1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
|
;; Predicate definitions for Renesas / SuperH SH.
;; Copyright (C) 2005-2013 Free Software Foundation, Inc.
;;
;; This file is part of GCC.
;;
;; GCC is free software; you can redistribute it and/or modify
;; it under the terms of the GNU General Public License as published by
;; the Free Software Foundation; either version 3, or (at your option)
;; any later version.
;;
;; GCC is distributed in the hope that it will be useful,
;; but WITHOUT ANY WARRANTY; without even the implied warranty of
;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
;; GNU General Public License for more details.
;;
;; You should have received a copy of the GNU General Public License
;; along with GCC; see the file COPYING3. If not see
;; <http://www.gnu.org/licenses/>.
;; TODO: Add a comment here.
(define_predicate "trapping_target_operand"
(match_code "if_then_else")
{
rtx cond, mem, res, tar, and_expr;
if (GET_MODE (op) != PDImode)
return 0;
cond = XEXP (op, 0);
mem = XEXP (op, 1);
res = XEXP (op, 2);
if (!MEM_P (mem)
|| (GET_CODE (res) != SIGN_EXTEND && GET_CODE (res) != TRUNCATE))
return 0;
tar = XEXP (res, 0);
if (!rtx_equal_p (XEXP (mem, 0), tar)
|| GET_MODE (tar) != Pmode)
return 0;
if (GET_CODE (cond) == CONST)
{
cond = XEXP (cond, 0);
if (!satisfies_constraint_Csy (tar))
return 0;
if (GET_CODE (tar) == CONST)
tar = XEXP (tar, 0);
}
else if (!arith_reg_operand (tar, VOIDmode)
&& ! satisfies_constraint_Csy (tar))
return 0;
if (GET_CODE (cond) != EQ)
return 0;
and_expr = XEXP (cond, 0);
return (GET_CODE (and_expr) == AND
&& rtx_equal_p (XEXP (and_expr, 0), tar)
&& CONST_INT_P (XEXP (and_expr, 1))
&& CONST_INT_P (XEXP (cond, 1))
&& INTVAL (XEXP (and_expr, 1)) == 3
&& INTVAL (XEXP (cond, 1)) == 3);
})
;; A logical operand that can be used in an shmedia and insn.
(define_predicate "and_operand"
(match_code "subreg,reg,const_int")
{
if (logical_operand (op, mode))
return 1;
/* Check mshflo.l / mshflhi.l opportunities. */
if (TARGET_SHMEDIA
&& mode == DImode
&& satisfies_constraint_J16 (op))
return 1;
return 0;
})
;; Like arith_reg_dest, but this predicate is defined with
;; define_special_predicate, not define_predicate.
(define_special_predicate "any_arith_reg_dest"
(match_code "subreg,reg")
{
return arith_reg_dest (op, mode);
})
;; Like register_operand, but this predicate is defined with
;; define_special_predicate, not define_predicate.
(define_special_predicate "any_register_operand"
(match_code "subreg,reg")
{
return register_operand (op, mode);
})
;; Returns 1 if OP is a valid source operand for an arithmetic insn.
(define_predicate "arith_operand"
(match_code "subreg,reg,const_int,truncate")
{
if (arith_reg_operand (op, mode))
return 1;
if (TARGET_SHMEDIA)
{
/* FIXME: We should be checking whether the CONST_INT fits in a
signed 16-bit here, but this causes reload_cse to crash when
attempting to transform a sequence of two 64-bit sets of the
same register from literal constants into a set and an add,
when the difference is too wide for an add. */
if (CONST_INT_P (op)
|| satisfies_constraint_Css (op))
return 1;
else if (GET_CODE (op) == TRUNCATE
&& REG_P (XEXP (op, 0))
&& ! system_reg_operand (XEXP (op, 0), VOIDmode)
&& (mode == VOIDmode || mode == GET_MODE (op))
&& (GET_MODE_SIZE (GET_MODE (op))
< GET_MODE_SIZE (GET_MODE (XEXP (op, 0))))
&& (! FP_REGISTER_P (REGNO (XEXP (op, 0)))
|| GET_MODE_SIZE (GET_MODE (op)) == 4))
return register_operand (XEXP (op, 0), VOIDmode);
else
return 0;
}
else if (satisfies_constraint_I08 (op))
return 1;
return 0;
})
;; Like above, but for DImode destinations: forbid paradoxical DImode
;; subregs, because this would lead to missing sign extensions when
;; truncating from DImode to SImode.
(define_predicate "arith_reg_dest"
(match_code "subreg,reg")
{
if (mode == DImode && GET_CODE (op) == SUBREG
&& GET_MODE_SIZE (GET_MODE (SUBREG_REG (op))) < 8
&& TARGET_SHMEDIA)
return 0;
return arith_reg_operand (op, mode);
})
;; Returns 1 if OP is a normal arithmetic register.
(define_predicate "arith_reg_operand"
(match_code "subreg,reg,sign_extend")
{
if (register_operand (op, mode))
{
int regno;
if (REG_P (op))
regno = REGNO (op);
else if (GET_CODE (op) == SUBREG && REG_P (SUBREG_REG (op)))
regno = REGNO (SUBREG_REG (op));
else
return 1;
return (regno != T_REG && regno != PR_REG
&& ! TARGET_REGISTER_P (regno)
&& regno != FPUL_REG
&& regno != MACH_REG && regno != MACL_REG);
}
/* Allow a no-op sign extension - compare LOAD_EXTEND_OP.
We allow SImode here, as not using an FP register is just a matter of
proper register allocation. */
if (TARGET_SHMEDIA
&& GET_MODE (op) == DImode && GET_CODE (op) == SIGN_EXTEND
&& GET_MODE (XEXP (op, 0)) == SImode
&& GET_CODE (XEXP (op, 0)) != SUBREG)
return register_operand (XEXP (op, 0), VOIDmode);
#if 0 /* Can't do this because of PROMOTE_MODE for unsigned vars. */
if (GET_MODE (op) == SImode && GET_CODE (op) == SIGN_EXTEND
&& GET_MODE (XEXP (op, 0)) == HImode
&& REG_P (XEXP (op, 0))
&& REGNO (XEXP (op, 0)) <= LAST_GENERAL_REG)
return register_operand (XEXP (op, 0), VOIDmode);
#endif
if (GET_MODE_CLASS (GET_MODE (op)) == MODE_VECTOR_INT
&& GET_CODE (op) == SUBREG
&& GET_MODE (SUBREG_REG (op)) == DImode
&& GET_CODE (SUBREG_REG (op)) == SIGN_EXTEND
&& GET_MODE (XEXP (SUBREG_REG (op), 0)) == SImode
&& GET_CODE (XEXP (SUBREG_REG (op), 0)) != SUBREG)
return register_operand (XEXP (SUBREG_REG (op), 0), VOIDmode);
return 0;
})
;; Returns 1 if OP is a valid source operand for a compare insn.
(define_predicate "arith_reg_or_0_operand"
(match_code "subreg,reg,const_int,const_vector")
{
if (arith_reg_operand (op, mode))
return 1;
if (satisfies_constraint_Z (op))
return 1;
return 0;
})
;; Returns true if OP is either a register or constant 0 or constant 1.
(define_predicate "arith_reg_or_0_or_1_operand"
(match_code "subreg,reg,const_int,const_vector")
{
return arith_reg_or_0_operand (op, mode) || satisfies_constraint_M (op);
})
;; Returns true if OP is a suitable constant for the minimum value of a
;; clips.b or clips.w insn.
(define_predicate "clips_min_const_int"
(and (match_code "const_int")
(ior (match_test "INTVAL (op) == -128")
(match_test "INTVAL (op) == -32768"))))
;; Returns true if OP is a suitable constant for the maximum value of a
;; clips.b or clips.w insn.
(define_predicate "clips_max_const_int"
(and (match_code "const_int")
(ior (match_test "INTVAL (op) == 127")
(match_test "INTVAL (op) == 32767"))))
;; Returns true if OP is a suitable constant for the maximum value of a
;; clipu.b or clipu.w insn.
(define_predicate "clipu_max_const_int"
(and (match_code "const_int")
(ior (match_test "INTVAL (op) == 255")
(match_test "INTVAL (op) == 65535"))))
;; Returns 1 if OP is a floating point operator with two operands.
(define_predicate "binary_float_operator"
(and (match_code "plus,minus,mult,div")
(match_test "GET_MODE (op) == mode")))
;; Returns 1 if OP is a logical operator with two operands.
(define_predicate "binary_logical_operator"
(and (match_code "and,ior,xor")
(match_test "GET_MODE (op) == mode")))
;; Return 1 if OP is an address suitable for a cache manipulation operation.
;; MODE has the meaning as in address_operand.
(define_special_predicate "cache_address_operand"
(match_code "plus,reg")
{
if (GET_CODE (op) == PLUS)
{
if (!REG_P (XEXP (op, 0)))
return 0;
if (!CONST_INT_P (XEXP (op, 1))
|| (INTVAL (XEXP (op, 1)) & 31))
return 0;
}
else if (!REG_P (op))
return 0;
return address_operand (op, mode);
})
;; Returns 1 if OP is a valid source operand for shmedia cmpgt / cmpgtu.
(define_predicate "cmp_operand"
(match_code "subreg,reg,const_int")
{
if (satisfies_constraint_N (op))
return 1;
if (TARGET_SHMEDIA
&& mode != DImode && GET_CODE (op) == SUBREG
&& GET_MODE_SIZE (GET_MODE (SUBREG_REG (op))) > 4)
return 0;
return arith_reg_operand (op, mode);
})
;; Returns true if OP is an operand that can be used as the first operand in
;; the cstoresi4 expander pattern.
(define_predicate "cmpsi_operand"
(match_code "subreg,reg,const_int")
{
if (REG_P (op) && REGNO (op) == T_REG
&& GET_MODE (op) == SImode
&& TARGET_SH1)
return 1;
return arith_operand (op, mode);
})
;; Returns true if OP is a comutative float operator.
;; This predicate is currently unused.
;;(define_predicate "commutative_float_operator"
;; (and (match_code "plus,mult")
;; (match_test "GET_MODE (op) == mode")))
;; Returns true if OP is a equal or not equal operator.
(define_predicate "equality_comparison_operator"
(match_code "eq,ne"))
;; Returns true if OP is an arithmetic operand that is zero extended during
;; an operation.
(define_predicate "extend_reg_operand"
(match_code "subreg,reg,truncate")
{
return (GET_CODE (op) == TRUNCATE
? arith_operand
: arith_reg_operand) (op, mode);
})
;; Like extend_reg_operand, but also allow a constant 0.
(define_predicate "extend_reg_or_0_operand"
(match_code "subreg,reg,truncate,const_int")
{
return (GET_CODE (op) == TRUNCATE
? arith_operand
: arith_reg_or_0_operand) (op, mode);
})
;; Like arith_reg_operand, but this predicate does not accept SIGN_EXTEND.
(define_predicate "ext_dest_operand"
(match_code "subreg,reg")
{
return arith_reg_operand (op, mode);
})
;; Returns true if OP can be used as a destination register for shmedia floating
;; point to integer conversions.
(define_predicate "fp_arith_reg_dest"
(match_code "subreg,reg")
{
if (mode == DImode && GET_CODE (op) == SUBREG
&& GET_MODE_SIZE (GET_MODE (SUBREG_REG (op))) < 8)
return 0;
return fp_arith_reg_operand (op, mode);
})
;; Returns true if OP is a floating point register that can be used in floating
;; point arithmetic operations.
(define_predicate "fp_arith_reg_operand"
(match_code "subreg,reg")
{
if (register_operand (op, mode))
{
int regno;
if (REG_P (op))
regno = REGNO (op);
else if (GET_CODE (op) == SUBREG && REG_P (SUBREG_REG (op)))
regno = REGNO (SUBREG_REG (op));
else
return 1;
return (regno >= FIRST_PSEUDO_REGISTER
|| FP_REGISTER_P (regno));
}
return 0;
})
;; Returns true if OP is the FPSCR.
(define_predicate "fpscr_operand"
(match_code "reg")
{
return (REG_P (op)
&& (REGNO (op) == FPSCR_REG
|| (REGNO (op) >= FIRST_PSEUDO_REGISTER
&& !(reload_in_progress || reload_completed)))
&& GET_MODE (op) == PSImode);
})
;; Returns true if OP is an operand that is either the fpul hard reg or
;; a pseudo. This prevents combine from propagating function arguments
;; in hard regs into insns that need the operand in fpul. If it's a pseudo
;; reload can fix it up.
(define_predicate "fpul_operand"
(match_code "reg")
{
if (TARGET_SHMEDIA)
return fp_arith_reg_operand (op, mode);
return (REG_P (op)
&& (REGNO (op) == FPUL_REG || REGNO (op) >= FIRST_PSEUDO_REGISTER)
&& GET_MODE (op) == mode);
})
;; Returns true if OP is a valid fpul input operand for the fsca insn.
;; The value in fpul is a fixed-point value and its scaling is described
;; in the fsca insn by a mult:SF. To allow pre-scaled fixed-point inputs
;; in fpul we have to permit things like
;; (reg:SI)
;; (fix:SF (float:SF (reg:SI)))
(define_predicate "fpul_fsca_operand"
(match_code "fix,reg")
{
if (fpul_operand (op, SImode))
return true;
if (GET_CODE (op) == FIX && GET_MODE (op) == SImode
&& GET_CODE (XEXP (op, 0)) == FLOAT && GET_MODE (XEXP (op, 0)) == SFmode)
return fpul_fsca_operand (XEXP (XEXP (op, 0), 0),
GET_MODE (XEXP (XEXP (op, 0), 0)));
return false;
})
;; Returns true if OP is a valid constant scale factor for the fsca insn.
(define_predicate "fsca_scale_factor"
(and (match_code "const_double")
(match_test "op == sh_fsca_int2sf ()")))
;; Returns true if OP is an operand that is zero extended during an operation.
(define_predicate "general_extend_operand"
(match_code "subreg,reg,mem,truncate")
{
if (GET_CODE (op) == TRUNCATE)
return arith_operand (op, mode);
if (MEM_P (op) || (GET_CODE (op) == SUBREG && MEM_P (SUBREG_REG (op))))
return general_movsrc_operand (op, mode);
return nonimmediate_operand (op, mode);
})
;; Returns 1 if OP is a simple register address.
(define_predicate "simple_mem_operand"
(and (match_code "mem")
(match_test "arith_reg_operand (XEXP (op, 0), SImode)")))
;; Returns 1 if OP is a valid displacement address.
(define_predicate "displacement_mem_operand"
(and (match_code "mem")
(match_test "GET_CODE (XEXP (op, 0)) == PLUS")
(match_test "arith_reg_operand (XEXP (XEXP (op, 0), 0), SImode)")
(match_test "sh_legitimate_index_p (GET_MODE (op),
XEXP (XEXP (op, 0), 1),
TARGET_SH2A, true)")))
;; Returns 1 if the operand can be used in an SH2A movu.{b|w} insn.
(define_predicate "zero_extend_movu_operand"
(and (match_operand 0 "displacement_mem_operand")
(match_test "GET_MODE (op) == QImode || GET_MODE (op) == HImode")))
;; Returns 1 if the operand can be used in a zero_extend.
(define_predicate "zero_extend_operand"
(ior (and (match_test "TARGET_SHMEDIA")
(match_operand 0 "general_extend_operand"))
(and (match_test "! TARGET_SHMEDIA")
(match_operand 0 "arith_reg_operand"))
(and (match_test "TARGET_SH2A")
(match_operand 0 "zero_extend_movu_operand"))))
;; Returns 1 if OP can be source of a simple move operation. Same as
;; general_operand, but a LABEL_REF is valid, PRE_DEC is invalid as
;; are subregs of system registers.
(define_predicate "general_movsrc_operand"
(match_code "subreg,reg,const_int,const_double,mem,symbol_ref,label_ref,
const,const_vector")
{
if (t_reg_operand (op, mode))
return 0;
if (MEM_P (op))
{
rtx inside = XEXP (op, 0);
/* Disallow mems with GBR address here. They have to go through
separate special patterns. */
if ((REG_P (inside) && REGNO (inside) == GBR_REG)
|| (GET_CODE (inside) == PLUS && REG_P (XEXP (inside, 0))
&& REGNO (XEXP (inside, 0)) == GBR_REG))
return 0;
if (GET_CODE (inside) == CONST)
inside = XEXP (inside, 0);
if (GET_CODE (inside) == LABEL_REF)
return 1;
if (GET_CODE (inside) == PLUS
&& GET_CODE (XEXP (inside, 0)) == LABEL_REF
&& CONST_INT_P (XEXP (inside, 1)))
return 1;
/* Only post inc allowed. */
if (GET_CODE (inside) == PRE_DEC)
return 0;
}
if (mode == GET_MODE (op)
&& (MEM_P (op) || (GET_CODE (op) == SUBREG && MEM_P (SUBREG_REG (op)))))
{
rtx mem_rtx = MEM_P (op) ? op : SUBREG_REG (op);
rtx x = XEXP (mem_rtx, 0);
if ((mode == QImode || mode == HImode)
&& GET_CODE (x) == PLUS
&& REG_P (XEXP (x, 0))
&& CONST_INT_P (XEXP (x, 1)))
return sh_legitimate_index_p (mode, XEXP (x, 1), TARGET_SH2A, false);
/* Allow reg+reg addressing here without validating the register
numbers. Usually one of the regs must be R0 or a pseudo reg.
In some cases it can happen that arguments from hard regs are
propagated directly into address expressions. In this cases reload
will have to fix it up later. However, allow this only for native
1, 2 or 4 byte addresses. */
if (can_create_pseudo_p () && GET_CODE (x) == PLUS
&& GET_MODE_SIZE (mode) <= 4
&& REG_P (XEXP (x, 0)) && REG_P (XEXP (x, 1)))
return true;
/* 'general_operand' does not allow volatile mems during RTL expansion to
avoid matching arithmetic that operates on mems, it seems.
On SH this leads to redundant sign extensions for QImode or HImode
loads. Thus we mimic the behavior but allow volatile mems. */
if (memory_address_addr_space_p (GET_MODE (mem_rtx), x,
MEM_ADDR_SPACE (mem_rtx)))
return true;
}
if (TARGET_SHMEDIA
&& (GET_CODE (op) == PARALLEL || GET_CODE (op) == CONST_VECTOR)
&& sh_rep_vec (op, mode))
return 1;
if (TARGET_SHMEDIA && 1
&& GET_CODE (op) == SUBREG && GET_MODE (op) == mode
&& SUBREG_REG (op) == const0_rtx && subreg_lowpart_p (op))
/* FIXME */ abort (); /* return 1; */
return general_operand (op, mode);
})
;; Returns 1 if OP is a MEM that does not use displacement addressing.
(define_predicate "movsrc_no_disp_mem_operand"
(match_code "mem")
{
return general_movsrc_operand (op, mode) && satisfies_constraint_Snd (op);
})
;; Returns 1 if OP can be a destination of a move. Same as
;; general_operand, but no preinc allowed.
(define_predicate "general_movdst_operand"
(match_code "subreg,reg,mem")
{
if (t_reg_operand (op, mode))
return 0;
if (MEM_P (op))
{
rtx inside = XEXP (op, 0);
/* Disallow mems with GBR address here. They have to go through
separate special patterns. */
if ((REG_P (inside) && REGNO (inside) == GBR_REG)
|| (GET_CODE (inside) == PLUS && REG_P (XEXP (inside, 0))
&& REGNO (XEXP (inside, 0)) == GBR_REG))
return 0;
}
/* Only pre dec allowed. */
if (MEM_P (op) && GET_CODE (XEXP (op, 0)) == POST_INC)
return 0;
if (mode == DImode && TARGET_SHMEDIA && GET_CODE (op) == SUBREG
&& GET_MODE_SIZE (GET_MODE (SUBREG_REG (op))) < 8
&& ! (reload_in_progress || reload_completed))
return 0;
if (mode == GET_MODE (op)
&& (MEM_P (op) || (GET_CODE (op) == SUBREG && MEM_P (SUBREG_REG (op)))))
{
rtx mem_rtx = MEM_P (op) ? op : SUBREG_REG (op);
rtx x = XEXP (mem_rtx, 0);
if ((mode == QImode || mode == HImode)
&& GET_CODE (x) == PLUS
&& REG_P (XEXP (x, 0))
&& CONST_INT_P (XEXP (x, 1)))
return sh_legitimate_index_p (mode, XEXP (x, 1), TARGET_SH2A, false);
/* Allow reg+reg addressing here without validating the register
numbers. Usually one of the regs must be R0 or a pseudo reg.
In some cases it can happen that arguments from hard regs are
propagated directly into address expressions. In this cases reload
will have to fix it up later. However, allow this only for native
1, 2 or 4 byte addresses. */
if (can_create_pseudo_p () && GET_CODE (x) == PLUS
&& GET_MODE_SIZE (mode) <= 4
&& REG_P (XEXP (x, 0)) && REG_P (XEXP (x, 1)))
return true;
/* 'general_operand' does not allow volatile mems during RTL expansion to
avoid matching arithmetic that operates on mems, it seems.
On SH this leads to redundant sign extensions for QImode or HImode
stores. Thus we mimic the behavior but allow volatile mems. */
if (memory_address_addr_space_p (GET_MODE (mem_rtx), x,
MEM_ADDR_SPACE (mem_rtx)))
return true;
}
return general_operand (op, mode);
})
;; Returns 1 if OP is a POST_INC on stack pointer register.
(define_predicate "sh_no_delay_pop_operand"
(match_code "mem")
{
rtx inside;
inside = XEXP (op, 0);
if (GET_CODE (op) == MEM && GET_MODE (op) == SImode
&& GET_CODE (inside) == POST_INC
&& GET_CODE (XEXP (inside, 0)) == REG
&& REGNO (XEXP (inside, 0)) == SP_REG)
return 1;
return 0;
})
;; Returns 1 if OP is a MEM that can be source of a simple move operation.
(define_predicate "unaligned_load_operand"
(match_code "mem")
{
rtx inside;
if (!MEM_P (op) || GET_MODE (op) != mode)
return 0;
inside = XEXP (op, 0);
if (GET_CODE (inside) == POST_INC)
inside = XEXP (inside, 0);
if (REG_P (inside))
return 1;
return 0;
})
;; Returns 1 if OP is a MEM that can be used in "index_disp" combiner
;; patterns.
(define_predicate "mem_index_disp_operand"
(match_code "mem")
{
rtx plus0_rtx, plus1_rtx, mult_rtx;
plus0_rtx = XEXP (op, 0);
if (GET_CODE (plus0_rtx) != PLUS)
return 0;
plus1_rtx = XEXP (plus0_rtx, 0);
if (GET_CODE (plus1_rtx) != PLUS)
return 0;
if (! arith_reg_operand (XEXP (plus1_rtx, 1), GET_MODE (XEXP (plus1_rtx, 1))))
return 0;
mult_rtx = XEXP (plus1_rtx, 0);
if (GET_CODE (mult_rtx) != MULT)
return 0;
if (! arith_reg_operand (XEXP (mult_rtx, 0), GET_MODE (XEXP (mult_rtx, 0)))
|| ! CONST_INT_P (XEXP (mult_rtx, 1)))
return 0;
return exact_log2 (INTVAL (XEXP (mult_rtx, 1))) > 0
&& sh_legitimate_index_p (mode, XEXP (plus0_rtx, 1), TARGET_SH2A, true);
})
;; Returns true if OP is some kind of greater comparision.
(define_predicate "greater_comparison_operator"
(match_code "gt,ge,gtu,geu"))
;; Returns true if OP is an operand suitable for shmedia reload_inqi and
;; reload_inhi insns.
(define_predicate "inqhi_operand"
(match_code "truncate")
{
if (GET_CODE (op) != TRUNCATE || mode != GET_MODE (op))
return 0;
op = XEXP (op, 0);
/* Can't use true_regnum here because copy_cost wants to know about
SECONDARY_INPUT_RELOAD_CLASS. */
return REG_P (op) && FP_REGISTER_P (REGNO (op));
})
;; Returns true if OP is a general purpose integer register.
;; This predicate is currently unused.
;;(define_special_predicate "int_gpr_dest"
;; (match_code "subreg,reg")
;;{
;; enum machine_mode op_mode = GET_MODE (op);
;;
;; if (GET_MODE_CLASS (op_mode) != MODE_INT
;; || GET_MODE_SIZE (op_mode) >= UNITS_PER_WORD)
;; return 0;
;; if (! reload_completed)
;; return 0;
;; return true_regnum (op) <= LAST_GENERAL_REG;
;;})
;; Returns true if OP is some kind of less comparison.
(define_predicate "less_comparison_operator"
(match_code "lt,le,ltu,leu"))
;; Returns 1 if OP is a valid source operand for a logical operation.
(define_predicate "logical_operand"
(match_code "subreg,reg,const_int")
{
if (TARGET_SHMEDIA
&& mode != DImode && GET_CODE (op) == SUBREG
&& GET_MODE_SIZE (GET_MODE (SUBREG_REG (op))) > 4)
return 0;
if (arith_reg_operand (op, mode))
return 1;
if (TARGET_SHMEDIA)
{
if (satisfies_constraint_I10 (op))
return 1;
else
return 0;
}
else if (satisfies_constraint_K08 (op))
return 1;
return 0;
})
;; Like logical_operand but allows additional constant values which can be
;; done with zero extensions. Used for the second operand of and insns.
(define_predicate "logical_and_operand"
(match_code "subreg,reg,const_int")
{
if (logical_operand (op, mode))
return 1;
if (! TARGET_SHMEDIA
&& (satisfies_constraint_Jmb (op) || satisfies_constraint_Jmw (op)))
return 1;
return 0;
})
;; Returns true if OP is a logical operator.
(define_predicate "logical_operator"
(match_code "and,ior,xor"))
;; Like arith_reg_operand, but for register source operands of narrow
;; logical SHMEDIA operations: forbid subregs of DImode / TImode regs.
(define_predicate "logical_reg_operand"
(match_code "subreg,reg")
{
if (TARGET_SHMEDIA
&& GET_CODE (op) == SUBREG
&& GET_MODE_SIZE (GET_MODE (SUBREG_REG (op))) > 4
&& mode != DImode)
return 0;
return arith_reg_operand (op, mode);
})
;; Returns true if OP is a valid bit offset value for the shmedia mextr insns.
(define_predicate "mextr_bit_offset"
(match_code "const_int")
{
HOST_WIDE_INT i;
if (!CONST_INT_P (op))
return 0;
i = INTVAL (op);
return i >= 1 * 8 && i <= 7 * 8 && (i & 7) == 0;
})
;; Returns true if OP is a constant -1, 0 or an zero extended register that
;; can be used as an operator in the *subsi3_media insn.
(define_predicate "minuend_operand"
(match_code "subreg,reg,truncate,const_int")
{
return op == constm1_rtx || extend_reg_or_0_operand (op, mode);
})
;; Returns true if OP is a noncommutative floating point operator.
;; This predicate is currently unused.
;;(define_predicate "noncommutative_float_operator"
;; (and (match_code "minus,div")
;; (match_test "GET_MODE (op) == mode")))
;; UNORDERED is only supported on SHMEDIA.
(define_predicate "sh_float_comparison_operator"
(ior (match_operand 0 "ordered_comparison_operator")
(and (match_test "TARGET_SHMEDIA")
(match_code "unordered"))))
(define_predicate "shmedia_cbranch_comparison_operator"
(ior (match_operand 0 "equality_comparison_operator")
(match_operand 0 "greater_comparison_operator")))
;; Returns true if OP is a constant vector.
(define_predicate "sh_const_vec"
(match_code "const_vector")
{
int i;
if (GET_CODE (op) != CONST_VECTOR
|| (GET_MODE (op) != mode && mode != VOIDmode))
return 0;
i = XVECLEN (op, 0) - 1;
for (; i >= 0; i--)
if (!CONST_INT_P (XVECEXP (op, 0, i)))
return 0;
return 1;
})
;; Determine if OP is a constant vector matching MODE with only one
;; element that is not a sign extension. Two byte-sized elements
;; count as one.
(define_predicate "sh_1el_vec"
(match_code "const_vector")
{
int unit_size;
int i, last, least, sign_ix;
rtx sign;
if (GET_CODE (op) != CONST_VECTOR
|| (GET_MODE (op) != mode && mode != VOIDmode))
return 0;
/* Determine numbers of last and of least significant elements. */
last = XVECLEN (op, 0) - 1;
least = TARGET_LITTLE_ENDIAN ? 0 : last;
if (!CONST_INT_P (XVECEXP (op, 0, least)))
return 0;
sign_ix = least;
if (GET_MODE_UNIT_SIZE (mode) == 1)
sign_ix = TARGET_LITTLE_ENDIAN ? 1 : last - 1;
if (!CONST_INT_P (XVECEXP (op, 0, sign_ix)))
return 0;
unit_size = GET_MODE_UNIT_SIZE (GET_MODE (op));
sign = (INTVAL (XVECEXP (op, 0, sign_ix)) >> (unit_size * BITS_PER_UNIT - 1)
? constm1_rtx : const0_rtx);
i = XVECLEN (op, 0) - 1;
do
if (i != least && i != sign_ix && XVECEXP (op, 0, i) != sign)
return 0;
while (--i);
return 1;
})
;; Like register_operand, but take into account that SHMEDIA can use
;; the constant zero like a general register.
(define_predicate "sh_register_operand"
(match_code "reg,subreg,const_int,const_double")
{
if (op == CONST0_RTX (mode) && TARGET_SHMEDIA)
return 1;
return register_operand (op, mode);
})
;; Returns true if OP is a vector which is composed of one element that is
;; repeated.
(define_predicate "sh_rep_vec"
(match_code "const_vector,parallel")
{
int i;
rtx x, y;
if ((GET_CODE (op) != CONST_VECTOR && GET_CODE (op) != PARALLEL)
|| (GET_MODE (op) != mode && mode != VOIDmode))
return 0;
i = XVECLEN (op, 0) - 2;
x = XVECEXP (op, 0, i + 1);
if (GET_MODE_UNIT_SIZE (mode) == 1)
{
y = XVECEXP (op, 0, i);
for (i -= 2; i >= 0; i -= 2)
if (! rtx_equal_p (XVECEXP (op, 0, i + 1), x)
|| ! rtx_equal_p (XVECEXP (op, 0, i), y))
return 0;
}
else
for (; i >= 0; i--)
if (XVECEXP (op, 0, i) != x)
return 0;
return 1;
})
;; Returns true if OP is a valid shift count operand for shift operations.
(define_predicate "shift_count_operand"
(match_code "const_int,const_double,const,symbol_ref,label_ref,subreg,reg,
zero_extend,sign_extend")
{
/* Allow T_REG as shift count for dynamic shifts, although it is not
really possible. It will then be copied to a general purpose reg. */
if (! TARGET_SHMEDIA)
return const_int_operand (op, mode) || arith_reg_operand (op, mode)
|| (TARGET_DYNSHIFT && t_reg_operand (op, mode));
return (CONSTANT_P (op)
? (CONST_INT_P (op)
? (unsigned) INTVAL (op) < GET_MODE_BITSIZE (mode)
: nonmemory_operand (op, mode))
: shift_count_reg_operand (op, mode));
})
;; Returns true if OP is a valid shift count operand in a register which can
;; be used by shmedia shift insns.
(define_predicate "shift_count_reg_operand"
(match_code "subreg,reg,zero_extend,sign_extend")
{
if ((GET_CODE (op) == ZERO_EXTEND || GET_CODE (op) == SIGN_EXTEND
|| (GET_CODE (op) == SUBREG && SUBREG_BYTE (op) == 0))
&& (mode == VOIDmode || mode == GET_MODE (op))
&& GET_MODE_BITSIZE (GET_MODE (XEXP (op, 0))) >= 6
&& GET_MODE_CLASS (GET_MODE (XEXP (op, 0))) == MODE_INT)
{
mode = VOIDmode;
do
op = XEXP (op, 0);
while ((GET_CODE (op) == ZERO_EXTEND || GET_CODE (op) == SIGN_EXTEND
|| GET_CODE (op) == TRUNCATE)
&& GET_MODE_BITSIZE (GET_MODE (XEXP (op, 0))) >= 6
&& GET_MODE_CLASS (GET_MODE (XEXP (op, 0))) == MODE_INT);
}
return arith_reg_operand (op, mode);
})
;; Predicates for matching operands that are constant shift
;; amounts 1, 2, 8, 16.
(define_predicate "p27_shift_count_operand"
(and (match_code "const_int")
(match_test "satisfies_constraint_P27 (op)")))
(define_predicate "not_p27_shift_count_operand"
(and (match_code "const_int")
(match_test "! satisfies_constraint_P27 (op)")))
;; For right shifts the constant 1 is a special case because the shlr insn
;; clobbers the T_REG and is handled by the T_REG clobbering version of the
;; insn, which is also used for non-P27 shift sequences.
(define_predicate "p27_rshift_count_operand"
(and (match_code "const_int")
(match_test "satisfies_constraint_P27 (op)")
(match_test "! satisfies_constraint_M (op)")))
(define_predicate "not_p27_rshift_count_operand"
(and (match_code "const_int")
(ior (match_test "! satisfies_constraint_P27 (op)")
(match_test "satisfies_constraint_M (op)"))))
;; Returns true if OP is some kind of a shift operator.
(define_predicate "shift_operator"
(match_code "ashift,ashiftrt,lshiftrt"))
;; Returns true if OP is a symbol reference.
(define_predicate "symbol_ref_operand"
(match_code "symbol_ref"))
;; Same as target_reg_operand, except that label_refs and symbol_refs
;; are accepted before reload.
(define_special_predicate "target_operand"
(match_code "subreg,reg,label_ref,symbol_ref,const,unspec")
{
if (mode != VOIDmode && mode != Pmode)
return 0;
if ((GET_MODE (op) == Pmode || GET_MODE (op) == VOIDmode)
&& satisfies_constraint_Csy (op))
return ! reload_completed;
return target_reg_operand (op, mode);
})
;; A predicate that accepts pseudos and branch target registers.
(define_special_predicate "target_reg_operand"
(match_code "subreg,reg")
{
if (mode == VOIDmode
? GET_MODE (op) != Pmode && GET_MODE (op) != PDImode
: mode != GET_MODE (op))
return 0;
if (GET_CODE (op) == SUBREG)
op = XEXP (op, 0);
if (!REG_P (op))
return 0;
/* We must protect ourselves from matching pseudos that are virtual
register, because they will eventually be replaced with hardware
registers that aren't branch-target registers. */
if (REGNO (op) > LAST_VIRTUAL_REGISTER
|| TARGET_REGISTER_P (REGNO (op)))
return 1;
return 0;
})
;; Returns true if OP is a valid operand for the shmedia mperm.w insn.
(define_special_predicate "trunc_hi_operand"
(match_code "subreg,reg,truncate")
{
enum machine_mode op_mode = GET_MODE (op);
if (op_mode != SImode && op_mode != DImode
&& op_mode != V4HImode && op_mode != V2SImode)
return 0;
return extend_reg_operand (op, mode);
})
;; Returns true if OP is an address suitable for an unaligned access
;; instruction.
(define_special_predicate "ua_address_operand"
(match_code "subreg,reg,plus")
{
if (GET_CODE (op) == PLUS
&& (! satisfies_constraint_I06 (XEXP (op, 1))))
return 0;
return address_operand (op, QImode);
})
;; Returns true if OP is a valid offset for an unaligned memory address.
(define_predicate "ua_offset"
(match_code "const_int")
{
return satisfies_constraint_I06 (op);
})
;; Returns true if OP is a floating point operator with one operand.
(define_predicate "unary_float_operator"
(and (match_code "abs,neg,sqrt")
(match_test "GET_MODE (op) == mode")))
;; Return 1 if OP is a valid source operand for xor.
(define_predicate "xor_operand"
(match_code "subreg,reg,const_int")
{
if (CONST_INT_P (op))
return (TARGET_SHMEDIA
? (satisfies_constraint_I06 (op)
|| (!can_create_pseudo_p () && INTVAL (op) == 0xff))
: satisfies_constraint_K08 (op));
if (TARGET_SHMEDIA
&& mode != DImode && GET_CODE (op) == SUBREG
&& GET_MODE_SIZE (GET_MODE (SUBREG_REG (op))) > 4)
return 0;
return arith_reg_operand (op, mode);
})
(define_predicate "bitwise_memory_operand"
(match_code "mem")
{
if (MEM_P (op))
{
if (REG_P (XEXP (op, 0)))
return 1;
if (GET_CODE (XEXP (op, 0)) == PLUS
&& REG_P (XEXP (XEXP (op, 0), 0))
&& satisfies_constraint_K12 (XEXP (XEXP (op, 0), 1)))
return 1;
}
return 0;
})
;; The atomic_* operand predicates are used for the atomic patterns.
;; Depending on the particular pattern some operands can be immediate
;; values. Using these predicates avoids the usage of 'force_reg' in the
;; expanders.
(define_predicate "atomic_arith_operand"
(ior (match_code "subreg,reg")
(and (match_test "satisfies_constraint_I08 (op)")
(match_test "mode != QImode")
(match_test "mode != HImode")
(match_test "TARGET_SH4A_ARCH"))))
(define_predicate "atomic_logical_operand"
(ior (match_code "subreg,reg")
(and (match_test "satisfies_constraint_K08 (op)")
(match_test "mode != QImode")
(match_test "mode != HImode")
(match_test "TARGET_SH4A_ARCH"))))
;; A predicate describing the T bit register in any form.
(define_predicate "t_reg_operand"
(match_code "reg,subreg,sign_extend,zero_extend")
{
switch (GET_CODE (op))
{
case REG:
return REGNO (op) == T_REG;
case SUBREG:
return REG_P (SUBREG_REG (op)) && REGNO (SUBREG_REG (op)) == T_REG;
case ZERO_EXTEND:
case SIGN_EXTEND:
return GET_CODE (XEXP (op, 0)) == SUBREG
&& REG_P (SUBREG_REG (XEXP (op, 0)))
&& REGNO (SUBREG_REG (XEXP (op, 0))) == T_REG;
default:
return 0;
}
})
;; A predicate describing a negated T bit register.
(define_predicate "negt_reg_operand"
(match_code "subreg,xor")
{
switch (GET_CODE (op))
{
case XOR:
return t_reg_operand (XEXP (op, 0), GET_MODE (XEXP (op, 0)))
&& satisfies_constraint_M (XEXP (op, 1));
case SUBREG:
return negt_reg_operand (XEXP (op, 0), GET_MODE (XEXP (op, 0)));
default:
return 0;
}
})
;; A predicate that returns true if OP is a valid construct around the T bit
;; that can be used as an operand for conditional branches.
(define_predicate "cbranch_treg_value"
(match_code "eq,ne,reg,subreg,xor,sign_extend,zero_extend")
{
return sh_eval_treg_value (op) >= 0;
})
;; Returns true if OP is arith_reg_operand or t_reg_operand.
(define_predicate "arith_reg_or_t_reg_operand"
(ior (match_operand 0 "arith_reg_operand")
(match_operand 0 "t_reg_operand")))
;; A predicate describing the negated value of the T bit register shifted
;; left by 31.
(define_predicate "negt_reg_shl31_operand"
(match_code "plus,minus,if_then_else")
{
/* (plus:SI (mult:SI (match_operand:SI 1 "t_reg_operand")
(const_int -2147483648)) ;; 0xffffffff80000000
(const_int -2147483648))
*/
if (GET_CODE (op) == PLUS && satisfies_constraint_Jhb (XEXP (op, 1))
&& GET_CODE (XEXP (op, 0)) == MULT
&& t_reg_operand (XEXP (XEXP (op, 0), 0), SImode)
&& satisfies_constraint_Jhb (XEXP (XEXP (op, 0), 1)))
return true;
/* (minus:SI (const_int -2147483648) ;; 0xffffffff80000000
(mult:SI (match_operand:SI 1 "t_reg_operand")
(const_int -2147483648)))
*/
if (GET_CODE (op) == MINUS
&& satisfies_constraint_Jhb (XEXP (op, 0))
&& GET_CODE (XEXP (op, 1)) == MULT
&& t_reg_operand (XEXP (XEXP (op, 1), 0), SImode)
&& satisfies_constraint_Jhb (XEXP (XEXP (op, 1), 1)))
return true;
/* (if_then_else:SI (match_operand:SI 1 "t_reg_operand")
(const_int 0)
(const_int -2147483648)) ;; 0xffffffff80000000
*/
if (GET_CODE (op) == IF_THEN_ELSE && t_reg_operand (XEXP (op, 0), SImode)
&& satisfies_constraint_Z (XEXP (op, 1))
&& satisfies_constraint_Jhb (XEXP (op, 2)))
return true;
return false;
})
;; A predicate that determines whether a given constant is a valid
;; displacement for a GBR load/store of the specified mode.
(define_predicate "gbr_displacement"
(match_code "const_int")
{
const int mode_sz = GET_MODE_SIZE (mode);
const int move_sz = mode_sz > GET_MODE_SIZE (SImode)
? GET_MODE_SIZE (SImode)
: mode_sz;
int max_disp = 255 * move_sz;
if (mode_sz > move_sz)
max_disp -= mode_sz - move_sz;
return INTVAL (op) >= 0 && INTVAL (op) <= max_disp;
})
;; A predicate that determines whether OP is a valid GBR addressing mode
;; memory reference.
(define_predicate "gbr_address_mem"
(match_code "mem")
{
rtx addr = XEXP (op, 0);
if (REG_P (addr) && REGNO (addr) == GBR_REG)
return true;
if (GET_CODE (addr) == PLUS
&& REG_P (XEXP (addr, 0)) && REGNO (XEXP (addr, 0)) == GBR_REG
&& gbr_displacement (XEXP (addr, 1), mode))
return true;
return false;
})
|