1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
|
/* Definitions of target machine for GNU compiler, for IBM S/390
Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004
Free Software Foundation, Inc.
Contributed by Hartmut Penner (hpenner@de.ibm.com) and
Ulrich Weigand (uweigand@de.ibm.com).
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 2, or (at your option) any later
version.
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING. If not, write to the Free
Software Foundation, 59 Temple Place - Suite 330, Boston, MA
02111-1307, USA. */
#ifndef _S390_H
#define _S390_H
/* Override the __fixdfdi etc. routines when building libgcc2.
??? This should be done in a cleaner way ... */
#if defined (IN_LIBGCC2) && !defined (__s390x__)
#include <config/s390/fixdfdi.h>
#endif
/* Which processor to generate code or schedule for. The cpu attribute
defines a list that mirrors this list, so changes to s390.md must be
made at the same time. */
enum processor_type
{
PROCESSOR_9672_G5,
PROCESSOR_9672_G6,
PROCESSOR_2064_Z900,
PROCESSOR_2084_Z990,
PROCESSOR_max
};
/* Optional architectural facilities supported by the processor. */
enum processor_flags
{
PF_IEEE_FLOAT = 1,
PF_ZARCH = 2,
PF_LONG_DISPLACEMENT = 4
};
extern enum processor_type s390_tune;
extern enum processor_flags s390_tune_flags;
extern const char *s390_tune_string;
extern enum processor_type s390_arch;
extern enum processor_flags s390_arch_flags;
extern const char *s390_arch_string;
#define TARGET_CPU_IEEE_FLOAT \
(s390_arch_flags & PF_IEEE_FLOAT)
#define TARGET_CPU_ZARCH \
(s390_arch_flags & PF_ZARCH)
#define TARGET_CPU_LONG_DISPLACEMENT \
(s390_arch_flags & PF_LONG_DISPLACEMENT)
#define TARGET_LONG_DISPLACEMENT \
(TARGET_ZARCH && TARGET_CPU_LONG_DISPLACEMENT)
/* Run-time target specification. */
/* Target CPU builtins. */
#define TARGET_CPU_CPP_BUILTINS() \
do \
{ \
builtin_assert ("cpu=s390"); \
builtin_assert ("machine=s390"); \
builtin_define ("__s390__"); \
if (TARGET_64BIT) \
builtin_define ("__s390x__"); \
} \
while (0)
/* Optional target features. */
extern int target_flags;
#define MASK_HARD_FLOAT 0x01
#define MASK_BACKCHAIN 0x02
#define MASK_SMALL_EXEC 0x04
#define MASK_DEBUG_ARG 0x08
#define MASK_64BIT 0x10
#define MASK_ZARCH 0x20
#define MASK_MVCLE 0x40
#define MASK_TPF 0x80
#define MASK_NO_FUSED_MADD 0x100
#define TARGET_HARD_FLOAT (target_flags & MASK_HARD_FLOAT)
#define TARGET_SOFT_FLOAT (!(target_flags & MASK_HARD_FLOAT))
#define TARGET_BACKCHAIN (target_flags & MASK_BACKCHAIN)
#define TARGET_SMALL_EXEC (target_flags & MASK_SMALL_EXEC)
#define TARGET_DEBUG_ARG (target_flags & MASK_DEBUG_ARG)
#define TARGET_64BIT (target_flags & MASK_64BIT)
#define TARGET_ZARCH (target_flags & MASK_ZARCH)
#define TARGET_MVCLE (target_flags & MASK_MVCLE)
#define TARGET_TPF (target_flags & MASK_TPF)
#define TARGET_NO_FUSED_MADD (target_flags & MASK_NO_FUSED_MADD)
#define TARGET_FUSED_MADD (! TARGET_NO_FUSED_MADD)
/* ??? Once this actually works, it could be made a runtime option. */
#define TARGET_IBM_FLOAT 0
#define TARGET_IEEE_FLOAT 1
#ifdef DEFAULT_TARGET_64BIT
#define TARGET_DEFAULT 0x31
#else
#define TARGET_DEFAULT 0x1
#endif
#define TARGET_SWITCHES \
{ { "hard-float", 1, N_("Use hardware fp")}, \
{ "soft-float", -1, N_("Don't use hardware fp")}, \
{ "backchain", 2, N_("Set backchain")}, \
{ "no-backchain", -2, N_("Don't set backchain (faster, but debug harder")},\
{ "small-exec", 4, N_("Use bras for executable < 64k")}, \
{ "no-small-exec", -4, N_("Don't use bras")}, \
{ "debug", 8, N_("Additional debug prints")}, \
{ "no-debug", -8, N_("Don't print additional debug prints")}, \
{ "64", 16, N_("64 bit ABI")}, \
{ "31", -16, N_("31 bit ABI")}, \
{ "zarch", 32, N_("z/Architecture")}, \
{ "esa", -32, N_("ESA/390 architecture")}, \
{ "mvcle", 64, N_("mvcle use")}, \
{ "no-mvcle", -64, N_("mvc&ex")}, \
{ "tpf", 128, N_("enable tpf OS code")}, \
{ "no-tpf", -128, N_("disable tpf OS code")}, \
{ "no-fused-madd", 256, N_("disable fused multiply/add instructions")},\
{ "fused-madd", -256, N_("enable fused multiply/add instructions")}, \
{ "", TARGET_DEFAULT, 0 } }
#define TARGET_OPTIONS \
{ { "tune=", &s390_tune_string, \
N_("Schedule code for given CPU"), 0}, \
{ "arch=", &s390_arch_string, \
N_("Generate code for given CPU"), 0}, \
}
/* Support for configure-time defaults. */
#define OPTION_DEFAULT_SPECS \
{ "mode", "%{!mesa:%{!mzarch:-m%(VALUE)}}" }, \
{ "arch", "%{!march=*:-march=%(VALUE)}" }, \
{ "tune", "%{!mtune=*:-mtune=%(VALUE)}" }
/* Defaulting rules. */
#ifdef DEFAULT_TARGET_64BIT
#define DRIVER_SELF_SPECS \
"%{!m31:%{!m64:-m64}}", \
"%{!mesa:%{!mzarch:%{m31:-mesa}%{m64:-mzarch}}}", \
"%{!march=*:%{mesa:-march=g5}%{mzarch:-march=z900}}"
#else
#define DRIVER_SELF_SPECS \
"%{!m31:%{!m64:-m31}}", \
"%{!mesa:%{!mzarch:%{m31:-mesa}%{m64:-mzarch}}}", \
"%{!march=*:%{mesa:-march=g5}%{mzarch:-march=z900}}"
#endif
/* Target version string. Overridden by the OS header. */
#ifdef DEFAULT_TARGET_64BIT
#define TARGET_VERSION fprintf (stderr, " (zSeries)");
#else
#define TARGET_VERSION fprintf (stderr, " (S/390)");
#endif
/* Hooks to override options. */
#define OPTIMIZATION_OPTIONS(LEVEL, SIZE) optimization_options(LEVEL, SIZE)
#define OVERRIDE_OPTIONS override_options ()
/* Frame pointer is not used for debugging. */
#define CAN_DEBUG_WITHOUT_FP
/* In libgcc2, determine target settings as compile-time constants. */
#ifdef IN_LIBGCC2
#undef TARGET_64BIT
#ifdef __s390x__
#define TARGET_64BIT 1
#else
#define TARGET_64BIT 0
#endif
#endif
/* Target machine storage layout. */
/* Everything is big-endian. */
#define BITS_BIG_ENDIAN 1
#define BYTES_BIG_ENDIAN 1
#define WORDS_BIG_ENDIAN 1
/* Width of a word, in units (bytes). */
#define UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
#ifndef IN_LIBGCC2
#define MIN_UNITS_PER_WORD 4
#endif
#define MAX_BITS_PER_WORD 64
/* Function arguments and return values are promoted to word size. */
#define PROMOTE_FOR_CALL_ONLY
#define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
if (INTEGRAL_MODE_P (MODE) && \
GET_MODE_SIZE (MODE) < UNITS_PER_WORD) { \
(MODE) = Pmode; \
}
/* Allocation boundary (in *bits*) for storing arguments in argument list. */
#define PARM_BOUNDARY (TARGET_64BIT ? 64 : 32)
/* Boundary (in *bits*) on which stack pointer should be aligned. */
#define STACK_BOUNDARY 64
/* Allocation boundary (in *bits*) for the code of a function. */
#define FUNCTION_BOUNDARY 32
/* There is no point aligning anything to a rounder boundary than this. */
#define BIGGEST_ALIGNMENT 64
/* Alignment of field after `int : 0' in a structure. */
#define EMPTY_FIELD_BOUNDARY 32
/* Alignment on even addresses for LARL instruction. */
#define CONSTANT_ALIGNMENT(EXP, ALIGN) (ALIGN) < 16 ? 16 : (ALIGN)
#define DATA_ALIGNMENT(TYPE, ALIGN) (ALIGN) < 16 ? 16 : (ALIGN)
/* Alignment is not required by the hardware. */
#define STRICT_ALIGNMENT 0
/* Mode of stack savearea.
FUNCTION is VOIDmode because calling convention maintains SP.
BLOCK needs Pmode for SP.
NONLOCAL needs twice Pmode to maintain both backchain and SP. */
#define STACK_SAVEAREA_MODE(LEVEL) \
(LEVEL == SAVE_FUNCTION ? VOIDmode \
: LEVEL == SAVE_NONLOCAL ? (TARGET_64BIT ? OImode : TImode) : Pmode)
/* Define target floating point format. */
#define TARGET_FLOAT_FORMAT \
(TARGET_IEEE_FLOAT? IEEE_FLOAT_FORMAT : IBM_FLOAT_FORMAT)
/* Type layout. */
/* Sizes in bits of the source language data types. */
#define SHORT_TYPE_SIZE 16
#define INT_TYPE_SIZE 32
#define LONG_TYPE_SIZE (TARGET_64BIT ? 64 : 32)
#define MAX_LONG_TYPE_SIZE 64
#define LONG_LONG_TYPE_SIZE 64
#define FLOAT_TYPE_SIZE 32
#define DOUBLE_TYPE_SIZE 64
#define LONG_DOUBLE_TYPE_SIZE 64 /* ??? Should support extended format. */
/* We use "unsigned char" as default. */
#define DEFAULT_SIGNED_CHAR 0
/* Register usage. */
/* We have 16 general purpose registers (registers 0-15),
and 16 floating point registers (registers 16-31).
(On non-IEEE machines, we have only 4 fp registers.)
Amongst the general purpose registers, some are used
for specific purposes:
GPR 11: Hard frame pointer (if needed)
GPR 12: Global offset table pointer (if needed)
GPR 13: Literal pool base register
GPR 14: Return address register
GPR 15: Stack pointer
Registers 32-34 are 'fake' hard registers that do not
correspond to actual hardware:
Reg 32: Argument pointer
Reg 33: Condition code
Reg 34: Frame pointer */
#define FIRST_PSEUDO_REGISTER 35
/* Standard register usage. */
#define GENERAL_REGNO_P(N) ((int)(N) >= 0 && (N) < 16)
#define ADDR_REGNO_P(N) ((N) >= 1 && (N) < 16)
#define FP_REGNO_P(N) ((N) >= 16 && (N) < (TARGET_IEEE_FLOAT? 32 : 20))
#define CC_REGNO_P(N) ((N) == 33)
#define FRAME_REGNO_P(N) ((N) == 32 || (N) == 34)
#define GENERAL_REG_P(X) (REG_P (X) && GENERAL_REGNO_P (REGNO (X)))
#define ADDR_REG_P(X) (REG_P (X) && ADDR_REGNO_P (REGNO (X)))
#define FP_REG_P(X) (REG_P (X) && FP_REGNO_P (REGNO (X)))
#define CC_REG_P(X) (REG_P (X) && CC_REGNO_P (REGNO (X)))
#define FRAME_REG_P(X) (REG_P (X) && FRAME_REGNO_P (REGNO (X)))
#define BASE_REGISTER 13
#define RETURN_REGNUM 14
#define CC_REGNUM 33
/* Set up fixed registers and calling convention:
GPRs 0-5 are always call-clobbered,
GPRs 6-15 are always call-saved.
GPR 12 is fixed if used as GOT pointer.
GPR 13 is always fixed (as literal pool pointer).
GPR 14 is always fixed on S/390 machines (as return address).
GPR 15 is always fixed (as stack pointer).
The 'fake' hard registers are call-clobbered and fixed.
On 31-bit, FPRs 18-19 are call-clobbered;
on 64-bit, FPRs 24-31 are call-clobbered.
The remaining FPRs are call-saved. */
#define FIXED_REGISTERS \
{ 0, 0, 0, 0, \
0, 0, 0, 0, \
0, 0, 0, 0, \
0, 1, 1, 1, \
0, 0, 0, 0, \
0, 0, 0, 0, \
0, 0, 0, 0, \
0, 0, 0, 0, \
1, 1, 1 }
#define CALL_USED_REGISTERS \
{ 1, 1, 1, 1, \
1, 1, 0, 0, \
0, 0, 0, 0, \
0, 1, 1, 1, \
1, 1, 1, 1, \
1, 1, 1, 1, \
1, 1, 1, 1, \
1, 1, 1, 1, \
1, 1, 1 }
#define CALL_REALLY_USED_REGISTERS \
{ 1, 1, 1, 1, \
1, 1, 0, 0, \
0, 0, 0, 0, \
0, 0, 0, 0, \
1, 1, 1, 1, \
1, 1, 1, 1, \
1, 1, 1, 1, \
1, 1, 1, 1, \
1, 1, 1 }
#define CONDITIONAL_REGISTER_USAGE \
do \
{ \
int i; \
\
if (flag_pic) \
{ \
fixed_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \
call_used_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \
} \
if (TARGET_CPU_ZARCH) \
{ \
fixed_regs[RETURN_REGNUM] = 0; \
call_used_regs[RETURN_REGNUM] = 0; \
} \
if (TARGET_64BIT) \
{ \
for (i = 24; i < 32; i++) \
call_used_regs[i] = call_really_used_regs[i] = 0; \
} \
else \
{ \
for (i = 18; i < 20; i++) \
call_used_regs[i] = call_really_used_regs[i] = 0; \
} \
} while (0)
/* Preferred register allocation order. */
#define REG_ALLOC_ORDER \
{ 1, 2, 3, 4, 5, 0, 13, 12, 11, 10, 9, 8, 7, 6, 14, \
16, 17, 18, 19, 20, 21, 22, 23, \
24, 25, 26, 27, 28, 29, 30, 31, \
15, 32, 33, 34 }
/* Fitting values into registers. */
/* Integer modes <= word size fit into any GPR.
Integer modes > word size fit into successive GPRs, starting with
an even-numbered register.
SImode and DImode fit into FPRs as well.
Floating point modes <= word size fit into any FPR or GPR.
Floating point modes > word size (i.e. DFmode on 32-bit) fit
into any FPR, or an even-odd GPR pair.
Complex floating point modes fit either into two FPRs, or into
successive GPRs (again starting with an even number).
Condition code modes fit only into the CC register. */
#define HARD_REGNO_NREGS(REGNO, MODE) \
(FP_REGNO_P(REGNO)? \
(GET_MODE_CLASS(MODE) == MODE_COMPLEX_FLOAT ? 2 : 1) : \
GENERAL_REGNO_P(REGNO)? \
((GET_MODE_SIZE(MODE)+UNITS_PER_WORD-1) / UNITS_PER_WORD) : \
1)
#define HARD_REGNO_MODE_OK(REGNO, MODE) \
(FP_REGNO_P(REGNO)? \
((MODE) == SImode || (MODE) == DImode || \
GET_MODE_CLASS(MODE) == MODE_FLOAT || \
GET_MODE_CLASS(MODE) == MODE_COMPLEX_FLOAT) : \
GENERAL_REGNO_P(REGNO)? \
(HARD_REGNO_NREGS(REGNO, MODE) == 1 || !((REGNO) & 1)) : \
CC_REGNO_P(REGNO)? \
GET_MODE_CLASS (MODE) == MODE_CC : \
FRAME_REGNO_P(REGNO)? \
(enum machine_mode) (MODE) == Pmode : \
0)
#define MODES_TIEABLE_P(MODE1, MODE2) \
(((MODE1) == SFmode || (MODE1) == DFmode) \
== ((MODE2) == SFmode || (MODE2) == DFmode))
/* Maximum number of registers to represent a value of mode MODE
in a register of class CLASS. */
#define CLASS_MAX_NREGS(CLASS, MODE) \
((CLASS) == FP_REGS ? \
(GET_MODE_CLASS (MODE) == MODE_COMPLEX_FLOAT ? 2 : 1) : \
(GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
/* If a 4-byte value is loaded into a FPR, it is placed into the
*upper* half of the register, not the lower. Therefore, we
cannot use SUBREGs to switch between modes in FP registers. */
#define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) \
(GET_MODE_SIZE (FROM) != GET_MODE_SIZE (TO) \
? reg_classes_intersect_p (FP_REGS, CLASS) : 0)
/* Register classes. */
/* We use the following register classes:
GENERAL_REGS All general purpose registers
ADDR_REGS All general purpose registers except %r0
(These registers can be used in address generation)
FP_REGS All floating point registers
GENERAL_FP_REGS Union of GENERAL_REGS and FP_REGS
ADDR_FP_REGS Union of ADDR_REGS and FP_REGS
NO_REGS No registers
ALL_REGS All registers
Note that the 'fake' frame pointer and argument pointer registers
are included amongst the address registers here. The condition
code register is only included in ALL_REGS. */
enum reg_class
{
NO_REGS, ADDR_REGS, GENERAL_REGS,
FP_REGS, ADDR_FP_REGS, GENERAL_FP_REGS,
ALL_REGS, LIM_REG_CLASSES
};
#define N_REG_CLASSES (int) LIM_REG_CLASSES
#define REG_CLASS_NAMES \
{ "NO_REGS", "ADDR_REGS", "GENERAL_REGS", \
"FP_REGS", "ADDR_FP_REGS", "GENERAL_FP_REGS", "ALL_REGS" }
/* Class -> register mapping. */
#define REG_CLASS_CONTENTS \
{ \
{ 0x00000000, 0x00000000 }, /* NO_REGS */ \
{ 0x0000fffe, 0x00000005 }, /* ADDR_REGS */ \
{ 0x0000ffff, 0x00000005 }, /* GENERAL_REGS */ \
{ 0xffff0000, 0x00000000 }, /* FP_REGS */ \
{ 0xfffffffe, 0x00000005 }, /* ADDR_FP_REGS */ \
{ 0xffffffff, 0x00000005 }, /* GENERAL_FP_REGS */ \
{ 0xffffffff, 0x00000007 }, /* ALL_REGS */ \
}
/* Register -> class mapping. */
extern const enum reg_class regclass_map[FIRST_PSEUDO_REGISTER];
#define REGNO_REG_CLASS(REGNO) (regclass_map[REGNO])
/* ADDR_REGS can be used as base or index register. */
#define INDEX_REG_CLASS ADDR_REGS
#define BASE_REG_CLASS ADDR_REGS
/* Check whether REGNO is a hard register of the suitable class
or a pseudo register currently allocated to one such. */
#define REGNO_OK_FOR_INDEX_P(REGNO) \
(((REGNO) < FIRST_PSEUDO_REGISTER \
&& REGNO_REG_CLASS ((REGNO)) == ADDR_REGS) \
|| (reg_renumber[REGNO] > 0 && reg_renumber[REGNO] < 16))
#define REGNO_OK_FOR_BASE_P(REGNO) REGNO_OK_FOR_INDEX_P (REGNO)
/* Given an rtx X being reloaded into a reg required to be in class CLASS,
return the class of reg to actually use. */
#define PREFERRED_RELOAD_CLASS(X, CLASS) \
s390_preferred_reload_class ((X), (CLASS))
/* We need a secondary reload when loading a PLUS which is
not a valid operand for LOAD ADDRESS. */
#define SECONDARY_INPUT_RELOAD_CLASS(CLASS, MODE, IN) \
s390_secondary_input_reload_class ((CLASS), (MODE), (IN))
/* We need a secondary reload when storing a double-word
to a non-offsettable memory address. */
#define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, OUT) \
s390_secondary_output_reload_class ((CLASS), (MODE), (OUT))
/* We need secondary memory to move data between GPRs and FPRs. */
#define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE) \
((CLASS1) != (CLASS2) && ((CLASS1) == FP_REGS || (CLASS2) == FP_REGS))
/* Get_secondary_mem widens its argument to BITS_PER_WORD which loses on 64bit
because the movsi and movsf patterns don't handle r/f moves. */
#define SECONDARY_MEMORY_NEEDED_MODE(MODE) \
(GET_MODE_BITSIZE (MODE) < 32 \
? mode_for_size (32, GET_MODE_CLASS (MODE), 0) \
: MODE)
/* Define various machine-dependent constraint letters. */
#define REG_CLASS_FROM_LETTER(C) \
((C) == 'a' ? ADDR_REGS : \
(C) == 'd' ? GENERAL_REGS : \
(C) == 'f' ? FP_REGS : NO_REGS)
#define CONST_OK_FOR_CONSTRAINT_P(VALUE, C, STR) \
s390_const_ok_for_constraint_p ((VALUE), (C), (STR))
#define CONST_DOUBLE_OK_FOR_CONSTRAINT_P(VALUE, C, STR) 1
#define EXTRA_CONSTRAINT_STR(OP, C, STR) \
s390_extra_constraint_str ((OP), (C), (STR))
#define EXTRA_MEMORY_CONSTRAINT(C, STR) \
((C) == 'Q' || (C) == 'R' || (C) == 'S' || (C) == 'T')
#define EXTRA_ADDRESS_CONSTRAINT(C, STR) \
((C) == 'U' || (C) == 'W' || (C) == 'Y')
#define CONSTRAINT_LEN(C, STR) \
((C) == 'N' ? 5 : DEFAULT_CONSTRAINT_LEN ((C), (STR)))
/* Stack layout and calling conventions. */
/* Our stack grows from higher to lower addresses. However, local variables
are accessed by positive offsets, and function arguments are stored at
increasing addresses. */
#define STACK_GROWS_DOWNWARD
/* #undef FRAME_GROWS_DOWNWARD */
/* #undef ARGS_GROW_DOWNWARD */
/* The basic stack layout looks like this: the stack pointer points
to the register save area for called functions. Above that area
is the location to place outgoing arguments. Above those follow
dynamic allocations (alloca), and finally the local variables. */
/* Offset from stack-pointer to first location of outgoing args. */
#define STACK_POINTER_OFFSET (TARGET_64BIT ? 160 : 96)
/* Offset within stack frame to start allocating local variables at. */
extern int current_function_outgoing_args_size;
#define STARTING_FRAME_OFFSET \
(STACK_POINTER_OFFSET + current_function_outgoing_args_size)
/* Offset from the stack pointer register to an item dynamically
allocated on the stack, e.g., by `alloca'. */
#define STACK_DYNAMIC_OFFSET(FUNDECL) (STARTING_FRAME_OFFSET)
/* Offset of first parameter from the argument pointer register value.
We have a fake argument pointer register that points directly to
the argument area. */
#define FIRST_PARM_OFFSET(FNDECL) 0
/* The return address of the current frame is retrieved
from the initial value of register RETURN_REGNUM.
For frames farther back, we use the stack slot where
the corresponding RETURN_REGNUM register was saved. */
#define DYNAMIC_CHAIN_ADDRESS(FRAME) \
((FRAME) != hard_frame_pointer_rtx ? (FRAME) : \
plus_constant (arg_pointer_rtx, -STACK_POINTER_OFFSET))
#define RETURN_ADDR_RTX(COUNT, FRAME) \
s390_return_addr_rtx ((COUNT), DYNAMIC_CHAIN_ADDRESS ((FRAME)))
/* In 31-bit mode, we need to mask off the high bit of return addresses. */
#define MASK_RETURN_ADDR (TARGET_64BIT ? GEN_INT (-1) : GEN_INT (0x7fffffff))
/* Exception handling. */
/* Describe calling conventions for DWARF-2 exception handling. */
#define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (Pmode, RETURN_REGNUM)
#define INCOMING_FRAME_SP_OFFSET STACK_POINTER_OFFSET
#define DWARF_FRAME_RETURN_COLUMN 14
/* Describe how we implement __builtin_eh_return. */
#define EH_RETURN_DATA_REGNO(N) ((N) < 4 ? (N) + 6 : INVALID_REGNUM)
#define EH_RETURN_HANDLER_RTX \
gen_rtx_MEM (Pmode, plus_constant (arg_pointer_rtx, \
-STACK_POINTER_OFFSET + UNITS_PER_WORD*RETURN_REGNUM))
/* Select a format to encode pointers in exception handling data. */
#define ASM_PREFERRED_EH_DATA_FORMAT(CODE, GLOBAL) \
(flag_pic \
? ((GLOBAL) ? DW_EH_PE_indirect : 0) | DW_EH_PE_pcrel | DW_EH_PE_sdata4 \
: DW_EH_PE_absptr)
/* Frame registers. */
#define STACK_POINTER_REGNUM 15
#define FRAME_POINTER_REGNUM 34
#define HARD_FRAME_POINTER_REGNUM 11
#define ARG_POINTER_REGNUM 32
/* The static chain must be call-clobbered, but not used for
function argument passing. As register 1 is clobbered by
the trampoline code, we only have one option. */
#define STATIC_CHAIN_REGNUM 0
/* Number of hardware registers that go into the DWARF-2 unwind info.
To avoid ABI incompatibility, this number must not change even as
'fake' hard registers are added or removed. */
#define DWARF_FRAME_REGISTERS 34
/* Frame pointer and argument pointer elimination. */
#define FRAME_POINTER_REQUIRED 0
#define INITIAL_FRAME_POINTER_OFFSET(DEPTH) (DEPTH) = 0
#define ELIMINABLE_REGS \
{{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
{ FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
{ ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}}
#define CAN_ELIMINATE(FROM, TO) (1)
#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
{ if ((FROM) == FRAME_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM) \
{ (OFFSET) = 0; } \
else if ((FROM) == FRAME_POINTER_REGNUM \
&& (TO) == HARD_FRAME_POINTER_REGNUM) \
{ (OFFSET) = 0; } \
else if ((FROM) == ARG_POINTER_REGNUM \
&& (TO) == HARD_FRAME_POINTER_REGNUM) \
{ (OFFSET) = s390_arg_frame_offset (); } \
else if ((FROM) == ARG_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM) \
{ (OFFSET) = s390_arg_frame_offset (); } \
else \
abort(); \
}
/* Stack arguments. */
/* We need current_function_outgoing_args to be valid. */
#define ACCUMULATE_OUTGOING_ARGS 1
/* Return doesn't modify the stack. */
#define RETURN_POPS_ARGS(FUNDECL, FUNTYPE, SIZE) 0
/* Register arguments. */
typedef struct s390_arg_structure
{
int gprs; /* gpr so far */
int fprs; /* fpr so far */
}
CUMULATIVE_ARGS;
#define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, NN) \
((CUM).gprs=0, (CUM).fprs=0)
#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
s390_function_arg_advance (&CUM, MODE, TYPE, NAMED)
#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
s390_function_arg (&CUM, MODE, TYPE, NAMED)
#define FUNCTION_ARG_PASS_BY_REFERENCE(CUM, MODE, TYPE, NAMED) \
s390_function_arg_pass_by_reference (MODE, TYPE)
#define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) 0
/* Arguments can be placed in general registers 2 to 6,
or in floating point registers 0 and 2. */
#define FUNCTION_ARG_REGNO_P(N) (((N) >=2 && (N) <7) || \
(N) == 16 || (N) == 17)
/* Scalar return values. */
#define FUNCTION_VALUE(VALTYPE, FUNC) \
s390_function_value ((VALTYPE), VOIDmode)
#define LIBCALL_VALUE(MODE) \
s390_function_value (NULL, (MODE))
/* Only gpr 2 and fpr 0 are ever used as return registers. */
#define FUNCTION_VALUE_REGNO_P(N) ((N) == 2 || (N) == 16)
/* Function entry and exit. */
/* When returning from a function, the stack pointer does not matter. */
#define EXIT_IGNORE_STACK 1
/* Profiling. */
#define FUNCTION_PROFILER(FILE, LABELNO) \
s390_function_profiler ((FILE), ((LABELNO)))
#define PROFILE_BEFORE_PROLOGUE 1
/* Implementing the varargs macros. */
#define EXPAND_BUILTIN_VA_START(valist, nextarg) \
s390_va_start (valist, nextarg)
#define EXPAND_BUILTIN_VA_ARG(valist, type) \
s390_va_arg (valist, type)
/* Trampolines for nested functions. */
#define TRAMPOLINE_SIZE (TARGET_64BIT ? 36 : 20)
#define INITIALIZE_TRAMPOLINE(ADDR, FNADDR, CXT) \
s390_initialize_trampoline ((ADDR), (FNADDR), (CXT))
#define TRAMPOLINE_TEMPLATE(FILE) \
s390_trampoline_template (FILE)
/* Library calls. */
/* We should use memcpy, not bcopy. */
#define TARGET_MEM_FUNCTIONS
/* Addressing modes, and classification of registers for them. */
/* Recognize any constant value that is a valid address. */
#define CONSTANT_ADDRESS_P(X) 0
/* Maximum number of registers that can appear in a valid memory address. */
#define MAX_REGS_PER_ADDRESS 2
/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx and check
its validity for a certain class. We have two alternate definitions
for each of them. The usual definition accepts all pseudo regs; the
other rejects them all. The symbol REG_OK_STRICT causes the latter
definition to be used.
Most source files want to accept pseudo regs in the hope that they will
get allocated to the class that the insn wants them to be in.
Some source files that are used after register allocation
need to be strict. */
#define REG_OK_FOR_INDEX_NONSTRICT_P(X) \
((GET_MODE (X) == Pmode) && \
((REGNO (X) >= FIRST_PSEUDO_REGISTER) \
|| REGNO_REG_CLASS (REGNO (X)) == ADDR_REGS))
#define REG_OK_FOR_BASE_NONSTRICT_P(X) REG_OK_FOR_INDEX_NONSTRICT_P (X)
#define REG_OK_FOR_INDEX_STRICT_P(X) \
((GET_MODE (X) == Pmode) && (REGNO_OK_FOR_INDEX_P (REGNO (X))))
#define REG_OK_FOR_BASE_STRICT_P(X) \
((GET_MODE (X) == Pmode) && (REGNO_OK_FOR_BASE_P (REGNO (X))))
#ifndef REG_OK_STRICT
#define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_NONSTRICT_P(X)
#define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_NONSTRICT_P(X)
#else
#define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_STRICT_P(X)
#define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_STRICT_P(X)
#endif
/* S/390 has no mode dependent addresses. */
#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR, LABEL)
/* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression that is a
valid memory address for an instruction.
The MODE argument is the machine mode for the MEM expression
that wants to use this address. */
#ifdef REG_OK_STRICT
#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
{ \
if (legitimate_address_p (MODE, X, 1)) \
goto ADDR; \
}
#else
#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
{ \
if (legitimate_address_p (MODE, X, 0)) \
goto ADDR; \
}
#endif
/* Try machine-dependent ways of modifying an illegitimate address
to be legitimate. If we find one, return the new, valid address.
This macro is used in only one place: `memory_address' in explow.c. */
#define LEGITIMIZE_ADDRESS(X, OLDX, MODE, WIN) \
{ \
(X) = legitimize_address (X, OLDX, MODE); \
if (memory_address_p (MODE, X)) \
goto WIN; \
}
/* Nonzero if the constant value X is a legitimate general operand.
It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
#define LEGITIMATE_CONSTANT_P(X) \
legitimate_constant_p (X)
/* Helper macro for s390.c and s390.md to check for symbolic constants. */
#define SYMBOLIC_CONST(X) \
(GET_CODE (X) == SYMBOL_REF \
|| GET_CODE (X) == LABEL_REF \
|| (GET_CODE (X) == CONST && symbolic_reference_mentioned_p (X)))
#define TLS_SYMBOLIC_CONST(X) \
((GET_CODE (X) == SYMBOL_REF && tls_symbolic_operand (X)) \
|| (GET_CODE (X) == CONST && tls_symbolic_reference_mentioned_p (X)))
/* Condition codes. */
/* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
return the mode to be used for the comparison. */
#define SELECT_CC_MODE(OP, X, Y) s390_select_ccmode ((OP), (X), (Y))
/* Define the information needed to generate branch and scc insns. This is
stored from the compare operation. Note that we can't use "rtx" here
since it hasn't been defined! */
extern struct rtx_def *s390_compare_op0, *s390_compare_op1;
/* Relative costs of operations. */
/* On s390, copy between fprs and gprs is expensive. */
#define REGISTER_MOVE_COST(MODE, CLASS1, CLASS2) \
(( ( reg_classes_intersect_p ((CLASS1), GENERAL_REGS) \
&& reg_classes_intersect_p ((CLASS2), FP_REGS)) \
|| ( reg_classes_intersect_p ((CLASS1), FP_REGS) \
&& reg_classes_intersect_p ((CLASS2), GENERAL_REGS))) ? 10 : 1)
/* A C expression for the cost of moving data of mode M between a
register and memory. A value of 2 is the default; this cost is
relative to those in `REGISTER_MOVE_COST'. */
#define MEMORY_MOVE_COST(M, C, I) 1
/* A C expression for the cost of a branch instruction. A value of 1
is the default; other values are interpreted relative to that. */
#define BRANCH_COST 1
/* Nonzero if access to memory by bytes is slow and undesirable. */
#define SLOW_BYTE_ACCESS 1
/* The maximum number of bytes that a single instruction can move quickly
between memory and registers or between two memory locations. */
#define MOVE_MAX (TARGET_64BIT ? 16 : 8)
#define MAX_MOVE_MAX 16
/* Determine whether to use move_by_pieces or block move insn. */
#define MOVE_BY_PIECES_P(SIZE, ALIGN) \
( (SIZE) == 1 || (SIZE) == 2 || (SIZE) == 4 \
|| (TARGET_64BIT && (SIZE) == 8) )
/* Determine whether to use clear_by_pieces or block clear insn. */
#define CLEAR_BY_PIECES_P(SIZE, ALIGN) \
( (SIZE) == 1 || (SIZE) == 2 || (SIZE) == 4 \
|| (TARGET_64BIT && (SIZE) == 8) )
/* Don't perform CSE on function addresses. */
#define NO_FUNCTION_CSE
/* Sections. */
/* Output before read-only data. */
#define TEXT_SECTION_ASM_OP ".text"
/* Output before writable (initialized) data. */
#define DATA_SECTION_ASM_OP ".data"
/* Output before writable (uninitialized) data. */
#define BSS_SECTION_ASM_OP ".bss"
/* S/390 constant pool breaks the devices in crtstuff.c to control section
in where code resides. We have to write it as asm code. */
#ifndef __s390x__
#define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \
asm (SECTION_OP "\n\
bras\t%r2,1f\n\
0: .long\t" USER_LABEL_PREFIX #FUNC " - 0b\n\
1: l\t%r3,0(%r2)\n\
bas\t%r14,0(%r3,%r2)\n\
.previous");
#endif
/* Position independent code. */
extern int flag_pic;
#define PIC_OFFSET_TABLE_REGNUM (flag_pic ? 12 : INVALID_REGNUM)
#define LEGITIMATE_PIC_OPERAND_P(X) legitimate_pic_operand_p (X)
/* Assembler file format. */
/* Character to start a comment. */
#define ASM_COMMENT_START "#"
/* Declare an uninitialized external linkage data object. */
#define ASM_OUTPUT_ALIGNED_BSS(FILE, DECL, NAME, SIZE, ALIGN) \
asm_output_aligned_bss (FILE, DECL, NAME, SIZE, ALIGN)
/* Globalizing directive for a label. */
#define GLOBAL_ASM_OP ".globl "
/* Advance the location counter to a multiple of 2**LOG bytes. */
#define ASM_OUTPUT_ALIGN(FILE, LOG) \
if ((LOG)) fprintf ((FILE), "\t.align\t%d\n", 1 << (LOG))
/* Advance the location counter by SIZE bytes. */
#define ASM_OUTPUT_SKIP(FILE, SIZE) \
fprintf ((FILE), "\t.set\t.,.+"HOST_WIDE_INT_PRINT_UNSIGNED"\n", (SIZE))
/* The LOCAL_LABEL_PREFIX variable is used by dbxelf.h. */
#define LOCAL_LABEL_PREFIX "."
/* How to refer to registers in assembler output. This sequence is
indexed by compiler's hard-register-number (see above). */
#define REGISTER_NAMES \
{ "%r0", "%r1", "%r2", "%r3", "%r4", "%r5", "%r6", "%r7", \
"%r8", "%r9", "%r10", "%r11", "%r12", "%r13", "%r14", "%r15", \
"%f0", "%f2", "%f4", "%f6", "%f1", "%f3", "%f5", "%f7", \
"%f8", "%f10", "%f12", "%f14", "%f9", "%f11", "%f13", "%f15", \
"%ap", "%cc", "%fp" \
}
/* Emit a dtp-relative reference to a TLS variable. */
#ifdef HAVE_AS_TLS
#define ASM_OUTPUT_DWARF_DTPREL(FILE, SIZE, X) \
s390_output_dwarf_dtprel (FILE, SIZE, X)
#endif
/* Print operand X (an rtx) in assembler syntax to file FILE. */
#define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
#define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address (FILE, ADDR)
/* Output an element of a case-vector that is absolute. */
#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
do { \
char buf[32]; \
fputs (integer_asm_op (UNITS_PER_WORD, TRUE), (FILE)); \
ASM_GENERATE_INTERNAL_LABEL (buf, "L", (VALUE)); \
assemble_name ((FILE), buf); \
fputc ('\n', (FILE)); \
} while (0)
/* Output an element of a case-vector that is relative. */
#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
do { \
char buf[32]; \
fputs (integer_asm_op (UNITS_PER_WORD, TRUE), (FILE)); \
ASM_GENERATE_INTERNAL_LABEL (buf, "L", (VALUE)); \
assemble_name ((FILE), buf); \
fputc ('-', (FILE)); \
ASM_GENERATE_INTERNAL_LABEL (buf, "L", (REL)); \
assemble_name ((FILE), buf); \
fputc ('\n', (FILE)); \
} while (0)
/* Miscellaneous parameters. */
/* Define the codes that are matched by predicates in aux-output.c. */
#define PREDICATE_CODES \
{"s_operand", { SUBREG, MEM }}, \
{"s_imm_operand", { CONST_INT, CONST_DOUBLE, SUBREG, MEM }}, \
{"shift_count_operand", { REG, SUBREG, PLUS, CONST_INT }}, \
{"bras_sym_operand",{ SYMBOL_REF, CONST }}, \
{"larl_operand", { SYMBOL_REF, CONST, CONST_INT, CONST_DOUBLE }}, \
{"load_multiple_operation", {PARALLEL}}, \
{"store_multiple_operation", {PARALLEL}}, \
{"const0_operand", { CONST_INT, CONST_DOUBLE }}, \
{"consttable_operand", { SYMBOL_REF, LABEL_REF, CONST, \
CONST_INT, CONST_DOUBLE }}, \
{"s390_plus_operand", { PLUS }}, \
{"s390_alc_comparison", { LTU, GTU, LEU, GEU }}, \
{"s390_slb_comparison", { LTU, GTU, LEU, GEU }},
/* Specify the machine mode that this machine uses for the index in the
tablejump instruction. */
#define CASE_VECTOR_MODE (TARGET_64BIT ? DImode : SImode)
/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
is done just by pretending it is already truncated. */
#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
/* Specify the machine mode that pointers have.
After generation of rtl, the compiler makes no further distinction
between pointers and any other objects of this machine mode. */
#define Pmode ((enum machine_mode) (TARGET_64BIT ? DImode : SImode))
/* This is -1 for "pointer mode" extend. See ptr_extend in s390.md. */
#define POINTERS_EXTEND_UNSIGNED -1
/* A function address in a call instruction is a byte address (for
indexing purposes) so give the MEM rtx a byte's mode. */
#define FUNCTION_MODE QImode
/* This macro definition sets up a default value for `main' to return. */
#define DEFAULT_MAIN_RETURN c_expand_return (integer_zero_node)
#endif
|