1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
|
/* 128-bit long double support routines for Darwin.
Copyright (C) 1993, 2003, 2004, 2005, 2006, 2007
Free Software Foundation, Inc.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 2, or (at your option) any later
version.
In addition to the permissions in the GNU General Public License, the
Free Software Foundation gives you unlimited permission to link the
compiled version of this file into combinations with other programs,
and to distribute those combinations without any restriction coming
from the use of this file. (The General Public License restrictions
do apply in other respects; for example, they cover modification of
the file, and distribution when not linked into a combine
executable.)
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING. If not, write to the Free
Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
02110-1301, USA. */
/* Implementations of floating-point long double basic arithmetic
functions called by the IBM C compiler when generating code for
PowerPC platforms. In particular, the following functions are
implemented: __gcc_qadd, __gcc_qsub, __gcc_qmul, and __gcc_qdiv.
Double-double algorithms are based on the paper "Doubled-Precision
IEEE Standard 754 Floating-Point Arithmetic" by W. Kahan, February 26,
1987. An alternative published reference is "Software for
Doubled-Precision Floating-Point Computations", by Seppo Linnainmaa,
ACM TOMS vol 7 no 3, September 1981, pages 272-283. */
/* Each long double is made up of two IEEE doubles. The value of the
long double is the sum of the values of the two parts. The most
significant part is required to be the value of the long double
rounded to the nearest double, as specified by IEEE. For Inf
values, the least significant part is required to be one of +0.0 or
-0.0. No other requirements are made; so, for example, 1.0 may be
represented as (1.0, +0.0) or (1.0, -0.0), and the low part of a
NaN is don't-care.
This code currently assumes big-endian. */
#if (!defined (__LITTLE_ENDIAN__) \
&& (defined (__MACH__) || defined (__powerpc__) || defined (_AIX)))
#define fabs(x) __builtin_fabs(x)
#define isless(x, y) __builtin_isless (x, y)
#define inf() __builtin_inf()
#define unlikely(x) __builtin_expect ((x), 0)
#define nonfinite(a) unlikely (! isless (fabs (a), inf ()))
/* Define ALIASNAME as a strong alias for NAME. */
# define strong_alias(name, aliasname) _strong_alias(name, aliasname)
# define _strong_alias(name, aliasname) \
extern __typeof (name) aliasname __attribute__ ((alias (#name)));
/* All these routines actually take two long doubles as parameters,
but GCC currently generates poor code when a union is used to turn
a long double into a pair of doubles. */
long double __gcc_qadd (double, double, double, double);
long double __gcc_qsub (double, double, double, double);
long double __gcc_qmul (double, double, double, double);
long double __gcc_qdiv (double, double, double, double);
#if defined __ELF__ && defined SHARED \
&& (defined __powerpc64__ || !(defined __linux__ || defined __gnu_hurd__))
/* Provide definitions of the old symbol names to satisfy apps and
shared libs built against an older libgcc. To access the _xlq
symbols an explicit version reference is needed, so these won't
satisfy an unadorned reference like _xlqadd. If dot symbols are
not needed, the assembler will remove the aliases from the symbol
table. */
__asm__ (".symver __gcc_qadd,_xlqadd@GCC_3.4\n\t"
".symver __gcc_qsub,_xlqsub@GCC_3.4\n\t"
".symver __gcc_qmul,_xlqmul@GCC_3.4\n\t"
".symver __gcc_qdiv,_xlqdiv@GCC_3.4\n\t"
".symver .__gcc_qadd,._xlqadd@GCC_3.4\n\t"
".symver .__gcc_qsub,._xlqsub@GCC_3.4\n\t"
".symver .__gcc_qmul,._xlqmul@GCC_3.4\n\t"
".symver .__gcc_qdiv,._xlqdiv@GCC_3.4");
#endif
typedef union
{
long double ldval;
double dval[2];
} longDblUnion;
/* Add two 'long double' values and return the result. */
long double
__gcc_qadd (double a, double aa, double c, double cc)
{
longDblUnion x;
double z, q, zz, xh;
z = a + c;
if (nonfinite (z))
{
z = cc + aa + c + a;
if (nonfinite (z))
return z;
x.dval[0] = z; /* Will always be DBL_MAX. */
zz = aa + cc;
if (fabs(a) > fabs(c))
x.dval[1] = a - z + c + zz;
else
x.dval[1] = c - z + a + zz;
}
else
{
q = a - z;
zz = q + c + (a - (q + z)) + aa + cc;
/* Keep -0 result. */
if (zz == 0.0)
return z;
xh = z + zz;
if (nonfinite (xh))
return xh;
x.dval[0] = xh;
x.dval[1] = z - xh + zz;
}
return x.ldval;
}
long double
__gcc_qsub (double a, double b, double c, double d)
{
return __gcc_qadd (a, b, -c, -d);
}
#ifdef __NO_FPRS__
static double fmsub (double, double, double);
#endif
long double
__gcc_qmul (double a, double b, double c, double d)
{
longDblUnion z;
double t, tau, u, v, w;
t = a * c; /* Highest order double term. */
if (unlikely (t == 0) /* Preserve -0. */
|| nonfinite (t))
return t;
/* Sum terms of two highest orders. */
/* Use fused multiply-add to get low part of a * c. */
#ifndef __NO_FPRS__
asm ("fmsub %0,%1,%2,%3" : "=f"(tau) : "f"(a), "f"(c), "f"(t));
#else
tau = fmsub (a, c, t);
#endif
v = a*d;
w = b*c;
tau += v + w; /* Add in other second-order terms. */
u = t + tau;
/* Construct long double result. */
if (nonfinite (u))
return u;
z.dval[0] = u;
z.dval[1] = (t - u) + tau;
return z.ldval;
}
long double
__gcc_qdiv (double a, double b, double c, double d)
{
longDblUnion z;
double s, sigma, t, tau, u, v, w;
t = a / c; /* highest order double term */
if (unlikely (t == 0) /* Preserve -0. */
|| nonfinite (t))
return t;
/* Finite nonzero result requires corrections to the highest order term. */
s = c * t; /* (s,sigma) = c*t exactly. */
w = -(-b + d * t); /* Written to get fnmsub for speed, but not
numerically necessary. */
/* Use fused multiply-add to get low part of c * t. */
#ifndef __NO_FPRS__
asm ("fmsub %0,%1,%2,%3" : "=f"(sigma) : "f"(c), "f"(t), "f"(s));
#else
sigma = fmsub (c, t, s);
#endif
v = a - s;
tau = ((v-sigma)+w)/c; /* Correction to t. */
u = t + tau;
/* Construct long double result. */
if (nonfinite (u))
return u;
z.dval[0] = u;
z.dval[1] = (t - u) + tau;
return z.ldval;
}
#if defined (_SOFT_DOUBLE) && defined (__LONG_DOUBLE_128__)
long double __gcc_qneg (double, double);
int __gcc_qeq (double, double, double, double);
int __gcc_qne (double, double, double, double);
int __gcc_qge (double, double, double, double);
int __gcc_qle (double, double, double, double);
long double __gcc_stoq (float);
long double __gcc_dtoq (double);
float __gcc_qtos (double, double);
double __gcc_qtod (double, double);
int __gcc_qtoi (double, double);
unsigned int __gcc_qtou (double, double);
long double __gcc_itoq (int);
long double __gcc_utoq (unsigned int);
extern int __eqdf2 (double, double);
extern int __ledf2 (double, double);
extern int __gedf2 (double, double);
/* Negate 'long double' value and return the result. */
long double
__gcc_qneg (double a, double aa)
{
longDblUnion x;
x.dval[0] = -a;
x.dval[1] = -aa;
return x.ldval;
}
/* Compare two 'long double' values for equality. */
int
__gcc_qeq (double a, double aa, double c, double cc)
{
if (__eqdf2 (a, c) == 0)
return __eqdf2 (aa, cc);
return 1;
}
strong_alias (__gcc_qeq, __gcc_qne);
/* Compare two 'long double' values for less than or equal. */
int
__gcc_qle (double a, double aa, double c, double cc)
{
if (__eqdf2 (a, c) == 0)
return __ledf2 (aa, cc);
return __ledf2 (a, c);
}
strong_alias (__gcc_qle, __gcc_qlt);
/* Compare two 'long double' values for greater than or equal. */
int
__gcc_qge (double a, double aa, double c, double cc)
{
if (__eqdf2 (a, c) == 0)
return __gedf2 (aa, cc);
return __gedf2 (a, c);
}
strong_alias (__gcc_qge, __gcc_qgt);
/* Convert single to long double. */
long double
__gcc_stoq (float a)
{
longDblUnion x;
x.dval[0] = (double) a;
x.dval[1] = 0.0;
return x.ldval;
}
/* Convert double to long double. */
long double
__gcc_dtoq (double a)
{
longDblUnion x;
x.dval[0] = a;
x.dval[1] = 0.0;
return x.ldval;
}
/* Convert long double to single. */
float
__gcc_qtos (double a, double aa __attribute__ ((__unused__)))
{
return (float) a;
}
/* Convert long double to double. */
double
__gcc_qtod (double a, double aa __attribute__ ((__unused__)))
{
return a;
}
/* Convert long double to int. */
int
__gcc_qtoi (double a, double aa)
{
double z = a + aa;
return (int) z;
}
/* Convert long double to unsigned int. */
unsigned int
__gcc_qtou (double a, double aa)
{
double z = a + aa;
return (unsigned int) z;
}
/* Convert int to long double. */
long double
__gcc_itoq (int a)
{
return __gcc_dtoq ((double) a);
}
/* Convert unsigned int to long double. */
long double
__gcc_utoq (unsigned int a)
{
return __gcc_dtoq ((double) a);
}
#endif
#ifdef __NO_FPRS__
int __gcc_qunord (double, double, double, double);
extern int __eqdf2 (double, double);
extern int __unorddf2 (double, double);
/* Compare two 'long double' values for unordered. */
int
__gcc_qunord (double a, double aa, double c, double cc)
{
if (__eqdf2 (a, c) == 0)
return __unorddf2 (aa, cc);
return __unorddf2 (a, c);
}
#include "config/soft-fp/soft-fp.h"
#include "config/soft-fp/double.h"
#include "config/soft-fp/quad.h"
/* Compute floating point multiply-subtract with higher (quad) precision. */
static double
fmsub (double a, double b, double c)
{
FP_DECL_EX;
FP_DECL_D(A);
FP_DECL_D(B);
FP_DECL_D(C);
FP_DECL_Q(X);
FP_DECL_Q(Y);
FP_DECL_Q(Z);
FP_DECL_Q(U);
FP_DECL_Q(V);
FP_DECL_D(R);
double r;
long double u, x, y, z;
FP_INIT_ROUNDMODE;
FP_UNPACK_RAW_D (A, a);
FP_UNPACK_RAW_D (B, b);
FP_UNPACK_RAW_D (C, c);
/* Extend double to quad. */
#if (2 * _FP_W_TYPE_SIZE) < _FP_FRACBITS_Q
FP_EXTEND(Q,D,4,2,X,A);
FP_EXTEND(Q,D,4,2,Y,B);
FP_EXTEND(Q,D,4,2,Z,C);
#else
FP_EXTEND(Q,D,2,1,X,A);
FP_EXTEND(Q,D,2,1,Y,B);
FP_EXTEND(Q,D,2,1,Z,C);
#endif
FP_PACK_RAW_Q(x,X);
FP_PACK_RAW_Q(y,Y);
FP_PACK_RAW_Q(z,Z);
FP_HANDLE_EXCEPTIONS;
/* Multiply. */
FP_INIT_ROUNDMODE;
FP_UNPACK_Q(X,x);
FP_UNPACK_Q(Y,y);
FP_MUL_Q(U,X,Y);
FP_PACK_Q(u,U);
FP_HANDLE_EXCEPTIONS;
/* Subtract. */
FP_INIT_ROUNDMODE;
FP_UNPACK_SEMIRAW_Q(U,u);
FP_UNPACK_SEMIRAW_Q(Z,z);
FP_SUB_Q(V,U,Z);
/* Truncate quad to double. */
#if (2 * _FP_W_TYPE_SIZE) < _FP_FRACBITS_Q
V_f[3] &= 0x0007ffff;
FP_TRUNC(D,Q,2,4,R,V);
#else
V_f1 &= 0x0007ffffffffffffL;
FP_TRUNC(D,Q,1,2,R,V);
#endif
FP_PACK_SEMIRAW_D(r,R);
FP_HANDLE_EXCEPTIONS;
return r;
}
#endif
#endif
|