1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
|
/* Copyright (C) 2000-2013 Free Software Foundation, Inc.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
Under Section 7 of GPL version 3, you are granted additional
permissions described in the GCC Runtime Library Exception, version
3.1, as published by the Free Software Foundation.
You should have received a copy of the GNU General Public License and
a copy of the GCC Runtime Library Exception along with this program;
see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
<http://www.gnu.org/licenses/>. */
/* Standard register usage. */
/* Number of actual hardware registers.
The hardware registers are assigned numbers for the compiler
from 0 to just below FIRST_PSEUDO_REGISTER.
All registers that the compiler knows about must be given numbers,
even those that are not normally considered general registers.
HP-PA 1.0 has 32 fullword registers and 16 floating point
registers. The floating point registers hold either word or double
word values.
16 additional registers are reserved.
HP-PA 1.1 has 32 fullword registers and 32 floating point
registers. However, the floating point registers behave
differently: the left and right halves of registers are addressable
as 32-bit registers. So, we will set things up like the 68k which
has different fp units: define separate register sets for the 1.0
and 1.1 fp units. */
#define FIRST_PSEUDO_REGISTER 90 /* 32 general regs + 56 fp regs +
+ 1 shift reg + frame pointer */
/* 1 for registers that have pervasive standard uses
and are not available for the register allocator.
On the HP-PA, these are:
Reg 0 = 0 (hardware). However, 0 is used for condition code,
so is not fixed.
Reg 1 = ADDIL target/Temporary (hardware).
Reg 2 = Return Pointer
Reg 3 = Frame Pointer
Reg 4 = Frame Pointer (>8k varying frame with HP compilers only)
Reg 4-18 = Preserved Registers
Reg 19 = Linkage Table Register in HPUX 8.0 shared library scheme.
Reg 20-22 = Temporary Registers
Reg 23-26 = Temporary/Parameter Registers
Reg 27 = Global Data Pointer (hp)
Reg 28 = Temporary/Return Value register
Reg 29 = Temporary/Static Chain/Return Value register #2
Reg 30 = stack pointer
Reg 31 = Temporary/Millicode Return Pointer (hp)
Freg 0-3 = Status Registers -- Not known to the compiler.
Freg 4-7 = Arguments/Return Value
Freg 8-11 = Temporary Registers
Freg 12-15 = Preserved Registers
Freg 16-31 = Reserved
On the Snake, fp regs are
Freg 0-3 = Status Registers -- Not known to the compiler.
Freg 4L-7R = Arguments/Return Value
Freg 8L-11R = Temporary Registers
Freg 12L-21R = Preserved Registers
Freg 22L-31R = Temporary Registers
*/
#define FIXED_REGISTERS \
{0, 0, 0, 0, 0, 0, 0, 0, \
0, 0, 0, 0, 0, 0, 0, 0, \
0, 0, 0, 0, 0, 0, 0, 0, \
0, 0, 0, 1, 0, 0, 1, 0, \
/* fp registers */ \
0, 0, 0, 0, 0, 0, 0, 0, \
0, 0, 0, 0, 0, 0, 0, 0, \
0, 0, 0, 0, 0, 0, 0, 0, \
0, 0, 0, 0, 0, 0, 0, 0, \
0, 0, 0, 0, 0, 0, 0, 0, \
0, 0, 0, 0, 0, 0, 0, 0, \
0, 0, 0, 0, 0, 0, 0, 0, \
/* shift register and soft frame pointer */ \
0, 1}
/* 1 for registers not available across function calls.
These must include the FIXED_REGISTERS and also any
registers that can be used without being saved.
The latter must include the registers where values are returned
and the register where structure-value addresses are passed.
Aside from that, you can include as many other registers as you like. */
#define CALL_USED_REGISTERS \
{1, 1, 1, 0, 0, 0, 0, 0, \
0, 0, 0, 0, 0, 0, 0, 0, \
0, 0, 0, 1, 1, 1, 1, 1, \
1, 1, 1, 1, 1, 1, 1, 1, \
/* fp registers */ \
1, 1, 1, 1, 1, 1, 1, 1, \
1, 1, 1, 1, 1, 1, 1, 1, \
0, 0, 0, 0, 0, 0, 0, 0, \
0, 0, 0, 0, 0, 0, 0, 0, \
0, 0, 0, 0, 1, 1, 1, 1, \
1, 1, 1, 1, 1, 1, 1, 1, \
1, 1, 1, 1, 1, 1, 1, 1, \
/* shift register and soft frame pointer */ \
1, 1}
/* Allocate the call used registers first. This should minimize
the number of registers that need to be saved (as call used
registers will generally not be allocated across a call).
Experimentation has shown slightly better results by allocating
FP registers first. We allocate the caller-saved registers more
or less in reverse order to their allocation as arguments.
FP registers are ordered so that all L registers are selected before
R registers. This works around a false dependency interlock on the
PA8000 when accessing the high and low parts of an FP register
independently. */
#define REG_ALLOC_ORDER \
{ \
/* caller-saved fp regs. */ \
68, 70, 72, 74, 76, 78, 80, 82, \
84, 86, 40, 42, 44, 46, 38, 36, \
34, 32, \
69, 71, 73, 75, 77, 79, 81, 83, \
85, 87, 41, 43, 45, 47, 39, 37, \
35, 33, \
/* caller-saved general regs. */ \
28, 19, 20, 21, 22, 31, 27, 29, \
23, 24, 25, 26, 2, \
/* callee-saved fp regs. */ \
48, 50, 52, 54, 56, 58, 60, 62, \
64, 66, \
49, 51, 53, 55, 57, 59, 61, 63, \
65, 67, \
/* callee-saved general regs. */ \
3, 4, 5, 6, 7, 8, 9, 10, \
11, 12, 13, 14, 15, 16, 17, 18, \
/* special registers. */ \
1, 30, 0, 88, 89}
/* Return number of consecutive hard regs needed starting at reg REGNO
to hold something of mode MODE.
This is ordinarily the length in words of a value of mode MODE
but can be less for certain modes in special long registers.
On the HP-PA, general registers are 32 bits wide. The floating
point registers are 64 bits wide. Snake fp regs are treated as
32 bits wide since the left and right parts are independently
accessible. */
#define HARD_REGNO_NREGS(REGNO, MODE) \
(FP_REGNO_P (REGNO) \
? (!TARGET_PA_11 \
? COMPLEX_MODE_P (MODE) ? 2 : 1 \
: (GET_MODE_SIZE (MODE) + 4 - 1) / 4) \
: (GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
/* There are no instructions that use DImode in PA 1.0, so we only
allow it in PA 1.1 and later. */
#define VALID_FP_MODE_P(MODE) \
((MODE) == SFmode || (MODE) == DFmode \
|| (MODE) == SCmode || (MODE) == DCmode \
|| (MODE) == SImode || (TARGET_PA_11 && (MODE) == DImode))
/* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
On the HP-PA, the cpu registers can hold any mode that fits in 32 bits.
For the 64-bit modes, we choose a set of non-overlapping general registers
that includes the incoming arguments and the return value. We specify a
set with no overlaps so that we don't have to specify that the destination
register is an early clobber in patterns using this mode. Except for the
return value, the starting registers are odd. For 128 and 256 bit modes,
we similarly specify non-overlapping sets of cpu registers. However,
there aren't any patterns defined for modes larger than 64 bits at the
moment.
We limit the modes allowed in the floating point registers to the
set of modes used in the machine definition. In addition, we allow
the complex modes SCmode and DCmode. The real and imaginary parts
of complex modes are allocated to separate registers. This might
allow patterns to be defined in the future to operate on these values.
The PA 2.0 architecture specifies that quad-precision floating-point
values should start on an even floating point register. Thus, we
choose non-overlapping sets of registers starting on even register
boundaries for large modes. However, there is currently no support
in the machine definition for modes larger than 64 bits. TFmode is
supported under HP-UX using libcalls. Since TFmode values are passed
by reference, they never need to be loaded into the floating-point
registers. */
#define HARD_REGNO_MODE_OK(REGNO, MODE) \
((REGNO) == 0 ? (MODE) == CCmode || (MODE) == CCFPmode \
: (REGNO) == 88 ? SCALAR_INT_MODE_P (MODE) \
: !TARGET_PA_11 && FP_REGNO_P (REGNO) \
? (VALID_FP_MODE_P (MODE) \
&& (GET_MODE_SIZE (MODE) <= 8 \
|| (GET_MODE_SIZE (MODE) == 16 && ((REGNO) & 3) == 0))) \
: FP_REGNO_P (REGNO) \
? (VALID_FP_MODE_P (MODE) \
&& (GET_MODE_SIZE (MODE) <= 4 \
|| (GET_MODE_SIZE (MODE) == 8 && ((REGNO) & 1) == 0) \
|| (GET_MODE_SIZE (MODE) == 16 && ((REGNO) & 3) == 0) \
|| (GET_MODE_SIZE (MODE) == 32 && ((REGNO) & 7) == 0))) \
: (GET_MODE_SIZE (MODE) <= UNITS_PER_WORD \
|| (GET_MODE_SIZE (MODE) == 2 * UNITS_PER_WORD \
&& ((((REGNO) & 1) == 1 && (REGNO) <= 25) || (REGNO) == 28)) \
|| (GET_MODE_SIZE (MODE) == 4 * UNITS_PER_WORD \
&& ((REGNO) & 3) == 3 && (REGNO) <= 23) \
|| (GET_MODE_SIZE (MODE) == 8 * UNITS_PER_WORD \
&& ((REGNO) & 7) == 3 && (REGNO) <= 19)))
/* How to renumber registers for dbx and gdb.
Registers 0 - 31 remain unchanged.
Registers 32 - 87 are mapped to 72 - 127
Register 88 is mapped to 32. */
#define DBX_REGISTER_NUMBER(REGNO) \
((REGNO) <= 31 ? (REGNO) : \
((REGNO) <= 87 ? (REGNO) + 40 : 32))
/* We must not use the DBX register numbers for the DWARF 2 CFA column
numbers because that maps to numbers beyond FIRST_PSEUDO_REGISTER.
Instead use the identity mapping. */
#define DWARF_FRAME_REGNUM(REG) REG
/* Define the classes of registers for register constraints in the
machine description. Also define ranges of constants.
One of the classes must always be named ALL_REGS and include all hard regs.
If there is more than one class, another class must be named NO_REGS
and contain no registers.
The name GENERAL_REGS must be the name of a class (or an alias for
another name such as ALL_REGS). This is the class of registers
that is allowed by "g" or "r" in a register constraint.
Also, registers outside this class are allocated only when
instructions express preferences for them.
The classes must be numbered in nondecreasing order; that is,
a larger-numbered class must never be contained completely
in a smaller-numbered class.
For any two classes, it is very desirable that there be another
class that represents their union. */
/* The HP-PA has four kinds of registers: general regs, 1.0 fp regs,
1.1 fp regs, and the high 1.1 fp regs, to which the operands of
fmpyadd and fmpysub are restricted. */
enum reg_class { NO_REGS, R1_REGS, GENERAL_REGS, FPUPPER_REGS, FP_REGS,
GENERAL_OR_FP_REGS, SHIFT_REGS, ALL_REGS, LIM_REG_CLASSES};
#define N_REG_CLASSES (int) LIM_REG_CLASSES
/* Give names of register classes as strings for dump file. */
#define REG_CLASS_NAMES \
{"NO_REGS", "R1_REGS", "GENERAL_REGS", "FPUPPER_REGS", "FP_REGS", \
"GENERAL_OR_FP_REGS", "SHIFT_REGS", "ALL_REGS"}
/* Define which registers fit in which classes.
This is an initializer for a vector of HARD_REG_SET
of length N_REG_CLASSES. Register 0, the "condition code" register,
is in no class. */
#define REG_CLASS_CONTENTS \
{{0x00000000, 0x00000000, 0x00000000}, /* NO_REGS */ \
{0x00000002, 0x00000000, 0x00000000}, /* R1_REGS */ \
{0xfffffffe, 0x00000000, 0x02000000}, /* GENERAL_REGS */ \
{0x00000000, 0xff000000, 0x00ffffff}, /* FPUPPER_REGS */ \
{0x00000000, 0xffffffff, 0x00ffffff}, /* FP_REGS */ \
{0xfffffffe, 0xffffffff, 0x02ffffff}, /* GENERAL_OR_FP_REGS */ \
{0x00000000, 0x00000000, 0x01000000}, /* SHIFT_REGS */ \
{0xfffffffe, 0xffffffff, 0x03ffffff}} /* ALL_REGS */
/* Defines invalid mode changes. */
#define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) \
pa_cannot_change_mode_class (FROM, TO, CLASS)
/* Return the class number of the smallest class containing
reg number REGNO. This could be a conditional expression
or could index an array. */
#define REGNO_REG_CLASS(REGNO) \
((REGNO) == 0 ? NO_REGS \
: (REGNO) == 1 ? R1_REGS \
: (REGNO) < 32 || (REGNO) == 89 ? GENERAL_REGS \
: (REGNO) < 56 ? FP_REGS \
: (REGNO) < 88 ? FPUPPER_REGS \
: SHIFT_REGS)
/* Return the maximum number of consecutive registers
needed to represent mode MODE in a register of class CLASS. */
#define CLASS_MAX_NREGS(CLASS, MODE) \
((CLASS) == FP_REGS || (CLASS) == FPUPPER_REGS \
? (!TARGET_PA_11 \
? COMPLEX_MODE_P (MODE) ? 2 : 1 \
: (GET_MODE_SIZE (MODE) + 4 - 1) / 4) \
: ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
/* 1 if N is a possible register number for function argument passing. */
#define FUNCTION_ARG_REGNO_P(N) \
(((N) >= 23 && (N) <= 26) || (! TARGET_SOFT_FLOAT && (N) >= 32 && (N) <= 39))
/* How to refer to registers in assembler output.
This sequence is indexed by compiler's hard-register-number (see above). */
#define REGISTER_NAMES \
{"%r0", "%r1", "%r2", "%r3", "%r4", "%r5", "%r6", "%r7", \
"%r8", "%r9", "%r10", "%r11", "%r12", "%r13", "%r14", "%r15", \
"%r16", "%r17", "%r18", "%r19", "%r20", "%r21", "%r22", "%r23", \
"%r24", "%r25", "%r26", "%r27", "%r28", "%r29", "%r30", "%r31", \
"%fr4", "%fr4R", "%fr5", "%fr5R", "%fr6", "%fr6R", "%fr7", "%fr7R", \
"%fr8", "%fr8R", "%fr9", "%fr9R", "%fr10", "%fr10R", "%fr11", "%fr11R", \
"%fr12", "%fr12R", "%fr13", "%fr13R", "%fr14", "%fr14R", "%fr15", "%fr15R", \
"%fr16", "%fr16R", "%fr17", "%fr17R", "%fr18", "%fr18R", "%fr19", "%fr19R", \
"%fr20", "%fr20R", "%fr21", "%fr21R", "%fr22", "%fr22R", "%fr23", "%fr23R", \
"%fr24", "%fr24R", "%fr25", "%fr25R", "%fr26", "%fr26R", "%fr27", "%fr27R", \
"%fr28", "%fr28R", "%fr29", "%fr29R", "%fr30", "%fr30R", "%fr31", "%fr31R", \
"SAR", "sfp"}
#define ADDITIONAL_REGISTER_NAMES \
{{"%fr4L",32}, {"%fr5L",34}, {"%fr6L",36}, {"%fr7L",38}, \
{"%fr8L",40}, {"%fr9L",42}, {"%fr10L",44}, {"%fr11L",46}, \
{"%fr12L",48}, {"%fr13L",50}, {"%fr14L",52}, {"%fr15L",54}, \
{"%fr16L",56}, {"%fr17L",58}, {"%fr18L",60}, {"%fr19L",62}, \
{"%fr20L",64}, {"%fr21L",66}, {"%fr22L",68}, {"%fr23L",70}, \
{"%fr24L",72}, {"%fr25L",74}, {"%fr26L",76}, {"%fr27L",78}, \
{"%fr28L",80}, {"%fr29L",82}, {"%fr30L",84}, {"%fr31R",86}, \
{"%cr11",88}}
#define FP_SAVED_REG_LAST 66
#define FP_SAVED_REG_FIRST 48
#define FP_REG_STEP 2
#define FP_REG_FIRST 32
#define FP_REG_LAST 87
|