summaryrefslogtreecommitdiff
path: root/gcc/crc_verification.cc
blob: df010742112e96cb9277d52817ae093121f5ec46 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
/*
   Execute symbolically all paths of the function.  Iterate loops only onceā€¤
   Copyright (C) 2006-2022 Free Software Foundation, Inc.

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.

GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3.  If not see
<http://www.gnu.org/licenses/>.   */

#include "crc_verification.h"
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "backend.h"
#include "tree.h"
#include "gimple.h"
#include "ssa.h"
#include "gimple-iterator.h"
#include "tree-cfg.h"
#include "cfganal.h"


/* This function assigns symbolic values to the arguments of the fun.
   (Not complete).  */

bool
crc_symbolic_execution::make_symbolic_func_args_and_sizes (function *fun,
						       state *initial_state)
{
  if (dump_file && (dump_flags & TDF_DETAILS))
    fprintf (dump_file, "\nMaking symbolic the following arguments "
			"of the function:\n");
  /* Get size and name of function's arguments.  */
  for (tree arg = DECL_ARGUMENTS (fun->decl); arg; arg = DECL_CHAIN (arg))
    {
      /* If the argument has a name and the size is integer
	 print that information.  */
      if (TREE_CODE (DECL_SIZE (arg)) == INTEGER_CST && DECL_NAME (arg))
	{
	  unsigned HOST_WIDE_INT size = tree_to_uhwi (DECL_SIZE (arg));
	  if (dump_file && (dump_flags & TDF_DETAILS))
	    fprintf (dump_file, "%s : %lu; ",
		     IDENTIFIER_POINTER (DECL_NAME (arg)), size);
	  /* Add argument with its size to the state
	     and assign symbolic value.  */
	  initial_state->make_symbolic (arg, size);
	}
      else if (dump_file)
	fprintf (dump_file, "Argument not const or no name.\n");
    }
  return true;
}


/* Add declared ssa variables to the state.  */

bool
crc_symbolic_execution::add_function_local_ssa_vars (function *fun,
						 state *initial_state)
{
  if (dump_file && (dump_flags & TDF_DETAILS))
    fprintf (dump_file, "\n\nAdding the following ssa name declarations: \n");
  unsigned ix;
  tree name;
  /* Get ssa names of the function.
     Check type, add to the state with a size length array value.  */
  FOR_EACH_SSA_NAME (ix, name, fun)
      {
	if (TREE_CODE (TREE_TYPE (name)) == INTEGER_TYPE)
	  {
	    if (TYPE_UNSIGNED (TREE_TYPE (name)))
	      {
		// We need this info for symb execution.
		if (dump_file && (dump_flags & TDF_DETAILS))
		  fprintf (dump_file,
			   "Unsigned, ");
	      }
	  }
	else if (TREE_CODE (TREE_TYPE (name)) == POINTER_TYPE)
	  {
	    if (dump_file && (dump_flags & TDF_DETAILS))
	      fprintf (dump_file, "Pointer type, ");
	  }
	else
	  {
	    /* Other type of variables aren't needed for CRC calculation.  */
	    if (dump_file && (dump_flags & TDF_DETAILS))
	      {
		print_generic_expr (dump_file, name, dump_flags);
		fprintf (dump_file, ", %s type, won't be considered.\n",
			 get_tree_code_name (TREE_CODE (TREE_TYPE (name))));
	      }
	    continue;
	  }

	unsigned HOST_WIDE_INT size
	    = tree_to_uhwi (TYPE_SIZE (TREE_TYPE (name)));

	if (dump_file && (dump_flags & TDF_DETAILS))
	  {
	    print_generic_expr (dump_file, name, dump_flags);
	    fprintf (dump_file, " size is %lu.\n", size);
	  }

	/* Add ssa variable with its size to the state,
	   assign symbolic value.  */
	initial_state->make_symbolic (name, size);
      }
  return true;
}


/* Calculate value of the rhs operation and assign to lhs variable.  */

bool
crc_symbolic_execution::execute_assign_statement (const gassign *gs)
{
  enum tree_code rhs_code = gimple_assign_rhs_code (gs);
  tree lhs = gimple_assign_lhs (gs);
  state *current_state = states.last ();

  if (gimple_num_ops (gs) == 2)
    {
      tree op1 = gimple_assign_rhs1 (gs);
      switch (rhs_code)
	{
	  case BIT_NOT_EXPR:
	    {
	      if (current_state->do_complement (op1, lhs))
		return true;
	      return false;
	    }
	  case MEM_REF:
	    {
	      /* FIXME: There can be something like
		 MEM[(some_type *)data + 1B],
		 in this case we just pass data.  */
	      if (current_state->do_mem_ref (TREE_OPERAND (op1, 0), lhs))
		return true;
	      return false;
	    }
	  case NOP_EXPR:
	    {
	      if (current_state->do_assign (op1, lhs))
		return true;
	      return false;
	    }
	  case SSA_NAME:
	    {
	      if (current_state->do_assign (op1, lhs))
		return true;
	      return false;
	    }
	  case VAR_DECL:
	    {
	      if (current_state->do_assign (op1, lhs))
		return true;
	      return false;
	    }
	  case INTEGER_CST:
	    {
	      if (current_state->do_assign (op1, lhs))
		return true;
	      return false;
	    }
	  default:
	    {
	      if (dump_file)
		fprintf (dump_file,
			 "Warning, encountered unsupported unary operation "
			 "with %s code while executing assign statement!\n",
			 get_tree_code_name (rhs_code));
	      return false;
	    }
	}
    }
  else if (gimple_num_ops (gs) == 3)
    {
      tree op1 = gimple_assign_rhs1 (gs);
      tree op2 = gimple_assign_rhs2 (gs);
      switch (rhs_code)
	{
	  case LSHIFT_EXPR:
	    {
	      if (current_state->do_shift_left (op1, op2, lhs))
		return true;
	      return false;
	    }
	  case RSHIFT_EXPR:
	    {
	      if (current_state->do_shift_right (op1, op2, lhs))
		return true;
	      return false;
	    }
	  case BIT_AND_EXPR:
	    {
	      if (current_state->do_and (op1, op2, lhs))
		return true;
	      return false;
	    }
	  case BIT_IOR_EXPR:
	    {
	      if (current_state->do_or (op1, op2, lhs))
		return true;
	      return false;
	    }
	  case BIT_XOR_EXPR:
	    {
	      if (current_state->do_xor (op1, op2, lhs))
		return true;
	      return false;
	    }
	  case PLUS_EXPR:
	    {
	      if (current_state->do_add (op1, op2, lhs))
		return true;
	      return false;
	    }
	  case MINUS_EXPR:
	    {
	      if (current_state->do_sub (op1, op2, lhs))
		return true;
	      return false;
	    }
	  case MULT_EXPR:
	    {
	      if (current_state->do_mul (op1, op2, lhs))
		return true;
	      return false;
	    }
	  case POINTER_PLUS_EXPR:
	    {
	      if (current_state->do_pointer_plus (op1, op2, lhs))
		return true;
	      return false;
	    }
	  case POINTER_DIFF_EXPR:
	    {
	      if (current_state->do_pointer_diff (op1, op2, lhs))
		return true;
	      return false;
	    }
	  default:
	    {
	      if (dump_file)
		fprintf (dump_file,
			 "Warning, encountered unsupported binary operation "
			 "with %s code while executing assign statement!\n",
			 get_tree_code_name (rhs_code));
	      return false;
	    }
	}
    }
  else
    {
      if (dump_file)
	fprintf (dump_file,
		 "Warning, encountered unsupported operation, "
		 "with %s code while executing assign statement!\n",
		 get_tree_code_name (rhs_code));
      return false;
    }
  return true;
}


/* If the next block of the edge1 dest is a back edge, add in the stack edge2.
   Otherwise, add edge1 (the real execution path).

   When loop counter is checked in the if condition,
   we mustn't continue on real path,
   as we don't want to iterate the loop second time.  */

void
add_edge (edge edge1, edge edge2, auto_vec<edge, 20> &stack)
{
  edge next_bb_edge = EDGE_SUCC (edge1->dest, 0);
  if (next_bb_edge && (next_bb_edge->flags & EDGE_DFS_BACK))
    {
      /* FIXME: Compared variable's value will be incorrect,
	 not satisfiable for the path.
	 For example, if we have "for (int i=0; i<8; i++)",
	 i's value may not be 8 when we continue with the false branch.
	 But it's ok, as for checking CRC's value we don't need i's value.  */
      if (dump_file && (dump_flags & TDF_DETAILS))
	fprintf (dump_file, "Won't iterate loop once more.\n");
      stack.quick_push (edge2);
    }
  else
    {
      if (dump_file && (dump_flags & TDF_DETAILS))
	fprintf (dump_file, "Adding the edge into the stack.\n");

      /* If the result of the condition is true/false,
	 continue execution only by the true branch.  */
      stack.quick_push (edge1);
    }
}


/* Add next basic blocks of the conditional block
   for the execution path into the stack.
   If the condition depends on symbolic values, keep both edges.
   If the condition is true, keep true edge, else - false edge.  */

void
crc_symbolic_execution::add_next_bbs (basic_block cond_bb,
				  state *new_branch_state,
				  auto_vec<edge, 20> &stack)
{
  edge true_edge;
  edge false_edge;
  extract_true_false_edges_from_block (cond_bb, &true_edge, &false_edge);

  if (new_branch_state->get_last_cond_status () == CS_SYM)
    {

      /* Add true branch's state into the states.
	 False branch's states will be kept in the current state.  */
      states.quick_push (new_branch_state);

      if (dump_file && (dump_flags & TDF_DETAILS))
	fprintf (dump_file, "Adding true and false edges into the stack.\n");

      /* Add outgoing edges to the stack.  */
      stack.quick_push (false_edge);
      stack.quick_push (true_edge);

      return;
    }
  else if (new_branch_state->get_last_cond_status () == CS_TRUE)
    {
      if (dump_file && (dump_flags & TDF_DETAILS))
	fprintf (dump_file, "Condition is true.\n");
      add_edge (true_edge, false_edge, stack);
    }
  else if (new_branch_state->get_last_cond_status () == CS_FALSE)
    {
      if (dump_file && (dump_flags & TDF_DETAILS))
	fprintf (dump_file, "Condition is false.\n");
      add_edge (false_edge, true_edge, stack);
    }
  else
    {
      if (dump_file && (dump_flags & TDF_DETAILS))
	fprintf (dump_file, "Something went wrong "
			    "during handling conditional statement.\n");
    }

  /* When we continue execution of only one path,
     there's no need of new state.  */
  delete new_branch_state;
}


/* Keep conditions depending on symbolic variables in the states.  */

bool
crc_symbolic_execution::add_condition (const gcond *cond,
				   state *current_state,
				   state *new_branch_state)
{
  /* Keep conditions of each branch execution in its state.
     Ex.
       if (a == 0)  // a's value is unknown

       new_branch_state.keep (a==0)
       current_state.keep (a!=0)

     The condition is kept in the bit level.
     For ex.
     If a's size is 8 and its value is {symb_a, 0, 0, 0, 0, 0, 0, 0},
     then for a == 0 we'll have symb_a == 0 condition.
  */

  tree lhs = gimple_cond_lhs (cond);
  tree rhs = gimple_cond_rhs (cond);
  switch (gimple_cond_code (cond))
    {
      case EQ_EXPR:
	{
	  new_branch_state->add_equal_cond (lhs, rhs);
	  if (new_branch_state->get_last_cond_status () == CS_SYM)
	    current_state->add_not_equal_cond (lhs, rhs);
	  return true;
	}
      case NE_EXPR:
	{
	  new_branch_state->add_not_equal_cond (lhs, rhs);
	  if (new_branch_state->get_last_cond_status () == CS_SYM)
	    current_state->add_equal_cond (lhs, rhs);
	  return true;
	}
      case GT_EXPR:
	{
	  new_branch_state->add_greater_than_cond (lhs, rhs);
	  if (new_branch_state->get_last_cond_status () == CS_SYM)
	    current_state->add_less_or_equal_cond (lhs, rhs);
	  return true;
	}
      case LT_EXPR:
	{
	  new_branch_state->add_less_than_cond (lhs, rhs);
	  if (new_branch_state->get_last_cond_status () == CS_SYM)
	    current_state->add_greater_or_equal_cond (lhs, rhs);
	  return true;
	}
      case GE_EXPR:
	{
	  new_branch_state->add_greater_or_equal_cond (lhs, rhs);
	  if (new_branch_state->get_last_cond_status () == CS_SYM)
	    current_state->add_less_than_cond (lhs, rhs);
	  return true;
	}
      case LE_EXPR:
	{
	  new_branch_state->add_less_or_equal_cond (lhs, rhs);
	  if (new_branch_state->get_last_cond_status () == CS_SYM)
	    current_state->add_greater_than_cond (lhs, rhs);
	  return true;
	}
      default:
	{
	  if (dump_file && (dump_flags & TDF_DETAILS))
	    fprintf (dump_file, "Unsupported condition.\n");
	  return false;
	}
    }
}


/* Create new state for true and false branch.
   Keep conditions in new created states.  */

bool
crc_symbolic_execution::resolve_condition (const gcond *cond,
				       auto_vec<edge, 20> &stack)
{
  /* Remove last state.  */
  state *current_state = states.last ();
  state *new_branch_state = new state (*current_state);

  if (!add_condition (cond, current_state, new_branch_state))
    return false;

  add_next_bbs (cond->bb, new_branch_state, stack);
  return true;
}


/* Keep the calculated value of the return value
   and the conditions of the executed path.  */

bool
crc_symbolic_execution::keep_return_val_and_conditions (const greturn *ret)
{
  tree return_op = gimple_return_retval (ret);

  if (!return_op)
    {
      if (dump_file && (dump_flags & TDF_DETAILS))
	fprintf (dump_file, "No return value.\n");
      return false;
    }

  if (TREE_CODE (return_op) == INTEGER_CST)
    {
      if (dump_file && (dump_flags & TDF_DETAILS))
	fprintf (dump_file, "Return value is a constant.\n");
      return false;
    }

  /* Get calculated return value.  */
  state *curr_state = states.last ();
  value *return_value = curr_state->get_value (return_op);

  if (!return_value)
    {
      if (dump_file && (dump_flags & TDF_DETAILS))
	fprintf (dump_file, "Return value is not in the state.\n");
      return false;
    }

  if (dump_file && (dump_flags & TDF_DETAILS))
    {
      fprintf (dump_file, "Return value is ");
      state::print_value (return_value);
    }

  state *final_state = new state;

  /* Keep return value's calculated value and conditions in the final state.  */
  final_state->add_var_state (return_op, return_value);
  final_state->bulk_add_conditions (curr_state->get_conditions ());
  final_states.quick_push (final_state);

  delete curr_state;
  states.pop ();

  return true;
}


/* Execute gimple statements of BB.
   Keeping values of variables in the state.  */

bool
crc_symbolic_execution::execute_bb_gimple_statements (basic_block bb,
						  auto_vec<edge, 20> &stack)
{
  for (gimple_stmt_iterator bsi = gsi_start_bb (bb);
       !gsi_end_p (bsi); gsi_next (&bsi))
    {
      gimple *gs = gsi_stmt (bsi);
      if (dump_file && (dump_flags & TDF_DETAILS))
	{
	  fprintf (dump_file, "Executing ");
	  print_gimple_stmt (dump_file, gs, dump_flags);
	}
      switch (gimple_code (gs))
	{
	  case GIMPLE_ASSIGN:
	    {
	      if (!execute_assign_statement (as_a<const gassign *> (gs)))
		return false;
	      break;
	    }
	  case GIMPLE_COND:
	    {
	      if (!resolve_condition (as_a<const gcond *> (gs), stack))
		return false;
	      return true;
	    }
	  case GIMPLE_RETURN:
	    {
	      if (!keep_return_val_and_conditions (as_a<const greturn *> (gs)))
		return false;
	      return true;
	    }
	  default:
	    {
	      if (dump_file)
		fprintf (dump_file,
			 "Warning, encountered unsupported statement, "
			 "while executing gimple statements!\n");
	      return false;
	    }
	}
    }

  /* Add each outgoing edge of the current block to the stack,
     despite back edges.
     This code isn't reachable if the last statement of the basic block
     is a conditional statement or return statement.
     Those cases are handled separately.  */

  edge out_edge;
  edge_iterator ei;
  FOR_EACH_EDGE (out_edge, ei, bb->succs)
    if (!(out_edge->flags & EDGE_DFS_BACK))
      stack.quick_push (out_edge);
    else if (!states.is_empty ())
      {
	/* Delete the state after executing the full path,
	   or encountering back edge.  */
	delete states.last ();
	states.pop ();
      }

  return true;
}


/* Assign values of phi instruction to its result.
   Keep updated values in the state.  */

bool
crc_symbolic_execution::execute_bb_phi_statements (basic_block bb,
					       edge incoming_edge)
{
  for (gphi_iterator gsi = gsi_start_phis (bb); !gsi_end_p (gsi);
       gsi_next (&gsi))
    {
      gphi *phi = gsi.phi ();
      tree lhs = gimple_phi_result (phi);

      /* Don't consider virtual operands.  */
      if (virtual_operand_p (lhs))
	continue;

      if (dump_file && (dump_flags & TDF_DETAILS))
	{
	  fprintf (dump_file, "Determining the value "
			      "for the following phi.\n");
	  print_gimple_stmt (dump_file, phi, dump_flags);
	}

      tree rhs = PHI_ARG_DEF_FROM_EDGE (phi, incoming_edge);

      state *current_state = states.last ();
      if (!current_state->do_assign (rhs, lhs))
	return false;
    }
  return true;
}


/* Execute all statements of BB.
   Keeping values of variables in the state.  */

bool
crc_symbolic_execution::execute_bb_statements (basic_block bb,
					   edge incoming_edge,
					   auto_vec<edge, 20> &stack)
{
  if (!execute_bb_phi_statements (bb, incoming_edge))
    return false;

  return execute_bb_gimple_statements (bb, stack);
}


/* Traverse function fun's all paths from the first basic block to the last.
   Each time iterate loops only once.
   Symbolically execute statements of each path.  */

bool
crc_symbolic_execution::traverse_function (function *fun)
{
  /* TODO: Check whether back_edges can be determined by BB index,
       if so, no need of EDGE_DFS_BACK flag.  */
  mark_dfs_back_edges (fun);
  /* Allocate stack for back-tracking up CFG.  */
  auto_vec<edge, 20> stack (n_basic_blocks_for_fn (fun) + 1);

  /* Push all successor edges of first block into the stack.
     No need to execute first block.  */
  edge e;
  edge_iterator ei;
  FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR_FOR_FN (fun)->succs)
    stack.quick_push (e);

  while (!stack.is_empty ())
    {
      /* Look at the edge on the top of the stack.  */
      edge e = stack.last ();
      stack.pop ();

      /* Get dest block of the edge.  */
      basic_block bb = e->dest;

      if (dump_file && (dump_flags & TDF_DETAILS))
	fprintf (dump_file, "\n\nExecuting BB <%d>\n\n", bb->index);

      /* Symbolically execute statements.  */
      if (!execute_bb_statements (bb, e, stack))
	return false;
    }
  return true;
}


/* Symbolically execute function.  */

bool
crc_symbolic_execution::execute (function *fun)
{
  if (dump_file && (dump_flags & TDF_DETAILS))
    fprintf (dump_file, "\nExecuting CRC-like function.\n");

  /* Create initial state and push into the vector of states.  */
  states.quick_push (new state);
  state *initial_state = states.last ();

  make_symbolic_func_args_and_sizes (fun, initial_state);

  /* Add declared variables to the state.  */
  add_function_local_ssa_vars (fun, initial_state);

  /* Execute function's statements, keeping a state for each path.  */
  return traverse_function (fun);
}


/* Determine which bit of data must be 1.  */

unsigned HOST_WIDE_INT
determine_index (tree data, bool is_shift_left)
{
  if (is_shift_left)
    // FIXME: may be the data's size is larger,
    //  but MSB is checked for the middle bit.
    return tree_to_uhwi (TYPE_SIZE (TREE_TYPE (data))) - 1;
  return 0;
}


/* Assign appropriate values to data, crc
   and other phi results to calculate the polynomial.  */

void
assign_vals_to_header_phis (state *polynomial_state, basic_block bb,
			    gphi *crc, gphi *data,
			    bool is_shift_left)
{
  for (gphi_iterator gsi = gsi_start_phis (bb); !gsi_end_p (gsi);
       gsi_next (&gsi))
    {

      gphi *phi = gsi.phi ();
      tree lhs = gimple_phi_result (phi);

      /* Don't consider virtual operands.  */
      if (virtual_operand_p (lhs))
	continue;

      if ((data && phi == data) || (!data && phi == crc))
	{
	  if (dump_file && (dump_flags & TDF_DETAILS))
	    {
	      fprintf (dump_file, "Assigning the required value to ");
	      print_generic_expr (dump_file, lhs, dump_flags);
	      fprintf (dump_file, " variable.\n");
	    }
	  polynomial_state->do_assign_pow2 (lhs,
					    determine_index (lhs,
							     is_shift_left));
	}
      else if (phi == crc)
	{
	  if (dump_file && (dump_flags & TDF_DETAILS))
	    {
	      fprintf (dump_file, "Assigning 0 value to ");
	      print_generic_expr (dump_file, lhs, dump_flags);
	      fprintf (dump_file, " variable.\n");
	    }
	  polynomial_state->do_assign (build_zero_cst (TREE_TYPE (lhs)), lhs);
	}
      else if (TREE_CODE (PHI_ARG_DEF (phi, phi->nargs - 1)) == INTEGER_CST)
	{
	  if (dump_file && (dump_flags & TDF_DETAILS))
	    {
	      fprintf (dump_file, "First value of phi is a constant, "
				  "assigning the number to ");
	      print_generic_expr (dump_file, lhs, dump_flags);
	      fprintf (dump_file, " variable.\n");
	    }
	  polynomial_state->do_assign (PHI_ARG_DEF (phi, phi->nargs - 1), lhs);
	}
      else
	{
	  if (dump_file && (dump_flags & TDF_DETAILS))
	    {
	      fprintf (dump_file, "First value of phi isn't constant, "
				  "assigning to ");
	      print_generic_expr (dump_file, lhs, dump_flags);
	      fprintf (dump_file, " variable.\n");
	    }
	  polynomial_state->do_assign (build_zero_cst (TREE_TYPE (lhs)), lhs);
	}
    }
}


/* Execute the loop, which calculates crc with initial values,
   to calculate the polynomial.  */

bool
crc_symbolic_execution::execute_crc_loop (class loop *crc_loop, gphi *crc,
				      gphi *data,
				      bool is_shift_left)
{
  if (dump_file && (dump_flags & TDF_DETAILS))
    fprintf (dump_file, "\n\nTrying to calculate the polynomial.\n\n");

  states.quick_push (new state);

  basic_block bb = crc_loop->header;
  assign_vals_to_header_phis (states.last (), bb, crc, data, is_shift_left);

  auto_vec<edge, 20> stack (crc_loop->num_nodes);

  execute_bb_gimple_statements (bb, stack);

  /* stack may not be empty.  Successor BB's are added into the stack
     from the execute_bb_gimple_statements function.  */
  while (!stack.is_empty ())
    {
      /* Look at the edge on the top of the stack.  */
      edge e = stack.last ();
      stack.pop ();

      /* Get dest block of the edge.  */
      basic_block bb = e->dest;

      /* Execute only basic blocks of the crc_loop.  */
      if (!flow_bb_inside_loop_p (crc_loop, bb))
	continue;


      /* Execute statements.  */
      if (!execute_bb_statements (bb, e, stack))
	return false;
    }

  if (states.length () != 1)
    {
      if (dump_file && (dump_flags & TDF_DETAILS))
	fprintf (dump_file, "The number of states is not one.\n");
      return false;
    }
  return true;
}


/* Return true if all bits of the polynomial are constants (0 or 1).
   Otherwise return false.  */

bool
polynomial_is_known (const value *polynomial)
{
  for (size_t i = 0; i < polynomial->length (); i++)
    {
      if (!is_a<bit *> ((*polynomial)[i]))
	return false;
    }
  return true;
}


/* Execute the loop, which is expected to calculate CRC,
   to extract polynomial, assigning real numbers to crc and data.  */

value *
crc_symbolic_execution::extract_poly_and_create_lfsr (class loop *crc_loop,
						  gphi *crc, gphi *data,
						  bool is_shift_left)
{
  if (!execute_crc_loop (crc_loop, crc, data, is_shift_left))
    return nullptr;

  state *polynomial_state = states.last ();

  /* Get the tree which will contain the value of the polynomial
     at the end of the loop.  */
  tree calculated_crc = PHI_ARG_DEF (crc, 0);

  if (dump_file && (dump_flags & TDF_DETAILS))
    {
      fprintf (dump_file, "Getting the value of ");
      print_generic_expr (dump_file, calculated_crc, dump_flags);
      fprintf (dump_file, " variable.\n");
    }

  /* Get the value (bit vector) of the tree (it may be the polynomial).  */
  value *polynomial = polynomial_state->get_value (calculated_crc);
  if (!polynomial)
    {
      if (dump_file && (dump_flags & TDF_DETAILS))
	fprintf (dump_file, "Polynomial's value is null");
      return nullptr;
    }

  if (dump_file && (dump_flags & TDF_DETAILS))
    {
      /* Note: It may not be the real polynomial.
	 If it's a bit reflected crc,
	 then to get a real polynomial,
	 it must be reflected and 1 bit added.  */
      fprintf (dump_file, "Polynomial's value is ");
      state::print_value (polynomial);
    }

  /* Check that polynomial's all bits are constants.  */
  if (!polynomial_is_known (polynomial))
    {
      if (dump_file && (dump_flags & TDF_DETAILS))
	  fprintf (dump_file, "Polynomial's value is not constant.\n");
      return nullptr;
    }

  return state::create_lfsr (calculated_crc, polynomial, is_shift_left);
}


/**************************** LFSR MATCHING *********************************/
// TODO write in separate file.


/* Returns true index1 and index2 differ by a factor of 8.  */

bool
acceptable_diff (size_t index1, size_t index2)
{
  size_t diff;
  if (index1 > index2)
    diff = index1 - index2;
  else
    diff = index2 - index1;

  /* Indexes of the symbolic bit may differ by 0, 8, 16, 24, 32, ...  */
  return diff % 8 == 0;
}


/* Returns true if the symb_exp is a bit_xor_expression and const_bit equals 1.
   Otherwise, returns false.  */

bool
is_one (value_bit *const_bit)
{
  return is_a<bit *> (const_bit)
	 && (as_a<bit *> (const_bit))->get_val () == 1;
}


/* Returns true if bit is symbolic and its index differs from LFSR bit's index
   by a factor of 8.
   Sometimes calculated crc value is returned
   after being shifted by 8's factor.  */

bool
is_a_valid_symb (value_bit *bit, size_t lfsr_bit_index)
{
  if (!is_a<symbolic_bit *> (bit))
    return false;

  size_t sym_bit_index = (as_a<symbolic_bit *> (bit))->get_index ();
  return acceptable_diff (sym_bit_index, lfsr_bit_index);
}


/* Returns true if bit is crc[index+8*i]^data[index+8*i],
   where i is a whole number.
   Otherwise, returns false.  */

bool
is_a_valid_xor (value_bit *bit, size_t lfsr_bit_index)
{
  return is_a<bit_xor_expression *> (bit)
	 && is_a_valid_symb ((as_a<bit_xor_expression *> (bit))->get_left (),
			     lfsr_bit_index)
	 && is_a_valid_symb ((as_a<bit_xor_expression *> (bit))->get_right (),
			     lfsr_bit_index);
}


/* Returns true if the bit is a valid
   crc[index+8*i] ^ data[index+8*i] ^ 1, or crc[index+8*i] ^ 1,
   where i is a whole number.
   index is the index of the LFSR bit from the same position as in CRC.

   If there is lfsr[8] at LFSR value vectors' 9-th bit,
   when in the crc vectors' 9-th bit's value must be
   crc[8] or crc[16],...

   Otherwise, returns false.  */

bool
is_a_valid_xor_one (value_bit *bit, size_t lfsr_bit_index)
{
  if (is_a<bit_xor_expression *> (bit))
    {
      value_bit *symb_exp = nullptr;
      bit_xor_expression *xor_exp = as_a<bit_xor_expression *> (bit);
      if (is_one (xor_exp->get_right ()))
	symb_exp = xor_exp->get_left ();
      else if (is_one (xor_exp->get_left ()))
	symb_exp = xor_exp->get_right ();
      else
	return false;
      return is_a_valid_xor (symb_exp, lfsr_bit_index)
	     || is_a_valid_symb (symb_exp, lfsr_bit_index);
    }
  else
    return false;
}


/* Check whether the condition_exp and refernce_exp match.
   This is done for finding the condition which checks MSB/LSB's value
   (under which xor is/not done).  */

bool
may_be_xors_condition (value_bit *reference_exp, value_bit *condition_exp,
		       size_t sb_index)
{
  if (!reference_exp)
    return false;

  if (!condition_exp)
    return false;

  if (is_a<bit_xor_expression *> (reference_exp))
    {
      if (is_one (as_a<bit_xor_expression *> (reference_exp)->get_right ()))
	reference_exp = as_a<bit_xor_expression *>
	    (reference_exp)->get_left ();
      else if (is_a<bit_xor_expression *> (condition_exp))
	return may_be_xors_condition (as_a<bit_xor_expression *>
					  (reference_exp)->get_left (),
				      as_a<bit_xor_expression *>
					  (condition_exp)->get_left (),
				      sb_index)
	       && may_be_xors_condition (as_a<bit_xor_expression *>
					     (reference_exp)->get_right (),
					 as_a<bit_xor_expression *>
					     (condition_exp)->get_right (),
					 sb_index);
      return false;
    }
  if (is_a<symbolic_bit *> (reference_exp)
      && is_a<symbolic_bit *> (condition_exp))
    {
      symbolic_bit *condition_symbolic = as_a<symbolic_bit *> (condition_exp);
      symbolic_bit *reference_symbolic = as_a<symbolic_bit *> (reference_exp);
      return reference_symbolic->get_origin ()
	     == condition_symbolic->get_origin ()
	     && acceptable_diff (sb_index,
				 condition_symbolic->get_index ());
    }
  if (is_a<symbolic_bit *> (reference_exp)
      && is_a<bit_xor_expression *> (condition_exp))
    return may_be_xors_condition (as_a<symbolic_bit *> (reference_exp),
				  as_a<bit_xor_expression *>
				      (condition_exp)->get_left (), sb_index)
	   || may_be_xors_condition (as_a<symbolic_bit *> (reference_exp),
				     as_a<bit_xor_expression *>
					 (condition_exp)->get_right (),
				     sb_index);
  return false;
}


/* Checks whether the condition is checked for significant bit being 0 or 1.
   If is_one is 1, when check whether the significant bit is 1 (xor branch),
   if 0 whether the significant bit is 0 (not xor branch).  */

bool
check_condition (value_bit *symb_exp, unsigned char is_one,
		 size_t sb_index, state *final_state)
{
  for (auto iter = final_state->get_conditions ().begin ();
       iter != final_state->get_conditions ().end (); ++iter)
    {
      /* Get ordinal condition.  */
      bit_condition *condition = nullptr;
      if (is_a<bit_condition *> (*iter))
	condition = as_a<bit_condition *> (*iter);
      else
	continue;

      /* If the condition may be for checking MSB/LSB being 1/0,
	 then if is_one is 1 and condition is for checking MSB/LSB being one or
	 if is_one is 0 and condition is for checking MSB/LSB being 0
	 return true, otherwise - false.  */
      value_bit *cond_exp = (*iter)->get_left ();
      if (may_be_xors_condition (symb_exp, cond_exp, sb_index))
	{
	  if (!is_a<bit *> ((*iter)->get_right ()))
	    return false;

	  unsigned char comparison_val = as_a<bit *> ((*iter)->get_right ())
	      ->get_val ();
	  if (condition->get_code () == EQ_EXPR)
	    return comparison_val == is_one;
	  if (condition->get_code () == NE_EXPR)
	    return comparison_val != is_one;
	  return false;
	}
    }
  return false;
}


/* Check whether LSB/MSB of LFSR and calculated (maybe)CRC match.
   If LSB/MSB is checked for being one in the CRC code,
   then here we check MSB/LSB.  */

bool
significant_bits_match (value_bit *crc, value_bit *lfsr,
			value_bit *conditions_crc,
			size_t sb_index, state *final_state)
{
  /* If LFSR's MSB/LSB value is a constant (0 or 1),
     then CRC's MSB/LSB must have the same value.  */
  if (is_a<bit *> (lfsr))
    {
      if (!((is_a<bit *> (crc)
	     && as_a<bit *> (crc)->get_val ()
		== as_a<bit *> (lfsr)->get_val ())))
	return false;
      return true;
    }
    /* If LFSR's MSB/LSB value is a symbolic_bit
       (that means MSB/LSB of the polynomial is 1),
       then CRC's MSB/LSB must be 0 if the condition is false,
       1 - if the condition is true.
       (Because crc is xored with the polynomial in case LSB/MSB is 1).  */
  else if (is_a<symbolic_bit *> (lfsr))
    {
      if (!(is_a<bit *> (crc) && ((as_a<bit *> (crc)->get_val () == 0
				   && check_condition (conditions_crc, 0,
						       sb_index, final_state))
				  || (as_a<bit *> (crc)->get_val () == 1
				      && check_condition (conditions_crc, 1,
							  sb_index,
							  final_state)))))
	return false;
      return true;
    }
  return false;
}


/* Check whether significant bit of LFSR and calculated (maybe)CRC match.  */

bool
significant_bits_match (const value *lfsr,
			const value *crc_state,
			bool is_left_shift,
			value_bit *symb_val,
			size_t it_end,
			state *final_state)
{
  if (is_left_shift)
    {
      if (dump_file && (dump_flags & TDF_DETAILS))
	fprintf (dump_file, "Checking 0 bit.\n");

      if (!significant_bits_match ((*crc_state)[0], (*lfsr)[0], symb_val,
				   it_end - 1, final_state))
	return false;
    }
  else
    {
      if (dump_file && (dump_flags & TDF_DETAILS))
	fprintf (dump_file, "Checking %lu bit.\n", it_end);

      if (!significant_bits_match ((*crc_state)[it_end],
				   (*lfsr)[it_end], symb_val, 0, final_state))
	return false;
    }
  return true;
}


/* Match the crc to the lfsr, where crc's all bit values are
   symbolic_bits or symbolic_bits ^ 1, or
   bit_xor_expression or bit_xor_expression ^ 1,
   besides MSB/LSB (it may be constant).

  Under this are considered the cases,
  when sizes of crc and data are same and

  1.  Data is xored with crc before the loop.
  2.  Data is xored with crc in the loop.
  3.  Data is xor-ed with crc only for checking the condition and
      xor is done only on crc.  */

bool
lfsr_and_crc_bits_match (const value *lfsr,
			 const value *crc_state,
			 value_bit *symb_val,
			 bool is_left_shift,
			 size_t i, size_t it_end, size_t sb_index,
			 state *final_state)
{

  /* Check whether significant bits of LFSR and CRC match.  */
  if (!significant_bits_match (lfsr, crc_state, is_left_shift, symb_val,
			       it_end, final_state))
    return false;

  for (; i < it_end; i++)
    {
      if (dump_file && (dump_flags & TDF_DETAILS))
	fprintf (dump_file, "Checking %lu bit.\n", i);

      /* Check the case when in lfsr we have LFSR (i)^LFSR (SBi),
	 where 0<i<LFSR_size and SBi is the index of MSB/LSB (LFSR_size-1/0).
	 In that case in crc_state (resulting CRC)
	 we must have crc (i+8*k)^1 case, when condition is true
	 and crc (i+8*k) when condition is false,
	 (as crc is xor-ed with the polynomial only if the LSB/MSB is one)
	 where k is a whole number
	 (in some implementations crc is shifted left or right by 8, 16...).  */
      if (is_a<bit_xor_expression *> ((*lfsr)[i]))
	{
	  size_t index = (as_a<bit_xor_expression *> ((*lfsr)[i]))->get_left ()
	      ->get_index ();
	  if (!((is_a_valid_xor_one ((*crc_state)[i], index)
		 && check_condition (
		     as_a<bit_xor_expression *> ((*crc_state)[i])->get_left (),
		     1, sb_index, final_state))
		|| (is_a_valid_symb ((*crc_state)[i], index)
		    && check_condition ((*crc_state)[i], 0, sb_index,
					final_state))
		|| (is_a_valid_xor ((*crc_state)[i], index)
		    && check_condition ((*crc_state)[i], 0, sb_index,
					final_state))))
	    return false;
	}
	/* Check the case when in LFSR we have LFSR (i), where 0<i<LFSR_size.
	   In that case in resulting CRC we must have crc (i+8*k) case,
	   when condition is true or condition is false.
	   If we have just LFSR (i), that means polynomial's i+-1 bit is 0,
	   so despite CRC is xor-ed or not, we will have crc (i).  */
      else if (is_a<symbolic_bit *> ((*lfsr)[i]))
	{
	  size_t index = (as_a<symbolic_bit *> ((*lfsr)[i]))->get_index ();
	  if (!((is_a_valid_symb ((*crc_state)[i], index)
		 || is_a_valid_xor ((*crc_state)[i], index))
		&& (check_condition ((*crc_state)[i], 0, sb_index, final_state)
		    || check_condition ((*crc_state)[i], 1, sb_index,
					final_state))))
	    return false;

	}
      else
	{
	  if (dump_file && (dump_flags & TDF_DETAILS))
	    fprintf (dump_file, "Not expected expression in LFSR.\n");
	  return false;
	}
    }
  return true;
}


/* Returns true if in the CRC value's vector we have one of the form of
   following consecutive bits
   1.  0, then 1
   2.  1, then 0
   3.  0, then 0
   4.  1, then 1
   Otherwise returns false.
   */

bool
maybe_neighbour_vals_of_crc (bit *curr_bit_val, value_bit *next_bit_val)
{
  if (!curr_bit_val)
    return true;

  /* As the value doesn't matter,
     just check that next_bit_val is bit *.  */
  if (is_a<bit *> (next_bit_val))
    return true;
  return false;
}


/* Returns true if in the CRC value's vector we have one of the form of
   following consecutive bits
   1. crc[], then crc[]
   2. crc[], then crc[]^data[]
   3. crc[], then crc[]^data[]^1
   4. crc[], then crc[]^1
   5. data[], then crc[]^data[]
   6. data[], then crc[]^data[]^1
   7. crc[], then crc[]^data1[]^data2[] TODO: Maybe needs a correction.
   ...
   Otherwise returns false.  */

bool
maybe_neighbour_vals_of_crc (symbolic_bit *curr_bit_val,
			     value_bit *next_bit_val)
{
  if (!curr_bit_val)
    return true;

  /* If both are symbolic_bits,
     check that they are bits of the same variable.  */
  if (is_a<symbolic_bit *> (next_bit_val))
    return curr_bit_val->get_origin ()
	   == as_a<symbolic_bit *> (next_bit_val)->get_origin ();
  else if (is_a<bit_xor_expression *> (next_bit_val))
    return maybe_neighbour_vals_of_crc (curr_bit_val,
					as_a<bit_xor_expression *>
					    (next_bit_val)->get_left ())
	   || maybe_neighbour_vals_of_crc (curr_bit_val,
					   as_a<bit_xor_expression *>
					       (next_bit_val)->get_right ());
  return false;
}


/* Check the case when current bit's value is crc[]^1 or crc[]^data[]^1.
   Thus curr_xor_exp_left value is crc[] or crc[]^data[].  */

bool
check_xor_right_1_case (value_bit *curr_xor_exp_left,
			value_bit *next_bit_val)
{
  /* The case when current bit's value is crc[]^1.  */
  if (is_a<symbolic_bit *> (curr_xor_exp_left))
    {
      /* The case when current bit's value is crc[]^1,
	 next bit's - crc[].
	 There may not be ^ 0 case, as expressions are optimized.  */
      if (is_a<symbolic_bit *> (next_bit_val))
	return maybe_neighbour_vals_of_crc (as_a<symbolic_bit *>
						(curr_xor_exp_left),
					    next_bit_val);

      if (is_a<bit_xor_expression *> (next_bit_val))
	{
	  bit_xor_expression *next_bit_xor
	      = as_a<bit_xor_expression *> (next_bit_val);
	  /* Check the case when current bit's value is crc[]^1,
	      next bit's something ^ 1.  */
	  if (is_a<bit *> (
	      next_bit_xor->get_right ()))
	    return maybe_neighbour_vals_of_crc (as_a<symbolic_bit *>
						    (curr_xor_exp_left),
						next_bit_xor->get_left ());
	}
    }

  /* The case when current bit's value is crc[]^data[]^1,
    next bit's - crc[]^data[] or crc[]^1 or crc[]^data[]^1.  */
  if (is_a<bit_xor_expression *> (curr_xor_exp_left)
      && is_a<bit_xor_expression *> (next_bit_val))
    return maybe_neighbour_vals_of_crc
	(as_a<bit_xor_expression *> (curr_xor_exp_left),
	 next_bit_val);
  return false;
}


/* Check the case, when for the current bit we have crc[]^data[].  */

bool
check_xor_left_and_right_symb_case (bit_xor_expression *curr_xor_exp,
				    value_bit *next_bit_val)
{
  symbolic_bit *curr_xor_exp_left_sym
      = as_a<symbolic_bit *> (curr_xor_exp->get_left ());
  symbolic_bit *curr_xor_exp_right_sym
      = as_a<symbolic_bit *> (curr_xor_exp->get_right ());

  /* The case when current bit's value is crc[]^data[],
     next bit's - crc[] or data[].  */
  if (is_a<symbolic_bit *> (next_bit_val))
    return maybe_neighbour_vals_of_crc (curr_xor_exp_left_sym,
					next_bit_val)
	   || maybe_neighbour_vals_of_crc (curr_xor_exp_right_sym,
					   next_bit_val);
    /* The case when current bit's value is crc[]^data[],
       next bit's - something ^ something.  */
  else if (is_a<bit_xor_expression *> (next_bit_val))
    {
      bit_xor_expression *next_bit_xor_exp = as_a<bit_xor_expression *>
	  (next_bit_val);
      /* The case when current bit's value is crc[]^data[],
	 next bit's - crc[]^data[].  */
      if (is_a<symbolic_bit *> (next_bit_xor_exp->get_right ())
	  && is_a<symbolic_bit *> (next_bit_xor_exp->get_left ()))
	return
	    maybe_neighbour_vals_of_crc (curr_xor_exp_left_sym,
					 next_bit_xor_exp->get_left ())
	    && maybe_neighbour_vals_of_crc (curr_xor_exp_right_sym,
					    next_bit_xor_exp->get_right ());
	/* The case when current bit's value is crc[]^data[],
	   next bit's - crc[]^data[]^1.  */
      else if (is_a<bit *> (next_bit_xor_exp->get_right ())
	       && is_a<bit_xor_expression *> (next_bit_xor_exp->get_left ()))
	return maybe_neighbour_vals_of_crc (curr_xor_exp,
					    next_bit_xor_exp->get_left ());
    }
  return false;
}


/* Returns true if in the CRC value's vector we have one of the form of
   following consecutive bits
   1. crc[]^1 or crc[]^data[]^1, then crc[]
   2. crc[]^data[]^1, then crc[]^data[]
   3. crc[]^data[], then crc[] or data[]
   4. crc[]^data[], then crc[]^data[]
   5. crc[]^data[], then crc[]^data[]^1
   Otherwise returns false.  */

bool
maybe_neighbour_vals_of_crc (bit_xor_expression *curr_xor_exp,
			     value_bit *next_bit_val)
{
  if (!curr_xor_exp)
    return true;

  /* The case when we have some_expression ^ 1
     for the current bit's value.  */
  if (is_a<bit *> (curr_xor_exp->get_right ()))
    return check_xor_right_1_case (curr_xor_exp->get_left (), next_bit_val);
    /* The case when current bit's value is crc[]^data[].  */
  else if (is_a<symbolic_bit *> (curr_xor_exp->get_right ())
	   && is_a<symbolic_bit *> (curr_xor_exp->get_left ()))
    return check_xor_left_and_right_symb_case (curr_xor_exp, next_bit_val);
  return false;
}


/* Checks that crc_state's all bit values may be real CRC's values.
   Returns true if crc_state matches the LFSR, otherwise - false.  */

bool
state_matches_lfsr (const value *lfsr,
		    const value *crc_state,
		    bool is_left_shift, state *final_state)
{
  /* Depending on whether it is bit forward or reversed CRC,
     determine in which significant bit new value is added,
     to examine that bit separately.
     If in the CRC alg MSB (sb_index) is checked to be one for xor,
     then here we check LSB separately (marginal bit).
     If LSB (sb_index) is checked, then we separate MSB (marginal bit).  */
  size_t it_beg = 0, sb_index = 0,
      it_end = lfsr->length () < crc_state->length ()
	       ? lfsr->length () : crc_state->length ();
  if (is_left_shift)
    {
      sb_index = it_end - 1;
      it_beg = 1;
    }
  else
    --it_end;

  symbolic_bit *symb_bit = nullptr;
  bit_xor_expression *xor_exp = nullptr;

  /* Check what kind of values are in the returned crc_state
     (which is expected to be CRC), except for marginal bit.  Return false,
     if there is such a value which must not exist in the CRC value.  */
  for (unsigned j = it_beg; j < it_end - 1; ++j)
    {
      if (dump_file && (dump_flags & TDF_DETAILS))
	fprintf (dump_file, "Checking %u bit's "
			    "and %u bit's compatibility.\n", j, j + 1);
      switch ((*crc_state)[j]->get_type ())
	{
	  case SYMBOLIC_BIT:
	    {
	      symb_bit = as_a<symbolic_bit *> ((*crc_state)[j]);
	      if (!maybe_neighbour_vals_of_crc (symb_bit, (*crc_state)[j + 1]))
		return false;
	      break;
	    }
	  case BIT:
	    /* Except for marginal bit there mustn't be other constants.
	       (For some implementations we get constant values for CRC,
	       but we don't support those cases).  */
	    return false;
	  case BIT_XOR_EXPRESSION:
	    {
	      /* Calculated CRC may contain crc[]^data[],
		 or crc[]^1, or crc[]^data[]^1.  */
	      xor_exp = as_a<bit_xor_expression *> ((*crc_state)[j]);
	      if (!maybe_neighbour_vals_of_crc (xor_exp, (*crc_state)[j + 1]))
		return false;
	      break;
	    }
	  default:
	    /* There may not be other type of bit values in the CRC.  */
	    return false;
	}
    }

  if (dump_file && (dump_flags & TDF_DETAILS))
    fprintf (dump_file, "Checks passed.  Starting bit by bit matching.\n");

  /* Determine which value might have been checked in the condition.  */
  value_bit *reference_val = nullptr;
  if (symb_bit)
    reference_val = symb_bit;
  else if (!symb_bit)
    reference_val = xor_exp;

  /* Check whether crc_state and lfsr bits match.  */
  return lfsr_and_crc_bits_match (lfsr, crc_state, reference_val, is_left_shift,
				  it_beg, it_end, sb_index, final_state);
  return false;
}


/* Returns true if all states from final_states match the LFSR,
   otherwise - false.  */

bool
all_states_match_lfsr (value *lfsr,
		       bool is_left_shift,
		       const vec<state *> &final_states)
{
  for (size_t i=0; i < final_states.length (); ++i)
    {
      state *final_state = final_states[i];
      if (dump_file && (dump_flags & TDF_DETAILS))
	{
	  fprintf (dump_file, "Matching LFSR and following returned state.\n");
	  state::print_value (final_state->get_first_value ());
	  final_state->print_conditions ();
	}
      if (!state_matches_lfsr (lfsr, final_state->get_first_value (),
			       is_left_shift, final_state))
	return false;
    }
  return true;
}