1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
|
/* Definitions of target machine for GNU compiler, for IBM RS/6000.
Copyright (C) 1992-2013 Free Software Foundation, Inc.
Contributed by Richard Kenner (kenner@vlsi1.ultra.nyu.edu)
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published
by the Free Software Foundation; either version 3, or (at your
option) any later version.
GCC is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
License for more details.
Under Section 7 of GPL version 3, you are granted additional
permissions described in the GCC Runtime Library Exception, version
3.1, as published by the Free Software Foundation.
You should have received a copy of the GNU General Public License and
a copy of the GCC Runtime Library Exception along with this program;
see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
<http://www.gnu.org/licenses/>. */
/* Note that some other tm.h files include this one and then override
many of the definitions. */
#ifndef RS6000_OPTS_H
#include "config/rs6000/rs6000-opts.h"
#endif
/* Definitions for the object file format. These are set at
compile-time. */
#define OBJECT_XCOFF 1
#define OBJECT_ELF 2
#define OBJECT_PEF 3
#define OBJECT_MACHO 4
#define TARGET_ELF (TARGET_OBJECT_FORMAT == OBJECT_ELF)
#define TARGET_XCOFF (TARGET_OBJECT_FORMAT == OBJECT_XCOFF)
#define TARGET_MACOS (TARGET_OBJECT_FORMAT == OBJECT_PEF)
#define TARGET_MACHO (TARGET_OBJECT_FORMAT == OBJECT_MACHO)
#ifndef TARGET_AIX
#define TARGET_AIX 0
#endif
#ifndef TARGET_AIX_OS
#define TARGET_AIX_OS 0
#endif
/* Control whether function entry points use a "dot" symbol when
ABI_AIX. */
#define DOT_SYMBOLS 1
/* Default string to use for cpu if not specified. */
#ifndef TARGET_CPU_DEFAULT
#define TARGET_CPU_DEFAULT ((char *)0)
#endif
/* If configured for PPC405, support PPC405CR Erratum77. */
#ifdef CONFIG_PPC405CR
#define PPC405_ERRATUM77 (rs6000_cpu == PROCESSOR_PPC405)
#else
#define PPC405_ERRATUM77 0
#endif
#ifndef TARGET_PAIRED_FLOAT
#define TARGET_PAIRED_FLOAT 0
#endif
#ifdef HAVE_AS_POPCNTB
#define ASM_CPU_POWER5_SPEC "-mpower5"
#else
#define ASM_CPU_POWER5_SPEC "-mpower4"
#endif
#ifdef HAVE_AS_DFP
#define ASM_CPU_POWER6_SPEC "-mpower6 -maltivec"
#else
#define ASM_CPU_POWER6_SPEC "-mpower4 -maltivec"
#endif
#ifdef HAVE_AS_POPCNTD
#define ASM_CPU_POWER7_SPEC "-mpower7"
#else
#define ASM_CPU_POWER7_SPEC "-mpower4 -maltivec"
#endif
#ifdef HAVE_AS_POWER8
#define ASM_CPU_POWER8_SPEC "-mpower8"
#else
#define ASM_CPU_POWER8_SPEC ASM_CPU_POWER7_SPEC
#endif
#ifdef HAVE_AS_DCI
#define ASM_CPU_476_SPEC "-m476"
#else
#define ASM_CPU_476_SPEC "-mpower4"
#endif
/* Common ASM definitions used by ASM_SPEC among the various targets for
handling -mcpu=xxx switches. There is a parallel list in driver-rs6000.c to
provide the default assembler options if the user uses -mcpu=native, so if
you make changes here, make them also there. */
#define ASM_CPU_SPEC \
"%{!mcpu*: \
%{mpowerpc64*: -mppc64} \
%{!mpowerpc64*: %(asm_default)}} \
%{mcpu=native: %(asm_cpu_native)} \
%{mcpu=cell: -mcell} \
%{mcpu=power3: -mppc64} \
%{mcpu=power4: -mpower4} \
%{mcpu=power5: %(asm_cpu_power5)} \
%{mcpu=power5+: %(asm_cpu_power5)} \
%{mcpu=power6: %(asm_cpu_power6) -maltivec} \
%{mcpu=power6x: %(asm_cpu_power6) -maltivec} \
%{mcpu=power7: %(asm_cpu_power7)} \
%{mcpu=power8: %(asm_cpu_power8)} \
%{mcpu=a2: -ma2} \
%{mcpu=powerpc: -mppc} \
%{mcpu=rs64a: -mppc64} \
%{mcpu=401: -mppc} \
%{mcpu=403: -m403} \
%{mcpu=405: -m405} \
%{mcpu=405fp: -m405} \
%{mcpu=440: -m440} \
%{mcpu=440fp: -m440} \
%{mcpu=464: -m440} \
%{mcpu=464fp: -m440} \
%{mcpu=476: %(asm_cpu_476)} \
%{mcpu=476fp: %(asm_cpu_476)} \
%{mcpu=505: -mppc} \
%{mcpu=601: -m601} \
%{mcpu=602: -mppc} \
%{mcpu=603: -mppc} \
%{mcpu=603e: -mppc} \
%{mcpu=ec603e: -mppc} \
%{mcpu=604: -mppc} \
%{mcpu=604e: -mppc} \
%{mcpu=620: -mppc64} \
%{mcpu=630: -mppc64} \
%{mcpu=740: -mppc} \
%{mcpu=750: -mppc} \
%{mcpu=G3: -mppc} \
%{mcpu=7400: -mppc -maltivec} \
%{mcpu=7450: -mppc -maltivec} \
%{mcpu=G4: -mppc -maltivec} \
%{mcpu=801: -mppc} \
%{mcpu=821: -mppc} \
%{mcpu=823: -mppc} \
%{mcpu=860: -mppc} \
%{mcpu=970: -mpower4 -maltivec} \
%{mcpu=G5: -mpower4 -maltivec} \
%{mcpu=8540: -me500} \
%{mcpu=8548: -me500} \
%{mcpu=e300c2: -me300} \
%{mcpu=e300c3: -me300} \
%{mcpu=e500mc: -me500mc} \
%{mcpu=e500mc64: -me500mc64} \
%{mcpu=e5500: -me5500} \
%{mcpu=e6500: -me6500} \
%{maltivec: -maltivec} \
%{mvsx: -mvsx %{!maltivec: -maltivec} %{!mcpu*: %(asm_cpu_power7)}} \
%{mpower8-vector|mcrypto|mdirect-move|mhtm: %{!mcpu*: %(asm_cpu_power8)}} \
-many"
#define CPP_DEFAULT_SPEC ""
#define ASM_DEFAULT_SPEC ""
/* This macro defines names of additional specifications to put in the specs
that can be used in various specifications like CC1_SPEC. Its definition
is an initializer with a subgrouping for each command option.
Each subgrouping contains a string constant, that defines the
specification name, and a string constant that used by the GCC driver
program.
Do not define this macro if it does not need to do anything. */
#define SUBTARGET_EXTRA_SPECS
#define EXTRA_SPECS \
{ "cpp_default", CPP_DEFAULT_SPEC }, \
{ "asm_cpu", ASM_CPU_SPEC }, \
{ "asm_cpu_native", ASM_CPU_NATIVE_SPEC }, \
{ "asm_default", ASM_DEFAULT_SPEC }, \
{ "cc1_cpu", CC1_CPU_SPEC }, \
{ "asm_cpu_power5", ASM_CPU_POWER5_SPEC }, \
{ "asm_cpu_power6", ASM_CPU_POWER6_SPEC }, \
{ "asm_cpu_power7", ASM_CPU_POWER7_SPEC }, \
{ "asm_cpu_power8", ASM_CPU_POWER8_SPEC }, \
{ "asm_cpu_476", ASM_CPU_476_SPEC }, \
SUBTARGET_EXTRA_SPECS
/* -mcpu=native handling only makes sense with compiler running on
an PowerPC chip. If changing this condition, also change
the condition in driver-rs6000.c. */
#if defined(__powerpc__) || defined(__POWERPC__) || defined(_AIX)
/* In driver-rs6000.c. */
extern const char *host_detect_local_cpu (int argc, const char **argv);
#define EXTRA_SPEC_FUNCTIONS \
{ "local_cpu_detect", host_detect_local_cpu },
#define HAVE_LOCAL_CPU_DETECT
#define ASM_CPU_NATIVE_SPEC "%:local_cpu_detect(asm)"
#else
#define ASM_CPU_NATIVE_SPEC "%(asm_default)"
#endif
#ifndef CC1_CPU_SPEC
#ifdef HAVE_LOCAL_CPU_DETECT
#define CC1_CPU_SPEC \
"%{mcpu=native:%<mcpu=native %:local_cpu_detect(cpu)} \
%{mtune=native:%<mtune=native %:local_cpu_detect(tune)}"
#else
#define CC1_CPU_SPEC ""
#endif
#endif
/* Architecture type. */
/* Define TARGET_MFCRF if the target assembler does not support the
optional field operand for mfcr. */
#ifndef HAVE_AS_MFCRF
#undef TARGET_MFCRF
#define TARGET_MFCRF 0
#endif
/* Define TARGET_POPCNTB if the target assembler does not support the
popcount byte instruction. */
#ifndef HAVE_AS_POPCNTB
#undef TARGET_POPCNTB
#define TARGET_POPCNTB 0
#endif
/* Define TARGET_FPRND if the target assembler does not support the
fp rounding instructions. */
#ifndef HAVE_AS_FPRND
#undef TARGET_FPRND
#define TARGET_FPRND 0
#endif
/* Define TARGET_CMPB if the target assembler does not support the
cmpb instruction. */
#ifndef HAVE_AS_CMPB
#undef TARGET_CMPB
#define TARGET_CMPB 0
#endif
/* Define TARGET_MFPGPR if the target assembler does not support the
mffpr and mftgpr instructions. */
#ifndef HAVE_AS_MFPGPR
#undef TARGET_MFPGPR
#define TARGET_MFPGPR 0
#endif
/* Define TARGET_DFP if the target assembler does not support decimal
floating point instructions. */
#ifndef HAVE_AS_DFP
#undef TARGET_DFP
#define TARGET_DFP 0
#endif
/* Define TARGET_POPCNTD if the target assembler does not support the
popcount word and double word instructions. */
#ifndef HAVE_AS_POPCNTD
#undef TARGET_POPCNTD
#define TARGET_POPCNTD 0
#endif
/* Define the ISA 2.07 flags as 0 if the target assembler does not support the
waitasecond instruction. Allow -mpower8-fusion, since it does not add new
instructions. */
#ifndef HAVE_AS_POWER8
#undef TARGET_DIRECT_MOVE
#undef TARGET_CRYPTO
#undef TARGET_HTM
#undef TARGET_P8_VECTOR
#define TARGET_DIRECT_MOVE 0
#define TARGET_CRYPTO 0
#define TARGET_HTM 0
#define TARGET_P8_VECTOR 0
#endif
/* Define TARGET_LWSYNC_INSTRUCTION if the assembler knows about lwsync. If
not, generate the lwsync code as an integer constant. */
#ifdef HAVE_AS_LWSYNC
#define TARGET_LWSYNC_INSTRUCTION 1
#else
#define TARGET_LWSYNC_INSTRUCTION 0
#endif
/* Define TARGET_TLS_MARKERS if the target assembler does not support
arg markers for __tls_get_addr calls. */
#ifndef HAVE_AS_TLS_MARKERS
#undef TARGET_TLS_MARKERS
#define TARGET_TLS_MARKERS 0
#else
#define TARGET_TLS_MARKERS tls_markers
#endif
#ifndef TARGET_SECURE_PLT
#define TARGET_SECURE_PLT 0
#endif
#ifndef TARGET_CMODEL
#define TARGET_CMODEL CMODEL_SMALL
#endif
#define TARGET_32BIT (! TARGET_64BIT)
#ifndef HAVE_AS_TLS
#define HAVE_AS_TLS 0
#endif
#ifndef TARGET_LINK_STACK
#define TARGET_LINK_STACK 0
#endif
#ifndef SET_TARGET_LINK_STACK
#define SET_TARGET_LINK_STACK(X) do { } while (0)
#endif
/* Return 1 for a symbol ref for a thread-local storage symbol. */
#define RS6000_SYMBOL_REF_TLS_P(RTX) \
(GET_CODE (RTX) == SYMBOL_REF && SYMBOL_REF_TLS_MODEL (RTX) != 0)
#ifdef IN_LIBGCC2
/* For libgcc2 we make sure this is a compile time constant */
#if defined (__64BIT__) || defined (__powerpc64__) || defined (__ppc64__)
#undef TARGET_POWERPC64
#define TARGET_POWERPC64 1
#else
#undef TARGET_POWERPC64
#define TARGET_POWERPC64 0
#endif
#else
/* The option machinery will define this. */
#endif
#define TARGET_DEFAULT (MASK_MULTIPLE | MASK_STRING)
/* FPU operations supported.
Each use of TARGET_SINGLE_FLOAT or TARGET_DOUBLE_FLOAT must
also test TARGET_HARD_FLOAT. */
#define TARGET_SINGLE_FLOAT 1
#define TARGET_DOUBLE_FLOAT 1
#define TARGET_SINGLE_FPU 0
#define TARGET_SIMPLE_FPU 0
#define TARGET_XILINX_FPU 0
/* Recast the processor type to the cpu attribute. */
#define rs6000_cpu_attr ((enum attr_cpu)rs6000_cpu)
/* Define generic processor types based upon current deployment. */
#define PROCESSOR_COMMON PROCESSOR_PPC601
#define PROCESSOR_POWERPC PROCESSOR_PPC604
#define PROCESSOR_POWERPC64 PROCESSOR_RS64A
/* Define the default processor. This is overridden by other tm.h files. */
#define PROCESSOR_DEFAULT PROCESSOR_PPC603
#define PROCESSOR_DEFAULT64 PROCESSOR_RS64A
/* Specify the dialect of assembler to use. Only new mnemonics are supported
starting with GCC 4.8, i.e. just one dialect, but for backwards
compatibility with older inline asm ASSEMBLER_DIALECT needs to be
defined. */
#define ASSEMBLER_DIALECT 1
/* Debug support */
#define MASK_DEBUG_STACK 0x01 /* debug stack applications */
#define MASK_DEBUG_ARG 0x02 /* debug argument handling */
#define MASK_DEBUG_REG 0x04 /* debug register handling */
#define MASK_DEBUG_ADDR 0x08 /* debug memory addressing */
#define MASK_DEBUG_COST 0x10 /* debug rtx codes */
#define MASK_DEBUG_TARGET 0x20 /* debug target attribute/pragma */
#define MASK_DEBUG_BUILTIN 0x40 /* debug builtins */
#define MASK_DEBUG_ALL (MASK_DEBUG_STACK \
| MASK_DEBUG_ARG \
| MASK_DEBUG_REG \
| MASK_DEBUG_ADDR \
| MASK_DEBUG_COST \
| MASK_DEBUG_TARGET \
| MASK_DEBUG_BUILTIN)
#define TARGET_DEBUG_STACK (rs6000_debug & MASK_DEBUG_STACK)
#define TARGET_DEBUG_ARG (rs6000_debug & MASK_DEBUG_ARG)
#define TARGET_DEBUG_REG (rs6000_debug & MASK_DEBUG_REG)
#define TARGET_DEBUG_ADDR (rs6000_debug & MASK_DEBUG_ADDR)
#define TARGET_DEBUG_COST (rs6000_debug & MASK_DEBUG_COST)
#define TARGET_DEBUG_TARGET (rs6000_debug & MASK_DEBUG_TARGET)
#define TARGET_DEBUG_BUILTIN (rs6000_debug & MASK_DEBUG_BUILTIN)
/* Describe the vector unit used for arithmetic operations. */
extern enum rs6000_vector rs6000_vector_unit[];
#define VECTOR_UNIT_NONE_P(MODE) \
(rs6000_vector_unit[(MODE)] == VECTOR_NONE)
#define VECTOR_UNIT_VSX_P(MODE) \
(rs6000_vector_unit[(MODE)] == VECTOR_VSX)
#define VECTOR_UNIT_P8_VECTOR_P(MODE) \
(rs6000_vector_unit[(MODE)] == VECTOR_P8_VECTOR)
#define VECTOR_UNIT_ALTIVEC_P(MODE) \
(rs6000_vector_unit[(MODE)] == VECTOR_ALTIVEC)
#define VECTOR_UNIT_VSX_OR_P8_VECTOR_P(MODE) \
(IN_RANGE ((int)rs6000_vector_unit[(MODE)], \
(int)VECTOR_VSX, \
(int)VECTOR_P8_VECTOR))
/* VECTOR_UNIT_ALTIVEC_OR_VSX_P is used in places where we are using either
altivec (VMX) or VSX vector instructions. P8 vector support is upwards
compatible, so allow it as well, rather than changing all of the uses of the
macro. */
#define VECTOR_UNIT_ALTIVEC_OR_VSX_P(MODE) \
(IN_RANGE ((int)rs6000_vector_unit[(MODE)], \
(int)VECTOR_ALTIVEC, \
(int)VECTOR_P8_VECTOR))
/* Describe whether to use VSX loads or Altivec loads. For now, just use the
same unit as the vector unit we are using, but we may want to migrate to
using VSX style loads even for types handled by altivec. */
extern enum rs6000_vector rs6000_vector_mem[];
#define VECTOR_MEM_NONE_P(MODE) \
(rs6000_vector_mem[(MODE)] == VECTOR_NONE)
#define VECTOR_MEM_VSX_P(MODE) \
(rs6000_vector_mem[(MODE)] == VECTOR_VSX)
#define VECTOR_MEM_P8_VECTOR_P(MODE) \
(rs6000_vector_mem[(MODE)] == VECTOR_VSX)
#define VECTOR_MEM_ALTIVEC_P(MODE) \
(rs6000_vector_mem[(MODE)] == VECTOR_ALTIVEC)
#define VECTOR_MEM_VSX_OR_P8_VECTOR_P(MODE) \
(IN_RANGE ((int)rs6000_vector_mem[(MODE)], \
(int)VECTOR_VSX, \
(int)VECTOR_P8_VECTOR))
#define VECTOR_MEM_ALTIVEC_OR_VSX_P(MODE) \
(IN_RANGE ((int)rs6000_vector_mem[(MODE)], \
(int)VECTOR_ALTIVEC, \
(int)VECTOR_P8_VECTOR))
/* Return the alignment of a given vector type, which is set based on the
vector unit use. VSX for instance can load 32 or 64 bit aligned words
without problems, while Altivec requires 128-bit aligned vectors. */
extern int rs6000_vector_align[];
#define VECTOR_ALIGN(MODE) \
((rs6000_vector_align[(MODE)] != 0) \
? rs6000_vector_align[(MODE)] \
: (int)GET_MODE_BITSIZE ((MODE)))
/* Alignment options for fields in structures for sub-targets following
AIX-like ABI.
ALIGN_POWER word-aligns FP doubles (default AIX ABI).
ALIGN_NATURAL doubleword-aligns FP doubles (align to object size).
Override the macro definitions when compiling libobjc to avoid undefined
reference to rs6000_alignment_flags due to library's use of GCC alignment
macros which use the macros below. */
#ifndef IN_TARGET_LIBS
#define MASK_ALIGN_POWER 0x00000000
#define MASK_ALIGN_NATURAL 0x00000001
#define TARGET_ALIGN_NATURAL (rs6000_alignment_flags & MASK_ALIGN_NATURAL)
#else
#define TARGET_ALIGN_NATURAL 0
#endif
#define TARGET_LONG_DOUBLE_128 (rs6000_long_double_type_size == 128)
#define TARGET_IEEEQUAD rs6000_ieeequad
#define TARGET_ALTIVEC_ABI rs6000_altivec_abi
#define TARGET_LDBRX (TARGET_POPCNTD || rs6000_cpu == PROCESSOR_CELL)
#define TARGET_SPE_ABI 0
#define TARGET_SPE 0
#define TARGET_ISEL64 (TARGET_ISEL && TARGET_POWERPC64)
#define TARGET_FPRS 1
#define TARGET_E500_SINGLE 0
#define TARGET_E500_DOUBLE 0
#define CHECK_E500_OPTIONS do { } while (0)
/* ISA 2.01 allowed FCFID to be done in 32-bit, previously it was 64-bit only.
Enable 32-bit fcfid's on any of the switches for newer ISA machines or
XILINX. */
#define TARGET_FCFID (TARGET_POWERPC64 \
|| TARGET_PPC_GPOPT /* 970/power4 */ \
|| TARGET_POPCNTB /* ISA 2.02 */ \
|| TARGET_CMPB /* ISA 2.05 */ \
|| TARGET_POPCNTD /* ISA 2.06 */ \
|| TARGET_XILINX_FPU)
#define TARGET_FCTIDZ TARGET_FCFID
#define TARGET_STFIWX TARGET_PPC_GFXOPT
#define TARGET_LFIWAX TARGET_CMPB
#define TARGET_LFIWZX TARGET_POPCNTD
#define TARGET_FCFIDS TARGET_POPCNTD
#define TARGET_FCFIDU TARGET_POPCNTD
#define TARGET_FCFIDUS TARGET_POPCNTD
#define TARGET_FCTIDUZ TARGET_POPCNTD
#define TARGET_FCTIWUZ TARGET_POPCNTD
#define TARGET_XSCVDPSPN (TARGET_DIRECT_MOVE || TARGET_P8_VECTOR)
#define TARGET_XSCVSPDPN (TARGET_DIRECT_MOVE || TARGET_P8_VECTOR)
/* Byte/char syncs were added as phased in for ISA 2.06B, but are not present
in power7, so conditionalize them on p8 features. TImode syncs need quad
memory support. */
#define TARGET_SYNC_HI_QI (TARGET_QUAD_MEMORY || TARGET_DIRECT_MOVE)
#define TARGET_SYNC_TI TARGET_QUAD_MEMORY
/* Power7 has both 32-bit load and store integer for the FPRs, so we don't need
to allocate the SDmode stack slot to get the value into the proper location
in the register. */
#define TARGET_NO_SDMODE_STACK (TARGET_LFIWZX && TARGET_STFIWX && TARGET_DFP)
/* In switching from using target_flags to using rs6000_isa_flags, the options
machinery creates OPTION_MASK_<xxx> instead of MASK_<xxx>. For now map
OPTION_MASK_<xxx> back into MASK_<xxx>. */
#define MASK_ALTIVEC OPTION_MASK_ALTIVEC
#define MASK_CMPB OPTION_MASK_CMPB
#define MASK_CRYPTO OPTION_MASK_CRYPTO
#define MASK_DFP OPTION_MASK_DFP
#define MASK_DIRECT_MOVE OPTION_MASK_DIRECT_MOVE
#define MASK_DLMZB OPTION_MASK_DLMZB
#define MASK_EABI OPTION_MASK_EABI
#define MASK_FPRND OPTION_MASK_FPRND
#define MASK_P8_FUSION OPTION_MASK_P8_FUSION
#define MASK_HARD_FLOAT OPTION_MASK_HARD_FLOAT
#define MASK_HTM OPTION_MASK_HTM
#define MASK_ISEL OPTION_MASK_ISEL
#define MASK_MFCRF OPTION_MASK_MFCRF
#define MASK_MFPGPR OPTION_MASK_MFPGPR
#define MASK_MULHW OPTION_MASK_MULHW
#define MASK_MULTIPLE OPTION_MASK_MULTIPLE
#define MASK_NO_UPDATE OPTION_MASK_NO_UPDATE
#define MASK_P8_VECTOR OPTION_MASK_P8_VECTOR
#define MASK_POPCNTB OPTION_MASK_POPCNTB
#define MASK_POPCNTD OPTION_MASK_POPCNTD
#define MASK_PPC_GFXOPT OPTION_MASK_PPC_GFXOPT
#define MASK_PPC_GPOPT OPTION_MASK_PPC_GPOPT
#define MASK_RECIP_PRECISION OPTION_MASK_RECIP_PRECISION
#define MASK_SOFT_FLOAT OPTION_MASK_SOFT_FLOAT
#define MASK_STRICT_ALIGN OPTION_MASK_STRICT_ALIGN
#define MASK_STRING OPTION_MASK_STRING
#define MASK_UPDATE OPTION_MASK_UPDATE
#define MASK_VSX OPTION_MASK_VSX
#define MASK_VSX_TIMODE OPTION_MASK_VSX_TIMODE
#ifndef IN_LIBGCC2
#define MASK_POWERPC64 OPTION_MASK_POWERPC64
#endif
#ifdef TARGET_64BIT
#define MASK_64BIT OPTION_MASK_64BIT
#endif
#ifdef TARGET_RELOCATABLE
#define MASK_RELOCATABLE OPTION_MASK_RELOCATABLE
#endif
#ifdef TARGET_LITTLE_ENDIAN
#define MASK_LITTLE_ENDIAN OPTION_MASK_LITTLE_ENDIAN
#endif
#ifdef TARGET_MINIMAL_TOC
#define MASK_MINIMAL_TOC OPTION_MASK_MINIMAL_TOC
#endif
#ifdef TARGET_REGNAMES
#define MASK_REGNAMES OPTION_MASK_REGNAMES
#endif
#ifdef TARGET_PROTOTYPE
#define MASK_PROTOTYPE OPTION_MASK_PROTOTYPE
#endif
/* Explicit ISA options that were set. */
#define rs6000_isa_flags_explicit global_options_set.x_rs6000_isa_flags
/* For power systems, we want to enable Altivec and VSX builtins even if the
user did not use -maltivec or -mvsx to allow the builtins to be used inside
of #pragma GCC target or the target attribute to change the code level for a
given system. The SPE and Paired builtins are only enabled if you configure
the compiler for those builtins, and those machines don't support altivec or
VSX. */
#define TARGET_EXTRA_BUILTINS (!TARGET_SPE && !TARGET_PAIRED_FLOAT \
&& ((TARGET_POWERPC64 \
|| TARGET_PPC_GPOPT /* 970/power4 */ \
|| TARGET_POPCNTB /* ISA 2.02 */ \
|| TARGET_CMPB /* ISA 2.05 */ \
|| TARGET_POPCNTD /* ISA 2.06 */ \
|| TARGET_ALTIVEC \
|| TARGET_VSX)))
/* E500 cores only support plain "sync", not lwsync. */
#define TARGET_NO_LWSYNC (rs6000_cpu == PROCESSOR_PPC8540 \
|| rs6000_cpu == PROCESSOR_PPC8548)
/* Which machine supports the various reciprocal estimate instructions. */
#define TARGET_FRES (TARGET_HARD_FLOAT && TARGET_PPC_GFXOPT \
&& TARGET_FPRS && TARGET_SINGLE_FLOAT)
#define TARGET_FRE (TARGET_HARD_FLOAT && TARGET_FPRS \
&& TARGET_DOUBLE_FLOAT \
&& (TARGET_POPCNTB || VECTOR_UNIT_VSX_P (DFmode)))
#define TARGET_FRSQRTES (TARGET_HARD_FLOAT && TARGET_POPCNTB \
&& TARGET_FPRS && TARGET_SINGLE_FLOAT)
#define TARGET_FRSQRTE (TARGET_HARD_FLOAT && TARGET_FPRS \
&& TARGET_DOUBLE_FLOAT \
&& (TARGET_PPC_GFXOPT || VECTOR_UNIT_VSX_P (DFmode)))
/* Whether the various reciprocal divide/square root estimate instructions
exist, and whether we should automatically generate code for the instruction
by default. */
#define RS6000_RECIP_MASK_HAVE_RE 0x1 /* have RE instruction. */
#define RS6000_RECIP_MASK_AUTO_RE 0x2 /* generate RE by default. */
#define RS6000_RECIP_MASK_HAVE_RSQRTE 0x4 /* have RSQRTE instruction. */
#define RS6000_RECIP_MASK_AUTO_RSQRTE 0x8 /* gen. RSQRTE by default. */
extern unsigned char rs6000_recip_bits[];
#define RS6000_RECIP_HAVE_RE_P(MODE) \
(rs6000_recip_bits[(int)(MODE)] & RS6000_RECIP_MASK_HAVE_RE)
#define RS6000_RECIP_AUTO_RE_P(MODE) \
(rs6000_recip_bits[(int)(MODE)] & RS6000_RECIP_MASK_AUTO_RE)
#define RS6000_RECIP_HAVE_RSQRTE_P(MODE) \
(rs6000_recip_bits[(int)(MODE)] & RS6000_RECIP_MASK_HAVE_RSQRTE)
#define RS6000_RECIP_AUTO_RSQRTE_P(MODE) \
(rs6000_recip_bits[(int)(MODE)] & RS6000_RECIP_MASK_AUTO_RSQRTE)
/* The default CPU for TARGET_OPTION_OVERRIDE. */
#define OPTION_TARGET_CPU_DEFAULT TARGET_CPU_DEFAULT
/* Target pragma. */
#define REGISTER_TARGET_PRAGMAS() do { \
c_register_pragma (0, "longcall", rs6000_pragma_longcall); \
targetm.target_option.pragma_parse = rs6000_pragma_target_parse; \
targetm.resolve_overloaded_builtin = altivec_resolve_overloaded_builtin; \
rs6000_target_modify_macros_ptr = rs6000_target_modify_macros; \
} while (0)
/* Target #defines. */
#define TARGET_CPU_CPP_BUILTINS() \
rs6000_cpu_cpp_builtins (pfile)
/* This is used by rs6000_cpu_cpp_builtins to indicate the byte order
we're compiling for. Some configurations may need to override it. */
#define RS6000_CPU_CPP_ENDIAN_BUILTINS() \
do \
{ \
if (BYTES_BIG_ENDIAN) \
{ \
builtin_define ("__BIG_ENDIAN__"); \
builtin_define ("_BIG_ENDIAN"); \
builtin_assert ("machine=bigendian"); \
} \
else \
{ \
builtin_define ("__LITTLE_ENDIAN__"); \
builtin_define ("_LITTLE_ENDIAN"); \
builtin_assert ("machine=littleendian"); \
} \
} \
while (0)
/* Target machine storage layout. */
/* Define this macro if it is advisable to hold scalars in registers
in a wider mode than that declared by the program. In such cases,
the value is constrained to be within the bounds of the declared
type, but kept valid in the wider mode. The signedness of the
extension may differ from that of the type. */
#define PROMOTE_MODE(MODE,UNSIGNEDP,TYPE) \
if (GET_MODE_CLASS (MODE) == MODE_INT \
&& GET_MODE_SIZE (MODE) < UNITS_PER_WORD) \
(MODE) = TARGET_32BIT ? SImode : DImode;
/* Define this if most significant bit is lowest numbered
in instructions that operate on numbered bit-fields. */
/* That is true on RS/6000. */
#define BITS_BIG_ENDIAN 1
/* Define this if most significant byte of a word is the lowest numbered. */
/* That is true on RS/6000. */
#define BYTES_BIG_ENDIAN 1
/* Define this if most significant word of a multiword number is lowest
numbered.
For RS/6000 we can decide arbitrarily since there are no machine
instructions for them. Might as well be consistent with bits and bytes. */
#define WORDS_BIG_ENDIAN 1
/* This says that for the IBM long double the larger magnitude double
comes first. It's really a two element double array, and arrays
don't index differently between little- and big-endian. */
#define LONG_DOUBLE_LARGE_FIRST 1
#define MAX_BITS_PER_WORD 64
/* Width of a word, in units (bytes). */
#define UNITS_PER_WORD (! TARGET_POWERPC64 ? 4 : 8)
#ifdef IN_LIBGCC2
#define MIN_UNITS_PER_WORD UNITS_PER_WORD
#else
#define MIN_UNITS_PER_WORD 4
#endif
#define UNITS_PER_FP_WORD 8
#define UNITS_PER_ALTIVEC_WORD 16
#define UNITS_PER_VSX_WORD 16
#define UNITS_PER_SPE_WORD 8
#define UNITS_PER_PAIRED_WORD 8
/* Type used for ptrdiff_t, as a string used in a declaration. */
#define PTRDIFF_TYPE "int"
/* Type used for size_t, as a string used in a declaration. */
#define SIZE_TYPE "long unsigned int"
/* Type used for wchar_t, as a string used in a declaration. */
#define WCHAR_TYPE "short unsigned int"
/* Width of wchar_t in bits. */
#define WCHAR_TYPE_SIZE 16
/* A C expression for the size in bits of the type `short' on the
target machine. If you don't define this, the default is half a
word. (If this would be less than one storage unit, it is
rounded up to one unit.) */
#define SHORT_TYPE_SIZE 16
/* A C expression for the size in bits of the type `int' on the
target machine. If you don't define this, the default is one
word. */
#define INT_TYPE_SIZE 32
/* A C expression for the size in bits of the type `long' on the
target machine. If you don't define this, the default is one
word. */
#define LONG_TYPE_SIZE (TARGET_32BIT ? 32 : 64)
/* A C expression for the size in bits of the type `long long' on the
target machine. If you don't define this, the default is two
words. */
#define LONG_LONG_TYPE_SIZE 64
/* A C expression for the size in bits of the type `float' on the
target machine. If you don't define this, the default is one
word. */
#define FLOAT_TYPE_SIZE 32
/* A C expression for the size in bits of the type `double' on the
target machine. If you don't define this, the default is two
words. */
#define DOUBLE_TYPE_SIZE 64
/* A C expression for the size in bits of the type `long double' on
the target machine. If you don't define this, the default is two
words. */
#define LONG_DOUBLE_TYPE_SIZE rs6000_long_double_type_size
/* Define this to set long double type size to use in libgcc2.c, which can
not depend on target_flags. */
#ifdef __LONG_DOUBLE_128__
#define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 128
#else
#define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 64
#endif
/* Work around rs6000_long_double_type_size dependency in ada/targtyps.c. */
#define WIDEST_HARDWARE_FP_SIZE 64
/* Width in bits of a pointer.
See also the macro `Pmode' defined below. */
extern unsigned rs6000_pointer_size;
#define POINTER_SIZE rs6000_pointer_size
/* Allocation boundary (in *bits*) for storing arguments in argument list. */
#define PARM_BOUNDARY (TARGET_32BIT ? 32 : 64)
/* Boundary (in *bits*) on which stack pointer should be aligned. */
#define STACK_BOUNDARY \
((TARGET_32BIT && !TARGET_ALTIVEC && !TARGET_ALTIVEC_ABI && !TARGET_VSX) \
? 64 : 128)
/* Allocation boundary (in *bits*) for the code of a function. */
#define FUNCTION_BOUNDARY 32
/* No data type wants to be aligned rounder than this. */
#define BIGGEST_ALIGNMENT 128
/* Alignment of field after `int : 0' in a structure. */
#define EMPTY_FIELD_BOUNDARY 32
/* Every structure's size must be a multiple of this. */
#define STRUCTURE_SIZE_BOUNDARY 8
/* A bit-field declared as `int' forces `int' alignment for the struct. */
#define PCC_BITFIELD_TYPE_MATTERS 1
enum data_align { align_abi, align_opt, align_both };
/* A C expression to compute the alignment for a variables in the
local store. TYPE is the data type, and ALIGN is the alignment
that the object would ordinarily have. */
#define LOCAL_ALIGNMENT(TYPE, ALIGN) \
rs6000_data_alignment (TYPE, ALIGN, align_both)
/* Make strings word-aligned so strcpy from constants will be faster. */
#define CONSTANT_ALIGNMENT(EXP, ALIGN) \
(TREE_CODE (EXP) == STRING_CST \
&& (STRICT_ALIGNMENT || !optimize_size) \
&& (ALIGN) < BITS_PER_WORD \
? BITS_PER_WORD \
: (ALIGN))
/* Make arrays of chars word-aligned for the same reasons. */
#define DATA_ALIGNMENT(TYPE, ALIGN) \
rs6000_data_alignment (TYPE, ALIGN, align_opt)
/* Align vectors to 128 bits. Align SPE vectors and E500 v2 doubles to
64 bits. */
#define DATA_ABI_ALIGNMENT(TYPE, ALIGN) \
rs6000_data_alignment (TYPE, ALIGN, align_abi)
/* Nonzero if move instructions will actually fail to work
when given unaligned data. */
#define STRICT_ALIGNMENT 0
/* Define this macro to be the value 1 if unaligned accesses have a cost
many times greater than aligned accesses, for example if they are
emulated in a trap handler. */
/* Altivec vector memory instructions simply ignore the low bits; SPE vector
memory instructions trap on unaligned accesses; VSX memory instructions are
aligned to 4 or 8 bytes. */
#define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) \
(STRICT_ALIGNMENT \
|| (((MODE) == SFmode || (MODE) == DFmode || (MODE) == TFmode \
|| (MODE) == SDmode || (MODE) == DDmode || (MODE) == TDmode) \
&& (ALIGN) < 32) \
|| (VECTOR_MODE_P ((MODE)) && (((int)(ALIGN)) < VECTOR_ALIGN (MODE))))
/* Standard register usage. */
/* Number of actual hardware registers.
The hardware registers are assigned numbers for the compiler
from 0 to just below FIRST_PSEUDO_REGISTER.
All registers that the compiler knows about must be given numbers,
even those that are not normally considered general registers.
RS/6000 has 32 fixed-point registers, 32 floating-point registers,
a count register, a link register, and 8 condition register fields,
which we view here as separate registers. AltiVec adds 32 vector
registers and a VRsave register.
In addition, the difference between the frame and argument pointers is
a function of the number of registers saved, so we need to have a
register for AP that will later be eliminated in favor of SP or FP.
This is a normal register, but it is fixed.
We also create a pseudo register for float/int conversions, that will
really represent the memory location used. It is represented here as
a register, in order to work around problems in allocating stack storage
in inline functions.
Another pseudo (not included in DWARF_FRAME_REGISTERS) is soft frame
pointer, which is eventually eliminated in favor of SP or FP.
The 3 HTM registers aren't also included in DWARF_FRAME_REGISTERS. */
#define FIRST_PSEUDO_REGISTER 117
/* This must be included for pre gcc 3.0 glibc compatibility. */
#define PRE_GCC3_DWARF_FRAME_REGISTERS 77
/* Add 32 dwarf columns for synthetic SPE registers. */
#define DWARF_FRAME_REGISTERS ((FIRST_PSEUDO_REGISTER - 4) + 32)
/* The SPE has an additional 32 synthetic registers, with DWARF debug
info numbering for these registers starting at 1200. While eh_frame
register numbering need not be the same as the debug info numbering,
we choose to number these regs for eh_frame at 1200 too. This allows
future versions of the rs6000 backend to add hard registers and
continue to use the gcc hard register numbering for eh_frame. If the
extra SPE registers in eh_frame were numbered starting from the
current value of FIRST_PSEUDO_REGISTER, then if FIRST_PSEUDO_REGISTER
changed we'd need to introduce a mapping in DWARF_FRAME_REGNUM to
avoid invalidating older SPE eh_frame info.
We must map them here to avoid huge unwinder tables mostly consisting
of unused space. */
#define DWARF_REG_TO_UNWIND_COLUMN(r) \
((r) > 1200 ? ((r) - 1200 + (DWARF_FRAME_REGISTERS - 32)) : (r))
/* Use standard DWARF numbering for DWARF debugging information. */
#define DBX_REGISTER_NUMBER(REGNO) rs6000_dbx_register_number (REGNO)
/* Use gcc hard register numbering for eh_frame. */
#define DWARF_FRAME_REGNUM(REGNO) (REGNO)
/* Map register numbers held in the call frame info that gcc has
collected using DWARF_FRAME_REGNUM to those that should be output in
.debug_frame and .eh_frame. We continue to use gcc hard reg numbers
for .eh_frame, but use the numbers mandated by the various ABIs for
.debug_frame. rs6000_emit_prologue has translated any combination of
CR2, CR3, CR4 saves to a save of CR2. The actual code emitted saves
the whole of CR, so we map CR2_REGNO to the DWARF reg for CR. */
#define DWARF2_FRAME_REG_OUT(REGNO, FOR_EH) \
((FOR_EH) ? (REGNO) \
: (REGNO) == CR2_REGNO ? 64 \
: DBX_REGISTER_NUMBER (REGNO))
/* 1 for registers that have pervasive standard uses
and are not available for the register allocator.
On RS/6000, r1 is used for the stack. On Darwin, r2 is available
as a local register; for all other OS's r2 is the TOC pointer.
cr5 is not supposed to be used.
On System V implementations, r13 is fixed and not available for use. */
#define FIXED_REGISTERS \
{0, 1, FIXED_R2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, FIXED_R13, 0, 0, \
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, \
/* AltiVec registers. */ \
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1, 1 \
, 1, 1, 1, 1, 1, 1 \
}
/* 1 for registers not available across function calls.
These must include the FIXED_REGISTERS and also any
registers that can be used without being saved.
The latter must include the registers where values are returned
and the register where structure-value addresses are passed.
Aside from that, you can include as many other registers as you like. */
#define CALL_USED_REGISTERS \
{1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, FIXED_R13, 0, 0, \
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, \
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, \
/* AltiVec registers. */ \
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1, 1 \
, 1, 1, 1, 1, 1, 1 \
}
/* Like `CALL_USED_REGISTERS' except this macro doesn't require that
the entire set of `FIXED_REGISTERS' be included.
(`CALL_USED_REGISTERS' must be a superset of `FIXED_REGISTERS').
This macro is optional. If not specified, it defaults to the value
of `CALL_USED_REGISTERS'. */
#define CALL_REALLY_USED_REGISTERS \
{1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, FIXED_R13, 0, 0, \
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, \
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, \
/* AltiVec registers. */ \
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
0, 0 \
, 0, 0, 0, 0, 0, 0 \
}
#define TOTAL_ALTIVEC_REGS (LAST_ALTIVEC_REGNO - FIRST_ALTIVEC_REGNO + 1)
#define FIRST_SAVED_ALTIVEC_REGNO (FIRST_ALTIVEC_REGNO+20)
#define FIRST_SAVED_FP_REGNO (14+32)
#define FIRST_SAVED_GP_REGNO (FIXED_R13 ? 14 : 13)
/* List the order in which to allocate registers. Each register must be
listed once, even those in FIXED_REGISTERS.
We allocate in the following order:
fp0 (not saved or used for anything)
fp13 - fp2 (not saved; incoming fp arg registers)
fp1 (not saved; return value)
fp31 - fp14 (saved; order given to save least number)
cr7, cr6 (not saved or special)
cr1 (not saved, but used for FP operations)
cr0 (not saved, but used for arithmetic operations)
cr4, cr3, cr2 (saved)
r9 (not saved; best for TImode)
r10, r8-r4 (not saved; highest first for less conflict with params)
r3 (not saved; return value register)
r11 (not saved; later alloc to help shrink-wrap)
r0 (not saved; cannot be base reg)
r31 - r13 (saved; order given to save least number)
r12 (not saved; if used for DImode or DFmode would use r13)
ctr (not saved; when we have the choice ctr is better)
lr (saved)
cr5, r1, r2, ap, ca (fixed)
v0 - v1 (not saved or used for anything)
v13 - v3 (not saved; incoming vector arg registers)
v2 (not saved; incoming vector arg reg; return value)
v19 - v14 (not saved or used for anything)
v31 - v20 (saved; order given to save least number)
vrsave, vscr (fixed)
spe_acc, spefscr (fixed)
sfp (fixed)
tfhar (fixed)
tfiar (fixed)
texasr (fixed)
*/
#if FIXED_R2 == 1
#define MAYBE_R2_AVAILABLE
#define MAYBE_R2_FIXED 2,
#else
#define MAYBE_R2_AVAILABLE 2,
#define MAYBE_R2_FIXED
#endif
#if FIXED_R13 == 1
#define EARLY_R12 12,
#define LATE_R12
#else
#define EARLY_R12
#define LATE_R12 12,
#endif
#define REG_ALLOC_ORDER \
{32, \
/* move fr13 (ie 45) later, so if we need TFmode, it does */ \
/* not use fr14 which is a saved register. */ \
44, 43, 42, 41, 40, 39, 38, 37, 36, 35, 34, 45, \
33, \
63, 62, 61, 60, 59, 58, 57, 56, 55, 54, 53, 52, 51, \
50, 49, 48, 47, 46, \
75, 74, 69, 68, 72, 71, 70, \
MAYBE_R2_AVAILABLE \
9, 10, 8, 7, 6, 5, 4, \
3, EARLY_R12 11, 0, \
31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, \
18, 17, 16, 15, 14, 13, LATE_R12 \
66, 65, \
73, 1, MAYBE_R2_FIXED 67, 76, \
/* AltiVec registers. */ \
77, 78, \
90, 89, 88, 87, 86, 85, 84, 83, 82, 81, 80, \
79, \
96, 95, 94, 93, 92, 91, \
108, 107, 106, 105, 104, 103, 102, 101, 100, 99, 98, 97, \
109, 110, \
111, 112, 113, 114, 115, 116 \
}
/* True if register is floating-point. */
#define FP_REGNO_P(N) ((N) >= 32 && (N) <= 63)
/* True if register is a condition register. */
#define CR_REGNO_P(N) ((N) >= CR0_REGNO && (N) <= CR7_REGNO)
/* True if register is a condition register, but not cr0. */
#define CR_REGNO_NOT_CR0_P(N) ((N) >= CR1_REGNO && (N) <= CR7_REGNO)
/* True if register is an integer register. */
#define INT_REGNO_P(N) \
((N) <= 31 || (N) == ARG_POINTER_REGNUM || (N) == FRAME_POINTER_REGNUM)
/* SPE SIMD registers are just the GPRs. */
#define SPE_SIMD_REGNO_P(N) ((N) <= 31)
/* PAIRED SIMD registers are just the FPRs. */
#define PAIRED_SIMD_REGNO_P(N) ((N) >= 32 && (N) <= 63)
/* True if register is the CA register. */
#define CA_REGNO_P(N) ((N) == CA_REGNO)
/* True if register is an AltiVec register. */
#define ALTIVEC_REGNO_P(N) ((N) >= FIRST_ALTIVEC_REGNO && (N) <= LAST_ALTIVEC_REGNO)
/* True if register is a VSX register. */
#define VSX_REGNO_P(N) (FP_REGNO_P (N) || ALTIVEC_REGNO_P (N))
/* Alternate name for any vector register supporting floating point, no matter
which instruction set(s) are available. */
#define VFLOAT_REGNO_P(N) \
(ALTIVEC_REGNO_P (N) || (TARGET_VSX && FP_REGNO_P (N)))
/* Alternate name for any vector register supporting integer, no matter which
instruction set(s) are available. */
#define VINT_REGNO_P(N) ALTIVEC_REGNO_P (N)
/* Alternate name for any vector register supporting logical operations, no
matter which instruction set(s) are available. For 64-bit mode, we also
allow logical operations in the GPRS. This is to allow atomic quad word
builtins not to need the VSX registers for lqarx/stqcx. It also helps with
__int128_t arguments that are passed in GPRs. */
#define VLOGICAL_REGNO_P(N) \
(ALTIVEC_REGNO_P (N) \
|| (TARGET_VSX && FP_REGNO_P (N)) \
|| (TARGET_VSX && TARGET_POWERPC64 && INT_REGNO_P (N)))
/* Return number of consecutive hard regs needed starting at reg REGNO
to hold something of mode MODE. */
#define HARD_REGNO_NREGS(REGNO, MODE) rs6000_hard_regno_nregs[(MODE)][(REGNO)]
/* When setting up caller-save slots (MODE == VOIDmode) ensure we allocate
enough space to account for vectors in FP regs. However, TFmode/TDmode
should not use VSX instructions to do a caller save. */
#define HARD_REGNO_CALLER_SAVE_MODE(REGNO, NREGS, MODE) \
(TARGET_VSX \
&& ((MODE) == VOIDmode || ALTIVEC_OR_VSX_VECTOR_MODE (MODE)) \
&& FP_REGNO_P (REGNO) \
? V2DFmode \
: ((MODE) == TFmode && FP_REGNO_P (REGNO)) \
? DFmode \
: ((MODE) == TDmode && FP_REGNO_P (REGNO)) \
? DImode \
: choose_hard_reg_mode ((REGNO), (NREGS), false))
#define HARD_REGNO_CALL_PART_CLOBBERED(REGNO, MODE) \
(((TARGET_32BIT && TARGET_POWERPC64 \
&& (GET_MODE_SIZE (MODE) > 4) \
&& INT_REGNO_P (REGNO)) ? 1 : 0) \
|| (TARGET_VSX && FP_REGNO_P (REGNO) \
&& GET_MODE_SIZE (MODE) > 8 && ((MODE) != TDmode) \
&& ((MODE) != TFmode)))
#define VSX_VECTOR_MODE(MODE) \
((MODE) == V4SFmode \
|| (MODE) == V2DFmode) \
#define ALTIVEC_VECTOR_MODE(MODE) \
((MODE) == V16QImode \
|| (MODE) == V8HImode \
|| (MODE) == V4SFmode \
|| (MODE) == V4SImode)
#define ALTIVEC_OR_VSX_VECTOR_MODE(MODE) \
(ALTIVEC_VECTOR_MODE (MODE) || VSX_VECTOR_MODE (MODE) \
|| (MODE) == V2DImode)
#define SPE_VECTOR_MODE(MODE) \
((MODE) == V4HImode \
|| (MODE) == V2SFmode \
|| (MODE) == V1DImode \
|| (MODE) == V2SImode)
#define PAIRED_VECTOR_MODE(MODE) \
((MODE) == V2SFmode)
/* Value is TRUE if hard register REGNO can hold a value of
machine-mode MODE. */
#define HARD_REGNO_MODE_OK(REGNO, MODE) \
rs6000_hard_regno_mode_ok_p[(int)(MODE)][REGNO]
/* Value is 1 if it is a good idea to tie two pseudo registers
when one has mode MODE1 and one has mode MODE2.
If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
for any hard reg, then this must be 0 for correct output.
PTImode cannot tie with other modes because PTImode is restricted to even
GPR registers, and TImode can go in any GPR as well as VSX registers (PR
57744). */
#define MODES_TIEABLE_P(MODE1, MODE2) \
((MODE1) == PTImode \
? (MODE2) == PTImode \
: (MODE2) == PTImode \
? 0 \
: SCALAR_FLOAT_MODE_P (MODE1) \
? SCALAR_FLOAT_MODE_P (MODE2) \
: SCALAR_FLOAT_MODE_P (MODE2) \
? 0 \
: GET_MODE_CLASS (MODE1) == MODE_CC \
? GET_MODE_CLASS (MODE2) == MODE_CC \
: GET_MODE_CLASS (MODE2) == MODE_CC \
? 0 \
: SPE_VECTOR_MODE (MODE1) \
? SPE_VECTOR_MODE (MODE2) \
: SPE_VECTOR_MODE (MODE2) \
? 0 \
: ALTIVEC_OR_VSX_VECTOR_MODE (MODE1) \
? ALTIVEC_OR_VSX_VECTOR_MODE (MODE2) \
: ALTIVEC_OR_VSX_VECTOR_MODE (MODE2) \
? 0 \
: 1)
/* Post-reload, we can't use any new AltiVec registers, as we already
emitted the vrsave mask. */
#define HARD_REGNO_RENAME_OK(SRC, DST) \
(! ALTIVEC_REGNO_P (DST) || df_regs_ever_live_p (DST))
/* Specify the cost of a branch insn; roughly the number of extra insns that
should be added to avoid a branch.
Set this to 3 on the RS/6000 since that is roughly the average cost of an
unscheduled conditional branch. */
#define BRANCH_COST(speed_p, predictable_p) 3
/* Override BRANCH_COST heuristic which empirically produces worse
performance for removing short circuiting from the logical ops. */
#define LOGICAL_OP_NON_SHORT_CIRCUIT 0
/* A fixed register used at epilogue generation to address SPE registers
with negative offsets. The 64-bit load/store instructions on the SPE
only take positive offsets (and small ones at that), so we need to
reserve a register for consing up negative offsets. */
#define FIXED_SCRATCH 0
/* Specify the registers used for certain standard purposes.
The values of these macros are register numbers. */
/* RS/6000 pc isn't overloaded on a register that the compiler knows about. */
/* #define PC_REGNUM */
/* Register to use for pushing function arguments. */
#define STACK_POINTER_REGNUM 1
/* Base register for access to local variables of the function. */
#define HARD_FRAME_POINTER_REGNUM 31
/* Base register for access to local variables of the function. */
#define FRAME_POINTER_REGNUM 113
/* Base register for access to arguments of the function. */
#define ARG_POINTER_REGNUM 67
/* Place to put static chain when calling a function that requires it. */
#define STATIC_CHAIN_REGNUM 11
/* Define the classes of registers for register constraints in the
machine description. Also define ranges of constants.
One of the classes must always be named ALL_REGS and include all hard regs.
If there is more than one class, another class must be named NO_REGS
and contain no registers.
The name GENERAL_REGS must be the name of a class (or an alias for
another name such as ALL_REGS). This is the class of registers
that is allowed by "g" or "r" in a register constraint.
Also, registers outside this class are allocated only when
instructions express preferences for them.
The classes must be numbered in nondecreasing order; that is,
a larger-numbered class must never be contained completely
in a smaller-numbered class.
For any two classes, it is very desirable that there be another
class that represents their union. */
/* The RS/6000 has three types of registers, fixed-point, floating-point, and
condition registers, plus three special registers, CTR, and the link
register. AltiVec adds a vector register class. VSX registers overlap the
FPR registers and the Altivec registers.
However, r0 is special in that it cannot be used as a base register.
So make a class for registers valid as base registers.
Also, cr0 is the only condition code register that can be used in
arithmetic insns, so make a separate class for it. */
enum reg_class
{
NO_REGS,
BASE_REGS,
GENERAL_REGS,
FLOAT_REGS,
ALTIVEC_REGS,
VSX_REGS,
VRSAVE_REGS,
VSCR_REGS,
SPE_ACC_REGS,
SPEFSCR_REGS,
SPR_REGS,
NON_SPECIAL_REGS,
LINK_REGS,
CTR_REGS,
LINK_OR_CTR_REGS,
SPECIAL_REGS,
SPEC_OR_GEN_REGS,
CR0_REGS,
CR_REGS,
NON_FLOAT_REGS,
CA_REGS,
ALL_REGS,
LIM_REG_CLASSES
};
#define N_REG_CLASSES (int) LIM_REG_CLASSES
/* Give names of register classes as strings for dump file. */
#define REG_CLASS_NAMES \
{ \
"NO_REGS", \
"BASE_REGS", \
"GENERAL_REGS", \
"FLOAT_REGS", \
"ALTIVEC_REGS", \
"VSX_REGS", \
"VRSAVE_REGS", \
"VSCR_REGS", \
"SPE_ACC_REGS", \
"SPEFSCR_REGS", \
"SPR_REGS", \
"NON_SPECIAL_REGS", \
"LINK_REGS", \
"CTR_REGS", \
"LINK_OR_CTR_REGS", \
"SPECIAL_REGS", \
"SPEC_OR_GEN_REGS", \
"CR0_REGS", \
"CR_REGS", \
"NON_FLOAT_REGS", \
"CA_REGS", \
"ALL_REGS" \
}
/* Define which registers fit in which classes.
This is an initializer for a vector of HARD_REG_SET
of length N_REG_CLASSES. */
#define REG_CLASS_CONTENTS \
{ \
{ 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* NO_REGS */ \
{ 0xfffffffe, 0x00000000, 0x00000008, 0x00020000 }, /* BASE_REGS */ \
{ 0xffffffff, 0x00000000, 0x00000008, 0x00020000 }, /* GENERAL_REGS */ \
{ 0x00000000, 0xffffffff, 0x00000000, 0x00000000 }, /* FLOAT_REGS */ \
{ 0x00000000, 0x00000000, 0xffffe000, 0x00001fff }, /* ALTIVEC_REGS */ \
{ 0x00000000, 0xffffffff, 0xffffe000, 0x00001fff }, /* VSX_REGS */ \
{ 0x00000000, 0x00000000, 0x00000000, 0x00002000 }, /* VRSAVE_REGS */ \
{ 0x00000000, 0x00000000, 0x00000000, 0x00004000 }, /* VSCR_REGS */ \
{ 0x00000000, 0x00000000, 0x00000000, 0x00008000 }, /* SPE_ACC_REGS */ \
{ 0x00000000, 0x00000000, 0x00000000, 0x00010000 }, /* SPEFSCR_REGS */ \
{ 0x00000000, 0x00000000, 0x00000000, 0x00040000 }, /* SPR_REGS */ \
{ 0xffffffff, 0xffffffff, 0x00000008, 0x00020000 }, /* NON_SPECIAL_REGS */ \
{ 0x00000000, 0x00000000, 0x00000002, 0x00000000 }, /* LINK_REGS */ \
{ 0x00000000, 0x00000000, 0x00000004, 0x00000000 }, /* CTR_REGS */ \
{ 0x00000000, 0x00000000, 0x00000006, 0x00000000 }, /* LINK_OR_CTR_REGS */ \
{ 0x00000000, 0x00000000, 0x00000006, 0x00002000 }, /* SPECIAL_REGS */ \
{ 0xffffffff, 0x00000000, 0x0000000e, 0x00022000 }, /* SPEC_OR_GEN_REGS */ \
{ 0x00000000, 0x00000000, 0x00000010, 0x00000000 }, /* CR0_REGS */ \
{ 0x00000000, 0x00000000, 0x00000ff0, 0x00000000 }, /* CR_REGS */ \
{ 0xffffffff, 0x00000000, 0x00000ffe, 0x00020000 }, /* NON_FLOAT_REGS */ \
{ 0x00000000, 0x00000000, 0x00001000, 0x00000000 }, /* CA_REGS */ \
{ 0xffffffff, 0xffffffff, 0xfffffffe, 0x0007ffff } /* ALL_REGS */ \
}
/* The same information, inverted:
Return the class number of the smallest class containing
reg number REGNO. This could be a conditional expression
or could index an array. */
extern enum reg_class rs6000_regno_regclass[FIRST_PSEUDO_REGISTER];
#if ENABLE_CHECKING
#define REGNO_REG_CLASS(REGNO) \
(gcc_assert (IN_RANGE ((REGNO), 0, FIRST_PSEUDO_REGISTER-1)), \
rs6000_regno_regclass[(REGNO)])
#else
#define REGNO_REG_CLASS(REGNO) rs6000_regno_regclass[(REGNO)]
#endif
/* Register classes for various constraints that are based on the target
switches. */
enum r6000_reg_class_enum {
RS6000_CONSTRAINT_d, /* fpr registers for double values */
RS6000_CONSTRAINT_f, /* fpr registers for single values */
RS6000_CONSTRAINT_v, /* Altivec registers */
RS6000_CONSTRAINT_wa, /* Any VSX register */
RS6000_CONSTRAINT_wd, /* VSX register for V2DF */
RS6000_CONSTRAINT_wg, /* FPR register for -mmfpgpr */
RS6000_CONSTRAINT_wf, /* VSX register for V4SF */
RS6000_CONSTRAINT_wl, /* FPR register for LFIWAX */
RS6000_CONSTRAINT_wm, /* VSX register for direct move */
RS6000_CONSTRAINT_wr, /* GPR register if 64-bit */
RS6000_CONSTRAINT_ws, /* VSX register for DF */
RS6000_CONSTRAINT_wt, /* VSX register for TImode */
RS6000_CONSTRAINT_wv, /* Altivec register for power8 vector */
RS6000_CONSTRAINT_wx, /* FPR register for STFIWX */
RS6000_CONSTRAINT_wz, /* FPR register for LFIWZX */
RS6000_CONSTRAINT_MAX
};
extern enum reg_class rs6000_constraints[RS6000_CONSTRAINT_MAX];
/* The class value for index registers, and the one for base regs. */
#define INDEX_REG_CLASS GENERAL_REGS
#define BASE_REG_CLASS BASE_REGS
/* Return whether a given register class can hold VSX objects. */
#define VSX_REG_CLASS_P(CLASS) \
((CLASS) == VSX_REGS || (CLASS) == FLOAT_REGS || (CLASS) == ALTIVEC_REGS)
/* Given an rtx X being reloaded into a reg required to be
in class CLASS, return the class of reg to actually use.
In general this is just CLASS; but on some machines
in some cases it is preferable to use a more restrictive class.
On the RS/6000, we have to return NO_REGS when we want to reload a
floating-point CONST_DOUBLE to force it to be copied to memory.
We also don't want to reload integer values into floating-point
registers if we can at all help it. In fact, this can
cause reload to die, if it tries to generate a reload of CTR
into a FP register and discovers it doesn't have the memory location
required.
??? Would it be a good idea to have reload do the converse, that is
try to reload floating modes into FP registers if possible?
*/
#define PREFERRED_RELOAD_CLASS(X,CLASS) \
rs6000_preferred_reload_class_ptr (X, CLASS)
/* Return the register class of a scratch register needed to copy IN into
or out of a register in CLASS in MODE. If it can be done directly,
NO_REGS is returned. */
#define SECONDARY_RELOAD_CLASS(CLASS,MODE,IN) \
rs6000_secondary_reload_class_ptr (CLASS, MODE, IN)
/* If we are copying between FP or AltiVec registers and anything
else, we need a memory location. The exception is when we are
targeting ppc64 and the move to/from fpr to gpr instructions
are available.*/
#define SECONDARY_MEMORY_NEEDED(CLASS1,CLASS2,MODE) \
rs6000_secondary_memory_needed_ptr (CLASS1, CLASS2, MODE)
/* For cpus that cannot load/store SDmode values from the 64-bit
FP registers without using a full 64-bit load/store, we need
to allocate a full 64-bit stack slot for them. */
#define SECONDARY_MEMORY_NEEDED_RTX(MODE) \
rs6000_secondary_memory_needed_rtx (MODE)
/* Return the maximum number of consecutive registers
needed to represent mode MODE in a register of class CLASS.
On RS/6000, this is the size of MODE in words, except in the FP regs, where
a single reg is enough for two words, unless we have VSX, where the FP
registers can hold 128 bits. */
#define CLASS_MAX_NREGS(CLASS, MODE) rs6000_class_max_nregs[(MODE)][(CLASS)]
/* Return nonzero if for CLASS a mode change from FROM to TO is invalid. */
#define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) \
rs6000_cannot_change_mode_class_ptr (FROM, TO, CLASS)
/* Stack layout; function entry, exit and calling. */
/* Define this if pushing a word on the stack
makes the stack pointer a smaller address. */
#define STACK_GROWS_DOWNWARD
/* Offsets recorded in opcodes are a multiple of this alignment factor. */
#define DWARF_CIE_DATA_ALIGNMENT (-((int) (TARGET_32BIT ? 4 : 8)))
/* Define this to nonzero if the nominal address of the stack frame
is at the high-address end of the local variables;
that is, each additional local variable allocated
goes at a more negative offset in the frame.
On the RS/6000, we grow upwards, from the area after the outgoing
arguments. */
#define FRAME_GROWS_DOWNWARD (flag_stack_protect != 0 || flag_asan != 0)
/* Size of the outgoing register save area */
#define RS6000_REG_SAVE ((DEFAULT_ABI == ABI_AIX \
|| DEFAULT_ABI == ABI_DARWIN) \
? (TARGET_64BIT ? 64 : 32) \
: 0)
/* Size of the fixed area on the stack */
#define RS6000_SAVE_AREA \
(((DEFAULT_ABI == ABI_AIX || DEFAULT_ABI == ABI_DARWIN) ? 24 : 8) \
<< (TARGET_64BIT ? 1 : 0))
/* MEM representing address to save the TOC register */
#define RS6000_SAVE_TOC gen_rtx_MEM (Pmode, \
plus_constant (Pmode, stack_pointer_rtx, \
(TARGET_32BIT ? 20 : 40)))
/* Align an address */
#define RS6000_ALIGN(n,a) (((n) + (a) - 1) & ~((a) - 1))
/* Offset within stack frame to start allocating local variables at.
If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
first local allocated. Otherwise, it is the offset to the BEGINNING
of the first local allocated.
On the RS/6000, the frame pointer is the same as the stack pointer,
except for dynamic allocations. So we start after the fixed area and
outgoing parameter area. */
#define STARTING_FRAME_OFFSET \
(FRAME_GROWS_DOWNWARD \
? 0 \
: (RS6000_ALIGN (crtl->outgoing_args_size, \
(TARGET_ALTIVEC || TARGET_VSX) ? 16 : 8) \
+ RS6000_SAVE_AREA))
/* Offset from the stack pointer register to an item dynamically
allocated on the stack, e.g., by `alloca'.
The default value for this macro is `STACK_POINTER_OFFSET' plus the
length of the outgoing arguments. The default is correct for most
machines. See `function.c' for details. */
#define STACK_DYNAMIC_OFFSET(FUNDECL) \
(RS6000_ALIGN (crtl->outgoing_args_size, \
(TARGET_ALTIVEC || TARGET_VSX) ? 16 : 8) \
+ (STACK_POINTER_OFFSET))
/* If we generate an insn to push BYTES bytes,
this says how many the stack pointer really advances by.
On RS/6000, don't define this because there are no push insns. */
/* #define PUSH_ROUNDING(BYTES) */
/* Offset of first parameter from the argument pointer register value.
On the RS/6000, we define the argument pointer to the start of the fixed
area. */
#define FIRST_PARM_OFFSET(FNDECL) RS6000_SAVE_AREA
/* Offset from the argument pointer register value to the top of
stack. This is different from FIRST_PARM_OFFSET because of the
register save area. */
#define ARG_POINTER_CFA_OFFSET(FNDECL) 0
/* Define this if stack space is still allocated for a parameter passed
in a register. The value is the number of bytes allocated to this
area. */
#define REG_PARM_STACK_SPACE(FNDECL) RS6000_REG_SAVE
/* Define this if the above stack space is to be considered part of the
space allocated by the caller. */
#define OUTGOING_REG_PARM_STACK_SPACE(FNTYPE) 1
/* This is the difference between the logical top of stack and the actual sp.
For the RS/6000, sp points past the fixed area. */
#define STACK_POINTER_OFFSET RS6000_SAVE_AREA
/* Define this if the maximum size of all the outgoing args is to be
accumulated and pushed during the prologue. The amount can be
found in the variable crtl->outgoing_args_size. */
#define ACCUMULATE_OUTGOING_ARGS 1
/* Define how to find the value returned by a library function
assuming the value has mode MODE. */
#define LIBCALL_VALUE(MODE) rs6000_libcall_value ((MODE))
/* DRAFT_V4_STRUCT_RET defaults off. */
#define DRAFT_V4_STRUCT_RET 0
/* Let TARGET_RETURN_IN_MEMORY control what happens. */
#define DEFAULT_PCC_STRUCT_RETURN 0
/* Mode of stack savearea.
FUNCTION is VOIDmode because calling convention maintains SP.
BLOCK needs Pmode for SP.
NONLOCAL needs twice Pmode to maintain both backchain and SP. */
#define STACK_SAVEAREA_MODE(LEVEL) \
(LEVEL == SAVE_FUNCTION ? VOIDmode \
: LEVEL == SAVE_NONLOCAL ? (TARGET_32BIT ? DImode : PTImode) : Pmode)
/* Minimum and maximum general purpose registers used to hold arguments. */
#define GP_ARG_MIN_REG 3
#define GP_ARG_MAX_REG 10
#define GP_ARG_NUM_REG (GP_ARG_MAX_REG - GP_ARG_MIN_REG + 1)
/* Minimum and maximum floating point registers used to hold arguments. */
#define FP_ARG_MIN_REG 33
#define FP_ARG_AIX_MAX_REG 45
#define FP_ARG_V4_MAX_REG 40
#define FP_ARG_MAX_REG ((DEFAULT_ABI == ABI_AIX \
|| DEFAULT_ABI == ABI_DARWIN) \
? FP_ARG_AIX_MAX_REG : FP_ARG_V4_MAX_REG)
#define FP_ARG_NUM_REG (FP_ARG_MAX_REG - FP_ARG_MIN_REG + 1)
/* Minimum and maximum AltiVec registers used to hold arguments. */
#define ALTIVEC_ARG_MIN_REG (FIRST_ALTIVEC_REGNO + 2)
#define ALTIVEC_ARG_MAX_REG (ALTIVEC_ARG_MIN_REG + 11)
#define ALTIVEC_ARG_NUM_REG (ALTIVEC_ARG_MAX_REG - ALTIVEC_ARG_MIN_REG + 1)
/* Return registers */
#define GP_ARG_RETURN GP_ARG_MIN_REG
#define FP_ARG_RETURN FP_ARG_MIN_REG
#define ALTIVEC_ARG_RETURN (FIRST_ALTIVEC_REGNO + 2)
/* Flags for the call/call_value rtl operations set up by function_arg */
#define CALL_NORMAL 0x00000000 /* no special processing */
/* Bits in 0x00000001 are unused. */
#define CALL_V4_CLEAR_FP_ARGS 0x00000002 /* V.4, no FP args passed */
#define CALL_V4_SET_FP_ARGS 0x00000004 /* V.4, FP args were passed */
#define CALL_LONG 0x00000008 /* always call indirect */
#define CALL_LIBCALL 0x00000010 /* libcall */
/* We don't have prologue and epilogue functions to save/restore
everything for most ABIs. */
#define WORLD_SAVE_P(INFO) 0
/* 1 if N is a possible register number for a function value
as seen by the caller.
On RS/6000, this is r3, fp1, and v2 (for AltiVec). */
#define FUNCTION_VALUE_REGNO_P(N) \
((N) == GP_ARG_RETURN \
|| ((N) == FP_ARG_RETURN && TARGET_HARD_FLOAT && TARGET_FPRS) \
|| ((N) == ALTIVEC_ARG_RETURN && TARGET_ALTIVEC && TARGET_ALTIVEC_ABI))
/* 1 if N is a possible register number for function argument passing.
On RS/6000, these are r3-r10 and fp1-fp13.
On AltiVec, v2 - v13 are used for passing vectors. */
#define FUNCTION_ARG_REGNO_P(N) \
((unsigned) (N) - GP_ARG_MIN_REG < GP_ARG_NUM_REG \
|| ((unsigned) (N) - ALTIVEC_ARG_MIN_REG < ALTIVEC_ARG_NUM_REG \
&& TARGET_ALTIVEC && TARGET_ALTIVEC_ABI) \
|| ((unsigned) (N) - FP_ARG_MIN_REG < FP_ARG_NUM_REG \
&& TARGET_HARD_FLOAT && TARGET_FPRS))
/* Define a data type for recording info about an argument list
during the scan of that argument list. This data type should
hold all necessary information about the function itself
and about the args processed so far, enough to enable macros
such as FUNCTION_ARG to determine where the next arg should go.
On the RS/6000, this is a structure. The first element is the number of
total argument words, the second is used to store the next
floating-point register number, and the third says how many more args we
have prototype types for.
For ABI_V4, we treat these slightly differently -- `sysv_gregno' is
the next available GP register, `fregno' is the next available FP
register, and `words' is the number of words used on the stack.
The varargs/stdarg support requires that this structure's size
be a multiple of sizeof(int). */
typedef struct rs6000_args
{
int words; /* # words used for passing GP registers */
int fregno; /* next available FP register */
int vregno; /* next available AltiVec register */
int nargs_prototype; /* # args left in the current prototype */
int prototype; /* Whether a prototype was defined */
int stdarg; /* Whether function is a stdarg function. */
int call_cookie; /* Do special things for this call */
int sysv_gregno; /* next available GP register */
int intoffset; /* running offset in struct (darwin64) */
int use_stack; /* any part of struct on stack (darwin64) */
int floats_in_gpr; /* count of SFmode floats taking up
GPR space (darwin64) */
int named; /* false for varargs params */
int escapes; /* if function visible outside tu */
} CUMULATIVE_ARGS;
/* Initialize a variable CUM of type CUMULATIVE_ARGS
for a call to a function whose data type is FNTYPE.
For a library call, FNTYPE is 0. */
#define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \
init_cumulative_args (&CUM, FNTYPE, LIBNAME, FALSE, FALSE, \
N_NAMED_ARGS, FNDECL, VOIDmode)
/* Similar, but when scanning the definition of a procedure. We always
set NARGS_PROTOTYPE large so we never return an EXPR_LIST. */
#define INIT_CUMULATIVE_INCOMING_ARGS(CUM, FNTYPE, LIBNAME) \
init_cumulative_args (&CUM, FNTYPE, LIBNAME, TRUE, FALSE, \
1000, current_function_decl, VOIDmode)
/* Like INIT_CUMULATIVE_ARGS' but only used for outgoing libcalls. */
#define INIT_CUMULATIVE_LIBCALL_ARGS(CUM, MODE, LIBNAME) \
init_cumulative_args (&CUM, NULL_TREE, LIBNAME, FALSE, TRUE, \
0, NULL_TREE, MODE)
/* If defined, a C expression which determines whether, and in which
direction, to pad out an argument with extra space. The value
should be of type `enum direction': either `upward' to pad above
the argument, `downward' to pad below, or `none' to inhibit
padding. */
#define FUNCTION_ARG_PADDING(MODE, TYPE) function_arg_padding (MODE, TYPE)
#define PAD_VARARGS_DOWN \
(FUNCTION_ARG_PADDING (TYPE_MODE (type), type) == downward)
/* Output assembler code to FILE to increment profiler label # LABELNO
for profiling a function entry. */
#define FUNCTION_PROFILER(FILE, LABELNO) \
output_function_profiler ((FILE), (LABELNO));
/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
the stack pointer does not matter. No definition is equivalent to
always zero.
On the RS/6000, this is nonzero because we can restore the stack from
its backpointer, which we maintain. */
#define EXIT_IGNORE_STACK 1
/* Define this macro as a C expression that is nonzero for registers
that are used by the epilogue or the return' pattern. The stack
and frame pointer registers are already be assumed to be used as
needed. */
#define EPILOGUE_USES(REGNO) \
((reload_completed && (REGNO) == LR_REGNO) \
|| (TARGET_ALTIVEC && (REGNO) == VRSAVE_REGNO) \
|| (crtl->calls_eh_return \
&& TARGET_AIX \
&& (REGNO) == 2))
/* Length in units of the trampoline for entering a nested function. */
#define TRAMPOLINE_SIZE rs6000_trampoline_size ()
/* Definitions for __builtin_return_address and __builtin_frame_address.
__builtin_return_address (0) should give link register (65), enable
this. */
/* This should be uncommented, so that the link register is used, but
currently this would result in unmatched insns and spilling fixed
registers so we'll leave it for another day. When these problems are
taken care of one additional fetch will be necessary in RETURN_ADDR_RTX.
(mrs) */
/* #define RETURN_ADDR_IN_PREVIOUS_FRAME */
/* Number of bytes into the frame return addresses can be found. See
rs6000_stack_info in rs6000.c for more information on how the different
abi's store the return address. */
#define RETURN_ADDRESS_OFFSET \
((DEFAULT_ABI == ABI_AIX \
|| DEFAULT_ABI == ABI_DARWIN) ? (TARGET_32BIT ? 8 : 16) : \
(DEFAULT_ABI == ABI_V4) ? 4 : \
(internal_error ("RETURN_ADDRESS_OFFSET not supported"), 0))
/* The current return address is in link register (65). The return address
of anything farther back is accessed normally at an offset of 8 from the
frame pointer. */
#define RETURN_ADDR_RTX(COUNT, FRAME) \
(rs6000_return_addr (COUNT, FRAME))
/* Definitions for register eliminations.
We have two registers that can be eliminated on the RS/6000. First, the
frame pointer register can often be eliminated in favor of the stack
pointer register. Secondly, the argument pointer register can always be
eliminated; it is replaced with either the stack or frame pointer.
In addition, we use the elimination mechanism to see if r30 is needed
Initially we assume that it isn't. If it is, we spill it. This is done
by making it an eliminable register. We replace it with itself so that
if it isn't needed, then existing uses won't be modified. */
/* This is an array of structures. Each structure initializes one pair
of eliminable registers. The "from" register number is given first,
followed by "to". Eliminations of the same "from" register are listed
in order of preference. */
#define ELIMINABLE_REGS \
{{ HARD_FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
{ FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
{ ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
{ RS6000_PIC_OFFSET_TABLE_REGNUM, RS6000_PIC_OFFSET_TABLE_REGNUM } }
/* Define the offset between two registers, one to be eliminated, and the other
its replacement, at the start of a routine. */
#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
((OFFSET) = rs6000_initial_elimination_offset(FROM, TO))
/* Addressing modes, and classification of registers for them. */
#define HAVE_PRE_DECREMENT 1
#define HAVE_PRE_INCREMENT 1
#define HAVE_PRE_MODIFY_DISP 1
#define HAVE_PRE_MODIFY_REG 1
/* Macros to check register numbers against specific register classes. */
/* These assume that REGNO is a hard or pseudo reg number.
They give nonzero only if REGNO is a hard reg of the suitable class
or a pseudo reg currently allocated to a suitable hard reg.
Since they use reg_renumber, they are safe only once reg_renumber
has been allocated, which happens in reginfo.c during register
allocation. */
#define REGNO_OK_FOR_INDEX_P(REGNO) \
((REGNO) < FIRST_PSEUDO_REGISTER \
? (REGNO) <= 31 || (REGNO) == 67 \
|| (REGNO) == FRAME_POINTER_REGNUM \
: (reg_renumber[REGNO] >= 0 \
&& (reg_renumber[REGNO] <= 31 || reg_renumber[REGNO] == 67 \
|| reg_renumber[REGNO] == FRAME_POINTER_REGNUM)))
#define REGNO_OK_FOR_BASE_P(REGNO) \
((REGNO) < FIRST_PSEUDO_REGISTER \
? ((REGNO) > 0 && (REGNO) <= 31) || (REGNO) == 67 \
|| (REGNO) == FRAME_POINTER_REGNUM \
: (reg_renumber[REGNO] > 0 \
&& (reg_renumber[REGNO] <= 31 || reg_renumber[REGNO] == 67 \
|| reg_renumber[REGNO] == FRAME_POINTER_REGNUM)))
/* Nonzero if X is a hard reg that can be used as an index
or if it is a pseudo reg in the non-strict case. */
#define INT_REG_OK_FOR_INDEX_P(X, STRICT) \
((!(STRICT) && REGNO (X) >= FIRST_PSEUDO_REGISTER) \
|| REGNO_OK_FOR_INDEX_P (REGNO (X)))
/* Nonzero if X is a hard reg that can be used as a base reg
or if it is a pseudo reg in the non-strict case. */
#define INT_REG_OK_FOR_BASE_P(X, STRICT) \
((!(STRICT) && REGNO (X) >= FIRST_PSEUDO_REGISTER) \
|| REGNO_OK_FOR_BASE_P (REGNO (X)))
/* Maximum number of registers that can appear in a valid memory address. */
#define MAX_REGS_PER_ADDRESS 2
/* Recognize any constant value that is a valid address. */
#define CONSTANT_ADDRESS_P(X) \
(GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \
|| GET_CODE (X) == CONST_INT || GET_CODE (X) == CONST \
|| GET_CODE (X) == HIGH)
#define EASY_VECTOR_15(n) ((n) >= -16 && (n) <= 15)
#define EASY_VECTOR_15_ADD_SELF(n) (!EASY_VECTOR_15((n)) \
&& EASY_VECTOR_15((n) >> 1) \
&& ((n) & 1) == 0)
#define EASY_VECTOR_MSB(n,mode) \
(((unsigned HOST_WIDE_INT)n) == \
((((unsigned HOST_WIDE_INT)GET_MODE_MASK (mode)) + 1) >> 1))
/* Try a machine-dependent way of reloading an illegitimate address
operand. If we find one, push the reload and jump to WIN. This
macro is used in only one place: `find_reloads_address' in reload.c.
Implemented on rs6000 by rs6000_legitimize_reload_address.
Note that (X) is evaluated twice; this is safe in current usage. */
#define LEGITIMIZE_RELOAD_ADDRESS(X,MODE,OPNUM,TYPE,IND_LEVELS,WIN) \
do { \
int win; \
(X) = rs6000_legitimize_reload_address_ptr ((X), (MODE), (OPNUM), \
(int)(TYPE), (IND_LEVELS), &win); \
if ( win ) \
goto WIN; \
} while (0)
#define FIND_BASE_TERM rs6000_find_base_term
/* The register number of the register used to address a table of
static data addresses in memory. In some cases this register is
defined by a processor's "application binary interface" (ABI).
When this macro is defined, RTL is generated for this register
once, as with the stack pointer and frame pointer registers. If
this macro is not defined, it is up to the machine-dependent files
to allocate such a register (if necessary). */
#define RS6000_PIC_OFFSET_TABLE_REGNUM 30
#define PIC_OFFSET_TABLE_REGNUM (flag_pic ? RS6000_PIC_OFFSET_TABLE_REGNUM : INVALID_REGNUM)
#define TOC_REGISTER (TARGET_MINIMAL_TOC ? RS6000_PIC_OFFSET_TABLE_REGNUM : 2)
/* Define this macro if the register defined by
`PIC_OFFSET_TABLE_REGNUM' is clobbered by calls. Do not define
this macro if `PIC_OFFSET_TABLE_REGNUM' is not defined. */
/* #define PIC_OFFSET_TABLE_REG_CALL_CLOBBERED */
/* A C expression that is nonzero if X is a legitimate immediate
operand on the target machine when generating position independent
code. You can assume that X satisfies `CONSTANT_P', so you need
not check this. You can also assume FLAG_PIC is true, so you need
not check it either. You need not define this macro if all
constants (including `SYMBOL_REF') can be immediate operands when
generating position independent code. */
/* #define LEGITIMATE_PIC_OPERAND_P (X) */
/* Define this if some processing needs to be done immediately before
emitting code for an insn. */
#define FINAL_PRESCAN_INSN(INSN,OPERANDS,NOPERANDS) \
rs6000_final_prescan_insn (INSN, OPERANDS, NOPERANDS)
/* Specify the machine mode that this machine uses
for the index in the tablejump instruction. */
#define CASE_VECTOR_MODE SImode
/* Define as C expression which evaluates to nonzero if the tablejump
instruction expects the table to contain offsets from the address of the
table.
Do not define this if the table should contain absolute addresses. */
#define CASE_VECTOR_PC_RELATIVE 1
/* Define this as 1 if `char' should by default be signed; else as 0. */
#define DEFAULT_SIGNED_CHAR 0
/* An integer expression for the size in bits of the largest integer machine
mode that should actually be used. */
/* Allow pairs of registers to be used, which is the intent of the default. */
#define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (TARGET_POWERPC64 ? TImode : DImode)
/* Max number of bytes we can move from memory to memory
in one reasonably fast instruction. */
#define MOVE_MAX (! TARGET_POWERPC64 ? 4 : 8)
#define MAX_MOVE_MAX 8
/* Nonzero if access to memory by bytes is no faster than for words.
Also nonzero if doing byte operations (specifically shifts) in registers
is undesirable. */
#define SLOW_BYTE_ACCESS 1
/* Define if operations between registers always perform the operation
on the full register even if a narrower mode is specified. */
#define WORD_REGISTER_OPERATIONS
/* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
will either zero-extend or sign-extend. The value of this macro should
be the code that says which one of the two operations is implicitly
done, UNKNOWN if none. */
#define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
/* Define if loading short immediate values into registers sign extends. */
#define SHORT_IMMEDIATES_SIGN_EXTEND
/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
is done just by pretending it is already truncated. */
#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
/* The cntlzw and cntlzd instructions return 32 and 64 for input of zero. */
#define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
((VALUE) = ((MODE) == SImode ? 32 : 64), 1)
/* The CTZ patterns return -1 for input of zero. */
#define CTZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) ((VALUE) = -1, 1)
/* Specify the machine mode that pointers have.
After generation of rtl, the compiler makes no further distinction
between pointers and any other objects of this machine mode. */
extern unsigned rs6000_pmode;
#define Pmode ((enum machine_mode)rs6000_pmode)
/* Supply definition of STACK_SIZE_MODE for allocate_dynamic_stack_space. */
#define STACK_SIZE_MODE (TARGET_32BIT ? SImode : DImode)
/* Mode of a function address in a call instruction (for indexing purposes).
Doesn't matter on RS/6000. */
#define FUNCTION_MODE SImode
/* Define this if addresses of constant functions
shouldn't be put through pseudo regs where they can be cse'd.
Desirable on machines where ordinary constants are expensive
but a CALL with constant address is cheap. */
#define NO_FUNCTION_CSE
/* Define this to be nonzero if shift instructions ignore all but the low-order
few bits.
The sle and sre instructions which allow SHIFT_COUNT_TRUNCATED
have been dropped from the PowerPC architecture. */
#define SHIFT_COUNT_TRUNCATED 0
/* Adjust the length of an INSN. LENGTH is the currently-computed length and
should be adjusted to reflect any required changes. This macro is used when
there is some systematic length adjustment required that would be difficult
to express in the length attribute. */
/* #define ADJUST_INSN_LENGTH(X,LENGTH) */
/* Given a comparison code (EQ, NE, etc.) and the first operand of a
COMPARE, return the mode to be used for the comparison. For
floating-point, CCFPmode should be used. CCUNSmode should be used
for unsigned comparisons. CCEQmode should be used when we are
doing an inequality comparison on the result of a
comparison. CCmode should be used in all other cases. */
#define SELECT_CC_MODE(OP,X,Y) \
(SCALAR_FLOAT_MODE_P (GET_MODE (X)) ? CCFPmode \
: (OP) == GTU || (OP) == LTU || (OP) == GEU || (OP) == LEU ? CCUNSmode \
: (((OP) == EQ || (OP) == NE) && COMPARISON_P (X) \
? CCEQmode : CCmode))
/* Can the condition code MODE be safely reversed? This is safe in
all cases on this port, because at present it doesn't use the
trapping FP comparisons (fcmpo). */
#define REVERSIBLE_CC_MODE(MODE) 1
/* Given a condition code and a mode, return the inverse condition. */
#define REVERSE_CONDITION(CODE, MODE) rs6000_reverse_condition (MODE, CODE)
/* Control the assembler format that we output. */
/* A C string constant describing how to begin a comment in the target
assembler language. The compiler assumes that the comment will end at
the end of the line. */
#define ASM_COMMENT_START " #"
/* Flag to say the TOC is initialized */
extern int toc_initialized;
/* Macro to output a special constant pool entry. Go to WIN if we output
it. Otherwise, it is written the usual way.
On the RS/6000, toc entries are handled this way. */
#define ASM_OUTPUT_SPECIAL_POOL_ENTRY(FILE, X, MODE, ALIGN, LABELNO, WIN) \
{ if (ASM_OUTPUT_SPECIAL_POOL_ENTRY_P (X, MODE)) \
{ \
output_toc (FILE, X, LABELNO, MODE); \
goto WIN; \
} \
}
#ifdef HAVE_GAS_WEAK
#define RS6000_WEAK 1
#else
#define RS6000_WEAK 0
#endif
#if RS6000_WEAK
/* Used in lieu of ASM_WEAKEN_LABEL. */
#define ASM_WEAKEN_DECL(FILE, DECL, NAME, VAL) \
do \
{ \
fputs ("\t.weak\t", (FILE)); \
RS6000_OUTPUT_BASENAME ((FILE), (NAME)); \
if ((DECL) && TREE_CODE (DECL) == FUNCTION_DECL \
&& DEFAULT_ABI == ABI_AIX && DOT_SYMBOLS) \
{ \
if (TARGET_XCOFF) \
fputs ("[DS]", (FILE)); \
fputs ("\n\t.weak\t.", (FILE)); \
RS6000_OUTPUT_BASENAME ((FILE), (NAME)); \
} \
fputc ('\n', (FILE)); \
if (VAL) \
{ \
ASM_OUTPUT_DEF ((FILE), (NAME), (VAL)); \
if ((DECL) && TREE_CODE (DECL) == FUNCTION_DECL \
&& DEFAULT_ABI == ABI_AIX && DOT_SYMBOLS) \
{ \
fputs ("\t.set\t.", (FILE)); \
RS6000_OUTPUT_BASENAME ((FILE), (NAME)); \
fputs (",.", (FILE)); \
RS6000_OUTPUT_BASENAME ((FILE), (VAL)); \
fputc ('\n', (FILE)); \
} \
} \
} \
while (0)
#endif
#if HAVE_GAS_WEAKREF
#define ASM_OUTPUT_WEAKREF(FILE, DECL, NAME, VALUE) \
do \
{ \
fputs ("\t.weakref\t", (FILE)); \
RS6000_OUTPUT_BASENAME ((FILE), (NAME)); \
fputs (", ", (FILE)); \
RS6000_OUTPUT_BASENAME ((FILE), (VALUE)); \
if ((DECL) && TREE_CODE (DECL) == FUNCTION_DECL \
&& DEFAULT_ABI == ABI_AIX && DOT_SYMBOLS) \
{ \
fputs ("\n\t.weakref\t.", (FILE)); \
RS6000_OUTPUT_BASENAME ((FILE), (NAME)); \
fputs (", .", (FILE)); \
RS6000_OUTPUT_BASENAME ((FILE), (VALUE)); \
} \
fputc ('\n', (FILE)); \
} while (0)
#endif
/* This implements the `alias' attribute. */
#undef ASM_OUTPUT_DEF_FROM_DECLS
#define ASM_OUTPUT_DEF_FROM_DECLS(FILE, DECL, TARGET) \
do \
{ \
const char *alias = XSTR (XEXP (DECL_RTL (DECL), 0), 0); \
const char *name = IDENTIFIER_POINTER (TARGET); \
if (TREE_CODE (DECL) == FUNCTION_DECL \
&& DEFAULT_ABI == ABI_AIX && DOT_SYMBOLS) \
{ \
if (TREE_PUBLIC (DECL)) \
{ \
if (!RS6000_WEAK || !DECL_WEAK (DECL)) \
{ \
fputs ("\t.globl\t.", FILE); \
RS6000_OUTPUT_BASENAME (FILE, alias); \
putc ('\n', FILE); \
} \
} \
else if (TARGET_XCOFF) \
{ \
fputs ("\t.lglobl\t.", FILE); \
RS6000_OUTPUT_BASENAME (FILE, alias); \
putc ('\n', FILE); \
} \
fputs ("\t.set\t.", FILE); \
RS6000_OUTPUT_BASENAME (FILE, alias); \
fputs (",.", FILE); \
RS6000_OUTPUT_BASENAME (FILE, name); \
fputc ('\n', FILE); \
} \
ASM_OUTPUT_DEF (FILE, alias, name); \
} \
while (0)
#define TARGET_ASM_FILE_START rs6000_file_start
/* Output to assembler file text saying following lines
may contain character constants, extra white space, comments, etc. */
#define ASM_APP_ON ""
/* Output to assembler file text saying following lines
no longer contain unusual constructs. */
#define ASM_APP_OFF ""
/* How to refer to registers in assembler output.
This sequence is indexed by compiler's hard-register-number (see above). */
extern char rs6000_reg_names[][8]; /* register names (0 vs. %r0). */
#define REGISTER_NAMES \
{ \
&rs6000_reg_names[ 0][0], /* r0 */ \
&rs6000_reg_names[ 1][0], /* r1 */ \
&rs6000_reg_names[ 2][0], /* r2 */ \
&rs6000_reg_names[ 3][0], /* r3 */ \
&rs6000_reg_names[ 4][0], /* r4 */ \
&rs6000_reg_names[ 5][0], /* r5 */ \
&rs6000_reg_names[ 6][0], /* r6 */ \
&rs6000_reg_names[ 7][0], /* r7 */ \
&rs6000_reg_names[ 8][0], /* r8 */ \
&rs6000_reg_names[ 9][0], /* r9 */ \
&rs6000_reg_names[10][0], /* r10 */ \
&rs6000_reg_names[11][0], /* r11 */ \
&rs6000_reg_names[12][0], /* r12 */ \
&rs6000_reg_names[13][0], /* r13 */ \
&rs6000_reg_names[14][0], /* r14 */ \
&rs6000_reg_names[15][0], /* r15 */ \
&rs6000_reg_names[16][0], /* r16 */ \
&rs6000_reg_names[17][0], /* r17 */ \
&rs6000_reg_names[18][0], /* r18 */ \
&rs6000_reg_names[19][0], /* r19 */ \
&rs6000_reg_names[20][0], /* r20 */ \
&rs6000_reg_names[21][0], /* r21 */ \
&rs6000_reg_names[22][0], /* r22 */ \
&rs6000_reg_names[23][0], /* r23 */ \
&rs6000_reg_names[24][0], /* r24 */ \
&rs6000_reg_names[25][0], /* r25 */ \
&rs6000_reg_names[26][0], /* r26 */ \
&rs6000_reg_names[27][0], /* r27 */ \
&rs6000_reg_names[28][0], /* r28 */ \
&rs6000_reg_names[29][0], /* r29 */ \
&rs6000_reg_names[30][0], /* r30 */ \
&rs6000_reg_names[31][0], /* r31 */ \
\
&rs6000_reg_names[32][0], /* fr0 */ \
&rs6000_reg_names[33][0], /* fr1 */ \
&rs6000_reg_names[34][0], /* fr2 */ \
&rs6000_reg_names[35][0], /* fr3 */ \
&rs6000_reg_names[36][0], /* fr4 */ \
&rs6000_reg_names[37][0], /* fr5 */ \
&rs6000_reg_names[38][0], /* fr6 */ \
&rs6000_reg_names[39][0], /* fr7 */ \
&rs6000_reg_names[40][0], /* fr8 */ \
&rs6000_reg_names[41][0], /* fr9 */ \
&rs6000_reg_names[42][0], /* fr10 */ \
&rs6000_reg_names[43][0], /* fr11 */ \
&rs6000_reg_names[44][0], /* fr12 */ \
&rs6000_reg_names[45][0], /* fr13 */ \
&rs6000_reg_names[46][0], /* fr14 */ \
&rs6000_reg_names[47][0], /* fr15 */ \
&rs6000_reg_names[48][0], /* fr16 */ \
&rs6000_reg_names[49][0], /* fr17 */ \
&rs6000_reg_names[50][0], /* fr18 */ \
&rs6000_reg_names[51][0], /* fr19 */ \
&rs6000_reg_names[52][0], /* fr20 */ \
&rs6000_reg_names[53][0], /* fr21 */ \
&rs6000_reg_names[54][0], /* fr22 */ \
&rs6000_reg_names[55][0], /* fr23 */ \
&rs6000_reg_names[56][0], /* fr24 */ \
&rs6000_reg_names[57][0], /* fr25 */ \
&rs6000_reg_names[58][0], /* fr26 */ \
&rs6000_reg_names[59][0], /* fr27 */ \
&rs6000_reg_names[60][0], /* fr28 */ \
&rs6000_reg_names[61][0], /* fr29 */ \
&rs6000_reg_names[62][0], /* fr30 */ \
&rs6000_reg_names[63][0], /* fr31 */ \
\
&rs6000_reg_names[64][0], /* was mq */ \
&rs6000_reg_names[65][0], /* lr */ \
&rs6000_reg_names[66][0], /* ctr */ \
&rs6000_reg_names[67][0], /* ap */ \
\
&rs6000_reg_names[68][0], /* cr0 */ \
&rs6000_reg_names[69][0], /* cr1 */ \
&rs6000_reg_names[70][0], /* cr2 */ \
&rs6000_reg_names[71][0], /* cr3 */ \
&rs6000_reg_names[72][0], /* cr4 */ \
&rs6000_reg_names[73][0], /* cr5 */ \
&rs6000_reg_names[74][0], /* cr6 */ \
&rs6000_reg_names[75][0], /* cr7 */ \
\
&rs6000_reg_names[76][0], /* ca */ \
\
&rs6000_reg_names[77][0], /* v0 */ \
&rs6000_reg_names[78][0], /* v1 */ \
&rs6000_reg_names[79][0], /* v2 */ \
&rs6000_reg_names[80][0], /* v3 */ \
&rs6000_reg_names[81][0], /* v4 */ \
&rs6000_reg_names[82][0], /* v5 */ \
&rs6000_reg_names[83][0], /* v6 */ \
&rs6000_reg_names[84][0], /* v7 */ \
&rs6000_reg_names[85][0], /* v8 */ \
&rs6000_reg_names[86][0], /* v9 */ \
&rs6000_reg_names[87][0], /* v10 */ \
&rs6000_reg_names[88][0], /* v11 */ \
&rs6000_reg_names[89][0], /* v12 */ \
&rs6000_reg_names[90][0], /* v13 */ \
&rs6000_reg_names[91][0], /* v14 */ \
&rs6000_reg_names[92][0], /* v15 */ \
&rs6000_reg_names[93][0], /* v16 */ \
&rs6000_reg_names[94][0], /* v17 */ \
&rs6000_reg_names[95][0], /* v18 */ \
&rs6000_reg_names[96][0], /* v19 */ \
&rs6000_reg_names[97][0], /* v20 */ \
&rs6000_reg_names[98][0], /* v21 */ \
&rs6000_reg_names[99][0], /* v22 */ \
&rs6000_reg_names[100][0], /* v23 */ \
&rs6000_reg_names[101][0], /* v24 */ \
&rs6000_reg_names[102][0], /* v25 */ \
&rs6000_reg_names[103][0], /* v26 */ \
&rs6000_reg_names[104][0], /* v27 */ \
&rs6000_reg_names[105][0], /* v28 */ \
&rs6000_reg_names[106][0], /* v29 */ \
&rs6000_reg_names[107][0], /* v30 */ \
&rs6000_reg_names[108][0], /* v31 */ \
&rs6000_reg_names[109][0], /* vrsave */ \
&rs6000_reg_names[110][0], /* vscr */ \
&rs6000_reg_names[111][0], /* spe_acc */ \
&rs6000_reg_names[112][0], /* spefscr */ \
&rs6000_reg_names[113][0], /* sfp */ \
&rs6000_reg_names[114][0], /* tfhar */ \
&rs6000_reg_names[115][0], /* tfiar */ \
&rs6000_reg_names[116][0], /* texasr */ \
}
/* Table of additional register names to use in user input. */
#define ADDITIONAL_REGISTER_NAMES \
{{"r0", 0}, {"r1", 1}, {"r2", 2}, {"r3", 3}, \
{"r4", 4}, {"r5", 5}, {"r6", 6}, {"r7", 7}, \
{"r8", 8}, {"r9", 9}, {"r10", 10}, {"r11", 11}, \
{"r12", 12}, {"r13", 13}, {"r14", 14}, {"r15", 15}, \
{"r16", 16}, {"r17", 17}, {"r18", 18}, {"r19", 19}, \
{"r20", 20}, {"r21", 21}, {"r22", 22}, {"r23", 23}, \
{"r24", 24}, {"r25", 25}, {"r26", 26}, {"r27", 27}, \
{"r28", 28}, {"r29", 29}, {"r30", 30}, {"r31", 31}, \
{"fr0", 32}, {"fr1", 33}, {"fr2", 34}, {"fr3", 35}, \
{"fr4", 36}, {"fr5", 37}, {"fr6", 38}, {"fr7", 39}, \
{"fr8", 40}, {"fr9", 41}, {"fr10", 42}, {"fr11", 43}, \
{"fr12", 44}, {"fr13", 45}, {"fr14", 46}, {"fr15", 47}, \
{"fr16", 48}, {"fr17", 49}, {"fr18", 50}, {"fr19", 51}, \
{"fr20", 52}, {"fr21", 53}, {"fr22", 54}, {"fr23", 55}, \
{"fr24", 56}, {"fr25", 57}, {"fr26", 58}, {"fr27", 59}, \
{"fr28", 60}, {"fr29", 61}, {"fr30", 62}, {"fr31", 63}, \
{"v0", 77}, {"v1", 78}, {"v2", 79}, {"v3", 80}, \
{"v4", 81}, {"v5", 82}, {"v6", 83}, {"v7", 84}, \
{"v8", 85}, {"v9", 86}, {"v10", 87}, {"v11", 88}, \
{"v12", 89}, {"v13", 90}, {"v14", 91}, {"v15", 92}, \
{"v16", 93}, {"v17", 94}, {"v18", 95}, {"v19", 96}, \
{"v20", 97}, {"v21", 98}, {"v22", 99}, {"v23", 100}, \
{"v24", 101},{"v25", 102},{"v26", 103},{"v27", 104}, \
{"v28", 105},{"v29", 106},{"v30", 107},{"v31", 108}, \
{"vrsave", 109}, {"vscr", 110}, \
{"spe_acc", 111}, {"spefscr", 112}, \
/* no additional names for: lr, ctr, ap */ \
{"cr0", 68}, {"cr1", 69}, {"cr2", 70}, {"cr3", 71}, \
{"cr4", 72}, {"cr5", 73}, {"cr6", 74}, {"cr7", 75}, \
{"cc", 68}, {"sp", 1}, {"toc", 2}, \
/* CA is only part of XER, but we do not model the other parts (yet). */ \
{"xer", 76}, \
/* VSX registers overlaid on top of FR, Altivec registers */ \
{"vs0", 32}, {"vs1", 33}, {"vs2", 34}, {"vs3", 35}, \
{"vs4", 36}, {"vs5", 37}, {"vs6", 38}, {"vs7", 39}, \
{"vs8", 40}, {"vs9", 41}, {"vs10", 42}, {"vs11", 43}, \
{"vs12", 44}, {"vs13", 45}, {"vs14", 46}, {"vs15", 47}, \
{"vs16", 48}, {"vs17", 49}, {"vs18", 50}, {"vs19", 51}, \
{"vs20", 52}, {"vs21", 53}, {"vs22", 54}, {"vs23", 55}, \
{"vs24", 56}, {"vs25", 57}, {"vs26", 58}, {"vs27", 59}, \
{"vs28", 60}, {"vs29", 61}, {"vs30", 62}, {"vs31", 63}, \
{"vs32", 77}, {"vs33", 78}, {"vs34", 79}, {"vs35", 80}, \
{"vs36", 81}, {"vs37", 82}, {"vs38", 83}, {"vs39", 84}, \
{"vs40", 85}, {"vs41", 86}, {"vs42", 87}, {"vs43", 88}, \
{"vs44", 89}, {"vs45", 90}, {"vs46", 91}, {"vs47", 92}, \
{"vs48", 93}, {"vs49", 94}, {"vs50", 95}, {"vs51", 96}, \
{"vs52", 97}, {"vs53", 98}, {"vs54", 99}, {"vs55", 100}, \
{"vs56", 101},{"vs57", 102},{"vs58", 103},{"vs59", 104}, \
{"vs60", 105},{"vs61", 106},{"vs62", 107},{"vs63", 108}, \
/* Transactional Memory Facility (HTM) Registers. */ \
{"tfhar", 114}, {"tfiar", 115}, {"texasr", 116} }
/* This is how to output an element of a case-vector that is relative. */
#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
do { char buf[100]; \
fputs ("\t.long ", FILE); \
ASM_GENERATE_INTERNAL_LABEL (buf, "L", VALUE); \
assemble_name (FILE, buf); \
putc ('-', FILE); \
ASM_GENERATE_INTERNAL_LABEL (buf, "L", REL); \
assemble_name (FILE, buf); \
putc ('\n', FILE); \
} while (0)
/* This is how to output an assembler line
that says to advance the location counter
to a multiple of 2**LOG bytes. */
#define ASM_OUTPUT_ALIGN(FILE,LOG) \
if ((LOG) != 0) \
fprintf (FILE, "\t.align %d\n", (LOG))
/* How to align the given loop. */
#define LOOP_ALIGN(LABEL) rs6000_loop_align(LABEL)
/* Alignment guaranteed by __builtin_malloc. */
/* FIXME: 128-bit alignment is guaranteed by glibc for TARGET_64BIT.
However, specifying the stronger guarantee currently leads to
a regression in SPEC CPU2006 437.leslie3d. The stronger
guarantee should be implemented here once that's fixed. */
#define MALLOC_ABI_ALIGNMENT (64)
/* Pick up the return address upon entry to a procedure. Used for
dwarf2 unwind information. This also enables the table driven
mechanism. */
#define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (Pmode, LR_REGNO)
#define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (LR_REGNO)
/* Describe how we implement __builtin_eh_return. */
#define EH_RETURN_DATA_REGNO(N) ((N) < 4 ? (N) + 3 : INVALID_REGNUM)
#define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, 10)
/* Print operand X (an rtx) in assembler syntax to file FILE.
CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
For `%' followed by punctuation, CODE is the punctuation and X is null. */
#define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
/* Define which CODE values are valid. */
#define PRINT_OPERAND_PUNCT_VALID_P(CODE) ((CODE) == '&')
/* Print a memory address as an operand to reference that memory location. */
#define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address (FILE, ADDR)
/* uncomment for disabling the corresponding default options */
/* #define MACHINE_no_sched_interblock */
/* #define MACHINE_no_sched_speculative */
/* #define MACHINE_no_sched_speculative_load */
/* General flags. */
extern int frame_pointer_needed;
/* Classification of the builtin functions as to which switches enable the
builtin, and what attributes it should have. We used to use the target
flags macros, but we've run out of bits, so we now map the options into new
settings used here. */
/* Builtin attributes. */
#define RS6000_BTC_SPECIAL 0x00000000 /* Special function. */
#define RS6000_BTC_UNARY 0x00000001 /* normal unary function. */
#define RS6000_BTC_BINARY 0x00000002 /* normal binary function. */
#define RS6000_BTC_TERNARY 0x00000003 /* normal ternary function. */
#define RS6000_BTC_PREDICATE 0x00000004 /* predicate function. */
#define RS6000_BTC_ABS 0x00000005 /* Altivec/VSX ABS function. */
#define RS6000_BTC_EVSEL 0x00000006 /* SPE EVSEL function. */
#define RS6000_BTC_DST 0x00000007 /* Altivec DST function. */
#define RS6000_BTC_TYPE_MASK 0x0000000f /* Mask to isolate types */
#define RS6000_BTC_MISC 0x00000000 /* No special attributes. */
#define RS6000_BTC_CONST 0x00000100 /* uses no global state. */
#define RS6000_BTC_PURE 0x00000200 /* reads global state/mem. */
#define RS6000_BTC_FP 0x00000400 /* depends on rounding mode. */
#define RS6000_BTC_ATTR_MASK 0x00000700 /* Mask of the attributes. */
/* Miscellaneous information. */
#define RS6000_BTC_SPR 0x01000000 /* function references SPRs. */
#define RS6000_BTC_VOID 0x02000000 /* function has no return value. */
#define RS6000_BTC_OVERLOADED 0x04000000 /* function is overloaded. */
#define RS6000_BTC_32BIT 0x08000000 /* function references SPRs. */
#define RS6000_BTC_64BIT 0x10000000 /* function references SPRs. */
#define RS6000_BTC_MISC_MASK 0x1f000000 /* Mask of the misc info. */
/* Convenience macros to document the instruction type. */
#define RS6000_BTC_MEM RS6000_BTC_MISC /* load/store touches mem. */
#define RS6000_BTC_SAT RS6000_BTC_MISC /* saturate sets VSCR. */
/* Builtin targets. For now, we reuse the masks for those options that are in
target flags, and pick two random bits for SPE and paired which aren't in
target_flags. */
#define RS6000_BTM_ALWAYS 0 /* Always enabled. */
#define RS6000_BTM_ALTIVEC MASK_ALTIVEC /* VMX/altivec vectors. */
#define RS6000_BTM_VSX MASK_VSX /* VSX (vector/scalar). */
#define RS6000_BTM_P8_VECTOR MASK_P8_VECTOR /* ISA 2.07 vector. */
#define RS6000_BTM_CRYPTO MASK_CRYPTO /* crypto funcs. */
#define RS6000_BTM_HTM MASK_HTM /* hardware TM funcs. */
#define RS6000_BTM_SPE MASK_STRING /* E500 */
#define RS6000_BTM_PAIRED MASK_MULHW /* 750CL paired insns. */
#define RS6000_BTM_FRE MASK_POPCNTB /* FRE instruction. */
#define RS6000_BTM_FRES MASK_PPC_GFXOPT /* FRES instruction. */
#define RS6000_BTM_FRSQRTE MASK_PPC_GFXOPT /* FRSQRTE instruction. */
#define RS6000_BTM_FRSQRTES MASK_POPCNTB /* FRSQRTES instruction. */
#define RS6000_BTM_POPCNTD MASK_POPCNTD /* Target supports ISA 2.06. */
#define RS6000_BTM_CELL MASK_FPRND /* Target is cell powerpc. */
#define RS6000_BTM_COMMON (RS6000_BTM_ALTIVEC \
| RS6000_BTM_VSX \
| RS6000_BTM_P8_VECTOR \
| RS6000_BTM_CRYPTO \
| RS6000_BTM_FRE \
| RS6000_BTM_FRES \
| RS6000_BTM_FRSQRTE \
| RS6000_BTM_FRSQRTES \
| RS6000_BTM_HTM \
| RS6000_BTM_POPCNTD \
| RS6000_BTM_CELL)
/* Define builtin enum index. */
#undef RS6000_BUILTIN_1
#undef RS6000_BUILTIN_2
#undef RS6000_BUILTIN_3
#undef RS6000_BUILTIN_A
#undef RS6000_BUILTIN_D
#undef RS6000_BUILTIN_E
#undef RS6000_BUILTIN_H
#undef RS6000_BUILTIN_P
#undef RS6000_BUILTIN_Q
#undef RS6000_BUILTIN_S
#undef RS6000_BUILTIN_X
#define RS6000_BUILTIN_1(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
#define RS6000_BUILTIN_2(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
#define RS6000_BUILTIN_3(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
#define RS6000_BUILTIN_A(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
#define RS6000_BUILTIN_D(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
#define RS6000_BUILTIN_E(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
#define RS6000_BUILTIN_H(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
#define RS6000_BUILTIN_P(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
#define RS6000_BUILTIN_Q(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
#define RS6000_BUILTIN_S(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
#define RS6000_BUILTIN_X(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
enum rs6000_builtins
{
#include "rs6000-builtin.def"
RS6000_BUILTIN_COUNT
};
#undef RS6000_BUILTIN_1
#undef RS6000_BUILTIN_2
#undef RS6000_BUILTIN_3
#undef RS6000_BUILTIN_A
#undef RS6000_BUILTIN_D
#undef RS6000_BUILTIN_E
#undef RS6000_BUILTIN_H
#undef RS6000_BUILTIN_P
#undef RS6000_BUILTIN_Q
#undef RS6000_BUILTIN_S
#undef RS6000_BUILTIN_X
enum rs6000_builtin_type_index
{
RS6000_BTI_NOT_OPAQUE,
RS6000_BTI_opaque_V2SI,
RS6000_BTI_opaque_V2SF,
RS6000_BTI_opaque_p_V2SI,
RS6000_BTI_opaque_V4SI,
RS6000_BTI_V16QI,
RS6000_BTI_V2SI,
RS6000_BTI_V2SF,
RS6000_BTI_V2DI,
RS6000_BTI_V2DF,
RS6000_BTI_V4HI,
RS6000_BTI_V4SI,
RS6000_BTI_V4SF,
RS6000_BTI_V8HI,
RS6000_BTI_unsigned_V16QI,
RS6000_BTI_unsigned_V8HI,
RS6000_BTI_unsigned_V4SI,
RS6000_BTI_unsigned_V2DI,
RS6000_BTI_bool_char, /* __bool char */
RS6000_BTI_bool_short, /* __bool short */
RS6000_BTI_bool_int, /* __bool int */
RS6000_BTI_bool_long, /* __bool long */
RS6000_BTI_pixel, /* __pixel */
RS6000_BTI_bool_V16QI, /* __vector __bool char */
RS6000_BTI_bool_V8HI, /* __vector __bool short */
RS6000_BTI_bool_V4SI, /* __vector __bool int */
RS6000_BTI_bool_V2DI, /* __vector __bool long */
RS6000_BTI_pixel_V8HI, /* __vector __pixel */
RS6000_BTI_long, /* long_integer_type_node */
RS6000_BTI_unsigned_long, /* long_unsigned_type_node */
RS6000_BTI_long_long, /* long_long_integer_type_node */
RS6000_BTI_unsigned_long_long, /* long_long_unsigned_type_node */
RS6000_BTI_INTQI, /* intQI_type_node */
RS6000_BTI_UINTQI, /* unsigned_intQI_type_node */
RS6000_BTI_INTHI, /* intHI_type_node */
RS6000_BTI_UINTHI, /* unsigned_intHI_type_node */
RS6000_BTI_INTSI, /* intSI_type_node */
RS6000_BTI_UINTSI, /* unsigned_intSI_type_node */
RS6000_BTI_INTDI, /* intDI_type_node */
RS6000_BTI_UINTDI, /* unsigned_intDI_type_node */
RS6000_BTI_float, /* float_type_node */
RS6000_BTI_double, /* double_type_node */
RS6000_BTI_void, /* void_type_node */
RS6000_BTI_MAX
};
#define opaque_V2SI_type_node (rs6000_builtin_types[RS6000_BTI_opaque_V2SI])
#define opaque_V2SF_type_node (rs6000_builtin_types[RS6000_BTI_opaque_V2SF])
#define opaque_p_V2SI_type_node (rs6000_builtin_types[RS6000_BTI_opaque_p_V2SI])
#define opaque_V4SI_type_node (rs6000_builtin_types[RS6000_BTI_opaque_V4SI])
#define V16QI_type_node (rs6000_builtin_types[RS6000_BTI_V16QI])
#define V2DI_type_node (rs6000_builtin_types[RS6000_BTI_V2DI])
#define V2DF_type_node (rs6000_builtin_types[RS6000_BTI_V2DF])
#define V2SI_type_node (rs6000_builtin_types[RS6000_BTI_V2SI])
#define V2SF_type_node (rs6000_builtin_types[RS6000_BTI_V2SF])
#define V4HI_type_node (rs6000_builtin_types[RS6000_BTI_V4HI])
#define V4SI_type_node (rs6000_builtin_types[RS6000_BTI_V4SI])
#define V4SF_type_node (rs6000_builtin_types[RS6000_BTI_V4SF])
#define V8HI_type_node (rs6000_builtin_types[RS6000_BTI_V8HI])
#define unsigned_V16QI_type_node (rs6000_builtin_types[RS6000_BTI_unsigned_V16QI])
#define unsigned_V8HI_type_node (rs6000_builtin_types[RS6000_BTI_unsigned_V8HI])
#define unsigned_V4SI_type_node (rs6000_builtin_types[RS6000_BTI_unsigned_V4SI])
#define unsigned_V2DI_type_node (rs6000_builtin_types[RS6000_BTI_unsigned_V2DI])
#define bool_char_type_node (rs6000_builtin_types[RS6000_BTI_bool_char])
#define bool_short_type_node (rs6000_builtin_types[RS6000_BTI_bool_short])
#define bool_int_type_node (rs6000_builtin_types[RS6000_BTI_bool_int])
#define bool_long_type_node (rs6000_builtin_types[RS6000_BTI_bool_long])
#define pixel_type_node (rs6000_builtin_types[RS6000_BTI_pixel])
#define bool_V16QI_type_node (rs6000_builtin_types[RS6000_BTI_bool_V16QI])
#define bool_V8HI_type_node (rs6000_builtin_types[RS6000_BTI_bool_V8HI])
#define bool_V4SI_type_node (rs6000_builtin_types[RS6000_BTI_bool_V4SI])
#define bool_V2DI_type_node (rs6000_builtin_types[RS6000_BTI_bool_V2DI])
#define pixel_V8HI_type_node (rs6000_builtin_types[RS6000_BTI_pixel_V8HI])
#define long_long_integer_type_internal_node (rs6000_builtin_types[RS6000_BTI_long_long])
#define long_long_unsigned_type_internal_node (rs6000_builtin_types[RS6000_BTI_unsigned_long_long])
#define long_integer_type_internal_node (rs6000_builtin_types[RS6000_BTI_long])
#define long_unsigned_type_internal_node (rs6000_builtin_types[RS6000_BTI_unsigned_long])
#define intQI_type_internal_node (rs6000_builtin_types[RS6000_BTI_INTQI])
#define uintQI_type_internal_node (rs6000_builtin_types[RS6000_BTI_UINTQI])
#define intHI_type_internal_node (rs6000_builtin_types[RS6000_BTI_INTHI])
#define uintHI_type_internal_node (rs6000_builtin_types[RS6000_BTI_UINTHI])
#define intSI_type_internal_node (rs6000_builtin_types[RS6000_BTI_INTSI])
#define uintSI_type_internal_node (rs6000_builtin_types[RS6000_BTI_UINTSI])
#define intDI_type_internal_node (rs6000_builtin_types[RS6000_BTI_INTDI])
#define uintDI_type_internal_node (rs6000_builtin_types[RS6000_BTI_UINTDI])
#define float_type_internal_node (rs6000_builtin_types[RS6000_BTI_float])
#define double_type_internal_node (rs6000_builtin_types[RS6000_BTI_double])
#define void_type_internal_node (rs6000_builtin_types[RS6000_BTI_void])
extern GTY(()) tree rs6000_builtin_types[RS6000_BTI_MAX];
extern GTY(()) tree rs6000_builtin_decls[RS6000_BUILTIN_COUNT];
|