1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
|
/* Subroutines used for code generation on IBM S/390 and zSeries
Copyright (C) 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
Contributed by Hartmut Penner (hpenner@de.ibm.com) and
Ulrich Weigand (uweigand@de.ibm.com).
This file is part of GNU CC.
GNU CC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
GNU CC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GNU CC; see the file COPYING. If not, write to
the Free Software Foundation, 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA. */
#include "config.h"
#include "system.h"
#include "rtl.h"
#include "tree.h"
#include "tm_p.h"
#include "regs.h"
#include "hard-reg-set.h"
#include "real.h"
#include "insn-config.h"
#include "conditions.h"
#include "output.h"
#include "insn-attr.h"
#include "flags.h"
#include "except.h"
#include "function.h"
#include "recog.h"
#include "expr.h"
#include "toplev.h"
#include "basic-block.h"
#include "integrate.h"
#include "ggc.h"
#include "target.h"
#include "target-def.h"
#include "debug.h"
static bool s390_assemble_integer PARAMS ((rtx, unsigned int, int));
static int s390_adjust_cost PARAMS ((rtx, rtx, rtx, int));
static int s390_adjust_priority PARAMS ((rtx, int));
#undef TARGET_ASM_ALIGNED_HI_OP
#define TARGET_ASM_ALIGNED_HI_OP "\t.word\t"
#undef TARGET_ASM_ALIGNED_DI_OP
#define TARGET_ASM_ALIGNED_DI_OP "\t.quad\t"
#undef TARGET_ASM_INTEGER
#define TARGET_ASM_INTEGER s390_assemble_integer
#undef TARGET_ASM_FUNCTION_PROLOGUE
#define TARGET_ASM_FUNCTION_PROLOGUE s390_function_prologue
#undef TARGET_ASM_FUNCTION_EPILOGUE
#define TARGET_ASM_FUNCTION_EPILOGUE s390_function_epilogue
#undef TARGET_ASM_OPEN_PAREN
#define TARGET_ASM_OPEN_PAREN ""
#undef TARGET_ASM_CLOSE_PAREN
#define TARGET_ASM_CLOSE_PAREN ""
#undef TARGET_SCHED_ADJUST_COST
#define TARGET_SCHED_ADJUST_COST s390_adjust_cost
#undef TARGET_SCHED_ADJUST_PRIORITY
#define TARGET_SCHED_ADJUST_PRIORITY s390_adjust_priority
struct gcc_target targetm = TARGET_INITIALIZER;
extern int reload_completed;
/* The alias set for prologue/epilogue register save/restore. */
static int s390_sr_alias_set = 0;
/* Function count for creating unique internal labels in a compile unit. */
int s390_function_count = 0;
/* Save information from a "cmpxx" operation until the branch or scc is
emitted. */
rtx s390_compare_op0, s390_compare_op1;
/* Structure used to hold the components of a S/390 memory
address. A legitimate address on S/390 is of the general
form
base + index + displacement
where any of the components is optional.
base and index are registers of the class ADDR_REGS,
displacement is an unsigned 12-bit immediate constant. */
struct s390_address
{
rtx base;
rtx indx;
rtx disp;
int pointer;
};
/* Structure containing information for prologue and epilogue. */
struct s390_frame
{
int frame_pointer_p;
int return_reg_saved_p;
int save_fprs_p;
int first_save_gpr;
int first_restore_gpr;
int last_save_gpr;
int arg_frame_offset;
HOST_WIDE_INT frame_size;
};
static int s390_match_ccmode_set PARAMS ((rtx, enum machine_mode));
static int s390_branch_condition_mask PARAMS ((rtx));
static const char *s390_branch_condition_mnemonic PARAMS ((rtx, int));
static int check_mode PARAMS ((rtx, enum machine_mode *));
static int general_s_operand PARAMS ((rtx, enum machine_mode, int));
static int s390_decompose_address PARAMS ((rtx, struct s390_address *, int));
static int reg_used_in_mem_p PARAMS ((int, rtx));
static int addr_generation_dependency_p PARAMS ((rtx, rtx));
static void s390_split_branches PARAMS ((void));
static void s390_chunkify_pool PARAMS ((void));
static int save_fprs_p PARAMS ((void));
static int find_unused_clobbered_reg PARAMS ((void));
static void s390_frame_info PARAMS ((struct s390_frame *));
static rtx save_fpr PARAMS ((rtx, int, int));
static rtx restore_fpr PARAMS ((rtx, int, int));
static int s390_function_arg_size PARAMS ((enum machine_mode, tree));
/* Return true if SET either doesn't set the CC register, or else
the source and destination have matching CC modes and that
CC mode is at least as constrained as REQ_MODE. */
static int
s390_match_ccmode_set (set, req_mode)
rtx set;
enum machine_mode req_mode;
{
enum machine_mode set_mode;
if (GET_CODE (set) != SET)
abort ();
if (GET_CODE (SET_DEST (set)) != REG || !CC_REGNO_P (REGNO (SET_DEST (set))))
return 1;
set_mode = GET_MODE (SET_DEST (set));
switch (set_mode)
{
case CCSmode:
if (req_mode != CCSmode)
return 0;
break;
case CCUmode:
if (req_mode != CCUmode)
return 0;
break;
case CCLmode:
if (req_mode != CCLmode)
return 0;
break;
case CCZmode:
if (req_mode != CCSmode && req_mode != CCUmode && req_mode != CCTmode)
return 0;
break;
default:
abort ();
}
return (GET_MODE (SET_SRC (set)) == set_mode);
}
/* Return true if every SET in INSN that sets the CC register
has source and destination with matching CC modes and that
CC mode is at least as constrained as REQ_MODE. */
int
s390_match_ccmode (insn, req_mode)
rtx insn;
enum machine_mode req_mode;
{
int i;
if (GET_CODE (PATTERN (insn)) == SET)
return s390_match_ccmode_set (PATTERN (insn), req_mode);
if (GET_CODE (PATTERN (insn)) == PARALLEL)
for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
{
rtx set = XVECEXP (PATTERN (insn), 0, i);
if (GET_CODE (set) == SET)
if (!s390_match_ccmode_set (set, req_mode))
return 0;
}
return 1;
}
/* Given a comparison code OP (EQ, NE, etc.) and the operands
OP0 and OP1 of a COMPARE, return the mode to be used for the
comparison. */
enum machine_mode
s390_select_ccmode (code, op0, op1)
enum rtx_code code;
rtx op0;
rtx op1;
{
switch (code)
{
case EQ:
case NE:
if (GET_CODE (op0) == PLUS || GET_CODE (op0) == MINUS
|| GET_CODE (op1) == NEG)
return CCLmode;
return CCZmode;
case LE:
case LT:
case GE:
case GT:
case UNORDERED:
case ORDERED:
case UNEQ:
case UNLE:
case UNLT:
case UNGE:
case UNGT:
case LTGT:
return CCSmode;
case LEU:
case LTU:
case GEU:
case GTU:
return CCUmode;
default:
abort ();
}
}
/* Return branch condition mask to implement a branch
specified by CODE. */
static int
s390_branch_condition_mask (code)
rtx code;
{
const int CC0 = 1 << 3;
const int CC1 = 1 << 2;
const int CC2 = 1 << 1;
const int CC3 = 1 << 0;
if (GET_CODE (XEXP (code, 0)) != REG
|| REGNO (XEXP (code, 0)) != CC_REGNUM
|| XEXP (code, 1) != const0_rtx)
abort ();
switch (GET_MODE (XEXP (code, 0)))
{
case CCZmode:
switch (GET_CODE (code))
{
case EQ: return CC0;
case NE: return CC1 | CC2 | CC3;
default:
abort ();
}
break;
case CCLmode:
switch (GET_CODE (code))
{
case EQ: return CC0 | CC2;
case NE: return CC1 | CC3;
case UNORDERED: return CC2 | CC3; /* carry */
case ORDERED: return CC0 | CC1; /* no carry */
default:
abort ();
}
break;
case CCUmode:
switch (GET_CODE (code))
{
case EQ: return CC0;
case NE: return CC1 | CC2 | CC3;
case LTU: return CC1;
case GTU: return CC2;
case LEU: return CC0 | CC1;
case GEU: return CC0 | CC2;
default:
abort ();
}
break;
case CCSmode:
switch (GET_CODE (code))
{
case EQ: return CC0;
case NE: return CC1 | CC2 | CC3;
case LT: return CC1;
case GT: return CC2;
case LE: return CC0 | CC1;
case GE: return CC0 | CC2;
case UNORDERED: return CC3;
case ORDERED: return CC0 | CC1 | CC2;
case UNEQ: return CC0 | CC3;
case UNLT: return CC1 | CC3;
case UNGT: return CC2 | CC3;
case UNLE: return CC0 | CC1 | CC3;
case UNGE: return CC0 | CC2 | CC3;
case LTGT: return CC1 | CC2;
default:
abort ();
}
default:
abort ();
}
}
/* If INV is false, return assembler mnemonic string to implement
a branch specified by CODE. If INV is true, return mnemonic
for the corresponding inverted branch. */
static const char *
s390_branch_condition_mnemonic (code, inv)
rtx code;
int inv;
{
static const char *const mnemonic[16] =
{
NULL, "o", "h", "nle",
"l", "nhe", "lh", "ne",
"e", "nlh", "he", "nl",
"le", "nh", "no", NULL
};
int mask = s390_branch_condition_mask (code);
if (inv)
mask ^= 15;
if (mask < 1 || mask > 14)
abort ();
return mnemonic[mask];
}
/* If OP is an integer constant of mode MODE with exactly one
HImode subpart unequal to DEF, return the number of that
subpart. As a special case, all HImode subparts of OP are
equal to DEF, return zero. Otherwise, return -1. */
int
s390_single_hi (op, mode, def)
rtx op;
enum machine_mode mode;
int def;
{
if (GET_CODE (op) == CONST_INT)
{
unsigned HOST_WIDE_INT value;
int n_parts = GET_MODE_SIZE (mode) / 2;
int i, part = -1;
for (i = 0; i < n_parts; i++)
{
if (i == 0)
value = (unsigned HOST_WIDE_INT) INTVAL (op);
else
value >>= 16;
if ((value & 0xffff) != (unsigned)(def & 0xffff))
{
if (part != -1)
return -1;
else
part = i;
}
}
return part == -1 ? 0 : (n_parts - 1 - part);
}
else if (GET_CODE (op) == CONST_DOUBLE
&& GET_MODE (op) == VOIDmode)
{
unsigned HOST_WIDE_INT value;
int n_parts = GET_MODE_SIZE (mode) / 2;
int i, part = -1;
for (i = 0; i < n_parts; i++)
{
if (i == 0)
value = (unsigned HOST_WIDE_INT) CONST_DOUBLE_LOW (op);
else if (i == HOST_BITS_PER_WIDE_INT / 16)
value = (unsigned HOST_WIDE_INT) CONST_DOUBLE_HIGH (op);
else
value >>= 16;
if ((value & 0xffff) != (unsigned)(def & 0xffff))
{
if (part != -1)
return -1;
else
part = i;
}
}
return part == -1 ? 0 : (n_parts - 1 - part);
}
return -1;
}
/* Extract the HImode part number PART from integer
constant OP of mode MODE. */
int
s390_extract_hi (op, mode, part)
rtx op;
enum machine_mode mode;
int part;
{
int n_parts = GET_MODE_SIZE (mode) / 2;
if (part < 0 || part >= n_parts)
abort();
else
part = n_parts - 1 - part;
if (GET_CODE (op) == CONST_INT)
{
unsigned HOST_WIDE_INT value = (unsigned HOST_WIDE_INT) INTVAL (op);
return ((value >> (16 * part)) & 0xffff);
}
else if (GET_CODE (op) == CONST_DOUBLE
&& GET_MODE (op) == VOIDmode)
{
unsigned HOST_WIDE_INT value;
if (part < HOST_BITS_PER_WIDE_INT / 16)
value = (unsigned HOST_WIDE_INT) CONST_DOUBLE_LOW (op);
else
value = (unsigned HOST_WIDE_INT) CONST_DOUBLE_HIGH (op),
part -= HOST_BITS_PER_WIDE_INT / 16;
return ((value >> (16 * part)) & 0xffff);
}
abort ();
}
/* If OP is an integer constant of mode MODE with exactly one
QImode subpart unequal to DEF, return the number of that
subpart. As a special case, all QImode subparts of OP are
equal to DEF, return zero. Otherwise, return -1. */
int
s390_single_qi (op, mode, def)
rtx op;
enum machine_mode mode;
int def;
{
if (GET_CODE (op) == CONST_INT)
{
unsigned HOST_WIDE_INT value;
int n_parts = GET_MODE_SIZE (mode);
int i, part = -1;
for (i = 0; i < n_parts; i++)
{
if (i == 0)
value = (unsigned HOST_WIDE_INT) INTVAL (op);
else
value >>= 8;
if ((value & 0xff) != (unsigned)(def & 0xff))
{
if (part != -1)
return -1;
else
part = i;
}
}
return part == -1 ? 0 : (n_parts - 1 - part);
}
else if (GET_CODE (op) == CONST_DOUBLE
&& GET_MODE (op) == VOIDmode)
{
unsigned HOST_WIDE_INT value;
int n_parts = GET_MODE_SIZE (mode);
int i, part = -1;
for (i = 0; i < n_parts; i++)
{
if (i == 0)
value = (unsigned HOST_WIDE_INT) CONST_DOUBLE_LOW (op);
else if (i == HOST_BITS_PER_WIDE_INT / 8)
value = (unsigned HOST_WIDE_INT) CONST_DOUBLE_HIGH (op);
else
value >>= 8;
if ((value & 0xff) != (unsigned)(def & 0xff))
{
if (part != -1)
return -1;
else
part = i;
}
}
return part == -1 ? 0 : (n_parts - 1 - part);
}
return -1;
}
/* Extract the QImode part number PART from integer
constant OP of mode MODE. */
int
s390_extract_qi (op, mode, part)
rtx op;
enum machine_mode mode;
int part;
{
int n_parts = GET_MODE_SIZE (mode);
if (part < 0 || part >= n_parts)
abort();
else
part = n_parts - 1 - part;
if (GET_CODE (op) == CONST_INT)
{
unsigned HOST_WIDE_INT value = (unsigned HOST_WIDE_INT) INTVAL (op);
return ((value >> (8 * part)) & 0xff);
}
else if (GET_CODE (op) == CONST_DOUBLE
&& GET_MODE (op) == VOIDmode)
{
unsigned HOST_WIDE_INT value;
if (part < HOST_BITS_PER_WIDE_INT / 8)
value = (unsigned HOST_WIDE_INT) CONST_DOUBLE_LOW (op);
else
value = (unsigned HOST_WIDE_INT) CONST_DOUBLE_HIGH (op),
part -= HOST_BITS_PER_WIDE_INT / 8;
return ((value >> (8 * part)) & 0xff);
}
abort ();
}
/* Change optimizations to be performed, depending on the
optimization level.
LEVEL is the optimization level specified; 2 if `-O2' is
specified, 1 if `-O' is specified, and 0 if neither is specified.
SIZE is non-zero if `-Os' is specified and zero otherwise. */
void
optimization_options (level, size)
int level ATTRIBUTE_UNUSED;
int size ATTRIBUTE_UNUSED;
{
#ifdef HAVE_decrement_and_branch_on_count
/* When optimizing, enable use of BRCT instruction. */
if (level >= 1)
flag_branch_on_count_reg = 1;
#endif
}
void
override_options ()
{
/* Acquire a unique set number for our register saves and restores. */
s390_sr_alias_set = new_alias_set ();
}
/* Map for smallest class containing reg regno. */
const enum reg_class regclass_map[FIRST_PSEUDO_REGISTER] =
{ GENERAL_REGS, ADDR_REGS, ADDR_REGS, ADDR_REGS,
ADDR_REGS, ADDR_REGS, ADDR_REGS, ADDR_REGS,
ADDR_REGS, ADDR_REGS, ADDR_REGS, ADDR_REGS,
ADDR_REGS, ADDR_REGS, ADDR_REGS, ADDR_REGS,
FP_REGS, FP_REGS, FP_REGS, FP_REGS,
FP_REGS, FP_REGS, FP_REGS, FP_REGS,
FP_REGS, FP_REGS, FP_REGS, FP_REGS,
FP_REGS, FP_REGS, FP_REGS, FP_REGS,
ADDR_REGS, NO_REGS, ADDR_REGS
};
/* Return true if OP a (const_int 0) operand.
OP is the current operation.
MODE is the current operation mode. */
int
const0_operand (op, mode)
register rtx op;
enum machine_mode mode;
{
return op == CONST0_RTX (mode);
}
/* Return true if the mode of operand OP matches MODE.
If MODE is set to VOIDmode, set it to the mode of OP. */
static int
check_mode (op, mode)
register rtx op;
enum machine_mode *mode;
{
if (*mode == VOIDmode)
*mode = GET_MODE (op);
else
{
if (GET_MODE (op) != VOIDmode && GET_MODE (op) != *mode)
return 0;
}
return 1;
}
/* Return true if OP a valid operand for the LARL instruction.
OP is the current operation.
MODE is the current operation mode. */
int
larl_operand (op, mode)
register rtx op;
enum machine_mode mode;
{
if (! check_mode (op, &mode))
return 0;
/* Allow labels and local symbols. */
if (GET_CODE (op) == LABEL_REF)
return 1;
if (GET_CODE (op) == SYMBOL_REF
&& (!flag_pic || SYMBOL_REF_FLAG (op)
|| CONSTANT_POOL_ADDRESS_P (op)))
return 1;
/* Everything else must have a CONST, so strip it. */
if (GET_CODE (op) != CONST)
return 0;
op = XEXP (op, 0);
/* Allow adding *even* constants. */
if (GET_CODE (op) == PLUS)
{
if (GET_CODE (XEXP (op, 1)) != CONST_INT
|| (INTVAL (XEXP (op, 1)) & 1) != 0)
return 0;
op = XEXP (op, 0);
}
/* Labels and local symbols allowed here as well. */
if (GET_CODE (op) == LABEL_REF)
return 1;
if (GET_CODE (op) == SYMBOL_REF
&& (!flag_pic || SYMBOL_REF_FLAG (op)
|| CONSTANT_POOL_ADDRESS_P (op)))
return 1;
/* Now we must have a @GOTENT offset or @PLT stub. */
if (GET_CODE (op) == UNSPEC
&& XINT (op, 1) == 111)
return 1;
if (GET_CODE (op) == UNSPEC
&& XINT (op, 1) == 113)
return 1;
return 0;
}
/* Return true if OP is a valid FP-Register.
OP is the current operation.
MODE is the current operation mode. */
int
fp_operand (op, mode)
register rtx op;
enum machine_mode mode;
{
register enum rtx_code code = GET_CODE (op);
if (! check_mode (op, &mode))
return 0;
if (code == REG && REGNO_OK_FOR_FP_P (REGNO (op)))
return 1;
else
return 0;
}
/* Helper routine to implement s_operand and s_imm_operand.
OP is the current operation.
MODE is the current operation mode.
ALLOW_IMMEDIATE specifies whether immediate operands should
be accepted or not. */
static int
general_s_operand (op, mode, allow_immediate)
register rtx op;
enum machine_mode mode;
int allow_immediate;
{
struct s390_address addr;
/* Call general_operand first, so that we don't have to
check for many special cases. */
if (!general_operand (op, mode))
return 0;
/* Just like memory_operand, allow (subreg (mem ...))
after reload. */
if (reload_completed
&& GET_CODE (op) == SUBREG
&& GET_CODE (SUBREG_REG (op)) == MEM)
op = SUBREG_REG (op);
switch (GET_CODE (op))
{
/* Constants that we are sure will be forced to the
literal pool in reload are OK as s-operand. Note
that we cannot call s390_preferred_reload_class here
because it might not be known yet at this point
whether the current function is a leaf or not. */
case CONST_INT:
case CONST_DOUBLE:
if (!allow_immediate || reload_completed)
break;
if (!legitimate_reload_constant_p (op))
return 1;
if (!TARGET_64BIT)
return 1;
break;
/* Memory operands are OK unless they already use an
index register. */
case MEM:
if (GET_CODE (XEXP (op, 0)) == ADDRESSOF)
return 1;
if (s390_decompose_address (XEXP (op, 0), &addr, FALSE)
&& !addr.indx)
return 1;
break;
default:
break;
}
return 0;
}
/* Return true if OP is a valid S-type operand.
OP is the current operation.
MODE is the current operation mode. */
int
s_operand (op, mode)
register rtx op;
enum machine_mode mode;
{
return general_s_operand (op, mode, 0);
}
/* Return true if OP is a valid S-type operand or an immediate
operand that can be addressed as S-type operand by forcing
it into the literal pool.
OP is the current operation.
MODE is the current operation mode. */
int
s_imm_operand (op, mode)
register rtx op;
enum machine_mode mode;
{
return general_s_operand (op, mode, 1);
}
/* Return true if OP is a valid operand for the BRAS instruction.
OP is the current operation.
MODE is the current operation mode. */
int
bras_sym_operand (op, mode)
register rtx op;
enum machine_mode mode ATTRIBUTE_UNUSED;
{
register enum rtx_code code = GET_CODE (op);
/* Allow SYMBOL_REFs. */
if (code == SYMBOL_REF)
return 1;
/* Allow @PLT stubs. */
if (code == CONST
&& GET_CODE (XEXP (op, 0)) == UNSPEC
&& XINT (XEXP (op, 0), 1) == 113)
return 1;
return 0;
}
/* Return true if OP is a load multiple operation. It is known to be a
PARALLEL and the first section will be tested.
OP is the current operation.
MODE is the current operation mode. */
int
load_multiple_operation (op, mode)
rtx op;
enum machine_mode mode ATTRIBUTE_UNUSED;
{
int count = XVECLEN (op, 0);
unsigned int dest_regno;
rtx src_addr;
int i, off;
/* Perform a quick check so we don't blow up below. */
if (count <= 1
|| GET_CODE (XVECEXP (op, 0, 0)) != SET
|| GET_CODE (SET_DEST (XVECEXP (op, 0, 0))) != REG
|| GET_CODE (SET_SRC (XVECEXP (op, 0, 0))) != MEM)
return 0;
dest_regno = REGNO (SET_DEST (XVECEXP (op, 0, 0)));
src_addr = XEXP (SET_SRC (XVECEXP (op, 0, 0)), 0);
/* Check, is base, or base + displacement. */
if (GET_CODE (src_addr) == REG)
off = 0;
else if (GET_CODE (src_addr) == PLUS
&& GET_CODE (XEXP (src_addr, 0)) == REG
&& GET_CODE (XEXP (src_addr, 1)) == CONST_INT)
{
off = INTVAL (XEXP (src_addr, 1));
src_addr = XEXP (src_addr, 0);
}
else
return 0;
if (src_addr == frame_pointer_rtx || src_addr == arg_pointer_rtx)
return 0;
for (i = 1; i < count; i++)
{
rtx elt = XVECEXP (op, 0, i);
if (GET_CODE (elt) != SET
|| GET_CODE (SET_DEST (elt)) != REG
|| GET_MODE (SET_DEST (elt)) != Pmode
|| REGNO (SET_DEST (elt)) != dest_regno + i
|| GET_CODE (SET_SRC (elt)) != MEM
|| GET_MODE (SET_SRC (elt)) != Pmode
|| GET_CODE (XEXP (SET_SRC (elt), 0)) != PLUS
|| ! rtx_equal_p (XEXP (XEXP (SET_SRC (elt), 0), 0), src_addr)
|| GET_CODE (XEXP (XEXP (SET_SRC (elt), 0), 1)) != CONST_INT
|| INTVAL (XEXP (XEXP (SET_SRC (elt), 0), 1))
!= off + i * UNITS_PER_WORD)
return 0;
}
return 1;
}
/* Return true if OP is a store multiple operation. It is known to be a
PARALLEL and the first section will be tested.
OP is the current operation.
MODE is the current operation mode. */
int
store_multiple_operation (op, mode)
rtx op;
enum machine_mode mode ATTRIBUTE_UNUSED;
{
int count = XVECLEN (op, 0);
unsigned int src_regno;
rtx dest_addr;
int i, off;
/* Perform a quick check so we don't blow up below. */
if (count <= 1
|| GET_CODE (XVECEXP (op, 0, 0)) != SET
|| GET_CODE (SET_DEST (XVECEXP (op, 0, 0))) != MEM
|| GET_CODE (SET_SRC (XVECEXP (op, 0, 0))) != REG)
return 0;
src_regno = REGNO (SET_SRC (XVECEXP (op, 0, 0)));
dest_addr = XEXP (SET_DEST (XVECEXP (op, 0, 0)), 0);
/* Check, is base, or base + displacement. */
if (GET_CODE (dest_addr) == REG)
off = 0;
else if (GET_CODE (dest_addr) == PLUS
&& GET_CODE (XEXP (dest_addr, 0)) == REG
&& GET_CODE (XEXP (dest_addr, 1)) == CONST_INT)
{
off = INTVAL (XEXP (dest_addr, 1));
dest_addr = XEXP (dest_addr, 0);
}
else
return 0;
if (dest_addr == frame_pointer_rtx || dest_addr == arg_pointer_rtx)
return 0;
for (i = 1; i < count; i++)
{
rtx elt = XVECEXP (op, 0, i);
if (GET_CODE (elt) != SET
|| GET_CODE (SET_SRC (elt)) != REG
|| GET_MODE (SET_SRC (elt)) != Pmode
|| REGNO (SET_SRC (elt)) != src_regno + i
|| GET_CODE (SET_DEST (elt)) != MEM
|| GET_MODE (SET_DEST (elt)) != Pmode
|| GET_CODE (XEXP (SET_DEST (elt), 0)) != PLUS
|| ! rtx_equal_p (XEXP (XEXP (SET_DEST (elt), 0), 0), dest_addr)
|| GET_CODE (XEXP (XEXP (SET_DEST (elt), 0), 1)) != CONST_INT
|| INTVAL (XEXP (XEXP (SET_DEST (elt), 0), 1))
!= off + i * UNITS_PER_WORD)
return 0;
}
return 1;
}
/* Return true if OP contains a symbol reference */
int
symbolic_reference_mentioned_p (op)
rtx op;
{
register const char *fmt;
register int i;
if (GET_CODE (op) == SYMBOL_REF || GET_CODE (op) == LABEL_REF)
return 1;
fmt = GET_RTX_FORMAT (GET_CODE (op));
for (i = GET_RTX_LENGTH (GET_CODE (op)) - 1; i >= 0; i--)
{
if (fmt[i] == 'E')
{
register int j;
for (j = XVECLEN (op, i) - 1; j >= 0; j--)
if (symbolic_reference_mentioned_p (XVECEXP (op, i, j)))
return 1;
}
else if (fmt[i] == 'e' && symbolic_reference_mentioned_p (XEXP (op, i)))
return 1;
}
return 0;
}
/* Return true if OP is a legitimate general operand when
generating PIC code. It is given that flag_pic is on
and that OP satisfies CONSTANT_P or is a CONST_DOUBLE. */
int
legitimate_pic_operand_p (op)
register rtx op;
{
/* Accept all non-symbolic constants. */
if (!SYMBOLIC_CONST (op))
return 1;
/* Accept immediate LARL operands. */
if (TARGET_64BIT)
return larl_operand (op, VOIDmode);
/* Reject everything else; must be handled
via emit_pic_move. */
return 0;
}
/* Returns true if the constant value OP is a legitimate general operand.
It is given that OP satisfies CONSTANT_P or is a CONST_DOUBLE. */
int
legitimate_constant_p (op)
register rtx op;
{
/* Accept all non-symbolic constants. */
if (!SYMBOLIC_CONST (op))
return 1;
/* In the PIC case, symbolic constants must *not* be
forced into the literal pool. We accept them here,
so that they will be handled by emit_pic_move. */
if (flag_pic)
return 1;
/* Even in the non-PIC case, we can accept immediate
LARL operands here. */
if (TARGET_64BIT)
return larl_operand (op, VOIDmode);
/* All remaining non-PIC symbolic constants are
forced into the literal pool. */
return 0;
}
/* Returns true if the constant value OP is a legitimate general
operand during and after reload. The difference to
legitimate_constant_p is that this function will not accept
a constant that would need to be forced to the literal pool
before it can be used as operand. */
int
legitimate_reload_constant_p (op)
register rtx op;
{
/* Accept l(g)hi operands. */
if (GET_CODE (op) == CONST_INT
&& CONST_OK_FOR_LETTER_P (INTVAL (op), 'K'))
return 1;
/* Accept lliXX operands. */
if (TARGET_64BIT
&& s390_single_hi (op, DImode, 0) >= 0)
return 1;
/* Accept larl operands. */
if (TARGET_64BIT
&& larl_operand (op, VOIDmode))
return 1;
/* If reload is completed, and we do not already have a
literal pool, and OP must be forced to the literal
pool, then something must have gone wrong earlier.
We *cannot* force the constant any more, because the
prolog generation already decided we don't need to
set up the base register. */
if (reload_completed && !regs_ever_live[BASE_REGISTER])
abort ();
/* Everything else cannot be handled without reload. */
return 0;
}
/* Given an rtx OP being reloaded into a reg required to be in class CLASS,
return the class of reg to actually use. */
enum reg_class
s390_preferred_reload_class (op, class)
rtx op;
enum reg_class class;
{
/* This can happen if a floating point constant is being
reloaded into an integer register. Leave well alone. */
if (GET_MODE_CLASS (GET_MODE (op)) == MODE_FLOAT
&& class != FP_REGS)
return class;
switch (GET_CODE (op))
{
/* Constants we cannot reload must be forced into the
literal pool. For constants we *could* handle directly,
it might still be preferable to put them in the pool and
use a memory-to-memory instruction.
However, try to avoid needlessly allocating a literal
pool in a routine that wouldn't otherwise need any.
Heuristically, we assume that 64-bit leaf functions
typically don't need a literal pool, all others do. */
case CONST_DOUBLE:
case CONST_INT:
if (!legitimate_reload_constant_p (op))
return NO_REGS;
if (TARGET_64BIT && current_function_is_leaf)
return class;
return NO_REGS;
/* If a symbolic constant or a PLUS is reloaded,
it is most likely being used as an address, so
prefer ADDR_REGS. If 'class' is not a superset
of ADDR_REGS, e.g. FP_REGS, reject this reload. */
case PLUS:
case LABEL_REF:
case SYMBOL_REF:
case CONST:
if (reg_class_subset_p (ADDR_REGS, class))
return ADDR_REGS;
else
return NO_REGS;
default:
break;
}
return class;
}
/* Return the register class of a scratch register needed to
load IN into a register of class CLASS in MODE.
We need a temporary when loading a PLUS expression which
is not a legitimate operand of the LOAD ADDRESS instruction. */
enum reg_class
s390_secondary_input_reload_class (class, mode, in)
enum reg_class class ATTRIBUTE_UNUSED;
enum machine_mode mode;
rtx in;
{
if (s390_plus_operand (in, mode))
return ADDR_REGS;
return NO_REGS;
}
/* Return true if OP is a PLUS that is not a legitimate
operand for the LA instruction.
OP is the current operation.
MODE is the current operation mode. */
int
s390_plus_operand (op, mode)
register rtx op;
enum machine_mode mode;
{
if (!check_mode (op, &mode) || mode != Pmode)
return FALSE;
if (GET_CODE (op) != PLUS)
return FALSE;
if (legitimate_la_operand_p (op))
return FALSE;
return TRUE;
}
/* Generate code to load SRC, which is PLUS that is not a
legitimate operand for the LA instruction, into TARGET.
SCRATCH may be used as scratch register. */
void
s390_expand_plus_operand (target, src, scratch_in)
register rtx target;
register rtx src;
register rtx scratch_in;
{
rtx sum1, sum2, scratch;
/* ??? reload apparently does not ensure that the scratch register
and the target do not overlap. We absolutely require this to be
the case, however. Therefore the reload_in[sd]i patterns ask for
a double-sized scratch register, and if one part happens to be
equal to the target, we use the other one. */
scratch = gen_rtx_REG (Pmode, REGNO (scratch_in));
if (rtx_equal_p (scratch, target))
scratch = gen_rtx_REG (Pmode, REGNO (scratch_in) + 1);
/* src must be a PLUS; get its two operands. */
if (GET_CODE (src) != PLUS || GET_MODE (src) != Pmode)
abort ();
sum1 = XEXP (src, 0);
sum2 = XEXP (src, 1);
/* If one of the two operands is equal to the target,
make it the first one. */
if (rtx_equal_p (target, sum2))
{
sum2 = XEXP (src, 0);
sum1 = XEXP (src, 1);
}
/* If the first operand is not an address register,
we reload it into the target. */
if (true_regnum (sum1) < 1 || true_regnum (sum1) > 15)
{
emit_move_insn (target, sum1);
sum1 = target;
}
/* Likewise for the second operand. However, take
care not to clobber the target if we already used
it for the first operand. Use the scratch instead. */
if (true_regnum (sum2) < 1 || true_regnum (sum2) > 15)
{
if (!rtx_equal_p (target, sum1))
{
emit_move_insn (target, sum2);
sum2 = target;
}
else
{
emit_move_insn (scratch, sum2);
sum2 = scratch;
}
}
/* Emit the LOAD ADDRESS pattern. Note that reload of PLUS
is only ever performed on addresses, so we can mark the
sum as legitimate for LA in any case. */
src = gen_rtx_PLUS (Pmode, sum1, sum2);
src = legitimize_la_operand (src);
emit_insn (gen_rtx_SET (VOIDmode, target, src));
}
/* Decompose a RTL expression ADDR for a memory address into
its components, returned in OUT. The boolean STRICT
specifies whether strict register checking applies.
Returns 0 if ADDR is not a valid memory address, nonzero
otherwise. If OUT is NULL, don't return the components,
but check for validity only.
Note: Only addresses in canonical form are recognized.
LEGITIMIZE_ADDRESS should convert non-canonical forms to the
canonical form so that they will be recognized. */
static int
s390_decompose_address (addr, out, strict)
register rtx addr;
struct s390_address *out;
int strict;
{
rtx base = NULL_RTX;
rtx indx = NULL_RTX;
rtx disp = NULL_RTX;
int pointer = FALSE;
/* Decompose address into base + index + displacement. */
if (GET_CODE (addr) == REG || GET_CODE (addr) == UNSPEC)
base = addr;
else if (GET_CODE (addr) == PLUS)
{
rtx op0 = XEXP (addr, 0);
rtx op1 = XEXP (addr, 1);
enum rtx_code code0 = GET_CODE (op0);
enum rtx_code code1 = GET_CODE (op1);
if (code0 == REG || code0 == UNSPEC)
{
if (code1 == REG || code1 == UNSPEC)
{
indx = op0; /* index + base */
base = op1;
}
else
{
base = op0; /* base + displacement */
disp = op1;
}
}
else if (code0 == PLUS)
{
indx = XEXP (op0, 0); /* index + base + disp */
base = XEXP (op0, 1);
disp = op1;
}
else
{
return FALSE;
}
}
else
disp = addr; /* displacement */
/* Validate base register. */
if (base)
{
if (GET_CODE (base) == UNSPEC)
{
if (XVECLEN (base, 0) != 1 || XINT (base, 1) != 101)
return FALSE;
base = XVECEXP (base, 0, 0);
pointer = TRUE;
}
if (GET_CODE (base) != REG || GET_MODE (base) != Pmode)
return FALSE;
if ((strict && ! REG_OK_FOR_BASE_STRICT_P (base))
|| (! strict && ! REG_OK_FOR_BASE_NONSTRICT_P (base)))
return FALSE;
if (REGNO (base) == BASE_REGISTER
|| REGNO (base) == STACK_POINTER_REGNUM
|| REGNO (base) == FRAME_POINTER_REGNUM
|| ((reload_completed || reload_in_progress)
&& frame_pointer_needed
&& REGNO (base) == HARD_FRAME_POINTER_REGNUM)
|| (flag_pic
&& REGNO (base) == PIC_OFFSET_TABLE_REGNUM))
pointer = TRUE;
}
/* Validate index register. */
if (indx)
{
if (GET_CODE (indx) == UNSPEC)
{
if (XVECLEN (indx, 0) != 1 || XINT (indx, 1) != 101)
return FALSE;
indx = XVECEXP (indx, 0, 0);
pointer = TRUE;
}
if (GET_CODE (indx) != REG || GET_MODE (indx) != Pmode)
return FALSE;
if ((strict && ! REG_OK_FOR_BASE_STRICT_P (indx))
|| (! strict && ! REG_OK_FOR_BASE_NONSTRICT_P (indx)))
return FALSE;
if (REGNO (indx) == BASE_REGISTER
|| REGNO (indx) == STACK_POINTER_REGNUM
|| REGNO (indx) == FRAME_POINTER_REGNUM
|| ((reload_completed || reload_in_progress)
&& frame_pointer_needed
&& REGNO (indx) == HARD_FRAME_POINTER_REGNUM)
|| (flag_pic
&& REGNO (indx) == PIC_OFFSET_TABLE_REGNUM))
pointer = TRUE;
}
/* Validate displacement. */
if (disp)
{
/* Allow integer constant in range. */
if (GET_CODE (disp) == CONST_INT)
{
if (INTVAL (disp) < 0 || INTVAL (disp) >= 4096)
return FALSE;
}
/* In the small-PIC case, the linker converts @GOT12
offsets to possible displacements. */
else if (GET_CODE (disp) == CONST
&& GET_CODE (XEXP (disp, 0)) == UNSPEC
&& XINT (XEXP (disp, 0), 1) == 110)
{
if (flag_pic != 1)
return FALSE;
pointer = TRUE;
}
/* We can convert literal pool addresses to
displacements by basing them off the base register. */
else
{
/* In some cases, we can accept an additional
small constant offset. Split these off here. */
unsigned int offset = 0;
if (GET_CODE (disp) == CONST
&& GET_CODE (XEXP (disp, 0)) == PLUS
&& GET_CODE (XEXP (XEXP (disp, 0), 1)) == CONST_INT)
{
offset = INTVAL (XEXP (XEXP (disp, 0), 1));
disp = XEXP (XEXP (disp, 0), 0);
}
/* Now we must have a literal pool address. */
if (GET_CODE (disp) != SYMBOL_REF
|| !CONSTANT_POOL_ADDRESS_P (disp))
return FALSE;
/* In 64-bit PIC mode we cannot accept symbolic
constants in the constant pool. */
if (TARGET_64BIT && flag_pic
&& SYMBOLIC_CONST (get_pool_constant (disp)))
return FALSE;
/* If we have an offset, make sure it does not
exceed the size of the constant pool entry. */
if (offset && offset >= GET_MODE_SIZE (get_pool_mode (disp)))
return FALSE;
/* Either base or index must be free to
hold the base register. */
if (base && indx)
return FALSE;
/* Convert the address. */
if (base)
indx = gen_rtx_REG (Pmode, BASE_REGISTER);
else
base = gen_rtx_REG (Pmode, BASE_REGISTER);
disp = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, disp), 100);
disp = gen_rtx_CONST (Pmode, disp);
if (offset)
disp = plus_constant (disp, offset);
pointer = TRUE;
}
}
if (!base && !indx)
pointer = TRUE;
if (out)
{
out->base = base;
out->indx = indx;
out->disp = disp;
out->pointer = pointer;
}
return TRUE;
}
/* Return nonzero if ADDR is a valid memory address.
STRICT specifies whether strict register checking applies. */
int
legitimate_address_p (mode, addr, strict)
enum machine_mode mode ATTRIBUTE_UNUSED;
register rtx addr;
int strict;
{
return s390_decompose_address (addr, NULL, strict);
}
/* Return 1 if OP is a valid operand for the LA instruction.
In 31-bit, we need to prove that the result is used as an
address, as LA performs only a 31-bit addition. */
int
legitimate_la_operand_p (op)
register rtx op;
{
struct s390_address addr;
if (!s390_decompose_address (op, &addr, FALSE))
return FALSE;
if (TARGET_64BIT || addr.pointer)
return TRUE;
return FALSE;
}
/* Return a modified variant of OP that is guaranteed to
be accepted by legitimate_la_operand_p. */
rtx
legitimize_la_operand (op)
register rtx op;
{
struct s390_address addr;
if (!s390_decompose_address (op, &addr, FALSE))
abort ();
if (TARGET_64BIT || addr.pointer)
return op;
if (!addr.base)
abort ();
op = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, addr.base), 101);
if (addr.indx)
op = gen_rtx_PLUS (Pmode, op, addr.indx);
if (addr.disp)
op = gen_rtx_PLUS (Pmode, op, addr.disp);
return op;
}
/* Return a legitimate reference for ORIG (an address) using the
register REG. If REG is 0, a new pseudo is generated.
There are two types of references that must be handled:
1. Global data references must load the address from the GOT, via
the PIC reg. An insn is emitted to do this load, and the reg is
returned.
2. Static data references, constant pool addresses, and code labels
compute the address as an offset from the GOT, whose base is in
the PIC reg. Static data objects have SYMBOL_REF_FLAG set to
differentiate them from global data objects. The returned
address is the PIC reg + an unspec constant.
GO_IF_LEGITIMATE_ADDRESS rejects symbolic references unless the PIC
reg also appears in the address. */
rtx
legitimize_pic_address (orig, reg)
rtx orig;
rtx reg;
{
rtx addr = orig;
rtx new = orig;
rtx base;
if (GET_CODE (addr) == LABEL_REF
|| (GET_CODE (addr) == SYMBOL_REF
&& (SYMBOL_REF_FLAG (addr)
|| CONSTANT_POOL_ADDRESS_P (addr))))
{
/* This is a local symbol. */
if (TARGET_64BIT)
{
/* Access local symbols PC-relative via LARL.
This is the same as in the non-PIC case, so it is
handled automatically ... */
}
else
{
/* Access local symbols relative to the literal pool. */
rtx temp = reg? reg : gen_reg_rtx (Pmode);
addr = gen_rtx_UNSPEC (SImode, gen_rtvec (1, addr), 100);
addr = gen_rtx_CONST (SImode, addr);
addr = force_const_mem (SImode, addr);
emit_move_insn (temp, addr);
base = gen_rtx_REG (Pmode, BASE_REGISTER);
base = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, base), 101);
new = gen_rtx_PLUS (Pmode, base, temp);
if (reg != 0)
{
emit_move_insn (reg, new);
new = reg;
}
}
}
else if (GET_CODE (addr) == SYMBOL_REF)
{
if (reg == 0)
reg = gen_reg_rtx (Pmode);
if (flag_pic == 1)
{
/* Assume GOT offset < 4k. This is handled the same way
in both 31- and 64-bit code (@GOT12). */
current_function_uses_pic_offset_table = 1;
new = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, addr), 110);
new = gen_rtx_CONST (Pmode, new);
new = gen_rtx_PLUS (Pmode, pic_offset_table_rtx, new);
new = gen_rtx_MEM (Pmode, new);
RTX_UNCHANGING_P (new) = 1;
emit_move_insn (reg, new);
new = reg;
}
else if (TARGET_64BIT)
{
/* If the GOT offset might be >= 4k, we determine the position
of the GOT entry via a PC-relative LARL (@GOTENT). */
rtx temp = gen_reg_rtx (Pmode);
new = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, addr), 111);
new = gen_rtx_CONST (Pmode, new);
emit_move_insn (temp, new);
new = gen_rtx_MEM (Pmode, temp);
RTX_UNCHANGING_P (new) = 1;
emit_move_insn (reg, new);
new = reg;
}
else
{
/* If the GOT offset might be >= 4k, we have to load it
from the literal pool (@GOT). */
rtx temp = gen_reg_rtx (Pmode);
current_function_uses_pic_offset_table = 1;
addr = gen_rtx_UNSPEC (SImode, gen_rtvec (1, addr), 112);
addr = gen_rtx_CONST (SImode, addr);
addr = force_const_mem (SImode, addr);
emit_move_insn (temp, addr);
new = gen_rtx_PLUS (Pmode, pic_offset_table_rtx, temp);
new = gen_rtx_MEM (Pmode, new);
RTX_UNCHANGING_P (new) = 1;
emit_move_insn (reg, new);
new = reg;
}
}
else
{
if (GET_CODE (addr) == CONST)
{
addr = XEXP (addr, 0);
if (GET_CODE (addr) == UNSPEC)
{
if (XVECLEN (addr, 0) != 1)
abort ();
switch (XINT (addr, 1))
{
/* If someone moved an @GOT or lt-relative UNSPEC
out of the literal pool, force them back in. */
case 100:
case 112:
case 114:
new = force_const_mem (SImode, orig);
break;
/* @GOTENT is OK as is. */
case 111:
break;
/* @PLT is OK as is on 64-bit, must be converted to
lt-relative PLT on 31-bit. */
case 113:
if (!TARGET_64BIT)
{
rtx temp = reg? reg : gen_reg_rtx (Pmode);
addr = XVECEXP (addr, 0, 0);
addr = gen_rtx_UNSPEC (SImode, gen_rtvec (1, addr), 114);
addr = gen_rtx_CONST (SImode, addr);
addr = force_const_mem (SImode, addr);
emit_move_insn (temp, addr);
base = gen_rtx_REG (Pmode, BASE_REGISTER);
base = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, base), 101);
new = gen_rtx_PLUS (Pmode, base, temp);
if (reg != 0)
{
emit_move_insn (reg, new);
new = reg;
}
}
break;
/* Everything else cannot happen. */
default:
abort ();
}
}
else if (GET_CODE (addr) != PLUS)
abort ();
}
if (GET_CODE (addr) == PLUS)
{
rtx op0 = XEXP (addr, 0), op1 = XEXP (addr, 1);
/* Check first to see if this is a constant offset
from a local symbol reference. */
if ((GET_CODE (op0) == LABEL_REF
|| (GET_CODE (op0) == SYMBOL_REF
&& (SYMBOL_REF_FLAG (op0)
|| CONSTANT_POOL_ADDRESS_P (op0))))
&& GET_CODE (op1) == CONST_INT)
{
if (TARGET_64BIT)
{
if (INTVAL (op1) & 1)
{
/* LARL can't handle odd offsets, so emit a
pair of LARL and LA. */
rtx temp = reg? reg : gen_reg_rtx (Pmode);
if (INTVAL (op1) < 0 || INTVAL (op1) >= 4096)
{
int even = INTVAL (op1) - 1;
op0 = gen_rtx_PLUS (Pmode, op0, GEN_INT (even));
op1 = GEN_INT (1);
}
emit_move_insn (temp, op0);
new = gen_rtx_PLUS (Pmode, temp, op1);
if (reg != 0)
{
emit_move_insn (reg, new);
new = reg;
}
}
else
{
/* If the offset is even, we can just use LARL.
This will happen automatically. */
}
}
else
{
/* Access local symbols relative to the literal pool. */
rtx temp = reg? reg : gen_reg_rtx (Pmode);
addr = gen_rtx_UNSPEC (SImode, gen_rtvec (1, op0), 100);
addr = gen_rtx_PLUS (SImode, addr, op1);
addr = gen_rtx_CONST (SImode, addr);
addr = force_const_mem (SImode, addr);
emit_move_insn (temp, addr);
base = gen_rtx_REG (Pmode, BASE_REGISTER);
base = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, base), 101);
new = gen_rtx_PLUS (Pmode, base, temp);
if (reg != 0)
{
emit_move_insn (reg, new);
new = reg;
}
}
}
/* Now, check whether it is an LT-relative symbol plus offset
that was pulled out of the literal pool. Force it back in. */
else if (GET_CODE (op0) == UNSPEC
&& GET_CODE (op1) == CONST_INT)
{
if (XVECLEN (op0, 0) != 1)
abort ();
if (XINT (op0, 1) != 100)
abort ();
new = force_const_mem (SImode, orig);
}
/* Otherwise, compute the sum. */
else
{
base = legitimize_pic_address (XEXP (addr, 0), reg);
new = legitimize_pic_address (XEXP (addr, 1),
base == reg ? NULL_RTX : reg);
if (GET_CODE (new) == CONST_INT)
new = plus_constant (base, INTVAL (new));
else
{
if (GET_CODE (new) == PLUS && CONSTANT_P (XEXP (new, 1)))
{
base = gen_rtx_PLUS (Pmode, base, XEXP (new, 0));
new = XEXP (new, 1);
}
new = gen_rtx_PLUS (Pmode, base, new);
}
if (GET_CODE (new) == CONST)
new = XEXP (new, 0);
new = force_operand (new, 0);
}
}
}
return new;
}
/* Emit insns to move operands[1] into operands[0]. */
void
emit_pic_move (operands, mode)
rtx *operands;
enum machine_mode mode ATTRIBUTE_UNUSED;
{
rtx temp = no_new_pseudos ? operands[0] : gen_reg_rtx (Pmode);
if (GET_CODE (operands[0]) == MEM && SYMBOLIC_CONST (operands[1]))
operands[1] = force_reg (Pmode, operands[1]);
else
operands[1] = legitimize_pic_address (operands[1], temp);
}
/* Try machine-dependent ways of modifying an illegitimate address X
to be legitimate. If we find one, return the new, valid address.
OLDX is the address as it was before break_out_memory_refs was called.
In some cases it is useful to look at this to decide what needs to be done.
MODE is the mode of the operand pointed to by X.
When -fpic is used, special handling is needed for symbolic references.
See comments by legitimize_pic_address for details. */
rtx
legitimize_address (x, oldx, mode)
register rtx x;
register rtx oldx ATTRIBUTE_UNUSED;
enum machine_mode mode ATTRIBUTE_UNUSED;
{
rtx constant_term = const0_rtx;
if (flag_pic)
{
if (SYMBOLIC_CONST (x)
|| (GET_CODE (x) == PLUS
&& (SYMBOLIC_CONST (XEXP (x, 0))
|| SYMBOLIC_CONST (XEXP (x, 1)))))
x = legitimize_pic_address (x, 0);
if (legitimate_address_p (mode, x, FALSE))
return x;
}
x = eliminate_constant_term (x, &constant_term);
if (GET_CODE (x) == PLUS)
{
if (GET_CODE (XEXP (x, 0)) == REG)
{
register rtx temp = gen_reg_rtx (Pmode);
register rtx val = force_operand (XEXP (x, 1), temp);
if (val != temp)
emit_move_insn (temp, val);
x = gen_rtx_PLUS (Pmode, XEXP (x, 0), temp);
}
else if (GET_CODE (XEXP (x, 1)) == REG)
{
register rtx temp = gen_reg_rtx (Pmode);
register rtx val = force_operand (XEXP (x, 0), temp);
if (val != temp)
emit_move_insn (temp, val);
x = gen_rtx_PLUS (Pmode, temp, XEXP (x, 1));
}
}
if (constant_term != const0_rtx)
x = gen_rtx_PLUS (Pmode, x, constant_term);
return x;
}
/* Output symbolic constant X in assembler syntax to
stdio stream FILE. */
void
s390_output_symbolic_const (file, x)
FILE *file;
rtx x;
{
switch (GET_CODE (x))
{
case CONST:
case ZERO_EXTEND:
case SIGN_EXTEND:
s390_output_symbolic_const (file, XEXP (x, 0));
break;
case PLUS:
s390_output_symbolic_const (file, XEXP (x, 0));
fprintf (file, "+");
s390_output_symbolic_const (file, XEXP (x, 1));
break;
case MINUS:
s390_output_symbolic_const (file, XEXP (x, 0));
fprintf (file, "-");
s390_output_symbolic_const (file, XEXP (x, 1));
break;
case CONST_INT:
output_addr_const (file, x);
break;
case LABEL_REF:
case CODE_LABEL:
output_addr_const (file, x);
break;
case SYMBOL_REF:
output_addr_const (file, x);
if (CONSTANT_POOL_ADDRESS_P (x) && s390_pool_count != 0)
fprintf (file, "_%X", s390_pool_count);
break;
case UNSPEC:
if (XVECLEN (x, 0) != 1)
output_operand_lossage ("invalid UNSPEC as operand (1)");
switch (XINT (x, 1))
{
case 100:
s390_output_symbolic_const (file, XVECEXP (x, 0, 0));
fprintf (file, "-.LT%X_%X",
s390_function_count, s390_pool_count);
break;
case 110:
s390_output_symbolic_const (file, XVECEXP (x, 0, 0));
fprintf (file, "@GOT12");
break;
case 111:
s390_output_symbolic_const (file, XVECEXP (x, 0, 0));
fprintf (file, "@GOTENT");
break;
case 112:
s390_output_symbolic_const (file, XVECEXP (x, 0, 0));
fprintf (file, "@GOT");
break;
case 113:
s390_output_symbolic_const (file, XVECEXP (x, 0, 0));
fprintf (file, "@PLT");
break;
case 114:
s390_output_symbolic_const (file, XVECEXP (x, 0, 0));
fprintf (file, "@PLT-.LT%X_%X",
s390_function_count, s390_pool_count);
break;
default:
output_operand_lossage ("invalid UNSPEC as operand (2)");
break;
}
break;
default:
fatal_insn ("UNKNOWN in s390_output_symbolic_const !?", x);
break;
}
}
/* Output address operand ADDR in assembler syntax to
stdio stream FILE. */
void
print_operand_address (file, addr)
FILE *file;
rtx addr;
{
struct s390_address ad;
if (!s390_decompose_address (addr, &ad, TRUE))
output_operand_lossage ("Cannot decompose address.");
if (ad.disp)
s390_output_symbolic_const (file, ad.disp);
else
fprintf (file, "0");
if (ad.base && ad.indx)
fprintf (file, "(%s,%s)", reg_names[REGNO (ad.indx)],
reg_names[REGNO (ad.base)]);
else if (ad.base)
fprintf (file, "(%s)", reg_names[REGNO (ad.base)]);
}
/* Output operand X in assembler syntax to stdio stream FILE.
CODE specified the format flag. The following format flags
are recognized:
'C': print opcode suffix for branch condition.
'D': print opcode suffix for inverse branch condition.
'Y': print current constant pool address (pc-relative).
'y': print current constant pool address (absolute).
'O': print only the displacement of a memory reference.
'R': print only the base register of a memory reference.
'N': print the second word of a DImode operand.
'M': print the second word of a TImode operand.
'b': print integer X as if it's an unsigned byte.
'x': print integer X as if it's an unsigned word.
'h': print integer X as if it's a signed word. */
void
print_operand (file, x, code)
FILE *file;
rtx x;
int code;
{
switch (code)
{
case 'C':
fprintf (file, s390_branch_condition_mnemonic (x, FALSE));
return;
case 'D':
fprintf (file, s390_branch_condition_mnemonic (x, TRUE));
return;
case 'Y':
fprintf (file, ".LT%X_%X-.", s390_function_count, s390_pool_count);
return;
case 'y':
fprintf (file, ".LT%X_%X", s390_function_count, s390_pool_count);
return;
case 'O':
{
struct s390_address ad;
if (GET_CODE (x) != MEM
|| !s390_decompose_address (XEXP (x, 0), &ad, TRUE)
|| ad.indx)
abort ();
if (ad.disp)
s390_output_symbolic_const (file, ad.disp);
else
fprintf (file, "0");
}
return;
case 'R':
{
struct s390_address ad;
if (GET_CODE (x) != MEM
|| !s390_decompose_address (XEXP (x, 0), &ad, TRUE)
|| ad.indx)
abort ();
if (ad.base)
fprintf (file, "%s", reg_names[REGNO (ad.base)]);
else
fprintf (file, "0");
}
return;
case 'N':
if (GET_CODE (x) == REG)
x = gen_rtx_REG (GET_MODE (x), REGNO (x) + 1);
else if (GET_CODE (x) == MEM)
x = change_address (x, VOIDmode, plus_constant (XEXP (x, 0), 4));
else
abort ();
break;
case 'M':
if (GET_CODE (x) == REG)
x = gen_rtx_REG (GET_MODE (x), REGNO (x) + 1);
else if (GET_CODE (x) == MEM)
x = change_address (x, VOIDmode, plus_constant (XEXP (x, 0), 8));
else
abort ();
break;
}
switch (GET_CODE (x))
{
case REG:
fprintf (file, "%s", reg_names[REGNO (x)]);
break;
case MEM:
output_address (XEXP (x, 0));
break;
case CONST:
case CODE_LABEL:
case LABEL_REF:
case SYMBOL_REF:
s390_output_symbolic_const (file, x);
break;
case CONST_INT:
if (code == 'b')
fprintf (file, HOST_WIDE_INT_PRINT_DEC, INTVAL (x) & 0xff);
else if (code == 'x')
fprintf (file, HOST_WIDE_INT_PRINT_DEC, INTVAL (x) & 0xffff);
else if (code == 'h')
fprintf (file, HOST_WIDE_INT_PRINT_DEC, ((INTVAL (x) & 0xffff) ^ 0x8000) - 0x8000);
else
fprintf (file, HOST_WIDE_INT_PRINT_DEC, INTVAL (x));
break;
case CONST_DOUBLE:
if (GET_MODE (x) != VOIDmode)
abort ();
if (code == 'b')
fprintf (file, HOST_WIDE_INT_PRINT_DEC, CONST_DOUBLE_LOW (x) & 0xff);
else if (code == 'x')
fprintf (file, HOST_WIDE_INT_PRINT_DEC, CONST_DOUBLE_LOW (x) & 0xffff);
else if (code == 'h')
fprintf (file, HOST_WIDE_INT_PRINT_DEC, ((CONST_DOUBLE_LOW (x) & 0xffff) ^ 0x8000) - 0x8000);
else
abort ();
break;
default:
fatal_insn ("UNKNOWN in print_operand !?", x);
break;
}
}
/* Target hook for assembling integer objects. We need to define it
here to work a round a bug in some versions of GAS, which couldn't
handle values smaller than INT_MIN when printed in decimal. */
static bool
s390_assemble_integer (x, size, aligned_p)
rtx x;
unsigned int size;
int aligned_p;
{
if (size == 8 && aligned_p
&& GET_CODE (x) == CONST_INT && INTVAL (x) < INT_MIN)
{
fputs ("\t.quad\t", asm_out_file);
fprintf (asm_out_file, HOST_WIDE_INT_PRINT_HEX, INTVAL (x));
putc ('\n', asm_out_file);
return true;
}
return default_assemble_integer (x, size, aligned_p);
}
#define DEBUG_SCHED 0
/* Returns true if register REGNO is used for forming
a memory address in expression X. */
static int
reg_used_in_mem_p (regno, x)
int regno;
rtx x;
{
enum rtx_code code = GET_CODE (x);
int i, j;
const char *fmt;
if (code == MEM)
{
if (refers_to_regno_p (regno, regno+1,
XEXP (x, 0), 0))
return 1;
}
else if (code == SET
&& GET_CODE (SET_DEST (x)) == PC)
{
if (refers_to_regno_p (regno, regno+1,
SET_SRC (x), 0))
return 1;
}
fmt = GET_RTX_FORMAT (code);
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
{
if (fmt[i] == 'e'
&& reg_used_in_mem_p (regno, XEXP (x, i)))
return 1;
else if (fmt[i] == 'E')
for (j = 0; j < XVECLEN (x, i); j++)
if (reg_used_in_mem_p (regno, XVECEXP (x, i, j)))
return 1;
}
return 0;
}
/* Returns true if expression DEP_RTX sets an address register
used by instruction INSN to address memory. */
static int
addr_generation_dependency_p (dep_rtx, insn)
rtx dep_rtx;
rtx insn;
{
rtx target, pat;
if (GET_CODE (dep_rtx) == SET)
{
target = SET_DEST (dep_rtx);
if (GET_CODE (target) == REG)
{
int regno = REGNO (target);
if (get_attr_type (insn) == TYPE_LA)
{
pat = PATTERN (insn);
if (GET_CODE (pat) == PARALLEL)
{
if (XVECLEN (pat, 0) != 2)
abort();
pat = XVECEXP (pat, 0, 0);
}
if (GET_CODE (pat) == SET)
return refers_to_regno_p (regno, regno+1, SET_SRC (pat), 0);
else
abort();
}
else if (get_attr_atype (insn) == ATYPE_MEM)
return reg_used_in_mem_p (regno, PATTERN (insn));
}
}
return 0;
}
/* Return the modified cost of the dependency of instruction INSN
on instruction DEP_INSN through the link LINK. COST is the
default cost of that dependency.
Data dependencies are all handled without delay. However, if a
register is modified and subsequently used as base or index
register of a memory reference, at least 4 cycles need to pass
between setting and using the register to avoid pipeline stalls.
An exception is the LA instruction. An address generated by LA can
be used by introducing only a one cycle stall on the pipeline. */
static int
s390_adjust_cost (insn, link, dep_insn, cost)
rtx insn;
rtx link;
rtx dep_insn;
int cost;
{
rtx dep_rtx;
int i;
/* If the dependence is an anti-dependence, there is no cost. For an
output dependence, there is sometimes a cost, but it doesn't seem
worth handling those few cases. */
if (REG_NOTE_KIND (link) != 0)
return 0;
/* If we can't recognize the insns, we can't really do anything. */
if (recog_memoized (insn) < 0 || recog_memoized (dep_insn) < 0)
return cost;
dep_rtx = PATTERN (dep_insn);
if (GET_CODE (dep_rtx) == SET)
{
if (addr_generation_dependency_p (dep_rtx, insn))
{
cost += (get_attr_type (dep_insn) == TYPE_LA) ? 1 : 4;
if (DEBUG_SCHED)
{
fprintf (stderr, "\n\nAddress dependency detected: cost %d\n",
cost);
debug_rtx (dep_insn);
debug_rtx (insn);
}
}
}
else if (GET_CODE (dep_rtx) == PARALLEL)
{
for (i = 0; i < XVECLEN (dep_rtx, 0); i++)
{
if (addr_generation_dependency_p (XVECEXP (dep_rtx, 0, i),
insn))
{
cost += (get_attr_type (dep_insn) == TYPE_LA) ? 1 : 4;
if (DEBUG_SCHED)
{
fprintf (stderr, "\n\nAddress dependency detected: cost %d\n"
,cost);
debug_rtx (dep_insn);
debug_rtx (insn);
}
}
}
}
return cost;
}
/* A C statement (sans semicolon) to update the integer scheduling priority
INSN_PRIORITY (INSN). Reduce the priority to execute the INSN earlier,
increase the priority to execute INSN later. Do not define this macro if
you do not need to adjust the scheduling priorities of insns.
A LA instruction maybe scheduled later, since the pipeline bypasses the
calculated value. */
static int
s390_adjust_priority (insn, priority)
rtx insn ATTRIBUTE_UNUSED;
int priority;
{
if (! INSN_P (insn))
return priority;
if (GET_CODE (PATTERN (insn)) == USE
|| GET_CODE (PATTERN (insn)) == CLOBBER)
return priority;
switch (get_attr_type (insn))
{
default:
break;
case TYPE_LA:
if (priority >= 0 && priority < 0x01000000)
priority <<= 3;
break;
case TYPE_LM:
/* LM in epilogue should never be scheduled. This
is due to literal access done in function body.
The usage of register 13 is not mentioned explicitly,
leading to scheduling 'LM' accross this instructions.
*/
priority = 0x7fffffff;
break;
}
return priority;
}
/* Pool concept for Linux 390:
- Function prologue saves used register
- literal pool is dumped in prologue and jump across with bras
- If function has more than 4 k literals, at about every
S390_CHUNK_MAX offset in the function a literal pool will be
dumped
- in this case, a branch from one chunk to other chunk needs
a reload of base register at the code label branched to. */
/* Index of constant pool chunk that is currently being processed.
Set to -1 before function output has started. */
int s390_pool_count = -1;
/* First insn using the constant pool chunk that is currently being
processed. */
rtx s390_pool_start_insn = NULL_RTX;
/* Called from the ASM_OUTPUT_POOL_PROLOGUE macro to
prepare for printing a literal pool chunk to stdio stream FILE.
FNAME and FNDECL specify the name and type of the current function.
SIZE is the size in bytes of the current literal pool. */
void
s390_asm_output_pool_prologue (file, fname, fndecl, size)
FILE *file;
const char *fname ATTRIBUTE_UNUSED;
tree fndecl;
int size ATTRIBUTE_UNUSED;
{
if (s390_pool_count>0) {
/*
* We are in an internal pool, branch over
*/
if (TARGET_64BIT)
{
fprintf (file, "\tlarl\t%s,.LT%X_%X\n",
reg_names[BASE_REGISTER],
s390_function_count, s390_pool_count);
readonly_data_section ();
ASM_OUTPUT_ALIGN (file, floor_log2 (3));
fprintf (file, ".LT%X_%X:\t# Pool %d\n",
s390_function_count, s390_pool_count, s390_pool_count);
}
else
fprintf (file,"\t.align 4\n\tbras\t%s,0f\n.LT%X_%X:\t# Pool %d \n",
reg_names[BASE_REGISTER],
s390_function_count, s390_pool_count, s390_pool_count);
}
if (!TARGET_64BIT)
function_section (fndecl);
}
/* Split all branches that exceed the maximum distance. */
static void
s390_split_branches (void)
{
rtx temp_reg = gen_rtx_REG (Pmode, RETURN_REGNUM);
rtx insn, pat, label, target, jump, tmp;
/* In 64-bit mode we can jump +- 4GB. */
if (TARGET_64BIT)
return;
/* Find all branches that exceed 64KB, and split them. */
for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
{
if (GET_CODE (insn) != JUMP_INSN)
continue;
pat = PATTERN (insn);
if (GET_CODE (pat) != SET)
continue;
if (GET_CODE (SET_SRC (pat)) == LABEL_REF)
{
label = SET_SRC (pat);
}
else if (GET_CODE (SET_SRC (pat)) == IF_THEN_ELSE)
{
if (GET_CODE (XEXP (SET_SRC (pat), 1)) == LABEL_REF)
label = XEXP (SET_SRC (pat), 1);
else if (GET_CODE (XEXP (SET_SRC (pat), 2)) == LABEL_REF)
label = XEXP (SET_SRC (pat), 2);
else
continue;
}
else
continue;
if (get_attr_length (insn) == 4)
continue;
if (flag_pic)
{
target = gen_rtx_UNSPEC (SImode, gen_rtvec (1, label), 100);
target = gen_rtx_CONST (SImode, target);
target = force_const_mem (SImode, target);
jump = gen_rtx_REG (Pmode, BASE_REGISTER);
jump = gen_rtx_PLUS (Pmode, jump, temp_reg);
}
else
{
target = force_const_mem (Pmode, label);
jump = temp_reg;
}
if (GET_CODE (SET_SRC (pat)) == IF_THEN_ELSE)
{
if (GET_CODE (XEXP (SET_SRC (pat), 1)) == LABEL_REF)
jump = gen_rtx_IF_THEN_ELSE (VOIDmode, XEXP (SET_SRC (pat), 0),
jump, pc_rtx);
else
jump = gen_rtx_IF_THEN_ELSE (VOIDmode, XEXP (SET_SRC (pat), 0),
pc_rtx, jump);
}
tmp = emit_insn_before (gen_rtx_SET (Pmode, temp_reg, target), insn);
INSN_ADDRESSES_NEW (tmp, -1);
tmp = emit_jump_insn_before (gen_rtx_SET (VOIDmode, pc_rtx, jump), insn);
INSN_ADDRESSES_NEW (tmp, -1);
remove_insn (insn);
insn = tmp;
}
}
/* Chunkify the literal pool if required. */
static void
s390_chunkify_pool (void)
{
int *ltorg_uids, max_ltorg, chunk, last_addr, next_addr;
rtx insn;
/* Do we need to chunkify the literal pool? */
if (get_pool_size () <= S390_POOL_MAX)
return;
/* Find all insns where a literal pool chunk must be inserted. */
ltorg_uids = alloca (insn_current_address / 1024 + 1024);
max_ltorg = 0;
last_addr = 0;
for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
{
if (INSN_ADDRESSES (INSN_UID (insn)) - last_addr < S390_CHUNK_MAX)
continue;
if (INSN_ADDRESSES (INSN_UID (insn)) - last_addr > S390_CHUNK_OV)
abort ();
if (GET_CODE (insn) == CODE_LABEL
&& !(GET_CODE (NEXT_INSN (insn)) == JUMP_INSN
&& (GET_CODE (PATTERN (NEXT_INSN (insn))) == ADDR_VEC
|| GET_CODE (PATTERN (NEXT_INSN (insn))) == ADDR_DIFF_VEC)))
{
ltorg_uids[max_ltorg++] = INSN_UID (prev_real_insn (insn));
last_addr = INSN_ADDRESSES (ltorg_uids[max_ltorg-1]);
continue;
}
if (GET_CODE (insn) == CALL_INSN)
{
ltorg_uids[max_ltorg++] = INSN_UID (insn);
last_addr = INSN_ADDRESSES (ltorg_uids[max_ltorg-1]);
continue;
}
}
ltorg_uids[max_ltorg] = -1;
/* Find and mark all labels that are branched into
from an insn belonging to a different chunk. */
chunk = last_addr = 0;
next_addr = ltorg_uids[chunk] == -1 ? insn_current_address + 1
: INSN_ADDRESSES (ltorg_uids[chunk]);
for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
{
if (GET_CODE (insn) == JUMP_INSN)
{
rtx pat = PATTERN (insn);
if (GET_CODE (pat) == SET)
{
rtx label = 0;
if (GET_CODE (SET_SRC (pat)) == LABEL_REF)
{
label = XEXP (SET_SRC (pat), 0);
}
else if (GET_CODE (SET_SRC (pat)) == IF_THEN_ELSE)
{
if (GET_CODE (XEXP (SET_SRC (pat), 1)) == LABEL_REF)
label = XEXP (XEXP (SET_SRC (pat), 1), 0);
else if (GET_CODE (XEXP (SET_SRC (pat), 2)) == LABEL_REF)
label = XEXP (XEXP (SET_SRC (pat), 2), 0);
}
if (label)
{
if (INSN_ADDRESSES (INSN_UID (label)) <= last_addr
|| INSN_ADDRESSES (INSN_UID (label)) > next_addr)
SYMBOL_REF_USED (label) = 1;
}
}
else if (GET_CODE (pat) == ADDR_VEC
|| GET_CODE (pat) == ADDR_DIFF_VEC)
{
int i, diff_p = GET_CODE (pat) == ADDR_DIFF_VEC;
for (i = 0; i < XVECLEN (pat, diff_p); i++)
{
rtx label = XEXP (XVECEXP (pat, diff_p, i), 0);
if (INSN_ADDRESSES (INSN_UID (label)) <= last_addr
|| INSN_ADDRESSES (INSN_UID (label)) > next_addr)
SYMBOL_REF_USED (label) = 1;
}
}
}
if (INSN_UID (insn) == ltorg_uids[chunk])
{
last_addr = INSN_ADDRESSES (ltorg_uids[chunk++]);
next_addr = ltorg_uids[chunk] == -1 ? insn_current_address + 1
: INSN_ADDRESSES (ltorg_uids[chunk]);
}
}
/* Insert literal pools and base register reload insns. */
chunk = 0;
for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
{
if (INSN_UID (insn) == ltorg_uids[chunk])
{
rtx new_insn = gen_ltorg (GEN_INT (chunk++));
INSN_ADDRESSES_NEW (emit_insn_after (new_insn, insn), -1);
}
if (GET_CODE (insn) == CODE_LABEL && SYMBOL_REF_USED (insn))
{
rtx new_insn = gen_reload_base (insn);
INSN_ADDRESSES_NEW (emit_insn_after (new_insn, insn), -1);
}
}
/* Recompute insn addresses. */
init_insn_lengths ();
shorten_branches (get_insns ());
}
/* Return true if INSN is a 'ltorg' insn. */
int
s390_stop_dump_lit_p (insn)
rtx insn;
{
rtx body=PATTERN (insn);
if (GET_CODE (body) == PARALLEL
&& GET_CODE (XVECEXP (body, 0, 0)) == SET
&& GET_CODE (XVECEXP (body, 0, 1)) == USE
&& GET_CODE (XEXP ((XVECEXP (body, 0, 1)),0)) == CONST_INT
&& GET_CODE (SET_DEST (XVECEXP (body, 0, 0))) == REG
&& REGNO (SET_DEST (XVECEXP (body, 0, 0))) == BASE_REGISTER
&& SET_SRC (XVECEXP (body, 0, 0)) == pc_rtx) {
return 1;
}
else
return 0;
}
/* Output literal pool chunk to be used for insns
between insn ACT_INSN and the insn with UID STOP. */
void
s390_dump_literal_pool (act_insn, stop)
rtx act_insn;
rtx stop;
{
s390_pool_start_insn = act_insn;
s390_pool_count++;
output_constant_pool (current_function_name, current_function_decl);
function_section (current_function_decl);
}
/* Number of elements of current constant pool. */
int s390_nr_constants;
/* Return true if floating point registers need to be saved. */
static int
save_fprs_p ()
{
int i;
if (!TARGET_64BIT)
return 0;
for (i=24; i<=31; i++)
{
if (regs_ever_live[i] == 1)
return 1;
}
return 0;
}
/* Output main constant pool to stdio stream FILE. */
void
s390_output_constant_pool (file)
FILE *file;
{
/* Output constant pool. */
if (s390_nr_constants)
{
s390_pool_count = 0;
if (TARGET_64BIT)
{
fprintf (file, "\tlarl\t%s,.LT%X_%X\n", reg_names[BASE_REGISTER],
s390_function_count, s390_pool_count);
readonly_data_section ();
ASM_OUTPUT_ALIGN (file, floor_log2 (3));
}
else
{
fprintf (file, "\tbras\t%s,.LTN%X_%X\n", reg_names[BASE_REGISTER],
s390_function_count, s390_pool_count);
}
fprintf (file, ".LT%X_%X:\n", s390_function_count, s390_pool_count);
output_constant_pool (current_function_name, current_function_decl);
fprintf (file, ".LTN%X_%X:\n", s390_function_count,
s390_pool_count);
if (TARGET_64BIT)
function_section (current_function_decl);
}
}
/* Find first call clobbered register unsused in a function.
This could be used as base register in a leaf function
or for holding the return address before epilogue. */
static int
find_unused_clobbered_reg ()
{
int i;
for (i = 0; i < 6; i++)
if (!regs_ever_live[i])
return i;
return 0;
}
/* Fill FRAME with info about frame of current function. */
static void
s390_frame_info (frame)
struct s390_frame *frame;
{
int i, j;
HOST_WIDE_INT fsize = get_frame_size ();
if (fsize > 0x7fff0000)
fatal_error ("Total size of local variables exceeds architecture limit.");
/* fprs 8 - 15 are caller saved for 64 Bit ABI. */
frame->save_fprs_p = save_fprs_p ();
frame->frame_size = fsize + frame->save_fprs_p * 64;
/* Does function need to setup frame and save area. */
if (! current_function_is_leaf
|| frame->frame_size > 0
|| current_function_calls_alloca
|| current_function_stdarg
|| current_function_varargs)
frame->frame_size += STARTING_FRAME_OFFSET;
/* If we need to allocate a frame, the stack pointer is changed. */
if (frame->frame_size > 0)
regs_ever_live[STACK_POINTER_REGNUM] = 1;
/* If there is (possibly) any pool entry, we need to
load base register. */
if (get_pool_size ()
|| !CONST_OK_FOR_LETTER_P (frame->frame_size, 'K')
|| (!TARGET_64BIT && current_function_uses_pic_offset_table))
regs_ever_live[BASE_REGISTER] = 1;
/* If we need the GOT pointer, remember to save/restore it. */
if (current_function_uses_pic_offset_table)
regs_ever_live[PIC_OFFSET_TABLE_REGNUM] = 1;
/* Frame pointer needed. */
frame->frame_pointer_p = frame_pointer_needed;
/* Find first and last gpr to be saved. */
for (i = 6; i < 16; i++)
if (regs_ever_live[i])
break;
for (j = 15; j > i; j--)
if (regs_ever_live[j])
break;
if (i == 16)
{
/* Nothing to save / restore. */
frame->first_save_gpr = -1;
frame->first_restore_gpr = -1;
frame->last_save_gpr = -1;
frame->return_reg_saved_p = 0;
}
else
{
/* Save / Restore from gpr i to j. */
frame->first_save_gpr = i;
frame->first_restore_gpr = i;
frame->last_save_gpr = j;
frame->return_reg_saved_p = (j >= RETURN_REGNUM && i <= RETURN_REGNUM);
}
if (current_function_stdarg || current_function_varargs)
{
/* Varargs function need to save from gpr 2 to gpr 15. */
frame->first_save_gpr = 2;
}
}
/* Return offset between argument pointer and frame pointer
initially after prologue. */
int
s390_arg_frame_offset ()
{
struct s390_frame frame;
/* Compute frame_info. */
s390_frame_info (&frame);
return frame.frame_size + STACK_POINTER_OFFSET;
}
/* Emit insn to save fpr REGNUM at offset OFFSET relative
to register BASE. Return generated insn. */
static rtx
save_fpr (base, offset, regnum)
rtx base;
int offset;
int regnum;
{
rtx addr;
addr = gen_rtx_MEM (DFmode, plus_constant (base, offset));
set_mem_alias_set (addr, s390_sr_alias_set);
return emit_move_insn (addr, gen_rtx_REG (DFmode, regnum));
}
/* Emit insn to restore fpr REGNUM from offset OFFSET relative
to register BASE. Return generated insn. */
static rtx
restore_fpr (base, offset, regnum)
rtx base;
int offset;
int regnum;
{
rtx addr;
addr = gen_rtx_MEM (DFmode, plus_constant (base, offset));
set_mem_alias_set (addr, s390_sr_alias_set);
return emit_move_insn (gen_rtx_REG (DFmode, regnum), addr);
}
/* Output the function prologue assembly code to the
stdio stream FILE. The local frame size is passed
in LSIZE. */
void
s390_function_prologue (file, lsize)
FILE *file ATTRIBUTE_UNUSED;
HOST_WIDE_INT lsize ATTRIBUTE_UNUSED;
{
s390_chunkify_pool ();
s390_split_branches ();
}
/* Output the function epilogue assembly code to the
stdio stream FILE. The local frame size is passed
in LSIZE. */
void
s390_function_epilogue (file, lsize)
FILE *file ATTRIBUTE_UNUSED;
HOST_WIDE_INT lsize ATTRIBUTE_UNUSED;
{
current_function_uses_pic_offset_table = 0;
s390_pool_start_insn = NULL_RTX;
s390_pool_count = -1;
s390_function_count++;
}
/* Expand the prologue into a bunch of separate insns. */
void
s390_emit_prologue ()
{
struct s390_frame frame;
rtx insn, addr;
rtx temp_reg;
int i;
/* Compute frame_info. */
s390_frame_info (&frame);
/* Choose best register to use for temp use within prologue. */
if (frame.return_reg_saved_p
&& !has_hard_reg_initial_val (Pmode, RETURN_REGNUM))
temp_reg = gen_rtx_REG (Pmode, RETURN_REGNUM);
else
temp_reg = gen_rtx_REG (Pmode, 1);
/* Save call saved gprs. */
if (frame.first_save_gpr != -1)
{
addr = plus_constant (stack_pointer_rtx,
frame.first_save_gpr * UNITS_PER_WORD);
addr = gen_rtx_MEM (Pmode, addr);
set_mem_alias_set (addr, s390_sr_alias_set);
if (frame.first_save_gpr != frame.last_save_gpr )
{
insn = emit_insn (gen_store_multiple (addr,
gen_rtx_REG (Pmode, frame.first_save_gpr),
GEN_INT (frame.last_save_gpr
- frame.first_save_gpr + 1)));
/* We need to set the FRAME_RELATED flag on all SETs
inside the store-multiple pattern.
However, we must not emit DWARF records for registers 2..5
if they are stored for use by variable arguments ...
??? Unfortunately, it is not enough to simply not the the
FRAME_RELATED flags for those SETs, because the first SET
of the PARALLEL is always treated as if it had the flag
set, even if it does not. Therefore we emit a new pattern
without those registers as REG_FRAME_RELATED_EXPR note. */
if (frame.first_save_gpr >= 6)
{
rtx pat = PATTERN (insn);
for (i = 0; i < XVECLEN (pat, 0); i++)
if (GET_CODE (XVECEXP (pat, 0, i)) == SET)
RTX_FRAME_RELATED_P (XVECEXP (pat, 0, i)) = 1;
RTX_FRAME_RELATED_P (insn) = 1;
}
else if (frame.last_save_gpr >= 6)
{
rtx note, naddr;
naddr = plus_constant (stack_pointer_rtx, 6 * UNITS_PER_WORD);
note = gen_store_multiple (gen_rtx_MEM (Pmode, naddr),
gen_rtx_REG (Pmode, 6),
GEN_INT (frame.last_save_gpr - 6 + 1));
REG_NOTES (insn) =
gen_rtx_EXPR_LIST (REG_FRAME_RELATED_EXPR,
note, REG_NOTES (insn));
for (i = 0; i < XVECLEN (note, 0); i++)
if (GET_CODE (XVECEXP (note, 0, i)) == SET)
RTX_FRAME_RELATED_P (XVECEXP (note, 0, i)) = 1;
RTX_FRAME_RELATED_P (insn) = 1;
}
}
else
{
insn = emit_move_insn (addr,
gen_rtx_REG (Pmode, frame.first_save_gpr));
RTX_FRAME_RELATED_P (insn) = 1;
}
}
/* Dump constant pool and set constant pool register (13). */
insn = emit_insn (gen_lit ());
/* Save fprs for variable args. */
if (current_function_stdarg || current_function_varargs)
{
/* Save fpr 0 and 2. */
save_fpr (stack_pointer_rtx, STACK_POINTER_OFFSET - 32, 16);
save_fpr (stack_pointer_rtx, STACK_POINTER_OFFSET - 24, 17);
if (TARGET_64BIT)
{
/* Save fpr 4 and 6. */
save_fpr (stack_pointer_rtx, STACK_POINTER_OFFSET - 16, 18);
save_fpr (stack_pointer_rtx, STACK_POINTER_OFFSET - 8, 19);
}
}
/* Save fprs 4 and 6 if used (31 bit ABI). */
if (!TARGET_64BIT)
{
/* Save fpr 4 and 6. */
if (regs_ever_live[18])
{
insn = save_fpr (stack_pointer_rtx, STACK_POINTER_OFFSET - 16, 18);
RTX_FRAME_RELATED_P (insn) = 1;
}
if (regs_ever_live[19])
{
insn = save_fpr (stack_pointer_rtx, STACK_POINTER_OFFSET - 8, 19);
RTX_FRAME_RELATED_P (insn) = 1;
}
}
/* Decrement stack pointer. */
if (frame.frame_size > 0)
{
rtx frame_off = GEN_INT (-frame.frame_size);
/* Save incoming stack pointer into temp reg. */
if (TARGET_BACKCHAIN || frame.save_fprs_p)
{
insn = emit_insn (gen_move_insn (temp_reg, stack_pointer_rtx));
}
/* Substract frame size from stack pointer. */
frame_off = GEN_INT (-frame.frame_size);
if (!CONST_OK_FOR_LETTER_P (-frame.frame_size, 'K'))
frame_off = force_const_mem (Pmode, frame_off);
insn = emit_insn (gen_add2_insn (stack_pointer_rtx, frame_off));
RTX_FRAME_RELATED_P (insn) = 1;
REG_NOTES (insn) =
gen_rtx_EXPR_LIST (REG_FRAME_RELATED_EXPR,
gen_rtx_SET (VOIDmode, stack_pointer_rtx,
gen_rtx_PLUS (Pmode, stack_pointer_rtx,
GEN_INT (-frame.frame_size))),
REG_NOTES (insn));
/* Set backchain. */
if (TARGET_BACKCHAIN)
{
addr = gen_rtx_MEM (Pmode, stack_pointer_rtx);
set_mem_alias_set (addr, s390_sr_alias_set);
insn = emit_insn (gen_move_insn (addr, temp_reg));
}
}
/* Save fprs 8 - 15 (64 bit ABI). */
if (frame.save_fprs_p)
{
insn = emit_insn (gen_add2_insn (temp_reg, GEN_INT(-64)));
for (i = 24; i < 32; i++)
if (regs_ever_live[i])
{
rtx addr = plus_constant (stack_pointer_rtx,
frame.frame_size - 64 + (i-24)*8);
insn = save_fpr (temp_reg, (i-24)*8, i);
RTX_FRAME_RELATED_P (insn) = 1;
REG_NOTES (insn) =
gen_rtx_EXPR_LIST (REG_FRAME_RELATED_EXPR,
gen_rtx_SET (VOIDmode,
gen_rtx_MEM (DFmode, addr),
gen_rtx_REG (DFmode, i)),
REG_NOTES (insn));
}
}
/* Set frame pointer, if needed. */
if (frame.frame_pointer_p)
{
insn = emit_move_insn (hard_frame_pointer_rtx, stack_pointer_rtx);
RTX_FRAME_RELATED_P (insn) = 1;
}
/* Set up got pointer, if needed. */
if (current_function_uses_pic_offset_table)
{
rtx got_symbol = gen_rtx_SYMBOL_REF (Pmode, "_GLOBAL_OFFSET_TABLE_");
SYMBOL_REF_FLAG (got_symbol) = 1;
if (TARGET_64BIT)
{
insn = emit_insn (gen_movdi (pic_offset_table_rtx,
got_symbol));
/* It can happen that the GOT pointer isn't really needed ... */
REG_NOTES(insn) = gen_rtx_EXPR_LIST (REG_MAYBE_DEAD, NULL_RTX,
REG_NOTES (insn));
}
else
{
got_symbol = gen_rtx_UNSPEC (VOIDmode,
gen_rtvec (1, got_symbol), 100);
got_symbol = gen_rtx_CONST (VOIDmode, got_symbol);
got_symbol = force_const_mem (Pmode, got_symbol);
insn = emit_move_insn (pic_offset_table_rtx,
got_symbol);
REG_NOTES(insn) = gen_rtx_EXPR_LIST (REG_MAYBE_DEAD, NULL_RTX,
REG_NOTES (insn));
insn = emit_insn (gen_add2_insn (pic_offset_table_rtx,
gen_rtx_REG (Pmode, BASE_REGISTER)));
REG_NOTES(insn) = gen_rtx_EXPR_LIST (REG_MAYBE_DEAD, NULL_RTX,
REG_NOTES (insn));
}
}
}
/* Expand the epilogue into a bunch of separate insns. */
void
s390_emit_epilogue ()
{
struct s390_frame frame;
rtx frame_pointer, return_reg;
int area_bottom, area_top, offset;
rtvec p;
/* Compute frame_info. */
s390_frame_info (&frame);
/* Check whether to use frame or stack pointer for restore. */
frame_pointer = frame.frame_pointer_p ?
hard_frame_pointer_rtx : stack_pointer_rtx;
/* Compute which parts of the save area we need to access. */
if (frame.first_restore_gpr != -1)
{
area_bottom = frame.first_restore_gpr * UNITS_PER_WORD;
area_top = (frame.last_save_gpr + 1) * UNITS_PER_WORD;
}
else
{
area_bottom = INT_MAX;
area_top = INT_MIN;
}
if (TARGET_64BIT)
{
if (frame.save_fprs_p)
{
if (area_bottom > -64)
area_bottom = -64;
if (area_top < 0)
area_top = 0;
}
}
else
{
if (regs_ever_live[18])
{
if (area_bottom > STACK_POINTER_OFFSET - 16)
area_bottom = STACK_POINTER_OFFSET - 16;
if (area_top < STACK_POINTER_OFFSET - 8)
area_top = STACK_POINTER_OFFSET - 8;
}
if (regs_ever_live[19])
{
if (area_bottom > STACK_POINTER_OFFSET - 8)
area_bottom = STACK_POINTER_OFFSET - 8;
if (area_top < STACK_POINTER_OFFSET)
area_top = STACK_POINTER_OFFSET;
}
}
/* Check whether we can access the register save area.
If not, increment the frame pointer as required. */
if (area_top <= area_bottom)
{
/* Nothing to restore. */
}
else if (frame.frame_size + area_bottom >= 0
&& frame.frame_size + area_top <= 4096)
{
/* Area is in range. */
offset = frame.frame_size;
}
else
{
rtx insn, frame_off;
offset = area_bottom < 0 ? -area_bottom : 0;
frame_off = GEN_INT (frame.frame_size - offset);
if (!CONST_OK_FOR_LETTER_P (INTVAL (frame_off), 'K'))
frame_off = force_const_mem (Pmode, frame_off);
insn = emit_insn (gen_add2_insn (frame_pointer, frame_off));
RTX_FRAME_RELATED_P (insn) = 1;
REG_NOTES (insn) =
gen_rtx_EXPR_LIST (REG_FRAME_RELATED_EXPR,
gen_rtx_SET (VOIDmode, frame_pointer,
gen_rtx_PLUS (Pmode, frame_pointer,
GEN_INT (frame.frame_size - offset))),
REG_NOTES (insn));
}
/* Restore call saved fprs. */
if (TARGET_64BIT)
{
int i;
if (frame.save_fprs_p)
for (i = 24; i < 32; i++)
if (regs_ever_live[i] && !global_regs[i])
restore_fpr (frame_pointer,
offset - 64 + (i-24) * 8, i);
}
else
{
if (regs_ever_live[18] && !global_regs[18])
restore_fpr (frame_pointer, offset + STACK_POINTER_OFFSET - 16, 18);
if (regs_ever_live[19] && !global_regs[19])
restore_fpr (frame_pointer, offset + STACK_POINTER_OFFSET - 8, 19);
}
/* Return register. */
return_reg = gen_rtx_REG (Pmode, RETURN_REGNUM);
/* Restore call saved gprs. */
if (frame.first_restore_gpr != -1)
{
rtx addr;
int i;
/* Check for global register and save them
to stack location from where they get restored. */
for (i = frame.first_restore_gpr;
i <= frame.last_save_gpr;
i++)
{
if (global_regs[i])
{
addr = plus_constant (frame_pointer,
offset + i * UNITS_PER_WORD);
addr = gen_rtx_MEM (Pmode, addr);
set_mem_alias_set (addr, s390_sr_alias_set);
emit_move_insn (addr, gen_rtx_REG (Pmode, i));
}
}
/* Fetch return address from stack before load multiple,
this will do good for scheduling. */
if (frame.last_save_gpr >= RETURN_REGNUM
&& frame.first_restore_gpr < RETURN_REGNUM)
{
int return_regnum = find_unused_clobbered_reg();
if (!return_regnum)
return_regnum = 4;
return_reg = gen_rtx_REG (Pmode, return_regnum);
addr = plus_constant (frame_pointer,
offset + RETURN_REGNUM * UNITS_PER_WORD);
addr = gen_rtx_MEM (Pmode, addr);
set_mem_alias_set (addr, s390_sr_alias_set);
emit_move_insn (return_reg, addr);
}
/* ??? As references to the base register are not made
explicit in insn RTX code, we have to add a barrier here
to prevent incorrect scheduling. */
emit_insn (gen_blockage());
addr = plus_constant (frame_pointer,
offset + frame.first_restore_gpr * UNITS_PER_WORD);
addr = gen_rtx_MEM (Pmode, addr);
set_mem_alias_set (addr, s390_sr_alias_set);
if (frame.first_restore_gpr != frame.last_save_gpr)
{
emit_insn (gen_load_multiple (
gen_rtx_REG (Pmode, frame.first_restore_gpr),
addr,
GEN_INT (frame.last_save_gpr - frame.first_restore_gpr + 1)));
}
else
{
emit_move_insn (gen_rtx_REG (Pmode, frame.first_restore_gpr),
addr);
}
}
/* Return to caller. */
p = rtvec_alloc (2);
RTVEC_ELT (p, 0) = gen_rtx_RETURN (VOIDmode);
RTVEC_ELT (p, 1) = gen_rtx_USE (VOIDmode, return_reg);
emit_jump_insn (gen_rtx_PARALLEL (VOIDmode, p));
}
/* Return the size in bytes of a function argument of
type TYPE and/or mode MODE. At least one of TYPE or
MODE must be specified. */
static int
s390_function_arg_size (mode, type)
enum machine_mode mode;
tree type;
{
if (type)
return int_size_in_bytes (type);
/* No type info available for some library calls ... */
if (mode != BLKmode)
return GET_MODE_SIZE (mode);
/* If we have neither type nor mode, abort */
abort ();
}
/* Return 1 if a function argument of type TYPE and mode MODE
is to be passed by reference. The ABI specifies that only
structures of size 1, 2, 4, or 8 bytes are passed by value,
all other structures (and complex numbers) are passed by
reference. */
int
s390_function_arg_pass_by_reference (mode, type)
enum machine_mode mode;
tree type;
{
int size = s390_function_arg_size (mode, type);
if (type)
{
if (AGGREGATE_TYPE_P (type) &&
size != 1 && size != 2 && size != 4 && size != 8)
return 1;
if (TREE_CODE (type) == COMPLEX_TYPE)
return 1;
}
return 0;
}
/* Update the data in CUM to advance over an argument of mode MODE and
data type TYPE. (TYPE is null for libcalls where that information
may not be available.). The boolean NAMED specifies whether the
argument is a named argument (as opposed to an unnamed argument
matching an ellipsis). */
void
s390_function_arg_advance (cum, mode, type, named)
CUMULATIVE_ARGS *cum;
enum machine_mode mode;
tree type;
int named ATTRIBUTE_UNUSED;
{
if (! TARGET_SOFT_FLOAT && (mode == DFmode || mode == SFmode))
{
cum->fprs++;
}
else if (s390_function_arg_pass_by_reference (mode, type))
{
cum->gprs += 1;
}
else
{
int size = s390_function_arg_size (mode, type);
cum->gprs += ((size + UNITS_PER_WORD-1) / UNITS_PER_WORD);
}
}
/* Define where to put the arguments to a function.
Value is zero to push the argument on the stack,
or a hard register in which to store the argument.
MODE is the argument's machine mode.
TYPE is the data type of the argument (as a tree).
This is null for libcalls where that information may
not be available.
CUM is a variable of type CUMULATIVE_ARGS which gives info about
the preceding args and about the function being called.
NAMED is nonzero if this argument is a named parameter
(otherwise it is an extra parameter matching an ellipsis).
On S/390, we use general purpose registers 2 through 6 to
pass integer, pointer, and certain structure arguments, and
floating point registers 0 and 2 (0, 2, 4, and 6 on 64-bit)
to pass floating point arguments. All remaining arguments
are pushed to the stack. */
rtx
s390_function_arg (cum, mode, type, named)
CUMULATIVE_ARGS *cum;
enum machine_mode mode;
tree type;
int named ATTRIBUTE_UNUSED;
{
if (s390_function_arg_pass_by_reference (mode, type))
return 0;
if (! TARGET_SOFT_FLOAT && (mode == DFmode || mode == SFmode))
{
if (cum->fprs + 1 > (TARGET_64BIT? 4 : 2))
return 0;
else
return gen_rtx (REG, mode, cum->fprs + 16);
}
else
{
int size = s390_function_arg_size (mode, type);
int n_gprs = (size + UNITS_PER_WORD-1) / UNITS_PER_WORD;
if (cum->gprs + n_gprs > 5)
return 0;
else
return gen_rtx (REG, mode, cum->gprs + 2);
}
}
/* Create and return the va_list datatype.
On S/390, va_list is an array type equivalent to
typedef struct __va_list_tag
{
long __gpr;
long __fpr;
void *__overflow_arg_area;
void *__reg_save_area;
} va_list[1];
where __gpr and __fpr hold the number of general purpose
or floating point arguments used up to now, respectively,
__overflow_arg_area points to the stack location of the
next argument passed on the stack, and __reg_save_area
always points to the start of the register area in the
call frame of the current function. The function prologue
saves all registers used for argument passing into this
area if the function uses variable arguments. */
tree
s390_build_va_list ()
{
tree f_gpr, f_fpr, f_ovf, f_sav, record, type_decl;
record = make_lang_type (RECORD_TYPE);
type_decl =
build_decl (TYPE_DECL, get_identifier ("__va_list_tag"), record);
f_gpr = build_decl (FIELD_DECL, get_identifier ("__gpr"),
long_integer_type_node);
f_fpr = build_decl (FIELD_DECL, get_identifier ("__fpr"),
long_integer_type_node);
f_ovf = build_decl (FIELD_DECL, get_identifier ("__overflow_arg_area"),
ptr_type_node);
f_sav = build_decl (FIELD_DECL, get_identifier ("__reg_save_area"),
ptr_type_node);
DECL_FIELD_CONTEXT (f_gpr) = record;
DECL_FIELD_CONTEXT (f_fpr) = record;
DECL_FIELD_CONTEXT (f_ovf) = record;
DECL_FIELD_CONTEXT (f_sav) = record;
TREE_CHAIN (record) = type_decl;
TYPE_NAME (record) = type_decl;
TYPE_FIELDS (record) = f_gpr;
TREE_CHAIN (f_gpr) = f_fpr;
TREE_CHAIN (f_fpr) = f_ovf;
TREE_CHAIN (f_ovf) = f_sav;
layout_type (record);
/* The correct type is an array type of one element. */
return build_array_type (record, build_index_type (size_zero_node));
}
/* Implement va_start by filling the va_list structure VALIST.
STDARG_P is true if implementing __builtin_stdarg_va_start,
false if implementing __builtin_varargs_va_start. NEXTARG
points to the first anonymous stack argument.
The following global variables are used to initialize
the va_list structure:
current_function_args_info:
holds number of gprs and fprs used for named arguments.
current_function_arg_offset_rtx:
holds the offset of the first anonymous stack argument
(relative to the virtual arg pointer). */
void
s390_va_start (stdarg_p, valist, nextarg)
int stdarg_p;
tree valist;
rtx nextarg ATTRIBUTE_UNUSED;
{
HOST_WIDE_INT n_gpr, n_fpr;
int off;
tree f_gpr, f_fpr, f_ovf, f_sav;
tree gpr, fpr, ovf, sav, t;
f_gpr = TYPE_FIELDS (TREE_TYPE (va_list_type_node));
f_fpr = TREE_CHAIN (f_gpr);
f_ovf = TREE_CHAIN (f_fpr);
f_sav = TREE_CHAIN (f_ovf);
valist = build1 (INDIRECT_REF, TREE_TYPE (TREE_TYPE (valist)), valist);
gpr = build (COMPONENT_REF, TREE_TYPE (f_gpr), valist, f_gpr);
fpr = build (COMPONENT_REF, TREE_TYPE (f_fpr), valist, f_fpr);
ovf = build (COMPONENT_REF, TREE_TYPE (f_ovf), valist, f_ovf);
sav = build (COMPONENT_REF, TREE_TYPE (f_sav), valist, f_sav);
/* Count number of gp and fp argument registers used. */
n_gpr = current_function_args_info.gprs;
n_fpr = current_function_args_info.fprs;
t = build (MODIFY_EXPR, TREE_TYPE (gpr), gpr, build_int_2 (n_gpr, 0));
TREE_SIDE_EFFECTS (t) = 1;
expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL);
t = build (MODIFY_EXPR, TREE_TYPE (fpr), fpr, build_int_2 (n_fpr, 0));
TREE_SIDE_EFFECTS (t) = 1;
expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL);
/* Find the overflow area. */
t = make_tree (TREE_TYPE (ovf), virtual_incoming_args_rtx);
off = INTVAL (current_function_arg_offset_rtx);
off = off < 0 ? 0 : off;
if (! stdarg_p)
off = off > 0 ? off - UNITS_PER_WORD : off;
if (TARGET_DEBUG_ARG)
fprintf (stderr, "va_start: n_gpr = %d, n_fpr = %d off %d\n",
(int)n_gpr, (int)n_fpr, off);
t = build (PLUS_EXPR, TREE_TYPE (ovf), t, build_int_2 (off, 0));
t = build (MODIFY_EXPR, TREE_TYPE (ovf), ovf, t);
TREE_SIDE_EFFECTS (t) = 1;
expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL);
/* Find the register save area. */
t = make_tree (TREE_TYPE (sav), virtual_incoming_args_rtx);
t = build (PLUS_EXPR, TREE_TYPE (sav), t,
build_int_2 (-STACK_POINTER_OFFSET, -1));
t = build (MODIFY_EXPR, TREE_TYPE (sav), sav, t);
TREE_SIDE_EFFECTS (t) = 1;
expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL);
}
/* Implement va_arg by updating the va_list structure
VALIST as required to retrieve an argument of type
TYPE, and returning that argument.
Generates code equivalent to:
if (integral value) {
if (size <= 4 && args.gpr < 5 ||
size > 4 && args.gpr < 4 )
ret = args.reg_save_area[args.gpr+8]
else
ret = *args.overflow_arg_area++;
} else if (float value) {
if (args.fgpr < 2)
ret = args.reg_save_area[args.fpr+64]
else
ret = *args.overflow_arg_area++;
} else if (aggregate value) {
if (args.gpr < 5)
ret = *args.reg_save_area[args.gpr]
else
ret = **args.overflow_arg_area++;
} */
rtx
s390_va_arg (valist, type)
tree valist;
tree type;
{
tree f_gpr, f_fpr, f_ovf, f_sav;
tree gpr, fpr, ovf, sav, reg, t, u;
int indirect_p, size, n_reg, sav_ofs, sav_scale, max_reg;
rtx lab_false, lab_over, addr_rtx, r;
f_gpr = TYPE_FIELDS (TREE_TYPE (va_list_type_node));
f_fpr = TREE_CHAIN (f_gpr);
f_ovf = TREE_CHAIN (f_fpr);
f_sav = TREE_CHAIN (f_ovf);
valist = build1 (INDIRECT_REF, TREE_TYPE (TREE_TYPE (valist)), valist);
gpr = build (COMPONENT_REF, TREE_TYPE (f_gpr), valist, f_gpr);
fpr = build (COMPONENT_REF, TREE_TYPE (f_fpr), valist, f_fpr);
ovf = build (COMPONENT_REF, TREE_TYPE (f_ovf), valist, f_ovf);
sav = build (COMPONENT_REF, TREE_TYPE (f_sav), valist, f_sav);
size = int_size_in_bytes (type);
if (s390_function_arg_pass_by_reference (TYPE_MODE (type), type))
{
if (TARGET_DEBUG_ARG)
{
fprintf (stderr, "va_arg: aggregate type");
debug_tree (type);
}
/* Aggregates are passed by reference. */
indirect_p = 1;
reg = gpr;
n_reg = 1;
sav_ofs = 2 * UNITS_PER_WORD;
sav_scale = UNITS_PER_WORD;
size = UNITS_PER_WORD;
max_reg = 4;
}
else if (FLOAT_TYPE_P (type) && ! TARGET_SOFT_FLOAT)
{
if (TARGET_DEBUG_ARG)
{
fprintf (stderr, "va_arg: float type");
debug_tree (type);
}
/* FP args go in FP registers, if present. */
indirect_p = 0;
reg = fpr;
n_reg = 1;
sav_ofs = 16 * UNITS_PER_WORD;
sav_scale = 8;
/* TARGET_64BIT has up to 4 parameter in fprs */
max_reg = TARGET_64BIT ? 3 : 1;
}
else
{
if (TARGET_DEBUG_ARG)
{
fprintf (stderr, "va_arg: other type");
debug_tree (type);
}
/* Otherwise into GP registers. */
indirect_p = 0;
reg = gpr;
n_reg = (size + UNITS_PER_WORD - 1) / UNITS_PER_WORD;
sav_ofs = 2 * UNITS_PER_WORD;
if (TARGET_64BIT)
sav_ofs += TYPE_MODE (type) == SImode ? 4 :
TYPE_MODE (type) == HImode ? 6 :
TYPE_MODE (type) == QImode ? 7 : 0;
else
sav_ofs += TYPE_MODE (type) == HImode ? 2 :
TYPE_MODE (type) == QImode ? 3 : 0;
sav_scale = UNITS_PER_WORD;
if (n_reg > 1)
max_reg = 3;
else
max_reg = 4;
}
/* Pull the value out of the saved registers ... */
lab_false = gen_label_rtx ();
lab_over = gen_label_rtx ();
addr_rtx = gen_reg_rtx (Pmode);
emit_cmp_and_jump_insns (expand_expr (reg, NULL_RTX, Pmode, EXPAND_NORMAL),
GEN_INT (max_reg),
GT, const1_rtx, Pmode, 0, lab_false);
if (sav_ofs)
t = build (PLUS_EXPR, ptr_type_node, sav, build_int_2 (sav_ofs, 0));
else
t = sav;
u = build (MULT_EXPR, long_integer_type_node,
reg, build_int_2 (sav_scale, 0));
TREE_SIDE_EFFECTS (u) = 1;
t = build (PLUS_EXPR, ptr_type_node, t, u);
TREE_SIDE_EFFECTS (t) = 1;
r = expand_expr (t, addr_rtx, Pmode, EXPAND_NORMAL);
if (r != addr_rtx)
emit_move_insn (addr_rtx, r);
emit_jump_insn (gen_jump (lab_over));
emit_barrier ();
emit_label (lab_false);
/* ... Otherwise out of the overflow area. */
t = save_expr (ovf);
/* In 64 BIT for each argument on stack, a full 64 bit slot is allocated. */
if (size < UNITS_PER_WORD)
{
t = build (PLUS_EXPR, TREE_TYPE (t), t, build_int_2 (UNITS_PER_WORD-size, 0));
t = build (MODIFY_EXPR, TREE_TYPE (ovf), ovf, t);
TREE_SIDE_EFFECTS (t) = 1;
expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL);
t = save_expr (ovf);
}
r = expand_expr (t, addr_rtx, Pmode, EXPAND_NORMAL);
if (r != addr_rtx)
emit_move_insn (addr_rtx, r);
t = build (PLUS_EXPR, TREE_TYPE (t), t, build_int_2 (size, 0));
t = build (MODIFY_EXPR, TREE_TYPE (ovf), ovf, t);
TREE_SIDE_EFFECTS (t) = 1;
expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL);
emit_label (lab_over);
/* If less than max_regs a registers are retrieved out
of register save area, increment. */
u = build (PREINCREMENT_EXPR, TREE_TYPE (reg), reg,
build_int_2 (n_reg, 0));
TREE_SIDE_EFFECTS (u) = 1;
expand_expr (u, const0_rtx, VOIDmode, EXPAND_NORMAL);
if (indirect_p)
{
r = gen_rtx_MEM (Pmode, addr_rtx);
set_mem_alias_set (r, get_varargs_alias_set ());
emit_move_insn (addr_rtx, r);
}
return addr_rtx;
}
/* Output assembly code for the trampoline template to
stdio stream FILE.
On S/390, we use gpr 1 internally in the trampoline code;
gpr 0 is used to hold the static chain. */
void
s390_trampoline_template (file)
FILE *file;
{
if (TARGET_64BIT)
{
fprintf (file, "larl\t%s,0f\n", reg_names[1]);
fprintf (file, "lg\t%s,0(%s)\n", reg_names[0], reg_names[1]);
fprintf (file, "lg\t%s,8(%s)\n", reg_names[1], reg_names[1]);
fprintf (file, "br\t%s\n", reg_names[1]);
fprintf (file, "0:\t.quad\t0\n");
fprintf (file, ".quad\t0\n");
}
else
{
fprintf (file, "basr\t%s,0\n", reg_names[1]);
fprintf (file, "l\t%s,10(%s)\n", reg_names[0], reg_names[1]);
fprintf (file, "l\t%s,14(%s)\n", reg_names[1], reg_names[1]);
fprintf (file, "br\t%s\n", reg_names[1]);
fprintf (file, ".long\t0\n");
fprintf (file, ".long\t0\n");
}
}
/* Emit RTL insns to initialize the variable parts of a trampoline.
FNADDR is an RTX for the address of the function's pure code.
CXT is an RTX for the static chain value for the function. */
void
s390_initialize_trampoline (addr, fnaddr, cxt)
rtx addr;
rtx fnaddr;
rtx cxt;
{
emit_move_insn (gen_rtx
(MEM, Pmode,
memory_address (Pmode,
plus_constant (addr, (TARGET_64BIT ? 20 : 12) ))), cxt);
emit_move_insn (gen_rtx
(MEM, Pmode,
memory_address (Pmode,
plus_constant (addr, (TARGET_64BIT ? 28 : 16) ))), fnaddr);
}
/* Return rtx for 64-bit constant formed from the 32-bit subwords
LOW and HIGH, independent of the host word size. */
rtx
s390_gen_rtx_const_DI (high, low)
int high;
int low;
{
#if HOST_BITS_PER_WIDE_INT >= 64
HOST_WIDE_INT val;
val = (HOST_WIDE_INT)high;
val <<= 32;
val |= (HOST_WIDE_INT)low;
return GEN_INT (val);
#else
#if HOST_BITS_PER_WIDE_INT >= 32
return immed_double_const ((HOST_WIDE_INT)low, (HOST_WIDE_INT)high, DImode);
#else
abort ();
#endif
#endif
}
/* Output assembler code to FILE to increment profiler label # LABELNO
for profiling a function entry. */
void
s390_function_profiler (file, labelno)
FILE *file;
int labelno;
{
rtx op[7];
char label[128];
sprintf (label, "%sP%d", LPREFIX, labelno);
fprintf (file, "# function profiler \n");
op[0] = gen_rtx_REG (Pmode, RETURN_REGNUM);
op[1] = gen_rtx_REG (Pmode, STACK_POINTER_REGNUM);
op[1] = gen_rtx_MEM (Pmode, plus_constant (op[1], UNITS_PER_WORD));
op[2] = gen_rtx_REG (Pmode, 1);
op[3] = gen_rtx_SYMBOL_REF (Pmode, label);
SYMBOL_REF_FLAG (op[3]) = 1;
op[4] = gen_rtx_SYMBOL_REF (Pmode, "_mcount");
if (flag_pic)
{
op[4] = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, op[4]), 113);
op[4] = gen_rtx_CONST (Pmode, op[4]);
}
if (TARGET_64BIT)
{
output_asm_insn ("stg\t%0,%1", op);
output_asm_insn ("larl\t%2,%3", op);
output_asm_insn ("brasl\t%0,%4", op);
output_asm_insn ("lg\t%0,%1", op);
}
else if (!flag_pic)
{
op[6] = gen_label_rtx ();
output_asm_insn ("st\t%0,%1", op);
output_asm_insn ("bras\t%2,%l6", op);
output_asm_insn (".long\t%4", op);
output_asm_insn (".long\t%3", op);
ASM_OUTPUT_INTERNAL_LABEL (file, "L", CODE_LABEL_NUMBER (op[6]));
output_asm_insn ("l\t%0,0(%2)", op);
output_asm_insn ("l\t%2,4(%2)", op);
output_asm_insn ("basr\t%0,%0", op);
output_asm_insn ("l\t%0,%1", op);
}
else
{
op[5] = gen_label_rtx ();
op[6] = gen_label_rtx ();
output_asm_insn ("st\t%0,%1", op);
output_asm_insn ("bras\t%2,%l6", op);
ASM_OUTPUT_INTERNAL_LABEL (file, "L", CODE_LABEL_NUMBER (op[5]));
output_asm_insn (".long\t%4-%l5", op);
output_asm_insn (".long\t%3-%l5", op);
ASM_OUTPUT_INTERNAL_LABEL (file, "L", CODE_LABEL_NUMBER (op[6]));
output_asm_insn ("lr\t%0,%2", op);
output_asm_insn ("a\t%0,0(%2)", op);
output_asm_insn ("a\t%2,4(%2)", op);
output_asm_insn ("basr\t%0,%0", op);
output_asm_insn ("l\t%0,%1", op);
}
}
|