summaryrefslogtreecommitdiff
path: root/gcc/config/sparc/sparc.c
blob: 327ee2730b55ced41fb68d151b7a99acb0cfbb44 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
/* Subroutines for insn-output.c for Sun SPARC.
   Copyright (C) 1987, 88, 89, 92-97, 1998 Free Software Foundation, Inc.
   Contributed by Michael Tiemann (tiemann@cygnus.com)
   64 bit SPARC V9 support by Michael Tiemann, Jim Wilson, and Doug Evans,
   at Cygnus Support.

This file is part of GNU CC.

GNU CC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.

GNU CC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with GNU CC; see the file COPYING.  If not, write to
the Free Software Foundation, 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA.  */

#include "config.h"
#include <stdio.h>
#ifdef HAVE_STDLIB_H
#include <stdlib.h>
#endif
#ifdef HAVE_STRING_H
#include <string.h>
#else
#ifdef HAVE_STRINGS_H
#include <strings.h>
#endif
#endif
#include "tree.h"
#include "rtl.h"
#include "regs.h"
#include "hard-reg-set.h"
#include "real.h"
#include "insn-config.h"
#include "conditions.h"
#include "insn-flags.h"
#include "output.h"
#include "insn-attr.h"
#include "flags.h"
#include "expr.h"
#include "recog.h"

/* 1 if the caller has placed an "unimp" insn immediately after the call.
   This is used in v8 code when calling a function that returns a structure.
   v9 doesn't have this.  Be careful to have this test be the same as that
   used on the call.  */

#define SKIP_CALLERS_UNIMP_P  \
(!TARGET_ARCH64 && current_function_returns_struct			\
 && ! integer_zerop (DECL_SIZE (DECL_RESULT (current_function_decl)))	\
 && (TREE_CODE (DECL_SIZE (DECL_RESULT (current_function_decl)))	\
     == INTEGER_CST))

/* Global variables for machine-dependent things.  */

/* Size of frame.  Need to know this to emit return insns from leaf procedures.
   ACTUAL_FSIZE is set by compute_frame_size() which is called during the
   reload pass.  This is important as the value is later used in insn
   scheduling (to see what can go in a delay slot).
   APPARENT_FSIZE is the size of the stack less the register save area and less
   the outgoing argument area.  It is used when saving call preserved regs.  */
static int apparent_fsize;
static int actual_fsize;

/* Save the operands last given to a compare for use when we
   generate a scc or bcc insn.  */

rtx sparc_compare_op0, sparc_compare_op1;

/* We may need an epilogue if we spill too many registers.
   If this is non-zero, then we branch here for the epilogue.  */
static rtx leaf_label;

#ifdef LEAF_REGISTERS

/* Vector to say how input registers are mapped to output
   registers.  FRAME_POINTER_REGNUM cannot be remapped by
   this function to eliminate it.  You must use -fomit-frame-pointer
   to get that.  */
char leaf_reg_remap[] =
{ 0, 1, 2, 3, 4, 5, 6, 7,
  -1, -1, -1, -1, -1, -1, 14, -1,
  -1, -1, -1, -1, -1, -1, -1, -1,
  8, 9, 10, 11, 12, 13, -1, 15,

  32, 33, 34, 35, 36, 37, 38, 39,
  40, 41, 42, 43, 44, 45, 46, 47,
  48, 49, 50, 51, 52, 53, 54, 55,
  56, 57, 58, 59, 60, 61, 62, 63,
  64, 65, 66, 67, 68, 69, 70, 71,
  72, 73, 74, 75, 76, 77, 78, 79,
  80, 81, 82, 83, 84, 85, 86, 87,
  88, 89, 90, 91, 92, 93, 94, 95,
  96, 97, 98, 99, 100};

#endif

/* Name of where we pretend to think the frame pointer points.
   Normally, this is "%fp", but if we are in a leaf procedure,
   this is "%sp+something".  We record "something" separately as it may be
   too big for reg+constant addressing.  */

static char *frame_base_name;
static int frame_base_offset;

static rtx pic_setup_code	PROTO((void));
static rtx find_addr_reg	PROTO((rtx));
static void sparc_init_modes	PROTO((void));
static int save_regs		PROTO((FILE *, int, int, char *,
				       int, int, int));
static int restore_regs		PROTO((FILE *, int, int, char *, int, int));
static void build_big_number	PROTO((FILE *, int, char *));
static int function_arg_slotno	PROTO((const CUMULATIVE_ARGS *,
				       enum machine_mode, tree, int, int,
				       int *, int *));

#ifdef DWARF2_DEBUGGING_INFO
extern char *dwarf2out_cfi_label ();
#endif

/* Option handling.  */

/* Code model option as passed by user.  */
char *sparc_cmodel_string;
/* Parsed value.  */
enum cmodel sparc_cmodel;

/* Record alignment options as passed by user.  */
char *sparc_align_loops_string;
char *sparc_align_jumps_string;
char *sparc_align_funcs_string;

/* Parsed values, as a power of two.  */
int sparc_align_loops;
int sparc_align_jumps;
int sparc_align_funcs;

struct sparc_cpu_select sparc_select[] =
{
  /* switch	name,		tune	arch */
  { (char *)0,	"default",	1,	1 },
  { (char *)0,	"-mcpu=",	1,	1 },
  { (char *)0,	"-mtune=",	1,	0 },
  { 0, 0 }
};

/* CPU type.  This is set from TARGET_CPU_DEFAULT and -m{cpu,tune}=xxx.  */
enum processor_type sparc_cpu;

/* Validate and override various options, and do some machine dependent
   initialization.  */

void
sparc_override_options ()
{
  static struct code_model {
    char *name;
    int value;
  } cmodels[] = {
    { "32", CM_32 },
    { "medlow", CM_MEDLOW },
    { "medmid", CM_MEDMID },
    { "medany", CM_MEDANY },
    { "embmedany", CM_EMBMEDANY },
    { 0, 0 }
  };
  struct code_model *cmodel;
  /* Map TARGET_CPU_DEFAULT to value for -m{arch,tune}=.  */
  static struct cpu_default {
    int cpu;
    char *name;
  } cpu_default[] = {
    /* There must be one entry here for each TARGET_CPU value.  */
    { TARGET_CPU_sparc, "cypress" },
    { TARGET_CPU_sparclet, "tsc701" },
    { TARGET_CPU_sparclite, "f930" },
    { TARGET_CPU_v8, "v8" },
    { TARGET_CPU_supersparc, "supersparc" },
    { TARGET_CPU_v9, "v9" },
    { TARGET_CPU_ultrasparc, "ultrasparc" },
    { 0 }
  };
  struct cpu_default *def;
  /* Table of values for -m{cpu,tune}=.  */
  static struct cpu_table {
    char *name;
    enum processor_type processor;
    int disable;
    int enable;
  } cpu_table[] = {
    { "v7",         PROCESSOR_V7, MASK_ISA, 0 },
    { "cypress",    PROCESSOR_CYPRESS, MASK_ISA, 0 },
    { "v8",         PROCESSOR_V8, MASK_ISA, MASK_V8 },
    /* TI TMS390Z55 supersparc */
    { "supersparc", PROCESSOR_SUPERSPARC, MASK_ISA, MASK_V8 },
    { "sparclite",  PROCESSOR_SPARCLITE, MASK_ISA, MASK_SPARCLITE },
    /* The Fujitsu MB86930 is the original sparclite chip, with no fpu.
       The Fujitsu MB86934 is the recent sparclite chip, with an fpu.  */
    { "f930",       PROCESSOR_F930, MASK_ISA|MASK_FPU, MASK_SPARCLITE },
    { "f934",       PROCESSOR_F934, MASK_ISA, MASK_SPARCLITE|MASK_FPU },
    { "sparclet",   PROCESSOR_SPARCLET, MASK_ISA, MASK_SPARCLET },
    /* TEMIC sparclet */
    { "tsc701",     PROCESSOR_TSC701, MASK_ISA, MASK_SPARCLET },
    /* "v8plus" is what Sun calls Solaris2.5 running on UltraSPARC's.  */
    { "v8plus",     PROCESSOR_V8PLUS, MASK_ISA, MASK_V8PLUS },
    { "v9",         PROCESSOR_V9, MASK_ISA, MASK_V9 },
    /* TI ultrasparc */
    { "ultrasparc", PROCESSOR_ULTRASPARC, MASK_ISA, MASK_V8PLUS },
    { 0 }
  };
  struct cpu_table *cpu;
  struct sparc_cpu_select *sel;
  int fpu;

#ifndef SPARC_BI_ARCH
  /* Check for unsupported architecture size.  */
  if (! TARGET_64BIT != DEFAULT_ARCH32_P)
    {
      error ("%s is not supported by this configuration",
	     DEFAULT_ARCH32_P ? "-m64" : "-m32");
    }
#endif

  /* Code model selection.  */
  sparc_cmodel = SPARC_DEFAULT_CMODEL;
  if (sparc_cmodel_string != NULL)
    {
      if (TARGET_ARCH64)
	{
	  for (cmodel = &cmodels[0]; cmodel->name; cmodel++)
	    if (strcmp (sparc_cmodel_string, cmodel->name) == 0)
	      break;
	  if (cmodel->name == NULL)
	    error ("bad value (%s) for -mcmodel= switch", sparc_cmodel_string);
	  else
	    sparc_cmodel = cmodel->value;
	}
      else
	error ("-mcmodel= is not supported on 32 bit systems");
    }

  fpu = TARGET_FPU; /* save current -mfpu status */

  /* Set the default CPU.  */
  for (def = &cpu_default[0]; def->name; ++def)
    if (def->cpu == TARGET_CPU_DEFAULT)
      break;
  if (! def->name)
    abort ();
  sparc_select[0].string = def->name;

  for (sel = &sparc_select[0]; sel->name; ++sel)
    {
      if (sel->string)
	{
	  for (cpu = &cpu_table[0]; cpu->name; ++cpu)
	    if (! strcmp (sel->string, cpu->name))
	      {
		if (sel->set_tune_p)
		  sparc_cpu = cpu->processor;

		if (sel->set_arch_p)
		  {
		    target_flags &= ~cpu->disable;
		    target_flags |= cpu->enable;
		  }
		break;
	      }

	  if (! cpu->name)
	    error ("bad value (%s) for %s switch", sel->string, sel->name);
	}
    }

  /* If -mfpu or -mno-fpu was explicitly used, don't override with
     the processor default.  */
  if (TARGET_FPU_SET)
    target_flags = (target_flags & ~MASK_FPU) | fpu;

  /* Use the deprecated v8 insns for sparc64 in 32 bit mode.  */
  if (TARGET_V9 && TARGET_ARCH32)
    target_flags |= MASK_DEPRECATED_V8_INSNS;

  /* Validate -malign-loops= value, or provide default.  */
  if (sparc_align_loops_string)
    {
      sparc_align_loops = exact_log2 (atoi (sparc_align_loops_string));
      if (sparc_align_loops < 2 || sparc_align_loops > 7)
	fatal ("-malign-loops=%s is not between 4 and 128 or is not a power of two",
	       sparc_align_loops_string);
    }
  else
    {
      /* ??? This relies on ASM_OUTPUT_ALIGN to not emit the alignment if
	 its 0.  This sounds a bit kludgey.  */
      sparc_align_loops = 0;
    }

  /* Validate -malign-jumps= value, or provide default.  */
  if (sparc_align_jumps_string)
    {
      sparc_align_jumps = exact_log2 (atoi (sparc_align_jumps_string));
      if (sparc_align_jumps < 2 || sparc_align_loops > 7)
	fatal ("-malign-jumps=%s is not between 4 and 128 or is not a power of two",
	       sparc_align_jumps_string);
    }
  else
    {
      /* ??? This relies on ASM_OUTPUT_ALIGN to not emit the alignment if
	 its 0.  This sounds a bit kludgey.  */
      sparc_align_jumps = 0;
    }

  /* Validate -malign-functions= value, or provide default. */
  if (sparc_align_funcs_string)
    {
      sparc_align_funcs = exact_log2 (atoi (sparc_align_funcs_string));
      if (sparc_align_funcs < 2 || sparc_align_loops > 7)
	fatal ("-malign-functions=%s is not between 4 and 128 or is not a power of two",
	       sparc_align_funcs_string);
    }
  else
    sparc_align_funcs = DEFAULT_SPARC_ALIGN_FUNCS;

  /* Do various machine dependent initializations.  */
  sparc_init_modes ();
}

/* Float conversions (v9 only).

   The floating point registers cannot hold DImode values because SUBREG's
   on them get the wrong register.   "(subreg:SI (reg:DI M int-reg) 0)" is the
   same as "(subreg:SI (reg:DI N float-reg) 1)", but gcc doesn't know how to
   turn the "0" to a "1".  Therefore, we must explicitly do the conversions
   to/from int/fp regs.  `sparc64_fpconv_stack_slot' is the address of an
   8 byte stack slot used during the transfer.
   ??? I could have used [%fp-16] but I didn't want to add yet another
   dependence on this.  */
/* ??? Can we use assign_stack_temp here?  */

static rtx fpconv_stack_temp;

/* Called once for each function.  */

void
sparc_init_expanders ()
{
  fpconv_stack_temp = NULL_RTX;
}

/* Assign a stack temp for fp/int DImode conversions.  */

rtx
sparc64_fpconv_stack_temp ()
{
  if (fpconv_stack_temp == NULL_RTX)
    fpconv_stack_temp =
      assign_stack_local (DImode, GET_MODE_SIZE (DImode), 0);

  return fpconv_stack_temp;
}

/* Miscellaneous utilities.  */

/* Nonzero if CODE, a comparison, is suitable for use in v9 conditional move
   or branch on register contents instructions.  */

int
v9_regcmp_p (code)
     enum rtx_code code;
{
  return (code == EQ || code == NE || code == GE || code == LT
	  || code == LE || code == GT);
}


/* Operand constraints.  */

/* Return non-zero only if OP is a register of mode MODE,
   or const0_rtx.  Don't allow const0_rtx if TARGET_LIVE_G0 because
   %g0 may contain anything.  */

int
reg_or_0_operand (op, mode)
     rtx op;
     enum machine_mode mode;
{
  if (register_operand (op, mode))
    return 1;
  if (TARGET_LIVE_G0)
    return 0;
  if (op == const0_rtx)
    return 1;
  if (GET_MODE (op) == VOIDmode && GET_CODE (op) == CONST_DOUBLE
      && CONST_DOUBLE_HIGH (op) == 0
      && CONST_DOUBLE_LOW (op) == 0)
    return 1;
  if (GET_MODE_CLASS (GET_MODE (op)) == MODE_FLOAT
      && GET_CODE (op) == CONST_DOUBLE
      && fp_zero_operand (op))
    return 1;
  return 0;
}

/* Nonzero if OP is a floating point value with value 0.0.  */

int
fp_zero_operand (op)
     rtx op;
{
  REAL_VALUE_TYPE r;

  REAL_VALUE_FROM_CONST_DOUBLE (r, op);
  return (REAL_VALUES_EQUAL (r, dconst0) && ! REAL_VALUE_MINUS_ZERO (r));
}

/* Nonzero if OP is an integer register.  */

int
intreg_operand (op, mode)
     rtx op;
     enum machine_mode mode;
{
  return (register_operand (op, SImode)
	  || (TARGET_ARCH64 && register_operand (op, DImode)));
}

/* Nonzero if OP is a floating point condition code register.  */

int
fcc_reg_operand (op, mode)
     rtx op;
     enum machine_mode mode;
{
  /* This can happen when recog is called from combine.  Op may be a MEM.
     Fail instead of calling abort in this case.  */
  if (GET_CODE (op) != REG)
    return 0;

  if (mode != VOIDmode && mode != GET_MODE (op))
    return 0;
  if (mode == VOIDmode
      && (GET_MODE (op) != CCFPmode && GET_MODE (op) != CCFPEmode))
    return 0;

#if 0	/* ??? ==> 1 when %fcc0-3 are pseudos first.  See gen_compare_reg().  */
  if (reg_renumber == 0)
    return REGNO (op) >= FIRST_PSEUDO_REGISTER;
  return REGNO_OK_FOR_CCFP_P (REGNO (op));
#else
  return (unsigned) REGNO (op) - SPARC_FIRST_V9_FCC_REG < 4;
#endif
}

/* Nonzero if OP is an integer or floating point condition code register.  */

int
icc_or_fcc_reg_operand (op, mode)
     rtx op;
     enum machine_mode mode;
{
  if (GET_CODE (op) == REG && REGNO (op) == SPARC_ICC_REG)
    {
      if (mode != VOIDmode && mode != GET_MODE (op))
	return 0;
      if (mode == VOIDmode
	  && GET_MODE (op) != CCmode && GET_MODE (op) != CCXmode)
	return 0;
      return 1;
    }

  return fcc_reg_operand (op, mode);
}

/* Nonzero if OP can appear as the dest of a RESTORE insn.  */
int
restore_operand (op, mode)
     rtx op;
     enum machine_mode mode;
{
  return (GET_CODE (op) == REG && GET_MODE (op) == mode
	  && (REGNO (op) < 8 || (REGNO (op) >= 24 && REGNO (op) < 32)));
}

/* Call insn on SPARC can take a PC-relative constant address, or any regular
   memory address.  */

int
call_operand (op, mode)
     rtx op;
     enum machine_mode mode;
{
  if (GET_CODE (op) != MEM)
    abort ();
  op = XEXP (op, 0);
  return (symbolic_operand (op, mode) || memory_address_p (Pmode, op));
}

int
call_operand_address (op, mode)
     rtx op;
     enum machine_mode mode;
{
  return (symbolic_operand (op, mode) || memory_address_p (Pmode, op));
}

/* Returns 1 if OP is either a symbol reference or a sum of a symbol
   reference and a constant.  */

int
symbolic_operand (op, mode)
     register rtx op;
     enum machine_mode mode;
{
  switch (GET_CODE (op))
    {
    case SYMBOL_REF:
    case LABEL_REF:
      return 1;

    case CONST:
      op = XEXP (op, 0);
      return ((GET_CODE (XEXP (op, 0)) == SYMBOL_REF
	       || GET_CODE (XEXP (op, 0)) == LABEL_REF)
	      && GET_CODE (XEXP (op, 1)) == CONST_INT);

      /* ??? This clause seems to be irrelevant.  */
    case CONST_DOUBLE:
      return GET_MODE (op) == mode;

    default:
      return 0;
    }
}

/* Return truth value of statement that OP is a symbolic memory
   operand of mode MODE.  */

int
symbolic_memory_operand (op, mode)
     rtx op;
     enum machine_mode mode;
{
  if (GET_CODE (op) == SUBREG)
    op = SUBREG_REG (op);
  if (GET_CODE (op) != MEM)
    return 0;
  op = XEXP (op, 0);
  return (GET_CODE (op) == SYMBOL_REF || GET_CODE (op) == CONST
	  || GET_CODE (op) == HIGH || GET_CODE (op) == LABEL_REF);
}

/* Return truth value of statement that OP is a LABEL_REF of mode MODE.  */

int
label_ref_operand (op, mode)
     rtx op;
     enum machine_mode mode;
{
  if (GET_CODE (op) != LABEL_REF)
    return 0;
  if (GET_MODE (op) != mode)
    return 0;
  return 1;
}

/* Return 1 if the operand is an argument used in generating pic references
   in either the medium/low or medium/anywhere code models of sparc64.  */

int
sp64_medium_pic_operand (op, mode)
     rtx op;
     enum machine_mode mode;
{
  /* Check for (const (minus (symbol_ref:GOT)
                             (const (minus (label) (pc))))).  */
  if (GET_CODE (op) != CONST)
    return 0;
  op = XEXP (op, 0);
  if (GET_CODE (op) != MINUS)
    return 0;
  if (GET_CODE (XEXP (op, 0)) != SYMBOL_REF)
    return 0;
  /* ??? Ensure symbol is GOT.  */
  if (GET_CODE (XEXP (op, 1)) != CONST)
    return 0;
  if (GET_CODE (XEXP (XEXP (op, 1), 0)) != MINUS)
    return 0;
  return 1;
}

/* Return 1 if the operand is a data segment reference.  This includes
   the readonly data segment, or in other words anything but the text segment.
   This is needed in the medium/anywhere code model on v9.  These values
   are accessed with EMBMEDANY_BASE_REG.  */

int
data_segment_operand (op, mode)
     rtx op;
     enum machine_mode mode;
{
  switch (GET_CODE (op))
    {
    case SYMBOL_REF :
      return ! SYMBOL_REF_FLAG (op);
    case PLUS :
      /* Assume canonical format of symbol + constant.
	 Fall through.  */
    case CONST :
      return data_segment_operand (XEXP (op, 0));
    default :
      return 0;
    }
}

/* Return 1 if the operand is a text segment reference.
   This is needed in the medium/anywhere code model on v9.  */

int
text_segment_operand (op, mode)
     rtx op;
     enum machine_mode mode;
{
  switch (GET_CODE (op))
    {
    case LABEL_REF :
      return 1;
    case SYMBOL_REF :
      return SYMBOL_REF_FLAG (op);
    case PLUS :
      /* Assume canonical format of symbol + constant.
	 Fall through.  */
    case CONST :
      return text_segment_operand (XEXP (op, 0));
    default :
      return 0;
    }
}

/* Return 1 if the operand is either a register or a memory operand that is
   not symbolic.  */

int
reg_or_nonsymb_mem_operand (op, mode)
    register rtx op;
    enum machine_mode mode;
{
  if (register_operand (op, mode))
    return 1;

  if (memory_operand (op, mode) && ! symbolic_memory_operand (op, mode))
    return 1;

  return 0;
}

int
sparc_operand (op, mode)
     rtx op;
     enum machine_mode mode;
{
  if (register_operand (op, mode))
    return 1;
  if (GET_CODE (op) == CONST_INT)
    return SMALL_INT (op);
  if (GET_MODE (op) != mode)
    return 0;
  if (GET_CODE (op) == SUBREG)
    op = SUBREG_REG (op);
  if (GET_CODE (op) != MEM)
    return 0;

  op = XEXP (op, 0);
  if (GET_CODE (op) == LO_SUM)
    return (GET_CODE (XEXP (op, 0)) == REG
	    && symbolic_operand (XEXP (op, 1), Pmode));
  return memory_address_p (mode, op);
}

int
move_operand (op, mode)
     rtx op;
     enum machine_mode mode;
{
  if (mode == DImode && arith_double_operand (op, mode))
    return 1;
  if (register_operand (op, mode))
    return 1;
  if (GET_CODE (op) == CONST_INT)
    return SMALL_INT (op) || SPARC_SETHI_P (INTVAL (op));

  if (GET_MODE (op) != mode)
    return 0;
  if (GET_CODE (op) == SUBREG)
    op = SUBREG_REG (op);
  if (GET_CODE (op) != MEM)
    return 0;
  op = XEXP (op, 0);
  if (GET_CODE (op) == LO_SUM)
    return (register_operand (XEXP (op, 0), Pmode)
	    && CONSTANT_P (XEXP (op, 1)));
  return memory_address_p (mode, op);
}

int
splittable_symbolic_memory_operand (op, mode)
     rtx op;
     enum machine_mode mode;
{
  if (GET_CODE (op) != MEM)
    return 0;
  if (! symbolic_operand (XEXP (op, 0), Pmode))
    return 0;
  return 1;
}

int
splittable_immediate_memory_operand (op, mode)
     rtx op;
     enum machine_mode mode;
{
  if (GET_CODE (op) != MEM)
    return 0;
  if (! immediate_operand (XEXP (op, 0), Pmode))
    return 0;
  return 1;
}

/* Return truth value of whether OP is EQ or NE.  */

int
eq_or_neq (op, mode)
     rtx op;
     enum machine_mode mode;
{
  return (GET_CODE (op) == EQ || GET_CODE (op) == NE);
}

/* Return 1 if this is a comparison operator, but not an EQ, NE, GEU,
   or LTU for non-floating-point.  We handle those specially.  */

int
normal_comp_operator (op, mode)
     rtx op;
     enum machine_mode mode;
{
  enum rtx_code code = GET_CODE (op);

  if (GET_RTX_CLASS (code) != '<')
    return 0;

  if (GET_MODE (XEXP (op, 0)) == CCFPmode
      || GET_MODE (XEXP (op, 0)) == CCFPEmode)
    return 1;

  return (code != NE && code != EQ && code != GEU && code != LTU);
}

/* Return 1 if this is a comparison operator.  This allows the use of
   MATCH_OPERATOR to recognize all the branch insns.  */

int
noov_compare_op (op, mode)
    register rtx op;
    enum machine_mode mode;
{
  enum rtx_code code = GET_CODE (op);

  if (GET_RTX_CLASS (code) != '<')
    return 0;

  if (GET_MODE (XEXP (op, 0)) == CC_NOOVmode)
    /* These are the only branches which work with CC_NOOVmode.  */
    return (code == EQ || code == NE || code == GE || code == LT);
  return 1;
}

/* Nonzero if OP is a comparison operator suitable for use in v9
   conditional move or branch on register contents instructions.  */

int
v9_regcmp_op (op, mode)
     register rtx op;
     enum machine_mode mode;
{
  enum rtx_code code = GET_CODE (op);

  if (GET_RTX_CLASS (code) != '<')
    return 0;

  return v9_regcmp_p (code);
}

/* Return 1 if this is a SIGN_EXTEND or ZERO_EXTEND operation.  */

int
extend_op (op, mode)
     rtx op;
     enum machine_mode mode;
{
  return GET_CODE (op) == SIGN_EXTEND || GET_CODE (op) == ZERO_EXTEND;
}

/* Return nonzero if OP is an operator of mode MODE which can set
   the condition codes explicitly.  We do not include PLUS and MINUS
   because these require CC_NOOVmode, which we handle explicitly.  */

int
cc_arithop (op, mode)
     rtx op;
     enum machine_mode mode;
{
  if (GET_CODE (op) == AND
      || GET_CODE (op) == IOR
      || GET_CODE (op) == XOR)
    return 1;

  return 0;
}

/* Return nonzero if OP is an operator of mode MODE which can bitwise
   complement its second operand and set the condition codes explicitly.  */

int
cc_arithopn (op, mode)
     rtx op;
     enum machine_mode mode;
{
  /* XOR is not here because combine canonicalizes (xor (not ...) ...)
     and (xor ... (not ...)) to (not (xor ...)).   */
  return (GET_CODE (op) == AND
	  || GET_CODE (op) == IOR);
}

/* Return true if OP is a register, or is a CONST_INT that can fit in a
   signed 13 bit immediate field.  This is an acceptable SImode operand for
   most 3 address instructions.  */

int
arith_operand (op, mode)
     rtx op;
     enum machine_mode mode;
{
  return (register_operand (op, mode)
	  || (GET_CODE (op) == CONST_INT && SMALL_INT (op)));
}

/* Return true if OP is a register, or is a CONST_INT that can fit in a
   signed 11 bit immediate field.  This is an acceptable SImode operand for
   the movcc instructions.  */

int
arith11_operand (op, mode)
     rtx op;
     enum machine_mode mode;
{
  return (register_operand (op, mode)
	  || (GET_CODE (op) == CONST_INT && SPARC_SIMM11_P (INTVAL (op))));
}

/* Return true if OP is a register, or is a CONST_INT that can fit in a
   signed 10 bit immediate field.  This is an acceptable SImode operand for
   the movrcc instructions.  */

int
arith10_operand (op, mode)
     rtx op;
     enum machine_mode mode;
{
  return (register_operand (op, mode)
	  || (GET_CODE (op) == CONST_INT && SPARC_SIMM10_P (INTVAL (op))));
}

/* Return true if OP is a register, is a CONST_INT that fits in a 13 bit
   immediate field, or is a CONST_DOUBLE whose both parts fit in a 13 bit
   immediate field.
   v9: Return true if OP is a register, or is a CONST_INT or CONST_DOUBLE that
   can fit in a 13 bit immediate field.  This is an acceptable DImode operand
   for most 3 address instructions.  */

int
arith_double_operand (op, mode)
     rtx op;
     enum machine_mode mode;
{
  return (register_operand (op, mode)
	  || (GET_CODE (op) == CONST_INT && SMALL_INT (op))
	  || (! TARGET_ARCH64
	      && GET_CODE (op) == CONST_DOUBLE
	      && (unsigned HOST_WIDE_INT) (CONST_DOUBLE_LOW (op) + 0x1000) < 0x2000
	      && (unsigned HOST_WIDE_INT) (CONST_DOUBLE_HIGH (op) + 0x1000) < 0x2000)
	  || (TARGET_ARCH64
	      && GET_CODE (op) == CONST_DOUBLE
	      && (unsigned HOST_WIDE_INT) (CONST_DOUBLE_LOW (op) + 0x1000) < 0x2000
	      && ((CONST_DOUBLE_HIGH (op) == -1
		   && (CONST_DOUBLE_LOW (op) & 0x1000) == 0x1000)
		  || (CONST_DOUBLE_HIGH (op) == 0
		      && (CONST_DOUBLE_LOW (op) & 0x1000) == 0))));
}

/* Return true if OP is a register, or is a CONST_INT or CONST_DOUBLE that
   can fit in an 11 bit immediate field.  This is an acceptable DImode
   operand for the movcc instructions.  */
/* ??? Replace with arith11_operand?  */

int
arith11_double_operand (op, mode)
     rtx op;
     enum machine_mode mode;
{
  return (register_operand (op, mode)
	  || (GET_CODE (op) == CONST_DOUBLE
	      && (GET_MODE (op) == mode || GET_MODE (op) == VOIDmode)
	      && (unsigned HOST_WIDE_INT) (CONST_DOUBLE_LOW (op) + 0x400) < 0x800
	      && ((CONST_DOUBLE_HIGH (op) == -1
		   && (CONST_DOUBLE_LOW (op) & 0x400) == 0x400)
		  || (CONST_DOUBLE_HIGH (op) == 0
		      && (CONST_DOUBLE_LOW (op) & 0x400) == 0)))
	  || (GET_CODE (op) == CONST_INT
	      && (GET_MODE (op) == mode || GET_MODE (op) == VOIDmode)
	      && (unsigned HOST_WIDE_INT) (INTVAL (op) + 0x400) < 0x800));
}

/* Return true if OP is a register, or is a CONST_INT or CONST_DOUBLE that
   can fit in an 10 bit immediate field.  This is an acceptable DImode
   operand for the movrcc instructions.  */
/* ??? Replace with arith10_operand?  */

int
arith10_double_operand (op, mode)
     rtx op;
     enum machine_mode mode;
{
  return (register_operand (op, mode)
	  || (GET_CODE (op) == CONST_DOUBLE
	      && (GET_MODE (op) == mode || GET_MODE (op) == VOIDmode)
	      && (unsigned) (CONST_DOUBLE_LOW (op) + 0x200) < 0x400
	      && ((CONST_DOUBLE_HIGH (op) == -1
		   && (CONST_DOUBLE_LOW (op) & 0x200) == 0x200)
		  || (CONST_DOUBLE_HIGH (op) == 0
		      && (CONST_DOUBLE_LOW (op) & 0x200) == 0)))
	  || (GET_CODE (op) == CONST_INT
	      && (GET_MODE (op) == mode || GET_MODE (op) == VOIDmode)
	      && (unsigned HOST_WIDE_INT) (INTVAL (op) + 0x200) < 0x400));
}

/* Return truth value of whether OP is a integer which fits the
   range constraining immediate operands in most three-address insns,
   which have a 13 bit immediate field.  */

int
small_int (op, mode)
     rtx op;
     enum machine_mode mode;
{
  return (GET_CODE (op) == CONST_INT && SMALL_INT (op));
}

/* Recognize operand values for the umul instruction.  That instruction sign
   extends immediate values just like all other sparc instructions, but
   interprets the extended result as an unsigned number.  */

int
uns_small_int (op, mode)
     rtx op;
     enum machine_mode mode;
{
#if HOST_BITS_PER_WIDE_INT > 32
  /* All allowed constants will fit a CONST_INT.  */
  return (GET_CODE (op) == CONST_INT
	  && ((INTVAL (op) >= 0 && INTVAL (op) < 0x1000)
	      || (INTVAL (op) >= 0xFFFFF000 && INTVAL (op) < 0x100000000L)));
#else
  return ((GET_CODE (op) == CONST_INT && (unsigned) INTVAL (op) < 0x1000)
	  || (GET_CODE (op) == CONST_DOUBLE
	      && CONST_DOUBLE_HIGH (op) == 0
	      && (unsigned) CONST_DOUBLE_LOW (op) - 0xFFFFF000 < 0x1000));
#endif
}

int
uns_arith_operand (op, mode)
     rtx op;
     enum machine_mode mode;
{
  return register_operand (op, mode) || uns_small_int (op, mode);
}

/* Return truth value of statement that OP is a call-clobbered register.  */
int
clobbered_register (op, mode)
     rtx op;
     enum machine_mode mode;
{
  return (GET_CODE (op) == REG && call_used_regs[REGNO (op)]);
}

/* X and Y are two things to compare using CODE.  Emit the compare insn and
   return the rtx for the cc reg in the proper mode.  */

rtx
gen_compare_reg (code, x, y)
     enum rtx_code code;
     rtx x, y;
{
  enum machine_mode mode = SELECT_CC_MODE (code, x, y);
  rtx cc_reg;

  /* ??? We don't have movcc patterns so we cannot generate pseudo regs for the
     fcc regs (cse can't tell they're really call clobbered regs and will
     remove a duplicate comparison even if there is an intervening function
     call - it will then try to reload the cc reg via an int reg which is why
     we need the movcc patterns).  It is possible to provide the movcc
     patterns by using the ldxfsr/stxfsr v9 insns.  I tried it: you need two
     registers (say %g1,%g5) and it takes about 6 insns.  A better fix would be
     to tell cse that CCFPE mode registers (even pseudos) are call
     clobbered.  */

  /* ??? This is an experiment.  Rather than making changes to cse which may
     or may not be easy/clean, we do our own cse.  This is possible because
     we will generate hard registers.  Cse knows they're call clobbered (it
     doesn't know the same thing about pseudos). If we guess wrong, no big
     deal, but if we win, great!  */

  if (TARGET_V9 && GET_MODE_CLASS (GET_MODE (x)) == MODE_FLOAT)
#if 1 /* experiment */
    {
      int reg;
      /* We cycle through the registers to ensure they're all exercised.  */
      static int next_fcc_reg = 0;
      /* Previous x,y for each fcc reg.  */
      static rtx prev_args[4][2];

      /* Scan prev_args for x,y.  */
      for (reg = 0; reg < 4; reg++)
	if (prev_args[reg][0] == x && prev_args[reg][1] == y)
	  break;
      if (reg == 4)
	{
	  reg = next_fcc_reg;
	  prev_args[reg][0] = x;
	  prev_args[reg][1] = y;
	  next_fcc_reg = (next_fcc_reg + 1) & 3;
	}
      cc_reg = gen_rtx (REG, mode, reg + SPARC_FIRST_V9_FCC_REG);
    }
#else
    cc_reg = gen_reg_rtx (mode);
#endif /* ! experiment */
  else if (GET_MODE_CLASS (GET_MODE (x)) == MODE_FLOAT)
    cc_reg = gen_rtx (REG, mode, SPARC_FCC_REG);
  else
    cc_reg = gen_rtx (REG, mode, SPARC_ICC_REG);

  emit_insn (gen_rtx (SET, VOIDmode, cc_reg,
		      gen_rtx (COMPARE, mode, x, y)));

  return cc_reg;
}

/* This function is used for v9 only.
   CODE is the code for an Scc's comparison.
   OPERANDS[0] is the target of the Scc insn.
   OPERANDS[1] is the value we compare against const0_rtx (which hasn't
   been generated yet).

   This function is needed to turn

	   (set (reg:SI 110)
	       (gt (reg:CCX 100 %icc)
	           (const_int 0)))
   into
	   (set (reg:SI 110)
	       (gt:DI (reg:CCX 100 %icc)
	           (const_int 0)))

   IE: The instruction recognizer needs to see the mode of the comparison to
   find the right instruction. We could use "gt:DI" right in the
   define_expand, but leaving it out allows us to handle DI, SI, etc.

   We refer to the global sparc compare operands sparc_compare_op0 and
   sparc_compare_op1.  */

int
gen_v9_scc (compare_code, operands)
     enum rtx_code compare_code;
     register rtx *operands;
{
  rtx temp, op0, op1;

  if (! TARGET_ARCH64
      && (GET_MODE (sparc_compare_op0) == DImode
	  || GET_MODE (operands[0]) == DImode))
    return 0;

  /* Handle the case where operands[0] == sparc_compare_op0.
     We "early clobber" the result.  */
  if (REGNO (operands[0]) == REGNO (sparc_compare_op0))
    {
      op0 = gen_reg_rtx (GET_MODE (sparc_compare_op0));
      emit_move_insn (op0, sparc_compare_op0);
    }
  else
    op0 = sparc_compare_op0;
  /* For consistency in the following.  */
  op1 = sparc_compare_op1;

  /* Try to use the movrCC insns.  */
  if (TARGET_ARCH64
      && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
      && op1 == const0_rtx
      && v9_regcmp_p (compare_code))
    {
      /* Special case for op0 != 0.  This can be done with one instruction if
	 operands[0] == sparc_compare_op0.  We don't assume they are equal
	 now though.  */

      if (compare_code == NE
	  && GET_MODE (operands[0]) == DImode
	  && GET_MODE (op0) == DImode)
	{
	  emit_insn (gen_rtx (SET, VOIDmode, operands[0], op0));
	  emit_insn (gen_rtx (SET, VOIDmode, operands[0],
			      gen_rtx (IF_THEN_ELSE, DImode,
				       gen_rtx (compare_code, DImode,
						op0, const0_rtx),
				       const1_rtx,
				       operands[0])));
	  return 1;
	}

      emit_insn (gen_rtx (SET, VOIDmode, operands[0], const0_rtx));
      if (GET_MODE (op0) != DImode)
	{
	  temp = gen_reg_rtx (DImode);
	  convert_move (temp, op0, 0);
	}
      else
	temp = op0;
      emit_insn (gen_rtx (SET, VOIDmode, operands[0],
			  gen_rtx (IF_THEN_ELSE, GET_MODE (operands[0]),
				   gen_rtx (compare_code, DImode,
					    temp, const0_rtx),
				   const1_rtx,
				   operands[0])));
      return 1;
    }
  else
    {
      operands[1] = gen_compare_reg (compare_code, op0, op1);

      switch (GET_MODE (operands[1]))
	{
	  case CCmode :
	  case CCXmode :
	  case CCFPEmode :
	  case CCFPmode :
	    break;
	  default :
	    abort ();
	}
      emit_insn (gen_rtx (SET, VOIDmode, operands[0], const0_rtx));
      emit_insn (gen_rtx (SET, VOIDmode, operands[0],
			  gen_rtx (IF_THEN_ELSE, GET_MODE (operands[0]),
				   gen_rtx (compare_code,
					    GET_MODE (operands[1]),
					    operands[1], const0_rtx),
				    const1_rtx, operands[0])));
      return 1;
    }
}

/* Emit a conditional jump insn for the v9 architecture using comparison code
   CODE and jump target LABEL.
   This function exists to take advantage of the v9 brxx insns.  */

void
emit_v9_brxx_insn (code, op0, label)
     enum rtx_code code;
     rtx op0, label;
{
  emit_jump_insn (gen_rtx (SET, VOIDmode,
			   pc_rtx,
			   gen_rtx (IF_THEN_ELSE, VOIDmode,
				    gen_rtx (code, GET_MODE (op0),
					     op0, const0_rtx),
				    gen_rtx (LABEL_REF, VOIDmode, label),
				    pc_rtx)));
}

/* Return nonzero if a return peephole merging return with
   setting of output register is ok.  */
int
leaf_return_peephole_ok ()
{
  return (actual_fsize == 0);
}

/* Return nonzero if TRIAL can go into the function epilogue's
   delay slot.  SLOT is the slot we are trying to fill.  */

int
eligible_for_epilogue_delay (trial, slot)
     rtx trial;
     int slot;
{
  rtx pat, src;

  if (slot >= 1)
    return 0;

  if (GET_CODE (trial) != INSN || GET_CODE (PATTERN (trial)) != SET)
    return 0;

  if (get_attr_length (trial) != 1)
    return 0;

  /* If %g0 is live, there are lots of things we can't handle.
     Rather than trying to find them all now, let's punt and only
     optimize things as necessary.  */
  if (TARGET_LIVE_G0)
    return 0;

  /* In the case of a true leaf function, anything can go into the delay slot.
     A delay slot only exists however if the frame size is zero, otherwise
     we will put an insn to adjust the stack after the return.  */
  if (leaf_function)
    {
      if (leaf_return_peephole_ok ())
	return ((get_attr_in_uncond_branch_delay (trial)
		 == IN_BRANCH_DELAY_TRUE));
      return 0;
    }

  /* If only trivial `restore' insns work, nothing can go in the
     delay slot.  */
  else if (TARGET_BROKEN_SAVERESTORE)
    return 0;

  pat = PATTERN (trial);

  /* Otherwise, only operations which can be done in tandem with
     a `restore' insn can go into the delay slot.  */
  if (GET_CODE (SET_DEST (pat)) != REG
      || REGNO (SET_DEST (pat)) >= 32
      || REGNO (SET_DEST (pat)) < 24)
    return 0;

  /* The set of insns matched here must agree precisely with the set of
     patterns paired with a RETURN in sparc.md.  */

  src = SET_SRC (pat);

  /* This matches "*return_[qhs]i".  */
  if (arith_operand (src, GET_MODE (src)))
    return GET_MODE_SIZE (GET_MODE (src)) <= GET_MODE_SIZE (SImode);
    
  /* This matches "*return_di".  */
  else if (arith_double_operand (src, GET_MODE (src)))
    return GET_MODE_SIZE (GET_MODE (src)) <= GET_MODE_SIZE (DImode);

  /* This matches "*return_sf_no_fpu".  */
  else if (! TARGET_FPU && restore_operand (SET_DEST (pat), SFmode)
	   && register_operand (src, SFmode))
    return 1;

  /* This matches "*return_addsi".  */
  else if (GET_CODE (src) == PLUS
	   && arith_operand (XEXP (src, 0), SImode)
	   && arith_operand (XEXP (src, 1), SImode)
	   && (register_operand (XEXP (src, 0), SImode)
	       || register_operand (XEXP (src, 1), SImode)))
    return 1;

  /* This matches "*return_adddi".  */
  else if (GET_CODE (src) == PLUS
	   && arith_double_operand (XEXP (src, 0), DImode)
	   && arith_double_operand (XEXP (src, 1), DImode)
	   && (register_operand (XEXP (src, 0), DImode)
	       || register_operand (XEXP (src, 1), DImode)))
    return 1;

  /* This matches "*return_subsi".  */
  else if (GET_CODE (src) == MINUS
      && register_operand (XEXP (src, 0), SImode)
      && small_int (XEXP (src, 1), VOIDmode)
      && INTVAL (XEXP (src, 1)) != -4096)
    return 1;

  return 0;
}

int
short_branch (uid1, uid2)
     int uid1, uid2;
{
  unsigned int delta = insn_addresses[uid1] - insn_addresses[uid2];
  if (delta + 1024 < 2048)
    return 1;
  /* warning ("long branch, distance %d", delta); */
  return 0;
}

/* Return non-zero if REG is not used after INSN.
   We assume REG is a reload reg, and therefore does
   not live past labels or calls or jumps.  */
int
reg_unused_after (reg, insn)
     rtx reg;
     rtx insn;
{
  enum rtx_code code, prev_code = UNKNOWN;

  while ((insn = NEXT_INSN (insn)))
    {
      if (prev_code == CALL_INSN && call_used_regs[REGNO (reg)])
	return 1;

      code = GET_CODE (insn);
      if (GET_CODE (insn) == CODE_LABEL)
	return 1;

      if (GET_RTX_CLASS (code) == 'i')
	{
	  rtx set = single_set (insn);
	  int in_src = set && reg_overlap_mentioned_p (reg, SET_SRC (set));
	  if (set && in_src)
	    return 0;
	  if (set && reg_overlap_mentioned_p (reg, SET_DEST (set)))
	    return 1;
	  if (set == 0 && reg_overlap_mentioned_p (reg, PATTERN (insn)))
	    return 0;
	}
      prev_code = code;
    }
  return 1;
}

/* The table we use to reference PIC data.  */
static rtx global_offset_table;

/* Ensure that we are not using patterns that are not OK with PIC.  */

int
check_pic (i)
     int i;
{
  switch (flag_pic)
    {
    case 1:
      if (GET_CODE (recog_operand[i]) == SYMBOL_REF
	  || (GET_CODE (recog_operand[i]) == CONST
	      && ! (GET_CODE (XEXP (recog_operand[i], 0)) == MINUS
		    && (XEXP (XEXP (recog_operand[i], 0), 0)
			== global_offset_table)
		    && (GET_CODE (XEXP (XEXP (recog_operand[i], 0), 1))
			== CONST))))
	abort ();
    case 2:
    default:
      return 1;
    }
}

/* Return true if X is an address which needs a temporary register when 
   reloaded while generating PIC code.  */

int
pic_address_needs_scratch (x)
     rtx x;
{
  /* An address which is a symbolic plus a non SMALL_INT needs a temp reg.  */
  if (GET_CODE (x) == CONST && GET_CODE (XEXP (x, 0)) == PLUS
      && GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF
      && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
      && ! SMALL_INT (XEXP (XEXP (x, 0), 1)))
    return 1;

  return 0;
}

/* Legitimize PIC addresses.  If the address is already position-independent,
   we return ORIG.  Newly generated position-independent addresses go into a
   reg.  This is REG if non zero, otherwise we allocate register(s) as
   necessary.  */

rtx
legitimize_pic_address (orig, mode, reg)
     rtx orig;
     enum machine_mode mode;
     rtx reg;
{
  if (GET_CODE (orig) == SYMBOL_REF)
    {
      rtx pic_ref, address;
      rtx insn;

      if (reg == 0)
	{
	  if (reload_in_progress || reload_completed)
	    abort ();
	  else
	    reg = gen_reg_rtx (Pmode);
	}

      if (flag_pic == 2)
	{
	  /* If not during reload, allocate another temp reg here for loading
	     in the address, so that these instructions can be optimized
	     properly.  */
	  rtx temp_reg = ((reload_in_progress || reload_completed)
			  ? reg : gen_reg_rtx (Pmode));

	  /* Must put the SYMBOL_REF inside an UNSPEC here so that cse
	     won't get confused into thinking that these two instructions
	     are loading in the true address of the symbol.  If in the
	     future a PIC rtx exists, that should be used instead.  */
	  emit_insn (gen_pic_sethi_si (temp_reg, orig));
	  emit_insn (gen_pic_lo_sum_si (temp_reg, temp_reg, orig));

	  address = temp_reg;
	}
      else
	address = orig;

      pic_ref = gen_rtx (MEM, Pmode,
			 gen_rtx (PLUS, Pmode,
				  pic_offset_table_rtx, address));
      current_function_uses_pic_offset_table = 1;
      RTX_UNCHANGING_P (pic_ref) = 1;
      insn = emit_move_insn (reg, pic_ref);
      /* Put a REG_EQUAL note on this insn, so that it can be optimized
	 by loop.  */
      REG_NOTES (insn) = gen_rtx (EXPR_LIST, REG_EQUAL, orig,
				  REG_NOTES (insn));
      return reg;
    }
  else if (GET_CODE (orig) == CONST)
    {
      rtx base, offset;

      if (GET_CODE (XEXP (orig, 0)) == PLUS
	  && XEXP (XEXP (orig, 0), 0) == pic_offset_table_rtx)
	return orig;

      if (reg == 0)
	{
	  if (reload_in_progress || reload_completed)
	    abort ();
	  else
	    reg = gen_reg_rtx (Pmode);
	}

      if (GET_CODE (XEXP (orig, 0)) == PLUS)
	{
	  base = legitimize_pic_address (XEXP (XEXP (orig, 0), 0), Pmode, reg);
	  offset = legitimize_pic_address (XEXP (XEXP (orig, 0), 1), Pmode,
					 base == reg ? 0 : reg);
	}
      else
	abort ();

      if (GET_CODE (offset) == CONST_INT)
	{
	  if (SMALL_INT (offset))
	    return plus_constant_for_output (base, INTVAL (offset));
	  else if (! reload_in_progress && ! reload_completed)
	    offset = force_reg (Pmode, offset);
	  else
	    /* If we reach here, then something is seriously wrong.  */
	    abort ();
	}
      return gen_rtx (PLUS, Pmode, base, offset);
    }
  else if (GET_CODE (orig) == LABEL_REF)
    /* ??? Why do we do this?  */
    current_function_uses_pic_offset_table = 1;

  return orig;
}

/* Set up PIC-specific rtl.  This should not cause any insns
   to be emitted.  */

void
initialize_pic ()
{
}

/* Return the RTX for insns to set the PIC register.  */

static rtx
pic_setup_code ()
{
  rtx pic_pc_rtx;
  rtx l1, l2;
  rtx seq;

  start_sequence ();

  l1 = gen_label_rtx ();

  pic_pc_rtx = gen_rtx (CONST, Pmode,
			gen_rtx (MINUS, Pmode,
				 global_offset_table,
				 gen_rtx (CONST, Pmode,
					  gen_rtx (MINUS, Pmode,
						   gen_rtx (LABEL_REF,
							    VOIDmode, l1),
						   pc_rtx))));

  /* sparc64: the RDPC instruction doesn't pair, and puts 4 bubbles in the
     pipe to boot.  So don't use it here, especially when we're
     doing a save anyway because of %l7.  */

  l2 = gen_label_rtx ();
  emit_label (l1);

  /* Iff we are doing delay branch optimization, slot the sethi up
     here so that it will fill the delay slot of the call.  */
  if (flag_delayed_branch)
    emit_insn (gen_rtx (SET, VOIDmode, pic_offset_table_rtx,
			gen_rtx (HIGH, Pmode, pic_pc_rtx)));

  /* Note that we pun calls and jumps here!  */
  emit_jump_insn (gen_get_pc_via_call (l2, l1));

  emit_label (l2);

  if (!flag_delayed_branch)
    emit_insn (gen_rtx (SET, VOIDmode, pic_offset_table_rtx,
			gen_rtx (HIGH, Pmode, pic_pc_rtx)));

  emit_insn (gen_rtx (SET, VOIDmode,
		      pic_offset_table_rtx,
		      gen_rtx (LO_SUM, Pmode,
			       pic_offset_table_rtx, pic_pc_rtx)));
  emit_insn (gen_rtx (SET, VOIDmode,
		      pic_offset_table_rtx,
		      gen_rtx (PLUS, Pmode,
			       pic_offset_table_rtx,
			       gen_rtx (REG, Pmode, 15))));

  /* emit_insn (gen_rtx (ASM_INPUT, VOIDmode, "!#PROLOGUE# 1")); */

  seq = gen_sequence ();
  end_sequence ();

  return seq;
}

/* Emit special PIC prologues and epilogues.  */

void
finalize_pic ()
{
  /* Labels to get the PC in the prologue of this function.  */
  int orig_flag_pic = flag_pic;
  rtx insn;

  if (current_function_uses_pic_offset_table == 0)
    return;

  if (! flag_pic)
    abort ();

  /* Initialize every time through, since we can't easily
     know this to be permanent.  */
  global_offset_table = gen_rtx (SYMBOL_REF, Pmode, "_GLOBAL_OFFSET_TABLE_");
  flag_pic = 0;

  emit_insn_after (pic_setup_code (), get_insns ());

  /* Insert the code in each nonlocal goto receiver.  */
  for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
    if (GET_CODE (insn) == INSN && GET_CODE (PATTERN (insn)) == UNSPEC_VOLATILE
	&& XINT (PATTERN (insn), 1) == 4)
      emit_insn_after (pic_setup_code (), insn);

  flag_pic = orig_flag_pic;

  /* Need to emit this whether or not we obey regdecls,
     since setjmp/longjmp can cause life info to screw up.
     ??? In the case where we don't obey regdecls, this is not sufficient
     since we may not fall out the bottom.  */
  emit_insn (gen_rtx (USE, VOIDmode, pic_offset_table_rtx));
}

/* Emit insns to move operands[1] into operands[0].

   Return 1 if we have written out everything that needs to be done to
   do the move.  Otherwise, return 0 and the caller will emit the move
   normally.  */

int
emit_move_sequence (operands, mode)
     rtx *operands;
     enum machine_mode mode;
{
  register rtx operand0 = operands[0];
  register rtx operand1 = operands[1];

  if (CONSTANT_P (operand1) && flag_pic
      && pic_address_needs_scratch (operand1))
    operands[1] = operand1 = legitimize_pic_address (operand1, mode, 0);

  /* Handle most common case first: storing into a register.  */
  if (register_operand (operand0, mode))
    {
      if (register_operand (operand1, mode)
	  || (GET_CODE (operand1) == CONST_INT && SMALL_INT (operand1))
	  || (GET_CODE (operand1) == CONST_DOUBLE
	      && arith_double_operand (operand1, DImode))
	  || (GET_CODE (operand1) == HIGH && GET_MODE (operand1) != DImode)
	  /* Only `general_operands' can come here, so MEM is ok.  */
	  || GET_CODE (operand1) == MEM)
	{
	  /* Run this case quickly.  */
	  emit_insn (gen_rtx (SET, VOIDmode, operand0, operand1));
	  return 1;
	}
    }
  else if (GET_CODE (operand0) == MEM)
    {
      if (register_operand (operand1, mode)
	  || (operand1 == const0_rtx && ! TARGET_LIVE_G0))
	{
	  /* Run this case quickly.  */
	  emit_insn (gen_rtx (SET, VOIDmode, operand0, operand1));
	  return 1;
	}
      if (! reload_in_progress)
	{
	  operands[0] = validize_mem (operand0);
	  operands[1] = operand1 = force_reg (mode, operand1);
	}
    }

  if (GET_CODE (operand1) == LABEL_REF
      && mode == SImode && flag_pic)
    {
      if (TARGET_ARCH64)
	abort ();
      emit_insn (gen_move_pic_label_si (operand0, operand1));
      return 1;
    }
  /* Non-pic LABEL_REF's in sparc64 are expensive to do the normal way,
     so always use special code.  */
  else if (GET_CODE (operand1) == LABEL_REF
	   && mode == DImode)
    {
      if (! TARGET_ARCH64)
	abort ();
      emit_insn (gen_move_label_di (operand0, operand1));
      return 1;
    }
  /* DImode HIGH values in sparc64 need a clobber added.  */
  else if (TARGET_ARCH64
      && GET_CODE (operand1) == HIGH && GET_MODE (operand1) == DImode)
    {
      emit_insn (gen_sethi_di_sp64 (operand0, XEXP (operand1, 0)));
      return 1;
    }
  /* Simplify the source if we need to.  */
  else if (GET_CODE (operand1) != HIGH && immediate_operand (operand1, mode))
    {
      if (flag_pic && symbolic_operand (operand1, mode))
	{
	  rtx temp_reg = reload_in_progress ? operand0 : 0;

	  operands[1] = legitimize_pic_address (operand1, mode, temp_reg);
	}
      else if (GET_CODE (operand1) == CONST_INT
	       ? (! SMALL_INT (operand1)
		  && ! SPARC_SETHI_P (INTVAL (operand1)))
	       : GET_CODE (operand1) == CONST_DOUBLE
	       ? ! arith_double_operand (operand1, DImode)
	       : 1)
	{
	  /* For DImode values, temp must be operand0 because of the way
	     HI and LO_SUM work.  The LO_SUM operator only copies half of
	     the LSW from the dest of the HI operator.  If the LO_SUM dest is
	     not the same as the HI dest, then the MSW of the LO_SUM dest will
	     never be set.

	     ??? The real problem here is that the ...(HI:DImode pattern emits
	     multiple instructions, and the ...(LO_SUM:DImode pattern emits
	     one instruction.  This fails, because the compiler assumes that
	     LO_SUM copies all bits of the first operand to its dest.  Better
	     would be to have the HI pattern emit one instruction and the
	     LO_SUM pattern multiple instructions.  Even better would be
	     to use four rtl insns.  */
	  rtx temp = ((reload_in_progress || mode == DImode)
		      ? operand0 : gen_reg_rtx (mode));

	  if (TARGET_ARCH64 && mode == DImode)
	    emit_insn (gen_sethi_di_sp64 (temp, operand1));
	  else
	    emit_insn (gen_rtx (SET, VOIDmode, temp,
				gen_rtx (HIGH, mode, operand1)));

	  if (GET_CODE (operand1) == CONST_INT)
	    operand1 = GEN_INT (INTVAL (operand1) & 0xffffffff);
	  else if (GET_CODE (operand1) == CONST_DOUBLE)
	    operand1 = GEN_INT (CONST_DOUBLE_LOW (operand1) & 0xffffffff);
	  operands[1] = gen_rtx (LO_SUM, mode, temp, operand1);
	}
    }

  /* Now have insn-emit do whatever it normally does.  */
  return 0;
}

/* Return the best assembler insn template
   for moving operands[1] into operands[0] as a 4 byte quantity.

   This isn't intended to be very smart.  It is up to the caller to
   choose the best way to do things.

   Note that OPERANDS may be modified to suit the returned string.  */

char *
singlemove_string (operands)
     rtx *operands;
{
  if (GET_CODE (operands[0]) == MEM)
    {
      if (GET_CODE (operands[1]) != MEM)
	return "st %r1,%0";
      else
	abort ();
    }
  else if (GET_CODE (operands[1]) == MEM)
    return "ld %1,%0";
  else if (GET_CODE (operands[1]) == CONST_DOUBLE)
    {
      REAL_VALUE_TYPE r;
      long i;

      /* Must be SFmode, otherwise this doesn't make sense.  */
      if (GET_MODE (operands[1]) != SFmode)
	abort ();

      REAL_VALUE_FROM_CONST_DOUBLE (r, operands[1]);
      REAL_VALUE_TO_TARGET_SINGLE (r, i);
      operands[1] = GEN_INT (i);

      if (CONST_OK_FOR_LETTER_P (i, 'I'))
	return "mov %1,%0";
      else if ((i & 0x000003FF) != 0)
	return "sethi %%hi(%a1),%0\n\tor %0,%%lo(%a1),%0";
      else
	return "sethi %%hi(%a1),%0";
    }
  else if (GET_CODE (operands[1]) == CONST_INT
	   && ! CONST_OK_FOR_LETTER_P (INTVAL (operands[1]), 'I'))
    {
      HOST_WIDE_INT i = INTVAL (operands[1]);

      /* If all low order 10 bits are clear, then we only need a single
	 sethi insn to load the constant.  */
      /* FIXME: Use SETHI_P.  */
      if ((i & 0x000003FF) != 0)
	return "sethi %%hi(%a1),%0\n\tor %0,%%lo(%a1),%0";
      else
	return "sethi %%hi(%a1),%0";
    }
  /* Operand 1 must be a register, or a 'I' type CONST_INT.  */
  return "mov %1,%0";
}

/* Return the best assembler insn template
   for moving operands[1] into operands[0] as an 8 byte quantity.

   This isn't intended to be very smart.  It is up to the caller to
   choose the best way to do things.

   Note that OPERANDS may be modified to suit the returned string.  */

char *
doublemove_string (operands)
     rtx *operands;
{
  rtx op0 = operands[0], op1 = operands[1];

  if (GET_CODE (op0) == MEM)
    {
      if (GET_CODE (op1) == REG)
	{
	  if (FP_REG_P (op1))
	    return "std %1,%0";
	  return TARGET_ARCH64 ? "stx %1,%0" : "std %1,%0";
	}
      if (TARGET_ARCH64
	  && (op1 == const0_rtx
	      || (GET_MODE (op1) != VOIDmode
		  && op1 == CONST0_RTX (GET_MODE (op1)))))
	return "stx %r1,%0";
      abort ();
    }
  else if (GET_CODE (op1) == MEM)
    {
      if (GET_CODE (op0) != REG)
	abort ();
      if (FP_REG_P (op0))
	return "ldd %1,%0";
      return TARGET_ARCH64 ? "ldx %1,%0" : "ldd %1,%0";
    }
  else if (GET_CODE (operands[1]) == CONST_DOUBLE)
    {
      /* ??? Unfinished, and maybe not needed.  */
      abort ();
    }
  else if (GET_CODE (operands[1]) == CONST_INT
	   && ! CONST_OK_FOR_LETTER_P (INTVAL (operands[1]), 'I'))
    {
      /* ??? Unfinished, and maybe not needed.  */
      abort ();
    }
  /* Operand 1 must be a register, or a 'I' type CONST_INT.  */
  return "mov %1,%0";
}

/* Return non-zero if it is OK to assume that the given memory operand is
   aligned at least to a 8-byte boundary.  This should only be called
   for memory accesses whose size is 8 bytes or larger.  */

int
mem_aligned_8 (mem)
     register rtx mem;
{
  register rtx addr;
  register rtx base;
  register rtx offset;

  if (GET_CODE (mem) != MEM)
    return 0;	/* It's gotta be a MEM! */

  addr = XEXP (mem, 0);

  /* Now that all misaligned double parms are copied on function entry,
     we can assume any 64-bit object is 64-bit aligned except those which
     are at unaligned offsets from the stack or frame pointer.  If the
     TARGET_UNALIGNED_DOUBLES switch is given, we do not make this
     assumption.  */

  /* See what register we use in the address.  */
  base = 0;
  if (GET_CODE (addr) == PLUS)
    {
      if (GET_CODE (XEXP (addr, 0)) == REG
	  && GET_CODE (XEXP (addr, 1)) == CONST_INT)
	{
	  base = XEXP (addr, 0);
	  offset = XEXP (addr, 1);
	}
    }
  else if (GET_CODE (addr) == REG)
    {
      base = addr;
      offset = const0_rtx;
    }

  /* If it's the stack or frame pointer, check offset alignment.
     We can have improper alignment in the function entry code.  */
  if (base
      && (REGNO (base) == FRAME_POINTER_REGNUM
	  || REGNO (base) == STACK_POINTER_REGNUM))
    {
      if (((INTVAL (offset) - SPARC_STACK_BIAS) & 0x7) == 0)
	return 1;
    }
  /* Anything else we know is properly aligned unless TARGET_UNALIGNED_DOUBLES
     is true, in which case we can only assume that an access is aligned if
     it is to a constant address, or the address involves a LO_SUM.

     We used to assume an address was aligned if MEM_IN_STRUCT_P was true.
     That assumption was deleted so that gcc generated code can be used with
     memory allocators that only guarantee 4 byte alignment.  */
  else if (! TARGET_UNALIGNED_DOUBLES || CONSTANT_P (addr)
	   || GET_CODE (addr) == LO_SUM)
    return 1;

  /* An obviously unaligned address.  */
  return 0;
}

enum optype { REGOP, OFFSOP, MEMOP, PUSHOP, POPOP, CNSTOP, RNDOP };

/* Output assembler code to perform a doubleword move insn
   with operands OPERANDS.  This is very similar to the following
   output_move_quad function.  */

char *
output_move_double (operands)
     rtx *operands;
{
  register rtx op0 = operands[0];
  register rtx op1 = operands[1];
  register enum optype optype0;
  register enum optype optype1;
  rtx latehalf[2];
  rtx addreg0 = 0;
  rtx addreg1 = 0;
  int highest_first = 0;
  int no_addreg1_decrement = 0;

  /* First classify both operands.  */

  if (REG_P (op0))
    optype0 = REGOP;
  else if (offsettable_memref_p (op0))
    optype0 = OFFSOP;
  else if (GET_CODE (op0) == MEM)
    optype0 = MEMOP;
  else
    optype0 = RNDOP;

  if (REG_P (op1))
    optype1 = REGOP;
  else if (CONSTANT_P (op1))
    optype1 = CNSTOP;
  else if (offsettable_memref_p (op1))
    optype1 = OFFSOP;
  else if (GET_CODE (op1) == MEM)
    optype1 = MEMOP;
  else
    optype1 = RNDOP;

  /* Check for the cases that the operand constraints are not
     supposed to allow to happen.  Abort if we get one,
     because generating code for these cases is painful.  */

  if (optype0 == RNDOP || optype1 == RNDOP
      || (optype0 == MEM && optype1 == MEM))
    abort ();

  /* If an operand is an unoffsettable memory ref, find a register
     we can increment temporarily to make it refer to the second word.  */

  if (optype0 == MEMOP)
    addreg0 = find_addr_reg (XEXP (op0, 0));

  if (optype1 == MEMOP)
    addreg1 = find_addr_reg (XEXP (op1, 0));

  /* Ok, we can do one word at a time.
     Set up in LATEHALF the operands to use for the
     high-numbered (least significant) word and in some cases alter the
     operands in OPERANDS to be suitable for the low-numbered word.  */

  if (optype0 == REGOP)
    latehalf[0] = gen_rtx (REG, SImode, REGNO (op0) + 1);
  else if (optype0 == OFFSOP)
    latehalf[0] = adj_offsettable_operand (op0, 4);
  else
    latehalf[0] = op0;

  if (optype1 == REGOP)
    latehalf[1] = gen_rtx (REG, SImode, REGNO (op1) + 1);
  else if (optype1 == OFFSOP)
    latehalf[1] = adj_offsettable_operand (op1, 4);
  else if (optype1 == CNSTOP)
    {
      if (TARGET_ARCH64)
	{
	  if (arith_double_operand (op1, DImode))
	    {
	      operands[1] = GEN_INT (CONST_DOUBLE_LOW (op1));
	      return "mov %1,%0";
	    }
	  else
	    {
	      /* The only way to handle CONST_DOUBLEs or other 64 bit
		 constants here is to use a temporary, such as is done
		 for the V9 DImode sethi insn pattern.  This is not
		 a practical solution, so abort if we reach here.
		 The md file should always force such constants to
		 memory.  */
	      abort ();
	    }
	}
      else
	split_double (op1, &operands[1], &latehalf[1]);
    }
  else
    latehalf[1] = op1;

  /* Easy case: try moving both words at once.  Check for moving between
     an even/odd register pair and a memory location.  */
  if ((optype0 == REGOP && optype1 != REGOP && optype1 != CNSTOP
       && (TARGET_ARCH64 || (REGNO (op0) & 1) == 0))
      || (optype0 != REGOP && optype0 != CNSTOP && optype1 == REGOP
	  && (TARGET_ARCH64 || (REGNO (op1) & 1) == 0)))
    {
      register rtx mem,reg;

      if (optype0 == REGOP)
	mem = op1, reg = op0;
      else
	mem = op0, reg = op1;

      /* In v9, ldd can be used for word aligned addresses, so technically
	 some of this logic is unneeded.  We still avoid ldd if the address
	 is obviously unaligned though.

	 Integer ldd/std are deprecated in V9 and are slow on UltraSPARC.
	 Use them only if the access is volatile or not offsettable.  */

      if ((mem_aligned_8 (mem)
	   && (REGNO (reg) >= 32
	       || MEM_VOLATILE_P (mem)
	       || ! ((optype0 == OFFSOP || optype1 == OFFSOP)
		     && (sparc_cpu == PROCESSOR_ULTRASPARC
			 || sparc_cpu == PROCESSOR_V9))))
	  /* If this is a floating point register higher than %f31,
	     then we *must* use an aligned load, since `ld' will not accept
	     the register number.  */
	  || (TARGET_V9 && REGNO (reg) >= 64)
	  /* Even if two instructions would otherwise be better than ldd/std,
	     if this insn was put in a delay slot because reorg thought it
	     was only one machine instruction, make sure it is only one
	     instruction.  */
	  || dbr_sequence_length () != 0)
	{
	  if (FP_REG_P (reg) || ! TARGET_ARCH64)
	    return (mem == op1 ? "ldd %1,%0" : "std %1,%0");
	  else
	    return (mem == op1 ? "ldx %1,%0" : "stx %1,%0");
	}
    }

  if (TARGET_ARCH64)
    {
      if (optype0 == REGOP && optype1 == REGOP)
	{
	  if (FP_REG_P (op0))
	    return "fmovd %1,%0";
	  else
	    return "mov %1,%0";
	}
    }

  /* If the first move would clobber the source of the second one,
     do them in the other order.  */

  /* Overlapping registers.  */
  if (optype0 == REGOP && optype1 == REGOP
      && REGNO (op0) == REGNO (latehalf[1]))
    {
      /* Do that word.  */
      output_asm_insn (singlemove_string (latehalf), latehalf);
      /* Do low-numbered word.  */
      return singlemove_string (operands);
    }
  /* Loading into a register which overlaps a register used in the address.  */
  else if (optype0 == REGOP && optype1 != REGOP
	   && reg_overlap_mentioned_p (op0, op1))
    {
      /* If both halves of dest are used in the src memory address,
	 add the two regs and put them in the low reg (op0).
	 Then it works to load latehalf first.  */
      if (reg_mentioned_p (op0, XEXP (op1, 0))
	  && reg_mentioned_p (latehalf[0], XEXP (op1, 0)))
	{
	  rtx xops[2];
	  xops[0] = latehalf[0];
	  xops[1] = op0;
	  output_asm_insn ("add %1,%0,%1", xops);
	  operands[1] = gen_rtx (MEM, DImode, op0);
	  latehalf[1] = adj_offsettable_operand (operands[1], 4);
	  addreg1 = 0;
	  highest_first = 1;
	}
      /* Only one register in the dest is used in the src memory address,
	 and this is the first register of the dest, so we want to do
	 the late half first here also.  */
      else if (! reg_mentioned_p (latehalf[0], XEXP (op1, 0)))
	highest_first = 1;
      /* Only one register in the dest is used in the src memory address,
	 and this is the second register of the dest, so we want to do
	 the late half last.  If addreg1 is set, and addreg1 is the same
	 register as latehalf, then we must suppress the trailing decrement,
	 because it would clobber the value just loaded.  */
      else if (addreg1 && reg_mentioned_p (addreg1, latehalf[0]))
	no_addreg1_decrement = 1;
    }

  /* Normal case: do the two words, low-numbered first.
     Overlap case (highest_first set): do high-numbered word first.  */

  if (! highest_first)
    output_asm_insn (singlemove_string (operands), operands);

  /* Make any unoffsettable addresses point at high-numbered word.  */
  if (addreg0)
    output_asm_insn ("add %0,0x4,%0", &addreg0);
  if (addreg1)
    output_asm_insn ("add %0,0x4,%0", &addreg1);

  /* Do that word.  */
  output_asm_insn (singlemove_string (latehalf), latehalf);

  /* Undo the adds we just did.  */
  if (addreg0)
    output_asm_insn ("add %0,-0x4,%0", &addreg0);
  if (addreg1 && ! no_addreg1_decrement)
    output_asm_insn ("add %0,-0x4,%0", &addreg1);

  if (highest_first)
    output_asm_insn (singlemove_string (operands), operands);

  return "";
}

/* Output assembler code to perform a quadword move insn
   with operands OPERANDS.  This is very similar to the preceding
   output_move_double function.  */

char *
output_move_quad (operands)
     rtx *operands;
{
  register rtx op0 = operands[0];
  register rtx op1 = operands[1];
  register enum optype optype0;
  register enum optype optype1;
  rtx wordpart[4][2];
  rtx addreg0 = 0;
  rtx addreg1 = 0;

  /* First classify both operands.  */

  if (REG_P (op0))
    optype0 = REGOP;
  else if (offsettable_memref_p (op0))
    optype0 = OFFSOP;
  else if (GET_CODE (op0) == MEM)
    optype0 = MEMOP;
  else
    optype0 = RNDOP;

  if (REG_P (op1))
    optype1 = REGOP;
  else if (CONSTANT_P (op1))
    optype1 = CNSTOP;
  else if (offsettable_memref_p (op1))
    optype1 = OFFSOP;
  else if (GET_CODE (op1) == MEM)
    optype1 = MEMOP;
  else
    optype1 = RNDOP;

  /* Check for the cases that the operand constraints are not
     supposed to allow to happen.  Abort if we get one,
     because generating code for these cases is painful.  */

  if (optype0 == RNDOP || optype1 == RNDOP
      || (optype0 == MEM && optype1 == MEM))
    abort ();

  /* If an operand is an unoffsettable memory ref, find a register
     we can increment temporarily to make it refer to the later words.  */

  if (optype0 == MEMOP)
    addreg0 = find_addr_reg (XEXP (op0, 0));

  if (optype1 == MEMOP)
    addreg1 = find_addr_reg (XEXP (op1, 0));

  /* Ok, we can do one word at a time.
     Set up in wordpart the operands to use for each word of the arguments.  */

  if (optype0 == REGOP)
    {
      wordpart[0][0] = gen_rtx (REG, word_mode, REGNO (op0) + 0);
      wordpart[1][0] = gen_rtx (REG, word_mode, REGNO (op0) + 1);
      if (TARGET_ARCH32)
	{
	  wordpart[2][0] = gen_rtx (REG, word_mode, REGNO (op0) + 2);
	  wordpart[3][0] = gen_rtx (REG, word_mode, REGNO (op0) + 3);
	}
    }
  else if (optype0 == OFFSOP)
    {
      wordpart[0][0] = adj_offsettable_operand (op0, 0);
      if (TARGET_ARCH32)
	{
	  wordpart[1][0] = adj_offsettable_operand (op0, 4);
	  wordpart[2][0] = adj_offsettable_operand (op0, 8);
	  wordpart[3][0] = adj_offsettable_operand (op0, 12);
	}
      else
	wordpart[1][0] = adj_offsettable_operand (op0, 8);
    }
  else
    {
      wordpart[0][0] = op0;
      wordpart[1][0] = op0;
      wordpart[2][0] = op0;
      wordpart[3][0] = op0;
    }

  if (optype1 == REGOP)
    {
      wordpart[0][1] = gen_rtx (REG, word_mode, REGNO (op1) + 0);
      wordpart[1][1] = gen_rtx (REG, word_mode, REGNO (op1) + 1);
      if (TARGET_ARCH32)
	{
	  wordpart[2][1] = gen_rtx (REG, word_mode, REGNO (op1) + 2);
	  wordpart[3][1] = gen_rtx (REG, word_mode, REGNO (op1) + 3);
	}
    }
  else if (optype1 == OFFSOP)
    {
      wordpart[0][1] = adj_offsettable_operand (op1, 0);
      if (TARGET_ARCH32)
	{
	  wordpart[1][1] = adj_offsettable_operand (op1, 4);
	  wordpart[2][1] = adj_offsettable_operand (op1, 8);
	  wordpart[3][1] = adj_offsettable_operand (op1, 12);
	}
      else
	wordpart[1][1] = adj_offsettable_operand (op1, 8);
    }
  else if (optype1 == CNSTOP)
    {
      REAL_VALUE_TYPE r;
      long l[4];

      /* This only works for TFmode floating point constants.  */
      if (GET_CODE (op1) != CONST_DOUBLE || GET_MODE (op1) != TFmode)
	abort ();

      REAL_VALUE_FROM_CONST_DOUBLE (r, op1);
      REAL_VALUE_TO_TARGET_LONG_DOUBLE (r, l);
      
      wordpart[0][1] = GEN_INT (l[0]);
      wordpart[1][1] = GEN_INT (l[1]);
      wordpart[2][1] = GEN_INT (l[2]);
      wordpart[3][1] = GEN_INT (l[3]);
    }
  else
    {
      wordpart[0][1] = op1;
      wordpart[1][1] = op1;
      wordpart[2][1] = op1;
      wordpart[3][1] = op1;
    }

  /* Easy case: try moving the quad as two pairs.  Check for moving between
     an even/odd register pair and a memory location.
     Also handle new v9 fp regs here.  */
  /* ??? Should also handle the case of non-offsettable addresses here.
     We can at least do the first pair as a ldd/std, and then do the third
     and fourth words individually.  */
  if ((optype0 == REGOP && optype1 == OFFSOP && (REGNO (op0) & 1) == 0)
      || (optype0 == OFFSOP && optype1 == REGOP && (REGNO (op1) & 1) == 0))
    {
      rtx mem, reg;

      if (optype0 == REGOP)
	mem = op1, reg = op0;
      else
	mem = op0, reg = op1;

      if (mem_aligned_8 (mem)
	  /* If this is a floating point register higher than %f31,
	     then we *must* use an aligned load, since `ld' will not accept
	     the register number.  */
	  || (TARGET_V9 && REGNO (reg) >= SPARC_FIRST_V9_FP_REG))
	{
	  if (TARGET_V9 && FP_REG_P (reg) && TARGET_HARD_QUAD)
	    {
	      if ((REGNO (reg) & 3) != 0)
		abort ();
	      /* ??? Can `mem' have an inappropriate alignment here?  */
	      return (mem == op1 ? "ldq %1,%0" : "stq %1,%0");
	    }
	  operands[2] = adj_offsettable_operand (mem, 8);
	  /* ??? In arch64 case, shouldn't we use ldd/std for fp regs.  */
	  if (mem == op1)
	    return TARGET_ARCH64 ? "ldx %1,%0;ldx %2,%R0" : "ldd %1,%0;ldd %2,%S0";
	  else
	    return TARGET_ARCH64 ? "stx %1,%0;stx %R1,%2" : "std %1,%0;std %S1,%2";
	}
    }

  /* If the first move would clobber the source of the second one,
     do them in the other order.  */

  /* Overlapping registers?  */
  if (TARGET_ARCH32)
    {
      if (optype0 == REGOP && optype1 == REGOP
	  && (REGNO (op0) == REGNO (wordpart[1][3])
	      || REGNO (op0) == REGNO (wordpart[1][2])
	      || REGNO (op0) == REGNO (wordpart[1][1])))
	{
	  /* Do fourth word.  */
	  output_asm_insn (singlemove_string (wordpart[3]), wordpart[3]);
	  /* Do the third word.  */
	  output_asm_insn (singlemove_string (wordpart[2]), wordpart[2]);
	  /* Do the second word.  */
	  output_asm_insn (singlemove_string (wordpart[1]), wordpart[1]);
	  /* Do lowest-numbered word.  */
	  output_asm_insn (singlemove_string (wordpart[0]), wordpart[0]);
	  return "";
	}
    }
  else /* TARGET_ARCH64 */
    {
      if (optype0 == REGOP && optype1 == REGOP
	  && REGNO (op0) == REGNO (wordpart[1][1]))
	{
	  output_asm_insn ("mov %1,%0", wordpart[1]);
	  output_asm_insn ("mov %1,%0", wordpart[0]);
	  return "";
	}
    }

  /* Loading into a register which overlaps a register used in the address.  */
  if (optype0 == REGOP && optype1 != REGOP
      && reg_overlap_mentioned_p (op0, op1))
    {
      /* ??? Not implemented yet.  This is a bit complicated, because we
	 must load which ever part overlaps the address last.  If the address
	 is a double-reg address, then there are two parts which need to
	 be done last, which is impossible.  We would need a scratch register
	 in that case.  */
      abort ();
    }

  /* Normal case: move the words in lowest to highest address order.  */

  if (TARGET_ARCH32)
    {
      output_asm_insn (singlemove_string (wordpart[0]), wordpart[0]);

      /* Make any unoffsettable addresses point at the second word.  */
      if (addreg0)
	output_asm_insn ("add %0,0x4,%0", &addreg0);
      if (addreg1)
	output_asm_insn ("add %0,0x4,%0", &addreg1);

      /* Do the second word.  */
      output_asm_insn (singlemove_string (wordpart[1]), wordpart[1]);

      /* Make any unoffsettable addresses point at the third word.  */
      if (addreg0)
	output_asm_insn ("add %0,0x4,%0", &addreg0);
      if (addreg1)
	output_asm_insn ("add %0,0x4,%0", &addreg1);

      /* Do the third word.  */
      output_asm_insn (singlemove_string (wordpart[2]), wordpart[2]);

      /* Make any unoffsettable addresses point at the fourth word.  */
      if (addreg0)
	output_asm_insn ("add %0,0x4,%0", &addreg0);
      if (addreg1)
	output_asm_insn ("add %0,0x4,%0", &addreg1);

      /* Do the fourth word.  */
      output_asm_insn (singlemove_string (wordpart[3]), wordpart[3]);

      /* Undo the adds we just did.  */
      if (addreg0)
	output_asm_insn ("add %0,-0xc,%0", &addreg0);
      if (addreg1)
	output_asm_insn ("add %0,-0xc,%0", &addreg1);
    }
  else /* TARGET_ARCH64 */
    {
      output_asm_insn (doublemove_string (wordpart[0]), wordpart[0]);

      /* Make any unoffsettable addresses point at the second word.  */
      if (addreg0)
	output_asm_insn ("add %0,0x8,%0", &addreg0);
      if (addreg1)
	output_asm_insn ("add %0,0x8,%0", &addreg1);

      /* Do the second word.  */
      output_asm_insn (doublemove_string (wordpart[1]), wordpart[1]);

      /* Undo the adds we just did.  */
      if (addreg0)
	output_asm_insn ("add %0,-0x8,%0", &addreg0);
      if (addreg1)
	output_asm_insn ("add %0,-0x8,%0", &addreg1);
    }

  return "";
}

/* Output assembler code to perform a doubleword move insn with operands
   OPERANDS, one of which must be a floating point register.  */

char *
output_fp_move_double (operands)
     rtx *operands;
{
  if (FP_REG_P (operands[0]))
    {
      if (FP_REG_P (operands[1]))
	{
	  if (TARGET_V9)
	    return "fmovd %1,%0";
	  else
	    return "fmovs %1,%0\n\tfmovs %R1,%R0";
	}
      else if (GET_CODE (operands[1]) == REG)
	abort ();
      else
	return output_move_double (operands);
    }
  else if (FP_REG_P (operands[1]))
    {
      if (GET_CODE (operands[0]) == REG)
	abort ();
      else
	return output_move_double (operands);
    }
  else abort ();
}

/* Output assembler code to perform a quadword move insn with operands
   OPERANDS, one of which must be a floating point register.  */

char *
output_fp_move_quad (operands)
     rtx *operands;
{
  register rtx op0 = operands[0];
  register rtx op1 = operands[1];

  if (FP_REG_P (op0))
    {
      if (FP_REG_P (op1))
	{
	  if (TARGET_V9 && TARGET_HARD_QUAD)
	    return "fmovq %1,%0";
	  else if (TARGET_V9)
	    return "fmovd %1,%0\n\tfmovd %S1,%S0";
	  else
	    return "fmovs %1,%0\n\tfmovs %R1,%R0\n\tfmovs %S1,%S0\n\tfmovs %T1,%T0";
	}
      else if (GET_CODE (op1) == REG)
	abort ();
      else
	return output_move_quad (operands);
    }
  else if (FP_REG_P (op1))
    {
      if (GET_CODE (op0) == REG)
	abort ();
      else
	return output_move_quad (operands);
    }
  else
    abort ();
}

/* Return a REG that occurs in ADDR with coefficient 1.
   ADDR can be effectively incremented by incrementing REG.  */

static rtx
find_addr_reg (addr)
     rtx addr;
{
  while (GET_CODE (addr) == PLUS)
    {
      /* We absolutely can not fudge the frame pointer here, because the
	 frame pointer must always be 8 byte aligned.  It also confuses
	 debuggers.  */
      if (GET_CODE (XEXP (addr, 0)) == REG
	  && REGNO (XEXP (addr, 0)) != FRAME_POINTER_REGNUM)
	addr = XEXP (addr, 0);
      else if (GET_CODE (XEXP (addr, 1)) == REG
	       && REGNO (XEXP (addr, 1)) != FRAME_POINTER_REGNUM)
	addr = XEXP (addr, 1);
      else if (CONSTANT_P (XEXP (addr, 0)))
	addr = XEXP (addr, 1);
      else if (CONSTANT_P (XEXP (addr, 1)))
	addr = XEXP (addr, 0);
      else
	abort ();
    }
  if (GET_CODE (addr) == REG)
    return addr;
  abort ();
}

#if 0 /* not currently used */

void
output_sized_memop (opname, mode, signedp)
     char *opname;
     enum machine_mode mode;
     int signedp;
{
  static char *ld_size_suffix_u[] = { "ub", "uh", "", "?", "d" };
  static char *ld_size_suffix_s[] = { "sb", "sh", "", "?", "d" };
  static char *st_size_suffix[] = { "b", "h", "", "?", "d" };
  char **opnametab, *modename;

  if (opname[0] == 'l')
    if (signedp)
      opnametab = ld_size_suffix_s;
    else
      opnametab = ld_size_suffix_u;
  else
    opnametab = st_size_suffix;
  modename = opnametab[GET_MODE_SIZE (mode) >> 1];

  fprintf (asm_out_file, "\t%s%s", opname, modename);
}

void
output_move_with_extension (operands)
     rtx *operands;
{
  if (GET_MODE (operands[2]) == HImode)
    output_asm_insn ("sll %2,0x10,%0", operands);
  else if (GET_MODE (operands[2]) == QImode)
    output_asm_insn ("sll %2,0x18,%0", operands);
  else
    abort ();
}
#endif /* not currently used */

#if 0
/* ??? These are only used by the movstrsi pattern, but we get better code
   in general without that, because emit_block_move can do just as good a
   job as this function does when alignment and size are known.  When they
   aren't known, a call to strcpy may be faster anyways, because it is
   likely to be carefully crafted assembly language code, and below we just
   do a byte-wise copy.

   Also, emit_block_move expands into multiple read/write RTL insns, which
   can then be optimized, whereas our movstrsi pattern can not be optimized
   at all.  */

/* Load the address specified by OPERANDS[3] into the register
   specified by OPERANDS[0].

   OPERANDS[3] may be the result of a sum, hence it could either be:

   (1) CONST
   (2) REG
   (2) REG + CONST_INT
   (3) REG + REG + CONST_INT
   (4) REG + REG  (special case of 3).

   Note that (3) is not a legitimate address.
   All cases are handled here.  */

void
output_load_address (operands)
     rtx *operands;
{
  rtx base, offset;

  if (CONSTANT_P (operands[3]))
    {
      output_asm_insn ("set %3,%0", operands);
      return;
    }

  if (REG_P (operands[3]))
    {
      if (REGNO (operands[0]) != REGNO (operands[3]))
	output_asm_insn ("mov %3,%0", operands);
      return;
    }

  if (GET_CODE (operands[3]) != PLUS)
    abort ();

  base = XEXP (operands[3], 0);
  offset = XEXP (operands[3], 1);

  if (GET_CODE (base) == CONST_INT)
    {
      rtx tmp = base;
      base = offset;
      offset = tmp;
    }

  if (GET_CODE (offset) != CONST_INT)
    {
      /* Operand is (PLUS (REG) (REG)).  */
      base = operands[3];
      offset = const0_rtx;
    }

  if (REG_P (base))
    {
      operands[6] = base;
      operands[7] = offset;
      if (SMALL_INT (offset))
	output_asm_insn ("add %6,%7,%0", operands);
      else
	output_asm_insn ("set %7,%0\n\tadd %0,%6,%0", operands);
    }
  else if (GET_CODE (base) == PLUS)
    {
      operands[6] = XEXP (base, 0);
      operands[7] = XEXP (base, 1);
      operands[8] = offset;

      if (SMALL_INT (offset))
	output_asm_insn ("add %6,%7,%0\n\tadd %0,%8,%0", operands);
      else
	output_asm_insn ("set %8,%0\n\tadd %0,%6,%0\n\tadd %0,%7,%0", operands);
    }
  else
    abort ();
}

/* Output code to place a size count SIZE in register REG.
   ALIGN is the size of the unit of transfer.

   Because block moves are pipelined, we don't include the
   first element in the transfer of SIZE to REG.  */

static void
output_size_for_block_move (size, reg, align)
     rtx size, reg;
     rtx align;
{
  rtx xoperands[3];

  xoperands[0] = reg;
  xoperands[1] = size;
  xoperands[2] = align;
  if (GET_CODE (size) == REG)
    output_asm_insn ("sub %1,%2,%0", xoperands);
  else
    {
      xoperands[1]
	= GEN_INT (INTVAL (size) - INTVAL (align));
      output_asm_insn ("set %1,%0", xoperands);
    }
}

/* Emit code to perform a block move.

   OPERANDS[0] is the destination.
   OPERANDS[1] is the source.
   OPERANDS[2] is the size.
   OPERANDS[3] is the alignment safe to use.
   OPERANDS[4] is a register we can safely clobber as a temp.  */

char *
output_block_move (operands)
     rtx *operands;
{
  /* A vector for our computed operands.  Note that load_output_address
     makes use of (and can clobber) up to the 8th element of this vector.  */
  rtx xoperands[10];
  rtx zoperands[10];
  static int movstrsi_label = 0;
  int i;
  rtx temp1 = operands[4];
  rtx sizertx = operands[2];
  rtx alignrtx = operands[3];
  int align = INTVAL (alignrtx);
  char label3[30], label5[30];

  xoperands[0] = operands[0];
  xoperands[1] = operands[1];
  xoperands[2] = temp1;

  /* We can't move more than this many bytes at a time because we have only
     one register, %g1, to move them through.  */
  if (align > UNITS_PER_WORD)
    {
      align = UNITS_PER_WORD;
      alignrtx = GEN_INT (UNITS_PER_WORD);
    }

  /* We consider 8 ld/st pairs, for a total of 16 inline insns to be
     reasonable here.  (Actually will emit a maximum of 18 inline insns for
     the case of size == 31 and align == 4).  */

  if (GET_CODE (sizertx) == CONST_INT && (INTVAL (sizertx) / align) <= 8
      && memory_address_p (QImode, plus_constant_for_output (xoperands[0],
							     INTVAL (sizertx)))
      && memory_address_p (QImode, plus_constant_for_output (xoperands[1],
							     INTVAL (sizertx))))
    {
      int size = INTVAL (sizertx);
      int offset = 0;

      /* We will store different integers into this particular RTX.  */
      xoperands[2] = rtx_alloc (CONST_INT);
      PUT_MODE (xoperands[2], VOIDmode);

      /* This case is currently not handled.  Abort instead of generating
	 bad code.  */
      if (align > UNITS_PER_WORD)
	abort ();

      if (TARGET_ARCH64 && align >= 8)
	{
	  for (i = (size >> 3) - 1; i >= 0; i--)
	    {
	      INTVAL (xoperands[2]) = (i << 3) + offset;
	      output_asm_insn ("ldx [%a1+%2],%%g1\n\tstx %%g1,[%a0+%2]",
			       xoperands);
	    }
	  offset += (size & ~0x7);
	  size = size & 0x7;
	  if (size == 0)
	    return "";
	}

      if (align >= 4)
	{
	  for (i = (size >> 2) - 1; i >= 0; i--)
	    {
	      INTVAL (xoperands[2]) = (i << 2) + offset;
	      output_asm_insn ("ld [%a1+%2],%%g1\n\tst %%g1,[%a0+%2]",
			       xoperands);
	    }
	  offset += (size & ~0x3);
	  size = size & 0x3;
	  if (size == 0)
	    return "";
	}

      if (align >= 2)
	{
	  for (i = (size >> 1) - 1; i >= 0; i--)
	    {
	      INTVAL (xoperands[2]) = (i << 1) + offset;
	      output_asm_insn ("lduh [%a1+%2],%%g1\n\tsth %%g1,[%a0+%2]",
			       xoperands);
	    }
	  offset += (size & ~0x1);
	  size = size & 0x1;
	  if (size == 0)
	    return "";
	}

      if (align >= 1)
	{
	  for (i = size - 1; i >= 0; i--)
	    {
	      INTVAL (xoperands[2]) = i + offset;
	      output_asm_insn ("ldub [%a1+%2],%%g1\n\tstb %%g1,[%a0+%2]",
			       xoperands);
	    }
	  return "";
	}

      /* We should never reach here.  */
      abort ();
    }

  /* If the size isn't known to be a multiple of the alignment,
     we have to do it in smaller pieces.  If we could determine that
     the size was a multiple of 2 (or whatever), we could be smarter
     about this.  */
  if (GET_CODE (sizertx) != CONST_INT)
    align = 1;
  else
    {
      int size = INTVAL (sizertx);
      while (size % align)
	align >>= 1;
    }

  if (align != INTVAL (alignrtx))
    alignrtx = GEN_INT (align);

  xoperands[3] = GEN_INT (movstrsi_label++);
  xoperands[4] = GEN_INT (align);
  xoperands[5] = GEN_INT (movstrsi_label++);

  ASM_GENERATE_INTERNAL_LABEL (label3, "Lm", INTVAL (xoperands[3]));
  ASM_GENERATE_INTERNAL_LABEL (label5, "Lm", INTVAL (xoperands[5]));

  /* This is the size of the transfer.  Emit code to decrement the size
     value by ALIGN, and store the result in the temp1 register.  */
  output_size_for_block_move (sizertx, temp1, alignrtx);

  /* Must handle the case when the size is zero or negative, so the first thing
     we do is compare the size against zero, and only copy bytes if it is
     zero or greater.  Note that we have already subtracted off the alignment
     once, so we must copy 1 alignment worth of bytes if the size is zero
     here.

     The SUN assembler complains about labels in branch delay slots, so we
     do this before outputting the load address, so that there will always
     be a harmless insn between the branch here and the next label emitted
     below.  */

  {
    char pattern[100];

    sprintf (pattern, "cmp %%2,0\n\tbl %s", &label5[1]);
    output_asm_insn (pattern, xoperands);
  }

  zoperands[0] = operands[0];
  zoperands[3] = plus_constant_for_output (operands[0], align);
  output_load_address (zoperands);

  /* ??? This might be much faster if the loops below were preconditioned
     and unrolled.

     That is, at run time, copy enough bytes one at a time to ensure that the
     target and source addresses are aligned to the the largest possible
     alignment.  Then use a preconditioned unrolled loop to copy say 16
     bytes at a time.  Then copy bytes one at a time until finish the rest.  */

  /* Output the first label separately, so that it is spaced properly.  */

  ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, "Lm", INTVAL (xoperands[3]));

  {
    char pattern[200];
    register char *ld_suffix = ((align == 1) ? "ub" : (align == 2) ? "uh"
				: (align == 8 && TARGET_ARCH64) ? "x" : "");
    register char *st_suffix = ((align == 1) ? "b" : (align == 2) ? "h"
				: (align == 8 && TARGET_ARCH64) ? "x" : "");

    sprintf (pattern, "ld%s [%%1+%%2],%%%%g1\n\tsubcc %%2,%%4,%%2\n\tbge %s\n\tst%s %%%%g1,[%%0+%%2]\n%s:", ld_suffix, &label3[1], st_suffix, &label5[1]);
    output_asm_insn (pattern, xoperands);
  }

  return "";
}
#endif

/* Output reasonable peephole for set-on-condition-code insns.
   Note that these insns assume a particular way of defining
   labels.  Therefore, *both* sparc.h and this function must
   be changed if a new syntax is needed.    */

char *
output_scc_insn (operands, insn)
     rtx operands[];
     rtx insn;
{
  static char string[100];
  rtx label = 0, next = insn;
  int need_label = 0;

  /* Try doing a jump optimization which jump.c can't do for us
     because we did not expose that setcc works by using branches.

     If this scc insn is followed by an unconditional branch, then have
     the jump insn emitted here jump to that location, instead of to
     the end of the scc sequence as usual.  */

  do
    {
      if (GET_CODE (next) == CODE_LABEL)
	label = next;
      next = NEXT_INSN (next);
      if (next == 0)
	break;
    }
  while (GET_CODE (next) == NOTE || GET_CODE (next) == CODE_LABEL);

  /* If we are in a sequence, and the following insn is a sequence also,
     then just following the current insn's next field will take us to the
     first insn of the next sequence, which is the wrong place.  We don't
     want to optimize with a branch that has had its delay slot filled.
     Avoid this by verifying that NEXT_INSN (PREV_INSN (next)) == next
     which fails only if NEXT is such a branch.  */

  if (next && GET_CODE (next) == JUMP_INSN && simplejump_p (next)
      && (! final_sequence || NEXT_INSN (PREV_INSN (next)) == next))
    label = JUMP_LABEL (next);
  /* If not optimizing, jump label fields are not set.  To be safe, always
     check here to whether label is still zero.  */
  if (label == 0)
    {
      label = gen_label_rtx ();
      need_label = 1;
    }

  LABEL_NUSES (label) += 1;

  /* operands[3] is an unused slot.  */
  operands[3] = label;

  /* If we are in a delay slot, assume it is the delay slot of an fpcc
     insn since our type isn't allowed anywhere else.  */

  /* ??? Fpcc instructions no longer have delay slots, so this code is
     probably obsolete.  */

  /* The fastest way to emit code for this is an annulled branch followed
     by two move insns.  This will take two cycles if the branch is taken,
     and three cycles if the branch is not taken.

     However, if we are in the delay slot of another branch, this won't work,
     because we can't put a branch in the delay slot of another branch.
     The above sequence would effectively take 3 or 4 cycles respectively
     since a no op would have be inserted between the two branches.
     In this case, we want to emit a move, annulled branch, and then the
     second move.  This sequence always takes 3 cycles, and hence is faster
     when we are in a branch delay slot.  */

  if (final_sequence)
    {
      strcpy (string, "mov 0,%0\n\t");
      strcat (string, output_cbranch (operands[2], 3, 0, 1, 0));
      strcat (string, "\n\tmov 1,%0");
    }
  else
    {
      strcpy (string, output_cbranch (operands[2], 3, 0, 1, 0));
      strcat (string, "\n\tmov 1,%0\n\tmov 0,%0");
    }

  if (need_label)
    strcat (string, "\n%l3:");

  return string;
}

/* Vectors to keep interesting information about registers where it can easily
   be got.  We use to use the actual mode value as the bit number, but there
   are more than 32 modes now.  Instead we use two tables: one indexed by
   hard register number, and one indexed by mode.  */

/* The purpose of sparc_mode_class is to shrink the range of modes so that
   they all fit (as bit numbers) in a 32 bit word (again).  Each real mode is
   mapped into one sparc_mode_class mode.  */

enum sparc_mode_class {
  S_MODE, D_MODE, T_MODE, O_MODE,
  SF_MODE, DF_MODE, TF_MODE, OF_MODE,
  CC_MODE, CCFP_MODE
};

/* Modes for single-word and smaller quantities.  */
#define S_MODES ((1 << (int) S_MODE) | (1 << (int) SF_MODE))

/* Modes for double-word and smaller quantities.  */
#define D_MODES (S_MODES | (1 << (int) D_MODE) | (1 << DF_MODE))

/* Modes for quad-word and smaller quantities.  */
#define T_MODES (D_MODES | (1 << (int) T_MODE) | (1 << (int) TF_MODE))

/* Modes for single-float quantities.  We must allow any single word or
   smaller quantity.  This is because the fix/float conversion instructions
   take integer inputs/outputs from the float registers.  */
#define SF_MODES (S_MODES)

/* Modes for double-float and smaller quantities.  */
#define DF_MODES (S_MODES | D_MODES)

/* ??? Sparc64 fp regs cannot hold DImode values.  */
#define DF_MODES64 (SF_MODES | (1 << (int) DF_MODE) /* | (1 << (int) D_MODE)*/)

/* Modes for double-float only quantities.  */
/* ??? Sparc64 fp regs cannot hold DImode values.
   See fix_truncsfdi2.  */
#define DF_ONLY_MODES ((1 << (int) DF_MODE) /*| (1 << (int) D_MODE)*/)

/* Modes for double-float and larger quantities.  */
#define DF_UP_MODES (DF_ONLY_MODES | TF_ONLY_MODES)

/* Modes for quad-float only quantities.  */
#define TF_ONLY_MODES (1 << (int) TF_MODE)

/* Modes for quad-float and smaller quantities.  */
#define TF_MODES (DF_MODES | TF_ONLY_MODES)

/* ??? Sparc64 fp regs cannot hold DImode values.
   See fix_truncsfdi2.  */
#define TF_MODES64 (DF_MODES64 | TF_ONLY_MODES)

/* Modes for condition codes.  */
#define CC_MODES (1 << (int) CC_MODE)
#define CCFP_MODES (1 << (int) CCFP_MODE)

/* Value is 1 if register/mode pair is acceptable on sparc.
   The funny mixture of D and T modes is because integer operations
   do not specially operate on tetra quantities, so non-quad-aligned
   registers can hold quadword quantities (except %o4 and %i4 because
   they cross fixed registers).  */

/* This points to either the 32 bit or the 64 bit version.  */
int *hard_regno_mode_classes;

static int hard_32bit_mode_classes[] = {
  S_MODES, S_MODES, T_MODES, S_MODES, T_MODES, S_MODES, D_MODES, S_MODES,
  T_MODES, S_MODES, T_MODES, S_MODES, D_MODES, S_MODES, D_MODES, S_MODES,
  T_MODES, S_MODES, T_MODES, S_MODES, T_MODES, S_MODES, D_MODES, S_MODES,
  T_MODES, S_MODES, T_MODES, S_MODES, D_MODES, S_MODES, D_MODES, S_MODES,

  TF_MODES, SF_MODES, DF_MODES, SF_MODES, TF_MODES, SF_MODES, DF_MODES, SF_MODES,
  TF_MODES, SF_MODES, DF_MODES, SF_MODES, TF_MODES, SF_MODES, DF_MODES, SF_MODES,
  TF_MODES, SF_MODES, DF_MODES, SF_MODES, TF_MODES, SF_MODES, DF_MODES, SF_MODES,
  TF_MODES, SF_MODES, DF_MODES, SF_MODES, TF_MODES, SF_MODES, DF_MODES, SF_MODES,

  /* FP regs f32 to f63.  Only the even numbered registers actually exist,
     and none can hold SFmode/SImode values.  */
  DF_UP_MODES, 0, DF_ONLY_MODES, 0, DF_UP_MODES, 0, DF_ONLY_MODES, 0,
  DF_UP_MODES, 0, DF_ONLY_MODES, 0, DF_UP_MODES, 0, DF_ONLY_MODES, 0,
  DF_UP_MODES, 0, DF_ONLY_MODES, 0, DF_UP_MODES, 0, DF_ONLY_MODES, 0,
  DF_UP_MODES, 0, DF_ONLY_MODES, 0, DF_UP_MODES, 0, DF_ONLY_MODES, 0,

  /* %fcc[0123] */
  CCFP_MODES, CCFP_MODES, CCFP_MODES, CCFP_MODES,

  /* %icc */
  CC_MODES
};

static int hard_64bit_mode_classes[] = {
  D_MODES, D_MODES, T_MODES, D_MODES, T_MODES, D_MODES, T_MODES, D_MODES,
  T_MODES, D_MODES, T_MODES, D_MODES, T_MODES, D_MODES, T_MODES, D_MODES,
  T_MODES, D_MODES, T_MODES, D_MODES, T_MODES, D_MODES, T_MODES, D_MODES,
  T_MODES, D_MODES, T_MODES, D_MODES, T_MODES, D_MODES, T_MODES, D_MODES,

  TF_MODES64, SF_MODES, DF_MODES64, SF_MODES, TF_MODES64, SF_MODES, DF_MODES64, SF_MODES,
  TF_MODES64, SF_MODES, DF_MODES64, SF_MODES, TF_MODES64, SF_MODES, DF_MODES64, SF_MODES,
  TF_MODES64, SF_MODES, DF_MODES64, SF_MODES, TF_MODES64, SF_MODES, DF_MODES64, SF_MODES,
  TF_MODES64, SF_MODES, DF_MODES64, SF_MODES, TF_MODES64, SF_MODES, DF_MODES64, SF_MODES,

  /* FP regs f32 to f63.  Only the even numbered registers actually exist,
     and none can hold SFmode/SImode values.  */
  DF_UP_MODES, 0, DF_ONLY_MODES, 0, DF_UP_MODES, 0, DF_ONLY_MODES, 0,
  DF_UP_MODES, 0, DF_ONLY_MODES, 0, DF_UP_MODES, 0, DF_ONLY_MODES, 0,
  DF_UP_MODES, 0, DF_ONLY_MODES, 0, DF_UP_MODES, 0, DF_ONLY_MODES, 0,
  DF_UP_MODES, 0, DF_ONLY_MODES, 0, DF_UP_MODES, 0, DF_ONLY_MODES, 0,

  /* %fcc[0123] */
  CCFP_MODES, CCFP_MODES, CCFP_MODES, CCFP_MODES,

  /* %icc */
  CC_MODES
};

int sparc_mode_class [NUM_MACHINE_MODES];

enum reg_class sparc_regno_reg_class[FIRST_PSEUDO_REGISTER];

static void
sparc_init_modes ()
{
  int i;

  for (i = 0; i < NUM_MACHINE_MODES; i++)
    {
      switch (GET_MODE_CLASS (i))
	{
	case MODE_INT:
	case MODE_PARTIAL_INT:
	case MODE_COMPLEX_INT:
	  if (GET_MODE_SIZE (i) <= 4)
	    sparc_mode_class[i] = 1 << (int) S_MODE;
	  else if (GET_MODE_SIZE (i) == 8)
	    sparc_mode_class[i] = 1 << (int) D_MODE;
	  else if (GET_MODE_SIZE (i) == 16)
	    sparc_mode_class[i] = 1 << (int) T_MODE;
	  else if (GET_MODE_SIZE (i) == 32)
	    sparc_mode_class[i] = 1 << (int) O_MODE;
	  else 
	    sparc_mode_class[i] = 0;
	  break;
	case MODE_FLOAT:
	case MODE_COMPLEX_FLOAT:
	  if (GET_MODE_SIZE (i) <= 4)
	    sparc_mode_class[i] = 1 << (int) SF_MODE;
	  else if (GET_MODE_SIZE (i) == 8)
	    sparc_mode_class[i] = 1 << (int) DF_MODE;
	  else if (GET_MODE_SIZE (i) == 16)
	    sparc_mode_class[i] = 1 << (int) TF_MODE;
	  else if (GET_MODE_SIZE (i) == 32)
	    sparc_mode_class[i] = 1 << (int) OF_MODE;
	  else 
	    sparc_mode_class[i] = 0;
	  break;
	case MODE_CC:
	default:
	  /* mode_class hasn't been initialized yet for EXTRA_CC_MODES, so
	     we must explicitly check for them here.  */
	  if (i == (int) CCFPmode || i == (int) CCFPEmode)
	    sparc_mode_class[i] = 1 << (int) CCFP_MODE;
	  else if (i == (int) CCmode || i == (int) CC_NOOVmode
		   || i == (int) CCXmode || i == (int) CCX_NOOVmode)
	    sparc_mode_class[i] = 1 << (int) CC_MODE;
	  else
	    sparc_mode_class[i] = 0;
	  break;
	}
    }

  if (TARGET_ARCH64)
    hard_regno_mode_classes = hard_64bit_mode_classes;
  else
    hard_regno_mode_classes = hard_32bit_mode_classes;

  /* Initialize the array used by REGNO_REG_CLASS.  */
  for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
    {
      if (i < 32)
	sparc_regno_reg_class[i] = GENERAL_REGS;
      else if (i < 64)
	sparc_regno_reg_class[i] = FP_REGS;
      else if (i < 96)
	sparc_regno_reg_class[i] = EXTRA_FP_REGS;
      else if (i < 100)
	sparc_regno_reg_class[i] = FPCC_REGS;
      else
	sparc_regno_reg_class[i] = NO_REGS;
    }
}

/* Save non call used registers from LOW to HIGH at BASE+OFFSET.
   N_REGS is the number of 4-byte regs saved thus far.  This applies even to
   v9 int regs as it simplifies the code.  */

static int
save_regs (file, low, high, base, offset, n_regs, real_offset)
     FILE *file;
     int low, high;
     char *base;
     int offset;
     int n_regs;
     int real_offset;
{
  int i;

  if (TARGET_ARCH64 && high <= 32)
    {
      for (i = low; i < high; i++)
	{
	  if (regs_ever_live[i] && ! call_used_regs[i])
	    {
	      fprintf (file, "\tstx %s,[%s+%d]\n",
		       reg_names[i], base, offset + 4 * n_regs);
	      if (dwarf2out_do_frame ())
		dwarf2out_reg_save ("", i, real_offset + 4 * n_regs);
	      n_regs += 2;
	    }
	}
    }
  else
    {
      for (i = low; i < high; i += 2)
	{
	  if (regs_ever_live[i] && ! call_used_regs[i])
	    {
	      if (regs_ever_live[i+1] && ! call_used_regs[i+1])
		{
		  fprintf (file, "\tstd %s,[%s+%d]\n",
			   reg_names[i], base, offset + 4 * n_regs);
		  if (dwarf2out_do_frame ())
		    {
		      char *l = dwarf2out_cfi_label ();
		      dwarf2out_reg_save (l, i, real_offset + 4 * n_regs);
		      dwarf2out_reg_save (l, i+1, real_offset + 4 * n_regs + 4);
		    }
		  n_regs += 2;
		}
	      else
		{
		  fprintf (file, "\tst %s,[%s+%d]\n",
			   reg_names[i], base, offset + 4 * n_regs);
		  if (dwarf2out_do_frame ())
		    dwarf2out_reg_save ("", i, real_offset + 4 * n_regs);
		  n_regs += 2;
		}
	    }
	  else
	    {
	      if (regs_ever_live[i+1] && ! call_used_regs[i+1])
		{
		  fprintf (file, "\tst %s,[%s+%d]\n",
			   reg_names[i+1], base, offset + 4 * n_regs + 4);
		  if (dwarf2out_do_frame ())
		    dwarf2out_reg_save ("", i + 1, real_offset + 4 * n_regs + 4);
		  n_regs += 2;
		}
	    }
	}
    }
  return n_regs;
}

/* Restore non call used registers from LOW to HIGH at BASE+OFFSET.

   N_REGS is the number of 4-byte regs saved thus far.  This applies even to
   v9 int regs as it simplifies the code.  */

static int
restore_regs (file, low, high, base, offset, n_regs)
     FILE *file;
     int low, high;
     char *base;
     int offset;
     int n_regs;
{
  int i;

  if (TARGET_ARCH64 && high <= 32)
    {
      for (i = low; i < high; i++)
	{
	  if (regs_ever_live[i] && ! call_used_regs[i])
	    fprintf (file, "\tldx [%s+%d], %s\n",
	      base, offset + 4 * n_regs, reg_names[i]),
	    n_regs += 2;
	}
    }
  else
    {
      for (i = low; i < high; i += 2)
	{
	  if (regs_ever_live[i] && ! call_used_regs[i])
	    if (regs_ever_live[i+1] && ! call_used_regs[i+1])
	      fprintf (file, "\tldd [%s+%d], %s\n",
		       base, offset + 4 * n_regs, reg_names[i]),
	      n_regs += 2;
	    else
	      fprintf (file, "\tld [%s+%d],%s\n",
		       base, offset + 4 * n_regs, reg_names[i]),
	      n_regs += 2;
	  else if (regs_ever_live[i+1] && ! call_used_regs[i+1])
	    fprintf (file, "\tld [%s+%d],%s\n",
		     base, offset + 4 * n_regs + 4, reg_names[i+1]),
	    n_regs += 2;
	}
    }
  return n_regs;
}

/* Static variables we want to share between prologue and epilogue.  */

/* Number of live general or floating point registers needed to be saved
   (as 4-byte quantities).  This is only done if TARGET_EPILOGUE.  */
static int num_gfregs;

/* Compute the frame size required by the function.  This function is called
   during the reload pass and also by output_function_prologue().  */

int
compute_frame_size (size, leaf_function)
     int size;
     int leaf_function;
{
  int n_regs = 0, i;
  int outgoing_args_size = (current_function_outgoing_args_size
			    + REG_PARM_STACK_SPACE (current_function_decl));

  if (TARGET_EPILOGUE)
    {
      /* N_REGS is the number of 4-byte regs saved thus far.  This applies
	 even to v9 int regs to be consistent with save_regs/restore_regs.  */

      if (TARGET_ARCH64)
	{
	  for (i = 0; i < 8; i++)
	    if (regs_ever_live[i] && ! call_used_regs[i])
	      n_regs += 2;
	}
      else
	{
	  for (i = 0; i < 8; i += 2)
	    if ((regs_ever_live[i] && ! call_used_regs[i])
		|| (regs_ever_live[i+1] && ! call_used_regs[i+1]))
	      n_regs += 2;
	}

      for (i = 32; i < (TARGET_V9 ? 96 : 64); i += 2)
	if ((regs_ever_live[i] && ! call_used_regs[i])
	    || (regs_ever_live[i+1] && ! call_used_regs[i+1]))
	  n_regs += 2;
    }

  /* Set up values for use in `function_epilogue'.  */
  num_gfregs = n_regs;

  if (leaf_function && n_regs == 0
      && size == 0 && current_function_outgoing_args_size == 0)
    {
      actual_fsize = apparent_fsize = 0;
    }
  else
    {
      /* We subtract STARTING_FRAME_OFFSET, remember it's negative.
         The stack bias (if any) is taken out to undo its effects.  */
      apparent_fsize = (size - STARTING_FRAME_OFFSET + SPARC_STACK_BIAS + 7) & -8;
      apparent_fsize += n_regs * 4;
      actual_fsize = apparent_fsize + ((outgoing_args_size + 7) & -8);
    }

  /* Make sure nothing can clobber our register windows.
     If a SAVE must be done, or there is a stack-local variable,
     the register window area must be allocated.
     ??? For v8 we apparently need an additional 8 bytes of reserved space.  */
  if (leaf_function == 0 || size > 0)
    actual_fsize += (16 * UNITS_PER_WORD) + (TARGET_ARCH64 ? 0 : 8);

  return SPARC_STACK_ALIGN (actual_fsize);
}

/* Build a (32 bit) big number in a register.  */
/* ??? We may be able to use the set macro here too.  */

static void
build_big_number (file, num, reg)
     FILE *file;
     int num;
     char *reg;
{
  if (num >= 0 || ! TARGET_ARCH64)
    {
      fprintf (file, "\tsethi %%hi(%d),%s\n", num, reg);
      if ((num & 0x3ff) != 0)
	fprintf (file, "\tor %s,%%lo(%d),%s\n", reg, num, reg);
    }
  else /* num < 0 && TARGET_ARCH64 */
    {
      /* Sethi does not sign extend, so we must use a little trickery
	 to use it for negative numbers.  Invert the constant before
	 loading it in, then use xor immediate to invert the loaded bits
	 (along with the upper 32 bits) to the desired constant.  This
	 works because the sethi and immediate fields overlap.  */
      int asize = num;
      int inv = ~asize;
      int low = -0x400 + (asize & 0x3FF);
	  
      fprintf (file, "\tsethi %%hi(%d),%s\n\txor %s,%d,%s\n",
	       inv, reg, reg, low, reg);
    }
}

/* Output code for the function prologue.  */

void
output_function_prologue (file, size, leaf_function)
     FILE *file;
     int size;
     int leaf_function;
{
  /* Need to use actual_fsize, since we are also allocating
     space for our callee (and our own register save area).  */
  actual_fsize = compute_frame_size (size, leaf_function);

  if (leaf_function)
    {
      frame_base_name = "%sp";
      frame_base_offset = actual_fsize + SPARC_STACK_BIAS;
    }
  else
    {
      frame_base_name = "%fp";
      frame_base_offset = SPARC_STACK_BIAS;
    }

  /* This is only for the human reader.  */
  fprintf (file, "\t%s#PROLOGUE# 0\n", ASM_COMMENT_START);

  if (actual_fsize == 0)
    /* do nothing.  */ ;
  else if (! leaf_function && ! TARGET_BROKEN_SAVERESTORE)
    {
      if (actual_fsize <= 4096)
	fprintf (file, "\tsave %%sp,-%d,%%sp\n", actual_fsize);
      else if (actual_fsize <= 8192)
	{
	  fprintf (file, "\tsave %%sp,-4096,%%sp\n");
	  fprintf (file, "\tadd %%sp,-%d,%%sp\n", actual_fsize - 4096);
	}
      else
	{
	  build_big_number (file, -actual_fsize, "%g1");
	  fprintf (file, "\tsave %%sp,%%g1,%%sp\n");
	}
    }
  else if (! leaf_function && TARGET_BROKEN_SAVERESTORE)
    {
      /* We assume the environment will properly handle or otherwise avoid
	 trouble associated with an interrupt occurring after the `save' or
	 trap occurring during it.  */
      fprintf (file, "\tsave\n");

      if (actual_fsize <= 4096)
	fprintf (file, "\tadd %%fp,-%d,%%sp\n", actual_fsize);
      else if (actual_fsize <= 8192)
	{
	  fprintf (file, "\tadd %%fp,-4096,%%sp\n");
	  fprintf (file, "\tadd %%fp,-%d,%%sp\n", actual_fsize - 4096);
	}
      else
	{
	  build_big_number (file, -actual_fsize, "%g1");
	  fprintf (file, "\tadd %%fp,%%g1,%%sp\n");
	}
    }
  else /* leaf function */
    {
      if (actual_fsize <= 4096)
	fprintf (file, "\tadd %%sp,-%d,%%sp\n", actual_fsize);
      else if (actual_fsize <= 8192)
	{
	  fprintf (file, "\tadd %%sp,-4096,%%sp\n");
	  fprintf (file, "\tadd %%sp,-%d,%%sp\n", actual_fsize - 4096);
	}
      else
	{
	  build_big_number (file, -actual_fsize, "%g1");
	  fprintf (file, "\tadd %%sp,%%g1,%%sp\n");
	}
    }

  if (dwarf2out_do_frame () && actual_fsize)
    {
      char *label = dwarf2out_cfi_label ();

      /* The canonical frame address refers to the top of the frame.  */
      dwarf2out_def_cfa (label, (leaf_function ? STACK_POINTER_REGNUM
				 : FRAME_POINTER_REGNUM),
			 frame_base_offset);

      if (! leaf_function)
	{
	  /* Note the register window save.  This tells the unwinder that
	     it needs to restore the window registers from the previous
	     frame's window save area at 0(cfa).  */
	  dwarf2out_window_save (label);

	  /* The return address (-8) is now in %i7.  */
	  dwarf2out_return_reg (label, 31);
	}
    }

  /* If doing anything with PIC, do it now.  */
  if (! flag_pic)
    fprintf (file, "\t%s#PROLOGUE# 1\n", ASM_COMMENT_START);

  /* Call saved registers are saved just above the outgoing argument area.  */
  if (num_gfregs)
    {
      int offset, real_offset, n_regs;
      char *base;

      real_offset = -apparent_fsize;
      offset = -apparent_fsize + frame_base_offset;
      if (offset < -4096 || offset + num_gfregs * 4 > 4096)
	{
	  /* ??? This might be optimized a little as %g1 might already have a
	     value close enough that a single add insn will do.  */
	  /* ??? Although, all of this is probably only a temporary fix
	     because if %g1 can hold a function result, then
	     output_function_epilogue will lose (the result will get
	     clobbered).  */
	  build_big_number (file, offset, "%g1");
	  fprintf (file, "\tadd %s,%%g1,%%g1\n", frame_base_name);
	  base = "%g1";
	  offset = 0;
	}
      else
	{
	  base = frame_base_name;
	}

      if (TARGET_EPILOGUE && ! leaf_function)
	/* ??? Originally saved regs 0-15 here.  */
	n_regs = save_regs (file, 0, 8, base, offset, 0, real_offset);
      else if (leaf_function)
	/* ??? Originally saved regs 0-31 here.  */
	n_regs = save_regs (file, 0, 8, base, offset, 0, real_offset);
      if (TARGET_EPILOGUE)
	save_regs (file, 32, TARGET_V9 ? 96 : 64, base, offset, n_regs,
		   real_offset);
    }

  leaf_label = 0;
  if (leaf_function && actual_fsize != 0)
    {
      /* warning ("leaf procedure with frame size %d", actual_fsize); */
      if (! TARGET_EPILOGUE)
	leaf_label = gen_label_rtx ();
    }
}

/* Output code for the function epilogue.  */

void
output_function_epilogue (file, size, leaf_function)
     FILE *file;
     int size;
     int leaf_function;
{
  char *ret;

  if (leaf_label)
    {
      emit_label_after (leaf_label, get_last_insn ());
      final_scan_insn (get_last_insn (), file, 0, 0, 1);
    }

#ifdef FUNCTION_BLOCK_PROFILER_EXIT
  else if (profile_block_flag == 2)
    {
      FUNCTION_BLOCK_PROFILER_EXIT(file);
    }
#endif

  else if (current_function_epilogue_delay_list == 0)
    {                                                
      /* If code does not drop into the epilogue, do nothing.  */
      rtx insn = get_last_insn ();                               
      if (GET_CODE (insn) == NOTE)                               
      insn = prev_nonnote_insn (insn);                           
      if (insn && GET_CODE (insn) == BARRIER)                    
      return;                                                    
    }

  /* Restore any call saved registers.  */
  if (num_gfregs)
    {
      int offset, n_regs;
      char *base;

      offset = -apparent_fsize + frame_base_offset;
      if (offset < -4096 || offset + num_gfregs * 4 > 4096 - 8 /*double*/)
	{
	  build_big_number (file, offset, "%g1");
	  fprintf (file, "\tadd %s,%%g1,%%g1\n", frame_base_name);
	  base = "%g1";
	  offset = 0;
	}
      else
	{
	  base = frame_base_name;
	}

      if (TARGET_EPILOGUE && ! leaf_function)
	/* ??? Originally saved regs 0-15 here.  */
	n_regs = restore_regs (file, 0, 8, base, offset, 0);
      else if (leaf_function)
	/* ??? Originally saved regs 0-31 here.  */
	n_regs = restore_regs (file, 0, 8, base, offset, 0);
      if (TARGET_EPILOGUE)
	restore_regs (file, 32, TARGET_V9 ? 96 : 64, base, offset, n_regs);
    }

  /* Work out how to skip the caller's unimp instruction if required.  */
  if (leaf_function)
    ret = (SKIP_CALLERS_UNIMP_P ? "jmp %o7+12" : "retl");
  else
    ret = (SKIP_CALLERS_UNIMP_P ? "jmp %i7+12" : "ret");

  if (TARGET_EPILOGUE || leaf_label)
    {
      int old_target_epilogue = TARGET_EPILOGUE;
      target_flags &= ~old_target_epilogue;

      if (! leaf_function)
	{
	  /* If we wound up with things in our delay slot, flush them here.  */
	  if (current_function_epilogue_delay_list)
	    {
	      rtx insn = emit_jump_insn_after (gen_rtx (RETURN, VOIDmode),
					       get_last_insn ());
	      PATTERN (insn) = gen_rtx (PARALLEL, VOIDmode,
					gen_rtvec (2,
						   PATTERN (XEXP (current_function_epilogue_delay_list, 0)),
						   PATTERN (insn)));
	      final_scan_insn (insn, file, 1, 0, 1);
	    }
	  else
	    fprintf (file, "\t%s\n\trestore\n", ret);
	}
      /* All of the following cases are for leaf functions.  */
      else if (current_function_epilogue_delay_list)
	{
	  /* eligible_for_epilogue_delay_slot ensures that if this is a
	     leaf function, then we will only have insn in the delay slot
	     if the frame size is zero, thus no adjust for the stack is
	     needed here.  */
	  if (actual_fsize != 0)
	    abort ();
	  fprintf (file, "\t%s\n", ret);
	  final_scan_insn (XEXP (current_function_epilogue_delay_list, 0),
			   file, 1, 0, 1);
	}
      /* Output 'nop' instead of 'sub %sp,-0,%sp' when no frame, so as to
	 avoid generating confusing assembly language output.  */
      else if (actual_fsize == 0)
	fprintf (file, "\t%s\n\tnop\n", ret);
      else if (actual_fsize <= 4096)
	fprintf (file, "\t%s\n\tsub %%sp,-%d,%%sp\n", ret, actual_fsize);
      else if (actual_fsize <= 8192)
	fprintf (file, "\tsub %%sp,-4096,%%sp\n\t%s\n\tsub %%sp,-%d,%%sp\n",
		 ret, actual_fsize - 4096);
      else if ((actual_fsize & 0x3ff) == 0)
	fprintf (file, "\tsethi %%hi(%d),%%g1\n\t%s\n\tadd %%sp,%%g1,%%sp\n",
		 actual_fsize, ret);
      else		 
	fprintf (file, "\tsethi %%hi(%d),%%g1\n\tor %%g1,%%lo(%d),%%g1\n\t%s\n\tadd %%sp,%%g1,%%sp\n",
		 actual_fsize, actual_fsize, ret);
      target_flags |= old_target_epilogue;
    }
}

/* Functions for handling argument passing.

   For v8 the first six args are normally in registers and the rest are
   pushed.  Any arg that starts within the first 6 words is at least
   partially passed in a register unless its data type forbids.

   For v9, the argument registers are laid out as an array of 16 elements
   and arguments are added sequentially.  The first 6 int args and up to the
   first 16 fp args (depending on size) are passed in regs.

   Slot    Stack   Integral   Float   Float in structure   Double   Long Double
   ----    -----   --------   -----   ------------------   ------   -----------
    15   [SP+248]              %f31       %f30,%f31         %d30
    14   [SP+240]              %f29       %f28,%f29         %d28       %q28
    13   [SP+232]              %f27       %f26,%f27         %d26
    12   [SP+224]              %f25       %f24,%f25         %d24       %q24
    11   [SP+216]              %f23       %f22,%f23         %d22
    10   [SP+208]              %f21       %f20,%f21         %d20       %q20
     9   [SP+200]              %f19       %f18,%f19         %d18
     8   [SP+192]              %f17       %f16,%f17         %d16       %q16
     7   [SP+184]              %f15       %f14,%f15         %d14
     6   [SP+176]              %f13       %f12,%f13         %d12       %q12
     5   [SP+168]     %o5      %f11       %f10,%f11         %d10
     4   [SP+160]     %o4       %f9        %f8,%f9           %d8        %q8
     3   [SP+152]     %o3       %f7        %f6,%f7           %d6
     2   [SP+144]     %o2       %f5        %f4,%f5           %d4        %q4
     1   [SP+136]     %o1       %f3        %f2,%f3           %d2
     0   [SP+128]     %o0       %f1        %f0,%f1           %d0        %q0

   Here SP = %sp if -mno-stack-bias or %sp+stack_bias otherwise.

   Integral arguments are always passed as 64 bit quantities appropriately
   extended.

   Passing of floating point values is handled as follows.
   If a prototype is in scope:
     If the value is in a named argument (i.e. not a stdarg function or a
     value not part of the `...') then the value is passed in the appropriate
     fp reg.
     If the value is part of the `...' and is passed in one of the first 6
     slots then the value is passed in the appropriate int reg.
     If the value is part of the `...' and is not passed in one of the first 6
     slots then the value is passed in memory.
   If a prototype is not in scope:
     If the value is one of the first 6 arguments the value is passed in the
     appropriate integer reg and the appropriate fp reg.
     If the value is not one of the first 6 arguments the value is passed in
     the appropriate fp reg and in memory.
   */

/* Maximum number of int regs for args.  */
#define SPARC_INT_ARG_MAX 6
/* Maximum number of fp regs for args.  */
#define SPARC_FP_ARG_MAX 16

#define ROUND_ADVANCE(SIZE) (((SIZE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)

/* Handle the INIT_CUMULATIVE_ARGS macro.
   Initialize a variable CUM of type CUMULATIVE_ARGS
   for a call to a function whose data type is FNTYPE.
   For a library call, FNTYPE is 0.  */

void
init_cumulative_args (cum, fntype, libname, indirect)
     CUMULATIVE_ARGS *cum;
     tree fntype, libname;
     int indirect;
{
  cum->words = 0;
  cum->prototype_p = fntype && TYPE_ARG_TYPES (fntype);
  cum->libcall_p = fntype == 0;
}

/* Compute the slot number to pass an argument in.
   Returns the slot number or -1 if passing on the stack.

   CUM is a variable of type CUMULATIVE_ARGS which gives info about
    the preceding args and about the function being called.
   MODE is the argument's machine mode.
   TYPE is the data type of the argument (as a tree).
    This is null for libcalls where that information may
    not be available.
   NAMED is nonzero if this argument is a named parameter
    (otherwise it is an extra parameter matching an ellipsis).
   INCOMING_P is zero for FUNCTION_ARG, nonzero for FUNCTION_INCOMING_ARG.
   *PREGNO records the register number to use if scalar type.
   *PPADDING records the amount of padding needed in words.  */

static int
function_arg_slotno (cum, mode, type, named, incoming_p, pregno, ppadding)
     const CUMULATIVE_ARGS *cum;
     enum machine_mode mode;
     tree type;
     int named;
     int incoming_p;
     int *pregno;
     int *ppadding;
{
  int regbase = (incoming_p
		 ? SPARC_INCOMING_INT_ARG_FIRST
		 : SPARC_OUTGOING_INT_ARG_FIRST);
  int slotno = cum->words;
  int regno;

  *ppadding = 0;

  if (type != 0 && TREE_ADDRESSABLE (type))
    return -1;
  if (TARGET_ARCH32
      && type != 0 && mode == BLKmode
      && TYPE_ALIGN (type) % PARM_BOUNDARY != 0)
    return -1;

  switch (mode)
    {
    case VOIDmode :
      /* MODE is VOIDmode when generating the actual call.
	 See emit_call_1.  */
      return -1;

    case QImode : case CQImode :
    case HImode : case CHImode :
    case SImode : case CSImode :
    case DImode : case CDImode :
      if (slotno >= SPARC_INT_ARG_MAX)
	return -1;
      regno = regbase + slotno;
      break;

    case SFmode : case SCmode :
    case DFmode : case DCmode :
    case TFmode : case TCmode :
      if (TARGET_ARCH32)
	{
	  if (slotno >= SPARC_INT_ARG_MAX)
	    return -1;
	  regno = regbase + slotno;
	}
      else
	{
	  if ((mode == TFmode || mode == TCmode)
	      && (slotno & 1) != 0)
	    slotno++, *ppadding = 1;
	  if (TARGET_FPU && named)
	    {
	      if (slotno >= SPARC_FP_ARG_MAX)
		return 0;
	      regno = SPARC_FP_ARG_FIRST + slotno * 2;
	      if (mode == SFmode)
		regno++;
	    }
	  else
	    {
	      if (slotno >= SPARC_INT_ARG_MAX)
		return -1;
	      regno = regbase + slotno;
	    }
	}
      break;

    case BLKmode :
      /* For sparc64, objects requiring 16 byte alignment get it.  */
      if (TARGET_ARCH64)
	{
	  if (type && TYPE_ALIGN (type) == 128 && (slotno & 1) != 0)
	    slotno++, *ppadding = 1;
	}

      if (TARGET_ARCH32
	  || (type && TREE_CODE (type) == UNION_TYPE))
	{
	  if (slotno >= SPARC_INT_ARG_MAX)
	    return -1;
	  regno = regbase + slotno;
	}
      else
	{
	  tree field;
	  int intregs_p = 0, fpregs_p = 0;
	  /* The ABI obviously doesn't specify how packed
	     structures are passed.  These are defined to be passed
	     in int regs if possible, otherwise memory.  */
	  int packed_p = 0;

	  /* First see what kinds of registers we need.  */
	  for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
	    {
	      if (TREE_CODE (field) == FIELD_DECL)
		{
		  if (TREE_CODE (TREE_TYPE (field)) == REAL_TYPE
		      && TARGET_FPU)
		    fpregs_p = 1;
		  else
		    intregs_p = 1;
		  if (DECL_PACKED (field))
		    packed_p = 1;
		}
	    }
	  if (packed_p || !named)
	    fpregs_p = 0, intregs_p = 1;

	  /* If all arg slots are filled, then must pass on stack.  */
	  if (fpregs_p && slotno >= SPARC_FP_ARG_MAX)
	    return -1;
	  /* If there are only int args and all int arg slots are filled,
	     then must pass on stack.  */
	  if (!fpregs_p && intregs_p && slotno >= SPARC_INT_ARG_MAX)
	    return -1;
	  /* Note that even if all int arg slots are filled, fp members may
	     still be passed in regs if such regs are available.
	     *PREGNO isn't set because there may be more than one, it's up
	     to the caller to compute them.  */
	  return slotno;
	}
      break;

    default :
      abort ();
    }

  *pregno = regno;
  return slotno;
}

/* Handle the FUNCTION_ARG macro.
   Determine where to put an argument to a function.
   Value is zero to push the argument on the stack,
   or a hard register in which to store the argument.

   CUM is a variable of type CUMULATIVE_ARGS which gives info about
    the preceding args and about the function being called.
   MODE is the argument's machine mode.
   TYPE is the data type of the argument (as a tree).
    This is null for libcalls where that information may
    not be available.
   NAMED is nonzero if this argument is a named parameter
    (otherwise it is an extra parameter matching an ellipsis).
   INCOMING_P is zero for FUNCTION_ARG, nonzero for FUNCTION_INCOMING_ARG.  */

rtx
function_arg (cum, mode, type, named, incoming_p)
     const CUMULATIVE_ARGS *cum;
     enum machine_mode mode;
     tree type;
     int named;
     int incoming_p;
{
  int regbase = (incoming_p
		 ? SPARC_INCOMING_INT_ARG_FIRST
		 : SPARC_OUTGOING_INT_ARG_FIRST);
  int slotno, regno, padding;
  rtx reg;

  slotno = function_arg_slotno (cum, mode, type, named, incoming_p,
				&regno, &padding);

  if (slotno == -1)
    return 0;

  if (TARGET_ARCH32)
    {
      reg = gen_rtx (REG, mode, regno);
      return reg;
    }

  /* v9 fp args in reg slots beyond the int reg slots get passed in regs
     but also have the slot allocated for them.
     If no prototype is in scope fp values in register slots get passed
     in two places, either fp regs and int regs or fp regs and memory.  */
  if ((GET_MODE_CLASS (mode) == MODE_FLOAT
       || GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT)
      && SPARC_FP_REG_P (regno))
    {
      reg = gen_rtx (REG, mode, regno);
      if (cum->prototype_p || cum->libcall_p)
	{
	  /* "* 2" because fp reg numbers are recorded in 4 byte
	     quantities.  */
	  /* ??? This will cause the value to be passed in the fp reg and
	     in the stack.  When a prototype exists we want to pass the
	     value in the reg but reserve space on the stack.  That's an
	     optimization, and is deferred [for a bit].  */
	  if ((regno - SPARC_FP_ARG_FIRST) >= SPARC_INT_ARG_MAX * 2)
	    return gen_rtx (PARALLEL, mode,
			    gen_rtvec (2,
				       gen_rtx (EXPR_LIST, VOIDmode,
						NULL_RTX, const0_rtx),
				       gen_rtx (EXPR_LIST, VOIDmode,
						reg, const0_rtx)));
	  else
	    return reg;
	}
      else
	{
	  if ((regno - SPARC_FP_ARG_FIRST) < SPARC_INT_ARG_MAX * 2)
	    {
	      int regbase = (incoming_p
			     ? SPARC_INCOMING_INT_ARG_FIRST
			     : SPARC_OUTGOING_INT_ARG_FIRST);
	      int intreg = regbase + (regno - SPARC_FP_ARG_FIRST) / 2;
	      return gen_rtx (PARALLEL, mode,
			      gen_rtvec (2,
					 gen_rtx (EXPR_LIST, VOIDmode,
						  reg, const0_rtx),
					 gen_rtx (EXPR_LIST, VOIDmode,
						  gen_rtx (REG, mode, intreg),
						  const0_rtx)));
	    }
	  else
	    return gen_rtx (PARALLEL, mode,
			    gen_rtvec (2,
				       gen_rtx (EXPR_LIST, VOIDmode,
						NULL_RTX, const0_rtx),
				       gen_rtx (EXPR_LIST, VOIDmode,
						reg, const0_rtx)));
	}
    }
  else if (type && TREE_CODE (type) == RECORD_TYPE)
    {
      /* Structures up to 16 bytes in size are passed in arg slots on the
	 stack and are promoted to registers where possible.  */
      tree field;
      rtx ret;
      int i;
      int nregs;
      /* Starting bit position of a sequence of integer fields, counted from
	 msb of left most byte, -1 if last field wasn't an int.  */
      /* ??? This isn't entirely necessary, some simplification
	 may be possible.  */
      int start_int_bitpos;
      /* Current bitpos in struct, counted from msb of left most byte.  */
      int bitpos, this_slotno;
      /* The ABI obviously doesn't specify how packed
	 structures are passed.  These are defined to be passed
	 in int regs if possible, otherwise memory.  */
      int packed_p = 0;

      if (int_size_in_bytes (type) > 16)
	abort (); /* shouldn't get here */

      /* We need to compute how many registers are needed so we can allocate
	 the PARALLEL but before we can do that we need to know whether there
	 are any packed fields.  If there are, int regs are used regardless of
	 whether there are fp values present.  */
      for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
	{
	  if (TREE_CODE (field) == FIELD_DECL
	      && DECL_PACKED (field))
	    {
	      packed_p = 1;
	      break;
	    }
	}

      /* Compute how many registers we need.  */
      nregs = 0;
      start_int_bitpos = -1;
      for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
	{
	  bitpos = TREE_INT_CST_LOW (DECL_FIELD_BITPOS (field));
	  this_slotno = slotno + bitpos / BITS_PER_WORD;
	  if (TREE_CODE (field) == FIELD_DECL)
	    {
	      if (TREE_CODE (TREE_TYPE (field)) == REAL_TYPE
		  && TARGET_FPU
		  && ! packed_p
		  && named)
		{
		  /* There's no need to check this_slotno < SPARC_FP_ARG MAX.
		     If it wasn't true we wouldn't be here.  */
		  nregs++;
		  start_int_bitpos = -1;
		}
	      else if (this_slotno < SPARC_INT_ARG_MAX)
		{
		  if (start_int_bitpos == -1)
		    {
		      nregs++;
		      start_int_bitpos = bitpos;
		    }
		  else
		    {
		      if (bitpos % BITS_PER_WORD == 0)
			nregs++;
		    }
		}
	    }
	}
      if (nregs == 0)
	abort ();

      ret = gen_rtx (PARALLEL, BLKmode, rtvec_alloc (nregs + 1));

      /* ??? This causes the entire struct to be passed in memory.
	 This isn't necessary, but is left for later.  */
      XVECEXP (ret, 0, 0) = gen_rtx (EXPR_LIST, VOIDmode, NULL_RTX,
				     const0_rtx);

      /* Fill in the entries.  */
      start_int_bitpos = -1;
      for (i = 1, field = TYPE_FIELDS (type);
	   field;
	   field = TREE_CHAIN (field))
	{
	  bitpos = TREE_INT_CST_LOW (DECL_FIELD_BITPOS (field));
	  this_slotno = slotno + bitpos / BITS_PER_WORD;
	  if (TREE_CODE (field) == FIELD_DECL)
	    {
	      if (TREE_CODE (TREE_TYPE (field)) == REAL_TYPE
		  && TARGET_FPU
		  && ! packed_p
		  && named)
		{
		  reg = gen_rtx (REG, DECL_MODE (field),
				 (SPARC_FP_ARG_FIRST + this_slotno * 2
				  + (DECL_MODE (field) == SFmode
				     && (bitpos & 32) != 0)));
		  XVECEXP (ret, 0, i) = gen_rtx (EXPR_LIST, VOIDmode, reg,
						 GEN_INT (bitpos / BITS_PER_UNIT));
		  i++;
		  start_int_bitpos = -1;
		}
	      else
		{
		  if (this_slotno < SPARC_INT_ARG_MAX
		      && (start_int_bitpos == -1
			  || bitpos % BITS_PER_WORD == 0))
		    {
		      enum machine_mode mode;

		      /* If this is the trailing part of a word, only load
			 that much into the register.  Otherwise load the
			 whole register.  Note that in the latter case we may
			 pick up unwanted bits.  It's not a problem at the
			 moment but may wish to revisit.  */
		      if (bitpos % BITS_PER_WORD != 0)
			mode = mode_for_size (BITS_PER_WORD - bitpos % BITS_PER_WORD,
					      MODE_INT, 0);
		      else
			mode = word_mode;

		      regno = regbase + this_slotno;
		      reg = gen_rtx (REG, mode, regno);
		      XVECEXP (ret, 0, i) = gen_rtx (EXPR_LIST, VOIDmode, reg,
						     GEN_INT (bitpos / BITS_PER_UNIT));
		      i++;
		      if (start_int_bitpos == -1)
			start_int_bitpos = bitpos;
		    }
		}
	    }
	}
      if (i != nregs + 1)
	abort ();

      return ret;
    }
  else if (type && TREE_CODE (type) == UNION_TYPE)
    {
      enum machine_mode mode;
      int bytes = int_size_in_bytes (type);

      if (bytes > 16)
	abort ();

      mode = mode_for_size (bytes * BITS_PER_UNIT, MODE_INT, 0);
      reg = gen_rtx (REG, mode, regno);
    }
  else
    {
      /* Scalar or complex int.  */
      reg = gen_rtx (REG, mode, regno);
    }

  return reg;
}

/* Handle the FUNCTION_ARG_PARTIAL_NREGS macro.
   For an arg passed partly in registers and partly in memory,
   this is the number of registers used.
   For args passed entirely in registers or entirely in memory, zero.

   Any arg that starts in the first 6 regs but won't entirely fit in them
   needs partial registers on v8.  On v9, structures with integer
   values in arg slots 5,6 will be passed in %o5 and SP+176, and complex fp
   values that begin in the last fp reg [where "last fp reg" varies with the
   mode] will be split between that reg and memory.  */

int
function_arg_partial_nregs (cum, mode, type, named)
     const CUMULATIVE_ARGS *cum;
     enum machine_mode mode;
     tree type;
     int named;
{
  int slotno, regno, padding;

  /* We pass 0 for incoming_p here, it doesn't matter.  */
  slotno = function_arg_slotno (cum, mode, type, named, 0, &regno, &padding);

  if (slotno == -1)
    return 0;

  if (TARGET_ARCH32)
    {
      if ((slotno + (mode == BLKmode
		     ? ROUND_ADVANCE (int_size_in_bytes (type))
		     : ROUND_ADVANCE (GET_MODE_SIZE (mode))))
	  > NPARM_REGS (SImode))
	return NPARM_REGS (SImode) - slotno;
      return 0;
    }
  else
    {
      if (type && AGGREGATE_TYPE_P (type))
	{
	  int size = int_size_in_bytes (type);
	  int align = TYPE_ALIGN (type);

	  if (align == 16)
	    slotno += slotno & 1;
	  if (size > 8 && size <= 16
	      && slotno == SPARC_INT_ARG_MAX - 1)
	    return 1;
	}
      else if (GET_MODE_CLASS (mode) == MODE_COMPLEX_INT
	       || (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
		   && ! TARGET_FPU))
	{
	  if (GET_MODE_ALIGNMENT (mode) == 128)
	    {
	      slotno += slotno & 1;
	      if (slotno == SPARC_INT_ARG_MAX - 2)
		return 1;
	    }
	  else
	    {
	      if (slotno == SPARC_INT_ARG_MAX - 1)
		return 1;
	    }
	}
      else if (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT)
	{
	  if (GET_MODE_ALIGNMENT (mode) == 128)
	    slotno += slotno & 1;
	  if ((slotno + GET_MODE_SIZE (mode) / UNITS_PER_WORD)
	      > SPARC_FP_ARG_MAX)
	    return 1;
	}
      return 0;
    }
}

/* Handle the FUNCTION_ARG_PASS_BY_REFERENCE macro.
   !v9: The SPARC ABI stipulates passing struct arguments (of any size) and
   quad-precision floats by invisible reference.
   v9: aggregates greater than 16 bytes are passed by reference.
   For Pascal, also pass arrays by reference.  */

int
function_arg_pass_by_reference (cum, mode, type, named)
     const CUMULATIVE_ARGS *cum;
     enum machine_mode mode;
     tree type;
     int named;
{
  if (TARGET_ARCH32)
    {
      return ((type && AGGREGATE_TYPE_P (type))
	      || mode == TFmode || mode == TCmode);
    }
  else
    {
      return ((type && TREE_CODE (type) == ARRAY_TYPE)
	      || (type && AGGREGATE_TYPE_P (type)
		  && int_size_in_bytes (type) > 16));
    }
}

/* Handle the FUNCTION_ARG_ADVANCE macro.
   Update the data in CUM to advance over an argument
   of mode MODE and data type TYPE.
   TYPE is null for libcalls where that information may not be available.  */

void
function_arg_advance (cum, mode, type, named)
     CUMULATIVE_ARGS *cum;
     enum machine_mode mode;
     tree type;
     int named;
{
  int slotno, regno, padding;

  /* We pass 0 for incoming_p here, it doesn't matter.  */
  slotno = function_arg_slotno (cum, mode, type, named, 0, &regno, &padding);

  /* If register required leading padding, add it.  */
  if (slotno != -1)
    cum->words += padding;

  if (TARGET_ARCH32)
    {
      cum->words += (mode != BLKmode
		     ? ROUND_ADVANCE (GET_MODE_SIZE (mode))
		     : ROUND_ADVANCE (int_size_in_bytes (type)));
    }
  else
    {
      if (type && AGGREGATE_TYPE_P (type))
	{
	  int size = int_size_in_bytes (type);

	  if (size <= 8)
	    ++cum->words;
	  else if (size <= 16)
	    cum->words += 2;
	  else /* passed by reference */
	    ++cum->words;
	}
      else if (GET_MODE_CLASS (mode) == MODE_COMPLEX_INT)
	{
	  cum->words += 2;
	}
      else if (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT)
	{
	  cum->words += GET_MODE_SIZE (mode) / UNITS_PER_WORD;
	}
      else
	{
	  cum->words += (mode != BLKmode
			 ? ROUND_ADVANCE (GET_MODE_SIZE (mode))
			 : ROUND_ADVANCE (int_size_in_bytes (type)));
	}
    }
}

/* Handle the FUNCTION_ARG_PADDING macro.
   For the 64 bit ABI structs are always stored left shifted in their
   argument slot.  */

enum direction
function_arg_padding (mode, type)
     enum machine_mode mode;
     tree type;
{
  if (TARGET_ARCH64 && type != 0 && AGGREGATE_TYPE_P (type))
    return upward;

  /* This is the default definition.  */
  return (! BYTES_BIG_ENDIAN
	  ? upward
	  : ((mode == BLKmode
	      ? (type && TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST
		 && int_size_in_bytes (type) < (PARM_BOUNDARY / BITS_PER_UNIT))
	      : GET_MODE_BITSIZE (mode) < PARM_BOUNDARY)
	     ? downward : upward));
}

/* Do what is necessary for `va_start'.  The argument is ignored.

   We look at the current function to determine if stdarg or varargs
   is used and return the address of the first unnamed parameter.  */

rtx
sparc_builtin_saveregs (arglist)
     tree arglist;
{
  tree fntype = TREE_TYPE (current_function_decl);
  int stdarg = (TYPE_ARG_TYPES (fntype) != 0
		&& (TREE_VALUE (tree_last (TYPE_ARG_TYPES (fntype)))
		    != void_type_node));
  int first_reg = current_function_args_info.words;
  rtx address;
  int regno;

  for (regno = first_reg; regno < NPARM_REGS (word_mode); regno++)
    emit_move_insn (gen_rtx (MEM, word_mode,
			     gen_rtx (PLUS, Pmode,
				      frame_pointer_rtx,
				      GEN_INT (STACK_POINTER_OFFSET
					       + UNITS_PER_WORD * regno))),
		    gen_rtx (REG, word_mode,
			     BASE_INCOMING_ARG_REG (word_mode) + regno));

  address = gen_rtx (PLUS, Pmode,
		     frame_pointer_rtx,
		     GEN_INT (STACK_POINTER_OFFSET
			      + UNITS_PER_WORD * first_reg));

  if (flag_check_memory_usage
      && first_reg < NPARM_REGS (word_mode))
    emit_library_call (chkr_set_right_libfunc, 1, VOIDmode, 3,
		       address, ptr_mode,
		       GEN_INT (UNITS_PER_WORD 
			 	* (NPARM_REGS (word_mode) - first_reg)),
		       TYPE_MODE (sizetype), GEN_INT (MEMORY_USE_RW),
		       TYPE_MODE (integer_type_node));

  return address;
}

/* Return the string to output a conditional branch to LABEL, which is
   the operand number of the label.  OP is the conditional expression.
   XEXP (OP, 0) is assumed to be a condition code register (integer or
   floating point) and its mode specifies what kind of comparison we made.

   REVERSED is non-zero if we should reverse the sense of the comparison.

   ANNUL is non-zero if we should generate an annulling branch.

   NOOP is non-zero if we have to follow this branch by a noop.  */

char *
output_cbranch (op, label, reversed, annul, noop)
     rtx op;
     int label;
     int reversed, annul, noop;
{
  static char string[20];
  enum rtx_code code = GET_CODE (op);
  rtx cc_reg = XEXP (op, 0);
  enum machine_mode mode = GET_MODE (cc_reg);
  static char v8_labelno[] = " %lX";
  static char v9_icc_labelno[] = " %%icc,%lX";
  static char v9_xcc_labelno[] = " %%xcc,%lX";
  static char v9_fcc_labelno[] = " %%fccX,%lY";
  char *labelno;
  int labeloff;

  /* ??? !v9: FP branches cannot be preceded by another floating point insn.
     Because there is currently no concept of pre-delay slots, we can fix
     this only by always emitting a nop before a floating point branch.  */

  if ((mode == CCFPmode || mode == CCFPEmode) && ! TARGET_V9)
    strcpy (string, "nop\n\t");
  else
    string[0] = '\0';

  /* If not floating-point or if EQ or NE, we can just reverse the code.  */
  if (reversed
      && ((mode != CCFPmode && mode != CCFPEmode) || code == EQ || code == NE))
    code = reverse_condition (code), reversed = 0;

  /* Start by writing the branch condition.  */
  switch (code)
    {
    case NE:
      if (mode == CCFPmode || mode == CCFPEmode)
	strcat (string, "fbne");
      else
	strcpy (string, "bne");
      break;

    case EQ:
      if (mode == CCFPmode || mode == CCFPEmode)
	strcat (string, "fbe");
      else
	strcpy (string, "be");
      break;

    case GE:
      if (mode == CCFPmode || mode == CCFPEmode)
	{
	  if (reversed)
	    strcat (string, "fbul");
	  else
	    strcat (string, "fbge");
	}
      else if (mode == CC_NOOVmode)
	strcpy (string, "bpos");
      else
	strcpy (string, "bge");
      break;

    case GT:
      if (mode == CCFPmode || mode == CCFPEmode)
	{
	  if (reversed)
	    strcat (string, "fbule");
	  else
	    strcat (string, "fbg");
	}
      else
	strcpy (string, "bg");
      break;

    case LE:
      if (mode == CCFPmode || mode == CCFPEmode)
	{
	  if (reversed)
	    strcat (string, "fbug");
	  else
	    strcat (string, "fble");
	}
      else
	strcpy (string, "ble");
      break;

    case LT:
      if (mode == CCFPmode || mode == CCFPEmode)
	{
	  if (reversed)
	    strcat (string, "fbuge");
	  else
	    strcat (string, "fbl");
	}
      else if (mode == CC_NOOVmode)
	strcpy (string, "bneg");
      else
	strcpy (string, "bl");
      break;

    case GEU:
      strcpy (string, "bgeu");
      break;

    case GTU:
      strcpy (string, "bgu");
      break;

    case LEU:
      strcpy (string, "bleu");
      break;

    case LTU:
      strcpy (string, "blu");
      break;

    default:
      break;
    }

  /* Now add the annulling, the label, and a possible noop.  */
  if (annul)
    strcat (string, ",a");

  /* ??? If v9, optional prediction bit ",pt" or ",pf" goes here.  */

  if (! TARGET_V9)
    {
      labeloff = 3;
      labelno = v8_labelno;
    }
  else
    {
      labeloff = 9;
      if (mode == CCFPmode || mode == CCFPEmode)
	{
	  labeloff = 10;
	  labelno = v9_fcc_labelno;
	  /* Set the char indicating the number of the fcc reg to use.  */
	  labelno[6] = REGNO (cc_reg) - SPARC_FIRST_V9_FCC_REG + '0';
	}
      else if (mode == CCXmode || mode == CCX_NOOVmode)
	labelno = v9_xcc_labelno;
      else
	labelno = v9_icc_labelno;
    }
  /* Set the char indicating the number of the operand containing the
     label_ref.  */
  labelno[labeloff] = label + '0';
  strcat (string, labelno);

  if (noop)
    strcat (string, "\n\tnop");

  return string;
}

/* Return the string to output a conditional branch to LABEL, testing
   register REG.  LABEL is the operand number of the label; REG is the
   operand number of the reg.  OP is the conditional expression.  The mode
   of REG says what kind of comparison we made.

   REVERSED is non-zero if we should reverse the sense of the comparison.

   ANNUL is non-zero if we should generate an annulling branch.

   NOOP is non-zero if we have to follow this branch by a noop.  */

char *
output_v9branch (op, reg, label, reversed, annul, noop)
     rtx op;
     int reg, label;
     int reversed, annul, noop;
{
  static char string[20];
  enum rtx_code code = GET_CODE (op);
  enum machine_mode mode = GET_MODE (XEXP (op, 0));
  static char labelno[] = " %X,%lX";

  /* If not floating-point or if EQ or NE, we can just reverse the code.  */
  if (reversed)
    code = reverse_condition (code), reversed = 0;

  /* Only 64 bit versions of these instructions exist.  */
  if (mode != DImode)
    abort ();

  /* Start by writing the branch condition.  */

  switch (code)
    {
    case NE:
      strcpy (string, "brnz");
      break;

    case EQ:
      strcpy (string, "brz");
      break;

    case GE:
      strcpy (string, "brgez");
      break;

    case LT:
      strcpy (string, "brlz");
      break;

    case LE:
      strcpy (string, "brlez");
      break;

    case GT:
      strcpy (string, "brgz");
      break;

    default:
      abort ();
    }

  /* Now add the annulling, reg, label, and nop.  */
  if (annul)
    strcat (string, ",a");

  /* ??? Optional prediction bit ",pt" or ",pf" goes here.  */

  labelno[2] = reg + '0';
  labelno[6] = label + '0';
  strcat (string, labelno);

  if (noop)
    strcat (string, "\n\tnop");

  return string;
}

/* Output assembler code to return from a function.  */

/* ??? v9: Update to use the new `return' instruction.  Also, add patterns to
   md file for the `return' instruction.  */

char *
output_return (operands)
     rtx *operands;
{
  if (leaf_label)
    {
      operands[0] = leaf_label;
      return "b,a %l0";
    }
  else if (leaf_function)
    {
      /* If we didn't allocate a frame pointer for the current function,
	 the stack pointer might have been adjusted.  Output code to
	 restore it now.  */

      operands[0] = GEN_INT (actual_fsize);

      /* Use sub of negated value in first two cases instead of add to
	 allow actual_fsize == 4096.  */

      if (actual_fsize <= 4096)
	{
	  if (SKIP_CALLERS_UNIMP_P)
	    return "jmp %%o7+12\n\tsub %%sp,-%0,%%sp";
	  else
	    return "retl\n\tsub %%sp,-%0,%%sp";
	}
      else if (actual_fsize <= 8192)
	{
	  operands[0] = GEN_INT (actual_fsize - 4096);
	  if (SKIP_CALLERS_UNIMP_P)
	    return "sub %%sp,-4096,%%sp\n\tjmp %%o7+12\n\tsub %%sp,-%0,%%sp";
	  else
	    return "sub %%sp,-4096,%%sp\n\tretl\n\tsub %%sp,-%0,%%sp";
	}
      else if (SKIP_CALLERS_UNIMP_P)
	{
	  if ((actual_fsize & 0x3ff) != 0)
	    return "sethi %%hi(%a0),%%g1\n\tor %%g1,%%lo(%a0),%%g1\n\tjmp %%o7+12\n\tadd %%sp,%%g1,%%sp";
	  else
	    return "sethi %%hi(%a0),%%g1\n\tjmp %%o7+12\n\tadd %%sp,%%g1,%%sp";
	}
      else
	{
	  if ((actual_fsize & 0x3ff) != 0)
	    return "sethi %%hi(%a0),%%g1\n\tor %%g1,%%lo(%a0),%%g1\n\tretl\n\tadd %%sp,%%g1,%%sp";
	  else
	    return "sethi %%hi(%a0),%%g1\n\tretl\n\tadd %%sp,%%g1,%%sp";
	}
    }
  else
    {
      if (SKIP_CALLERS_UNIMP_P)
	return "jmp %%i7+12\n\trestore";
      else
	return "ret\n\trestore";
    }
}

/* Leaf functions and non-leaf functions have different needs.  */

static int
reg_leaf_alloc_order[] = REG_LEAF_ALLOC_ORDER;

static int
reg_nonleaf_alloc_order[] = REG_ALLOC_ORDER;

static int *reg_alloc_orders[] = {
  reg_leaf_alloc_order,
  reg_nonleaf_alloc_order};

void
order_regs_for_local_alloc ()
{
  static int last_order_nonleaf = 1;

  if (regs_ever_live[15] != last_order_nonleaf)
    {
      last_order_nonleaf = !last_order_nonleaf;
      bcopy ((char *) reg_alloc_orders[last_order_nonleaf],
	     (char *) reg_alloc_order, FIRST_PSEUDO_REGISTER * sizeof (int));
    }
}

/* Return 1 if REGNO (reg1) is even and REGNO (reg1) == REGNO (reg2) - 1.
   This makes them candidates for using ldd and std insns. 

   Note reg1 and reg2 *must* be hard registers.  */

int
registers_ok_for_ldd_peep (reg1, reg2)
     rtx reg1, reg2;
{
  /* We might have been passed a SUBREG.  */
  if (GET_CODE (reg1) != REG || GET_CODE (reg2) != REG) 
    return 0;

  if (REGNO (reg1) % 2 != 0)
    return 0;

  /* Integer ldd is deprecated in SPARC V9 */ 
  if (TARGET_V9 && REGNO (reg1) < 32)                  
    return 0;                             

  return (REGNO (reg1) == REGNO (reg2) - 1);
}

/* Return 1 if addr1 and addr2 are suitable for use in an ldd or 
   std insn.

   This can only happen when addr1 and addr2 are consecutive memory
   locations (addr1 + 4 == addr2).  addr1 must also be aligned on a 
   64 bit boundary (addr1 % 8 == 0).  

   We know %sp and %fp are kept aligned on a 64 bit boundary.  Other
   registers are assumed to *never* be properly aligned and are 
   rejected.

   Knowing %sp and %fp are kept aligned on a 64 bit boundary, we 
   need only check that the offset for addr1 % 8 == 0.  */

int
addrs_ok_for_ldd_peep (addr1, addr2)
      rtx addr1, addr2;
{
  int reg1, offset1;

  /* Extract a register number and offset (if used) from the first addr.  */
  if (GET_CODE (addr1) == PLUS)
    {
      /* If not a REG, return zero.  */
      if (GET_CODE (XEXP (addr1, 0)) != REG)
	return 0;
      else
	{
          reg1 = REGNO (XEXP (addr1, 0));
	  /* The offset must be constant!  */
	  if (GET_CODE (XEXP (addr1, 1)) != CONST_INT)
            return 0;
          offset1 = INTVAL (XEXP (addr1, 1));
	}
    }
  else if (GET_CODE (addr1) != REG)
    return 0;
  else
    {
      reg1 = REGNO (addr1);
      /* This was a simple (mem (reg)) expression.  Offset is 0.  */
      offset1 = 0;
    }

  /* Make sure the second address is a (mem (plus (reg) (const_int).  */
  if (GET_CODE (addr2) != PLUS)
    return 0;

  if (GET_CODE (XEXP (addr2, 0)) != REG
      || GET_CODE (XEXP (addr2, 1)) != CONST_INT)
    return 0;

  /* Only %fp and %sp are allowed.  Additionally both addresses must
     use the same register.  */
  if (reg1 != FRAME_POINTER_REGNUM && reg1 != STACK_POINTER_REGNUM)
    return 0;

  if (reg1 != REGNO (XEXP (addr2, 0)))
    return 0;

  /* The first offset must be evenly divisible by 8 to ensure the 
     address is 64 bit aligned.  */
  if (offset1 % 8 != 0)
    return 0;

  /* The offset for the second addr must be 4 more than the first addr.  */
  if (INTVAL (XEXP (addr2, 1)) != offset1 + 4)
    return 0;

  /* All the tests passed.  addr1 and addr2 are valid for ldd and std
     instructions.  */
  return 1;
}

/* Return 1 if reg is a pseudo, or is the first register in 
   a hard register pair.  This makes it a candidate for use in
   ldd and std insns.  */

int
register_ok_for_ldd (reg)
     rtx reg;
{
  /* We might have been passed a SUBREG.  */
  if (GET_CODE (reg) != REG) 
    return 0;

  if (REGNO (reg) < FIRST_PSEUDO_REGISTER)
    return (REGNO (reg) % 2 == 0);
  else 
    return 1;
}

/* Print operand X (an rtx) in assembler syntax to file FILE.
   CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
   For `%' followed by punctuation, CODE is the punctuation and X is null.  */

void
print_operand (file, x, code)
     FILE *file;
     rtx x;
     int code;
{
  switch (code)
    {
    case '#':
      /* Output a 'nop' if there's nothing for the delay slot.  */
      if (dbr_sequence_length () == 0)
	fputs ("\n\tnop", file);
      return;
    case '*':
      /* Output an annul flag if there's nothing for the delay slot and we
	 are optimizing.  This is always used with '(' below.  */
      /* Sun OS 4.1.1 dbx can't handle an annulled unconditional branch;
	 this is a dbx bug.  So, we only do this when optimizing.  */
      /* On UltraSPARC, a branch in a delay slot causes a pipeline flush.
	 Always emit a nop in case the next instruction is a branch.  */
      if (dbr_sequence_length () == 0
	  && (optimize && (int)sparc_cpu < PROCESSOR_V8PLUS))
	fputs (",a", file);
      return;
    case '(':
      /* Output a 'nop' if there's nothing for the delay slot and we are
	 not optimizing.  This is always used with '*' above.  */
      if (dbr_sequence_length () == 0
	  && ! (optimize && (int)sparc_cpu < PROCESSOR_V8PLUS))
	fputs ("\n\tnop", file);
      return;
    case '_':
      /* Output the Embedded Medium/Anywhere code model base register.  */
      fputs (EMBMEDANY_BASE_REG, file);
      return;
    case '@':
      /* Print out what we are using as the frame pointer.  This might
	 be %fp, or might be %sp+offset.  */
      /* ??? What if offset is too big? Perhaps the caller knows it isn't? */
      fprintf (file, "%s+%d", frame_base_name, frame_base_offset);
      return;
    case 'Y':
      /* Adjust the operand to take into account a RESTORE operation.  */
      if (GET_CODE (x) == CONST_INT)
	break;
      else if (GET_CODE (x) != REG)
	output_operand_lossage ("Invalid %%Y operand");
      else if (REGNO (x) < 8)
	fputs (reg_names[REGNO (x)], file);
      else if (REGNO (x) >= 24 && REGNO (x) < 32)
	fputs (reg_names[REGNO (x)-16], file);
      else
	output_operand_lossage ("Invalid %%Y operand");
      return;
    case 'L':
      /* Print out the low order register name of a register pair.  */
      if (WORDS_BIG_ENDIAN)
	fputs (reg_names[REGNO (x)+1], file);
      else
	fputs (reg_names[REGNO (x)], file);
      return;
    case 'H':
      /* Print out the high order register name of a register pair.  */
      if (WORDS_BIG_ENDIAN)
	fputs (reg_names[REGNO (x)], file);
      else
	fputs (reg_names[REGNO (x)+1], file);
      return;
    case 'R':
      /* Print out the second register name of a register pair or quad.
	 I.e., R (%o0) => %o1.  */
      fputs (reg_names[REGNO (x)+1], file);
      return;
    case 'S':
      /* Print out the third register name of a register quad.
	 I.e., S (%o0) => %o2.  */
      fputs (reg_names[REGNO (x)+2], file);
      return;
    case 'T':
      /* Print out the fourth register name of a register quad.
	 I.e., T (%o0) => %o3.  */
      fputs (reg_names[REGNO (x)+3], file);
      return;
    case 'x':
      /* Print a condition code register.  */
      if (REGNO (x) == SPARC_ICC_REG)
	{
	  /* We don't handle CC[X]_NOOVmode because they're not supposed
	     to occur here.  */
	  if (GET_MODE (x) == CCmode)
	    fputs ("%icc", file);
	  else if (GET_MODE (x) == CCXmode)
	    fputs ("%xcc", file);
	  else
	    abort ();
	}
      else
	/* %fccN register */
	fputs (reg_names[REGNO (x)], file);
      return;
    case 'm':
      /* Print the operand's address only.  */
      output_address (XEXP (x, 0));
      return;
    case 'r':
      /* In this case we need a register.  Use %g0 if the
	 operand is const0_rtx.  */
      if (x == const0_rtx
	  || (GET_MODE (x) != VOIDmode && x == CONST0_RTX (GET_MODE (x))))
	{
	  fputs ("%g0", file);
	  return;
	}
      else
	break;

    case 'A':
      switch (GET_CODE (x))
	{
	case IOR: fputs ("or", file); break;
	case AND: fputs ("and", file); break;
	case XOR: fputs ("xor", file); break;
	default: output_operand_lossage ("Invalid %%A operand");
	}
      return;

    case 'B':
      switch (GET_CODE (x))
	{
	case IOR: fputs ("orn", file); break;
	case AND: fputs ("andn", file); break;
	case XOR: fputs ("xnor", file); break;
	default: output_operand_lossage ("Invalid %%B operand");
	}
      return;

      /* These are used by the conditional move instructions.  */
    case 'c' :
    case 'C':
      {
	enum rtx_code rc = (code == 'c'
			    ? reverse_condition (GET_CODE (x))
			    : GET_CODE (x));
	switch (rc)
	  {
	  case NE: fputs ("ne", file); break;
	  case EQ: fputs ("e", file); break;
	  case GE: fputs ("ge", file); break;
	  case GT: fputs ("g", file); break;
	  case LE: fputs ("le", file); break;
	  case LT: fputs ("l", file); break;
	  case GEU: fputs ("geu", file); break;
	  case GTU: fputs ("gu", file); break;
	  case LEU: fputs ("leu", file); break;
	  case LTU: fputs ("lu", file); break;
	  default: output_operand_lossage (code == 'c'
					   ? "Invalid %%c operand"
					   : "Invalid %%C operand");
	  }
	return;
      }

      /* These are used by the movr instruction pattern.  */
    case 'd':
    case 'D':
      {
	enum rtx_code rc = (code == 'd'
			    ? reverse_condition (GET_CODE (x))
			    : GET_CODE (x));
	switch (rc)
	  {
	  case NE: fputs ("ne", file); break;
	  case EQ: fputs ("e", file); break;
	  case GE: fputs ("gez", file); break;
	  case LT: fputs ("lz", file); break;
	  case LE: fputs ("lez", file); break;
	  case GT: fputs ("gz", file); break;
	  default: output_operand_lossage (code == 'd'
					   ? "Invalid %%d operand"
					   : "Invalid %%D operand");
	  }
	return;
      }

    case 'b':
      {
	/* Print a sign-extended character.  */
	int i = INTVAL (x) & 0xff;
	if (i & 0x80)
	  i |= 0xffffff00;
	fprintf (file, "%d", i);
	return;
      }

    case 'f':
      /* Operand must be a MEM; write its address.  */
      if (GET_CODE (x) != MEM)
	output_operand_lossage ("Invalid %%f operand");
      output_address (XEXP (x, 0));
      return;

    case 0:
      /* Do nothing special.  */
      break;

    default:
      /* Undocumented flag.  */
      output_operand_lossage ("invalid operand output code");
    }

  if (GET_CODE (x) == REG)
    fputs (reg_names[REGNO (x)], file);
  else if (GET_CODE (x) == MEM)
    {
      fputc ('[', file);
	/* Poor Sun assembler doesn't understand absolute addressing.  */
      if (CONSTANT_P (XEXP (x, 0))
	  && ! TARGET_LIVE_G0)
	fputs ("%g0+", file);
      output_address (XEXP (x, 0));
      fputc (']', file);
    }
  else if (GET_CODE (x) == HIGH)
    {
      fputs ("%hi(", file);
      output_addr_const (file, XEXP (x, 0));
      fputc (')', file);
    }
  else if (GET_CODE (x) == LO_SUM)
    {
      print_operand (file, XEXP (x, 0), 0);
      fputs ("+%lo(", file);
      output_addr_const (file, XEXP (x, 1));
      fputc (')', file);
    }
  else if (GET_CODE (x) == CONST_DOUBLE
	   && (GET_MODE (x) == VOIDmode
	       || GET_MODE_CLASS (GET_MODE (x)) == MODE_INT))
    {
      if (CONST_DOUBLE_HIGH (x) == 0)
	fprintf (file, "%u", CONST_DOUBLE_LOW (x));
      else if (CONST_DOUBLE_HIGH (x) == -1
	       && CONST_DOUBLE_LOW (x) < 0)
	fprintf (file, "%d", CONST_DOUBLE_LOW (x));
      else
	output_operand_lossage ("long long constant not a valid immediate operand");
    }
  else if (GET_CODE (x) == CONST_DOUBLE)
    output_operand_lossage ("floating point constant not a valid immediate operand");
  else { output_addr_const (file, x); }
}

/* This function outputs assembler code for VALUE to FILE, where VALUE is
   a 64 bit (DImode) value.  */

/* ??? If there is a 64 bit counterpart to .word that the assembler
   understands, then using that would simply this code greatly.  */
/* ??? We only output .xword's for symbols and only then in environments
   where the assembler can handle them.  */

void
output_double_int (file, value)
     FILE *file;
     rtx value;
{
  if (GET_CODE (value) == CONST_INT)
    {
      /* ??? This has endianness issues.  */
#if HOST_BITS_PER_WIDE_INT == 64
      HOST_WIDE_INT xword = INTVAL (value);
      HOST_WIDE_INT high, low;

      high = (xword >> 32) & 0xffffffff;
      low  = xword & 0xffffffff;
      ASM_OUTPUT_INT (file, GEN_INT (high));
      ASM_OUTPUT_INT (file, GEN_INT (low));
#else
      if (INTVAL (value) < 0)
	ASM_OUTPUT_INT (file, constm1_rtx);
      else
	ASM_OUTPUT_INT (file, const0_rtx);
      ASM_OUTPUT_INT (file, value);
#endif
    }
  else if (GET_CODE (value) == CONST_DOUBLE)
    {
      ASM_OUTPUT_INT (file, GEN_INT (CONST_DOUBLE_HIGH (value)));
      ASM_OUTPUT_INT (file, GEN_INT (CONST_DOUBLE_LOW (value)));
    }
  else if (GET_CODE (value) == SYMBOL_REF
	   || GET_CODE (value) == CONST
	   || GET_CODE (value) == PLUS
	   || (TARGET_ARCH64 &&
	       (GET_CODE (value) == LABEL_REF
		|| GET_CODE (value) == CODE_LABEL
		|| GET_CODE (value) == MINUS)))
    {
      if (!TARGET_V9 || TARGET_CM_MEDLOW)
	{
	  ASM_OUTPUT_INT (file, const0_rtx);
	  ASM_OUTPUT_INT (file, value);
	}
      else
	{
	  fprintf (file, "\t%s\t", ASM_LONGLONG);
	  output_addr_const (file, value);
	  fprintf (file, "\n");
	}
    }
  else
    abort ();
}

/* Return the value of a code used in the .proc pseudo-op that says
   what kind of result this function returns.  For non-C types, we pick
   the closest C type.  */

#ifndef CHAR_TYPE_SIZE
#define CHAR_TYPE_SIZE BITS_PER_UNIT
#endif

#ifndef SHORT_TYPE_SIZE
#define SHORT_TYPE_SIZE (BITS_PER_UNIT * 2)
#endif

#ifndef INT_TYPE_SIZE
#define INT_TYPE_SIZE BITS_PER_WORD
#endif

#ifndef LONG_TYPE_SIZE
#define LONG_TYPE_SIZE BITS_PER_WORD
#endif

#ifndef LONG_LONG_TYPE_SIZE
#define LONG_LONG_TYPE_SIZE (BITS_PER_WORD * 2)
#endif

#ifndef FLOAT_TYPE_SIZE
#define FLOAT_TYPE_SIZE BITS_PER_WORD
#endif

#ifndef DOUBLE_TYPE_SIZE
#define DOUBLE_TYPE_SIZE (BITS_PER_WORD * 2)
#endif

#ifndef LONG_DOUBLE_TYPE_SIZE
#define LONG_DOUBLE_TYPE_SIZE (BITS_PER_WORD * 2)
#endif

unsigned long
sparc_type_code (type)
     register tree type;
{
  register unsigned long qualifiers = 0;
  register unsigned shift = 6;

  /* Only the first 30 bits of the qualifier are valid.  We must refrain from
     setting more, since some assemblers will give an error for this.  Also,
     we must be careful to avoid shifts of 32 bits or more to avoid getting
     unpredictable results.  */

  for (;;)
    {
      switch (TREE_CODE (type))
	{
	case ERROR_MARK:
	  return qualifiers;
  
	case ARRAY_TYPE:
	  if (shift < 30)
	    qualifiers |= (3 << shift);
	  shift += 2;
	  type = TREE_TYPE (type);
	  break;

	case FUNCTION_TYPE:
	case METHOD_TYPE:
	  if (shift < 30)
	    qualifiers |= (2 << shift);
	  shift += 2;
	  type = TREE_TYPE (type);
	  break;

	case POINTER_TYPE:
	case REFERENCE_TYPE:
	case OFFSET_TYPE:
	  if (shift < 30)
	    qualifiers |= (1 << shift);
	  shift += 2;
	  type = TREE_TYPE (type);
	  break;

	case RECORD_TYPE:
	  return (qualifiers | 8);

	case UNION_TYPE:
	case QUAL_UNION_TYPE:
	  return (qualifiers | 9);

	case ENUMERAL_TYPE:
	  return (qualifiers | 10);

	case VOID_TYPE:
	  return (qualifiers | 16);

	case INTEGER_TYPE:
	  /* If this is a range type, consider it to be the underlying
	     type.  */
	  if (TREE_TYPE (type) != 0)
	    {
	      type = TREE_TYPE (type);
	      break;
	    }

	  /* Carefully distinguish all the standard types of C,
	     without messing up if the language is not C.  We do this by
	     testing TYPE_PRECISION and TREE_UNSIGNED.  The old code used to
	     look at both the names and the above fields, but that's redundant.
	     Any type whose size is between two C types will be considered
	     to be the wider of the two types.  Also, we do not have a
	     special code to use for "long long", so anything wider than
	     long is treated the same.  Note that we can't distinguish
	     between "int" and "long" in this code if they are the same
	     size, but that's fine, since neither can the assembler.  */

	  if (TYPE_PRECISION (type) <= CHAR_TYPE_SIZE)
	    return (qualifiers | (TREE_UNSIGNED (type) ? 12 : 2));
  
	  else if (TYPE_PRECISION (type) <= SHORT_TYPE_SIZE)
	    return (qualifiers | (TREE_UNSIGNED (type) ? 13 : 3));
  
	  else if (TYPE_PRECISION (type) <= INT_TYPE_SIZE)
	    return (qualifiers | (TREE_UNSIGNED (type) ? 14 : 4));
  
	  else
	    return (qualifiers | (TREE_UNSIGNED (type) ? 15 : 5));
  
	case REAL_TYPE:
	  /* Carefully distinguish all the standard types of C,
	     without messing up if the language is not C.  */

	  if (TYPE_PRECISION (type) == FLOAT_TYPE_SIZE)
	    return (qualifiers | 6);

	  else 
	    return (qualifiers | 7);
  
	case COMPLEX_TYPE:	/* GNU Fortran COMPLEX type.  */
	  /* ??? We need to distinguish between double and float complex types,
	     but I don't know how yet because I can't reach this code from
	     existing front-ends.  */
	  return (qualifiers | 7);	/* Who knows? */

	case CHAR_TYPE:		/* GNU Pascal CHAR type.  Not used in C.  */
	case BOOLEAN_TYPE:	/* GNU Fortran BOOLEAN type.  */
	case FILE_TYPE:		/* GNU Pascal FILE type.  */
	case SET_TYPE:		/* GNU Pascal SET type.  */
	case LANG_TYPE:		/* ? */
	  return qualifiers;
  
	default:
	  abort ();		/* Not a type! */
        }
    }
}

/* Nested function support.  */

/* Emit RTL insns to initialize the variable parts of a trampoline.
   FNADDR is an RTX for the address of the function's pure code.
   CXT is an RTX for the static chain value for the function.

   This takes 16 insns: 2 shifts & 2 ands (to split up addresses), 4 sethi
   (to load in opcodes), 4 iors (to merge address and opcodes), and 4 writes
   (to store insns).  This is a bit excessive.  Perhaps a different
   mechanism would be better here.

   Emit enough FLUSH insns to synchronize the data and instruction caches.  */

void
sparc_initialize_trampoline (tramp, fnaddr, cxt)
     rtx tramp, fnaddr, cxt;
{
  rtx high_cxt = expand_shift (RSHIFT_EXPR, SImode, cxt,
			      size_int (10), 0, 1);
  rtx high_fn = expand_shift (RSHIFT_EXPR, SImode, fnaddr,
			     size_int (10), 0, 1);
  rtx low_cxt = expand_and (cxt, GEN_INT (0x3ff), 0);
  rtx low_fn = expand_and (fnaddr, GEN_INT (0x3ff), 0);
  rtx g1_sethi = gen_rtx (HIGH, SImode, GEN_INT (0x03000000));
  rtx g2_sethi = gen_rtx (HIGH, SImode, GEN_INT (0x05000000));
  rtx g1_ori = gen_rtx (HIGH, SImode, GEN_INT (0x82106000));
  rtx g2_ori = gen_rtx (HIGH, SImode, GEN_INT (0x8410A000));
  rtx tem = gen_reg_rtx (SImode);
  emit_move_insn (tem, g1_sethi);
  emit_insn (gen_iorsi3 (high_fn, high_fn, tem));
  emit_move_insn (gen_rtx (MEM, SImode, plus_constant (tramp, 0)), high_fn);
  emit_move_insn (tem, g1_ori);
  emit_insn (gen_iorsi3 (low_fn, low_fn, tem));
  emit_move_insn (gen_rtx (MEM, SImode, plus_constant (tramp, 4)), low_fn);
  emit_move_insn (tem, g2_sethi);
  emit_insn (gen_iorsi3 (high_cxt, high_cxt, tem));
  emit_move_insn (gen_rtx (MEM, SImode, plus_constant (tramp, 8)), high_cxt);
  emit_move_insn (tem, g2_ori);
  emit_insn (gen_iorsi3 (low_cxt, low_cxt, tem));
  emit_move_insn (gen_rtx (MEM, SImode, plus_constant (tramp, 16)), low_cxt);
  emit_insn (gen_flush (validize_mem (gen_rtx (MEM, SImode, tramp))));
  emit_insn (gen_flush (validize_mem (gen_rtx (MEM, SImode,
					       plus_constant (tramp, 8)))));
  emit_insn (gen_flush (validize_mem (gen_rtx (MEM, SImode,
					       plus_constant (tramp, 16)))));
}

/* The 64 bit version is simpler because it makes more sense to load the
   values as "immediate" data out of the trampoline.  It's also easier since
   we can read the PC without clobbering a register.  */

void
sparc64_initialize_trampoline (tramp, fnaddr, cxt)
     rtx tramp, fnaddr, cxt;
{
  emit_move_insn (gen_rtx (MEM, DImode, plus_constant (tramp, 24)), cxt);
  emit_move_insn (gen_rtx (MEM, DImode, plus_constant (tramp, 32)), fnaddr);
  emit_insn (gen_flush (validize_mem (gen_rtx (MEM, DImode, tramp))));
  emit_insn (gen_flush (validize_mem (gen_rtx (MEM, DImode,
					       plus_constant (tramp, 8)))));
  emit_insn (gen_flush (validize_mem (gen_rtx (MEM, DImode,
					       plus_constant (tramp, 16)))));
  emit_insn (gen_flush (validize_mem (gen_rtx (MEM, DImode,
					       plus_constant (tramp, 24)))));
  emit_insn (gen_flush (validize_mem (gen_rtx (MEM, DImode,
					       plus_constant (tramp, 32)))));
}

/* Subroutines to support a flat (single) register window calling
   convention.  */

/* Single-register window sparc stack frames look like:

             Before call		        After call
        +-----------------------+	+-----------------------+
   high |		        |	|			|
   mem  |  caller's temps.    	|       |  caller's temps.    	|
	|       		|       |       	        |
        +-----------------------+	+-----------------------+
 	|       		|	|		        |
        |  arguments on stack.  |	|  arguments on stack.  |
	|       		|      	|			|
        +-----------------------+FP+92->+-----------------------+
 	|  6 words to save     	|	|  6 words to save	|
	|  arguments passed	|	|  arguments passed	|
	|  in registers, even	|	|  in registers, even	|
       	|  if not passed.       |      	|  if not passed.	|
 SP+68->+-----------------------+FP+68->+-----------------------+
        | 1 word struct addr	|      	| 1 word struct addr	|
        +-----------------------+FP+64->+-----------------------+
        |			|	|			|
        | 16 word reg save area	|	| 16 word reg save area |
       	|                       |      	|			|
    SP->+-----------------------+   FP->+-----------------------+
				        | 4 word area for	|
				       	| fp/alu reg moves	|
				 FP-16->+-----------------------+
				        |			|
				        |  local variables	|
				        |			|
				        +-----------------------+
				        |		        |
                                        |  fp register save     |
				        |			|
				        +-----------------------+
				        |		        |
                                        |  gp register save     |
                                        |       		|
				        +-----------------------+
				        |			|
                                        |  alloca allocations   |
        			        |			|
				        +-----------------------+
				        |			|
                                        |  arguments on stack   |
        			       	|		        |
				 SP+92->+-----------------------+
                                        |  6 words to save      |
				        |  arguments passed     |
                                        |  in registers, even   |
   low                                 	|  if not passed.       |
   memory        		 SP+68->+-----------------------+
				       	| 1 word struct addr	|
				 SP+64->+-----------------------+
				        |			|
				        I 16 word reg save area |
				       	|			|
				    SP->+-----------------------+  */

/* Structure to be filled in by sparc_flat_compute_frame_size with register
   save masks, and offsets for the current function.  */

struct sparc_frame_info
{
  unsigned long total_size;	/* # bytes that the entire frame takes up.  */
  unsigned long var_size;	/* # bytes that variables take up.  */
  unsigned long args_size;	/* # bytes that outgoing arguments take up.  */
  unsigned long extra_size;	/* # bytes of extra gunk.  */
  unsigned int  gp_reg_size;	/* # bytes needed to store gp regs.  */
  unsigned int  fp_reg_size;	/* # bytes needed to store fp regs.  */
  unsigned long gmask;		/* Mask of saved gp registers.  */
  unsigned long fmask;		/* Mask of saved fp registers.  */
  unsigned long reg_offset;	/* Offset from new sp to store regs.  */
  int		initialized;	/* Nonzero if frame size already calculated.  */
};

/* Current frame information calculated by sparc_flat_compute_frame_size.  */
struct sparc_frame_info current_frame_info;

/* Zero structure to initialize current_frame_info.  */
struct sparc_frame_info zero_frame_info;

/* Tell prologue and epilogue if register REGNO should be saved / restored.  */

#define RETURN_ADDR_REGNUM 15
#define FRAME_POINTER_MASK (1 << (FRAME_POINTER_REGNUM))
#define RETURN_ADDR_MASK (1 << (RETURN_ADDR_REGNUM))

#define MUST_SAVE_REGISTER(regno) \
 ((regs_ever_live[regno] && !call_used_regs[regno])		\
  || (regno == FRAME_POINTER_REGNUM && frame_pointer_needed)	\
  || (regno == RETURN_ADDR_REGNUM && regs_ever_live[RETURN_ADDR_REGNUM]))

/* Return the bytes needed to compute the frame pointer from the current
   stack pointer.  */

unsigned long
sparc_flat_compute_frame_size (size)
     int size;			/* # of var. bytes allocated.  */
{
  int regno;
  unsigned long total_size;	/* # bytes that the entire frame takes up.  */
  unsigned long var_size;	/* # bytes that variables take up.  */
  unsigned long args_size;	/* # bytes that outgoing arguments take up.  */
  unsigned long extra_size;	/* # extra bytes.  */
  unsigned int  gp_reg_size;	/* # bytes needed to store gp regs.  */
  unsigned int  fp_reg_size;	/* # bytes needed to store fp regs.  */
  unsigned long gmask;		/* Mask of saved gp registers.  */
  unsigned long fmask;		/* Mask of saved fp registers.  */
  unsigned long reg_offset;	/* Offset to register save area.  */
  int           need_aligned_p;	/* 1 if need the save area 8 byte aligned.  */

  /* This is the size of the 16 word reg save area, 1 word struct addr
     area, and 4 word fp/alu register copy area.  */
  extra_size	 = -STARTING_FRAME_OFFSET + FIRST_PARM_OFFSET(0);
  var_size	 = size;
  /* Also include the size needed for the 6 parameter registers.  */
  args_size	 = current_function_outgoing_args_size + 24;
  total_size	 = var_size + args_size + extra_size;
  gp_reg_size	 = 0;
  fp_reg_size	 = 0;
  gmask		 = 0;
  fmask		 = 0;
  reg_offset	 = 0;
  need_aligned_p = 0;

  /* Calculate space needed for gp registers.  */
  for (regno = 1; regno <= 31; regno++)
    {
      if (MUST_SAVE_REGISTER (regno))
	{
	  /* If we need to save two regs in a row, ensure there's room to bump
	     up the address to align it to a doubleword boundary.  */
	  if ((regno & 0x1) == 0 && MUST_SAVE_REGISTER (regno+1))
	    {
	      if (gp_reg_size % 8 != 0)
		gp_reg_size += 4;
	      gp_reg_size += 2 * UNITS_PER_WORD;
	      gmask |= 3 << regno;
	      regno++;
	      need_aligned_p = 1;
	    }
	  else
	    {
	      gp_reg_size += UNITS_PER_WORD;
	      gmask |= 1 << regno;
	    }
	}
    }

  /* Calculate space needed for fp registers.  */
  for (regno = 32; regno <= 63; regno++)
    {
      if (regs_ever_live[regno] && !call_used_regs[regno])
	{
	  fp_reg_size += UNITS_PER_WORD;
	  fmask |= 1 << (regno - 32);
	}
    }

  if (gmask || fmask)
    {
      int n;
      reg_offset = FIRST_PARM_OFFSET(0) + args_size;
      /* Ensure save area is 8 byte aligned if we need it.  */
      n = reg_offset % 8;
      if (need_aligned_p && n != 0)
	{
	  total_size += 8 - n;
	  reg_offset += 8 - n;
	}
      total_size += gp_reg_size + fp_reg_size;
    }

  /* ??? This looks a little suspicious.  Clarify.  */
  if (total_size == extra_size)
    total_size = extra_size = 0;

  total_size = SPARC_STACK_ALIGN (total_size);

  /* Save other computed information.  */
  current_frame_info.total_size  = total_size;
  current_frame_info.var_size    = var_size;
  current_frame_info.args_size   = args_size;
  current_frame_info.extra_size  = extra_size;
  current_frame_info.gp_reg_size = gp_reg_size;
  current_frame_info.fp_reg_size = fp_reg_size;
  current_frame_info.gmask	 = gmask;
  current_frame_info.fmask	 = fmask;
  current_frame_info.reg_offset	 = reg_offset;
  current_frame_info.initialized = reload_completed;

  /* Ok, we're done.  */
  return total_size;
}

/* Save/restore registers in GMASK and FMASK at register BASE_REG plus offset
   OFFSET.

   BASE_REG must be 8 byte aligned.  This allows us to test OFFSET for
   appropriate alignment and use DOUBLEWORD_OP when we can.  We assume
   [BASE_REG+OFFSET] will always be a valid address.

   WORD_OP is either "st" for save, "ld" for restore.
   DOUBLEWORD_OP is either "std" for save, "ldd" for restore.  */

void
sparc_flat_save_restore (file, base_reg, offset, gmask, fmask, word_op,
			 doubleword_op, base_offset)
     FILE *file;
     char *base_reg;
     unsigned int offset;
     unsigned long gmask;
     unsigned long fmask;
     char *word_op;
     char *doubleword_op;
     unsigned long base_offset;
{
  int regno;

  if (gmask == 0 && fmask == 0)
    return;

  /* Save registers starting from high to low.  We've already saved the
     previous frame pointer and previous return address for the debugger's
     sake.  The debugger allows us to not need a nop in the epilog if at least
     one register is reloaded in addition to return address.  */

  if (gmask)
    {
      for (regno = 1; regno <= 31; regno++)
	{
	  if ((gmask & (1L << regno)) != 0)
	    {
	      if ((regno & 0x1) == 0 && ((gmask & (1L << (regno+1))) != 0))
		{
		  /* We can save two registers in a row.  If we're not at a
		     double word boundary, move to one.
		     sparc_flat_compute_frame_size ensures there's room to do
		     this.  */
		  if (offset % 8 != 0)
		    offset += UNITS_PER_WORD;

		  if (word_op[0] == 's')
		    {
		      fprintf (file, "\t%s %s,[%s+%d]\n",
			       doubleword_op, reg_names[regno],
			       base_reg, offset);
		      if (dwarf2out_do_frame ())
			{
			  char *l = dwarf2out_cfi_label ();
			  dwarf2out_reg_save (l, regno, offset + base_offset);
			  dwarf2out_reg_save
			    (l, regno+1, offset+base_offset + UNITS_PER_WORD);
			}
		    }
		  else
		    fprintf (file, "\t%s [%s+%d],%s\n",
			     doubleword_op, base_reg, offset,
			     reg_names[regno]);

		  offset += 2 * UNITS_PER_WORD;
		  regno++;
		}
	      else
		{
		  if (word_op[0] == 's')
		    {
		      fprintf (file, "\t%s %s,[%s+%d]\n",
			       word_op, reg_names[regno],
			       base_reg, offset);
		      if (dwarf2out_do_frame ())
			dwarf2out_reg_save ("", regno, offset + base_offset);
		    }
		  else
		    fprintf (file, "\t%s [%s+%d],%s\n",
			     word_op, base_reg, offset, reg_names[regno]);

		  offset += UNITS_PER_WORD;
		}
	    }
	}
    }

  if (fmask)
    {
      for (regno = 32; regno <= 63; regno++)
	{
	  if ((fmask & (1L << (regno - 32))) != 0)
	    {
	      if (word_op[0] == 's')
		{
		  fprintf (file, "\t%s %s,[%s+%d]\n",
			   word_op, reg_names[regno],
			   base_reg, offset);
		  if (dwarf2out_do_frame ())
		    dwarf2out_reg_save ("", regno, offset + base_offset);
		}
	      else
		fprintf (file, "\t%s [%s+%d],%s\n",
			 word_op, base_reg, offset, reg_names[regno]);

	      offset += UNITS_PER_WORD;
	    }
	}
    }
}

/* Set up the stack and frame (if desired) for the function.  */

void
sparc_flat_output_function_prologue (file, size)
     FILE *file;
     int size;
{
  char *sp_str = reg_names[STACK_POINTER_REGNUM];
  unsigned long gmask = current_frame_info.gmask;

  /* This is only for the human reader.  */
  fprintf (file, "\t%s#PROLOGUE# 0\n", ASM_COMMENT_START);
  fprintf (file, "\t%s# vars= %ld, regs= %d/%d, args= %d, extra= %ld\n",
	   ASM_COMMENT_START,
	   current_frame_info.var_size,
	   current_frame_info.gp_reg_size / 4,
	   current_frame_info.fp_reg_size / 4,
	   current_function_outgoing_args_size,
	   current_frame_info.extra_size);

  size = SPARC_STACK_ALIGN (size);
  size = (! current_frame_info.initialized
	  ? sparc_flat_compute_frame_size (size)
	  : current_frame_info.total_size);

  /* These cases shouldn't happen.  Catch them now.  */
  if (size == 0 && (gmask || current_frame_info.fmask))
    abort ();

  /* Allocate our stack frame by decrementing %sp.
     At present, the only algorithm gdb can use to determine if this is a
     flat frame is if we always set %i7 if we set %sp.  This can be optimized
     in the future by putting in some sort of debugging information that says
     this is a `flat' function.  However, there is still the case of debugging
     code without such debugging information (including cases where most fns
     have such info, but there is one that doesn't).  So, always do this now
     so we don't get a lot of code out there that gdb can't handle.
     If the frame pointer isn't needn't then that's ok - gdb won't be able to
     distinguish us from a non-flat function but there won't (and shouldn't)
     be any differences anyway.  The return pc is saved (if necessary) right
     after %i7 so gdb won't have to look too far to find it.  */
  if (size > 0)
    {
      unsigned int reg_offset = current_frame_info.reg_offset;
      char *fp_str = reg_names[FRAME_POINTER_REGNUM];
      char *t1_str = "%g1";

      /* Things get a little tricky if local variables take up more than ~4096
	 bytes and outgoing arguments take up more than ~4096 bytes.  When that
	 happens, the register save area can't be accessed from either end of
	 the frame.  Handle this by decrementing %sp to the start of the gp
	 register save area, save the regs, update %i7, and then set %sp to its
	 final value.  Given that we only have one scratch register to play
	 with it is the cheapest solution, and it helps gdb out as it won't
	 slow down recognition of flat functions.
	 Don't change the order of insns emitted here without checking with
	 the gdb folk first.  */

      /* Is the entire register save area offsettable from %sp?  */
      if (reg_offset < 4096 - 64 * UNITS_PER_WORD)
	{
	  if (size <= 4096)
	    {
	      fprintf (file, "\tadd %s,%d,%s\n",
		       sp_str, -size, sp_str);
	      if (gmask & FRAME_POINTER_MASK)
		{
		  fprintf (file, "\tst %s,[%s+%d]\n",
			   fp_str, sp_str, reg_offset);
		  fprintf (file, "\tsub %s,%d,%s\t%s# set up frame pointer\n",
			   sp_str, -size, fp_str, ASM_COMMENT_START);
		  reg_offset += 4;
		}
	    }
	  else
	    {
	      fprintf (file, "\tset %d,%s\n\tsub %s,%s,%s\n",
		       size, t1_str, sp_str, t1_str, sp_str);
	      if (gmask & FRAME_POINTER_MASK)
		{
		  fprintf (file, "\tst %s,[%s+%d]\n",
			   fp_str, sp_str, reg_offset);
		  fprintf (file, "\tadd %s,%s,%s\t%s# set up frame pointer\n",
			   sp_str, t1_str, fp_str, ASM_COMMENT_START);
		  reg_offset += 4;
		}
	    }
	  if (dwarf2out_do_frame ())
	    {
	      char *l = dwarf2out_cfi_label ();
	      if (gmask & FRAME_POINTER_MASK)
		{
		  dwarf2out_reg_save (l, FRAME_POINTER_REGNUM,
				      reg_offset - 4 - size);
		  dwarf2out_def_cfa (l, FRAME_POINTER_REGNUM, 0);
		}
	      else
		dwarf2out_def_cfa (l, STACK_POINTER_REGNUM, size);
	    }
	  if (gmask & RETURN_ADDR_MASK)
	    {
	      fprintf (file, "\tst %s,[%s+%d]\n",
		       reg_names[RETURN_ADDR_REGNUM], sp_str, reg_offset);
	      if (dwarf2out_do_frame ())
		dwarf2out_return_save ("", reg_offset - size);
	      reg_offset += 4;
	    }
	  sparc_flat_save_restore (file, sp_str, reg_offset,
				   gmask & ~(FRAME_POINTER_MASK | RETURN_ADDR_MASK),
				   current_frame_info.fmask,
				   "st", "std", -size);
	}
      else
	{
	  /* Subtract %sp in two steps, but make sure there is always a
	     64 byte register save area, and %sp is properly aligned.  */
	  /* Amount to decrement %sp by, the first time.  */
	  unsigned int size1 = ((size - reg_offset + 64) + 15) & -16;
	  /* Offset to register save area from %sp.  */
	  unsigned int offset = size1 - (size - reg_offset);
	  
	  if (size1 <= 4096)
	    {
	      fprintf (file, "\tadd %s,%d,%s\n",
		       sp_str, -size1, sp_str);
	      if (gmask & FRAME_POINTER_MASK)
		{
		  fprintf (file, "\tst %s,[%s+%d]\n\tsub %s,%d,%s\t%s# set up frame pointer\n",
			   fp_str, sp_str, offset, sp_str, -size1, fp_str,
			   ASM_COMMENT_START);
		  offset += 4;
		}
	    }
	  else
	    {
	      fprintf (file, "\tset %d,%s\n\tsub %s,%s,%s\n",
		       size1, t1_str, sp_str, t1_str, sp_str);
	      if (gmask & FRAME_POINTER_MASK)
		{
		  fprintf (file, "\tst %s,[%s+%d]\n\tadd %s,%s,%s\t%s# set up frame pointer\n",
			   fp_str, sp_str, offset, sp_str, t1_str, fp_str,
			   ASM_COMMENT_START);
		  offset += 4;
		}
	    }
	  if (dwarf2out_do_frame ())
	    {
	      char *l = dwarf2out_cfi_label ();
	      if (gmask & FRAME_POINTER_MASK)
		{
		  dwarf2out_reg_save (l, FRAME_POINTER_REGNUM,
				      offset - 4 - size1);
		  dwarf2out_def_cfa (l, FRAME_POINTER_REGNUM, 0);
		}
	      else
		dwarf2out_def_cfa (l, STACK_POINTER_REGNUM, size1);
	    }
	  if (gmask & RETURN_ADDR_MASK)
	    {
	      fprintf (file, "\tst %s,[%s+%d]\n",
		       reg_names[RETURN_ADDR_REGNUM], sp_str, offset);
	      if (dwarf2out_do_frame ())
		/* offset - size1 == reg_offset - size
		   if reg_offset were updated above like offset.  */
		dwarf2out_return_save ("", offset - size1);
	      offset += 4;
	    }
	  sparc_flat_save_restore (file, sp_str, offset,
				   gmask & ~(FRAME_POINTER_MASK | RETURN_ADDR_MASK),
				   current_frame_info.fmask,
				   "st", "std", -size1);
	  fprintf (file, "\tset %d,%s\n\tsub %s,%s,%s\n",
		   size - size1, t1_str, sp_str, t1_str, sp_str);
	  if (dwarf2out_do_frame ())
	    if (! (gmask & FRAME_POINTER_MASK))
	      dwarf2out_def_cfa ("", STACK_POINTER_REGNUM, size);
	}
    }

  fprintf (file, "\t%s#PROLOGUE# 1\n", ASM_COMMENT_START);
}

/* Do any necessary cleanup after a function to restore stack, frame,
   and regs. */

void
sparc_flat_output_function_epilogue (file, size)
     FILE *file;
     int size;
{
  rtx epilogue_delay = current_function_epilogue_delay_list;
  int noepilogue = FALSE;

  /* This is only for the human reader.  */
  fprintf (file, "\t%s#EPILOGUE#\n", ASM_COMMENT_START);

  /* The epilogue does not depend on any registers, but the stack
     registers, so we assume that if we have 1 pending nop, it can be
     ignored, and 2 it must be filled (2 nops occur for integer
     multiply and divide).  */

  size = SPARC_STACK_ALIGN (size);
  size = (!current_frame_info.initialized
	   ? sparc_flat_compute_frame_size (size)
	   : current_frame_info.total_size);

  if (size == 0 && epilogue_delay == 0)
    {
      rtx insn = get_last_insn ();

      /* If the last insn was a BARRIER, we don't have to write any code
	 because a jump (aka return) was put there.  */
      if (GET_CODE (insn) == NOTE)
	insn = prev_nonnote_insn (insn);
      if (insn && GET_CODE (insn) == BARRIER)
	noepilogue = TRUE;
    }

  if (!noepilogue)
    {
      unsigned int reg_offset = current_frame_info.reg_offset;
      unsigned int size1;
      char *sp_str = reg_names[STACK_POINTER_REGNUM];
      char *fp_str = reg_names[FRAME_POINTER_REGNUM];
      char *t1_str = "%g1";

      /* In the reload sequence, we don't need to fill the load delay
	 slots for most of the loads, also see if we can fill the final
	 delay slot if not otherwise filled by the reload sequence.  */

      if (size > 4095)
	fprintf (file, "\tset %d,%s\n", size, t1_str);

      if (frame_pointer_needed)
	{
	  if (size > 4095)
	    fprintf (file,"\tsub %s,%s,%s\t\t%s# sp not trusted here\n",
		     fp_str, t1_str, sp_str, ASM_COMMENT_START);
	  else
	    fprintf (file,"\tsub %s,%d,%s\t\t%s# sp not trusted here\n",
		     fp_str, size, sp_str, ASM_COMMENT_START);
	}

      /* Is the entire register save area offsettable from %sp?  */
      if (reg_offset < 4096 - 64 * UNITS_PER_WORD)
	{
	  size1 = 0;
	}
      else
	{
	  /* Restore %sp in two steps, but make sure there is always a
	     64 byte register save area, and %sp is properly aligned.  */
	  /* Amount to increment %sp by, the first time.  */
	  size1 = ((reg_offset - 64 - 16) + 15) & -16;
	  /* Offset to register save area from %sp.  */
	  reg_offset = size1 - reg_offset;

	  fprintf (file, "\tset %d,%s\n\tadd %s,%s,%s\n",
		   size1, t1_str, sp_str, t1_str, sp_str);
	}

      /* We must restore the frame pointer and return address reg first
	 because they are treated specially by the prologue output code.  */
      if (current_frame_info.gmask & FRAME_POINTER_MASK)
	{
	  fprintf (file, "\tld [%s+%d],%s\n",
		   sp_str, reg_offset, fp_str);
	  reg_offset += 4;
	}
      if (current_frame_info.gmask & RETURN_ADDR_MASK)
	{
	  fprintf (file, "\tld [%s+%d],%s\n",
		   sp_str, reg_offset, reg_names[RETURN_ADDR_REGNUM]);
	  reg_offset += 4;
	}

      /* Restore any remaining saved registers.  */
      sparc_flat_save_restore (file, sp_str, reg_offset,
			       current_frame_info.gmask & ~(FRAME_POINTER_MASK | RETURN_ADDR_MASK),
			       current_frame_info.fmask,
			       "ld", "ldd", 0);

      /* If we had to increment %sp in two steps, record it so the second
	 restoration in the epilogue finishes up.  */
      if (size1 > 0)
	{
	  size -= size1;
	  if (size > 4095)
	    fprintf (file, "\tset %d,%s\n",
		     size, t1_str);
	}

      if (current_function_returns_struct)
	fprintf (file, "\tjmp %%o7+12\n");
      else
	fprintf (file, "\tretl\n");

      /* If the only register saved is the return address, we need a
	 nop, unless we have an instruction to put into it.  Otherwise
	 we don't since reloading multiple registers doesn't reference
	 the register being loaded.  */

      if (epilogue_delay)
	{
	  if (size)
	    abort ();
	  final_scan_insn (XEXP (epilogue_delay, 0), file, 1, -2, 1);
	}

      else if (size > 4095)
	fprintf (file, "\tadd %s,%s,%s\n", sp_str, t1_str, sp_str);

      else if (size > 0)
	fprintf (file, "\tadd %s,%d,%s\n", sp_str, size, sp_str);

      else
	fprintf (file, "\tnop\n");
    }

  /* Reset state info for each function.  */
  current_frame_info = zero_frame_info;
}

/* Define the number of delay slots needed for the function epilogue.

   On the sparc, we need a slot if either no stack has been allocated,
   or the only register saved is the return register.  */

int
sparc_flat_epilogue_delay_slots ()
{
  if (!current_frame_info.initialized)
    (void) sparc_flat_compute_frame_size (get_frame_size ());

  if (current_frame_info.total_size == 0)
    return 1;

  return 0;
}

/* Return true is TRIAL is a valid insn for the epilogue delay slot.
   Any single length instruction which doesn't reference the stack or frame
   pointer is OK.  */

int
sparc_flat_eligible_for_epilogue_delay (trial, slot)
     rtx trial;
     int slot;
{
  rtx pat = PATTERN (trial);

  if (get_attr_length (trial) != 1)
    return 0;

  /* If %g0 is live, there are lots of things we can't handle.
     Rather than trying to find them all now, let's punt and only
     optimize things as necessary.  */
  if (TARGET_LIVE_G0)
    return 0;

  if (! reg_mentioned_p (stack_pointer_rtx, pat)
      && ! reg_mentioned_p (frame_pointer_rtx, pat))
    return 1;

  return 0;
}

/* Adjust the cost of a scheduling dependency.  Return the new cost of
   a dependency LINK or INSN on DEP_INSN.  COST is the current cost.  */

int
supersparc_adjust_cost (insn, link, dep_insn, cost)
     rtx insn;
     rtx link;
     rtx dep_insn;
     int cost;
{
  enum attr_type insn_type;

  if (! recog_memoized (insn))
    return 0;

  insn_type = get_attr_type (insn);

  if (REG_NOTE_KIND (link) == 0)
    {
      /* Data dependency; DEP_INSN writes a register that INSN reads some
	 cycles later.  */

      /* if a load, then the dependence must be on the memory address;
	 add an extra 'cycle'.  Note that the cost could be two cycles
	 if the reg was written late in an instruction group; we can't tell
	 here.  */
      if (insn_type == TYPE_LOAD || insn_type == TYPE_FPLOAD)
	return cost + 3;

      /* Get the delay only if the address of the store is the dependence.  */
      if (insn_type == TYPE_STORE || insn_type == TYPE_FPSTORE)
	{
	  rtx pat = PATTERN(insn);
	  rtx dep_pat = PATTERN (dep_insn);

	  if (GET_CODE (pat) != SET || GET_CODE (dep_pat) != SET)
	    return cost;  /* This shouldn't happen!  */

	  /* The dependency between the two instructions was on the data that
	     is being stored.  Assume that this implies that the address of the
	     store is not dependent.  */
	  if (rtx_equal_p (SET_DEST (dep_pat), SET_SRC (pat)))
	    return cost;

	  return cost + 3;  /* An approximation.  */
	}

      /* A shift instruction cannot receive its data from an instruction
	 in the same cycle; add a one cycle penalty.  */
      if (insn_type == TYPE_SHIFT)
	return cost + 3;   /* Split before cascade into shift.  */
    }
  else
    {
      /* Anti- or output- dependency; DEP_INSN reads/writes a register that
	 INSN writes some cycles later.  */

      /* These are only significant for the fpu unit; writing a fp reg before
         the fpu has finished with it stalls the processor.  */

      /* Reusing an integer register causes no problems.  */
      if (insn_type == TYPE_IALU || insn_type == TYPE_SHIFT)
	return 0;
    }
	
  return cost;
}

int
ultrasparc_adjust_cost (insn, link, dep_insn, cost)
     rtx insn;                                     
     rtx link;                                     
     rtx dep_insn;                                     
     int cost;                                     
{
  enum attr_type insn_type, dep_type;
  rtx pat = PATTERN(insn);                                                    
  rtx dep_pat = PATTERN (dep_insn);                                           

  if (recog_memoized (insn) < 0 || recog_memoized (dep_insn) < 0)        
    return cost;                                     

  insn_type = get_attr_type (insn);                     
  dep_type = get_attr_type (dep_insn);                  

#define SLOW_FP(dep_type) \
(dep_type == TYPE_FPSQRT || dep_type == TYPE_FPDIVS || dep_type == TYPE_FPDIVD)   
  switch (REG_NOTE_KIND (link))
    {                                              
    case 0:                                        
      /* Data dependency; DEP_INSN writes a register that INSN reads some
	 cycles later.  */                               

      switch (insn_type)
	{                              
	  /* UltraSPARC can dual issue a store and an instruction setting       
	     the value stored, except for divide and square root.  */           
	case TYPE_FPSTORE:
	  if (! SLOW_FP (dep_type))        
	    return 0;                                     
	  break;

	case TYPE_STORE:                                  
	  if (GET_CODE (pat) != SET || GET_CODE (dep_pat) != SET)
	    return cost;     

	  /* The dependency between the two instructions is on the data
	     that is being stored.  Assume that the address of the store
	     is not also dependent.  */
	  if (rtx_equal_p (SET_DEST (dep_pat), SET_SRC (pat)))
	    return 0;                                
	  return cost;                                   

	case TYPE_LOAD:   
	case TYPE_SLOAD:               
	case TYPE_FPLOAD:                                                       
	  /* A load does not return data until at least 11 cycles after         
	     a store to the same location.  3 cycles are accounted for
	     in the load latency; add the other 8 here.  */
	  if (dep_type == TYPE_STORE || dep_type == TYPE_FPSTORE)
	    {   
	      /* If the addresses are not equal this may be a false
		 dependency because pointer aliasing could not be
		 determined.  Add only 2 cycles in that case.  2 is
		 an arbitrary compromise between 8, which would cause
		 the scheduler to generate worse code elsewhere to
		 compensate for a dependency which might not really    
		 exist, and 0.  */                                      
	      if (GET_CODE (pat) != SET || GET_CODE (dep_pat) != SET
		  || GET_CODE (SET_DEST (pat)) != MEM         
		  || GET_CODE (SET_SRC (dep_pat)) != MEM
		  || ! rtx_equal_p (XEXP (SET_DEST (pat), 0),
				    XEXP (SET_SRC (dep_pat), 0)))
		return cost + 2;

	      return cost + 8;         
	    }                                                                   
	  break;                                                                

	case TYPE_BRANCH:                                  
	  /* Compare to branch latency is 0.  There is no benefit from
	     separating compare and branch.  */
	  if (dep_type == TYPE_COMPARE)                            
	    return 0;                                            
	  /* Floating point compare to branch latency is less than 
	     compare to conditional move.  */                        
	  if (dep_type == TYPE_FPCMP)                             
	    return cost - 1;                                           
	  break;                                                        

	case TYPE_FPCMOVE:                                    
	  /* FMOVR class instructions can not issue in the same cycle
	     or the cycle after an instruction which writes any
	     integer register.  Model this as cost 2 for dependent
	     instructions.  */  
	  if (GET_CODE (PATTERN (insn)) == SET
	      && (GET_MODE (SET_DEST (PATTERN (insn))) == SFmode
	          || GET_MODE (SET_DEST (PATTERN (insn))) == DFmode)            
	      && cost < 2)                                                      
	    return 2;
	  /* Otherwise check as for integer conditional moves. */

	case TYPE_CMOVE:                       
	  /* Conditional moves involving integer registers wait until
	     3 cycles after loads return data.  The interlock applies
	     to all loads, not just dependent loads, but that is hard
	     to model.  */                        
	  if (dep_type == TYPE_LOAD || dep_type == TYPE_SLOAD)                  
	    return cost + 3;                                           
	  break;                                                        

	default:
	  break;
	}
	break;                                                

    case REG_DEP_ANTI:                                       
      /* Divide and square root lock destination registers for full latency. */
      if (! SLOW_FP (dep_type))             
	return 0;                                               
      break;                                                                  

    default:
      break;
    }

  /* Other costs not accounted for:                            
     - Multiply should be modeled as having no latency because there is
       nothing the scheduler can do about it.  
     - Single precision floating point loads lock the other half of  
       the even/odd register pair.                                   
     - Several hazards associated with ldd/std are ignored because these
       instructions are rarely generated for V9.  
     - A shift following an integer instruction which does not set the
       condition codes can not issue in the same cycle.
     - The floating point pipeline can not have both a single and double
       precision operation active at the same time.  Format conversions
       and graphics instructions are given honorary double precision status.
     - call and jmpl are always the first instruction in a group.  */

  return cost;                                                              
}  

int                                                           
sparc_issue_rate ()
{
  switch (sparc_cpu)
    {
    default:                                 
      return 1;                                                    
    case PROCESSOR_V8PLUS:                                         
    case PROCESSOR_V9:                                                
      /* Assume these generic V9 types are capable of at least dual-issue.  */
      return 2;
    case PROCESSOR_SUPERSPARC:                                        
      return 3;                                                      
    case PROCESSOR_ULTRASPARC:                                            
      return 4;                                                    
    }
}