summaryrefslogtreecommitdiff
path: root/gcc/config/romp/romp.c
blob: dc9761c711318ceaa7db57aaefe1d38a65f696c8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
/* Subroutines used for code generation on ROMP.
   Copyright (C) 1990, 1991, 1992, 1993, 1997, 1998, 1999, 2000, 2002
   Free Software Foundation, Inc.
   Contributed by Richard Kenner (kenner@nyu.edu)

This file is part of GNU CC.

GNU CC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.

GNU CC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with GNU CC; see the file COPYING.  If not, write to
the Free Software Foundation, 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA.  */


#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "rtl.h"
#include "regs.h"
#include "hard-reg-set.h"
#include "real.h"
#include "insn-config.h"
#include "conditions.h"
#include "output.h"
#include "insn-attr.h"
#include "flags.h"
#include "recog.h"
#include "obstack.h"
#include "tree.h"
#include "function.h"
#include "expr.h"
#include "ggc.h"
#include "toplev.h"
#include "tm_p.h"
#include "target.h"
#include "target-def.h"

#define min(A,B)	((A) < (B) ? (A) : (B))
#define max(A,B)	((A) > (B) ? (A) : (B))

static int unsigned_comparisons_p PARAMS ((rtx));
static void output_loadsave_fpregs PARAMS ((FILE *, enum rtx_code, rtx));
static void output_fpops PARAMS ((FILE *));
static void init_fpops PARAMS ((void));
static int memory_offset_in_range_p PARAMS ((rtx, enum machine_mode, int, int));
static unsigned int hash_rtx PARAMS ((rtx));
static void romp_output_function_prologue PARAMS ((FILE *, HOST_WIDE_INT));
static void romp_output_function_epilogue PARAMS ((FILE *, HOST_WIDE_INT));
static void romp_select_rtx_section PARAMS ((enum machine_mode, rtx,
					     unsigned HOST_WIDE_INT));
static void romp_encode_section_info PARAMS ((tree, int));

/* Initialize the GCC target structure.  */
#undef TARGET_ASM_FUNCTION_PROLOGUE
#define TARGET_ASM_FUNCTION_PROLOGUE romp_output_function_prologue
#undef TARGET_ASM_FUNCTION_EPILOGUE
#define TARGET_ASM_FUNCTION_EPILOGUE romp_output_function_epilogue
#undef TARGET_ASM_SELECT_RTX_SECTION
#define TARGET_ASM_SELECT_RTX_SECTION romp_select_rtx_section
#undef TARGET_ENCODE_SECTION_INFO
#define TARGET_ENCODE_SECTION_INFO romp_encode_section_info

struct gcc_target targetm = TARGET_INITIALIZER;

/* Return 1 if the insn using CC0 set by INSN does not contain
   any unsigned tests applied to the condition codes.

   Based on `next_insn_tests_no_inequality' in recog.c.  */

int
next_insn_tests_no_unsigned (insn)
     rtx insn;
{
  register rtx next = next_cc0_user (insn);

  if (next == 0)
    {
      if (find_reg_note (insn, REG_UNUSED, cc0_rtx))
	return 1;
      else
	abort ();
    }

  return ((GET_CODE (next) == JUMP_INSN
	   || GET_CODE (next) == INSN
	   || GET_CODE (next) == CALL_INSN)
	  && ! unsigned_comparisons_p (PATTERN (next)));
}

static int
unsigned_comparisons_p (x)
     rtx x;
{
  register const char *fmt;
  register int len, i;
  register enum rtx_code code = GET_CODE (x);

  switch (code)
    {
    case REG:
    case PC:
    case CC0:
    case CONST_INT:
    case CONST_DOUBLE:
    case CONST:
    case LABEL_REF:
    case SYMBOL_REF:
      return 0;

    case LTU:
    case GTU:
    case LEU:
    case GEU:
      return (XEXP (x, 0) == cc0_rtx || XEXP (x, 1) == cc0_rtx);
    default:
      break;
    }

  len = GET_RTX_LENGTH (code);
  fmt = GET_RTX_FORMAT (code);

  for (i = 0; i < len; i++)
    {
      if (fmt[i] == 'e')
	{
	  if (unsigned_comparisons_p (XEXP (x, i)))
	    return 1;
	}
      else if (fmt[i] == 'E')
	{
	  register int j;
	  for (j = XVECLEN (x, i) - 1; j >= 0; j--)
	    if (unsigned_comparisons_p (XVECEXP (x, i, j)))
	      return 1;
	}
    }
	    
  return 0;
}

/* Update the condition code from the insn.  Look mostly at the first
   byte of the machine-specific insn description information.

   cc_state.value[12] refer to two possible values that might correspond
   to the CC.  We only store register values.  */

void
update_cc (body, insn)
    rtx body ATTRIBUTE_UNUSED;
    rtx insn;
{
  switch (get_attr_cc (insn))
    {
    case CC_NONE:
      /* Insn does not affect the CC at all.  */
      break;

    case CC_CHANGE0:
      /* Insn doesn't affect the CC but does modify operand[0], known to be
	 a register.  */
      if (cc_status.value1 != 0
	  && reg_overlap_mentioned_p (recog_data.operand[0], cc_status.value1))
	cc_status.value1 = 0;

      if (cc_status.value2 != 0
	  && reg_overlap_mentioned_p (recog_data.operand[0], cc_status.value2))
	cc_status.value2 = 0;

      break;

    case CC_COPY1TO0:
      /* Insn copies operand[1] to operand[0], both registers, but doesn't
         affect the CC.  */
      if (cc_status.value1 != 0
	  && reg_overlap_mentioned_p (recog_data.operand[0], cc_status.value1))
	cc_status.value1 = 0;

      if (cc_status.value2 != 0
	  && reg_overlap_mentioned_p (recog_data.operand[0], cc_status.value2))
	cc_status.value2 = 0;

      if (cc_status.value1 != 0
	  && rtx_equal_p (cc_status.value1, recog_data.operand[1]))
	cc_status.value2 = recog_data.operand[0];

      if (cc_status.value2 != 0
	  && rtx_equal_p (cc_status.value2, recog_data.operand[1]))
	cc_status.value1 = recog_data.operand[0];

      break;

    case CC_CLOBBER:
      /* Insn clobbers CC.  */
      CC_STATUS_INIT;
      break;

    case CC_SETS:
      /* Insn sets CC to recog_data.operand[0], but overflow is impossible.  */
      CC_STATUS_INIT;
      cc_status.flags |= CC_NO_OVERFLOW;
      cc_status.value1 = recog_data.operand[0];
      break;

   case CC_COMPARE:
      /* Insn is a compare which sets the CC fully.  Update CC_STATUS for this
	 compare and mark whether the test will be signed or unsigned.  */
      {
	register rtx p = PATTERN (insn);

	CC_STATUS_INIT;

	if (GET_CODE (p) == PARALLEL)
	  p = XVECEXP (p, 0, 0);
	cc_status.value1 = SET_SRC (p);

	if (GET_CODE (SET_SRC (p)) == REG)
	  cc_status.flags |= CC_NO_OVERFLOW;
	if (! next_insn_tests_no_unsigned (insn))
	  cc_status.flags |= CC_UNSIGNED;
      }
      break;

    case CC_TBIT:
      /* Insn sets T bit if result is nonzero.  Next insn must be branch.  */
      CC_STATUS_INIT;
      cc_status.flags = CC_IN_TB | CC_NOT_NEGATIVE;
      break;

    default:
      abort ();
   }
}

/* Return 1 if a previous compare needs to be re-issued.  This will happen
   if two compares tested the same objects, but one was signed and the
   other unsigned.  OP is the comparison operation being performed.  */

int
restore_compare_p (op)
     rtx op;
{
  enum rtx_code code = GET_CODE (op);

  return (((code == GEU || code == LEU || code == GTU || code == LTU)
	   && ! (cc_status.flags & CC_UNSIGNED))
	  || ((code == GE || code == LE || code == GT || code == LT)
	      && (cc_status.flags & CC_UNSIGNED)));
}

/*  Generate the (long) string corresponding to an inline multiply insn.
    Note that `r10' does not refer to the register r10, but rather to the
    SCR used as the MQ.  */
const char *
output_in_line_mul ()
{
  static char insns[200];
  int i;

  strcpy (insns, "s %0,%0\n");
  strcat (insns, "\tmts r10,%1\n");
  for (i = 0; i < 16; i++)
    strcat (insns, "\tm %0,%2\n");
  strcat (insns, "\tmfs r10,%0");

  return insns;
}

/* Returns 1 if OP is a memory reference with an offset from a register within
   the range specified.  The offset must also be a multiple of the size of the
   mode.  */

static int
memory_offset_in_range_p (op, mode, low, high)
     register rtx op;
     enum machine_mode mode;
     int low, high;
{
  int offset = 0;

  if (! memory_operand (op, mode))
    return 0;

  while (GET_CODE (op) == SUBREG)
    {
      offset += SUBREG_BYTE (op);
      op = SUBREG_REG (op);
    }

  /* We must now have either (mem (reg (x)), (mem (plus (reg (x)) (c))),
     or a constant pool address.  */
  if (GET_CODE (op) != MEM)
    abort ();

  /* Now use the actual mode and get the address.  */
  mode = GET_MODE (op);
  op = XEXP (op, 0);
  if (GET_CODE (op) == SYMBOL_REF && CONSTANT_POOL_ADDRESS_P (op))
    offset = get_pool_offset (op) + 12;
  else if (GET_CODE (op) == PLUS)
    {
      if (GET_CODE (XEXP (op, 1)) != CONST_INT
	  || ! register_operand (XEXP (op, 0), Pmode))
	return 0;

      offset += INTVAL (XEXP (op, 1));
    }

  else if (! register_operand (op, Pmode))
    return 0;

  return (offset >= low && offset <= high
	  && (offset % GET_MODE_SIZE (mode) == 0));
}

/* Return 1 if OP is a valid operand for a memory reference insn that can
   only reference indirect through a register.   */

int
zero_memory_operand (op, mode)
     rtx op;
     enum machine_mode mode;
{
  return memory_offset_in_range_p (op, mode, 0, 0);
}

/* Return 1 if OP is a valid operand for a `short' memory reference insn.  */

int
short_memory_operand (op, mode)
     rtx op;
     enum machine_mode mode;
{
  if (mode == VOIDmode)
    mode = GET_MODE (op);

  return memory_offset_in_range_p (op, mode, 0,
				   15 * min (UNITS_PER_WORD,
					     GET_MODE_SIZE (mode)));
}

/* Returns 1 if OP is a memory reference involving a symbolic constant
   that is not in the constant pool.  */

int
symbolic_memory_operand (op, mode)
     register rtx op;
     enum machine_mode mode;
{
  if (! memory_operand (op, mode))
    return 0;

  while (GET_CODE (op) == SUBREG)
    op = SUBREG_REG (op);

  if (GET_CODE (op) != MEM)
    abort ();

  op = XEXP (op, 0);
  if (constant_pool_address_operand (op, VOIDmode))
    return 0;
  else
    return romp_symbolic_operand (op, Pmode)
      || (GET_CODE (op) == PLUS && register_operand (XEXP (op, 0), Pmode)
	  && romp_symbolic_operand (XEXP (op, 1), Pmode));
}


/* Returns 1 if OP is a constant pool reference to the current function.  */

int
current_function_operand (op, mode)
     rtx op;
     enum machine_mode mode ATTRIBUTE_UNUSED;
{
  if (GET_CODE (op) != MEM || GET_CODE (XEXP (op, 0)) != SYMBOL_REF
      ||  ! CONSTANT_POOL_ADDRESS_P (XEXP (op, 0)))
    return 0;

  op = get_pool_constant (XEXP (op, 0));
  return (GET_CODE (op) == SYMBOL_REF
	  && ! strcmp (current_function_name, XSTR (op, 0)));
}

/* Return nonzero if this function is known to have a null epilogue.  */

int
null_epilogue ()
{
  return (reload_completed
	  && first_reg_to_save () == 16
	  && ! romp_pushes_stack ());
}

/* Returns 1 if OP is the address of a location in the constant pool.  */

int
constant_pool_address_operand (op, mode)
     rtx op;
     enum machine_mode mode ATTRIBUTE_UNUSED;
{
  return ((GET_CODE (op) == SYMBOL_REF && CONSTANT_POOL_ADDRESS_P (op))
	  || (GET_CODE (op) == CONST && GET_CODE (XEXP (op, 0)) == PLUS
	      && GET_CODE (XEXP (XEXP (op, 0), 1)) == CONST_INT
	      && GET_CODE (XEXP (XEXP (op, 0), 0)) == SYMBOL_REF
	      && CONSTANT_POOL_ADDRESS_P (XEXP (XEXP (op, 0), 0))));
}

/* Returns 1 if OP is either a symbol reference or a sum of a symbol
   reference and a constant.  */

int
romp_symbolic_operand (op, mode)
     register rtx op;
     enum machine_mode mode ATTRIBUTE_UNUSED;
{
  switch (GET_CODE (op))
    {
    case SYMBOL_REF:
    case LABEL_REF:
      return ! op->integrated;

    case CONST:
      op = XEXP (op, 0);
      return (GET_CODE (XEXP (op, 0)) == SYMBOL_REF
	      || GET_CODE (XEXP (op, 0)) == LABEL_REF)
	     && GET_CODE (XEXP (op, 1)) == CONST_INT;

    default:
      return 0;
    }
}

/* Returns 1 if OP is a valid constant for the ROMP.  */

int
constant_operand (op, mode)
    register rtx op;
    enum machine_mode mode;
{
  switch (GET_CODE (op))
    {
    case LABEL_REF:
    case SYMBOL_REF:
    case PLUS:
    case CONST:
      return romp_symbolic_operand (op,mode);

    case CONST_INT:
      return (unsigned int) (INTVAL (op) + 0x8000) < 0x10000
	     || (INTVAL (op) & 0xffff) == 0 || (INTVAL (op) & 0xffff0000) == 0;

    default:
      return 0;
    }
}

/* Returns 1 if OP is either a constant integer valid for the ROMP or a
   register.  If a register, it must be in the proper mode unless MODE is
   VOIDmode.  */

int
reg_or_cint_operand (op, mode)
      register rtx op;
      enum machine_mode mode;
{
  if (GET_CODE (op) == CONST_INT)
    return constant_operand (op, mode);

  return register_operand (op, mode);
}

/* Return 1 is the operand is either a register or ANY constant integer.  */

int
reg_or_any_cint_operand (op, mode)
    register rtx op;
    enum machine_mode mode;
{
     return GET_CODE (op) == CONST_INT || register_operand (op, mode);
}

/* Return 1 if the operand is either a register or a valid D-type operand.  */

int
reg_or_D_operand (op, mode)
    register rtx op;
    enum machine_mode mode;
{
  if (GET_CODE (op) == CONST_INT)
    return (unsigned) (INTVAL (op) + 0x8000) < 0x10000;

  return register_operand (op, mode);
}

/* Return 1 if the operand is either a register or an item that can be
   used as the operand of an SI add insn.  */

int
reg_or_add_operand (op, mode)
    register rtx op;
    enum machine_mode mode;
{
  return reg_or_D_operand (op, mode) || romp_symbolic_operand (op, mode)
	 || (GET_CODE (op) == CONST_INT && (INTVAL (op) & 0xffff) == 0);
}

/* Return 1 if the operand is either a register or an item that can be
   used as the operand of a ROMP logical AND insn.  */

int
reg_or_and_operand (op, mode)
    register rtx op;
    enum machine_mode mode;
{
  if (reg_or_cint_operand (op, mode))
    return 1;

  if (GET_CODE (op) != CONST_INT)
    return 0;

  return (INTVAL (op) & 0xffff) == 0xffff
	 || (INTVAL (op) & 0xffff0000) == 0xffff0000;
}

/* Return 1 if the operand is a register or memory operand.  */

int
reg_or_mem_operand (op, mode)
     register rtx op;
     register enum machine_mode mode;
{
  return register_operand (op, mode) || memory_operand (op, mode);
}

/* Return 1 if the operand is either a register or a memory operand that is
   not symbolic.  */

int
reg_or_nonsymb_mem_operand (op, mode)
    register rtx op;
    enum machine_mode mode;
{
  if (register_operand (op, mode))
    return 1;

  if (memory_operand (op, mode) && ! symbolic_memory_operand (op, mode))
    return 1;

  return 0;
}

/* Return 1 if this operand is valid for the ROMP.  This is any operand except
   certain constant integers.  */

int
romp_operand (op, mode)
    register rtx op;
    enum machine_mode mode;
{
  if (GET_CODE (op) == CONST_INT)
    return constant_operand (op, mode);

  return general_operand (op, mode);
}

/* Return 1 if the operand is (reg:mode 0).  */

int
reg_0_operand (op, mode)
     rtx op;
     enum machine_mode mode;
{
  return ((mode == VOIDmode || mode == GET_MODE (op))
	  && GET_CODE (op) == REG && REGNO (op) == 0);
}

/* Return 1 if the operand is (reg:mode 15).  */

int
reg_15_operand (op, mode)
     rtx op;
     enum machine_mode mode;
{
  return ((mode == VOIDmode || mode == GET_MODE (op))
	  && GET_CODE (op) == REG && REGNO (op) == 15);
}

/* Return 1 if this is a binary floating-point operation.  */

int
float_binary (op, mode)
    register rtx op;
    enum machine_mode mode;
{
  if (mode != VOIDmode && mode != GET_MODE (op))
    return 0;

  if (GET_MODE (op) != SFmode && GET_MODE (op) != DFmode)
    return 0;

  switch (GET_CODE (op))
    {
    case PLUS:
    case MINUS:
    case MULT:
    case DIV:
      return GET_MODE (XEXP (op, 0)) == GET_MODE (op)
	     && GET_MODE (XEXP (op, 1)) == GET_MODE (op);

    default:
      return 0;
    }
}

/* Return 1 if this is a unary floating-point operation.  */

int
float_unary (op, mode)
    register rtx op;
    enum machine_mode mode;
{
  if (mode != VOIDmode && mode != GET_MODE (op))
    return 0;

  if (GET_MODE (op) != SFmode && GET_MODE (op) != DFmode)
    return 0;

  return (GET_CODE (op) == NEG || GET_CODE (op) == ABS)
	 && GET_MODE (XEXP (op, 0)) == GET_MODE (op);
}

/* Return 1 if this is a valid floating-point conversion that can be done
   as part of an operation by the RT floating-point routines.  */

int
float_conversion (op, mode)
    register rtx op;
    enum machine_mode mode;
{
  if (mode != VOIDmode && mode != GET_MODE (op))
    return 0;

  switch (GET_CODE (op))
    {
    case FLOAT_TRUNCATE:
      return GET_MODE (op) == SFmode && GET_MODE (XEXP (op, 0)) == DFmode;

    case FLOAT_EXTEND:
      return GET_MODE (op) == DFmode && GET_MODE (XEXP (op, 0)) == SFmode;

    case FLOAT:
      return ((GET_MODE (XEXP (op, 0)) == SImode
	       || GET_CODE (XEXP (op, 0)) == CONST_INT)
	      && (GET_MODE (op) == SFmode || GET_MODE (op) == DFmode));

    case FIX:
      return ((GET_MODE (op) == SImode
	       || GET_CODE (XEXP (op, 0)) == CONST_INT)
	      && (GET_MODE (XEXP (op, 0)) == SFmode
		  || GET_MODE (XEXP (op, 0)) == DFmode));

    default:
      return 0;
    }
}

/* Print an operand.  Recognize special options, documented below.  */

void
print_operand (file, x, code)
    FILE *file;
    rtx x;
    int code;
{
  int i;

  switch (code)
    {
    case 'B':
      /* Byte number (const/8) */
      if (GET_CODE (x) != CONST_INT)
	output_operand_lossage ("invalid %%B value");

      fprintf (file, "%d", INTVAL (x) / 8);
      break;

    case 'L':
      /* Low order 16 bits of constant.  */
      if (GET_CODE (x) != CONST_INT)
	output_operand_lossage ("invalid %%L value");

      fprintf (file, "%d", INTVAL (x) & 0xffff);
      break;

    case 's':
      /* Null or "16" depending on whether the constant is greater than 16.  */
      if (GET_CODE (x) != CONST_INT)
	output_operand_lossage ("invalid %%s value");

      if (INTVAL (x) >= 16)
	fprintf (file, "16");

      break;

    case 'S':
      /* For shifts: 's' will have given the half.  Just give the amount
	 within 16.  */
      if (GET_CODE (x) != CONST_INT)
	output_operand_lossage ("invalid %%S value");

      fprintf (file, "%d", INTVAL (x) & 15);
      break;

    case 'b':
      /* The number of a single bit set or cleared, mod 16.  Note that the ROMP
	 numbers bits with the high-order bit 31.  */
      if (GET_CODE (x) != CONST_INT)
	output_operand_lossage ("invalid %%b value");

      if ((i = exact_log2 (INTVAL (x))) >= 0)
	fprintf (file, "%d", (31 - i) % 16);
      else if ((i = exact_log2 (~ INTVAL (x))) >= 0)
	fprintf (file, "%d", (31 - i) % 16);
      else
	output_operand_lossage ("invalid %%b value");

      break;

    case 'h':
      /* "l" or "u" depending on which half of the constant is zero.  */
      if (GET_CODE (x) != CONST_INT)
	output_operand_lossage ("invalid %%h value");

      if ((INTVAL (x) & 0xffff0000) == 0)
	fprintf (file, "l");
      else if ((INTVAL (x) & 0xffff) == 0)
	fprintf (file, "u");
      else
	output_operand_lossage ("invalid %%h value");

      break;

    case 'H':
      /* Upper or lower half, depending on which half is zero.  */
      if (GET_CODE (x) != CONST_INT)
	output_operand_lossage ("invalid %%H value");

      if ((INTVAL (x) & 0xffff0000) == 0)
	fprintf (file, "%d", INTVAL (x) & 0xffff);
      else if ((INTVAL (x) & 0xffff) == 0)
	fprintf (file, "%d", (INTVAL (x) >> 16) & 0xffff);
      else
	output_operand_lossage ("invalid %%H value");

      break;

    case 'z':
      /* Write two characters:
		'lo'	if the high order part is all ones
		'lz'	if the high order part is all zeros
		'uo'	if the low order part is all ones
		'uz'	if the low order part is all zeros 
       */
      if (GET_CODE (x) != CONST_INT)
	output_operand_lossage ("invalid %%z value");

      if ((INTVAL (x) & 0xffff0000) == 0)
	fprintf (file, "lz");
      else if ((INTVAL (x) & 0xffff0000) == 0xffff0000)
	fprintf (file, "lo");
      else if ((INTVAL (x) & 0xffff) == 0)
	fprintf (file, "uz");
      else if ((INTVAL (x) & 0xffff) == 0xffff)
	fprintf (file, "uo");
      else
	output_operand_lossage ("invalid %%z value");

      break;

    case 'Z':
      /* Upper or lower half, depending on which is nonzero or not
	 all ones.  Must be consistent with 'z' above.  */
      if (GET_CODE (x) != CONST_INT)
	output_operand_lossage ("invalid %%Z value");

      if ((INTVAL (x) & 0xffff0000) == 0
	  || (INTVAL (x) & 0xffff0000) == 0xffff0000)
	fprintf (file, "%d", INTVAL (x) & 0xffff);
      else if ((INTVAL (x) & 0xffff) == 0 || (INTVAL (x) & 0xffff) == 0xffff)
	fprintf (file, "%d", (INTVAL (x) >> 16) & 0xffff);
      else
	output_operand_lossage ("invalid %%Z value");

      break;

    case 'k':
      /* Same as 'z', except the trailing 'o' or 'z' is not written.  */
      if (GET_CODE (x) != CONST_INT)
	output_operand_lossage ("invalid %%k value");

      if ((INTVAL (x) & 0xffff0000) == 0
	  || (INTVAL (x) & 0xffff0000) == 0xffff0000)
	fprintf (file, "l");
      else if ((INTVAL (x) & 0xffff) == 0
	       || (INTVAL (x) & 0xffff) == 0xffff)
	fprintf (file, "u");
      else
	output_operand_lossage ("invalid %%k value");

      break;

    case 't':
      /* Similar to 's', except that we write 'h' or 'u'.  */
      if (GET_CODE (x) != CONST_INT)
	output_operand_lossage ("invalid %%k value");

      if (INTVAL (x) < 16)
	fprintf (file, "u");
      else
	fprintf (file, "l");
      break;

    case 'M':
      /* For memory operations, write 's' if the operand is a short
	 memory operand.  */
      if (short_memory_operand (x, VOIDmode))
	fprintf (file, "s");
      break;

    case 'N':
      /* Like 'M', but check for zero memory offset.  */
      if (zero_memory_operand (x, VOIDmode))
	fprintf (file, "s");
      break;

    case 'O':
      /* Write low-order part of DImode or DFmode.  Supported for MEM
	 and REG only.  */
      if (GET_CODE (x) == REG)
	fprintf (file, "%s", reg_names[REGNO (x) + 1]);
      else if (GET_CODE (x) == MEM)
	print_operand (file, gen_rtx_MEM (GET_MODE (x),
					  plus_constant (XEXP (x, 0), 4)), 0);
      else
	abort ();
      break;

    case 'C':
      /* Offset in constant pool for constant pool address.  */
      if (! constant_pool_address_operand (x, VOIDmode))
	abort ();
      if (GET_CODE (x) == SYMBOL_REF)
	fprintf (file, "%d", get_pool_offset (x) + 12);
      else 
	/* Must be (const (plus (symbol_ref) (const_int))) */
	fprintf (file, "%d",
		 (get_pool_offset (XEXP (XEXP (x, 0), 0)) + 12
		  + INTVAL (XEXP (XEXP (x, 0), 1))));
      break;

    case 'j':
      /* Branch opcode.  Check for condition in test bit for eq/ne.  */
      switch (GET_CODE (x))
	{
	case EQ:
	  if (cc_status.flags & CC_IN_TB)
	    fprintf (file, "ntb");
	  else
	    fprintf (file, "eq");
	  break;

	case NE:
	  if (cc_status.flags & CC_IN_TB)
	    fprintf (file, "tb");
	  else
	    fprintf (file, "ne");
	  break;

	case GT:
	case GTU:
	  fprintf (file, "h");
	  break;

	case LT:
	case LTU:
	  fprintf (file, "l");
	  break;

	case GE:
	case GEU:
	  fprintf (file, "he");
	  break;

	case LE:
	case LEU:
	  fprintf (file, "le");
	  break;

	default:
	  output_operand_lossage ("invalid %%j value");
	}
      break;

    case 'J':
      /* Reversed branch opcode.  */
      switch (GET_CODE (x))
	{
	case EQ:
	  if (cc_status.flags & CC_IN_TB)
	    fprintf (file, "tb");
	  else
	    fprintf (file, "ne");
	  break;

	case NE:
	  if (cc_status.flags & CC_IN_TB)
	    fprintf (file, "ntb");
	  else
	    fprintf (file, "eq");
	  break;

	case GT:
	case GTU:
	  fprintf (file, "le");
	  break;

	case LT:
	case LTU:
	  fprintf (file, "he");
	  break;

	case GE:
	case GEU:
	  fprintf (file, "l");
	  break;

	case LE:
	case LEU:
	  fprintf (file, "h");
	  break;

	default:
	  output_operand_lossage ("invalid %%j value");
	}
      break;

    case '.':
      /* Output nothing.  Used as delimiter in, e.g., "mc%B1%.3 " */
      break;

    case '#':
      /* Output 'x' if this insn has a delay slot, else nothing.  */
      if (dbr_sequence_length ())
	fprintf (file, "x");
      break;

    case 0:
      if (GET_CODE (x) == REG)
	fprintf (file, "%s", reg_names[REGNO (x)]);
      else if (GET_CODE (x) == MEM)
	{
	  if (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
	      && current_function_operand (x, Pmode))
	    fprintf (file, "r14");
	  else
	    output_address (XEXP (x, 0));
	}
      else
	output_addr_const (file, x);
      break;

    default:
      output_operand_lossage ("invalid %%xn code");
    }
}

/* This page contains routines that are used to determine what the function
   prologue and epilogue code will do and write them out.  */

/*  Return the first register that is required to be saved. 16 if none.  */

int
first_reg_to_save()
{
  int first_reg;

  /* Find lowest numbered live register.  */
  for (first_reg = 6; first_reg <= 15; first_reg++)
    if (regs_ever_live[first_reg])
      break;

  /* If we think that we do not have to save r14, see if it will be used
     to be sure.  */
  if (first_reg > 14 && romp_using_r14 ())
    first_reg = 14;

  return first_reg;
}

/* Compute the size of the save area in the stack, including the space for
   the first four incoming arguments.  */

int
romp_sa_size ()
{
  int size;
  int i;

  /* We have the 4 words corresponding to the arguments passed in registers,
     4 reserved words, space for static chain, general register save area,
     and floating-point save area.  */
  size = 4 + 4 + 1 + (16 - first_reg_to_save ());

  /* The documentation says we have to leave 18 words in the save area if
     any floating-point registers at all are saved, not the three words
     per register you might otherwise expect.  */
  for (i = 2 + (TARGET_FP_REGS != 0); i <= 7; i++)
    if (regs_ever_live[i + 17])
      {
	size += 18;
	break;
      }

  return size * 4;
}

/* Return nonzero if this function makes calls or has fp operations
   (which are really calls).  */

int
romp_makes_calls ()
{
  rtx insn;

  for (insn = get_insns (); insn; insn = next_insn (insn))
    {
      if (GET_CODE (insn) == CALL_INSN)
	return 1;
      else if (GET_CODE (insn) == INSN)
	{
	  rtx body = PATTERN (insn);

	  if (GET_CODE (body) != USE && GET_CODE (body) != CLOBBER
	      && GET_CODE (body) != ADDR_VEC
	      && GET_CODE (body) != ADDR_DIFF_VEC
	      && get_attr_type (insn) == TYPE_FP)
	    return 1;
	}
    }

  return 0;
}

/* Return nonzero if this function will use r14 as a pointer to its
   constant pool.  */

int
romp_using_r14 ()
{
  /* If we are debugging, profiling, have a non-empty constant pool, or
     call a function, we need r14.  */
  return (write_symbols != NO_DEBUG || current_function_profile
	  || get_pool_size () != 0 || romp_makes_calls ());
}

/* Return nonzero if this function needs to push space on the stack.  */

int
romp_pushes_stack ()
{
  /* We need to push the stack if a frame pointer is needed (because the
     stack might be dynamically adjusted), if we are debugging, if the
     total required size is more than 100 bytes, or if we make calls.  */

  return (frame_pointer_needed || write_symbols != NO_DEBUG
	  || (romp_sa_size () + get_frame_size ()) > 100
	  || romp_makes_calls ());
}

/* Write function prologue.

   We compute the size of the fixed area required as follows:

   We always allocate 4 words for incoming arguments, 4 word reserved, 1
   word for static link, as many words as required for general register
   save area, plus 2 words for each FP reg 2-7 that must be saved.  */

static void
romp_output_function_prologue (file, size)
     FILE *file;
     HOST_WIDE_INT size;
{
  int first_reg;
  int reg_save_offset;
  HOST_WIDE_INT fp_save = size + current_function_outgoing_args_size;

  init_fpops ();

  /* Add in fixed size plus output argument area.  */
  size += romp_sa_size () + current_function_outgoing_args_size;

  /* Compute first register to save and perform the save operation if anything
     needs to be saved.  */
  first_reg = first_reg_to_save();
  reg_save_offset = - (4 + 4 + 1 + (16 - first_reg)) * 4;
  if (first_reg == 15)
    fprintf (file, "\tst r15,%d(r1)\n", reg_save_offset);
  else if (first_reg < 16)
    fprintf (file, "\tstm r%d,%d(r1)\n", first_reg, reg_save_offset);

  /* Set up pointer to data area if it is needed.  */
  if (romp_using_r14 ())
    fprintf (file, "\tcas r14,r0,r0\n");

  /* Set up frame pointer if needed.  */
  if (frame_pointer_needed)
    fprintf (file, "\tcal r13,-%d(r1)\n", romp_sa_size () + 64);

  /* Push stack if neeeded.  There are a couple of ways of doing this.  */
  if (romp_pushes_stack ())
    {
      if (size >= 32768)
	{
	  if (size >= 65536)
	    {
	      fprintf (file, "\tcau r0,%d(r0)\n", size >> 16);
	      fprintf (file, "\toil r0,r0,%d\n", size & 0xffff);
	    }
	  else
	    fprintf (file, "\tcal16 r0,%d(r0)\n", size);
	  fprintf (file, "\ts r1,r0\n");
	}
      else
	fprintf (file, "\tcal r1,-%d(r1)\n", size);
    }

  /* Save floating-point registers.  */
  output_loadsave_fpregs (file, USE,
			  plus_constant (stack_pointer_rtx, fp_save));
}

/* Output the offset information used by debuggers.
   This is the exactly the total_size value of output_function_epilogue()
   which is added to the frame pointer. However the value in the debug
   table is encoded in a space-saving way as follows:

   The first byte contains two fields: a 2-bit size field and the first
   6 bits of an offset value. The 2-bit size field is in the high-order
   position and specifies how many subsequent bytes follow after
   this one. An offset value is at most 4-bytes long.

   The last 6 bits of the first byte initialize the offset value. In many
   cases where procedures have small local storage, this is enough and, in
   this case, the high-order size field is zero so the byte can (almost) be
   used as is (see below). Thus, the byte value of 0x0d is encodes an offset
   size of 13 words, or 52 bytes.

   For procedures with a local space larger than 60 bytes, the 6 bits
   are the high-order 6 bits.  The remaining bytes follow as necessary,
   in Big Endian order.  Thus, the short value of 16907 (= 16384+523)
   encodes an offset of 2092 bytes (523 words).

   The total offset value is in words (not bytes), so the final value has to
   be multiplied by 4 before it can be used in address computations by a
   debugger.   */

void
output_encoded_offset (file, reg_offset)
     FILE *file;
     unsigned reg_offset;
{
  /* Convert the offset value to 4-byte words rather than bytes.  */
  reg_offset = (reg_offset + 3) / 4;

  /* Now output 1-4 bytes in encoded form.  */
  if (reg_offset < (1 << 6))
    /* Fits into one byte */
    fprintf (file, "\t.byte %d\n", reg_offset);
  else if (reg_offset < (1 << (6 + 8)))
    /* Fits into two bytes */
    fprintf (file, "\t.short %d\n", (1 << (6 + 8)) + reg_offset);
  else if (reg_offset < (1 << (6 + 8 + 8)))
    {
      /* Fits in three bytes */
      fprintf (file, "\t.byte %d\n", (2 << 6) + (reg_offset >> ( 6+ 8)));
      fprintf (file, "\t.short %d\n", reg_offset % (1 << (6 + 8)));
    }
  else
    {
      /* Use 4 bytes.  */
      fprintf (file, "\t.short %d", (3 << (6 + 8)) + (reg_offset >> (6 + 8)));
      fprintf (file, "\t.short %d\n", reg_offset % (1 << (6 + 8)));
    }
}

/* Write function epilogue.  */

static void
romp_output_function_epilogue (file, size)
     FILE *file;
     HOST_WIDE_INT size;
{
  int first_reg = first_reg_to_save();
  int pushes_stack = romp_pushes_stack ();
  int reg_save_offset = - ((16 - first_reg) + 1 + 4 + 4) * 4;
  HOST_WIDE_INT total_size = (size + romp_sa_size ()
			      + current_function_outgoing_args_size);
  HOST_WIDE_INT fp_save = size + current_function_outgoing_args_size;
  int long_frame = total_size >= 32768;
  rtx insn = get_last_insn ();
  int write_code = 1;

  int nargs = 0;		/* words of arguments */
  tree argptr;

  /* Compute the number of words of arguments.  Since this is just for
     the traceback table, we ignore arguments that don't have a size or
     don't have a fixed size.  */

  for (argptr = DECL_ARGUMENTS (current_function_decl);
       argptr; argptr = TREE_CHAIN (argptr))
    {
      int this_size = int_size_in_bytes (TREE_TYPE (argptr));

      if (this_size > 0)
	nargs += (this_size + UNITS_PER_WORD - 1) / UNITS_PER_WORD;
    }
  
  /* If the last insn was a BARRIER, we don't have to write anything except
     the trace table.  */
  if (GET_CODE (insn) == NOTE)
    insn = prev_nonnote_insn (insn);
  if (insn && GET_CODE (insn) == BARRIER)
    write_code = 0;

  /* Restore floating-point registers.  */
  if (write_code)
    output_loadsave_fpregs (file, CLOBBER,
			    plus_constant (gen_rtx_REG (Pmode, 1), fp_save));

  /* If we push the stack and do not have size > 32K, adjust the register
     save location to the current position of sp.  Otherwise, if long frame,
     restore sp from fp.  */
  if (pushes_stack && ! long_frame)
    reg_save_offset += total_size;
  else if (long_frame && write_code)
    fprintf (file, "\tcal r1,%d(r13)\n", romp_sa_size () + 64);

  /* Restore registers.  */
  if (first_reg == 15 && write_code)
    fprintf (file, "\tl r15,%d(r1)\n", reg_save_offset);
  else if (first_reg < 16 && write_code)
    fprintf (file, "\tlm r%d,%d(r1)\n", first_reg, reg_save_offset);
  if (first_reg == 16) first_reg = 0;

  /* Handle popping stack, if needed and write debug table entry.  */
  if (pushes_stack)
    {
      if (write_code)
	{
	  if (long_frame)
	    fprintf (file, "\tbr r15\n");
	  else
	    fprintf (file, "\tbrx r15\n\tcal r1,%d(r1)\n", total_size);
	}

      /* Table header (0xdf), usual-type stack frame (0x07),
	 table header (0xdf), and first register saved.

	 The final 0x08 means that there is a byte following this one
	 describing the number of parameter words and the register used as
	 stack pointer.

	 If GCC passed floating-point parameters in floating-point registers,
	 it would be necessary to change the final byte from 0x08 to 0x0c.
	 Also an additional entry byte would be need to be emitted to specify
	 the first floating-point register.

	 (See also Section 11 (Trace Tables) in ``IBM/4.3 Linkage Convention,''
	 pages IBM/4.3-PSD:5-7 of Volume III of the IBM Academic Operating
	 System Manual dated July 1987.)  */

      fprintf (file, "\t.long 0x%x\n", 0xdf07df08 + first_reg * 0x10);

      if (nargs > 15) nargs = 15;

      /* The number of parameter words and the register used as the stack
	 pointer (encoded here as r1).

	 Note: The MetWare Hich C Compiler R2.1y actually gets this wrong;
	 it erroneously lists r13 but uses r1 as the stack too. But a bug in
	 dbx 1.5 nullifies this mistake---most of the time.
         (Dbx retrieves the value of r13 saved on the stack which is often
	 the value of r1 before the call.)  */

      fprintf (file, "\t.byte 0x%x1\n", nargs);
      output_encoded_offset (file, total_size);
    }
  else
    {
      if (write_code)
	fprintf (file, "\tbr r15\n");

      /* Table header (0xdf), no stack frame (0x02),
	 table header (0xdf) and no parameters saved (0x00).

	 If GCC passed floating-point parameters in floating-point registers,
	 it might be necessary to change the final byte from 0x00 to 0x04.
	 Also a byte would be needed to specify the first floating-point
	 register.  */
      fprintf (file, "\t.long 0xdf02df00\n");
    }

  /* Output any pending floating-point operations.  */
  output_fpops (file);
}

/* For the ROMP we need to make new SYMBOL_REFs for the actual name of a
   called routine.  To keep them unique we maintain a hash table of all
   that have been created so far.  */

struct symref_hashent {
  rtx symref;			/* Created SYMBOL_REF rtx.  */
  struct symref_hashent *next;	/* Next with same hash code.  */
};

#define SYMHASHSIZE 151
#define HASHBITS 65535

/* Define the hash table itself.  */

static struct symref_hashent *symref_hash_table[SYMHASHSIZE];

/* Given a name (allocable in temporary storage), return a SYMBOL_REF
   for the name.  The rtx is allocated from the current rtl_obstack, while
   the name string is allocated from the permanent obstack.  */
rtx
get_symref (name)
     register const char *name;
{
  register const char *sp = name;
  unsigned int hash = 0;
  struct symref_hashent *p, **last_p;

  /* Compute the hash code for the string.  */
  while (*sp)
    hash = (hash << 4) + *sp++;

  /* Search for a matching entry in the hash table, keeping track of the
     insertion location as we do so.  */
  hash = (hash & HASHBITS) % SYMHASHSIZE;
  for (last_p = &symref_hash_table[hash], p = *last_p;
       p; last_p = &p->next, p = *last_p)
    if (strcmp (name, XSTR (p->symref, 0)) == 0)
      break;

  /* If couldn't find matching SYMBOL_REF, make a new one.  */
  if (p == 0)
    {
      /* Ensure SYMBOL_REF will stay around.  */
      p = *last_p = (struct symref_hashent *)
			xmalloc (sizeof (struct symref_hashent));
      p->symref = gen_rtx_SYMBOL_REF (Pmode, ggc_strdup (name));
      p->next = 0;
    }

  return p->symref;
}

/* Validate the precision of a floating-point operation.

   We merge conversions from integers and between floating-point modes into
   the insn.  However, this must not effect the desired precision of the
   insn.  The RT floating-point system uses the widest of the operand modes.
   If this should be a double-precision insn, ensure that one operand
   passed to the floating-point processor has double mode.

   Note that since we don't check anything if the mode is single precision,
   it, strictly speaking, isn't necessary to call this for those insns.
   However, we do so in case something else needs to be checked in the
   future.

   This routine returns 1 if the operation is OK.  */

int
check_precision (opmode, op1, op2)
     enum machine_mode opmode;
     rtx op1, op2;
{
  if (opmode == SFmode)
    return 1;

  /* If operand is not a conversion from an integer mode or an extension from
     single-precision, it must be a double-precision value.  */
  if (GET_CODE (op1) != FLOAT && GET_CODE (op1) != FLOAT_EXTEND)
    return 1;

  if (op2 && GET_CODE (op2) != FLOAT && GET_CODE (op2) != FLOAT_EXTEND)
    return 1;

  return 0;
}

/* Floating-point on the RT is done by creating an operation block in the data
   area that describes the operation.  If two floating-point operations are the
   same in a single function, they can use the same block.

   These routines are responsible for managing these blocks.  */

/* Structure to describe a floating-point operation.  */

struct fp_op {
  struct fp_op *next_same_hash;		/* Next op with same hash code.  */
  struct fp_op *next_in_mem;		/* Next op in memory.  */
  int mem_offset;			/* Offset from data area.  */
  short size;				/* Size of block in bytes.  */
  short noperands;			/* Number of operands in block.  */
  rtx ops[3];				/* RTL for operands.  */
  enum rtx_code opcode;			/* Operation being performed.  */
};

/* Size of hash table.  */
#define FP_HASH_SIZE 101

/* Hash table of floating-point operation blocks.  */
static struct fp_op *fp_hash_table[FP_HASH_SIZE];

/* First floating-point block in data area.  */
static struct fp_op *first_fpop;

/* Last block in data area so far.  */
static struct fp_op *last_fpop_in_mem;

/* Subroutine number in file, to get unique "LF" labels.  */
static int subr_number = 0;

/* Current word offset in data area (includes header and any constant pool).  */
int data_offset;

/* Compute hash code for an RTX used in floating-point.  */

static unsigned int
hash_rtx (x)
     register rtx x;
{
  register unsigned int hash = (((int) GET_CODE (x) << 10)
				+ ((int) GET_MODE (x) << 20));
  register int i;
  register const char *fmt = GET_RTX_FORMAT (GET_CODE (x));

  for (i = 0; i < GET_RTX_LENGTH (GET_CODE (x)); i++)
    if (fmt[i] == 'e')
      hash += hash_rtx (XEXP (x, i));
    else if (fmt[i] == 'u')
      hash += (unsigned HOST_WIDE_INT) XEXP (x, i);
    else if (fmt[i] == 'i')
      hash += XINT (x, i);
    else if (fmt[i] == 's')
      hash += (unsigned HOST_WIDE_INT) XSTR (x, i);

  return hash;
}

/* Given an operation code and up to three operands, return a character string
   corresponding to the code to emit to branch to a floating-point operation
   block.  INSN is provided to see if the delay slot has been filled or not.

   A new floating-point operation block is created if this operation has not
   been seen before.  */

const char *
output_fpop (code, op0, op1, op2, insn)
     enum rtx_code code;
     rtx op0, op1, op2;
     rtx insn ATTRIBUTE_UNUSED;
{
  static char outbuf[40];
  unsigned int hash, hash0, hash1, hash2;
  int size, i;
  register struct fp_op *fpop, *last_fpop;
  int dyadic = (op2 != 0);
  enum machine_mode opmode;
  int noperands;
  rtx tem;
  unsigned int tem_hash;
  int fr0_avail = 0;

  /* Compute hash code for each operand.  If the operation is commutative,
     put the one with the smaller hash code first.  This will make us see
     more operations as identical.  */
  hash0 = op0 ? hash_rtx (op0) : 0;
  hash1 = op1 ? hash_rtx (op1) : 0;
  hash2 = op2 ? hash_rtx (op2) : 0;

  if (hash0 > hash1 && code == EQ)
    {
      tem = op0; op0 = op1; op1 = tem;
      tem_hash = hash0; hash0 = hash1; hash1 = tem_hash;
    }
  else if (hash1 > hash2 && (code == PLUS || code == MULT))
    {
      tem = op1; op1 = op2; op2 = tem;
      tem_hash = hash1; hash1 = hash2; hash2 = tem_hash;
    }

  /* If operation is commutative and the first and third operands are equal,
     swap the second and third operands.  Note that we must consider two
     operands equal if they are the same register even if different modes.  */
  if (op2 && (code == PLUS || code == MULT)
      && (rtx_equal_p (op0, op2)
	  || (GET_CODE (op0) == REG && GET_CODE (op2) == REG
	      && REGNO (op0) == REGNO (op2))))
    {
      tem = op1; op1 = op2; op2 = tem;
      tem_hash = hash1; hash1 = hash2; hash2 = tem_hash;
    }

  /* If the first and second operands are the same, merge them.  Don't do this
     for SFmode or SImode in general registers because this triggers a bug in
     the RT fp code.  */
  if (op1 && rtx_equal_p (op0, op1)
      && code != EQ && code != GE && code != SET
      && ((GET_MODE (op1) != SFmode && GET_MODE (op1) != SImode)
	  || GET_CODE (op0) != REG || FP_REGNO_P (REGNO (op0))))
    {
      op1 = op2;
      op2 = 0;
    }

  noperands = 1 + (op1 != 0) + (op2 != 0);

  /* Compute hash code for entire expression and see if operation block
     already exists.  */
  hash = ((int) code << 13) + (hash0 << 2) + (hash1 << 1) + hash2;

  hash %= FP_HASH_SIZE;
  for (fpop = fp_hash_table[hash], last_fpop = 0;
       fpop;
       last_fpop = fpop, fpop = fpop->next_same_hash)
    if (fpop->opcode == code && noperands == fpop->noperands
	&& (op0 == 0 || rtx_equal_p (op0, fpop->ops[0]))
	&& (op1 == 0 || rtx_equal_p (op1, fpop->ops[1]))
	&& (op2 == 0 || rtx_equal_p (op2, fpop->ops[2])))
      goto win;

  /* We have never seen this operation before.  */
  fpop = (struct fp_op *) xmalloc (sizeof (struct fp_op));
  fpop->mem_offset = data_offset;
  fpop->opcode = code;
  fpop->noperands = noperands;
  fpop->ops[0] = op0;
  fpop->ops[1] = op1;
  fpop->ops[2] = op2;

  /* Compute the size using the rules in Appendix A of the RT Linkage
     Convention (4.3/RT-PSD:5) manual.  These rules are a bit ambiguous,
     but if we guess wrong, it will effect only efficiency, not correctness.  */

  /* Size = 24 + 32 for each non-fp (or fr7) */
  size = 24;
  if (op0 && (GET_CODE (op0) != REG
	      || ! FP_REGNO_P (REGNO (op0)) || REGNO (op0) == 23))
    size += 32;

  if (op1 && (GET_CODE (op1) != REG
	      || ! FP_REGNO_P (REGNO (op1)) || REGNO (op1) == 23))
    size += 32;

  if (op2 && (GET_CODE (op2) != REG
	      || ! FP_REGNO_P (REGNO (op2)) || REGNO (op2) == 23))
    size += 32;

  /* Size + 12 for each conversion.  First get operation mode.  */
  if ((op0 && GET_MODE (op0) == DFmode)
      || (op1 && GET_MODE (op1) == DFmode)
      || (op2 && GET_MODE (op2) == DFmode))
    opmode = DFmode;
  else
    opmode = SFmode;

  if (op0 && GET_MODE (op0) != opmode)
    size += 12;
  if (op1 && GET_MODE (op1) != opmode)
    size += 12;
  if (op2 && GET_MODE (op2) != opmode)
    size += 12;

  /* 12 more if first and third operand types not the same.  */
  if (op2 && GET_MODE (op0) != GET_MODE (op2))
    size += 12;

  /* CMP and CMPT need additional.  Also, compute size of save/restore here.  */
  if (code == EQ)
    size += 32;
  else if (code == GE)
    size += 64;
  else if (code == USE || code == CLOBBER)
    {
      /* 34 + 24 for each additional register plus 8 if fr7 saved.  (We
         call it 36 because we need to keep the block length a multiple
	 of four.  */
      size = 36 - 24;
      for (i = 0; i <= 7; i++)
	if (INTVAL (op0) & (1 << (7-i)))
	  size += 24 + 8 * (i == 7);
    }

  /* We provide no general-purpose scratch registers.  */
  size +=16;

  /* No floating-point scratch registers are provided.  Compute extra
     length due to this.  This logic is that shown in the referenced
     appendix.  */

  i = 0;
  if (op0 && GET_CODE (op0) == REG && FP_REGNO_P (REGNO (op0)))
    i++;
  if (op1 && GET_CODE (op1) == REG && FP_REGNO_P (REGNO (op1)))
    i++;
  if (op2 && GET_CODE (op2) == REG && FP_REGNO_P (REGNO (op2)))
    i++;

  if ((op0 == 0 || GET_CODE (op0) != REG || REGNO(op0) != 17)
      && (op1 == 0 || GET_CODE (op1) != REG || REGNO(op1) != 17)
      && (op2 == 0 || GET_CODE (op2) != REG || REGNO(op2) != 17))
    fr0_avail = 1;

  if (dyadic)
    {
      if (i == 0)
	size += fr0_avail ? 64 : 112;
      else if (fpop->noperands == 2 && i == 1)
	size += fr0_avail ? 0 : 64;
      else if (fpop->noperands == 3)
	{
	  if (GET_CODE (op0) == REG && FP_REGNO_P (REGNO (op0))
	      && GET_CODE (op2) == REG && FP_REGNO_P (REGNO (op2)))
	    {
	      if (REGNO (op0) == REGNO (op2))
#if 1
		/* This triggers a bug on the RT.  */
		abort ();
#else
		size += fr0_avail ? 0 : 64;
#endif
	    }
	  else
	    {
	      i = 0;
	      if (GET_CODE (op0) == REG && FP_REGNO_P (REGNO (op0)))
		i++;
	      if (GET_CODE (op2) == REG && FP_REGNO_P (REGNO (op2)))
		i++;
	      if (i == 0)
		size += fr0_avail ? 64 : 112;
	      else if (i == 1)
		size += fr0_avail ? 0 : 64;
	    }
	}
    }
  else if (code != USE && code != CLOBBER
	   && (GET_CODE (op0) != REG || ! FP_REGNO_P (REGNO (op0))))
    size += 64;
    
  if (! TARGET_FULL_FP_BLOCKS)
    {
      /* If we are not to pad the blocks, just compute its actual length.  */
      size = 12;	/* Header + opcode */
      if (code == USE || code == CLOBBER)
        size += 2;
      else
        {
	  if (op0) size += 2;
	  if (op1) size += 2;
	  if (op2) size += 2;
	}

      /* If in the middle of a word, round.  */
      if (size % UNITS_PER_WORD)
	size += 2;
	
      /* Handle any immediates.  */
      if (code != USE && code != CLOBBER && op0 && GET_CODE (op0) != REG)
        size += 4;
      if (op1 && GET_CODE (op1) != REG)
        size += 4;
      if (op2 && GET_CODE (op2) != REG)
        size += 4;

      if (code != USE && code != CLOBBER && 
	  op0 && GET_CODE (op0) == CONST_DOUBLE && GET_MODE (op0) == DFmode)
        size += 4;
      if (op1 && GET_CODE (op1) == CONST_DOUBLE && GET_MODE (op1) == DFmode)
        size += 4;
      if (op2 && GET_CODE (op2) == CONST_DOUBLE && GET_MODE (op2) == DFmode)
        size += 4;
    }

  /* Done with size computation!  Chain this in.  */
  fpop->size = size;
  data_offset += size / UNITS_PER_WORD;
  fpop->next_in_mem = 0;
  fpop->next_same_hash = 0;

  if (last_fpop_in_mem)
    last_fpop_in_mem->next_in_mem = fpop;
  else
    first_fpop = fpop;
  last_fpop_in_mem = fpop;

  if (last_fpop)
    last_fpop->next_same_hash = fpop;
  else
    fp_hash_table[hash] = fpop;

win:
  /* FPOP describes the operation to be performed.  Return a string to branch
     to it.  */
  if (fpop->mem_offset < 32768 / UNITS_PER_WORD)
    sprintf (outbuf, "cal r15,%d(r14)\n\tbalr%s r15,r15",
	     fpop->mem_offset * UNITS_PER_WORD,
	     dbr_sequence_length () ? "x" : "");
  else
    sprintf (outbuf, "get r15,$L%dF%d\n\tbalr%s r15,r15",
	     subr_number, fpop->mem_offset * UNITS_PER_WORD,
	     dbr_sequence_length () ? "x" : "");
  return outbuf;
}

/* If necessary, output a floating-point operation to save or restore all
   floating-point registers.

   file is the file to write the operation to, CODE is USE for save, CLOBBER
   for restore, and ADDR is the address of the same area, as RTL.  */

static void
output_loadsave_fpregs (file, code, addr)
     FILE *file;
     enum rtx_code code;
     rtx addr;
{
  register int i;
  register int mask = 0;

  for (i = 2 + (TARGET_FP_REGS != 0); i <= 7; i++)
    if (regs_ever_live[i + 17])
      mask |= 1 << (7 - i);

  if (mask)
    fprintf (file, "\t%s\n",
	     output_fpop (code, GEN_INT (mask), gen_rtx_MEM (Pmode, addr),
				0, const0_rtx));

}

/* Output any floating-point operations at the end of the routine.  */

static void
output_fpops (file)
     FILE *file;
{
  register struct fp_op *fpop;
  register int size_so_far;
  register int i;
  rtx immed[3];

  if (first_fpop == 0)
    return;

  data_section ();

  ASM_OUTPUT_ALIGN (file, 2);

  for (fpop = first_fpop; fpop; fpop = fpop->next_in_mem)
    {
      if (fpop->mem_offset < 32768 / UNITS_PER_WORD)
	fprintf (file, "# data area offset = %d\n",
		 fpop->mem_offset * UNITS_PER_WORD);
      else
	fprintf (file, "L%dF%d:\n",
		 subr_number, fpop->mem_offset * UNITS_PER_WORD);

      fprintf (file, "\tcas r0,r15,r0\n");
      fprintf (file, "\t.long FPGLUE\n");
      switch (fpop->opcode)
	{
	case USE:
	  fprintf (file, "\t.byte 0x1d\t# STOREM\n");
	  break;
	case CLOBBER:
	  fprintf (file, "\t.byte 0x0f\t# LOADM\n");
	  break;
	case ABS:
	  fprintf (file, "\t.byte 0x00\t# ABS\n");
	  break;
	case PLUS:
	  fprintf (file, "\t.byte 0x02\t# ADD\n");
	  break;
	case EQ:
	  fprintf (file, "\t.byte 0x07\t# CMP\n");
	  break;
	case GE:
	  fprintf (file, "\t.byte 0x08\t# CMPT\n");
	  break;
	case DIV:
	  fprintf (file, "\t.byte 0x0c\t# DIV\n");
	  break;
	case SET:
	  fprintf (file, "\t.byte 0x14\t# MOVE\n");
	  break;
	case MULT:
	  fprintf (file, "\t.byte 0x15\t# MUL\n");
	  break;
	case NEG:
	  fprintf (file, "\t.byte 0x16\t# NEG\n");
	  break;
	case SQRT:
	  fprintf (file, "\t.byte 0x1c\t# SQRT\n");
	  break;
	case MINUS:
	  fprintf (file, "\t.byte 0x1e\t# SUB\n");
	  break;
	default:
	  abort ();
	}

      fprintf (file, "\t.byte %d\n", fpop->noperands);
      fprintf (file, "\t.short 0x8001\n");
      
      if ((fpop->ops[0] == 0
	   || GET_CODE (fpop->ops[0]) != REG || REGNO(fpop->ops[0]) != 17)
	  && (fpop->ops[1] == 0 || GET_CODE (fpop->ops[1]) != REG
	      || REGNO(fpop->ops[1]) != 17)
	  && (fpop->ops[2] == 0 || GET_CODE (fpop->ops[2]) != REG
	      || REGNO(fpop->ops[2]) != 17))
	fprintf (file, "\t.byte %d, 0x80\n", fpop->size);
      else
	fprintf (file, "\t.byte %d, 0\n", fpop->size);
      size_so_far = 12;
      for (i = 0; i < fpop->noperands; i++)
	{
	  register int type;
	  register int opbyte;
	  register const char *desc0;
	  char desc1[50];

	  immed[i] = 0;
	  switch (GET_MODE (fpop->ops[i]))
	    {
	    case SImode:
	    case VOIDmode:
	      desc0 = "int";
	      type = 0;
	      break;
	    case SFmode:
	      desc0 = "float";
	      type = 2;
	      break;
	    case DFmode:
	      desc0 = "double";
	      type = 3;
	      break;
	    default:
	      abort ();
	    }

	  switch (GET_CODE (fpop->ops[i]))
	    {
	    case REG:
	      strcpy(desc1, reg_names[REGNO (fpop->ops[i])]);
	      if (FP_REGNO_P (REGNO (fpop->ops[i])))
		{
		  type += 0x10;
		  opbyte = REGNO (fpop->ops[i]) - 17;
		}
	      else
		{
		  type += 0x00;
		  opbyte = REGNO (fpop->ops[i]);
		  if (type == 3)
		    opbyte = (opbyte << 4) + opbyte + 1;
		}
	      break;

	    case MEM:
	      type += 0x30;
	      if (GET_CODE (XEXP (fpop->ops[i], 0)) == PLUS)
		{
		  immed[i] = XEXP (XEXP (fpop->ops[i], 0), 1);
		  opbyte = REGNO (XEXP (XEXP (fpop->ops[i], 0), 0));
		  if (GET_CODE (immed[i]) == CONST_INT)
		    sprintf (desc1, "%d(%s)", INTVAL (immed[i]),
			     reg_names[opbyte]);
		  else
		    sprintf (desc1, "<memory> (%s)", reg_names[opbyte]);
		}
	      else if (GET_CODE (XEXP (fpop->ops[i], 0)) == REG)
		{
		  opbyte = REGNO (XEXP (fpop->ops[i], 0));
		  immed[i] = const0_rtx;
 		  sprintf (desc1, "(%s)", reg_names[opbyte]);
		}
	      else
		{
		  immed[i] = XEXP (fpop->ops[i], 0);
		  opbyte = 0;
		  sprintf(desc1, "<memory>");
		}
	      break;

	    case CONST_INT:
	    case CONST_DOUBLE:
	    case CONST:
	    case SYMBOL_REF:
	    case LABEL_REF:
	      type += 0x20;
	      opbyte = 0;
	      immed[i] = fpop->ops[i];
	      desc1[0] = '$';
	      desc1[1] = '\0';
	      break;

	    default:
	      abort ();
	    }

	  /* Save/restore is special.  */
	  if (i == 0 && (fpop->opcode == USE || fpop->opcode == CLOBBER))
	    type = 0xff, opbyte = INTVAL (fpop->ops[0]), immed[i] = 0;

	  fprintf (file, "\t.byte 0x%x,0x%x # (%s) %s\n",
		   type, opbyte, desc0, desc1);

	  size_so_far += 2;
	}

      /* If in the middle of a word, round.  */
      if (size_so_far % UNITS_PER_WORD)
	{
	  fprintf (file, "\t.space 2\n");
	  size_so_far += 2;
	}

      for (i = 0; i < fpop->noperands; i++)
	if (immed[i])
	  switch (GET_MODE (immed[i]))
	    {
	    case SImode:
	    case VOIDmode:
	      size_so_far += 4;
	      fprintf (file, "\t.long ");
	      output_addr_const (file, immed[i]);
	      fprintf (file, "\n");
	      break;

	    case DFmode:
	      size_so_far += 4;
	    case SFmode:
	      size_so_far += 4;
	      if (GET_CODE (immed[i]) == CONST_DOUBLE)
		{
		  REAL_VALUE_TYPE r;
		  REAL_VALUE_FROM_CONST_DOUBLE (r, immed[i]);
		  assemble_real (r, GET_MODE (immed[i]),
				 GET_MODE_ALIGNMENT (GET_MODE (immed[i])));
		}
	      else
		abort ();
	      break;

	    default:
	      abort ();
	    }
	
      if (size_so_far != fpop->size)
        {
          if (TARGET_FULL_FP_BLOCKS)
	    fprintf (file, "\t.space %d\n", fpop->size - size_so_far);
	  else
	    abort ();
	}
    }

  /* Update for next subroutine.  */
  subr_number++;
  text_section ();
}

 /* Initialize floating-point operation table.  */

static void
init_fpops()
{
  register int i;

  first_fpop = last_fpop_in_mem = 0;
  for (i = 0; i < FP_HASH_SIZE; i++)
    fp_hash_table[i] = 0;
}

/* Return the offset value of an automatic variable (N_LSYM) having
   the given offset. Basically, we correct by going from a frame pointer to
   stack pointer value.
*/

int
romp_debugger_auto_correction(offset)
     int offset;
{
  int fp_to_sp;

  /* We really want to go from STACK_POINTER_REGNUM to
     FRAME_POINTER_REGNUM, but this isn't defined. So go the other
     direction and negate.  */
  INITIAL_ELIMINATION_OFFSET (FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM,
			      fp_to_sp);

  /* The offset value points somewhere between the frame pointer and
     the stack pointer. What is up from the frame pointer is down from the
     stack pointer. Therefore the negation in the offset value too.  */

  return -(offset+fp_to_sp+4);
}

/* Return the offset value of an argument having
   the given offset. Basically, we correct by going from an arg pointer to
   stack pointer value.  */

int
romp_debugger_arg_correction (offset)
     int offset;
{
  int fp_to_argp;

  INITIAL_ELIMINATION_OFFSET (ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM,
			      fp_to_argp);

  /* Actually, something different happens if offset is from a floating-point
     register argument, but we don't handle it here.  */

  return (offset - fp_to_argp);
}

void
romp_initialize_trampoline (tramp, fnaddr, cxt)
     rtx tramp, fnaddr, cxt;
{
  rtx addr, temp, val;

  temp = expand_simple_binop (SImode, PLUS, tramp, GEN_INT (4),
			       0, 1, OPTAB_LIB_WIDEN);
  emit_move_insn (gen_rtx_MEM (SImode, memory_address (SImode, tramp)), temp);

  val = force_reg (SImode, cxt);
  addr = memory_address (HImode, plus_constant (tramp, 10));
  emit_move_insn (gen_rtx_MEM (HImode, addr), gen_lowpart (HImode, val));
  temp = expand_shift (RSHIFT_EXPR, SImode, val, build_int_2 (16, 0), 0, 1);
  addr = memory_address (HImode, plus_constant (tramp, 6));
  emit_move_insn (gen_rtx_MEM (HImode, addr), gen_lowpart (HImode, temp));

  val = force_reg (SImode, fnaddr);
  addr = memory_address (HImode, plus_constant (tramp, 24));
  emit_move_insn (gen_rtx_MEM (HImode, addr), gen_lowpart (HImode, val));
  temp = expand_shift (RSHIFT_EXPR, SImode, val, build_int_2 (16, 0), 0, 1);
  addr = memory_address (HImode, plus_constant (tramp, 20));
  emit_move_insn (gen_rtx_MEM (HImode, addr), gen_lowpart (HImode, temp));
}

/* On ROMP, all constants are in the data area.  */

static void
romp_select_rtx_section (mode, x, align)
     enum machine_mode mode ATTRIBUTE_UNUSED;
     rtx x ATTRIBUTE_UNUSED;
     unsigned HOST_WIDE_INT align ATTRIBUTE_UNUSED;
{
  data section ();
}

/* For no good reason, we do the same as the other RT compilers and load
   the addresses of data areas for a function from our data area.  That means
   that we need to mark such SYMBOL_REFs.  We do so here.  */

static void
romp_encode_section_info (decl, first)
     tree decl;
     int first ATTRIBUTE_UNUSED;
{
  if (TREE_CODE (TREE_TYPE (decl)) == FUNCTION_TYPE)
    SYMBOL_REF_FLAG (XEXP (DECL_RTL (decl), 0)) = 1;
}