1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
|
/* Definitions of target machine for GNU compiler for Renesas / SuperH SH.
Copyright (C) 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
2003, 2004, 2005, 2006, 2007 Free Software Foundation, Inc.
Contributed by Steve Chamberlain (sac@cygnus.com).
Improved by Jim Wilson (wilson@cygnus.com).
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3, or (at your option)
any later version.
GCC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
#ifndef GCC_SH_H
#define GCC_SH_H
#include "config/vxworks-dummy.h"
#define TARGET_VERSION \
fputs (" (Hitachi SH)", stderr);
/* Unfortunately, insn-attrtab.c doesn't include insn-codes.h. We can't
include it here, because bconfig.h is also included by gencodes.c . */
/* ??? No longer true. */
extern int code_for_indirect_jump_scratch;
#define TARGET_CPU_CPP_BUILTINS() \
do { \
builtin_define ("__sh__"); \
builtin_assert ("cpu=sh"); \
builtin_assert ("machine=sh"); \
switch ((int) sh_cpu) \
{ \
case PROCESSOR_SH1: \
builtin_define ("__sh1__"); \
break; \
case PROCESSOR_SH2: \
builtin_define ("__sh2__"); \
break; \
case PROCESSOR_SH2E: \
builtin_define ("__SH2E__"); \
break; \
case PROCESSOR_SH2A: \
builtin_define ("__SH2A__"); \
builtin_define (TARGET_SH2A_DOUBLE \
? (TARGET_FPU_SINGLE ? "__SH2A_SINGLE__" : "__SH2A_DOUBLE__") \
: TARGET_FPU_ANY ? "__SH2A_SINGLE_ONLY__" \
: "__SH2A_NOFPU__"); \
break; \
case PROCESSOR_SH3: \
builtin_define ("__sh3__"); \
builtin_define ("__SH3__"); \
if (TARGET_HARD_SH4) \
builtin_define ("__SH4_NOFPU__"); \
break; \
case PROCESSOR_SH3E: \
builtin_define (TARGET_HARD_SH4 ? "__SH4_SINGLE_ONLY__" : "__SH3E__"); \
break; \
case PROCESSOR_SH4: \
builtin_define (TARGET_FPU_SINGLE ? "__SH4_SINGLE__" : "__SH4__"); \
break; \
case PROCESSOR_SH4A: \
builtin_define ("__SH4A__"); \
builtin_define (TARGET_SH4 \
? (TARGET_FPU_SINGLE ? "__SH4_SINGLE__" : "__SH4__") \
: TARGET_FPU_ANY ? "__SH4_SINGLE_ONLY__" \
: "__SH4_NOFPU__"); \
break; \
case PROCESSOR_SH5: \
{ \
builtin_define_with_value ("__SH5__", \
TARGET_SHMEDIA64 ? "64" : "32", 0); \
builtin_define_with_value ("__SHMEDIA__", \
TARGET_SHMEDIA ? "1" : "0", 0); \
if (! TARGET_FPU_DOUBLE) \
builtin_define ("__SH4_NOFPU__"); \
} \
} \
if (TARGET_FPU_ANY) \
builtin_define ("__SH_FPU_ANY__"); \
if (TARGET_FPU_DOUBLE) \
builtin_define ("__SH_FPU_DOUBLE__"); \
if (TARGET_HITACHI) \
builtin_define ("__HITACHI__"); \
builtin_define (TARGET_LITTLE_ENDIAN \
? "__LITTLE_ENDIAN__" : "__BIG_ENDIAN__"); \
} while (0)
/* We can not debug without a frame pointer. */
/* #define CAN_DEBUG_WITHOUT_FP */
#define CONDITIONAL_REGISTER_USAGE do \
{ \
int regno; \
for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno ++) \
if (! VALID_REGISTER_P (regno)) \
fixed_regs[regno] = call_used_regs[regno] = 1; \
/* R8 and R9 are call-clobbered on SH5, but not on earlier SH ABIs. */ \
if (TARGET_SH5) \
{ \
call_used_regs[FIRST_GENERAL_REG + 8] \
= call_used_regs[FIRST_GENERAL_REG + 9] = 1; \
call_really_used_regs[FIRST_GENERAL_REG + 8] \
= call_really_used_regs[FIRST_GENERAL_REG + 9] = 1; \
} \
if (TARGET_SHMEDIA) \
{ \
regno_reg_class[FIRST_GENERAL_REG] = GENERAL_REGS; \
CLEAR_HARD_REG_SET (reg_class_contents[FP0_REGS]); \
regno_reg_class[FIRST_FP_REG] = FP_REGS; \
} \
if (flag_pic) \
{ \
fixed_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \
call_used_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \
} \
/* Renesas saves and restores mac registers on call. */ \
if (TARGET_HITACHI && ! TARGET_NOMACSAVE) \
{ \
call_really_used_regs[MACH_REG] = 0; \
call_really_used_regs[MACL_REG] = 0; \
} \
for (regno = FIRST_FP_REG + (TARGET_LITTLE_ENDIAN != 0); \
regno <= LAST_FP_REG; regno += 2) \
SET_HARD_REG_BIT (reg_class_contents[DF_HI_REGS], regno); \
if (TARGET_SHMEDIA) \
{ \
for (regno = FIRST_TARGET_REG; regno <= LAST_TARGET_REG; regno ++)\
if (! fixed_regs[regno] && call_really_used_regs[regno]) \
SET_HARD_REG_BIT (reg_class_contents[SIBCALL_REGS], regno); \
} \
else \
for (regno = FIRST_GENERAL_REG; regno <= LAST_GENERAL_REG; regno++) \
if (! fixed_regs[regno] && call_really_used_regs[regno]) \
SET_HARD_REG_BIT (reg_class_contents[SIBCALL_REGS], regno); \
} while (0)
/* Nonzero if this is an ELF target - compile time only */
#define TARGET_ELF 0
/* Nonzero if we should generate code using type 2E insns. */
#define TARGET_SH2E (TARGET_SH2 && TARGET_SH_E)
/* Nonzero if we should generate code using type 2A insns. */
#define TARGET_SH2A TARGET_HARD_SH2A
/* Nonzero if we should generate code using type 2A SF insns. */
#define TARGET_SH2A_SINGLE (TARGET_SH2A && TARGET_SH2E)
/* Nonzero if we should generate code using type 2A DF insns. */
#define TARGET_SH2A_DOUBLE (TARGET_HARD_SH2A_DOUBLE && TARGET_SH2A)
/* Nonzero if we should generate code using type 3E insns. */
#define TARGET_SH3E (TARGET_SH3 && TARGET_SH_E)
/* Nonzero if the cache line size is 32. */
#define TARGET_CACHE32 (TARGET_HARD_SH4 || TARGET_SH5)
/* Nonzero if we schedule for a superscalar implementation. */
#define TARGET_SUPERSCALAR TARGET_HARD_SH4
/* Nonzero if the target has separate instruction and data caches. */
#define TARGET_HARVARD (TARGET_HARD_SH4 || TARGET_SH5)
/* Nonzero if a double-precision FPU is available. */
#define TARGET_FPU_DOUBLE \
((target_flags & MASK_SH4) != 0 || TARGET_SH2A_DOUBLE)
/* Nonzero if an FPU is available. */
#define TARGET_FPU_ANY (TARGET_SH2E || TARGET_FPU_DOUBLE)
/* Nonzero if we should generate code using type 4 insns. */
#undef TARGET_SH4
#define TARGET_SH4 ((target_flags & MASK_SH4) != 0 && TARGET_SH1)
/* Nonzero if we're generating code for the common subset of
instructions present on both SH4a and SH4al-dsp. */
#define TARGET_SH4A_ARCH TARGET_SH4A
/* Nonzero if we're generating code for SH4a, unless the use of the
FPU is disabled (which makes it compatible with SH4al-dsp). */
#define TARGET_SH4A_FP (TARGET_SH4A_ARCH && TARGET_FPU_ANY)
/* Nonzero if we should generate code using the SHcompact instruction
set and 32-bit ABI. */
#define TARGET_SHCOMPACT (TARGET_SH5 && TARGET_SH1)
/* Nonzero if we should generate code using the SHmedia instruction
set and ABI. */
#define TARGET_SHMEDIA (TARGET_SH5 && ! TARGET_SH1)
/* Nonzero if we should generate code using the SHmedia ISA and 32-bit
ABI. */
#define TARGET_SHMEDIA32 (TARGET_SH5 && ! TARGET_SH1 && TARGET_SH_E)
/* Nonzero if we should generate code using the SHmedia ISA and 64-bit
ABI. */
#define TARGET_SHMEDIA64 (TARGET_SH5 && ! TARGET_SH1 && ! TARGET_SH_E)
/* Nonzero if we should generate code using SHmedia FPU instructions. */
#define TARGET_SHMEDIA_FPU (TARGET_SHMEDIA && TARGET_FPU_DOUBLE)
/* This is not used by the SH2E calling convention */
#define TARGET_VARARGS_PRETEND_ARGS(FUN_DECL) \
(TARGET_SH1 && ! TARGET_SH2E && ! TARGET_SH5 \
&& ! (TARGET_HITACHI || sh_attr_renesas_p (FUN_DECL)))
#ifndef TARGET_CPU_DEFAULT
#define TARGET_CPU_DEFAULT SELECT_SH1
#define SUPPORT_SH1 1
#define SUPPORT_SH2E 1
#define SUPPORT_SH4 1
#define SUPPORT_SH4_SINGLE 1
#define SUPPORT_SH2A 1
#define SUPPORT_SH2A_SINGLE 1
#endif
#define TARGET_DIVIDE_INV \
(sh_div_strategy == SH_DIV_INV || sh_div_strategy == SH_DIV_INV_MINLAT \
|| sh_div_strategy == SH_DIV_INV20U || sh_div_strategy == SH_DIV_INV20L \
|| sh_div_strategy == SH_DIV_INV_CALL \
|| sh_div_strategy == SH_DIV_INV_CALL2 || sh_div_strategy == SH_DIV_INV_FP)
#define TARGET_DIVIDE_FP (sh_div_strategy == SH_DIV_FP)
#define TARGET_DIVIDE_INV_FP (sh_div_strategy == SH_DIV_INV_FP)
#define TARGET_DIVIDE_CALL2 (sh_div_strategy == SH_DIV_CALL2)
#define TARGET_DIVIDE_INV_MINLAT (sh_div_strategy == SH_DIV_INV_MINLAT)
#define TARGET_DIVIDE_INV20U (sh_div_strategy == SH_DIV_INV20U)
#define TARGET_DIVIDE_INV20L (sh_div_strategy == SH_DIV_INV20L)
#define TARGET_DIVIDE_INV_CALL (sh_div_strategy == SH_DIV_INV_CALL)
#define TARGET_DIVIDE_INV_CALL2 (sh_div_strategy == SH_DIV_INV_CALL2)
#define TARGET_DIVIDE_CALL_DIV1 (sh_div_strategy == SH_DIV_CALL_DIV1)
#define TARGET_DIVIDE_CALL_FP (sh_div_strategy == SH_DIV_CALL_FP)
#define TARGET_DIVIDE_CALL_TABLE (sh_div_strategy == SH_DIV_CALL_TABLE)
#define SELECT_SH1 (MASK_SH1)
#define SELECT_SH2 (MASK_SH2 | SELECT_SH1)
#define SELECT_SH2E (MASK_SH_E | MASK_SH2 | MASK_SH1 \
| MASK_FPU_SINGLE)
#define SELECT_SH2A (MASK_SH_E | MASK_HARD_SH2A \
| MASK_HARD_SH2A_DOUBLE \
| MASK_SH2 | MASK_SH1)
#define SELECT_SH2A_NOFPU (MASK_HARD_SH2A | MASK_SH2 | MASK_SH1)
#define SELECT_SH2A_SINGLE_ONLY (MASK_SH_E | MASK_HARD_SH2A | MASK_SH2 \
| MASK_SH1 | MASK_FPU_SINGLE)
#define SELECT_SH2A_SINGLE (MASK_SH_E | MASK_HARD_SH2A \
| MASK_FPU_SINGLE | MASK_HARD_SH2A_DOUBLE \
| MASK_SH2 | MASK_SH1)
#define SELECT_SH3 (MASK_SH3 | SELECT_SH2)
#define SELECT_SH3E (MASK_SH_E | MASK_FPU_SINGLE | SELECT_SH3)
#define SELECT_SH4_NOFPU (MASK_HARD_SH4 | SELECT_SH3)
#define SELECT_SH4_SINGLE_ONLY (MASK_HARD_SH4 | SELECT_SH3E)
#define SELECT_SH4 (MASK_SH4 | MASK_SH_E | MASK_HARD_SH4 \
| SELECT_SH3)
#define SELECT_SH4_SINGLE (MASK_FPU_SINGLE | SELECT_SH4)
#define SELECT_SH4A_NOFPU (MASK_SH4A | SELECT_SH4_NOFPU)
#define SELECT_SH4A_SINGLE_ONLY (MASK_SH4A | SELECT_SH4_SINGLE_ONLY)
#define SELECT_SH4A (MASK_SH4A | SELECT_SH4)
#define SELECT_SH4A_SINGLE (MASK_SH4A | SELECT_SH4_SINGLE)
#define SELECT_SH5_64MEDIA (MASK_SH5 | MASK_SH4)
#define SELECT_SH5_64MEDIA_NOFPU (MASK_SH5)
#define SELECT_SH5_32MEDIA (MASK_SH5 | MASK_SH4 | MASK_SH_E)
#define SELECT_SH5_32MEDIA_NOFPU (MASK_SH5 | MASK_SH_E)
#define SELECT_SH5_COMPACT (MASK_SH5 | MASK_SH4 | SELECT_SH3E)
#define SELECT_SH5_COMPACT_NOFPU (MASK_SH5 | SELECT_SH3)
#if SUPPORT_SH1
#define SUPPORT_SH2 1
#endif
#if SUPPORT_SH2
#define SUPPORT_SH3 1
#define SUPPORT_SH2A_NOFPU 1
#endif
#if SUPPORT_SH3
#define SUPPORT_SH4_NOFPU 1
#endif
#if SUPPORT_SH4_NOFPU
#define SUPPORT_SH4A_NOFPU 1
#define SUPPORT_SH4AL 1
#endif
#if SUPPORT_SH2E
#define SUPPORT_SH3E 1
#define SUPPORT_SH2A_SINGLE_ONLY 1
#endif
#if SUPPORT_SH3E
#define SUPPORT_SH4_SINGLE_ONLY 1
#endif
#if SUPPORT_SH4_SINGLE_ONLY
#define SUPPORT_SH4A_SINGLE_ONLY 1
#endif
#if SUPPORT_SH4
#define SUPPORT_SH4A 1
#endif
#if SUPPORT_SH4_SINGLE
#define SUPPORT_SH4A_SINGLE 1
#endif
#if SUPPORT_SH5_COMPAT
#define SUPPORT_SH5_32MEDIA 1
#endif
#if SUPPORT_SH5_COMPACT_NOFPU
#define SUPPORT_SH5_32MEDIA_NOFPU 1
#endif
#define SUPPORT_ANY_SH5_32MEDIA \
(SUPPORT_SH5_32MEDIA || SUPPORT_SH5_32MEDIA_NOFPU)
#define SUPPORT_ANY_SH5_64MEDIA \
(SUPPORT_SH5_64MEDIA || SUPPORT_SH5_64MEDIA_NOFPU)
#define SUPPORT_ANY_SH5 \
(SUPPORT_ANY_SH5_32MEDIA || SUPPORT_ANY_SH5_64MEDIA)
/* Reset all target-selection flags. */
#define MASK_ARCH (MASK_SH1 | MASK_SH2 | MASK_SH3 | MASK_SH_E | MASK_SH4 \
| MASK_HARD_SH2A | MASK_HARD_SH2A_DOUBLE | MASK_SH4A \
| MASK_HARD_SH4 | MASK_FPU_SINGLE | MASK_SH5)
/* This defaults us to big-endian. */
#ifndef TARGET_ENDIAN_DEFAULT
#define TARGET_ENDIAN_DEFAULT 0
#endif
#ifndef TARGET_OPT_DEFAULT
#define TARGET_OPT_DEFAULT MASK_ADJUST_UNROLL
#endif
#define TARGET_DEFAULT \
(TARGET_CPU_DEFAULT | TARGET_ENDIAN_DEFAULT | TARGET_OPT_DEFAULT)
#ifndef SH_MULTILIB_CPU_DEFAULT
#define SH_MULTILIB_CPU_DEFAULT "m1"
#endif
#if TARGET_ENDIAN_DEFAULT
#define MULTILIB_DEFAULTS { "ml", SH_MULTILIB_CPU_DEFAULT }
#else
#define MULTILIB_DEFAULTS { "mb", SH_MULTILIB_CPU_DEFAULT }
#endif
#define CPP_SPEC " %(subtarget_cpp_spec) "
#ifndef SUBTARGET_CPP_SPEC
#define SUBTARGET_CPP_SPEC ""
#endif
#ifndef SUBTARGET_EXTRA_SPECS
#define SUBTARGET_EXTRA_SPECS
#endif
#define EXTRA_SPECS \
{ "subtarget_cpp_spec", SUBTARGET_CPP_SPEC }, \
{ "link_emul_prefix", LINK_EMUL_PREFIX }, \
{ "link_default_cpu_emul", LINK_DEFAULT_CPU_EMUL }, \
{ "subtarget_link_emul_suffix", SUBTARGET_LINK_EMUL_SUFFIX }, \
{ "subtarget_link_spec", SUBTARGET_LINK_SPEC }, \
{ "subtarget_asm_endian_spec", SUBTARGET_ASM_ENDIAN_SPEC }, \
{ "subtarget_asm_relax_spec", SUBTARGET_ASM_RELAX_SPEC }, \
{ "subtarget_asm_isa_spec", SUBTARGET_ASM_ISA_SPEC }, \
{ "subtarget_asm_spec", SUBTARGET_ASM_SPEC }, \
SUBTARGET_EXTRA_SPECS
#if TARGET_CPU_DEFAULT & MASK_HARD_SH4
#define SUBTARGET_ASM_RELAX_SPEC "%{!m1:%{!m2:%{!m3*:%{!m5*:-isa=sh4-up}}}}"
#else
#define SUBTARGET_ASM_RELAX_SPEC "%{m4*:-isa=sh4-up}"
#endif
#define SH_ASM_SPEC \
"%(subtarget_asm_endian_spec) %{mrelax:-relax %(subtarget_asm_relax_spec)}\
%(subtarget_asm_isa_spec) %(subtarget_asm_spec)\
%{m2a:--isa=sh2a} \
%{m2a-single:--isa=sh2a} \
%{m2a-single-only:--isa=sh2a} \
%{m2a-nofpu:--isa=sh2a-nofpu} \
%{m5-compact*:--isa=SHcompact} \
%{m5-32media*:--isa=SHmedia --abi=32} \
%{m5-64media*:--isa=SHmedia --abi=64} \
%{m4al:-dsp} %{mcut2-workaround:-cut2-workaround}"
#define ASM_SPEC SH_ASM_SPEC
#ifndef SUBTARGET_ASM_ENDIAN_SPEC
#if TARGET_ENDIAN_DEFAULT == MASK_LITTLE_ENDIAN
#define SUBTARGET_ASM_ENDIAN_SPEC "%{mb:-big} %{!mb:-little}"
#else
#define SUBTARGET_ASM_ENDIAN_SPEC "%{ml:-little} %{!ml:-big}"
#endif
#endif
#if STRICT_NOFPU == 1
/* Strict nofpu means that the compiler should tell the assembler
to reject FPU instructions. E.g. from ASM inserts. */
#if TARGET_CPU_DEFAULT & MASK_HARD_SH4 && !(TARGET_CPU_DEFAULT & MASK_SH_E)
#define SUBTARGET_ASM_ISA_SPEC "%{!m1:%{!m2:%{!m3*:%{m4-nofpu|!m4*:%{!m5:-isa=sh4-nofpu}}}}}"
#else
/* If there were an -isa option for sh5-nofpu then it would also go here. */
#define SUBTARGET_ASM_ISA_SPEC \
"%{m4-nofpu:-isa=sh4-nofpu} " ASM_ISA_DEFAULT_SPEC
#endif
#else /* ! STRICT_NOFPU */
#define SUBTARGET_ASM_ISA_SPEC ASM_ISA_DEFAULT_SPEC
#endif
#ifndef SUBTARGET_ASM_SPEC
#define SUBTARGET_ASM_SPEC ""
#endif
#if TARGET_ENDIAN_DEFAULT == MASK_LITTLE_ENDIAN
#define LINK_EMUL_PREFIX "sh%{!mb:l}"
#else
#define LINK_EMUL_PREFIX "sh%{ml:l}"
#endif
#if TARGET_CPU_DEFAULT & MASK_SH5
#if TARGET_CPU_DEFAULT & MASK_SH_E
#define LINK_DEFAULT_CPU_EMUL "32"
#if TARGET_CPU_DEFAULT & MASK_SH1
#define ASM_ISA_SPEC_DEFAULT "--isa=SHcompact"
#else
#define ASM_ISA_SPEC_DEFAULT "--isa=SHmedia --abi=32"
#endif /* MASK_SH1 */
#else /* !MASK_SH_E */
#define LINK_DEFAULT_CPU_EMUL "64"
#define ASM_ISA_SPEC_DEFAULT "--isa=SHmedia --abi=64"
#endif /* MASK_SH_E */
#define ASM_ISA_DEFAULT_SPEC \
" %{!m1:%{!m2*:%{!m3*:%{!m4*:%{!m5*:" ASM_ISA_SPEC_DEFAULT "}}}}}"
#else /* !MASK_SH5 */
#define LINK_DEFAULT_CPU_EMUL ""
#define ASM_ISA_DEFAULT_SPEC ""
#endif /* MASK_SH5 */
#define SUBTARGET_LINK_EMUL_SUFFIX ""
#define SUBTARGET_LINK_SPEC ""
/* svr4.h redefines LINK_SPEC inappropriately, so go via SH_LINK_SPEC,
so that we can undo the damage without code replication. */
#define LINK_SPEC SH_LINK_SPEC
#define SH_LINK_SPEC "\
-m %(link_emul_prefix)\
%{m5-compact*|m5-32media*:32}\
%{m5-64media*:64}\
%{!m1:%{!m2:%{!m3*:%{!m4*:%{!m5*:%(link_default_cpu_emul)}}}}}\
%(subtarget_link_emul_suffix) \
%{mrelax:-relax} %(subtarget_link_spec)"
#ifndef SH_DIV_STR_FOR_SIZE
#define SH_DIV_STR_FOR_SIZE "call"
#endif
#define DRIVER_SELF_SPECS "%{m2a:%{ml:%eSH2a does not support little-endian}}"
#define OPTIMIZATION_OPTIONS(LEVEL,SIZE) \
do { \
if (LEVEL) \
{ \
flag_omit_frame_pointer = -1; \
if (! SIZE) \
sh_div_str = "inv:minlat"; \
} \
if (SIZE) \
{ \
target_flags |= MASK_SMALLCODE; \
sh_div_str = SH_DIV_STR_FOR_SIZE ; \
} \
else \
{ \
TARGET_CBRANCHDI4 = 1; \
TARGET_EXPAND_CBRANCHDI4 = 1; \
} \
/* We can't meaningfully test TARGET_SHMEDIA here, because -m options \
haven't been parsed yet, hence we'd read only the default. \
sh_target_reg_class will return NO_REGS if this is not SHMEDIA, so \
it's OK to always set flag_branch_target_load_optimize. */ \
if (LEVEL > 1) \
{ \
flag_branch_target_load_optimize = 1; \
if (! (SIZE)) \
target_flags |= MASK_SAVE_ALL_TARGET_REGS; \
} \
/* Likewise, we can't meaningfully test TARGET_SH2E / TARGET_IEEE \
here, so leave it to OVERRIDE_OPTIONS to set \
flag_finite_math_only. We set it to 2 here so we know if the user \
explicitly requested this to be on or off. */ \
flag_finite_math_only = 2; \
/* If flag_schedule_insns is 1, we set it to 2 here so we know if \
the user explicitly requested this to be on or off. */ \
if (flag_schedule_insns > 0) \
flag_schedule_insns = 2; \
\
set_param_value ("simultaneous-prefetches", 2); \
} while (0)
#define ASSEMBLER_DIALECT assembler_dialect
extern int assembler_dialect;
enum sh_divide_strategy_e {
/* SH5 strategies. */
SH_DIV_CALL,
SH_DIV_CALL2,
SH_DIV_FP, /* We could do this also for SH4. */
SH_DIV_INV,
SH_DIV_INV_MINLAT,
SH_DIV_INV20U,
SH_DIV_INV20L,
SH_DIV_INV_CALL,
SH_DIV_INV_CALL2,
SH_DIV_INV_FP,
/* SH1 .. SH4 strategies. Because of the small number of registers
available, the compiler uses knowledge of the actual set of registers
being clobbered by the different functions called. */
SH_DIV_CALL_DIV1, /* No FPU, medium size, highest latency. */
SH_DIV_CALL_FP, /* FPU needed, small size, high latency. */
SH_DIV_CALL_TABLE, /* No FPU, large size, medium latency. */
SH_DIV_INTRINSIC
};
extern enum sh_divide_strategy_e sh_div_strategy;
#ifndef SH_DIV_STRATEGY_DEFAULT
#define SH_DIV_STRATEGY_DEFAULT SH_DIV_CALL
#endif
#define SUBTARGET_OVERRIDE_OPTIONS (void) 0
#define OVERRIDE_OPTIONS \
do { \
int regno; \
\
SUBTARGET_OVERRIDE_OPTIONS; \
if (flag_finite_math_only == 2) \
flag_finite_math_only \
= !flag_signaling_nans && TARGET_SH2E && ! TARGET_IEEE; \
if (TARGET_SH2E && !flag_finite_math_only) \
target_flags |= MASK_IEEE; \
sh_cpu = CPU_SH1; \
assembler_dialect = 0; \
if (TARGET_SH2) \
sh_cpu = CPU_SH2; \
if (TARGET_SH2E) \
sh_cpu = CPU_SH2E; \
if (TARGET_SH2A) \
{ \
sh_cpu = CPU_SH2A; \
if (TARGET_SH2A_DOUBLE) \
target_flags |= MASK_FMOVD; \
} \
if (TARGET_SH3) \
sh_cpu = CPU_SH3; \
if (TARGET_SH3E) \
sh_cpu = CPU_SH3E; \
if (TARGET_SH4) \
{ \
assembler_dialect = 1; \
sh_cpu = CPU_SH4; \
} \
if (TARGET_SH4A_ARCH) \
{ \
assembler_dialect = 1; \
sh_cpu = CPU_SH4A; \
} \
if (TARGET_SH5) \
{ \
sh_cpu = CPU_SH5; \
target_flags |= MASK_ALIGN_DOUBLE; \
if (TARGET_SHMEDIA_FPU) \
target_flags |= MASK_FMOVD; \
if (TARGET_SHMEDIA) \
{ \
/* There are no delay slots on SHmedia. */ \
flag_delayed_branch = 0; \
/* Relaxation isn't yet supported for SHmedia */ \
target_flags &= ~MASK_RELAX; \
/* After reload, if conversion does little good but can cause \
ICEs: \
- find_if_block doesn't do anything for SH because we don't\
have conditional execution patterns. (We use conditional\
move patterns, which are handled differently, and only \
before reload). \
- find_cond_trap doesn't do anything for the SH because we \
don't have conditional traps. \
- find_if_case_1 uses redirect_edge_and_branch_force in \
the only path that does an optimization, and this causes \
an ICE when branch targets are in registers. \
- find_if_case_2 doesn't do anything for the SHmedia after \
reload except when it can redirect a tablejump - and \
that's rather rare. */ \
flag_if_conversion2 = 0; \
if (! strcmp (sh_div_str, "call")) \
sh_div_strategy = SH_DIV_CALL; \
else if (! strcmp (sh_div_str, "call2")) \
sh_div_strategy = SH_DIV_CALL2; \
if (! strcmp (sh_div_str, "fp") && TARGET_FPU_ANY) \
sh_div_strategy = SH_DIV_FP; \
else if (! strcmp (sh_div_str, "inv")) \
sh_div_strategy = SH_DIV_INV; \
else if (! strcmp (sh_div_str, "inv:minlat")) \
sh_div_strategy = SH_DIV_INV_MINLAT; \
else if (! strcmp (sh_div_str, "inv20u")) \
sh_div_strategy = SH_DIV_INV20U; \
else if (! strcmp (sh_div_str, "inv20l")) \
sh_div_strategy = SH_DIV_INV20L; \
else if (! strcmp (sh_div_str, "inv:call2")) \
sh_div_strategy = SH_DIV_INV_CALL2; \
else if (! strcmp (sh_div_str, "inv:call")) \
sh_div_strategy = SH_DIV_INV_CALL; \
else if (! strcmp (sh_div_str, "inv:fp")) \
{ \
if (TARGET_FPU_ANY) \
sh_div_strategy = SH_DIV_INV_FP; \
else \
sh_div_strategy = SH_DIV_INV; \
} \
TARGET_CBRANCHDI4 = 0; \
} \
} \
else \
{ \
/* Only the sh64-elf assembler fully supports .quad properly. */\
targetm.asm_out.aligned_op.di = NULL; \
targetm.asm_out.unaligned_op.di = NULL; \
} \
if (TARGET_SH1) \
{ \
if (! strcmp (sh_div_str, "call-div1")) \
sh_div_strategy = SH_DIV_CALL_DIV1; \
else if (! strcmp (sh_div_str, "call-fp") \
&& (TARGET_FPU_DOUBLE \
|| (TARGET_HARD_SH4 && TARGET_SH2E) \
|| (TARGET_SHCOMPACT && TARGET_FPU_ANY))) \
sh_div_strategy = SH_DIV_CALL_FP; \
else if (! strcmp (sh_div_str, "call-table") && TARGET_SH2) \
sh_div_strategy = SH_DIV_CALL_TABLE; \
else \
/* Pick one that makes most sense for the target in general. \
It is not much good to use different functions depending \
on -Os, since then we'll end up with two different functions \
when some of the code is compiled for size, and some for \
speed. */ \
\
/* SH4 tends to emphasize speed. */ \
if (TARGET_HARD_SH4) \
sh_div_strategy = SH_DIV_CALL_TABLE; \
/* These have their own way of doing things. */ \
else if (TARGET_SH2A) \
sh_div_strategy = SH_DIV_INTRINSIC; \
/* ??? Should we use the integer SHmedia function instead? */ \
else if (TARGET_SHCOMPACT && TARGET_FPU_ANY) \
sh_div_strategy = SH_DIV_CALL_FP; \
/* SH1 .. SH3 cores often go into small-footprint systems, so \
default to the smallest implementation available. */ \
else if (TARGET_SH2) /* ??? EXPERIMENTAL */ \
sh_div_strategy = SH_DIV_CALL_TABLE; \
else \
sh_div_strategy = SH_DIV_CALL_DIV1; \
} \
if (!TARGET_SH1) \
TARGET_PRETEND_CMOVE = 0; \
if (sh_divsi3_libfunc[0]) \
; /* User supplied - leave it alone. */ \
else if (TARGET_DIVIDE_CALL_FP) \
sh_divsi3_libfunc = "__sdivsi3_i4"; \
else if (TARGET_DIVIDE_CALL_TABLE) \
sh_divsi3_libfunc = "__sdivsi3_i4i"; \
else if (TARGET_SH5) \
sh_divsi3_libfunc = "__sdivsi3_1"; \
else \
sh_divsi3_libfunc = "__sdivsi3"; \
if (sh_branch_cost == -1) \
sh_branch_cost \
= TARGET_SH5 ? 1 : ! TARGET_SH2 || TARGET_HARD_SH4 ? 2 : 1; \
\
for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++) \
if (! VALID_REGISTER_P (regno)) \
sh_register_names[regno][0] = '\0'; \
\
for (regno = 0; regno < ADDREGNAMES_SIZE; regno++) \
if (! VALID_REGISTER_P (ADDREGNAMES_REGNO (regno))) \
sh_additional_register_names[regno][0] = '\0'; \
\
if (flag_omit_frame_pointer < 0) \
{ \
/* The debugging information is sufficient, \
but gdb doesn't implement this yet */ \
if (0) \
flag_omit_frame_pointer \
= (PREFERRED_DEBUGGING_TYPE == DWARF2_DEBUG); \
else \
flag_omit_frame_pointer = 0; \
} \
\
if ((flag_pic && ! TARGET_PREFERGOT) \
|| (TARGET_SHMEDIA && !TARGET_PT_FIXED)) \
flag_no_function_cse = 1; \
\
if (SMALL_REGISTER_CLASSES) \
{ \
/* Never run scheduling before reload, since that can \
break global alloc, and generates slower code anyway due \
to the pressure on R0. */ \
/* Enable sched1 for SH4; ready queue will be reordered by \
the target hooks when pressure is high. We can not do this for \
SH3 and lower as they give spill failures for R0. */ \
if (!TARGET_HARD_SH4) \
flag_schedule_insns = 0; \
/* ??? Current exception handling places basic block boundaries \
after call_insns. It causes the high pressure on R0 and gives \
spill failures for R0 in reload. See PR 22553 and the thread \
on gcc-patches \
<http://gcc.gnu.org/ml/gcc-patches/2005-10/msg00816.html>. */ \
else if (flag_exceptions) \
{ \
if (flag_schedule_insns == 1) \
warning (0, "ignoring -fschedule-insns because of exception handling bug"); \
flag_schedule_insns = 0; \
} \
} \
\
if (align_loops == 0) \
align_loops = 1 << (TARGET_SH5 ? 3 : 2); \
if (align_jumps == 0) \
align_jumps = 1 << CACHE_LOG; \
else if (align_jumps < (TARGET_SHMEDIA ? 4 : 2)) \
align_jumps = TARGET_SHMEDIA ? 4 : 2; \
\
/* Allocation boundary (in *bytes*) for the code of a function. \
SH1: 32 bit alignment is faster, because instructions are always \
fetched as a pair from a longword boundary. \
SH2 .. SH5 : align to cache line start. */ \
if (align_functions == 0) \
align_functions \
= TARGET_SMALLCODE ? FUNCTION_BOUNDARY/8 : (1 << CACHE_LOG); \
/* The linker relaxation code breaks when a function contains \
alignments that are larger than that at the start of a \
compilation unit. */ \
if (TARGET_RELAX) \
{ \
int min_align \
= align_loops > align_jumps ? align_loops : align_jumps; \
\
/* Also take possible .long constants / mova tables int account. */\
if (min_align < 4) \
min_align = 4; \
if (align_functions < min_align) \
align_functions = min_align; \
} \
} while (0)
/* Target machine storage layout. */
/* Define this if most significant bit is lowest numbered
in instructions that operate on numbered bit-fields. */
#define BITS_BIG_ENDIAN 0
/* Define this if most significant byte of a word is the lowest numbered. */
#define BYTES_BIG_ENDIAN (TARGET_LITTLE_ENDIAN == 0)
/* Define this if most significant word of a multiword number is the lowest
numbered. */
#define WORDS_BIG_ENDIAN (TARGET_LITTLE_ENDIAN == 0)
/* Define this to set the endianness to use in libgcc2.c, which can
not depend on target_flags. */
#if defined(__LITTLE_ENDIAN__)
#define LIBGCC2_WORDS_BIG_ENDIAN 0
#else
#define LIBGCC2_WORDS_BIG_ENDIAN 1
#endif
#define MAX_BITS_PER_WORD 64
/* Width in bits of an `int'. We want just 32-bits, even if words are
longer. */
#define INT_TYPE_SIZE 32
/* Width in bits of a `long'. */
#define LONG_TYPE_SIZE (TARGET_SHMEDIA64 ? 64 : 32)
/* Width in bits of a `long long'. */
#define LONG_LONG_TYPE_SIZE 64
/* Width in bits of a `long double'. */
#define LONG_DOUBLE_TYPE_SIZE 64
/* Width of a word, in units (bytes). */
#define UNITS_PER_WORD (TARGET_SHMEDIA ? 8 : 4)
#define MIN_UNITS_PER_WORD 4
/* Scaling factor for Dwarf data offsets for CFI information.
The dwarf2out.c default would use -UNITS_PER_WORD, which is -8 for
SHmedia; however, since we do partial register saves for the registers
visible to SHcompact, and for target registers for SHMEDIA32, we have
to allow saves that are only 4-byte aligned. */
#define DWARF_CIE_DATA_ALIGNMENT -4
/* Width in bits of a pointer.
See also the macro `Pmode' defined below. */
#define POINTER_SIZE (TARGET_SHMEDIA64 ? 64 : 32)
/* Allocation boundary (in *bits*) for storing arguments in argument list. */
#define PARM_BOUNDARY (TARGET_SH5 ? 64 : 32)
/* Boundary (in *bits*) on which stack pointer should be aligned. */
#define STACK_BOUNDARY BIGGEST_ALIGNMENT
/* The log (base 2) of the cache line size, in bytes. Processors prior to
SH2 have no actual cache, but they fetch code in chunks of 4 bytes.
The SH2/3 have 16 byte cache lines, and the SH4 has a 32 byte cache line */
#define CACHE_LOG (TARGET_CACHE32 ? 5 : TARGET_SH2 ? 4 : 2)
/* ABI given & required minimum allocation boundary (in *bits*) for the
code of a function. */
#define FUNCTION_BOUNDARY (16 << TARGET_SHMEDIA)
/* On SH5, the lowest bit is used to indicate SHmedia functions, so
the vbit must go into the delta field of
pointers-to-member-functions. */
#define TARGET_PTRMEMFUNC_VBIT_LOCATION \
(TARGET_SH5 ? ptrmemfunc_vbit_in_delta : ptrmemfunc_vbit_in_pfn)
/* Alignment of field after `int : 0' in a structure. */
#define EMPTY_FIELD_BOUNDARY 32
/* No data type wants to be aligned rounder than this. */
#define BIGGEST_ALIGNMENT (TARGET_ALIGN_DOUBLE ? 64 : 32)
/* The best alignment to use in cases where we have a choice. */
#define FASTEST_ALIGNMENT (TARGET_SH5 ? 64 : 32)
/* Make strings word-aligned so strcpy from constants will be faster. */
#define CONSTANT_ALIGNMENT(EXP, ALIGN) \
((TREE_CODE (EXP) == STRING_CST \
&& (ALIGN) < FASTEST_ALIGNMENT) \
? FASTEST_ALIGNMENT : (ALIGN))
/* get_mode_alignment assumes complex values are always held in multiple
registers, but that is not the case on the SH; CQImode and CHImode are
held in a single integer register. SH5 also holds CSImode and SCmode
values in integer registers. This is relevant for argument passing on
SHcompact as we use a stack temp in order to pass CSImode by reference. */
#define LOCAL_ALIGNMENT(TYPE, ALIGN) \
((GET_MODE_CLASS (TYPE_MODE (TYPE)) == MODE_COMPLEX_INT \
|| GET_MODE_CLASS (TYPE_MODE (TYPE)) == MODE_COMPLEX_FLOAT) \
? (unsigned) MIN (BIGGEST_ALIGNMENT, GET_MODE_BITSIZE (TYPE_MODE (TYPE))) \
: (unsigned) DATA_ALIGNMENT(TYPE, ALIGN))
/* Make arrays of chars word-aligned for the same reasons. */
#define DATA_ALIGNMENT(TYPE, ALIGN) \
(TREE_CODE (TYPE) == ARRAY_TYPE \
&& TYPE_MODE (TREE_TYPE (TYPE)) == QImode \
&& (ALIGN) < FASTEST_ALIGNMENT ? FASTEST_ALIGNMENT : (ALIGN))
/* Number of bits which any structure or union's size must be a
multiple of. Each structure or union's size is rounded up to a
multiple of this. */
#define STRUCTURE_SIZE_BOUNDARY (TARGET_PADSTRUCT ? 32 : 8)
/* Set this nonzero if move instructions will actually fail to work
when given unaligned data. */
#define STRICT_ALIGNMENT 1
/* If LABEL_AFTER_BARRIER demands an alignment, return its base 2 logarithm. */
#define LABEL_ALIGN_AFTER_BARRIER(LABEL_AFTER_BARRIER) \
barrier_align (LABEL_AFTER_BARRIER)
#define LOOP_ALIGN(A_LABEL) \
((! optimize || TARGET_HARD_SH4 || TARGET_SMALLCODE) \
? 0 : sh_loop_align (A_LABEL))
#define LABEL_ALIGN(A_LABEL) \
( \
(PREV_INSN (A_LABEL) \
&& GET_CODE (PREV_INSN (A_LABEL)) == INSN \
&& GET_CODE (PATTERN (PREV_INSN (A_LABEL))) == UNSPEC_VOLATILE \
&& XINT (PATTERN (PREV_INSN (A_LABEL)), 1) == UNSPECV_ALIGN) \
/* explicit alignment insn in constant tables. */ \
? INTVAL (XVECEXP (PATTERN (PREV_INSN (A_LABEL)), 0, 0)) \
: 0)
/* Jump tables must be 32 bit aligned, no matter the size of the element. */
#define ADDR_VEC_ALIGN(ADDR_VEC) 2
/* The base two logarithm of the known minimum alignment of an insn length. */
#define INSN_LENGTH_ALIGNMENT(A_INSN) \
(GET_CODE (A_INSN) == INSN \
? 1 << TARGET_SHMEDIA \
: GET_CODE (A_INSN) == JUMP_INSN || GET_CODE (A_INSN) == CALL_INSN \
? 1 << TARGET_SHMEDIA \
: CACHE_LOG)
/* Standard register usage. */
/* Register allocation for the Renesas calling convention:
r0 arg return
r1..r3 scratch
r4..r7 args in
r8..r13 call saved
r14 frame pointer/call saved
r15 stack pointer
ap arg pointer (doesn't really exist, always eliminated)
pr subroutine return address
t t bit
mach multiply/accumulate result, high part
macl multiply/accumulate result, low part.
fpul fp/int communication register
rap return address pointer register
fr0 fp arg return
fr1..fr3 scratch floating point registers
fr4..fr11 fp args in
fr12..fr15 call saved floating point registers */
#define MAX_REGISTER_NAME_LENGTH 5
extern char sh_register_names[][MAX_REGISTER_NAME_LENGTH + 1];
#define SH_REGISTER_NAMES_INITIALIZER \
{ \
"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", \
"r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", \
"r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23", \
"r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31", \
"r32", "r33", "r34", "r35", "r36", "r37", "r38", "r39", \
"r40", "r41", "r42", "r43", "r44", "r45", "r46", "r47", \
"r48", "r49", "r50", "r51", "r52", "r53", "r54", "r55", \
"r56", "r57", "r58", "r59", "r60", "r61", "r62", "r63", \
"fr0", "fr1", "fr2", "fr3", "fr4", "fr5", "fr6", "fr7", \
"fr8", "fr9", "fr10", "fr11", "fr12", "fr13", "fr14", "fr15", \
"fr16", "fr17", "fr18", "fr19", "fr20", "fr21", "fr22", "fr23", \
"fr24", "fr25", "fr26", "fr27", "fr28", "fr29", "fr30", "fr31", \
"fr32", "fr33", "fr34", "fr35", "fr36", "fr37", "fr38", "fr39", \
"fr40", "fr41", "fr42", "fr43", "fr44", "fr45", "fr46", "fr47", \
"fr48", "fr49", "fr50", "fr51", "fr52", "fr53", "fr54", "fr55", \
"fr56", "fr57", "fr58", "fr59", "fr60", "fr61", "fr62", "fr63", \
"tr0", "tr1", "tr2", "tr3", "tr4", "tr5", "tr6", "tr7", \
"xd0", "xd2", "xd4", "xd6", "xd8", "xd10", "xd12", "xd14", \
"gbr", "ap", "pr", "t", "mach", "macl", "fpul", "fpscr", \
"rap", "sfp" \
}
#define REGNAMES_ARR_INDEX_1(index) \
(sh_register_names[index])
#define REGNAMES_ARR_INDEX_2(index) \
REGNAMES_ARR_INDEX_1 ((index)), REGNAMES_ARR_INDEX_1 ((index)+1)
#define REGNAMES_ARR_INDEX_4(index) \
REGNAMES_ARR_INDEX_2 ((index)), REGNAMES_ARR_INDEX_2 ((index)+2)
#define REGNAMES_ARR_INDEX_8(index) \
REGNAMES_ARR_INDEX_4 ((index)), REGNAMES_ARR_INDEX_4 ((index)+4)
#define REGNAMES_ARR_INDEX_16(index) \
REGNAMES_ARR_INDEX_8 ((index)), REGNAMES_ARR_INDEX_8 ((index)+8)
#define REGNAMES_ARR_INDEX_32(index) \
REGNAMES_ARR_INDEX_16 ((index)), REGNAMES_ARR_INDEX_16 ((index)+16)
#define REGNAMES_ARR_INDEX_64(index) \
REGNAMES_ARR_INDEX_32 ((index)), REGNAMES_ARR_INDEX_32 ((index)+32)
#define REGISTER_NAMES \
{ \
REGNAMES_ARR_INDEX_64 (0), \
REGNAMES_ARR_INDEX_64 (64), \
REGNAMES_ARR_INDEX_8 (128), \
REGNAMES_ARR_INDEX_8 (136), \
REGNAMES_ARR_INDEX_8 (144), \
REGNAMES_ARR_INDEX_2 (152) \
}
#define ADDREGNAMES_SIZE 32
#define MAX_ADDITIONAL_REGISTER_NAME_LENGTH 4
extern char sh_additional_register_names[ADDREGNAMES_SIZE] \
[MAX_ADDITIONAL_REGISTER_NAME_LENGTH + 1];
#define SH_ADDITIONAL_REGISTER_NAMES_INITIALIZER \
{ \
"dr0", "dr2", "dr4", "dr6", "dr8", "dr10", "dr12", "dr14", \
"dr16", "dr18", "dr20", "dr22", "dr24", "dr26", "dr28", "dr30", \
"dr32", "dr34", "dr36", "dr38", "dr40", "dr42", "dr44", "dr46", \
"dr48", "dr50", "dr52", "dr54", "dr56", "dr58", "dr60", "dr62" \
}
#define ADDREGNAMES_REGNO(index) \
((index < 32) ? (FIRST_FP_REG + (index) * 2) \
: (-1))
#define ADDREGNAMES_ARR_INDEX_1(index) \
{ (sh_additional_register_names[index]), ADDREGNAMES_REGNO (index) }
#define ADDREGNAMES_ARR_INDEX_2(index) \
ADDREGNAMES_ARR_INDEX_1 ((index)), ADDREGNAMES_ARR_INDEX_1 ((index)+1)
#define ADDREGNAMES_ARR_INDEX_4(index) \
ADDREGNAMES_ARR_INDEX_2 ((index)), ADDREGNAMES_ARR_INDEX_2 ((index)+2)
#define ADDREGNAMES_ARR_INDEX_8(index) \
ADDREGNAMES_ARR_INDEX_4 ((index)), ADDREGNAMES_ARR_INDEX_4 ((index)+4)
#define ADDREGNAMES_ARR_INDEX_16(index) \
ADDREGNAMES_ARR_INDEX_8 ((index)), ADDREGNAMES_ARR_INDEX_8 ((index)+8)
#define ADDREGNAMES_ARR_INDEX_32(index) \
ADDREGNAMES_ARR_INDEX_16 ((index)), ADDREGNAMES_ARR_INDEX_16 ((index)+16)
#define ADDITIONAL_REGISTER_NAMES \
{ \
ADDREGNAMES_ARR_INDEX_32 (0) \
}
/* Number of actual hardware registers.
The hardware registers are assigned numbers for the compiler
from 0 to just below FIRST_PSEUDO_REGISTER.
All registers that the compiler knows about must be given numbers,
even those that are not normally considered general registers. */
/* There are many other relevant definitions in sh.md's md_constants. */
#define FIRST_GENERAL_REG R0_REG
#define LAST_GENERAL_REG (FIRST_GENERAL_REG + (TARGET_SHMEDIA ? 63 : 15))
#define FIRST_FP_REG DR0_REG
#define LAST_FP_REG (FIRST_FP_REG + \
(TARGET_SHMEDIA_FPU ? 63 : TARGET_SH2E ? 15 : -1))
#define FIRST_XD_REG XD0_REG
#define LAST_XD_REG (FIRST_XD_REG + ((TARGET_SH4 && TARGET_FMOVD) ? 7 : -1))
#define FIRST_TARGET_REG TR0_REG
#define LAST_TARGET_REG (FIRST_TARGET_REG + (TARGET_SHMEDIA ? 7 : -1))
/* Registers that can be accessed through bank0 or bank1 depending on sr.md. */
#define FIRST_BANKED_REG R0_REG
#define LAST_BANKED_REG R7_REG
#define BANKED_REGISTER_P(REGNO) \
IN_RANGE ((REGNO), \
(unsigned HOST_WIDE_INT) FIRST_BANKED_REG, \
(unsigned HOST_WIDE_INT) LAST_BANKED_REG)
#define GENERAL_REGISTER_P(REGNO) \
IN_RANGE ((REGNO), \
(unsigned HOST_WIDE_INT) FIRST_GENERAL_REG, \
(unsigned HOST_WIDE_INT) LAST_GENERAL_REG)
#define GENERAL_OR_AP_REGISTER_P(REGNO) \
(GENERAL_REGISTER_P (REGNO) || ((REGNO) == AP_REG) \
|| ((REGNO) == FRAME_POINTER_REGNUM))
#define FP_REGISTER_P(REGNO) \
((int) (REGNO) >= FIRST_FP_REG && (int) (REGNO) <= LAST_FP_REG)
#define XD_REGISTER_P(REGNO) \
((int) (REGNO) >= FIRST_XD_REG && (int) (REGNO) <= LAST_XD_REG)
#define FP_OR_XD_REGISTER_P(REGNO) \
(FP_REGISTER_P (REGNO) || XD_REGISTER_P (REGNO))
#define FP_ANY_REGISTER_P(REGNO) \
(FP_REGISTER_P (REGNO) || XD_REGISTER_P (REGNO) || (REGNO) == FPUL_REG)
#define SPECIAL_REGISTER_P(REGNO) \
((REGNO) == GBR_REG || (REGNO) == T_REG \
|| (REGNO) == MACH_REG || (REGNO) == MACL_REG)
#define TARGET_REGISTER_P(REGNO) \
((int) (REGNO) >= FIRST_TARGET_REG && (int) (REGNO) <= LAST_TARGET_REG)
#define SHMEDIA_REGISTER_P(REGNO) \
(GENERAL_REGISTER_P (REGNO) || FP_REGISTER_P (REGNO) \
|| TARGET_REGISTER_P (REGNO))
/* This is to be used in CONDITIONAL_REGISTER_USAGE, to mark registers
that should be fixed. */
#define VALID_REGISTER_P(REGNO) \
(SHMEDIA_REGISTER_P (REGNO) || XD_REGISTER_P (REGNO) \
|| (REGNO) == AP_REG || (REGNO) == RAP_REG \
|| (REGNO) == FRAME_POINTER_REGNUM \
|| (TARGET_SH1 && (SPECIAL_REGISTER_P (REGNO) || (REGNO) == PR_REG)) \
|| (TARGET_SH2E && (REGNO) == FPUL_REG))
/* The mode that should be generally used to store a register by
itself in the stack, or to load it back. */
#define REGISTER_NATURAL_MODE(REGNO) \
(FP_REGISTER_P (REGNO) ? SFmode \
: XD_REGISTER_P (REGNO) ? DFmode \
: TARGET_SHMEDIA && ! HARD_REGNO_CALL_PART_CLOBBERED ((REGNO), DImode) \
? DImode \
: SImode)
#define FIRST_PSEUDO_REGISTER 154
/* Don't count soft frame pointer. */
#define DWARF_FRAME_REGISTERS (FIRST_PSEUDO_REGISTER - 1)
/* 1 for registers that have pervasive standard uses
and are not available for the register allocator.
Mach register is fixed 'cause it's only 10 bits wide for SH1.
It is 32 bits wide for SH2. */
#define FIXED_REGISTERS \
{ \
/* Regular registers. */ \
0, 0, 0, 0, 0, 0, 0, 0, \
0, 0, 0, 0, 0, 0, 0, 1, \
/* r16 is reserved, r18 is the former pr. */ \
1, 0, 0, 0, 0, 0, 0, 0, \
/* r24 is reserved for the OS; r25, for the assembler or linker. */ \
/* r26 is a global variable data pointer; r27 is for constants. */ \
1, 1, 1, 1, 0, 0, 0, 0, \
0, 0, 0, 0, 0, 0, 0, 0, \
0, 0, 0, 0, 0, 0, 0, 0, \
0, 0, 0, 0, 0, 0, 0, 0, \
0, 0, 0, 0, 0, 0, 0, 1, \
/* FP registers. */ \
0, 0, 0, 0, 0, 0, 0, 0, \
0, 0, 0, 0, 0, 0, 0, 0, \
0, 0, 0, 0, 0, 0, 0, 0, \
0, 0, 0, 0, 0, 0, 0, 0, \
0, 0, 0, 0, 0, 0, 0, 0, \
0, 0, 0, 0, 0, 0, 0, 0, \
0, 0, 0, 0, 0, 0, 0, 0, \
0, 0, 0, 0, 0, 0, 0, 0, \
/* Branch target registers. */ \
0, 0, 0, 0, 0, 0, 0, 0, \
/* XD registers. */ \
0, 0, 0, 0, 0, 0, 0, 0, \
/*"gbr", "ap", "pr", "t", "mach", "macl", "fpul", "fpscr", */ \
1, 1, 1, 1, 1, 1, 0, 1, \
/*"rap", "sfp" */ \
1, 1, \
}
/* 1 for registers not available across function calls.
These must include the FIXED_REGISTERS and also any
registers that can be used without being saved.
The latter must include the registers where values are returned
and the register where structure-value addresses are passed.
Aside from that, you can include as many other registers as you like. */
#define CALL_USED_REGISTERS \
{ \
/* Regular registers. */ \
1, 1, 1, 1, 1, 1, 1, 1, \
/* R8 and R9 are call-clobbered on SH5, but not on earlier SH ABIs. \
Only the lower 32bits of R10-R14 are guaranteed to be preserved \
across SH5 function calls. */ \
0, 0, 0, 0, 0, 0, 0, 1, \
1, 1, 1, 1, 1, 1, 1, 1, \
1, 1, 1, 1, 0, 0, 0, 0, \
0, 0, 0, 0, 1, 1, 1, 1, \
1, 1, 1, 1, 0, 0, 0, 0, \
0, 0, 0, 0, 0, 0, 0, 0, \
0, 0, 0, 0, 1, 1, 1, 1, \
/* FP registers. */ \
1, 1, 1, 1, 1, 1, 1, 1, \
1, 1, 1, 1, 0, 0, 0, 0, \
1, 1, 1, 1, 1, 1, 1, 1, \
1, 1, 1, 1, 1, 1, 1, 1, \
1, 1, 1, 1, 0, 0, 0, 0, \
0, 0, 0, 0, 0, 0, 0, 0, \
0, 0, 0, 0, 0, 0, 0, 0, \
0, 0, 0, 0, 0, 0, 0, 0, \
/* Branch target registers. */ \
1, 1, 1, 1, 1, 0, 0, 0, \
/* XD registers. */ \
1, 1, 1, 1, 1, 1, 0, 0, \
/*"gbr", "ap", "pr", "t", "mach", "macl", "fpul", "fpscr", */ \
1, 1, 1, 1, 1, 1, 1, 1, \
/*"rap", "sfp" */ \
1, 1, \
}
/* CONDITIONAL_REGISTER_USAGE might want to make a register call-used, yet
fixed, like PIC_OFFSET_TABLE_REGNUM. */
#define CALL_REALLY_USED_REGISTERS CALL_USED_REGISTERS
/* Only the lower 32-bits of R10-R14 are guaranteed to be preserved
across SHcompact function calls. We can't tell whether a called
function is SHmedia or SHcompact, so we assume it may be when
compiling SHmedia code with the 32-bit ABI, since that's the only
ABI that can be linked with SHcompact code. */
#define HARD_REGNO_CALL_PART_CLOBBERED(REGNO,MODE) \
(TARGET_SHMEDIA32 \
&& GET_MODE_SIZE (MODE) > 4 \
&& (((REGNO) >= FIRST_GENERAL_REG + 10 \
&& (REGNO) <= FIRST_GENERAL_REG + 15) \
|| TARGET_REGISTER_P (REGNO) \
|| (REGNO) == PR_MEDIA_REG))
/* Return number of consecutive hard regs needed starting at reg REGNO
to hold something of mode MODE.
This is ordinarily the length in words of a value of mode MODE
but can be less for certain modes in special long registers.
On the SH all but the XD regs are UNITS_PER_WORD bits wide. */
#define HARD_REGNO_NREGS(REGNO, MODE) \
(XD_REGISTER_P (REGNO) \
? ((GET_MODE_SIZE (MODE) + (2*UNITS_PER_WORD - 1)) / (2*UNITS_PER_WORD)) \
: (TARGET_SHMEDIA && FP_REGISTER_P (REGNO)) \
? ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD/2 - 1) / (UNITS_PER_WORD/2)) \
: ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
/* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
We can allow any mode in any general register. The special registers
only allow SImode. Don't allow any mode in the PR. */
/* We cannot hold DCmode values in the XD registers because alter_reg
handles subregs of them incorrectly. We could work around this by
spacing the XD registers like the DR registers, but this would require
additional memory in every compilation to hold larger register vectors.
We could hold SFmode / SCmode values in XD registers, but that
would require a tertiary reload when reloading from / to memory,
and a secondary reload to reload from / to general regs; that
seems to be a loosing proposition. */
/* We want to allow TImode FP regs so that when V4SFmode is loaded as TImode,
it won't be ferried through GP registers first. */
#define HARD_REGNO_MODE_OK(REGNO, MODE) \
(SPECIAL_REGISTER_P (REGNO) ? (MODE) == SImode \
: (REGNO) == FPUL_REG ? (MODE) == SImode || (MODE) == SFmode \
: FP_REGISTER_P (REGNO) && (MODE) == SFmode \
? 1 \
: (MODE) == V2SFmode \
? ((FP_REGISTER_P (REGNO) && ((REGNO) - FIRST_FP_REG) % 2 == 0) \
|| GENERAL_REGISTER_P (REGNO)) \
: (MODE) == V4SFmode \
? ((FP_REGISTER_P (REGNO) && ((REGNO) - FIRST_FP_REG) % 4 == 0) \
|| GENERAL_REGISTER_P (REGNO)) \
: (MODE) == V16SFmode \
? (TARGET_SHMEDIA \
? (FP_REGISTER_P (REGNO) && ((REGNO) - FIRST_FP_REG) % 16 == 0) \
: (REGNO) == FIRST_XD_REG) \
: FP_REGISTER_P (REGNO) \
? ((MODE) == SFmode || (MODE) == SImode \
|| ((TARGET_SH2E || TARGET_SHMEDIA) && (MODE) == SCmode) \
|| ((((TARGET_SH4 || TARGET_SH2A_DOUBLE) && (MODE) == DFmode) || (MODE) == DCmode \
|| (TARGET_SHMEDIA && ((MODE) == DFmode || (MODE) == DImode \
|| (MODE) == V2SFmode || (MODE) == TImode))) \
&& (((REGNO) - FIRST_FP_REG) & 1) == 0) \
|| ((TARGET_SH4 || TARGET_SHMEDIA) \
&& (MODE) == TImode \
&& (((REGNO) - FIRST_FP_REG) & 3) == 0)) \
: XD_REGISTER_P (REGNO) \
? (MODE) == DFmode \
: TARGET_REGISTER_P (REGNO) \
? ((MODE) == DImode || (MODE) == SImode || (MODE) == PDImode) \
: (REGNO) == PR_REG ? (MODE) == SImode \
: (REGNO) == FPSCR_REG ? (MODE) == PSImode \
: 1)
/* Value is 1 if it is a good idea to tie two pseudo registers
when one has mode MODE1 and one has mode MODE2.
If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
for any hard reg, then this must be 0 for correct output.
That's the case for xd registers: we don't hold SFmode values in
them, so we can't tie an SFmode pseudos with one in another
floating-point mode. */
#define MODES_TIEABLE_P(MODE1, MODE2) \
((MODE1) == (MODE2) \
|| (TARGET_SHMEDIA \
&& GET_MODE_SIZE (MODE1) == GET_MODE_SIZE (MODE2) \
&& INTEGRAL_MODE_P (MODE1) && INTEGRAL_MODE_P (MODE2)) \
|| (GET_MODE_CLASS (MODE1) == GET_MODE_CLASS (MODE2) \
&& (TARGET_SHMEDIA ? ((GET_MODE_SIZE (MODE1) <= 4) \
&& (GET_MODE_SIZE (MODE2) <= 4)) \
: ((MODE1) != SFmode && (MODE2) != SFmode))))
/* A C expression that is nonzero if hard register NEW_REG can be
considered for use as a rename register for OLD_REG register */
#define HARD_REGNO_RENAME_OK(OLD_REG, NEW_REG) \
sh_hard_regno_rename_ok (OLD_REG, NEW_REG)
/* Specify the registers used for certain standard purposes.
The values of these macros are register numbers. */
/* Define this if the program counter is overloaded on a register. */
/* #define PC_REGNUM 15*/
/* Register to use for pushing function arguments. */
#define STACK_POINTER_REGNUM SP_REG
/* Base register for access to local variables of the function. */
#define HARD_FRAME_POINTER_REGNUM FP_REG
/* Base register for access to local variables of the function. */
#define FRAME_POINTER_REGNUM 153
/* Fake register that holds the address on the stack of the
current function's return address. */
#define RETURN_ADDRESS_POINTER_REGNUM RAP_REG
/* Register to hold the addressing base for position independent
code access to data items. */
#define PIC_OFFSET_TABLE_REGNUM (flag_pic ? PIC_REG : INVALID_REGNUM)
#define GOT_SYMBOL_NAME "*_GLOBAL_OFFSET_TABLE_"
/* Value should be nonzero if functions must have frame pointers.
Zero means the frame pointer need not be set up (and parms may be accessed
via the stack pointer) in functions that seem suitable. */
#define FRAME_POINTER_REQUIRED 0
/* Definitions for register eliminations.
We have three registers that can be eliminated on the SH. First, the
frame pointer register can often be eliminated in favor of the stack
pointer register. Secondly, the argument pointer register can always be
eliminated; it is replaced with either the stack or frame pointer.
Third, there is the return address pointer, which can also be replaced
with either the stack or the frame pointer. */
/* This is an array of structures. Each structure initializes one pair
of eliminable registers. The "from" register number is given first,
followed by "to". Eliminations of the same "from" register are listed
in order of preference. */
/* If you add any registers here that are not actually hard registers,
and that have any alternative of elimination that doesn't always
apply, you need to amend calc_live_regs to exclude it, because
reload spills all eliminable registers where it sees an
can_eliminate == 0 entry, thus making them 'live' .
If you add any hard registers that can be eliminated in different
ways, you have to patch reload to spill them only when all alternatives
of elimination fail. */
#define ELIMINABLE_REGS \
{{ HARD_FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
{ FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
{ RETURN_ADDRESS_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
{ RETURN_ADDRESS_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
{ ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM},}
/* Given FROM and TO register numbers, say whether this elimination
is allowed. */
#define CAN_ELIMINATE(FROM, TO) \
(!((FROM) == HARD_FRAME_POINTER_REGNUM && FRAME_POINTER_REQUIRED))
/* Define the offset between two registers, one to be eliminated, and the other
its replacement, at the start of a routine. */
#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
OFFSET = initial_elimination_offset ((FROM), (TO))
/* Base register for access to arguments of the function. */
#define ARG_POINTER_REGNUM AP_REG
/* Register in which the static-chain is passed to a function. */
#define STATIC_CHAIN_REGNUM (TARGET_SH5 ? 1 : 3)
/* Don't default to pcc-struct-return, because we have already specified
exactly how to return structures in the TARGET_RETURN_IN_MEMORY
target hook. */
#define DEFAULT_PCC_STRUCT_RETURN 0
#define SHMEDIA_REGS_STACK_ADJUST() \
(TARGET_SHCOMPACT && current_function_saves_all_registers \
? (8 * (/* r28-r35 */ 8 + /* r44-r59 */ 16 + /* tr5-tr7 */ 3) \
+ (TARGET_FPU_ANY ? 4 * (/* fr36 - fr63 */ 28) : 0)) \
: 0)
/* Define the classes of registers for register constraints in the
machine description. Also define ranges of constants.
One of the classes must always be named ALL_REGS and include all hard regs.
If there is more than one class, another class must be named NO_REGS
and contain no registers.
The name GENERAL_REGS must be the name of a class (or an alias for
another name such as ALL_REGS). This is the class of registers
that is allowed by "g" or "r" in a register constraint.
Also, registers outside this class are allocated only when
instructions express preferences for them.
The classes must be numbered in nondecreasing order; that is,
a larger-numbered class must never be contained completely
in a smaller-numbered class.
For any two classes, it is very desirable that there be another
class that represents their union. */
/* The SH has two sorts of general registers, R0 and the rest. R0 can
be used as the destination of some of the arithmetic ops. There are
also some special purpose registers; the T bit register, the
Procedure Return Register and the Multiply Accumulate Registers. */
/* Place GENERAL_REGS after FPUL_REGS so that it will be preferred by
reg_class_subunion. We don't want to have an actual union class
of these, because it would only be used when both classes are calculated
to give the same cost, but there is only one FPUL register.
Besides, regclass fails to notice the different REGISTER_MOVE_COSTS
applying to the actual instruction alternative considered. E.g., the
y/r alternative of movsi_ie is considered to have no more cost that
the r/r alternative, which is patently untrue. */
enum reg_class
{
NO_REGS,
R0_REGS,
PR_REGS,
T_REGS,
MAC_REGS,
FPUL_REGS,
SIBCALL_REGS,
GENERAL_REGS,
FP0_REGS,
FP_REGS,
DF_HI_REGS,
DF_REGS,
FPSCR_REGS,
GENERAL_FP_REGS,
GENERAL_DF_REGS,
TARGET_REGS,
ALL_REGS,
LIM_REG_CLASSES
};
#define N_REG_CLASSES (int) LIM_REG_CLASSES
/* Give names of register classes as strings for dump file. */
#define REG_CLASS_NAMES \
{ \
"NO_REGS", \
"R0_REGS", \
"PR_REGS", \
"T_REGS", \
"MAC_REGS", \
"FPUL_REGS", \
"SIBCALL_REGS", \
"GENERAL_REGS", \
"FP0_REGS", \
"FP_REGS", \
"DF_HI_REGS", \
"DF_REGS", \
"FPSCR_REGS", \
"GENERAL_FP_REGS", \
"GENERAL_DF_REGS", \
"TARGET_REGS", \
"ALL_REGS", \
}
/* Define which registers fit in which classes.
This is an initializer for a vector of HARD_REG_SET
of length N_REG_CLASSES. */
#define REG_CLASS_CONTENTS \
{ \
/* NO_REGS: */ \
{ 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, \
/* R0_REGS: */ \
{ 0x00000001, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, \
/* PR_REGS: */ \
{ 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00040000 }, \
/* T_REGS: */ \
{ 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00080000 }, \
/* MAC_REGS: */ \
{ 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00300000 }, \
/* FPUL_REGS: */ \
{ 0x00000000, 0x00000000, 0x00000000, 0x00000001, 0x00400000 }, \
/* SIBCALL_REGS: Initialized in CONDITIONAL_REGISTER_USAGE. */ \
{ 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, \
/* GENERAL_REGS: */ \
{ 0xffffffff, 0xffffffff, 0x00000000, 0x00000000, 0x03020000 }, \
/* FP0_REGS: */ \
{ 0x00000000, 0x00000000, 0x00000001, 0x00000000, 0x00000000 }, \
/* FP_REGS: */ \
{ 0x00000000, 0x00000000, 0xffffffff, 0xffffffff, 0x00000000 }, \
/* DF_HI_REGS: Initialized in CONDITIONAL_REGISTER_USAGE. */ \
{ 0x00000000, 0x00000000, 0xffffffff, 0xffffffff, 0x0000ff00 }, \
/* DF_REGS: */ \
{ 0x00000000, 0x00000000, 0xffffffff, 0xffffffff, 0x0000ff00 }, \
/* FPSCR_REGS: */ \
{ 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00800000 }, \
/* GENERAL_FP_REGS: */ \
{ 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0x03020000 }, \
/* GENERAL_DF_REGS: */ \
{ 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0x0302ff00 }, \
/* TARGET_REGS: */ \
{ 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x000000ff }, \
/* ALL_REGS: */ \
{ 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0x03ffffff }, \
}
/* The same information, inverted:
Return the class number of the smallest class containing
reg number REGNO. This could be a conditional expression
or could index an array. */
extern enum reg_class regno_reg_class[FIRST_PSEUDO_REGISTER];
#define REGNO_REG_CLASS(REGNO) regno_reg_class[(REGNO)]
/* When defined, the compiler allows registers explicitly used in the
rtl to be used as spill registers but prevents the compiler from
extending the lifetime of these registers. */
#define SMALL_REGISTER_CLASSES (! TARGET_SHMEDIA)
/* The order in which register should be allocated. */
/* Sometimes FP0_REGS becomes the preferred class of a floating point pseudo,
and GENERAL_FP_REGS the alternate class. Since FP0 is likely to be
spilled or used otherwise, we better have the FP_REGS allocated first. */
#define REG_ALLOC_ORDER \
{/* Caller-saved FPRs */ \
65, 66, 67, 68, 69, 70, 71, 64, \
72, 73, 74, 75, 80, 81, 82, 83, \
84, 85, 86, 87, 88, 89, 90, 91, \
92, 93, 94, 95, 96, 97, 98, 99, \
/* Callee-saved FPRs */ \
76, 77, 78, 79,100,101,102,103, \
104,105,106,107,108,109,110,111, \
112,113,114,115,116,117,118,119, \
120,121,122,123,124,125,126,127, \
136,137,138,139,140,141,142,143, \
/* FPSCR */ 151, \
/* Caller-saved GPRs (except 8/9 on SH1-4) */ \
1, 2, 3, 7, 6, 5, 4, 0, \
8, 9, 17, 19, 20, 21, 22, 23, \
36, 37, 38, 39, 40, 41, 42, 43, \
60, 61, 62, \
/* SH1-4 callee-saved saved GPRs / SH5 partially-saved GPRs */ \
10, 11, 12, 13, 14, 18, \
/* SH5 callee-saved GPRs */ \
28, 29, 30, 31, 32, 33, 34, 35, \
44, 45, 46, 47, 48, 49, 50, 51, \
52, 53, 54, 55, 56, 57, 58, 59, \
/* FPUL */ 150, \
/* SH5 branch target registers */ \
128,129,130,131,132,133,134,135, \
/* Fixed registers */ \
15, 16, 24, 25, 26, 27, 63,144, \
145,146,147,148,149,152,153 }
/* The class value for index registers, and the one for base regs. */
#define INDEX_REG_CLASS \
(!ALLOW_INDEXED_ADDRESS ? NO_REGS : TARGET_SHMEDIA ? GENERAL_REGS : R0_REGS)
#define BASE_REG_CLASS GENERAL_REGS
/* Defines for sh.md and constraints.md. */
#define CONST_OK_FOR_I06(VALUE) (((HOST_WIDE_INT)(VALUE)) >= -32 \
&& ((HOST_WIDE_INT)(VALUE)) <= 31)
#define CONST_OK_FOR_I08(VALUE) (((HOST_WIDE_INT)(VALUE))>= -128 \
&& ((HOST_WIDE_INT)(VALUE)) <= 127)
#define CONST_OK_FOR_I10(VALUE) (((HOST_WIDE_INT)(VALUE)) >= -512 \
&& ((HOST_WIDE_INT)(VALUE)) <= 511)
#define CONST_OK_FOR_I16(VALUE) (((HOST_WIDE_INT)(VALUE)) >= -32768 \
&& ((HOST_WIDE_INT)(VALUE)) <= 32767)
#define CONST_OK_FOR_J16(VALUE) \
((HOST_BITS_PER_WIDE_INT >= 64 && (VALUE) == (HOST_WIDE_INT) 0xffffffff) \
|| (HOST_BITS_PER_WIDE_INT >= 64 && (VALUE) == (HOST_WIDE_INT) -1 << 32))
#define CONST_OK_FOR_K08(VALUE) (((HOST_WIDE_INT)(VALUE))>= 0 \
&& ((HOST_WIDE_INT)(VALUE)) <= 255)
/* Given an rtx X being reloaded into a reg required to be
in class CLASS, return the class of reg to actually use.
In general this is just CLASS; but on some machines
in some cases it is preferable to use a more restrictive class. */
#define PREFERRED_RELOAD_CLASS(X, CLASS) \
((CLASS) == NO_REGS && TARGET_SHMEDIA \
&& (GET_CODE (X) == CONST_DOUBLE \
|| GET_CODE (X) == SYMBOL_REF \
|| PIC_DIRECT_ADDR_P (X)) \
? GENERAL_REGS \
: (CLASS)) \
#if 0
#define SECONDARY_INOUT_RELOAD_CLASS(CLASS,MODE,X,ELSE) \
((((REGCLASS_HAS_FP_REG (CLASS) \
&& (GET_CODE (X) == REG \
&& (GENERAL_OR_AP_REGISTER_P (REGNO (X)) \
|| (FP_REGISTER_P (REGNO (X)) && (MODE) == SImode \
&& TARGET_FMOVD)))) \
|| (REGCLASS_HAS_GENERAL_REG (CLASS) \
&& GET_CODE (X) == REG \
&& FP_REGISTER_P (REGNO (X)))) \
&& ! TARGET_SHMEDIA \
&& ((MODE) == SFmode || (MODE) == SImode)) \
? FPUL_REGS \
: (((CLASS) == FPUL_REGS \
|| (REGCLASS_HAS_FP_REG (CLASS) \
&& ! TARGET_SHMEDIA && MODE == SImode)) \
&& (GET_CODE (X) == MEM \
|| (GET_CODE (X) == REG \
&& (REGNO (X) >= FIRST_PSEUDO_REGISTER \
|| REGNO (X) == T_REG \
|| system_reg_operand (X, VOIDmode))))) \
? GENERAL_REGS \
: (((CLASS) == TARGET_REGS \
|| (TARGET_SHMEDIA && (CLASS) == SIBCALL_REGS)) \
&& !satisfies_constraint_Csy (X) \
&& (GET_CODE (X) != REG || ! GENERAL_REGISTER_P (REGNO (X)))) \
? GENERAL_REGS \
: (((CLASS) == MAC_REGS || (CLASS) == PR_REGS) \
&& GET_CODE (X) == REG && ! GENERAL_REGISTER_P (REGNO (X)) \
&& (CLASS) != REGNO_REG_CLASS (REGNO (X))) \
? GENERAL_REGS \
: ((CLASS) != GENERAL_REGS && GET_CODE (X) == REG \
&& TARGET_REGISTER_P (REGNO (X))) \
? GENERAL_REGS : (ELSE))
#define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS,MODE,X) \
SECONDARY_INOUT_RELOAD_CLASS(CLASS,MODE,X,NO_REGS)
#define SECONDARY_INPUT_RELOAD_CLASS(CLASS,MODE,X) \
((REGCLASS_HAS_FP_REG (CLASS) \
&& ! TARGET_SHMEDIA \
&& immediate_operand ((X), (MODE)) \
&& ! ((fp_zero_operand (X) || fp_one_operand (X)) \
&& (MODE) == SFmode && fldi_ok ())) \
? R0_REGS \
: ((CLASS) == FPUL_REGS \
&& ((GET_CODE (X) == REG \
&& (REGNO (X) == MACL_REG || REGNO (X) == MACH_REG \
|| REGNO (X) == T_REG)) \
|| GET_CODE (X) == PLUS)) \
? GENERAL_REGS \
: (CLASS) == FPUL_REGS && immediate_operand ((X), (MODE)) \
? (satisfies_constraint_I08 (X) \
? GENERAL_REGS \
: R0_REGS) \
: ((CLASS) == FPSCR_REGS \
&& ((GET_CODE (X) == REG && REGNO (X) >= FIRST_PSEUDO_REGISTER) \
|| (GET_CODE (X) == MEM && GET_CODE (XEXP ((X), 0)) == PLUS)))\
? GENERAL_REGS \
: (REGCLASS_HAS_FP_REG (CLASS) \
&& TARGET_SHMEDIA \
&& immediate_operand ((X), (MODE)) \
&& (X) != CONST0_RTX (GET_MODE (X)) \
&& GET_MODE (X) != V4SFmode) \
? GENERAL_REGS \
: (((MODE) == QImode || (MODE) == HImode) \
&& TARGET_SHMEDIA && inqhi_operand ((X), (MODE))) \
? GENERAL_REGS \
: (TARGET_SHMEDIA && (CLASS) == GENERAL_REGS \
&& (GET_CODE (X) == LABEL_REF || PIC_DIRECT_ADDR_P (X))) \
? TARGET_REGS \
: SECONDARY_INOUT_RELOAD_CLASS((CLASS),(MODE),(X), NO_REGS))
#endif
/* Return the maximum number of consecutive registers
needed to represent mode MODE in a register of class CLASS.
If TARGET_SHMEDIA, we need two FP registers per word.
Otherwise we will need at most one register per word. */
#define CLASS_MAX_NREGS(CLASS, MODE) \
(TARGET_SHMEDIA \
&& TEST_HARD_REG_BIT (reg_class_contents[CLASS], FIRST_FP_REG) \
? (GET_MODE_SIZE (MODE) + UNITS_PER_WORD/2 - 1) / (UNITS_PER_WORD/2) \
: (GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
/* If defined, gives a class of registers that cannot be used as the
operand of a SUBREG that changes the mode of the object illegally. */
/* ??? We need to renumber the internal numbers for the frnn registers
when in little endian in order to allow mode size changes. */
#define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) \
sh_cannot_change_mode_class (FROM, TO, CLASS)
/* Stack layout; function entry, exit and calling. */
/* Define the number of registers that can hold parameters.
These macros are used only in other macro definitions below. */
#define NPARM_REGS(MODE) \
(TARGET_FPU_ANY && (MODE) == SFmode \
? (TARGET_SH5 ? 12 : 8) \
: (TARGET_SH4 || TARGET_SH2A_DOUBLE) && (GET_MODE_CLASS (MODE) == MODE_FLOAT \
|| GET_MODE_CLASS (MODE) == MODE_COMPLEX_FLOAT) \
? (TARGET_SH5 ? 12 : 8) \
: (TARGET_SH5 ? 8 : 4))
#define FIRST_PARM_REG (FIRST_GENERAL_REG + (TARGET_SH5 ? 2 : 4))
#define FIRST_RET_REG (FIRST_GENERAL_REG + (TARGET_SH5 ? 2 : 0))
#define FIRST_FP_PARM_REG (FIRST_FP_REG + (TARGET_SH5 ? 0 : 4))
#define FIRST_FP_RET_REG FIRST_FP_REG
/* Define this if pushing a word on the stack
makes the stack pointer a smaller address. */
#define STACK_GROWS_DOWNWARD
/* Define this macro to nonzero if the addresses of local variable slots
are at negative offsets from the frame pointer. */
#define FRAME_GROWS_DOWNWARD 1
/* Offset from the frame pointer to the first local variable slot to
be allocated. */
#define STARTING_FRAME_OFFSET 0
/* If we generate an insn to push BYTES bytes,
this says how many the stack pointer really advances by. */
/* Don't define PUSH_ROUNDING, since the hardware doesn't do this.
When PUSH_ROUNDING is not defined, PARM_BOUNDARY will cause gcc to
do correct alignment. */
#if 0
#define PUSH_ROUNDING(NPUSHED) (((NPUSHED) + 3) & ~3)
#endif
/* Offset of first parameter from the argument pointer register value. */
#define FIRST_PARM_OFFSET(FNDECL) 0
/* Value is the number of byte of arguments automatically
popped when returning from a subroutine call.
FUNDECL is the declaration node of the function (as a tree),
FUNTYPE is the data type of the function (as a tree),
or for a library call it is an identifier node for the subroutine name.
SIZE is the number of bytes of arguments passed on the stack.
On the SH, the caller does not pop any of its arguments that were passed
on the stack. */
#define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0
/* Value is the number of bytes of arguments automatically popped when
calling a subroutine.
CUM is the accumulated argument list.
On SHcompact, the call trampoline pops arguments off the stack. */
#define CALL_POPS_ARGS(CUM) (TARGET_SHCOMPACT ? (CUM).stack_regs * 8 : 0)
/* Some subroutine macros specific to this machine. */
#define BASE_RETURN_VALUE_REG(MODE) \
((TARGET_FPU_ANY && ((MODE) == SFmode)) \
? FIRST_FP_RET_REG \
: TARGET_FPU_ANY && (MODE) == SCmode \
? FIRST_FP_RET_REG \
: (TARGET_FPU_DOUBLE \
&& ((MODE) == DFmode || (MODE) == SFmode \
|| (MODE) == DCmode || (MODE) == SCmode )) \
? FIRST_FP_RET_REG \
: FIRST_RET_REG)
#define BASE_ARG_REG(MODE) \
((TARGET_SH2E && ((MODE) == SFmode)) \
? FIRST_FP_PARM_REG \
: (TARGET_SH4 || TARGET_SH2A_DOUBLE) && (GET_MODE_CLASS (MODE) == MODE_FLOAT \
|| GET_MODE_CLASS (MODE) == MODE_COMPLEX_FLOAT)\
? FIRST_FP_PARM_REG \
: FIRST_PARM_REG)
/* Define how to find the value returned by a function.
VALTYPE is the data type of the value (as a tree).
If the precise function being called is known, FUNC is its FUNCTION_DECL;
otherwise, FUNC is 0.
For the SH, this is like LIBCALL_VALUE, except that we must change the
mode like PROMOTE_MODE does.
??? PROMOTE_MODE is ignored for non-scalar types. The set of types
tested here has to be kept in sync with the one in explow.c:promote_mode. */
#define FUNCTION_VALUE(VALTYPE, FUNC) \
gen_rtx_REG ( \
((GET_MODE_CLASS (TYPE_MODE (VALTYPE)) == MODE_INT \
&& GET_MODE_SIZE (TYPE_MODE (VALTYPE)) < 4 \
&& (TREE_CODE (VALTYPE) == INTEGER_TYPE \
|| TREE_CODE (VALTYPE) == ENUMERAL_TYPE \
|| TREE_CODE (VALTYPE) == BOOLEAN_TYPE \
|| TREE_CODE (VALTYPE) == REAL_TYPE \
|| TREE_CODE (VALTYPE) == OFFSET_TYPE)) \
&& sh_promote_prototypes (VALTYPE) \
? (TARGET_SHMEDIA64 ? DImode : SImode) : TYPE_MODE (VALTYPE)), \
BASE_RETURN_VALUE_REG (TYPE_MODE (VALTYPE)))
/* Define how to find the value returned by a library function
assuming the value has mode MODE. */
#define LIBCALL_VALUE(MODE) \
gen_rtx_REG ((MODE), BASE_RETURN_VALUE_REG (MODE));
/* 1 if N is a possible register number for a function value. */
#define FUNCTION_VALUE_REGNO_P(REGNO) \
((REGNO) == FIRST_RET_REG || (TARGET_SH2E && (REGNO) == FIRST_FP_RET_REG) \
|| (TARGET_SHMEDIA_FPU && (REGNO) == FIRST_FP_RET_REG))
/* 1 if N is a possible register number for function argument passing. */
/* ??? There are some callers that pass REGNO as int, and others that pass
it as unsigned. We get warnings unless we do casts everywhere. */
#define FUNCTION_ARG_REGNO_P(REGNO) \
(((unsigned) (REGNO) >= (unsigned) FIRST_PARM_REG \
&& (unsigned) (REGNO) < (unsigned) (FIRST_PARM_REG + NPARM_REGS (SImode)))\
|| (TARGET_FPU_ANY \
&& (unsigned) (REGNO) >= (unsigned) FIRST_FP_PARM_REG \
&& (unsigned) (REGNO) < (unsigned) (FIRST_FP_PARM_REG \
+ NPARM_REGS (SFmode))))
/* Define a data type for recording info about an argument list
during the scan of that argument list. This data type should
hold all necessary information about the function itself
and about the args processed so far, enough to enable macros
such as FUNCTION_ARG to determine where the next arg should go.
On SH, this is a single integer, which is a number of words
of arguments scanned so far (including the invisible argument,
if any, which holds the structure-value-address).
Thus NARGREGS or more means all following args should go on the stack. */
enum sh_arg_class { SH_ARG_INT = 0, SH_ARG_FLOAT = 1 };
struct sh_args {
int arg_count[2];
int force_mem;
/* Nonzero if a prototype is available for the function. */
int prototype_p;
/* The number of an odd floating-point register, that should be used
for the next argument of type float. */
int free_single_fp_reg;
/* Whether we're processing an outgoing function call. */
int outgoing;
/* The number of general-purpose registers that should have been
used to pass partial arguments, that are passed totally on the
stack. On SHcompact, a call trampoline will pop them off the
stack before calling the actual function, and, if the called
function is implemented in SHcompact mode, the incoming arguments
decoder will push such arguments back onto the stack. For
incoming arguments, STACK_REGS also takes into account other
arguments passed by reference, that the decoder will also push
onto the stack. */
int stack_regs;
/* The number of general-purpose registers that should have been
used to pass arguments, if the arguments didn't have to be passed
by reference. */
int byref_regs;
/* Set as by shcompact_byref if the current argument is to be passed
by reference. */
int byref;
/* call_cookie is a bitmask used by call expanders, as well as
function prologue and epilogues, to allow SHcompact to comply
with the SH5 32-bit ABI, that requires 64-bit registers to be
used even though only the lower 32-bit half is visible in
SHcompact mode. The strategy is to call SHmedia trampolines.
The alternatives for each of the argument-passing registers are
(a) leave it unchanged; (b) pop it off the stack; (c) load its
contents from the address in it; (d) add 8 to it, storing the
result in the next register, then (c); (e) copy it from some
floating-point register,
Regarding copies from floating-point registers, r2 may only be
copied from dr0. r3 may be copied from dr0 or dr2. r4 maybe
copied from dr0, dr2 or dr4. r5 maybe copied from dr0, dr2,
dr4 or dr6. r6 may be copied from dr0, dr2, dr4, dr6 or dr8.
r7 through to r9 may be copied from dr0, dr2, dr4, dr8, dr8 or
dr10.
The bit mask is structured as follows:
- 1 bit to tell whether to set up a return trampoline.
- 3 bits to count the number consecutive registers to pop off the
stack.
- 4 bits for each of r9, r8, r7 and r6.
- 3 bits for each of r5, r4, r3 and r2.
- 3 bits set to 0 (the most significant ones)
3 2 1 0
1098 7654 3210 9876 5432 1098 7654 3210
FLPF LPFL PFLP FFLP FFLP FFLP FFLP SSST
2223 3344 4555 6666 7777 8888 9999 SSS-
- If F is set, the register must be copied from an FP register,
whose number is encoded in the remaining bits.
- Else, if L is set, the register must be loaded from the address
contained in it. If the P bit is *not* set, the address of the
following dword should be computed first, and stored in the
following register.
- Else, if P is set, the register alone should be popped off the
stack.
- After all this processing, the number of registers represented
in SSS will be popped off the stack. This is an optimization
for pushing/popping consecutive registers, typically used for
varargs and large arguments partially passed in registers.
- If T is set, a return trampoline will be set up for 64-bit
return values to be split into 2 32-bit registers. */
long call_cookie;
/* This is set to nonzero when the call in question must use the Renesas ABI,
even without the -mrenesas option. */
int renesas_abi;
};
#define CALL_COOKIE_RET_TRAMP_SHIFT 0
#define CALL_COOKIE_RET_TRAMP(VAL) ((VAL) << CALL_COOKIE_RET_TRAMP_SHIFT)
#define CALL_COOKIE_STACKSEQ_SHIFT 1
#define CALL_COOKIE_STACKSEQ(VAL) ((VAL) << CALL_COOKIE_STACKSEQ_SHIFT)
#define CALL_COOKIE_STACKSEQ_GET(COOKIE) \
(((COOKIE) >> CALL_COOKIE_STACKSEQ_SHIFT) & 7)
#define CALL_COOKIE_INT_REG_SHIFT(REG) \
(4 * (7 - (REG)) + (((REG) <= 2) ? ((REG) - 2) : 1) + 3)
#define CALL_COOKIE_INT_REG(REG, VAL) \
((VAL) << CALL_COOKIE_INT_REG_SHIFT (REG))
#define CALL_COOKIE_INT_REG_GET(COOKIE, REG) \
(((COOKIE) >> CALL_COOKIE_INT_REG_SHIFT (REG)) & ((REG) < 4 ? 7 : 15))
#define CUMULATIVE_ARGS struct sh_args
#define GET_SH_ARG_CLASS(MODE) \
((TARGET_FPU_ANY && (MODE) == SFmode) \
? SH_ARG_FLOAT \
/* There's no mention of complex float types in the SH5 ABI, so we
should presumably handle them as aggregate types. */ \
: TARGET_SH5 && GET_MODE_CLASS (MODE) == MODE_COMPLEX_FLOAT \
? SH_ARG_INT \
: TARGET_FPU_DOUBLE && (GET_MODE_CLASS (MODE) == MODE_FLOAT \
|| GET_MODE_CLASS (MODE) == MODE_COMPLEX_FLOAT) \
? SH_ARG_FLOAT : SH_ARG_INT)
#define ROUND_ADVANCE(SIZE) \
(((SIZE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
/* Round a register number up to a proper boundary for an arg of mode
MODE.
The SH doesn't care about double alignment, so we only
round doubles to even regs when asked to explicitly. */
#define ROUND_REG(CUM, MODE) \
(((TARGET_ALIGN_DOUBLE \
|| ((TARGET_SH4 || TARGET_SH2A_DOUBLE) && ((MODE) == DFmode || (MODE) == DCmode) \
&& (CUM).arg_count[(int) SH_ARG_FLOAT] < NPARM_REGS (MODE)))\
&& GET_MODE_UNIT_SIZE ((MODE)) > UNITS_PER_WORD) \
? ((CUM).arg_count[(int) GET_SH_ARG_CLASS (MODE)] \
+ ((CUM).arg_count[(int) GET_SH_ARG_CLASS (MODE)] & 1)) \
: (CUM).arg_count[(int) GET_SH_ARG_CLASS (MODE)])
/* Initialize a variable CUM of type CUMULATIVE_ARGS
for a call to a function whose data type is FNTYPE.
For a library call, FNTYPE is 0.
On SH, the offset always starts at 0: the first parm reg is always
the same reg for a given argument class.
For TARGET_HITACHI, the structure value pointer is passed in memory. */
#define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \
sh_init_cumulative_args (& (CUM), (FNTYPE), (LIBNAME), (FNDECL), (N_NAMED_ARGS), VOIDmode)
#define INIT_CUMULATIVE_LIBCALL_ARGS(CUM, MODE, LIBNAME) \
sh_init_cumulative_args (& (CUM), NULL_TREE, (LIBNAME), NULL_TREE, 0, (MODE))
#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
sh_function_arg_advance (&(CUM), (MODE), (TYPE), (NAMED))
#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
sh_function_arg (&(CUM), (MODE), (TYPE), (NAMED))
/* Return boolean indicating arg of mode MODE will be passed in a reg.
This macro is only used in this file. */
#define PASS_IN_REG_P(CUM, MODE, TYPE) \
(((TYPE) == 0 \
|| (! TREE_ADDRESSABLE ((tree)(TYPE)) \
&& (! (TARGET_HITACHI || (CUM).renesas_abi) \
|| ! (AGGREGATE_TYPE_P (TYPE) \
|| (!TARGET_FPU_ANY \
&& (GET_MODE_CLASS (MODE) == MODE_FLOAT \
&& GET_MODE_SIZE (MODE) > GET_MODE_SIZE (SFmode))))))) \
&& ! (CUM).force_mem \
&& (TARGET_SH2E \
? ((MODE) == BLKmode \
? (((CUM).arg_count[(int) SH_ARG_INT] * UNITS_PER_WORD \
+ int_size_in_bytes (TYPE)) \
<= NPARM_REGS (SImode) * UNITS_PER_WORD) \
: ((ROUND_REG((CUM), (MODE)) \
+ HARD_REGNO_NREGS (BASE_ARG_REG (MODE), (MODE))) \
<= NPARM_REGS (MODE))) \
: ROUND_REG ((CUM), (MODE)) < NPARM_REGS (MODE)))
/* By accident we got stuck with passing SCmode on SH4 little endian
in two registers that are nominally successive - which is different from
two single SFmode values, where we take endianness translation into
account. That does not work at all if an odd number of registers is
already in use, so that got fixed, but library functions are still more
likely to use complex numbers without mixing them with SFmode arguments
(which in C would have to be structures), so for the sake of ABI
compatibility the way SCmode values are passed when an even number of
FP registers is in use remains different from a pair of SFmode values for
now.
I.e.:
foo (double); a: fr5,fr4
foo (float a, float b); a: fr5 b: fr4
foo (__complex float a); a.real fr4 a.imag: fr5 - for consistency,
this should be the other way round...
foo (float a, __complex float b); a: fr5 b.real: fr4 b.imag: fr7 */
#define FUNCTION_ARG_SCmode_WART 1
/* If an argument of size 5, 6 or 7 bytes is to be passed in a 64-bit
register in SHcompact mode, it must be padded in the most
significant end. This means that passing it by reference wouldn't
pad properly on a big-endian machine. In this particular case, we
pass this argument on the stack, in a way that the call trampoline
will load its value into the appropriate register. */
#define SHCOMPACT_FORCE_ON_STACK(MODE,TYPE) \
((MODE) == BLKmode \
&& TARGET_SHCOMPACT \
&& ! TARGET_LITTLE_ENDIAN \
&& int_size_in_bytes (TYPE) > 4 \
&& int_size_in_bytes (TYPE) < 8)
/* Minimum alignment for an argument to be passed by callee-copy
reference. We need such arguments to be aligned to 8 byte
boundaries, because they'll be loaded using quad loads. */
#define SH_MIN_ALIGN_FOR_CALLEE_COPY (8 * BITS_PER_UNIT)
/* The SH5 ABI requires floating-point arguments to be passed to
functions without a prototype in both an FP register and a regular
register or the stack. When passing the argument in both FP and
general-purpose registers, list the FP register first. */
#define SH5_PROTOTYPELESS_FLOAT_ARG(CUM,MODE) \
(gen_rtx_PARALLEL \
((MODE), \
gen_rtvec (2, \
gen_rtx_EXPR_LIST \
(VOIDmode, \
((CUM).arg_count[(int) SH_ARG_INT] < NPARM_REGS (SImode) \
? gen_rtx_REG ((MODE), FIRST_FP_PARM_REG \
+ (CUM).arg_count[(int) SH_ARG_FLOAT]) \
: NULL_RTX), \
const0_rtx), \
gen_rtx_EXPR_LIST \
(VOIDmode, \
((CUM).arg_count[(int) SH_ARG_INT] < NPARM_REGS (SImode) \
? gen_rtx_REG ((MODE), FIRST_PARM_REG \
+ (CUM).arg_count[(int) SH_ARG_INT]) \
: gen_rtx_REG ((MODE), FIRST_FP_PARM_REG \
+ (CUM).arg_count[(int) SH_ARG_FLOAT])), \
const0_rtx))))
/* The SH5 ABI requires regular registers or stack slots to be
reserved for floating-point arguments. Registers are taken care of
in FUNCTION_ARG_ADVANCE, but stack slots must be reserved here.
Unfortunately, there's no way to just reserve a stack slot, so
we'll end up needlessly storing a copy of the argument in the
stack. For incoming arguments, however, the PARALLEL will be
optimized to the register-only form, and the value in the stack
slot won't be used at all. */
#define SH5_PROTOTYPED_FLOAT_ARG(CUM,MODE,REG) \
((CUM).arg_count[(int) SH_ARG_INT] < NPARM_REGS (SImode) \
? gen_rtx_REG ((MODE), (REG)) \
: gen_rtx_PARALLEL ((MODE), \
gen_rtvec (2, \
gen_rtx_EXPR_LIST \
(VOIDmode, NULL_RTX, \
const0_rtx), \
gen_rtx_EXPR_LIST \
(VOIDmode, gen_rtx_REG ((MODE), \
(REG)), \
const0_rtx))))
#define SH5_WOULD_BE_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \
(TARGET_SH5 \
&& ((MODE) == BLKmode || (MODE) == TImode || (MODE) == CDImode \
|| (MODE) == DCmode) \
&& ((CUM).arg_count[(int) SH_ARG_INT] \
+ (((MODE) == BLKmode ? int_size_in_bytes (TYPE) \
: GET_MODE_SIZE (MODE)) \
+ 7) / 8) > NPARM_REGS (SImode))
/* Perform any needed actions needed for a function that is receiving a
variable number of arguments. */
/* Call the function profiler with a given profile label.
We use two .aligns, so as to make sure that both the .long is aligned
on a 4 byte boundary, and that the .long is a fixed distance (2 bytes)
from the trapa instruction. */
#define FUNCTION_PROFILER(STREAM,LABELNO) \
{ \
if (TARGET_SHMEDIA) \
{ \
fprintf((STREAM), "\tmovi\t33,r0\n"); \
fprintf((STREAM), "\ttrapa\tr0\n"); \
asm_fprintf((STREAM), "\t.long\t%LLP%d\n", (LABELNO)); \
} \
else \
{ \
fprintf((STREAM), "\t.align\t2\n"); \
fprintf((STREAM), "\ttrapa\t#33\n"); \
fprintf((STREAM), "\t.align\t2\n"); \
asm_fprintf((STREAM), "\t.long\t%LLP%d\n", (LABELNO)); \
} \
}
/* Define this macro if the code for function profiling should come
before the function prologue. Normally, the profiling code comes
after. */
#define PROFILE_BEFORE_PROLOGUE
/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
the stack pointer does not matter. The value is tested only in
functions that have frame pointers.
No definition is equivalent to always zero. */
#define EXIT_IGNORE_STACK 1
/*
On the SH, the trampoline looks like
2 0002 D202 mov.l l2,r2
1 0000 D301 mov.l l1,r3
3 0004 422B jmp @r2
4 0006 0009 nop
5 0008 00000000 l1: .long area
6 000c 00000000 l2: .long function */
/* Length in units of the trampoline for entering a nested function. */
#define TRAMPOLINE_SIZE (TARGET_SHMEDIA64 ? 40 : TARGET_SH5 ? 24 : 16)
/* Alignment required for a trampoline in bits . */
#define TRAMPOLINE_ALIGNMENT \
((CACHE_LOG < 3 || (TARGET_SMALLCODE && ! TARGET_HARVARD)) ? 32 \
: TARGET_SHMEDIA ? 256 : 64)
/* Emit RTL insns to initialize the variable parts of a trampoline.
FNADDR is an RTX for the address of the function's pure code.
CXT is an RTX for the static chain value for the function. */
#define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
sh_initialize_trampoline ((TRAMP), (FNADDR), (CXT))
/* On SH5, trampolines are SHmedia code, so add 1 to the address. */
#define TRAMPOLINE_ADJUST_ADDRESS(TRAMP) do \
{ \
if (TARGET_SHMEDIA) \
(TRAMP) = expand_simple_binop (Pmode, PLUS, (TRAMP), const1_rtx, \
gen_reg_rtx (Pmode), 0, \
OPTAB_LIB_WIDEN); \
} while (0)
/* A C expression whose value is RTL representing the value of the return
address for the frame COUNT steps up from the current frame.
FRAMEADDR is already the frame pointer of the COUNT frame, so we
can ignore COUNT. */
#define RETURN_ADDR_RTX(COUNT, FRAME) \
(((COUNT) == 0) ? sh_get_pr_initial_val () : (rtx) 0)
/* A C expression whose value is RTL representing the location of the
incoming return address at the beginning of any function, before the
prologue. This RTL is either a REG, indicating that the return
value is saved in REG, or a MEM representing a location in
the stack. */
#define INCOMING_RETURN_ADDR_RTX \
gen_rtx_REG (Pmode, TARGET_SHMEDIA ? PR_MEDIA_REG : PR_REG)
/* Addressing modes, and classification of registers for them. */
#define HAVE_POST_INCREMENT TARGET_SH1
#define HAVE_PRE_DECREMENT TARGET_SH1
#define USE_LOAD_POST_INCREMENT(mode) ((mode == SImode || mode == DImode) \
? 0 : TARGET_SH1)
#define USE_LOAD_PRE_DECREMENT(mode) 0
#define USE_STORE_POST_INCREMENT(mode) 0
#define USE_STORE_PRE_DECREMENT(mode) ((mode == SImode || mode == DImode) \
? 0 : TARGET_SH1)
#define MOVE_BY_PIECES_P(SIZE, ALIGN) \
(move_by_pieces_ninsns (SIZE, ALIGN, MOVE_MAX_PIECES + 1) \
< (TARGET_SMALLCODE ? 2 : ((ALIGN >= 32) ? 16 : 2)))
#define STORE_BY_PIECES_P(SIZE, ALIGN) \
(move_by_pieces_ninsns (SIZE, ALIGN, STORE_MAX_PIECES + 1) \
< (TARGET_SMALLCODE ? 2 : ((ALIGN >= 32) ? 16 : 2)))
#define SET_BY_PIECES_P(SIZE, ALIGN) STORE_BY_PIECES_P(SIZE, ALIGN)
/* Macros to check register numbers against specific register classes. */
/* These assume that REGNO is a hard or pseudo reg number.
They give nonzero only if REGNO is a hard reg of the suitable class
or a pseudo reg currently allocated to a suitable hard reg.
Since they use reg_renumber, they are safe only once reg_renumber
has been allocated, which happens in local-alloc.c. */
#define REGNO_OK_FOR_BASE_P(REGNO) \
(GENERAL_OR_AP_REGISTER_P (REGNO) \
|| GENERAL_OR_AP_REGISTER_P (reg_renumber[(REGNO)]))
#define REGNO_OK_FOR_INDEX_P(REGNO) \
(TARGET_SHMEDIA \
? (GENERAL_REGISTER_P (REGNO) \
|| GENERAL_REGISTER_P ((unsigned) reg_renumber[(REGNO)])) \
: (REGNO) == R0_REG || (unsigned) reg_renumber[(REGNO)] == R0_REG)
/* Maximum number of registers that can appear in a valid memory
address. */
#define MAX_REGS_PER_ADDRESS 2
/* Recognize any constant value that is a valid address. */
#define CONSTANT_ADDRESS_P(X) (GET_CODE (X) == LABEL_REF)
/* Nonzero if the constant value X is a legitimate general operand. */
/* can_store_by_pieces constructs VOIDmode CONST_DOUBLEs. */
#define LEGITIMATE_CONSTANT_P(X) \
(TARGET_SHMEDIA \
? ((GET_MODE (X) != DFmode \
&& GET_MODE_CLASS (GET_MODE (X)) != MODE_VECTOR_FLOAT) \
|| (X) == CONST0_RTX (GET_MODE (X)) \
|| ! TARGET_SHMEDIA_FPU \
|| TARGET_SHMEDIA64) \
: (GET_CODE (X) != CONST_DOUBLE \
|| GET_MODE (X) == DFmode || GET_MODE (X) == SFmode \
|| GET_MODE (X) == DImode || GET_MODE (X) == VOIDmode))
/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
and check its validity for a certain class.
We have two alternate definitions for each of them.
The usual definition accepts all pseudo regs; the other rejects
them unless they have been allocated suitable hard regs.
The symbol REG_OK_STRICT causes the latter definition to be used. */
#ifndef REG_OK_STRICT
/* Nonzero if X is a hard reg that can be used as a base reg
or if it is a pseudo reg. */
#define REG_OK_FOR_BASE_P(X) \
(GENERAL_OR_AP_REGISTER_P (REGNO (X)) || REGNO (X) >= FIRST_PSEUDO_REGISTER)
/* Nonzero if X is a hard reg that can be used as an index
or if it is a pseudo reg. */
#define REG_OK_FOR_INDEX_P(X) \
((TARGET_SHMEDIA ? GENERAL_REGISTER_P (REGNO (X)) \
: REGNO (X) == R0_REG) || REGNO (X) >= FIRST_PSEUDO_REGISTER)
/* Nonzero if X/OFFSET is a hard reg that can be used as an index
or if X is a pseudo reg. */
#define SUBREG_OK_FOR_INDEX_P(X, OFFSET) \
((TARGET_SHMEDIA ? GENERAL_REGISTER_P (REGNO (X)) \
: REGNO (X) == R0_REG && OFFSET == 0) || REGNO (X) >= FIRST_PSEUDO_REGISTER)
#else
/* Nonzero if X is a hard reg that can be used as a base reg. */
#define REG_OK_FOR_BASE_P(X) \
REGNO_OK_FOR_BASE_P (REGNO (X))
/* Nonzero if X is a hard reg that can be used as an index. */
#define REG_OK_FOR_INDEX_P(X) \
REGNO_OK_FOR_INDEX_P (REGNO (X))
/* Nonzero if X/OFFSET is a hard reg that can be used as an index. */
#define SUBREG_OK_FOR_INDEX_P(X, OFFSET) \
(REGNO_OK_FOR_INDEX_P (REGNO (X)) && (OFFSET) == 0)
#endif
/* Macros for extra constraints. */
#define IS_PC_RELATIVE_LOAD_ADDR_P(OP) \
((GET_CODE ((OP)) == LABEL_REF) \
|| (GET_CODE ((OP)) == CONST \
&& GET_CODE (XEXP ((OP), 0)) == PLUS \
&& GET_CODE (XEXP (XEXP ((OP), 0), 0)) == LABEL_REF \
&& GET_CODE (XEXP (XEXP ((OP), 0), 1)) == CONST_INT))
#define IS_LITERAL_OR_SYMBOLIC_S16_P(OP) \
(GET_CODE ((OP)) == SIGN_EXTEND \
&& (GET_MODE ((OP)) == DImode \
|| GET_MODE ((OP)) == SImode) \
&& GET_CODE (XEXP ((OP), 0)) == TRUNCATE \
&& GET_MODE (XEXP ((OP), 0)) == HImode \
&& (MOVI_SHORI_BASE_OPERAND_P (XEXP (XEXP ((OP), 0), 0)) \
|| (GET_CODE (XEXP (XEXP ((OP), 0), 0)) == ASHIFTRT \
&& (MOVI_SHORI_BASE_OPERAND_P \
(XEXP (XEXP (XEXP ((OP), 0), 0), 0))) \
&& GET_CODE (XEXP (XEXP (XEXP ((OP), 0), 0), 1)) == CONST_INT)))
#define IS_LITERAL_OR_SYMBOLIC_U16_P(OP) \
(GET_CODE ((OP)) == ZERO_EXTEND \
&& (GET_MODE ((OP)) == DImode \
|| GET_MODE ((OP)) == SImode) \
&& GET_CODE (XEXP ((OP), 0)) == TRUNCATE \
&& GET_MODE (XEXP ((OP), 0)) == HImode \
&& (MOVI_SHORI_BASE_OPERAND_P (XEXP (XEXP ((OP), 0), 0)) \
|| (GET_CODE (XEXP (XEXP ((OP), 0), 0)) == ASHIFTRT \
&& (MOVI_SHORI_BASE_OPERAND_P \
(XEXP (XEXP (XEXP ((OP), 0), 0), 0))) \
&& GET_CODE (XEXP (XEXP (XEXP ((OP), 0), 0), 1)) == CONST_INT)))
#define IS_NON_EXPLICIT_CONSTANT_P(OP) \
(CONSTANT_P (OP) \
&& GET_CODE (OP) != CONST_INT \
&& GET_CODE (OP) != CONST_DOUBLE \
&& (!flag_pic \
|| (LEGITIMATE_PIC_OPERAND_P (OP) \
&& (! PIC_ADDR_P (OP) || PIC_OFFSET_P (OP)) \
&& GET_CODE (OP) != LABEL_REF)))
/* Check whether OP is a datalabel unspec. */
#define DATALABEL_REF_NO_CONST_P(OP) \
(GET_CODE (OP) == UNSPEC \
&& XINT ((OP), 1) == UNSPEC_DATALABEL \
&& XVECLEN ((OP), 0) == 1 \
&& GET_CODE (XVECEXP ((OP), 0, 0)) == LABEL_REF)
#define GOT_ENTRY_P(OP) \
(GET_CODE (OP) == CONST && GET_CODE (XEXP ((OP), 0)) == UNSPEC \
&& XINT (XEXP ((OP), 0), 1) == UNSPEC_GOT)
#define GOTPLT_ENTRY_P(OP) \
(GET_CODE (OP) == CONST && GET_CODE (XEXP ((OP), 0)) == UNSPEC \
&& XINT (XEXP ((OP), 0), 1) == UNSPEC_GOTPLT)
#define UNSPEC_GOTOFF_P(OP) \
(GET_CODE (OP) == UNSPEC && XINT ((OP), 1) == UNSPEC_GOTOFF)
#define GOTOFF_P(OP) \
(GET_CODE (OP) == CONST \
&& (UNSPEC_GOTOFF_P (XEXP ((OP), 0)) \
|| (GET_CODE (XEXP ((OP), 0)) == PLUS \
&& UNSPEC_GOTOFF_P (XEXP (XEXP ((OP), 0), 0)) \
&& GET_CODE (XEXP (XEXP ((OP), 0), 1)) == CONST_INT)))
#define PIC_ADDR_P(OP) \
(GET_CODE (OP) == CONST && GET_CODE (XEXP ((OP), 0)) == UNSPEC \
&& XINT (XEXP ((OP), 0), 1) == UNSPEC_PIC)
#define PIC_OFFSET_P(OP) \
(PIC_ADDR_P (OP) \
&& GET_CODE (XVECEXP (XEXP ((OP), 0), 0, 0)) == MINUS \
&& reg_mentioned_p (pc_rtx, XEXP (XVECEXP (XEXP ((OP), 0), 0, 0), 1)))
#define PIC_DIRECT_ADDR_P(OP) \
(PIC_ADDR_P (OP) && GET_CODE (XVECEXP (XEXP ((OP), 0), 0, 0)) != MINUS)
#define NON_PIC_REFERENCE_P(OP) \
(GET_CODE (OP) == LABEL_REF || GET_CODE (OP) == SYMBOL_REF \
|| (GET_CODE (OP) == CONST \
&& (GET_CODE (XEXP ((OP), 0)) == LABEL_REF \
|| GET_CODE (XEXP ((OP), 0)) == SYMBOL_REF \
|| DATALABEL_REF_NO_CONST_P (XEXP ((OP), 0)))) \
|| (GET_CODE (OP) == CONST && GET_CODE (XEXP ((OP), 0)) == PLUS \
&& (GET_CODE (XEXP (XEXP ((OP), 0), 0)) == SYMBOL_REF \
|| GET_CODE (XEXP (XEXP ((OP), 0), 0)) == LABEL_REF \
|| DATALABEL_REF_NO_CONST_P (XEXP (XEXP ((OP), 0), 0))) \
&& GET_CODE (XEXP (XEXP ((OP), 0), 1)) == CONST_INT))
#define PIC_REFERENCE_P(OP) \
(GOT_ENTRY_P (OP) || GOTPLT_ENTRY_P (OP) \
|| GOTOFF_P (OP) || PIC_ADDR_P (OP))
#define MOVI_SHORI_BASE_OPERAND_P(OP) \
(flag_pic \
? (GOT_ENTRY_P (OP) || GOTPLT_ENTRY_P (OP) || GOTOFF_P (OP) \
|| PIC_OFFSET_P (OP)) \
: NON_PIC_REFERENCE_P (OP))
/* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
that is a valid memory address for an instruction.
The MODE argument is the machine mode for the MEM expression
that wants to use this address. */
#define MODE_DISP_OK_4(X,MODE) \
(GET_MODE_SIZE (MODE) == 4 && (unsigned) INTVAL (X) < 64 \
&& ! (INTVAL (X) & 3) && ! (TARGET_SH2E && (MODE) == SFmode))
#define MODE_DISP_OK_8(X,MODE) \
((GET_MODE_SIZE(MODE)==8) && ((unsigned)INTVAL(X)<60) \
&& ! (INTVAL(X) & 3) && ! (TARGET_SH4 && (MODE) == DFmode))
#undef MODE_DISP_OK_4
#define MODE_DISP_OK_4(X,MODE) \
((GET_MODE_SIZE (MODE) == 4 && (unsigned) INTVAL (X) < 64 \
&& ! (INTVAL (X) & 3) && ! (TARGET_SH2E && (MODE) == SFmode)) \
|| ((GET_MODE_SIZE(MODE)==4) && ((unsigned)INTVAL(X)<16383) \
&& ! (INTVAL(X) & 3) && TARGET_SH2A))
#undef MODE_DISP_OK_8
#define MODE_DISP_OK_8(X,MODE) \
(((GET_MODE_SIZE(MODE)==8) && ((unsigned)INTVAL(X)<60) \
&& ! (INTVAL(X) & 3) && ! ((TARGET_SH4 || TARGET_SH2A) && (MODE) == DFmode)) \
|| ((GET_MODE_SIZE(MODE)==8) && ((unsigned)INTVAL(X)<8192) \
&& ! (INTVAL(X) & (TARGET_SH2A_DOUBLE ? 7 : 3)) && (TARGET_SH2A && (MODE) == DFmode)))
#define BASE_REGISTER_RTX_P(X) \
((GET_CODE (X) == REG && REG_OK_FOR_BASE_P (X)) \
|| (GET_CODE (X) == SUBREG \
&& TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (GET_MODE ((X))), \
GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (X)))) \
&& GET_CODE (SUBREG_REG (X)) == REG \
&& REG_OK_FOR_BASE_P (SUBREG_REG (X))))
/* Since this must be r0, which is a single register class, we must check
SUBREGs more carefully, to be sure that we don't accept one that extends
outside the class. */
#define INDEX_REGISTER_RTX_P(X) \
((GET_CODE (X) == REG && REG_OK_FOR_INDEX_P (X)) \
|| (GET_CODE (X) == SUBREG \
&& TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (GET_MODE ((X))), \
GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (X)))) \
&& GET_CODE (SUBREG_REG (X)) == REG \
&& SUBREG_OK_FOR_INDEX_P (SUBREG_REG (X), SUBREG_BYTE (X))))
/* Jump to LABEL if X is a valid address RTX. This must also take
REG_OK_STRICT into account when deciding about valid registers, but it uses
the above macros so we are in luck.
Allow REG
REG+disp
REG+r0
REG++
--REG */
/* ??? The SH2e does not have the REG+disp addressing mode when loading values
into the FRx registers. We implement this by setting the maximum offset
to zero when the value is SFmode. This also restricts loading of SFmode
values into the integer registers, but that can't be helped. */
/* The SH allows a displacement in a QI or HI amode, but only when the
other operand is R0. GCC doesn't handle this very well, so we forgo
all of that.
A legitimate index for a QI or HI is 0, SI can be any number 0..63,
DI can be any number 0..60. */
#define GO_IF_LEGITIMATE_INDEX(MODE, OP, LABEL) \
do { \
if (GET_CODE (OP) == CONST_INT) \
{ \
if (TARGET_SHMEDIA) \
{ \
int MODE_SIZE; \
/* Check if this the address of an unaligned load / store. */\
if ((MODE) == VOIDmode) \
{ \
if (CONST_OK_FOR_I06 (INTVAL (OP))) \
goto LABEL; \
break; \
} \
MODE_SIZE = GET_MODE_SIZE (MODE); \
if (! (INTVAL (OP) & (MODE_SIZE - 1)) \
&& INTVAL (OP) >= -512 * MODE_SIZE \
&& INTVAL (OP) < 512 * MODE_SIZE) \
goto LABEL; \
else \
break; \
} \
if (MODE_DISP_OK_4 ((OP), (MODE))) goto LABEL; \
if (MODE_DISP_OK_8 ((OP), (MODE))) goto LABEL; \
} \
} while(0)
#define ALLOW_INDEXED_ADDRESS \
((!TARGET_SHMEDIA32 && !TARGET_SHCOMPACT) || TARGET_ALLOW_INDEXED_ADDRESS)
#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, LABEL) \
{ \
if (BASE_REGISTER_RTX_P (X)) \
goto LABEL; \
else if ((GET_CODE (X) == POST_INC || GET_CODE (X) == PRE_DEC) \
&& ! TARGET_SHMEDIA \
&& BASE_REGISTER_RTX_P (XEXP ((X), 0))) \
goto LABEL; \
else if (GET_CODE (X) == PLUS \
&& ((MODE) != PSImode || reload_completed)) \
{ \
rtx xop0 = XEXP ((X), 0); \
rtx xop1 = XEXP ((X), 1); \
if (GET_MODE_SIZE (MODE) <= 8 && BASE_REGISTER_RTX_P (xop0)) \
GO_IF_LEGITIMATE_INDEX ((MODE), xop1, LABEL); \
if ((ALLOW_INDEXED_ADDRESS || GET_MODE (X) == DImode \
|| ((xop0 == stack_pointer_rtx \
|| xop0 == hard_frame_pointer_rtx) \
&& REG_P (xop1) && REGNO (xop1) == R0_REG) \
|| ((xop1 == stack_pointer_rtx \
|| xop1 == hard_frame_pointer_rtx) \
&& REG_P (xop0) && REGNO (xop0) == R0_REG)) \
&& ((!TARGET_SHMEDIA && GET_MODE_SIZE (MODE) <= 4) \
|| (TARGET_SHMEDIA && GET_MODE_SIZE (MODE) <= 8) \
|| ((TARGET_SH4 || TARGET_SH2A_DOUBLE) \
&& TARGET_FMOVD && MODE == DFmode))) \
{ \
if (BASE_REGISTER_RTX_P (xop1) && INDEX_REGISTER_RTX_P (xop0))\
goto LABEL; \
if (INDEX_REGISTER_RTX_P (xop1) && BASE_REGISTER_RTX_P (xop0))\
goto LABEL; \
} \
} \
}
/* Try machine-dependent ways of modifying an illegitimate address
to be legitimate. If we find one, return the new, valid address.
This macro is used in only one place: `memory_address' in explow.c.
OLDX is the address as it was before break_out_memory_refs was called.
In some cases it is useful to look at this to decide what needs to be done.
MODE and WIN are passed so that this macro can use
GO_IF_LEGITIMATE_ADDRESS.
It is always safe for this macro to do nothing. It exists to recognize
opportunities to optimize the output.
For the SH, if X is almost suitable for indexing, but the offset is
out of range, convert it into a normal form so that cse has a chance
of reducing the number of address registers used. */
#define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) \
{ \
if (flag_pic) \
(X) = legitimize_pic_address (OLDX, MODE, NULL_RTX); \
if (GET_CODE (X) == PLUS \
&& (GET_MODE_SIZE (MODE) == 4 \
|| GET_MODE_SIZE (MODE) == 8) \
&& GET_CODE (XEXP ((X), 1)) == CONST_INT \
&& BASE_REGISTER_RTX_P (XEXP ((X), 0)) \
&& ! TARGET_SHMEDIA \
&& ! ((TARGET_SH4 || TARGET_SH2A_DOUBLE) && (MODE) == DFmode) \
&& ! (TARGET_SH2E && (MODE) == SFmode)) \
{ \
rtx index_rtx = XEXP ((X), 1); \
HOST_WIDE_INT offset = INTVAL (index_rtx), offset_base; \
rtx sum; \
\
GO_IF_LEGITIMATE_INDEX ((MODE), index_rtx, WIN); \
/* On rare occasions, we might get an unaligned pointer \
that is indexed in a way to give an aligned address. \
Therefore, keep the lower two bits in offset_base. */ \
/* Instead of offset_base 128..131 use 124..127, so that \
simple add suffices. */ \
if (offset > 127) \
{ \
offset_base = ((offset + 4) & ~60) - 4; \
} \
else \
offset_base = offset & ~60; \
/* Sometimes the normal form does not suit DImode. We \
could avoid that by using smaller ranges, but that \
would give less optimized code when SImode is \
prevalent. */ \
if (GET_MODE_SIZE (MODE) + offset - offset_base <= 64) \
{ \
sum = expand_binop (Pmode, add_optab, XEXP ((X), 0), \
GEN_INT (offset_base), NULL_RTX, 0, \
OPTAB_LIB_WIDEN); \
\
(X) = gen_rtx_PLUS (Pmode, sum, GEN_INT (offset - offset_base)); \
goto WIN; \
} \
} \
}
/* A C compound statement that attempts to replace X, which is an address
that needs reloading, with a valid memory address for an operand of
mode MODE. WIN is a C statement label elsewhere in the code.
Like for LEGITIMIZE_ADDRESS, for the SH we try to get a normal form
of the address. That will allow inheritance of the address reloads. */
#define LEGITIMIZE_RELOAD_ADDRESS(X,MODE,OPNUM,TYPE,IND_LEVELS,WIN) \
{ \
if (GET_CODE (X) == PLUS \
&& (GET_MODE_SIZE (MODE) == 4 || GET_MODE_SIZE (MODE) == 8) \
&& GET_CODE (XEXP (X, 1)) == CONST_INT \
&& BASE_REGISTER_RTX_P (XEXP (X, 0)) \
&& ! TARGET_SHMEDIA \
&& ! (TARGET_SH4 && (MODE) == DFmode) \
&& ! ((MODE) == PSImode && (TYPE) == RELOAD_FOR_INPUT_ADDRESS) \
&& (ALLOW_INDEXED_ADDRESS \
|| XEXP ((X), 0) == stack_pointer_rtx \
|| XEXP ((X), 0) == hard_frame_pointer_rtx)) \
{ \
rtx index_rtx = XEXP (X, 1); \
HOST_WIDE_INT offset = INTVAL (index_rtx), offset_base; \
rtx sum; \
\
if (TARGET_SH2A && (MODE) == DFmode && (offset & 0x7)) \
{ \
push_reload (X, NULL_RTX, &X, NULL, \
BASE_REG_CLASS, Pmode, VOIDmode, 0, 0, (OPNUM), \
(TYPE)); \
goto WIN; \
} \
if (TARGET_SH2E && MODE == SFmode) \
{ \
X = copy_rtx (X); \
push_reload (index_rtx, NULL_RTX, &XEXP (X, 1), NULL, \
R0_REGS, Pmode, VOIDmode, 0, 0, (OPNUM), \
(TYPE)); \
goto WIN; \
} \
/* Instead of offset_base 128..131 use 124..127, so that \
simple add suffices. */ \
if (offset > 127) \
{ \
offset_base = ((offset + 4) & ~60) - 4; \
} \
else \
offset_base = offset & ~60; \
/* Sometimes the normal form does not suit DImode. We \
could avoid that by using smaller ranges, but that \
would give less optimized code when SImode is \
prevalent. */ \
if (GET_MODE_SIZE (MODE) + offset - offset_base <= 64) \
{ \
sum = gen_rtx_PLUS (Pmode, XEXP (X, 0), \
GEN_INT (offset_base)); \
X = gen_rtx_PLUS (Pmode, sum, GEN_INT (offset - offset_base));\
push_reload (sum, NULL_RTX, &XEXP (X, 0), NULL, \
BASE_REG_CLASS, Pmode, VOIDmode, 0, 0, (OPNUM), \
(TYPE)); \
goto WIN; \
} \
} \
/* We must re-recognize what we created before. */ \
else if (GET_CODE (X) == PLUS \
&& (GET_MODE_SIZE (MODE) == 4 || GET_MODE_SIZE (MODE) == 8) \
&& GET_CODE (XEXP (X, 0)) == PLUS \
&& GET_CODE (XEXP (XEXP (X, 0), 1)) == CONST_INT \
&& BASE_REGISTER_RTX_P (XEXP (XEXP (X, 0), 0)) \
&& GET_CODE (XEXP (X, 1)) == CONST_INT \
&& ! TARGET_SHMEDIA \
&& ! (TARGET_SH2E && MODE == SFmode)) \
{ \
/* Because this address is so complex, we know it must have \
been created by LEGITIMIZE_RELOAD_ADDRESS before; thus, \
it is already unshared, and needs no further unsharing. */ \
push_reload (XEXP ((X), 0), NULL_RTX, &XEXP ((X), 0), NULL, \
BASE_REG_CLASS, Pmode, VOIDmode, 0, 0, (OPNUM), (TYPE));\
goto WIN; \
} \
}
/* Go to LABEL if ADDR (a legitimate address expression)
has an effect that depends on the machine mode it is used for.
??? Strictly speaking, we should also include all indexed addressing,
because the index scale factor is the length of the operand.
However, the impact of GO_IF_MODE_DEPENDENT_ADDRESS would be to
high if we did that. So we rely on reload to fix things up.
Auto-increment addressing is now treated in recog.c. */
#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL)
/* Specify the machine mode that this machine uses
for the index in the tablejump instruction. */
#define CASE_VECTOR_MODE ((! optimize || TARGET_BIGTABLE) ? SImode : HImode)
#define CASE_VECTOR_SHORTEN_MODE(MIN_OFFSET, MAX_OFFSET, BODY) \
((MIN_OFFSET) >= 0 && (MAX_OFFSET) <= 127 \
? (ADDR_DIFF_VEC_FLAGS (BODY).offset_unsigned = 0, QImode) \
: (MIN_OFFSET) >= 0 && (MAX_OFFSET) <= 255 \
? (ADDR_DIFF_VEC_FLAGS (BODY).offset_unsigned = 1, QImode) \
: (MIN_OFFSET) >= -32768 && (MAX_OFFSET) <= 32767 ? HImode \
: SImode)
/* Define as C expression which evaluates to nonzero if the tablejump
instruction expects the table to contain offsets from the address of the
table.
Do not define this if the table should contain absolute addresses. */
#define CASE_VECTOR_PC_RELATIVE 1
/* Define it here, so that it doesn't get bumped to 64-bits on SHmedia. */
#define FLOAT_TYPE_SIZE 32
/* Since the SH2e has only `float' support, it is desirable to make all
floating point types equivalent to `float'. */
#define DOUBLE_TYPE_SIZE ((TARGET_SH2E && ! TARGET_SH4 && ! TARGET_SH2A_DOUBLE) ? 32 : 64)
#if defined(__SH2E__) || defined(__SH3E__) || defined( __SH4_SINGLE_ONLY__)
#define LIBGCC2_DOUBLE_TYPE_SIZE 32
#else
#define LIBGCC2_DOUBLE_TYPE_SIZE 64
#endif
/* 'char' is signed by default. */
#define DEFAULT_SIGNED_CHAR 1
/* The type of size_t unsigned int. */
#define SIZE_TYPE (TARGET_SH5 ? "long unsigned int" : "unsigned int")
#undef PTRDIFF_TYPE
#define PTRDIFF_TYPE (TARGET_SH5 ? "long int" : "int")
#define WCHAR_TYPE "short unsigned int"
#define WCHAR_TYPE_SIZE 16
#define SH_ELF_WCHAR_TYPE "long int"
/* Max number of bytes we can move from memory to memory
in one reasonably fast instruction. */
#define MOVE_MAX (TARGET_SHMEDIA ? 8 : 4)
/* Maximum value possibly taken by MOVE_MAX. Must be defined whenever
MOVE_MAX is not a compile-time constant. */
#define MAX_MOVE_MAX 8
/* Max number of bytes we want move_by_pieces to be able to copy
efficiently. */
#define MOVE_MAX_PIECES (TARGET_SH4 || TARGET_SHMEDIA ? 8 : 4)
/* Define if operations between registers always perform the operation
on the full register even if a narrower mode is specified. */
#define WORD_REGISTER_OPERATIONS
/* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
will either zero-extend or sign-extend. The value of this macro should
be the code that says which one of the two operations is implicitly
done, UNKNOWN if none. */
/* For SHmedia, we can truncate to QImode easier using zero extension. */
/* FP registers can load SImode values, but don't implicitly sign-extend
them to DImode. */
#define LOAD_EXTEND_OP(MODE) \
(((MODE) == QImode && TARGET_SHMEDIA) ? ZERO_EXTEND \
: (MODE) != SImode ? SIGN_EXTEND : UNKNOWN)
/* Define if loading short immediate values into registers sign extends. */
#define SHORT_IMMEDIATES_SIGN_EXTEND
/* Nonzero if access to memory by bytes is no faster than for words. */
#define SLOW_BYTE_ACCESS 1
/* Immediate shift counts are truncated by the output routines (or was it
the assembler?). Shift counts in a register are truncated by SH. Note
that the native compiler puts too large (> 32) immediate shift counts
into a register and shifts by the register, letting the SH decide what
to do instead of doing that itself. */
/* ??? The library routines in lib1funcs.asm truncate the shift count.
However, the SH3 has hardware shifts that do not truncate exactly as gcc
expects - the sign bit is significant - so it appears that we need to
leave this zero for correct SH3 code. */
#define SHIFT_COUNT_TRUNCATED (! TARGET_SH3 && ! TARGET_SH2A)
/* All integers have the same format so truncation is easy. */
/* But SHmedia must sign-extend DImode when truncating to SImode. */
#define TRULY_NOOP_TRUNCATION(OUTPREC,INPREC) \
(!TARGET_SHMEDIA || (INPREC) < 64 || (OUTPREC) >= 64)
/* Define this if addresses of constant functions
shouldn't be put through pseudo regs where they can be cse'd.
Desirable on machines where ordinary constants are expensive
but a CALL with constant address is cheap. */
/*#define NO_FUNCTION_CSE 1*/
/* The machine modes of pointers and functions. */
#define Pmode (TARGET_SHMEDIA64 ? DImode : SImode)
#define FUNCTION_MODE Pmode
/* The multiply insn on the SH1 and the divide insns on the SH1 and SH2
are actually function calls with some special constraints on arguments
and register usage.
These macros tell reorg that the references to arguments and
register clobbers for insns of type sfunc do not appear to happen
until after the millicode call. This allows reorg to put insns
which set the argument registers into the delay slot of the millicode
call -- thus they act more like traditional CALL_INSNs.
get_attr_is_sfunc will try to recognize the given insn, so make sure to
filter out things it will not accept -- SEQUENCE, USE and CLOBBER insns
in particular. */
#define INSN_SETS_ARE_DELAYED(X) \
((GET_CODE (X) == INSN \
&& GET_CODE (PATTERN (X)) != SEQUENCE \
&& GET_CODE (PATTERN (X)) != USE \
&& GET_CODE (PATTERN (X)) != CLOBBER \
&& get_attr_is_sfunc (X)))
#define INSN_REFERENCES_ARE_DELAYED(X) \
((GET_CODE (X) == INSN \
&& GET_CODE (PATTERN (X)) != SEQUENCE \
&& GET_CODE (PATTERN (X)) != USE \
&& GET_CODE (PATTERN (X)) != CLOBBER \
&& get_attr_is_sfunc (X)))
/* Position Independent Code. */
/* We can't directly access anything that contains a symbol,
nor can we indirect via the constant pool. */
#define LEGITIMATE_PIC_OPERAND_P(X) \
((! nonpic_symbol_mentioned_p (X) \
&& (GET_CODE (X) != SYMBOL_REF \
|| ! CONSTANT_POOL_ADDRESS_P (X) \
|| ! nonpic_symbol_mentioned_p (get_pool_constant (X)))) \
|| (TARGET_SHMEDIA && GET_CODE (X) == LABEL_REF))
#define SYMBOLIC_CONST_P(X) \
((GET_CODE (X) == SYMBOL_REF || GET_CODE (X) == LABEL_REF) \
&& nonpic_symbol_mentioned_p (X))
/* Compute extra cost of moving data between one register class
and another. */
/* If SECONDARY*_RELOAD_CLASS says something about the src/dst pair, regclass
uses this information. Hence, the general register <-> floating point
register information here is not used for SFmode. */
#define REGCLASS_HAS_GENERAL_REG(CLASS) \
((CLASS) == GENERAL_REGS || (CLASS) == R0_REGS \
|| (! TARGET_SHMEDIA && (CLASS) == SIBCALL_REGS))
#define REGCLASS_HAS_FP_REG(CLASS) \
((CLASS) == FP0_REGS || (CLASS) == FP_REGS \
|| (CLASS) == DF_REGS || (CLASS) == DF_HI_REGS)
#define REGISTER_MOVE_COST(MODE, SRCCLASS, DSTCLASS) \
sh_register_move_cost ((MODE), (SRCCLASS), (DSTCLASS))
/* ??? Perhaps make MEMORY_MOVE_COST depend on compiler option? This
would be so that people with slow memory systems could generate
different code that does fewer memory accesses. */
/* A C expression for the cost of a branch instruction. A value of 1
is the default; other values are interpreted relative to that.
The SH1 does not have delay slots, hence we get a pipeline stall
at every branch. The SH4 is superscalar, so the single delay slot
is not sufficient to keep both pipelines filled. */
#define BRANCH_COST (TARGET_SH5 ? 1 : ! TARGET_SH2 || TARGET_HARD_SH4 ? 2 : 1)
/* Assembler output control. */
/* A C string constant describing how to begin a comment in the target
assembler language. The compiler assumes that the comment will end at
the end of the line. */
#define ASM_COMMENT_START "!"
#define ASM_APP_ON ""
#define ASM_APP_OFF ""
#define FILE_ASM_OP "\t.file\n"
#define SET_ASM_OP "\t.set\t"
/* How to change between sections. */
#define TEXT_SECTION_ASM_OP (TARGET_SHMEDIA32 ? "\t.section\t.text..SHmedia32,\"ax\"" : "\t.text")
#define DATA_SECTION_ASM_OP "\t.data"
#if defined CRT_BEGIN || defined CRT_END
/* Arrange for TEXT_SECTION_ASM_OP to be a compile-time constant. */
# undef TEXT_SECTION_ASM_OP
# if __SHMEDIA__ == 1 && __SH5__ == 32
# define TEXT_SECTION_ASM_OP "\t.section\t.text..SHmedia32,\"ax\""
# else
# define TEXT_SECTION_ASM_OP "\t.text"
# endif
#endif
/* If defined, a C expression whose value is a string containing the
assembler operation to identify the following data as
uninitialized global data. If not defined, and neither
`ASM_OUTPUT_BSS' nor `ASM_OUTPUT_ALIGNED_BSS' are defined,
uninitialized global data will be output in the data section if
`-fno-common' is passed, otherwise `ASM_OUTPUT_COMMON' will be
used. */
#ifndef BSS_SECTION_ASM_OP
#define BSS_SECTION_ASM_OP "\t.section\t.bss"
#endif
/* Like `ASM_OUTPUT_BSS' except takes the required alignment as a
separate, explicit argument. If you define this macro, it is used
in place of `ASM_OUTPUT_BSS', and gives you more flexibility in
handling the required alignment of the variable. The alignment is
specified as the number of bits.
Try to use function `asm_output_aligned_bss' defined in file
`varasm.c' when defining this macro. */
#ifndef ASM_OUTPUT_ALIGNED_BSS
#define ASM_OUTPUT_ALIGNED_BSS(FILE, DECL, NAME, SIZE, ALIGN) \
asm_output_aligned_bss (FILE, DECL, NAME, SIZE, ALIGN)
#endif
/* Define this so that jump tables go in same section as the current function,
which could be text or it could be a user defined section. */
#define JUMP_TABLES_IN_TEXT_SECTION 1
#undef DO_GLOBAL_CTORS_BODY
#define DO_GLOBAL_CTORS_BODY \
{ \
typedef void (*pfunc) (void); \
extern pfunc __ctors[]; \
extern pfunc __ctors_end[]; \
pfunc *p; \
for (p = __ctors_end; p > __ctors; ) \
{ \
(*--p)(); \
} \
}
#undef DO_GLOBAL_DTORS_BODY
#define DO_GLOBAL_DTORS_BODY \
{ \
typedef void (*pfunc) (void); \
extern pfunc __dtors[]; \
extern pfunc __dtors_end[]; \
pfunc *p; \
for (p = __dtors; p < __dtors_end; p++) \
{ \
(*p)(); \
} \
}
#define ASM_OUTPUT_REG_PUSH(file, v) \
{ \
if (TARGET_SHMEDIA) \
{ \
fprintf ((file), "\taddi.l\tr15,-8,r15\n"); \
fprintf ((file), "\tst.q\tr15,0,r%d\n", (v)); \
} \
else \
fprintf ((file), "\tmov.l\tr%d,@-r15\n", (v)); \
}
#define ASM_OUTPUT_REG_POP(file, v) \
{ \
if (TARGET_SHMEDIA) \
{ \
fprintf ((file), "\tld.q\tr15,0,r%d\n", (v)); \
fprintf ((file), "\taddi.l\tr15,8,r15\n"); \
} \
else \
fprintf ((file), "\tmov.l\t@r15+,r%d\n", (v)); \
}
/* DBX register number for a given compiler register number. */
/* GDB has FPUL at 23 and FP0 at 25, so we must add one to all FP registers
to match gdb. */
/* svr4.h undefines this macro, yet we really want to use the same numbers
for coff as for elf, so we go via another macro: SH_DBX_REGISTER_NUMBER. */
/* expand_builtin_init_dwarf_reg_sizes uses this to test if a
register exists, so we should return -1 for invalid register numbers. */
#define DBX_REGISTER_NUMBER(REGNO) SH_DBX_REGISTER_NUMBER (REGNO)
/* SHcompact PR_REG used to use the encoding 241, and SHcompact FP registers
used to use the encodings 245..260, but that doesn't make sense:
PR_REG and PR_MEDIA_REG are actually the same register, and likewise
the FP registers stay the same when switching between compact and media
mode. Hence, we also need to use the same dwarf frame columns.
Likewise, we need to support unwind information for SHmedia registers
even in compact code. */
#define SH_DBX_REGISTER_NUMBER(REGNO) \
(IN_RANGE ((REGNO), \
(unsigned HOST_WIDE_INT) FIRST_GENERAL_REG, \
FIRST_GENERAL_REG + (TARGET_SH5 ? 63U :15U)) \
? ((unsigned) (REGNO) - FIRST_GENERAL_REG) \
: ((int) (REGNO) >= FIRST_FP_REG \
&& ((int) (REGNO) \
<= (FIRST_FP_REG + \
((TARGET_SH5 && TARGET_FPU_ANY) ? 63 : TARGET_SH2E ? 15 : -1)))) \
? ((unsigned) (REGNO) - FIRST_FP_REG \
+ (TARGET_SH5 ? 77 : 25)) \
: XD_REGISTER_P (REGNO) \
? ((unsigned) (REGNO) - FIRST_XD_REG + (TARGET_SH5 ? 289 : 87)) \
: TARGET_REGISTER_P (REGNO) \
? ((unsigned) (REGNO) - FIRST_TARGET_REG + 68) \
: (REGNO) == PR_REG \
? (TARGET_SH5 ? 18 : 17) \
: (REGNO) == PR_MEDIA_REG \
? (TARGET_SH5 ? 18 : (unsigned) -1) \
: (REGNO) == GBR_REG \
? (TARGET_SH5 ? 238 : 18) \
: (REGNO) == MACH_REG \
? (TARGET_SH5 ? 239 : 20) \
: (REGNO) == MACL_REG \
? (TARGET_SH5 ? 240 : 21) \
: (REGNO) == T_REG \
? (TARGET_SH5 ? 242 : 22) \
: (REGNO) == FPUL_REG \
? (TARGET_SH5 ? 244 : 23) \
: (REGNO) == FPSCR_REG \
? (TARGET_SH5 ? 243 : 24) \
: (unsigned) -1)
/* This is how to output a reference to a symbol_ref. On SH5,
references to non-code symbols must be preceded by `datalabel'. */
#define ASM_OUTPUT_SYMBOL_REF(FILE,SYM) \
do \
{ \
if (TARGET_SH5 && !SYMBOL_REF_FUNCTION_P (SYM)) \
fputs ("datalabel ", (FILE)); \
assemble_name ((FILE), XSTR ((SYM), 0)); \
} \
while (0)
/* This is how to output an assembler line
that says to advance the location counter
to a multiple of 2**LOG bytes. */
#define ASM_OUTPUT_ALIGN(FILE,LOG) \
if ((LOG) != 0) \
fprintf ((FILE), "\t.align %d\n", (LOG))
/* Globalizing directive for a label. */
#define GLOBAL_ASM_OP "\t.global\t"
/* #define ASM_OUTPUT_CASE_END(STREAM,NUM,TABLE) */
/* Output a relative address table. */
#define ASM_OUTPUT_ADDR_DIFF_ELT(STREAM,BODY,VALUE,REL) \
switch (GET_MODE (BODY)) \
{ \
case SImode: \
if (TARGET_SH5) \
{ \
asm_fprintf ((STREAM), "\t.long\t%LL%d-datalabel %LL%d\n", \
(VALUE), (REL)); \
break; \
} \
asm_fprintf ((STREAM), "\t.long\t%LL%d-%LL%d\n", (VALUE),(REL)); \
break; \
case HImode: \
if (TARGET_SH5) \
{ \
asm_fprintf ((STREAM), "\t.word\t%LL%d-datalabel %LL%d\n", \
(VALUE), (REL)); \
break; \
} \
asm_fprintf ((STREAM), "\t.word\t%LL%d-%LL%d\n", (VALUE),(REL)); \
break; \
case QImode: \
if (TARGET_SH5) \
{ \
asm_fprintf ((STREAM), "\t.byte\t%LL%d-datalabel %LL%d\n", \
(VALUE), (REL)); \
break; \
} \
asm_fprintf ((STREAM), "\t.byte\t%LL%d-%LL%d\n", (VALUE),(REL)); \
break; \
default: \
break; \
}
/* Output an absolute table element. */
#define ASM_OUTPUT_ADDR_VEC_ELT(STREAM,VALUE) \
if (! optimize || TARGET_BIGTABLE) \
asm_fprintf ((STREAM), "\t.long\t%LL%d\n", (VALUE)); \
else \
asm_fprintf ((STREAM), "\t.word\t%LL%d\n", (VALUE));
/* A C statement to be executed just prior to the output of
assembler code for INSN, to modify the extracted operands so
they will be output differently.
Here the argument OPVEC is the vector containing the operands
extracted from INSN, and NOPERANDS is the number of elements of
the vector which contain meaningful data for this insn.
The contents of this vector are what will be used to convert the insn
template into assembler code, so you can change the assembler output
by changing the contents of the vector. */
#define FINAL_PRESCAN_INSN(INSN, OPVEC, NOPERANDS) \
final_prescan_insn ((INSN), (OPVEC), (NOPERANDS))
/* Print operand X (an rtx) in assembler syntax to file FILE.
CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
For `%' followed by punctuation, CODE is the punctuation and X is null. */
#define PRINT_OPERAND(STREAM, X, CODE) print_operand ((STREAM), (X), (CODE))
/* Print a memory address as an operand to reference that memory location. */
#define PRINT_OPERAND_ADDRESS(STREAM,X) print_operand_address ((STREAM), (X))
#define PRINT_OPERAND_PUNCT_VALID_P(CHAR) \
((CHAR) == '.' || (CHAR) == '#' || (CHAR) == '@' || (CHAR) == ',' \
|| (CHAR) == '$' || (CHAR) == '\'' || (CHAR) == '>')
/* Recognize machine-specific patterns that may appear within
constants. Used for PIC-specific UNSPECs. */
#define OUTPUT_ADDR_CONST_EXTRA(STREAM, X, FAIL) \
do \
if (GET_CODE (X) == UNSPEC && XVECLEN ((X), 0) == 1) \
{ \
switch (XINT ((X), 1)) \
{ \
case UNSPEC_DATALABEL: \
fputs ("datalabel ", (STREAM)); \
output_addr_const ((STREAM), XVECEXP ((X), 0, 0)); \
break; \
case UNSPEC_PIC: \
/* GLOBAL_OFFSET_TABLE or local symbols, no suffix. */ \
output_addr_const ((STREAM), XVECEXP ((X), 0, 0)); \
break; \
case UNSPEC_GOT: \
output_addr_const ((STREAM), XVECEXP ((X), 0, 0)); \
fputs ("@GOT", (STREAM)); \
break; \
case UNSPEC_GOTOFF: \
output_addr_const ((STREAM), XVECEXP ((X), 0, 0)); \
fputs ("@GOTOFF", (STREAM)); \
break; \
case UNSPEC_PLT: \
output_addr_const ((STREAM), XVECEXP ((X), 0, 0)); \
fputs ("@PLT", (STREAM)); \
break; \
case UNSPEC_GOTPLT: \
output_addr_const ((STREAM), XVECEXP ((X), 0, 0)); \
fputs ("@GOTPLT", (STREAM)); \
break; \
case UNSPEC_DTPOFF: \
output_addr_const ((STREAM), XVECEXP ((X), 0, 0)); \
fputs ("@DTPOFF", (STREAM)); \
break; \
case UNSPEC_GOTTPOFF: \
output_addr_const ((STREAM), XVECEXP ((X), 0, 0)); \
fputs ("@GOTTPOFF", (STREAM)); \
break; \
case UNSPEC_TPOFF: \
output_addr_const ((STREAM), XVECEXP ((X), 0, 0)); \
fputs ("@TPOFF", (STREAM)); \
break; \
case UNSPEC_CALLER: \
{ \
char name[32]; \
/* LPCS stands for Label for PIC Call Site. */ \
ASM_GENERATE_INTERNAL_LABEL \
(name, "LPCS", INTVAL (XVECEXP ((X), 0, 0))); \
assemble_name ((STREAM), name); \
} \
break; \
default: \
goto FAIL; \
} \
break; \
} \
else \
goto FAIL; \
while (0)
extern struct rtx_def *sh_compare_op0;
extern struct rtx_def *sh_compare_op1;
/* Which processor to schedule for. The elements of the enumeration must
match exactly the cpu attribute in the sh.md file. */
enum processor_type {
PROCESSOR_SH1,
PROCESSOR_SH2,
PROCESSOR_SH2E,
PROCESSOR_SH2A,
PROCESSOR_SH3,
PROCESSOR_SH3E,
PROCESSOR_SH4,
PROCESSOR_SH4A,
PROCESSOR_SH5
};
#define sh_cpu_attr ((enum attr_cpu)sh_cpu)
extern enum processor_type sh_cpu;
extern int optimize; /* needed for gen_casesi. */
enum mdep_reorg_phase_e
{
SH_BEFORE_MDEP_REORG,
SH_INSERT_USES_LABELS,
SH_SHORTEN_BRANCHES0,
SH_FIXUP_PCLOAD,
SH_SHORTEN_BRANCHES1,
SH_AFTER_MDEP_REORG
};
extern enum mdep_reorg_phase_e mdep_reorg_phase;
/* Handle Renesas compiler's pragmas. */
#define REGISTER_TARGET_PRAGMAS() do { \
c_register_pragma (0, "interrupt", sh_pr_interrupt); \
c_register_pragma (0, "trapa", sh_pr_trapa); \
c_register_pragma (0, "nosave_low_regs", sh_pr_nosave_low_regs); \
} while (0)
extern tree sh_deferred_function_attributes;
extern tree *sh_deferred_function_attributes_tail;
/* Set when processing a function with interrupt attribute. */
extern int current_function_interrupt;
/* Instructions with unfilled delay slots take up an
extra two bytes for the nop in the delay slot.
sh-dsp parallel processing insns are four bytes long. */
#define ADJUST_INSN_LENGTH(X, LENGTH) \
(LENGTH) += sh_insn_length_adjustment (X);
/* Define this macro if it is advisable to hold scalars in registers
in a wider mode than that declared by the program. In such cases,
the value is constrained to be within the bounds of the declared
type, but kept valid in the wider mode. The signedness of the
extension may differ from that of the type.
Leaving the unsignedp unchanged gives better code than always setting it
to 0. This is despite the fact that we have only signed char and short
load instructions. */
#define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
if (GET_MODE_CLASS (MODE) == MODE_INT \
&& GET_MODE_SIZE (MODE) < 4/* ! UNITS_PER_WORD */)\
(UNSIGNEDP) = ((MODE) == SImode ? 0 : (UNSIGNEDP)), \
(MODE) = (TARGET_SH1 ? SImode \
: TARGET_SHMEDIA32 ? SImode : DImode);
#define MAX_FIXED_MODE_SIZE (TARGET_SH5 ? 128 : 64)
#define SIDI_OFF (TARGET_LITTLE_ENDIAN ? 0 : 4)
/* ??? Define ACCUMULATE_OUTGOING_ARGS? This is more efficient than pushing
and popping arguments. However, we do have push/pop instructions, and
rather limited offsets (4 bits) in load/store instructions, so it isn't
clear if this would give better code. If implemented, should check for
compatibility problems. */
#define SH_DYNAMIC_SHIFT_COST \
(TARGET_HARD_SH4 ? 1 : TARGET_SH3 ? (TARGET_SMALLCODE ? 1 : 2) : 20)
#define NUM_MODES_FOR_MODE_SWITCHING { FP_MODE_NONE }
#define OPTIMIZE_MODE_SWITCHING(ENTITY) (TARGET_SH4 || TARGET_SH2A_DOUBLE)
#define ACTUAL_NORMAL_MODE(ENTITY) \
(TARGET_FPU_SINGLE ? FP_MODE_SINGLE : FP_MODE_DOUBLE)
#define NORMAL_MODE(ENTITY) \
(sh_cfun_interrupt_handler_p () \
? (TARGET_FMOVD ? FP_MODE_DOUBLE : FP_MODE_NONE) \
: ACTUAL_NORMAL_MODE (ENTITY))
#define MODE_ENTRY(ENTITY) NORMAL_MODE (ENTITY)
#define MODE_EXIT(ENTITY) \
(sh_cfun_attr_renesas_p () ? FP_MODE_NONE : NORMAL_MODE (ENTITY))
#define EPILOGUE_USES(REGNO) ((TARGET_SH2E || TARGET_SH4) \
&& (REGNO) == FPSCR_REG)
#define MODE_NEEDED(ENTITY, INSN) \
(recog_memoized (INSN) >= 0 \
? get_attr_fp_mode (INSN) \
: FP_MODE_NONE)
#define MODE_AFTER(MODE, INSN) \
(TARGET_HITACHI \
&& recog_memoized (INSN) >= 0 \
&& get_attr_fp_set (INSN) != FP_SET_NONE \
? (int) get_attr_fp_set (INSN) \
: (MODE))
#define MODE_PRIORITY_TO_MODE(ENTITY, N) \
((TARGET_FPU_SINGLE != 0) ^ (N) ? FP_MODE_SINGLE : FP_MODE_DOUBLE)
#define EMIT_MODE_SET(ENTITY, MODE, HARD_REGS_LIVE) \
fpscr_set_from_mem ((MODE), (HARD_REGS_LIVE))
#define MD_CAN_REDIRECT_BRANCH(INSN, SEQ) \
sh_can_redirect_branch ((INSN), (SEQ))
#define DWARF_FRAME_RETURN_COLUMN \
(TARGET_SH5 ? DWARF_FRAME_REGNUM (PR_MEDIA_REG) : DWARF_FRAME_REGNUM (PR_REG))
#define EH_RETURN_DATA_REGNO(N) \
((N) < 4 ? (N) + (TARGET_SH5 ? 2U : 4U) : INVALID_REGNUM)
#define EH_RETURN_STACKADJ_REGNO STATIC_CHAIN_REGNUM
#define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, EH_RETURN_STACKADJ_REGNO)
/* We have to distinguish between code and data, so that we apply
datalabel where and only where appropriate. Use sdataN for data. */
#define ASM_PREFERRED_EH_DATA_FORMAT(CODE, GLOBAL) \
((flag_pic && (GLOBAL) ? DW_EH_PE_indirect : 0) \
| (flag_pic ? DW_EH_PE_pcrel : DW_EH_PE_absptr) \
| ((CODE) ? 0 : (TARGET_SHMEDIA64 ? DW_EH_PE_sdata8 : DW_EH_PE_sdata4)))
/* Handle special EH pointer encodings. Absolute, pc-relative, and
indirect are handled automatically. */
#define ASM_MAYBE_OUTPUT_ENCODED_ADDR_RTX(FILE, ENCODING, SIZE, ADDR, DONE) \
do { \
if (((ENCODING) & 0xf) != DW_EH_PE_sdata4 \
&& ((ENCODING) & 0xf) != DW_EH_PE_sdata8) \
{ \
gcc_assert (GET_CODE (ADDR) == SYMBOL_REF); \
SYMBOL_REF_FLAGS (ADDR) |= SYMBOL_FLAG_FUNCTION; \
if (0) goto DONE; \
} \
} while (0)
#if (defined CRT_BEGIN || defined CRT_END) && ! __SHMEDIA__
/* SH constant pool breaks the devices in crtstuff.c to control section
in where code resides. We have to write it as asm code. */
#define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \
asm (SECTION_OP "\n\
mov.l 1f,r1\n\
mova 2f,r0\n\
braf r1\n\
lds r0,pr\n\
0: .p2align 2\n\
1: .long " USER_LABEL_PREFIX #FUNC " - 0b\n\
2:\n" TEXT_SECTION_ASM_OP);
#endif /* (defined CRT_BEGIN || defined CRT_END) && ! __SHMEDIA__ */
/* FIXME: middle-end support for highpart optimizations is missing. */
#define high_life_started reload_in_progress
#endif /* ! GCC_SH_H */
|