_adjust));
/* Emit rtx into instructions list and receive INSN rtx form. */
sp_adjust_insn = emit_insn (sp_adjust_insn);
/* The insn rtx 'sp_adjust_insn' will change frame layout.
We need to use RTX_FRAME_RELATED_P so that GCC is able to
generate CFI (Call Frame Information) stuff. */
RTX_FRAME_RELATED_P (sp_adjust_insn) = 1;
}
}
/* Prevent the instruction scheduler from
moving instructions across the boundary. */
emit_insn (gen_blockage ());
}
/* Function for v3pop epilogue. */
void
nds32_expand_epilogue_v3pop (bool sibcall_p)
{
int sp_adjust;
rtx Rb, Re;
rtx sp_adjust_insn;
/* Compute and setup stack frame size.
The result will be in cfun->machine. */
nds32_compute_stack_frame ();
/* Prevent the instruction scheduler from
moving instructions across the boundary. */
emit_insn (gen_blockage ());
/* If the function is 'naked', we do not have to generate
epilogue code fragment BUT 'ret' instruction. */
if (cfun->machine->naked_p)
{
/* Generate return instruction by using 'return_internal' pattern.
Make sure this instruction is after gen_blockage(). */
if (!sibcall_p)
emit_jump_insn (gen_return_internal ());
return;
}
/* Get callee_first_regno and callee_last_regno. */
Rb = gen_rtx_REG (SImode, cfun->machine->callee_saved_first_gpr_regno);
Re = gen_rtx_REG (SImode, cfun->machine->callee_saved_last_gpr_regno);
/* Calculate sp_adjust first to test if 'pop25 Re,imm8u' is available,
where imm8u has to be 8-byte alignment. */
sp_adjust = cfun->machine->local_size
+ cfun->machine->out_args_size
+ cfun->machine->callee_saved_area_gpr_padding_bytes;
/* We have to consider alloca issue as well.
If the function does call alloca(), the stack pointer is not fixed.
In that case, we cannot use 'pop25 Re,imm8u' directly.
We have to caculate stack pointer from frame pointer
and then use 'pop25 Re,0'.
Of course, the frame_pointer_needed should be nonzero
if the function calls alloca(). */
if (satisfies_constraint_Iu08 (GEN_INT (sp_adjust))
&& NDS32_DOUBLE_WORD_ALIGN_P (sp_adjust)
&& !cfun->calls_alloca)
{
/* We can use 'pop25 Re,imm8u'. */
/* nds32_emit_stack_v3pop(last_regno, sp_adjust),
the pattern 'stack_v3pop' is implementad in nds32.md.
The (const_int 14) means v3pop always pop { $fp $gp $lp }. */
nds32_emit_stack_v3pop (Rb, Re,
GEN_INT (14), GEN_INT (sp_adjust));
}
else
{
/* We have to use 'pop25 Re,0', and prior to it,
we must expand one more instruction to adjust $sp. */
if (frame_pointer_needed)
{
/* adjust $sp = $fp - 4 ($fp size)
- 4 ($gp size)
- 4 ($lp size)
- (4 * n) (callee-saved registers)
Note: No need to adjust
cfun->machine->callee_saved_area_padding_bytes,
because we want to adjust stack pointer
to the position for pop instruction. */
sp_adjust = cfun->machine->fp_size
+ cfun->machine->gp_size
+ cfun->machine->lp_size
+ cfun->machine->callee_saved_gpr_regs_size;
sp_adjust_insn = gen_addsi3 (stack_pointer_rtx,
hard_frame_pointer_rtx,
GEN_INT (-1 * sp_adjust));
/* Emit rtx into instructions list and receive INSN rtx form. */
sp_adjust_insn = emit_insn (sp_adjust_insn);
}
else
{
/* If frame pointer is NOT needed,
we cannot calculate the sp adjustment from frame pointer.
Instead, we calculate the adjustment by local_size,
out_args_size, and callee_saved_area_padding_bytes.
Notice that such sp adjustment value may be out of range,
so we have to deal with it as well. */
/* Adjust $sp = $sp + local_size + out_args_size
+ callee_saved_area_padding_bytes. */
sp_adjust = cfun->machine->local_size
+ cfun->machine->out_args_size
+ cfun->machine->callee_saved_area_gpr_padding_bytes;
/* sp_adjust value may be out of range of the addi instruction,
create alternative add behavior with TA_REGNUM if necessary,
using POSITIVE value to tell that we are increasing address. */
sp_adjust = nds32_force_addi_stack_int (sp_adjust);
if (sp_adjust)
{
/* Generate sp adjustment instruction
if and only if sp_adjust != 0. */
sp_adjust_insn = gen_addsi3 (stack_pointer_rtx,
stack_pointer_rtx,
GEN_INT (sp_adjust));
/* Emit rtx into instructions list and receive INSN rtx form. */
sp_adjust_insn = emit_insn (sp_adjust_insn);
}
}
/* nds32_emit_stack_v3pop(last_regno, sp_adjust),
the pattern 'stack_v3pop' is implementad in nds32.md. */
/* The (const_int 14) means v3pop always pop { $fp $gp $lp }. */
nds32_emit_stack_v3pop (Rb, Re,
GEN_INT (14), GEN_INT (0));
}
/* Generate return instruction. */
emit_jump_insn (gen_pop25return ());
}
/* Return nonzero if this function is known to have a null epilogue.
This allows the optimizer to omit jumps to jumps if no stack
was created. */
int
nds32_can_use_return_insn (void)
{
/* Prior to reloading, we can't tell how many registers must be saved.
Thus we can not determine whether this function has null epilogue. */
if (!reload_completed)
return 0;
/* If no stack was created, two conditions must be satisfied:
1. This is a naked function.
So there is no callee-saved, local size, or outgoing size.
2. This is NOT a variadic function.
So there is no pushing arguement registers into the stack. */
return (cfun->machine->naked_p && (cfun->machine->va_args_size == 0));
}
/* ------------------------------------------------------------------------ */
/* Function to test 333-form for load/store instructions.
This is auxiliary extern function for auxiliary macro in nds32.h.
Because it is a little complicated, we use function instead of macro. */
bool
nds32_ls_333_p (rtx rt, rtx ra, rtx imm, machine_mode mode)
{
if (REGNO_REG_CLASS (REGNO (rt)) == LOW_REGS
&& REGNO_REG_CLASS (REGNO (ra)) == LOW_REGS)
{
if (GET_MODE_SIZE (mode) == 4)
return satisfies_constraint_Iu05 (imm);
if (GET_MODE_SIZE (mode) == 2)
return satisfies_constraint_Iu04 (imm);
if (GET_MODE_SIZE (mode) == 1)
return satisfies_constraint_Iu03 (imm);
}
return false;
}
/* Computing the Length of an Insn.
Modifies the length assigned to instruction INSN.
LEN is the initially computed length of the insn. */
int
nds32_adjust_insn_length (rtx_insn *insn, int length)
{
rtx src, dst;
switch (recog_memoized (insn))
{
case CODE_FOR_move_df:
case CODE_FOR_move_di:
/* Adjust length of movd44 to 2. */
src = XEXP (PATTERN (insn), 1);
dst = XEXP (PATTERN (insn), 0);
if (REG_P (src)
&& REG_P (dst)
&& (REGNO (src) % 2) == 0
&& (REGNO (dst) % 2) == 0)
length = 2;
break;
default:
break;
}
return length;
}
/* Return align 2 (log base 2) if the next instruction of LABEL is 4 byte. */
int
nds32_target_alignment (rtx label)
{
rtx_insn *insn;
if (optimize_size)
return 0;
insn = next_active_insn (label);
if (insn == 0)
return 0;
else if ((get_attr_length (insn) % 4) == 0)
return 2;
else
return 0;
}
/* ------------------------------------------------------------------------ */
/* PART 5: Initialize target hook structure and definitions. */
/* Controlling the Compilation Driver. */
/* Run-time Target Specification. */
/* Defining Data Structures for Per-function Information. */
/* Storage Layout. */
#undef TARGET_PROMOTE_FUNCTION_MODE
#define TARGET_PROMOTE_FUNCTION_MODE \
default_promote_function_mode_always_promote
/* Layout of Source Language Data Types. */
/* Register Usage. */
/* -- Basic Characteristics of Registers. */
/* -- Order of Allocation of Registers. */
/* -- How Values Fit in Registers. */
/* -- Handling Leaf Functions. */
/* -- Registers That Form a Stack. */
/* Register Classes. */
#undef TARGET_CLASS_MAX_NREGS
#define TARGET_CLASS_MAX_NREGS nds32_class_max_nregs
#undef TARGET_LRA_P
#define TARGET_LRA_P hook_bool_void_true
#undef TARGET_REGISTER_PRIORITY
#define TARGET_REGISTER_PRIORITY nds32_register_priority
/* Obsolete Macros for Defining Constraints. */
/* Stack Layout and Calling Conventions. */
/* -- Basic Stack Layout. */
/* -- Exception Handling Support. */
/* -- Specifying How Stack Checking is Done. */
/* -- Registers That Address the Stack Frame. */
/* -- Eliminating Frame Pointer and Arg Pointer. */
#undef TARGET_CAN_ELIMINATE
#define TARGET_CAN_ELIMINATE nds32_can_eliminate
/* -- Passing Function Arguments on the Stack. */
/* -- Passing Arguments in Registers. */
#undef TARGET_FUNCTION_ARG
#define TARGET_FUNCTION_ARG nds32_function_arg
#undef TARGET_MUST_PASS_IN_STACK
#define TARGET_MUST_PASS_IN_STACK nds32_must_pass_in_stack
#undef TARGET_ARG_PARTIAL_BYTES
#define TARGET_ARG_PARTIAL_BYTES nds32_arg_partial_bytes
#undef TARGET_FUNCTION_ARG_ADVANCE
#define TARGET_FUNCTION_ARG_ADVANCE nds32_function_arg_advance
#undef TARGET_FUNCTION_ARG_BOUNDARY
#define TARGET_FUNCTION_ARG_BOUNDARY nds32_function_arg_boundary
/* -- How Scalar Function Values Are Returned. */
#undef TARGET_FUNCTION_VALUE
#define TARGET_FUNCTION_VALUE nds32_function_value
#undef TARGET_LIBCALL_VALUE
#define TARGET_LIBCALL_VALUE nds32_libcall_value
#undef TARGET_FUNCTION_VALUE_REGNO_P
#define TARGET_FUNCTION_VALUE_REGNO_P nds32_function_value_regno_p
/* -- How Large Values Are Returned. */
/* -- Caller-Saves Register Allocation. */
/* -- Function Entry and Exit. */
#undef TARGET_ASM_FUNCTION_PROLOGUE
#define TARGET_ASM_FUNCTION_PROLOGUE nds32_asm_function_prologue
#undef TARGET_ASM_FUNCTION_END_PROLOGUE
#define TARGET_ASM_FUNCTION_END_PROLOGUE nds32_asm_function_end_prologue
#undef TARGET_ASM_FUNCTION_BEGIN_EPILOGUE
#define TARGET_ASM_FUNCTION_BEGIN_EPILOGUE nds32_asm_function_begin_epilogue
#undef TARGET_ASM_FUNCTION_EPILOGUE
#define TARGET_ASM_FUNCTION_EPILOGUE nds32_asm_function_epilogue
#undef TARGET_ASM_OUTPUT_MI_THUNK
#define TARGET_ASM_OUTPUT_MI_THUNK nds32_asm_output_mi_thunk
#undef TARGET_ASM_CAN_OUTPUT_MI_THUNK
#define TARGET_ASM_CAN_OUTPUT_MI_THUNK default_can_output_mi_thunk_no_vcall
/* -- Generating Code for Profiling. */
/* -- Permitting tail calls. */
#undef TARGET_WARN_FUNC_RETURN
#define TARGET_WARN_FUNC_RETURN nds32_warn_func_return
/* Stack smashing protection. */
/* Implementing the Varargs Macros. */
#undef TARGET_SETUP_INCOMING_VARARGS
#define TARGET_SETUP_INCOMING_VARARGS nds32_setup_incoming_varargs
#undef TARGET_STRICT_ARGUMENT_NAMING
#define TARGET_STRICT_ARGUMENT_NAMING nds32_strict_argument_naming
/* Trampolines for Nested Functions. */
#undef TARGET_ASM_TRAMPOLINE_TEMPLATE
#define TARGET_ASM_TRAMPOLINE_TEMPLATE nds32_asm_trampoline_template
#undef TARGET_TRAMPOLINE_INIT
#define TARGET_TRAMPOLINE_INIT nds32_trampoline_init
/* Implicit Calls to Library Routines. */
/* Addressing Modes. */
#undef TARGET_LEGITIMATE_ADDRESS_P
#define TARGET_LEGITIMATE_ADDRESS_P nds32_legitimate_address_p
/* Anchored Addresses. */
/* Condition Code Status. */
/* -- Representation of condition codes using (cc0). */
/* -- Representation of condition codes using registers. */
/* -- Macros to control conditional execution. */
/* Describing Relative Costs of Operations. */
#undef TARGET_REGISTER_MOVE_COST
#define TARGET_REGISTER_MOVE_COST nds32_register_move_cost
#undef TARGET_MEMORY_MOVE_COST
#define TARGET_MEMORY_MOVE_COST nds32_memory_move_cost
#undef TARGET_RTX_COSTS
#define TARGET_RTX_COSTS nds32_rtx_costs
#undef TARGET_ADDRESS_COST
#define TARGET_ADDRESS_COST nds32_address_cost
/* Adjusting the Instruction Scheduler. */
/* Dividing the Output into Sections (Texts, Data, . . . ). */
#undef TARGET_ENCODE_SECTION_INFO
#define TARGET_ENCODE_SECTION_INFO nds32_encode_section_info
/* Position Independent Code. */
/* Defining the Output Assembler Language. */
/* -- The Overall Framework of an Assembler File. */
#undef TARGET_ASM_FILE_START
#define TARGET_ASM_FILE_START nds32_asm_file_start
#undef TARGET_ASM_FILE_END
#define TARGET_ASM_FILE_END nds32_asm_file_end
/* -- Output of Data. */
#undef TARGET_ASM_ALIGNED_HI_OP
#define TARGET_ASM_ALIGNED_HI_OP "\t.hword\t"
#undef TARGET_ASM_ALIGNED_SI_OP
#define TARGET_ASM_ALIGNED_SI_OP "\t.word\t"
/* -- Output of Uninitialized Variables. */
/* -- Output and Generation of Labels. */
#undef TARGET_ASM_GLOBALIZE_LABEL
#define TARGET_ASM_GLOBALIZE_LABEL nds32_asm_globalize_label
/* -- How Initialization Functions Are Handled. */
/* -- Macros Controlling Initialization Routines. */
/* -- Output of Assembler Instructions. */
#undef TARGET_PRINT_OPERAND
#define TARGET_PRINT_OPERAND nds32_print_operand
#undef TARGET_PRINT_OPERAND_ADDRESS
#define TARGET_PRINT_OPERAND_ADDRESS nds32_print_operand_address
/* -- Output of Dispatch Tables. */
/* -- Assembler Commands for Exception Regions. */
/* -- Assembler Commands for Alignment. */
/* Controlling Debugging Information Format. */
/* -- Macros Affecting All Debugging Formats. */
/* -- Specific Options for DBX Output. */
/* -- Open-Ended Hooks for DBX Format. */
/* -- File Names in DBX Format. */
/* -- Macros for SDB and DWARF Output. */
/* -- Macros for VMS Debug Format. */
/* Cross Compilation and Floating Point. */
/* Mode Switching Instructions. */
/* Defining target-specific uses of __attribute__. */
#undef TARGET_ATTRIBUTE_TABLE
#define TARGET_ATTRIBUTE_TABLE nds32_attribute_table
#undef TARGET_MERGE_DECL_ATTRIBUTES
#define TARGET_MERGE_DECL_ATTRIBUTES nds32_merge_decl_attributes
#undef TARGET_INSERT_ATTRIBUTES
#define TARGET_INSERT_ATTRIBUTES nds32_insert_attributes
#undef TARGET_OPTION_PRAGMA_PARSE
#define TARGET_OPTION_PRAGMA_PARSE nds32_option_pragma_parse
#undef TARGET_OPTION_OVERRIDE
#define TARGET_OPTION_OVERRIDE nds32_option_override
/* Emulating TLS. */
/* Defining coprocessor specifics for MIPS targets. */
/* Parameters for Precompiled Header Validity Checking. */
/* C++ ABI parameters. */
/* Adding support for named address spaces. */
/* Miscellaneous Parameters. */
#undef TARGET_INIT_BUILTINS
#define TARGET_INIT_BUILTINS nds32_init_builtins
#undef TARGET_EXPAND_BUILTIN
#define TARGET_EXPAND_BUILTIN nds32_expand_builtin
/* ------------------------------------------------------------------------ */
/* Initialize the GCC target structure. */
struct gcc_target targetm = TARGET_INITIALIZER;
/* ------------------------------------------------------------------------ */
|