1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
7288
7289
7290
7291
7292
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
7347
7348
7349
7350
7351
7352
7353
7354
7355
7356
7357
7358
7359
7360
7361
7362
7363
7364
7365
7366
7367
7368
7369
7370
7371
7372
7373
7374
7375
7376
7377
7378
7379
7380
7381
7382
7383
7384
7385
7386
7387
7388
7389
7390
7391
7392
7393
7394
7395
7396
7397
7398
7399
7400
7401
7402
7403
7404
7405
7406
7407
7408
7409
7410
7411
7412
7413
7414
7415
7416
7417
7418
7419
7420
7421
7422
7423
7424
7425
7426
7427
7428
7429
7430
7431
7432
7433
7434
7435
7436
7437
7438
7439
7440
7441
7442
7443
7444
7445
7446
7447
7448
7449
7450
7451
7452
7453
7454
7455
7456
7457
7458
7459
7460
7461
7462
7463
7464
7465
7466
7467
7468
7469
7470
7471
7472
7473
7474
7475
7476
7477
7478
7479
7480
7481
7482
7483
7484
7485
7486
7487
7488
7489
7490
7491
7492
7493
7494
7495
7496
7497
7498
7499
7500
7501
7502
7503
7504
7505
7506
7507
7508
7509
7510
7511
7512
7513
7514
7515
7516
7517
7518
7519
7520
7521
7522
7523
7524
7525
7526
7527
7528
7529
7530
7531
7532
7533
7534
7535
7536
7537
7538
7539
7540
7541
7542
7543
7544
7545
7546
7547
7548
7549
7550
7551
7552
7553
7554
7555
7556
7557
7558
7559
7560
7561
7562
7563
7564
7565
7566
7567
7568
7569
7570
7571
7572
7573
7574
7575
7576
7577
7578
7579
7580
7581
7582
7583
7584
7585
7586
7587
7588
7589
7590
7591
7592
7593
7594
7595
7596
7597
7598
7599
7600
7601
7602
7603
7604
7605
7606
7607
7608
7609
7610
7611
7612
7613
7614
7615
7616
7617
7618
7619
7620
7621
7622
7623
7624
7625
7626
7627
7628
7629
7630
7631
7632
7633
7634
7635
7636
7637
7638
7639
7640
7641
7642
7643
7644
7645
7646
7647
7648
7649
7650
7651
7652
7653
7654
7655
7656
7657
7658
|
/* Common subexpression elimination for GNU compiler.
Copyright (C) 1987-2013 Free Software Foundation, Inc.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "rtl.h"
#include "tm_p.h"
#include "hard-reg-set.h"
#include "regs.h"
#include "basic-block.h"
#include "flags.h"
#include "insn-config.h"
#include "recog.h"
#include "function.h"
#include "expr.h"
#include "diagnostic-core.h"
#include "toplev.h"
#include "ggc.h"
#include "except.h"
#include "target.h"
#include "params.h"
#include "rtlhooks-def.h"
#include "tree-pass.h"
#include "df.h"
#include "dbgcnt.h"
#include "pointer-set.h"
/* The basic idea of common subexpression elimination is to go
through the code, keeping a record of expressions that would
have the same value at the current scan point, and replacing
expressions encountered with the cheapest equivalent expression.
It is too complicated to keep track of the different possibilities
when control paths merge in this code; so, at each label, we forget all
that is known and start fresh. This can be described as processing each
extended basic block separately. We have a separate pass to perform
global CSE.
Note CSE can turn a conditional or computed jump into a nop or
an unconditional jump. When this occurs we arrange to run the jump
optimizer after CSE to delete the unreachable code.
We use two data structures to record the equivalent expressions:
a hash table for most expressions, and a vector of "quantity
numbers" to record equivalent (pseudo) registers.
The use of the special data structure for registers is desirable
because it is faster. It is possible because registers references
contain a fairly small number, the register number, taken from
a contiguously allocated series, and two register references are
identical if they have the same number. General expressions
do not have any such thing, so the only way to retrieve the
information recorded on an expression other than a register
is to keep it in a hash table.
Registers and "quantity numbers":
At the start of each basic block, all of the (hardware and pseudo)
registers used in the function are given distinct quantity
numbers to indicate their contents. During scan, when the code
copies one register into another, we copy the quantity number.
When a register is loaded in any other way, we allocate a new
quantity number to describe the value generated by this operation.
`REG_QTY (N)' records what quantity register N is currently thought
of as containing.
All real quantity numbers are greater than or equal to zero.
If register N has not been assigned a quantity, `REG_QTY (N)' will
equal -N - 1, which is always negative.
Quantity numbers below zero do not exist and none of the `qty_table'
entries should be referenced with a negative index.
We also maintain a bidirectional chain of registers for each
quantity number. The `qty_table` members `first_reg' and `last_reg',
and `reg_eqv_table' members `next' and `prev' hold these chains.
The first register in a chain is the one whose lifespan is least local.
Among equals, it is the one that was seen first.
We replace any equivalent register with that one.
If two registers have the same quantity number, it must be true that
REG expressions with qty_table `mode' must be in the hash table for both
registers and must be in the same class.
The converse is not true. Since hard registers may be referenced in
any mode, two REG expressions might be equivalent in the hash table
but not have the same quantity number if the quantity number of one
of the registers is not the same mode as those expressions.
Constants and quantity numbers
When a quantity has a known constant value, that value is stored
in the appropriate qty_table `const_rtx'. This is in addition to
putting the constant in the hash table as is usual for non-regs.
Whether a reg or a constant is preferred is determined by the configuration
macro CONST_COSTS and will often depend on the constant value. In any
event, expressions containing constants can be simplified, by fold_rtx.
When a quantity has a known nearly constant value (such as an address
of a stack slot), that value is stored in the appropriate qty_table
`const_rtx'.
Integer constants don't have a machine mode. However, cse
determines the intended machine mode from the destination
of the instruction that moves the constant. The machine mode
is recorded in the hash table along with the actual RTL
constant expression so that different modes are kept separate.
Other expressions:
To record known equivalences among expressions in general
we use a hash table called `table'. It has a fixed number of buckets
that contain chains of `struct table_elt' elements for expressions.
These chains connect the elements whose expressions have the same
hash codes.
Other chains through the same elements connect the elements which
currently have equivalent values.
Register references in an expression are canonicalized before hashing
the expression. This is done using `reg_qty' and qty_table `first_reg'.
The hash code of a register reference is computed using the quantity
number, not the register number.
When the value of an expression changes, it is necessary to remove from the
hash table not just that expression but all expressions whose values
could be different as a result.
1. If the value changing is in memory, except in special cases
ANYTHING referring to memory could be changed. That is because
nobody knows where a pointer does not point.
The function `invalidate_memory' removes what is necessary.
The special cases are when the address is constant or is
a constant plus a fixed register such as the frame pointer
or a static chain pointer. When such addresses are stored in,
we can tell exactly which other such addresses must be invalidated
due to overlap. `invalidate' does this.
All expressions that refer to non-constant
memory addresses are also invalidated. `invalidate_memory' does this.
2. If the value changing is a register, all expressions
containing references to that register, and only those,
must be removed.
Because searching the entire hash table for expressions that contain
a register is very slow, we try to figure out when it isn't necessary.
Precisely, this is necessary only when expressions have been
entered in the hash table using this register, and then the value has
changed, and then another expression wants to be added to refer to
the register's new value. This sequence of circumstances is rare
within any one basic block.
`REG_TICK' and `REG_IN_TABLE', accessors for members of
cse_reg_info, are used to detect this case. REG_TICK (i) is
incremented whenever a value is stored in register i.
REG_IN_TABLE (i) holds -1 if no references to register i have been
entered in the table; otherwise, it contains the value REG_TICK (i)
had when the references were entered. If we want to enter a
reference and REG_IN_TABLE (i) != REG_TICK (i), we must scan and
remove old references. Until we want to enter a new entry, the
mere fact that the two vectors don't match makes the entries be
ignored if anyone tries to match them.
Registers themselves are entered in the hash table as well as in
the equivalent-register chains. However, `REG_TICK' and
`REG_IN_TABLE' do not apply to expressions which are simple
register references. These expressions are removed from the table
immediately when they become invalid, and this can be done even if
we do not immediately search for all the expressions that refer to
the register.
A CLOBBER rtx in an instruction invalidates its operand for further
reuse. A CLOBBER or SET rtx whose operand is a MEM:BLK
invalidates everything that resides in memory.
Related expressions:
Constant expressions that differ only by an additive integer
are called related. When a constant expression is put in
the table, the related expression with no constant term
is also entered. These are made to point at each other
so that it is possible to find out if there exists any
register equivalent to an expression related to a given expression. */
/* Length of qty_table vector. We know in advance we will not need
a quantity number this big. */
static int max_qty;
/* Next quantity number to be allocated.
This is 1 + the largest number needed so far. */
static int next_qty;
/* Per-qty information tracking.
`first_reg' and `last_reg' track the head and tail of the
chain of registers which currently contain this quantity.
`mode' contains the machine mode of this quantity.
`const_rtx' holds the rtx of the constant value of this
quantity, if known. A summations of the frame/arg pointer
and a constant can also be entered here. When this holds
a known value, `const_insn' is the insn which stored the
constant value.
`comparison_{code,const,qty}' are used to track when a
comparison between a quantity and some constant or register has
been passed. In such a case, we know the results of the comparison
in case we see it again. These members record a comparison that
is known to be true. `comparison_code' holds the rtx code of such
a comparison, else it is set to UNKNOWN and the other two
comparison members are undefined. `comparison_const' holds
the constant being compared against, or zero if the comparison
is not against a constant. `comparison_qty' holds the quantity
being compared against when the result is known. If the comparison
is not with a register, `comparison_qty' is -1. */
struct qty_table_elem
{
rtx const_rtx;
rtx const_insn;
rtx comparison_const;
int comparison_qty;
unsigned int first_reg, last_reg;
/* The sizes of these fields should match the sizes of the
code and mode fields of struct rtx_def (see rtl.h). */
ENUM_BITFIELD(rtx_code) comparison_code : 16;
ENUM_BITFIELD(machine_mode) mode : 8;
};
/* The table of all qtys, indexed by qty number. */
static struct qty_table_elem *qty_table;
/* Structure used to pass arguments via for_each_rtx to function
cse_change_cc_mode. */
struct change_cc_mode_args
{
rtx insn;
rtx newreg;
};
#ifdef HAVE_cc0
/* For machines that have a CC0, we do not record its value in the hash
table since its use is guaranteed to be the insn immediately following
its definition and any other insn is presumed to invalidate it.
Instead, we store below the current and last value assigned to CC0.
If it should happen to be a constant, it is stored in preference
to the actual assigned value. In case it is a constant, we store
the mode in which the constant should be interpreted. */
static rtx this_insn_cc0, prev_insn_cc0;
static enum machine_mode this_insn_cc0_mode, prev_insn_cc0_mode;
#endif
/* Insn being scanned. */
static rtx this_insn;
static bool optimize_this_for_speed_p;
/* Index by register number, gives the number of the next (or
previous) register in the chain of registers sharing the same
value.
Or -1 if this register is at the end of the chain.
If REG_QTY (N) == -N - 1, reg_eqv_table[N].next is undefined. */
/* Per-register equivalence chain. */
struct reg_eqv_elem
{
int next, prev;
};
/* The table of all register equivalence chains. */
static struct reg_eqv_elem *reg_eqv_table;
struct cse_reg_info
{
/* The timestamp at which this register is initialized. */
unsigned int timestamp;
/* The quantity number of the register's current contents. */
int reg_qty;
/* The number of times the register has been altered in the current
basic block. */
int reg_tick;
/* The REG_TICK value at which rtx's containing this register are
valid in the hash table. If this does not equal the current
reg_tick value, such expressions existing in the hash table are
invalid. */
int reg_in_table;
/* The SUBREG that was set when REG_TICK was last incremented. Set
to -1 if the last store was to the whole register, not a subreg. */
unsigned int subreg_ticked;
};
/* A table of cse_reg_info indexed by register numbers. */
static struct cse_reg_info *cse_reg_info_table;
/* The size of the above table. */
static unsigned int cse_reg_info_table_size;
/* The index of the first entry that has not been initialized. */
static unsigned int cse_reg_info_table_first_uninitialized;
/* The timestamp at the beginning of the current run of
cse_extended_basic_block. We increment this variable at the beginning of
the current run of cse_extended_basic_block. The timestamp field of a
cse_reg_info entry matches the value of this variable if and only
if the entry has been initialized during the current run of
cse_extended_basic_block. */
static unsigned int cse_reg_info_timestamp;
/* A HARD_REG_SET containing all the hard registers for which there is
currently a REG expression in the hash table. Note the difference
from the above variables, which indicate if the REG is mentioned in some
expression in the table. */
static HARD_REG_SET hard_regs_in_table;
/* True if CSE has altered the CFG. */
static bool cse_cfg_altered;
/* True if CSE has altered conditional jump insns in such a way
that jump optimization should be redone. */
static bool cse_jumps_altered;
/* True if we put a LABEL_REF into the hash table for an INSN
without a REG_LABEL_OPERAND, we have to rerun jump after CSE
to put in the note. */
static bool recorded_label_ref;
/* canon_hash stores 1 in do_not_record
if it notices a reference to CC0, PC, or some other volatile
subexpression. */
static int do_not_record;
/* canon_hash stores 1 in hash_arg_in_memory
if it notices a reference to memory within the expression being hashed. */
static int hash_arg_in_memory;
/* The hash table contains buckets which are chains of `struct table_elt's,
each recording one expression's information.
That expression is in the `exp' field.
The canon_exp field contains a canonical (from the point of view of
alias analysis) version of the `exp' field.
Those elements with the same hash code are chained in both directions
through the `next_same_hash' and `prev_same_hash' fields.
Each set of expressions with equivalent values
are on a two-way chain through the `next_same_value'
and `prev_same_value' fields, and all point with
the `first_same_value' field at the first element in
that chain. The chain is in order of increasing cost.
Each element's cost value is in its `cost' field.
The `in_memory' field is nonzero for elements that
involve any reference to memory. These elements are removed
whenever a write is done to an unidentified location in memory.
To be safe, we assume that a memory address is unidentified unless
the address is either a symbol constant or a constant plus
the frame pointer or argument pointer.
The `related_value' field is used to connect related expressions
(that differ by adding an integer).
The related expressions are chained in a circular fashion.
`related_value' is zero for expressions for which this
chain is not useful.
The `cost' field stores the cost of this element's expression.
The `regcost' field stores the value returned by approx_reg_cost for
this element's expression.
The `is_const' flag is set if the element is a constant (including
a fixed address).
The `flag' field is used as a temporary during some search routines.
The `mode' field is usually the same as GET_MODE (`exp'), but
if `exp' is a CONST_INT and has no machine mode then the `mode'
field is the mode it was being used as. Each constant is
recorded separately for each mode it is used with. */
struct table_elt
{
rtx exp;
rtx canon_exp;
struct table_elt *next_same_hash;
struct table_elt *prev_same_hash;
struct table_elt *next_same_value;
struct table_elt *prev_same_value;
struct table_elt *first_same_value;
struct table_elt *related_value;
int cost;
int regcost;
/* The size of this field should match the size
of the mode field of struct rtx_def (see rtl.h). */
ENUM_BITFIELD(machine_mode) mode : 8;
char in_memory;
char is_const;
char flag;
};
/* We don't want a lot of buckets, because we rarely have very many
things stored in the hash table, and a lot of buckets slows
down a lot of loops that happen frequently. */
#define HASH_SHIFT 5
#define HASH_SIZE (1 << HASH_SHIFT)
#define HASH_MASK (HASH_SIZE - 1)
/* Compute hash code of X in mode M. Special-case case where X is a pseudo
register (hard registers may require `do_not_record' to be set). */
#define HASH(X, M) \
((REG_P (X) && REGNO (X) >= FIRST_PSEUDO_REGISTER \
? (((unsigned) REG << 7) + (unsigned) REG_QTY (REGNO (X))) \
: canon_hash (X, M)) & HASH_MASK)
/* Like HASH, but without side-effects. */
#define SAFE_HASH(X, M) \
((REG_P (X) && REGNO (X) >= FIRST_PSEUDO_REGISTER \
? (((unsigned) REG << 7) + (unsigned) REG_QTY (REGNO (X))) \
: safe_hash (X, M)) & HASH_MASK)
/* Determine whether register number N is considered a fixed register for the
purpose of approximating register costs.
It is desirable to replace other regs with fixed regs, to reduce need for
non-fixed hard regs.
A reg wins if it is either the frame pointer or designated as fixed. */
#define FIXED_REGNO_P(N) \
((N) == FRAME_POINTER_REGNUM || (N) == HARD_FRAME_POINTER_REGNUM \
|| fixed_regs[N] || global_regs[N])
/* Compute cost of X, as stored in the `cost' field of a table_elt. Fixed
hard registers and pointers into the frame are the cheapest with a cost
of 0. Next come pseudos with a cost of one and other hard registers with
a cost of 2. Aside from these special cases, call `rtx_cost'. */
#define CHEAP_REGNO(N) \
(REGNO_PTR_FRAME_P (N) \
|| (HARD_REGISTER_NUM_P (N) \
&& FIXED_REGNO_P (N) && REGNO_REG_CLASS (N) != NO_REGS))
#define COST(X) (REG_P (X) ? 0 : notreg_cost (X, SET, 1))
#define COST_IN(X, OUTER, OPNO) (REG_P (X) ? 0 : notreg_cost (X, OUTER, OPNO))
/* Get the number of times this register has been updated in this
basic block. */
#define REG_TICK(N) (get_cse_reg_info (N)->reg_tick)
/* Get the point at which REG was recorded in the table. */
#define REG_IN_TABLE(N) (get_cse_reg_info (N)->reg_in_table)
/* Get the SUBREG set at the last increment to REG_TICK (-1 if not a
SUBREG). */
#define SUBREG_TICKED(N) (get_cse_reg_info (N)->subreg_ticked)
/* Get the quantity number for REG. */
#define REG_QTY(N) (get_cse_reg_info (N)->reg_qty)
/* Determine if the quantity number for register X represents a valid index
into the qty_table. */
#define REGNO_QTY_VALID_P(N) (REG_QTY (N) >= 0)
/* Compare table_elt X and Y and return true iff X is cheaper than Y. */
#define CHEAPER(X, Y) \
(preferable ((X)->cost, (X)->regcost, (Y)->cost, (Y)->regcost) < 0)
static struct table_elt *table[HASH_SIZE];
/* Chain of `struct table_elt's made so far for this function
but currently removed from the table. */
static struct table_elt *free_element_chain;
/* Set to the cost of a constant pool reference if one was found for a
symbolic constant. If this was found, it means we should try to
convert constants into constant pool entries if they don't fit in
the insn. */
static int constant_pool_entries_cost;
static int constant_pool_entries_regcost;
/* Trace a patch through the CFG. */
struct branch_path
{
/* The basic block for this path entry. */
basic_block bb;
};
/* This data describes a block that will be processed by
cse_extended_basic_block. */
struct cse_basic_block_data
{
/* Total number of SETs in block. */
int nsets;
/* Size of current branch path, if any. */
int path_size;
/* Current path, indicating which basic_blocks will be processed. */
struct branch_path *path;
};
/* Pointers to the live in/live out bitmaps for the boundaries of the
current EBB. */
static bitmap cse_ebb_live_in, cse_ebb_live_out;
/* A simple bitmap to track which basic blocks have been visited
already as part of an already processed extended basic block. */
static sbitmap cse_visited_basic_blocks;
static bool fixed_base_plus_p (rtx x);
static int notreg_cost (rtx, enum rtx_code, int);
static int approx_reg_cost_1 (rtx *, void *);
static int approx_reg_cost (rtx);
static int preferable (int, int, int, int);
static void new_basic_block (void);
static void make_new_qty (unsigned int, enum machine_mode);
static void make_regs_eqv (unsigned int, unsigned int);
static void delete_reg_equiv (unsigned int);
static int mention_regs (rtx);
static int insert_regs (rtx, struct table_elt *, int);
static void remove_from_table (struct table_elt *, unsigned);
static void remove_pseudo_from_table (rtx, unsigned);
static struct table_elt *lookup (rtx, unsigned, enum machine_mode);
static struct table_elt *lookup_for_remove (rtx, unsigned, enum machine_mode);
static rtx lookup_as_function (rtx, enum rtx_code);
static struct table_elt *insert_with_costs (rtx, struct table_elt *, unsigned,
enum machine_mode, int, int);
static struct table_elt *insert (rtx, struct table_elt *, unsigned,
enum machine_mode);
static void merge_equiv_classes (struct table_elt *, struct table_elt *);
static void invalidate (rtx, enum machine_mode);
static void remove_invalid_refs (unsigned int);
static void remove_invalid_subreg_refs (unsigned int, unsigned int,
enum machine_mode);
static void rehash_using_reg (rtx);
static void invalidate_memory (void);
static void invalidate_for_call (void);
static rtx use_related_value (rtx, struct table_elt *);
static inline unsigned canon_hash (rtx, enum machine_mode);
static inline unsigned safe_hash (rtx, enum machine_mode);
static inline unsigned hash_rtx_string (const char *);
static rtx canon_reg (rtx, rtx);
static enum rtx_code find_comparison_args (enum rtx_code, rtx *, rtx *,
enum machine_mode *,
enum machine_mode *);
static rtx fold_rtx (rtx, rtx);
static rtx equiv_constant (rtx);
static void record_jump_equiv (rtx, bool);
static void record_jump_cond (enum rtx_code, enum machine_mode, rtx, rtx,
int);
static void cse_insn (rtx);
static void cse_prescan_path (struct cse_basic_block_data *);
static void invalidate_from_clobbers (rtx);
static void invalidate_from_sets_and_clobbers (rtx);
static rtx cse_process_notes (rtx, rtx, bool *);
static void cse_extended_basic_block (struct cse_basic_block_data *);
static int check_for_label_ref (rtx *, void *);
extern void dump_class (struct table_elt*);
static void get_cse_reg_info_1 (unsigned int regno);
static struct cse_reg_info * get_cse_reg_info (unsigned int regno);
static int check_dependence (rtx *, void *);
static void flush_hash_table (void);
static bool insn_live_p (rtx, int *);
static bool set_live_p (rtx, rtx, int *);
static int cse_change_cc_mode (rtx *, void *);
static void cse_change_cc_mode_insn (rtx, rtx);
static void cse_change_cc_mode_insns (rtx, rtx, rtx);
static enum machine_mode cse_cc_succs (basic_block, basic_block, rtx, rtx,
bool);
#undef RTL_HOOKS_GEN_LOWPART
#define RTL_HOOKS_GEN_LOWPART gen_lowpart_if_possible
static const struct rtl_hooks cse_rtl_hooks = RTL_HOOKS_INITIALIZER;
/* Nonzero if X has the form (PLUS frame-pointer integer). */
static bool
fixed_base_plus_p (rtx x)
{
switch (GET_CODE (x))
{
case REG:
if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx)
return true;
if (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM])
return true;
return false;
case PLUS:
if (!CONST_INT_P (XEXP (x, 1)))
return false;
return fixed_base_plus_p (XEXP (x, 0));
default:
return false;
}
}
/* Dump the expressions in the equivalence class indicated by CLASSP.
This function is used only for debugging. */
DEBUG_FUNCTION void
dump_class (struct table_elt *classp)
{
struct table_elt *elt;
fprintf (stderr, "Equivalence chain for ");
print_rtl (stderr, classp->exp);
fprintf (stderr, ": \n");
for (elt = classp->first_same_value; elt; elt = elt->next_same_value)
{
print_rtl (stderr, elt->exp);
fprintf (stderr, "\n");
}
}
/* Subroutine of approx_reg_cost; called through for_each_rtx. */
static int
approx_reg_cost_1 (rtx *xp, void *data)
{
rtx x = *xp;
int *cost_p = (int *) data;
if (x && REG_P (x))
{
unsigned int regno = REGNO (x);
if (! CHEAP_REGNO (regno))
{
if (regno < FIRST_PSEUDO_REGISTER)
{
if (targetm.small_register_classes_for_mode_p (GET_MODE (x)))
return 1;
*cost_p += 2;
}
else
*cost_p += 1;
}
}
return 0;
}
/* Return an estimate of the cost of the registers used in an rtx.
This is mostly the number of different REG expressions in the rtx;
however for some exceptions like fixed registers we use a cost of
0. If any other hard register reference occurs, return MAX_COST. */
static int
approx_reg_cost (rtx x)
{
int cost = 0;
if (for_each_rtx (&x, approx_reg_cost_1, (void *) &cost))
return MAX_COST;
return cost;
}
/* Return a negative value if an rtx A, whose costs are given by COST_A
and REGCOST_A, is more desirable than an rtx B.
Return a positive value if A is less desirable, or 0 if the two are
equally good. */
static int
preferable (int cost_a, int regcost_a, int cost_b, int regcost_b)
{
/* First, get rid of cases involving expressions that are entirely
unwanted. */
if (cost_a != cost_b)
{
if (cost_a == MAX_COST)
return 1;
if (cost_b == MAX_COST)
return -1;
}
/* Avoid extending lifetimes of hardregs. */
if (regcost_a != regcost_b)
{
if (regcost_a == MAX_COST)
return 1;
if (regcost_b == MAX_COST)
return -1;
}
/* Normal operation costs take precedence. */
if (cost_a != cost_b)
return cost_a - cost_b;
/* Only if these are identical consider effects on register pressure. */
if (regcost_a != regcost_b)
return regcost_a - regcost_b;
return 0;
}
/* Internal function, to compute cost when X is not a register; called
from COST macro to keep it simple. */
static int
notreg_cost (rtx x, enum rtx_code outer, int opno)
{
return ((GET_CODE (x) == SUBREG
&& REG_P (SUBREG_REG (x))
&& GET_MODE_CLASS (GET_MODE (x)) == MODE_INT
&& GET_MODE_CLASS (GET_MODE (SUBREG_REG (x))) == MODE_INT
&& (GET_MODE_SIZE (GET_MODE (x))
< GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
&& subreg_lowpart_p (x)
&& TRULY_NOOP_TRUNCATION_MODES_P (GET_MODE (x),
GET_MODE (SUBREG_REG (x))))
? 0
: rtx_cost (x, outer, opno, optimize_this_for_speed_p) * 2);
}
/* Initialize CSE_REG_INFO_TABLE. */
static void
init_cse_reg_info (unsigned int nregs)
{
/* Do we need to grow the table? */
if (nregs > cse_reg_info_table_size)
{
unsigned int new_size;
if (cse_reg_info_table_size < 2048)
{
/* Compute a new size that is a power of 2 and no smaller
than the large of NREGS and 64. */
new_size = (cse_reg_info_table_size
? cse_reg_info_table_size : 64);
while (new_size < nregs)
new_size *= 2;
}
else
{
/* If we need a big table, allocate just enough to hold
NREGS registers. */
new_size = nregs;
}
/* Reallocate the table with NEW_SIZE entries. */
free (cse_reg_info_table);
cse_reg_info_table = XNEWVEC (struct cse_reg_info, new_size);
cse_reg_info_table_size = new_size;
cse_reg_info_table_first_uninitialized = 0;
}
/* Do we have all of the first NREGS entries initialized? */
if (cse_reg_info_table_first_uninitialized < nregs)
{
unsigned int old_timestamp = cse_reg_info_timestamp - 1;
unsigned int i;
/* Put the old timestamp on newly allocated entries so that they
will all be considered out of date. We do not touch those
entries beyond the first NREGS entries to be nice to the
virtual memory. */
for (i = cse_reg_info_table_first_uninitialized; i < nregs; i++)
cse_reg_info_table[i].timestamp = old_timestamp;
cse_reg_info_table_first_uninitialized = nregs;
}
}
/* Given REGNO, initialize the cse_reg_info entry for REGNO. */
static void
get_cse_reg_info_1 (unsigned int regno)
{
/* Set TIMESTAMP field to CSE_REG_INFO_TIMESTAMP so that this
entry will be considered to have been initialized. */
cse_reg_info_table[regno].timestamp = cse_reg_info_timestamp;
/* Initialize the rest of the entry. */
cse_reg_info_table[regno].reg_tick = 1;
cse_reg_info_table[regno].reg_in_table = -1;
cse_reg_info_table[regno].subreg_ticked = -1;
cse_reg_info_table[regno].reg_qty = -regno - 1;
}
/* Find a cse_reg_info entry for REGNO. */
static inline struct cse_reg_info *
get_cse_reg_info (unsigned int regno)
{
struct cse_reg_info *p = &cse_reg_info_table[regno];
/* If this entry has not been initialized, go ahead and initialize
it. */
if (p->timestamp != cse_reg_info_timestamp)
get_cse_reg_info_1 (regno);
return p;
}
/* Clear the hash table and initialize each register with its own quantity,
for a new basic block. */
static void
new_basic_block (void)
{
int i;
next_qty = 0;
/* Invalidate cse_reg_info_table. */
cse_reg_info_timestamp++;
/* Clear out hash table state for this pass. */
CLEAR_HARD_REG_SET (hard_regs_in_table);
/* The per-quantity values used to be initialized here, but it is
much faster to initialize each as it is made in `make_new_qty'. */
for (i = 0; i < HASH_SIZE; i++)
{
struct table_elt *first;
first = table[i];
if (first != NULL)
{
struct table_elt *last = first;
table[i] = NULL;
while (last->next_same_hash != NULL)
last = last->next_same_hash;
/* Now relink this hash entire chain into
the free element list. */
last->next_same_hash = free_element_chain;
free_element_chain = first;
}
}
#ifdef HAVE_cc0
prev_insn_cc0 = 0;
#endif
}
/* Say that register REG contains a quantity in mode MODE not in any
register before and initialize that quantity. */
static void
make_new_qty (unsigned int reg, enum machine_mode mode)
{
int q;
struct qty_table_elem *ent;
struct reg_eqv_elem *eqv;
gcc_assert (next_qty < max_qty);
q = REG_QTY (reg) = next_qty++;
ent = &qty_table[q];
ent->first_reg = reg;
ent->last_reg = reg;
ent->mode = mode;
ent->const_rtx = ent->const_insn = NULL_RTX;
ent->comparison_code = UNKNOWN;
eqv = ®_eqv_table[reg];
eqv->next = eqv->prev = -1;
}
/* Make reg NEW equivalent to reg OLD.
OLD is not changing; NEW is. */
static void
make_regs_eqv (unsigned int new_reg, unsigned int old_reg)
{
unsigned int lastr, firstr;
int q = REG_QTY (old_reg);
struct qty_table_elem *ent;
ent = &qty_table[q];
/* Nothing should become eqv until it has a "non-invalid" qty number. */
gcc_assert (REGNO_QTY_VALID_P (old_reg));
REG_QTY (new_reg) = q;
firstr = ent->first_reg;
lastr = ent->last_reg;
/* Prefer fixed hard registers to anything. Prefer pseudo regs to other
hard regs. Among pseudos, if NEW will live longer than any other reg
of the same qty, and that is beyond the current basic block,
make it the new canonical replacement for this qty. */
if (! (firstr < FIRST_PSEUDO_REGISTER && FIXED_REGNO_P (firstr))
/* Certain fixed registers might be of the class NO_REGS. This means
that not only can they not be allocated by the compiler, but
they cannot be used in substitutions or canonicalizations
either. */
&& (new_reg >= FIRST_PSEUDO_REGISTER || REGNO_REG_CLASS (new_reg) != NO_REGS)
&& ((new_reg < FIRST_PSEUDO_REGISTER && FIXED_REGNO_P (new_reg))
|| (new_reg >= FIRST_PSEUDO_REGISTER
&& (firstr < FIRST_PSEUDO_REGISTER
|| (bitmap_bit_p (cse_ebb_live_out, new_reg)
&& !bitmap_bit_p (cse_ebb_live_out, firstr))
|| (bitmap_bit_p (cse_ebb_live_in, new_reg)
&& !bitmap_bit_p (cse_ebb_live_in, firstr))))))
{
reg_eqv_table[firstr].prev = new_reg;
reg_eqv_table[new_reg].next = firstr;
reg_eqv_table[new_reg].prev = -1;
ent->first_reg = new_reg;
}
else
{
/* If NEW is a hard reg (known to be non-fixed), insert at end.
Otherwise, insert before any non-fixed hard regs that are at the
end. Registers of class NO_REGS cannot be used as an
equivalent for anything. */
while (lastr < FIRST_PSEUDO_REGISTER && reg_eqv_table[lastr].prev >= 0
&& (REGNO_REG_CLASS (lastr) == NO_REGS || ! FIXED_REGNO_P (lastr))
&& new_reg >= FIRST_PSEUDO_REGISTER)
lastr = reg_eqv_table[lastr].prev;
reg_eqv_table[new_reg].next = reg_eqv_table[lastr].next;
if (reg_eqv_table[lastr].next >= 0)
reg_eqv_table[reg_eqv_table[lastr].next].prev = new_reg;
else
qty_table[q].last_reg = new_reg;
reg_eqv_table[lastr].next = new_reg;
reg_eqv_table[new_reg].prev = lastr;
}
}
/* Remove REG from its equivalence class. */
static void
delete_reg_equiv (unsigned int reg)
{
struct qty_table_elem *ent;
int q = REG_QTY (reg);
int p, n;
/* If invalid, do nothing. */
if (! REGNO_QTY_VALID_P (reg))
return;
ent = &qty_table[q];
p = reg_eqv_table[reg].prev;
n = reg_eqv_table[reg].next;
if (n != -1)
reg_eqv_table[n].prev = p;
else
ent->last_reg = p;
if (p != -1)
reg_eqv_table[p].next = n;
else
ent->first_reg = n;
REG_QTY (reg) = -reg - 1;
}
/* Remove any invalid expressions from the hash table
that refer to any of the registers contained in expression X.
Make sure that newly inserted references to those registers
as subexpressions will be considered valid.
mention_regs is not called when a register itself
is being stored in the table.
Return 1 if we have done something that may have changed the hash code
of X. */
static int
mention_regs (rtx x)
{
enum rtx_code code;
int i, j;
const char *fmt;
int changed = 0;
if (x == 0)
return 0;
code = GET_CODE (x);
if (code == REG)
{
unsigned int regno = REGNO (x);
unsigned int endregno = END_REGNO (x);
unsigned int i;
for (i = regno; i < endregno; i++)
{
if (REG_IN_TABLE (i) >= 0 && REG_IN_TABLE (i) != REG_TICK (i))
remove_invalid_refs (i);
REG_IN_TABLE (i) = REG_TICK (i);
SUBREG_TICKED (i) = -1;
}
return 0;
}
/* If this is a SUBREG, we don't want to discard other SUBREGs of the same
pseudo if they don't use overlapping words. We handle only pseudos
here for simplicity. */
if (code == SUBREG && REG_P (SUBREG_REG (x))
&& REGNO (SUBREG_REG (x)) >= FIRST_PSEUDO_REGISTER)
{
unsigned int i = REGNO (SUBREG_REG (x));
if (REG_IN_TABLE (i) >= 0 && REG_IN_TABLE (i) != REG_TICK (i))
{
/* If REG_IN_TABLE (i) differs from REG_TICK (i) by one, and
the last store to this register really stored into this
subreg, then remove the memory of this subreg.
Otherwise, remove any memory of the entire register and
all its subregs from the table. */
if (REG_TICK (i) - REG_IN_TABLE (i) > 1
|| SUBREG_TICKED (i) != REGNO (SUBREG_REG (x)))
remove_invalid_refs (i);
else
remove_invalid_subreg_refs (i, SUBREG_BYTE (x), GET_MODE (x));
}
REG_IN_TABLE (i) = REG_TICK (i);
SUBREG_TICKED (i) = REGNO (SUBREG_REG (x));
return 0;
}
/* If X is a comparison or a COMPARE and either operand is a register
that does not have a quantity, give it one. This is so that a later
call to record_jump_equiv won't cause X to be assigned a different
hash code and not found in the table after that call.
It is not necessary to do this here, since rehash_using_reg can
fix up the table later, but doing this here eliminates the need to
call that expensive function in the most common case where the only
use of the register is in the comparison. */
if (code == COMPARE || COMPARISON_P (x))
{
if (REG_P (XEXP (x, 0))
&& ! REGNO_QTY_VALID_P (REGNO (XEXP (x, 0))))
if (insert_regs (XEXP (x, 0), NULL, 0))
{
rehash_using_reg (XEXP (x, 0));
changed = 1;
}
if (REG_P (XEXP (x, 1))
&& ! REGNO_QTY_VALID_P (REGNO (XEXP (x, 1))))
if (insert_regs (XEXP (x, 1), NULL, 0))
{
rehash_using_reg (XEXP (x, 1));
changed = 1;
}
}
fmt = GET_RTX_FORMAT (code);
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
if (fmt[i] == 'e')
changed |= mention_regs (XEXP (x, i));
else if (fmt[i] == 'E')
for (j = 0; j < XVECLEN (x, i); j++)
changed |= mention_regs (XVECEXP (x, i, j));
return changed;
}
/* Update the register quantities for inserting X into the hash table
with a value equivalent to CLASSP.
(If the class does not contain a REG, it is irrelevant.)
If MODIFIED is nonzero, X is a destination; it is being modified.
Note that delete_reg_equiv should be called on a register
before insert_regs is done on that register with MODIFIED != 0.
Nonzero value means that elements of reg_qty have changed
so X's hash code may be different. */
static int
insert_regs (rtx x, struct table_elt *classp, int modified)
{
if (REG_P (x))
{
unsigned int regno = REGNO (x);
int qty_valid;
/* If REGNO is in the equivalence table already but is of the
wrong mode for that equivalence, don't do anything here. */
qty_valid = REGNO_QTY_VALID_P (regno);
if (qty_valid)
{
struct qty_table_elem *ent = &qty_table[REG_QTY (regno)];
if (ent->mode != GET_MODE (x))
return 0;
}
if (modified || ! qty_valid)
{
if (classp)
for (classp = classp->first_same_value;
classp != 0;
classp = classp->next_same_value)
if (REG_P (classp->exp)
&& GET_MODE (classp->exp) == GET_MODE (x))
{
unsigned c_regno = REGNO (classp->exp);
gcc_assert (REGNO_QTY_VALID_P (c_regno));
/* Suppose that 5 is hard reg and 100 and 101 are
pseudos. Consider
(set (reg:si 100) (reg:si 5))
(set (reg:si 5) (reg:si 100))
(set (reg:di 101) (reg:di 5))
We would now set REG_QTY (101) = REG_QTY (5), but the
entry for 5 is in SImode. When we use this later in
copy propagation, we get the register in wrong mode. */
if (qty_table[REG_QTY (c_regno)].mode != GET_MODE (x))
continue;
make_regs_eqv (regno, c_regno);
return 1;
}
/* Mention_regs for a SUBREG checks if REG_TICK is exactly one larger
than REG_IN_TABLE to find out if there was only a single preceding
invalidation - for the SUBREG - or another one, which would be
for the full register. However, if we find here that REG_TICK
indicates that the register is invalid, it means that it has
been invalidated in a separate operation. The SUBREG might be used
now (then this is a recursive call), or we might use the full REG
now and a SUBREG of it later. So bump up REG_TICK so that
mention_regs will do the right thing. */
if (! modified
&& REG_IN_TABLE (regno) >= 0
&& REG_TICK (regno) == REG_IN_TABLE (regno) + 1)
REG_TICK (regno)++;
make_new_qty (regno, GET_MODE (x));
return 1;
}
return 0;
}
/* If X is a SUBREG, we will likely be inserting the inner register in the
table. If that register doesn't have an assigned quantity number at
this point but does later, the insertion that we will be doing now will
not be accessible because its hash code will have changed. So assign
a quantity number now. */
else if (GET_CODE (x) == SUBREG && REG_P (SUBREG_REG (x))
&& ! REGNO_QTY_VALID_P (REGNO (SUBREG_REG (x))))
{
insert_regs (SUBREG_REG (x), NULL, 0);
mention_regs (x);
return 1;
}
else
return mention_regs (x);
}
/* Compute upper and lower anchors for CST. Also compute the offset of CST
from these anchors/bases such that *_BASE + *_OFFS = CST. Return false iff
CST is equal to an anchor. */
static bool
compute_const_anchors (rtx cst,
HOST_WIDE_INT *lower_base, HOST_WIDE_INT *lower_offs,
HOST_WIDE_INT *upper_base, HOST_WIDE_INT *upper_offs)
{
HOST_WIDE_INT n = INTVAL (cst);
*lower_base = n & ~(targetm.const_anchor - 1);
if (*lower_base == n)
return false;
*upper_base =
(n + (targetm.const_anchor - 1)) & ~(targetm.const_anchor - 1);
*upper_offs = n - *upper_base;
*lower_offs = n - *lower_base;
return true;
}
/* Insert the equivalence between ANCHOR and (REG + OFF) in mode MODE. */
static void
insert_const_anchor (HOST_WIDE_INT anchor, rtx reg, HOST_WIDE_INT offs,
enum machine_mode mode)
{
struct table_elt *elt;
unsigned hash;
rtx anchor_exp;
rtx exp;
anchor_exp = GEN_INT (anchor);
hash = HASH (anchor_exp, mode);
elt = lookup (anchor_exp, hash, mode);
if (!elt)
elt = insert (anchor_exp, NULL, hash, mode);
exp = plus_constant (mode, reg, offs);
/* REG has just been inserted and the hash codes recomputed. */
mention_regs (exp);
hash = HASH (exp, mode);
/* Use the cost of the register rather than the whole expression. When
looking up constant anchors we will further offset the corresponding
expression therefore it does not make sense to prefer REGs over
reg-immediate additions. Prefer instead the oldest expression. Also
don't prefer pseudos over hard regs so that we derive constants in
argument registers from other argument registers rather than from the
original pseudo that was used to synthesize the constant. */
insert_with_costs (exp, elt, hash, mode, COST (reg), 1);
}
/* The constant CST is equivalent to the register REG. Create
equivalences between the two anchors of CST and the corresponding
register-offset expressions using REG. */
static void
insert_const_anchors (rtx reg, rtx cst, enum machine_mode mode)
{
HOST_WIDE_INT lower_base, lower_offs, upper_base, upper_offs;
if (!compute_const_anchors (cst, &lower_base, &lower_offs,
&upper_base, &upper_offs))
return;
/* Ignore anchors of value 0. Constants accessible from zero are
simple. */
if (lower_base != 0)
insert_const_anchor (lower_base, reg, -lower_offs, mode);
if (upper_base != 0)
insert_const_anchor (upper_base, reg, -upper_offs, mode);
}
/* We need to express ANCHOR_ELT->exp + OFFS. Walk the equivalence list of
ANCHOR_ELT and see if offsetting any of the entries by OFFS would create a
valid expression. Return the cheapest and oldest of such expressions. In
*OLD, return how old the resulting expression is compared to the other
equivalent expressions. */
static rtx
find_reg_offset_for_const (struct table_elt *anchor_elt, HOST_WIDE_INT offs,
unsigned *old)
{
struct table_elt *elt;
unsigned idx;
struct table_elt *match_elt;
rtx match;
/* Find the cheapest and *oldest* expression to maximize the chance of
reusing the same pseudo. */
match_elt = NULL;
match = NULL_RTX;
for (elt = anchor_elt->first_same_value, idx = 0;
elt;
elt = elt->next_same_value, idx++)
{
if (match_elt && CHEAPER (match_elt, elt))
return match;
if (REG_P (elt->exp)
|| (GET_CODE (elt->exp) == PLUS
&& REG_P (XEXP (elt->exp, 0))
&& GET_CODE (XEXP (elt->exp, 1)) == CONST_INT))
{
rtx x;
/* Ignore expressions that are no longer valid. */
if (!REG_P (elt->exp) && !exp_equiv_p (elt->exp, elt->exp, 1, false))
continue;
x = plus_constant (GET_MODE (elt->exp), elt->exp, offs);
if (REG_P (x)
|| (GET_CODE (x) == PLUS
&& IN_RANGE (INTVAL (XEXP (x, 1)),
-targetm.const_anchor,
targetm.const_anchor - 1)))
{
match = x;
match_elt = elt;
*old = idx;
}
}
}
return match;
}
/* Try to express the constant SRC_CONST using a register+offset expression
derived from a constant anchor. Return it if successful or NULL_RTX,
otherwise. */
static rtx
try_const_anchors (rtx src_const, enum machine_mode mode)
{
struct table_elt *lower_elt, *upper_elt;
HOST_WIDE_INT lower_base, lower_offs, upper_base, upper_offs;
rtx lower_anchor_rtx, upper_anchor_rtx;
rtx lower_exp = NULL_RTX, upper_exp = NULL_RTX;
unsigned lower_old, upper_old;
/* CONST_INT is used for CC modes, but we should leave those alone. */
if (GET_MODE_CLASS (mode) == MODE_CC)
return NULL_RTX;
gcc_assert (SCALAR_INT_MODE_P (mode));
if (!compute_const_anchors (src_const, &lower_base, &lower_offs,
&upper_base, &upper_offs))
return NULL_RTX;
lower_anchor_rtx = GEN_INT (lower_base);
upper_anchor_rtx = GEN_INT (upper_base);
lower_elt = lookup (lower_anchor_rtx, HASH (lower_anchor_rtx, mode), mode);
upper_elt = lookup (upper_anchor_rtx, HASH (upper_anchor_rtx, mode), mode);
if (lower_elt)
lower_exp = find_reg_offset_for_const (lower_elt, lower_offs, &lower_old);
if (upper_elt)
upper_exp = find_reg_offset_for_const (upper_elt, upper_offs, &upper_old);
if (!lower_exp)
return upper_exp;
if (!upper_exp)
return lower_exp;
/* Return the older expression. */
return (upper_old > lower_old ? upper_exp : lower_exp);
}
/* Look in or update the hash table. */
/* Remove table element ELT from use in the table.
HASH is its hash code, made using the HASH macro.
It's an argument because often that is known in advance
and we save much time not recomputing it. */
static void
remove_from_table (struct table_elt *elt, unsigned int hash)
{
if (elt == 0)
return;
/* Mark this element as removed. See cse_insn. */
elt->first_same_value = 0;
/* Remove the table element from its equivalence class. */
{
struct table_elt *prev = elt->prev_same_value;
struct table_elt *next = elt->next_same_value;
if (next)
next->prev_same_value = prev;
if (prev)
prev->next_same_value = next;
else
{
struct table_elt *newfirst = next;
while (next)
{
next->first_same_value = newfirst;
next = next->next_same_value;
}
}
}
/* Remove the table element from its hash bucket. */
{
struct table_elt *prev = elt->prev_same_hash;
struct table_elt *next = elt->next_same_hash;
if (next)
next->prev_same_hash = prev;
if (prev)
prev->next_same_hash = next;
else if (table[hash] == elt)
table[hash] = next;
else
{
/* This entry is not in the proper hash bucket. This can happen
when two classes were merged by `merge_equiv_classes'. Search
for the hash bucket that it heads. This happens only very
rarely, so the cost is acceptable. */
for (hash = 0; hash < HASH_SIZE; hash++)
if (table[hash] == elt)
table[hash] = next;
}
}
/* Remove the table element from its related-value circular chain. */
if (elt->related_value != 0 && elt->related_value != elt)
{
struct table_elt *p = elt->related_value;
while (p->related_value != elt)
p = p->related_value;
p->related_value = elt->related_value;
if (p->related_value == p)
p->related_value = 0;
}
/* Now add it to the free element chain. */
elt->next_same_hash = free_element_chain;
free_element_chain = elt;
}
/* Same as above, but X is a pseudo-register. */
static void
remove_pseudo_from_table (rtx x, unsigned int hash)
{
struct table_elt *elt;
/* Because a pseudo-register can be referenced in more than one
mode, we might have to remove more than one table entry. */
while ((elt = lookup_for_remove (x, hash, VOIDmode)))
remove_from_table (elt, hash);
}
/* Look up X in the hash table and return its table element,
or 0 if X is not in the table.
MODE is the machine-mode of X, or if X is an integer constant
with VOIDmode then MODE is the mode with which X will be used.
Here we are satisfied to find an expression whose tree structure
looks like X. */
static struct table_elt *
lookup (rtx x, unsigned int hash, enum machine_mode mode)
{
struct table_elt *p;
for (p = table[hash]; p; p = p->next_same_hash)
if (mode == p->mode && ((x == p->exp && REG_P (x))
|| exp_equiv_p (x, p->exp, !REG_P (x), false)))
return p;
return 0;
}
/* Like `lookup' but don't care whether the table element uses invalid regs.
Also ignore discrepancies in the machine mode of a register. */
static struct table_elt *
lookup_for_remove (rtx x, unsigned int hash, enum machine_mode mode)
{
struct table_elt *p;
if (REG_P (x))
{
unsigned int regno = REGNO (x);
/* Don't check the machine mode when comparing registers;
invalidating (REG:SI 0) also invalidates (REG:DF 0). */
for (p = table[hash]; p; p = p->next_same_hash)
if (REG_P (p->exp)
&& REGNO (p->exp) == regno)
return p;
}
else
{
for (p = table[hash]; p; p = p->next_same_hash)
if (mode == p->mode
&& (x == p->exp || exp_equiv_p (x, p->exp, 0, false)))
return p;
}
return 0;
}
/* Look for an expression equivalent to X and with code CODE.
If one is found, return that expression. */
static rtx
lookup_as_function (rtx x, enum rtx_code code)
{
struct table_elt *p
= lookup (x, SAFE_HASH (x, VOIDmode), GET_MODE (x));
if (p == 0)
return 0;
for (p = p->first_same_value; p; p = p->next_same_value)
if (GET_CODE (p->exp) == code
/* Make sure this is a valid entry in the table. */
&& exp_equiv_p (p->exp, p->exp, 1, false))
return p->exp;
return 0;
}
/* Insert X in the hash table, assuming HASH is its hash code and
CLASSP is an element of the class it should go in (or 0 if a new
class should be made). COST is the code of X and reg_cost is the
cost of registers in X. It is inserted at the proper position to
keep the class in the order cheapest first.
MODE is the machine-mode of X, or if X is an integer constant
with VOIDmode then MODE is the mode with which X will be used.
For elements of equal cheapness, the most recent one
goes in front, except that the first element in the list
remains first unless a cheaper element is added. The order of
pseudo-registers does not matter, as canon_reg will be called to
find the cheapest when a register is retrieved from the table.
The in_memory field in the hash table element is set to 0.
The caller must set it nonzero if appropriate.
You should call insert_regs (X, CLASSP, MODIFY) before calling here,
and if insert_regs returns a nonzero value
you must then recompute its hash code before calling here.
If necessary, update table showing constant values of quantities. */
static struct table_elt *
insert_with_costs (rtx x, struct table_elt *classp, unsigned int hash,
enum machine_mode mode, int cost, int reg_cost)
{
struct table_elt *elt;
/* If X is a register and we haven't made a quantity for it,
something is wrong. */
gcc_assert (!REG_P (x) || REGNO_QTY_VALID_P (REGNO (x)));
/* If X is a hard register, show it is being put in the table. */
if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
add_to_hard_reg_set (&hard_regs_in_table, GET_MODE (x), REGNO (x));
/* Put an element for X into the right hash bucket. */
elt = free_element_chain;
if (elt)
free_element_chain = elt->next_same_hash;
else
elt = XNEW (struct table_elt);
elt->exp = x;
elt->canon_exp = NULL_RTX;
elt->cost = cost;
elt->regcost = reg_cost;
elt->next_same_value = 0;
elt->prev_same_value = 0;
elt->next_same_hash = table[hash];
elt->prev_same_hash = 0;
elt->related_value = 0;
elt->in_memory = 0;
elt->mode = mode;
elt->is_const = (CONSTANT_P (x) || fixed_base_plus_p (x));
if (table[hash])
table[hash]->prev_same_hash = elt;
table[hash] = elt;
/* Put it into the proper value-class. */
if (classp)
{
classp = classp->first_same_value;
if (CHEAPER (elt, classp))
/* Insert at the head of the class. */
{
struct table_elt *p;
elt->next_same_value = classp;
classp->prev_same_value = elt;
elt->first_same_value = elt;
for (p = classp; p; p = p->next_same_value)
p->first_same_value = elt;
}
else
{
/* Insert not at head of the class. */
/* Put it after the last element cheaper than X. */
struct table_elt *p, *next;
for (p = classp;
(next = p->next_same_value) && CHEAPER (next, elt);
p = next)
;
/* Put it after P and before NEXT. */
elt->next_same_value = next;
if (next)
next->prev_same_value = elt;
elt->prev_same_value = p;
p->next_same_value = elt;
elt->first_same_value = classp;
}
}
else
elt->first_same_value = elt;
/* If this is a constant being set equivalent to a register or a register
being set equivalent to a constant, note the constant equivalence.
If this is a constant, it cannot be equivalent to a different constant,
and a constant is the only thing that can be cheaper than a register. So
we know the register is the head of the class (before the constant was
inserted).
If this is a register that is not already known equivalent to a
constant, we must check the entire class.
If this is a register that is already known equivalent to an insn,
update the qtys `const_insn' to show that `this_insn' is the latest
insn making that quantity equivalent to the constant. */
if (elt->is_const && classp && REG_P (classp->exp)
&& !REG_P (x))
{
int exp_q = REG_QTY (REGNO (classp->exp));
struct qty_table_elem *exp_ent = &qty_table[exp_q];
exp_ent->const_rtx = gen_lowpart (exp_ent->mode, x);
exp_ent->const_insn = this_insn;
}
else if (REG_P (x)
&& classp
&& ! qty_table[REG_QTY (REGNO (x))].const_rtx
&& ! elt->is_const)
{
struct table_elt *p;
for (p = classp; p != 0; p = p->next_same_value)
{
if (p->is_const && !REG_P (p->exp))
{
int x_q = REG_QTY (REGNO (x));
struct qty_table_elem *x_ent = &qty_table[x_q];
x_ent->const_rtx
= gen_lowpart (GET_MODE (x), p->exp);
x_ent->const_insn = this_insn;
break;
}
}
}
else if (REG_P (x)
&& qty_table[REG_QTY (REGNO (x))].const_rtx
&& GET_MODE (x) == qty_table[REG_QTY (REGNO (x))].mode)
qty_table[REG_QTY (REGNO (x))].const_insn = this_insn;
/* If this is a constant with symbolic value,
and it has a term with an explicit integer value,
link it up with related expressions. */
if (GET_CODE (x) == CONST)
{
rtx subexp = get_related_value (x);
unsigned subhash;
struct table_elt *subelt, *subelt_prev;
if (subexp != 0)
{
/* Get the integer-free subexpression in the hash table. */
subhash = SAFE_HASH (subexp, mode);
subelt = lookup (subexp, subhash, mode);
if (subelt == 0)
subelt = insert (subexp, NULL, subhash, mode);
/* Initialize SUBELT's circular chain if it has none. */
if (subelt->related_value == 0)
subelt->related_value = subelt;
/* Find the element in the circular chain that precedes SUBELT. */
subelt_prev = subelt;
while (subelt_prev->related_value != subelt)
subelt_prev = subelt_prev->related_value;
/* Put new ELT into SUBELT's circular chain just before SUBELT.
This way the element that follows SUBELT is the oldest one. */
elt->related_value = subelt_prev->related_value;
subelt_prev->related_value = elt;
}
}
return elt;
}
/* Wrap insert_with_costs by passing the default costs. */
static struct table_elt *
insert (rtx x, struct table_elt *classp, unsigned int hash,
enum machine_mode mode)
{
return
insert_with_costs (x, classp, hash, mode, COST (x), approx_reg_cost (x));
}
/* Given two equivalence classes, CLASS1 and CLASS2, put all the entries from
CLASS2 into CLASS1. This is done when we have reached an insn which makes
the two classes equivalent.
CLASS1 will be the surviving class; CLASS2 should not be used after this
call.
Any invalid entries in CLASS2 will not be copied. */
static void
merge_equiv_classes (struct table_elt *class1, struct table_elt *class2)
{
struct table_elt *elt, *next, *new_elt;
/* Ensure we start with the head of the classes. */
class1 = class1->first_same_value;
class2 = class2->first_same_value;
/* If they were already equal, forget it. */
if (class1 == class2)
return;
for (elt = class2; elt; elt = next)
{
unsigned int hash;
rtx exp = elt->exp;
enum machine_mode mode = elt->mode;
next = elt->next_same_value;
/* Remove old entry, make a new one in CLASS1's class.
Don't do this for invalid entries as we cannot find their
hash code (it also isn't necessary). */
if (REG_P (exp) || exp_equiv_p (exp, exp, 1, false))
{
bool need_rehash = false;
hash_arg_in_memory = 0;
hash = HASH (exp, mode);
if (REG_P (exp))
{
need_rehash = REGNO_QTY_VALID_P (REGNO (exp));
delete_reg_equiv (REGNO (exp));
}
if (REG_P (exp) && REGNO (exp) >= FIRST_PSEUDO_REGISTER)
remove_pseudo_from_table (exp, hash);
else
remove_from_table (elt, hash);
if (insert_regs (exp, class1, 0) || need_rehash)
{
rehash_using_reg (exp);
hash = HASH (exp, mode);
}
new_elt = insert (exp, class1, hash, mode);
new_elt->in_memory = hash_arg_in_memory;
}
}
}
/* Flush the entire hash table. */
static void
flush_hash_table (void)
{
int i;
struct table_elt *p;
for (i = 0; i < HASH_SIZE; i++)
for (p = table[i]; p; p = table[i])
{
/* Note that invalidate can remove elements
after P in the current hash chain. */
if (REG_P (p->exp))
invalidate (p->exp, VOIDmode);
else
remove_from_table (p, i);
}
}
/* Function called for each rtx to check whether an anti dependence exist. */
struct check_dependence_data
{
enum machine_mode mode;
rtx exp;
rtx addr;
};
static int
check_dependence (rtx *x, void *data)
{
struct check_dependence_data *d = (struct check_dependence_data *) data;
if (*x && MEM_P (*x))
return canon_anti_dependence (*x, true, d->exp, d->mode, d->addr);
else
return 0;
}
/* Remove from the hash table, or mark as invalid, all expressions whose
values could be altered by storing in X. X is a register, a subreg, or
a memory reference with nonvarying address (because, when a memory
reference with a varying address is stored in, all memory references are
removed by invalidate_memory so specific invalidation is superfluous).
FULL_MODE, if not VOIDmode, indicates that this much should be
invalidated instead of just the amount indicated by the mode of X. This
is only used for bitfield stores into memory.
A nonvarying address may be just a register or just a symbol reference,
or it may be either of those plus a numeric offset. */
static void
invalidate (rtx x, enum machine_mode full_mode)
{
int i;
struct table_elt *p;
rtx addr;
switch (GET_CODE (x))
{
case REG:
{
/* If X is a register, dependencies on its contents are recorded
through the qty number mechanism. Just change the qty number of
the register, mark it as invalid for expressions that refer to it,
and remove it itself. */
unsigned int regno = REGNO (x);
unsigned int hash = HASH (x, GET_MODE (x));
/* Remove REGNO from any quantity list it might be on and indicate
that its value might have changed. If it is a pseudo, remove its
entry from the hash table.
For a hard register, we do the first two actions above for any
additional hard registers corresponding to X. Then, if any of these
registers are in the table, we must remove any REG entries that
overlap these registers. */
delete_reg_equiv (regno);
REG_TICK (regno)++;
SUBREG_TICKED (regno) = -1;
if (regno >= FIRST_PSEUDO_REGISTER)
remove_pseudo_from_table (x, hash);
else
{
HOST_WIDE_INT in_table
= TEST_HARD_REG_BIT (hard_regs_in_table, regno);
unsigned int endregno = END_HARD_REGNO (x);
unsigned int tregno, tendregno, rn;
struct table_elt *p, *next;
CLEAR_HARD_REG_BIT (hard_regs_in_table, regno);
for (rn = regno + 1; rn < endregno; rn++)
{
in_table |= TEST_HARD_REG_BIT (hard_regs_in_table, rn);
CLEAR_HARD_REG_BIT (hard_regs_in_table, rn);
delete_reg_equiv (rn);
REG_TICK (rn)++;
SUBREG_TICKED (rn) = -1;
}
if (in_table)
for (hash = 0; hash < HASH_SIZE; hash++)
for (p = table[hash]; p; p = next)
{
next = p->next_same_hash;
if (!REG_P (p->exp)
|| REGNO (p->exp) >= FIRST_PSEUDO_REGISTER)
continue;
tregno = REGNO (p->exp);
tendregno = END_HARD_REGNO (p->exp);
if (tendregno > regno && tregno < endregno)
remove_from_table (p, hash);
}
}
}
return;
case SUBREG:
invalidate (SUBREG_REG (x), VOIDmode);
return;
case PARALLEL:
for (i = XVECLEN (x, 0) - 1; i >= 0; --i)
invalidate (XVECEXP (x, 0, i), VOIDmode);
return;
case EXPR_LIST:
/* This is part of a disjoint return value; extract the location in
question ignoring the offset. */
invalidate (XEXP (x, 0), VOIDmode);
return;
case MEM:
addr = canon_rtx (get_addr (XEXP (x, 0)));
/* Calculate the canonical version of X here so that
true_dependence doesn't generate new RTL for X on each call. */
x = canon_rtx (x);
/* Remove all hash table elements that refer to overlapping pieces of
memory. */
if (full_mode == VOIDmode)
full_mode = GET_MODE (x);
for (i = 0; i < HASH_SIZE; i++)
{
struct table_elt *next;
for (p = table[i]; p; p = next)
{
next = p->next_same_hash;
if (p->in_memory)
{
struct check_dependence_data d;
/* Just canonicalize the expression once;
otherwise each time we call invalidate
true_dependence will canonicalize the
expression again. */
if (!p->canon_exp)
p->canon_exp = canon_rtx (p->exp);
d.exp = x;
d.addr = addr;
d.mode = full_mode;
if (for_each_rtx (&p->canon_exp, check_dependence, &d))
remove_from_table (p, i);
}
}
}
return;
default:
gcc_unreachable ();
}
}
/* Remove all expressions that refer to register REGNO,
since they are already invalid, and we are about to
mark that register valid again and don't want the old
expressions to reappear as valid. */
static void
remove_invalid_refs (unsigned int regno)
{
unsigned int i;
struct table_elt *p, *next;
for (i = 0; i < HASH_SIZE; i++)
for (p = table[i]; p; p = next)
{
next = p->next_same_hash;
if (!REG_P (p->exp)
&& refers_to_regno_p (regno, regno + 1, p->exp, (rtx *) 0))
remove_from_table (p, i);
}
}
/* Likewise for a subreg with subreg_reg REGNO, subreg_byte OFFSET,
and mode MODE. */
static void
remove_invalid_subreg_refs (unsigned int regno, unsigned int offset,
enum machine_mode mode)
{
unsigned int i;
struct table_elt *p, *next;
unsigned int end = offset + (GET_MODE_SIZE (mode) - 1);
for (i = 0; i < HASH_SIZE; i++)
for (p = table[i]; p; p = next)
{
rtx exp = p->exp;
next = p->next_same_hash;
if (!REG_P (exp)
&& (GET_CODE (exp) != SUBREG
|| !REG_P (SUBREG_REG (exp))
|| REGNO (SUBREG_REG (exp)) != regno
|| (((SUBREG_BYTE (exp)
+ (GET_MODE_SIZE (GET_MODE (exp)) - 1)) >= offset)
&& SUBREG_BYTE (exp) <= end))
&& refers_to_regno_p (regno, regno + 1, p->exp, (rtx *) 0))
remove_from_table (p, i);
}
}
/* Recompute the hash codes of any valid entries in the hash table that
reference X, if X is a register, or SUBREG_REG (X) if X is a SUBREG.
This is called when we make a jump equivalence. */
static void
rehash_using_reg (rtx x)
{
unsigned int i;
struct table_elt *p, *next;
unsigned hash;
if (GET_CODE (x) == SUBREG)
x = SUBREG_REG (x);
/* If X is not a register or if the register is known not to be in any
valid entries in the table, we have no work to do. */
if (!REG_P (x)
|| REG_IN_TABLE (REGNO (x)) < 0
|| REG_IN_TABLE (REGNO (x)) != REG_TICK (REGNO (x)))
return;
/* Scan all hash chains looking for valid entries that mention X.
If we find one and it is in the wrong hash chain, move it. */
for (i = 0; i < HASH_SIZE; i++)
for (p = table[i]; p; p = next)
{
next = p->next_same_hash;
if (reg_mentioned_p (x, p->exp)
&& exp_equiv_p (p->exp, p->exp, 1, false)
&& i != (hash = SAFE_HASH (p->exp, p->mode)))
{
if (p->next_same_hash)
p->next_same_hash->prev_same_hash = p->prev_same_hash;
if (p->prev_same_hash)
p->prev_same_hash->next_same_hash = p->next_same_hash;
else
table[i] = p->next_same_hash;
p->next_same_hash = table[hash];
p->prev_same_hash = 0;
if (table[hash])
table[hash]->prev_same_hash = p;
table[hash] = p;
}
}
}
/* Remove from the hash table any expression that is a call-clobbered
register. Also update their TICK values. */
static void
invalidate_for_call (void)
{
unsigned int regno, endregno;
unsigned int i;
unsigned hash;
struct table_elt *p, *next;
int in_table = 0;
hard_reg_set_iterator hrsi;
/* Go through all the hard registers. For each that is clobbered in
a CALL_INSN, remove the register from quantity chains and update
reg_tick if defined. Also see if any of these registers is currently
in the table. */
EXECUTE_IF_SET_IN_HARD_REG_SET (regs_invalidated_by_call, 0, regno, hrsi)
{
delete_reg_equiv (regno);
if (REG_TICK (regno) >= 0)
{
REG_TICK (regno)++;
SUBREG_TICKED (regno) = -1;
}
in_table |= (TEST_HARD_REG_BIT (hard_regs_in_table, regno) != 0);
}
/* In the case where we have no call-clobbered hard registers in the
table, we are done. Otherwise, scan the table and remove any
entry that overlaps a call-clobbered register. */
if (in_table)
for (hash = 0; hash < HASH_SIZE; hash++)
for (p = table[hash]; p; p = next)
{
next = p->next_same_hash;
if (!REG_P (p->exp)
|| REGNO (p->exp) >= FIRST_PSEUDO_REGISTER)
continue;
regno = REGNO (p->exp);
endregno = END_HARD_REGNO (p->exp);
for (i = regno; i < endregno; i++)
if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
{
remove_from_table (p, hash);
break;
}
}
}
/* Given an expression X of type CONST,
and ELT which is its table entry (or 0 if it
is not in the hash table),
return an alternate expression for X as a register plus integer.
If none can be found, return 0. */
static rtx
use_related_value (rtx x, struct table_elt *elt)
{
struct table_elt *relt = 0;
struct table_elt *p, *q;
HOST_WIDE_INT offset;
/* First, is there anything related known?
If we have a table element, we can tell from that.
Otherwise, must look it up. */
if (elt != 0 && elt->related_value != 0)
relt = elt;
else if (elt == 0 && GET_CODE (x) == CONST)
{
rtx subexp = get_related_value (x);
if (subexp != 0)
relt = lookup (subexp,
SAFE_HASH (subexp, GET_MODE (subexp)),
GET_MODE (subexp));
}
if (relt == 0)
return 0;
/* Search all related table entries for one that has an
equivalent register. */
p = relt;
while (1)
{
/* This loop is strange in that it is executed in two different cases.
The first is when X is already in the table. Then it is searching
the RELATED_VALUE list of X's class (RELT). The second case is when
X is not in the table. Then RELT points to a class for the related
value.
Ensure that, whatever case we are in, that we ignore classes that have
the same value as X. */
if (rtx_equal_p (x, p->exp))
q = 0;
else
for (q = p->first_same_value; q; q = q->next_same_value)
if (REG_P (q->exp))
break;
if (q)
break;
p = p->related_value;
/* We went all the way around, so there is nothing to be found.
Alternatively, perhaps RELT was in the table for some other reason
and it has no related values recorded. */
if (p == relt || p == 0)
break;
}
if (q == 0)
return 0;
offset = (get_integer_term (x) - get_integer_term (p->exp));
/* Note: OFFSET may be 0 if P->xexp and X are related by commutativity. */
return plus_constant (q->mode, q->exp, offset);
}
/* Hash a string. Just add its bytes up. */
static inline unsigned
hash_rtx_string (const char *ps)
{
unsigned hash = 0;
const unsigned char *p = (const unsigned char *) ps;
if (p)
while (*p)
hash += *p++;
return hash;
}
/* Same as hash_rtx, but call CB on each rtx if it is not NULL.
When the callback returns true, we continue with the new rtx. */
unsigned
hash_rtx_cb (const_rtx x, enum machine_mode mode,
int *do_not_record_p, int *hash_arg_in_memory_p,
bool have_reg_qty, hash_rtx_callback_function cb)
{
int i, j;
unsigned hash = 0;
enum rtx_code code;
const char *fmt;
enum machine_mode newmode;
rtx newx;
/* Used to turn recursion into iteration. We can't rely on GCC's
tail-recursion elimination since we need to keep accumulating values
in HASH. */
repeat:
if (x == 0)
return hash;
/* Invoke the callback first. */
if (cb != NULL
&& ((*cb) (x, mode, &newx, &newmode)))
{
hash += hash_rtx_cb (newx, newmode, do_not_record_p,
hash_arg_in_memory_p, have_reg_qty, cb);
return hash;
}
code = GET_CODE (x);
switch (code)
{
case REG:
{
unsigned int regno = REGNO (x);
if (do_not_record_p && !reload_completed)
{
/* On some machines, we can't record any non-fixed hard register,
because extending its life will cause reload problems. We
consider ap, fp, sp, gp to be fixed for this purpose.
We also consider CCmode registers to be fixed for this purpose;
failure to do so leads to failure to simplify 0<100 type of
conditionals.
On all machines, we can't record any global registers.
Nor should we record any register that is in a small
class, as defined by TARGET_CLASS_LIKELY_SPILLED_P. */
bool record;
if (regno >= FIRST_PSEUDO_REGISTER)
record = true;
else if (x == frame_pointer_rtx
|| x == hard_frame_pointer_rtx
|| x == arg_pointer_rtx
|| x == stack_pointer_rtx
|| x == pic_offset_table_rtx)
record = true;
else if (global_regs[regno])
record = false;
else if (fixed_regs[regno])
record = true;
else if (GET_MODE_CLASS (GET_MODE (x)) == MODE_CC)
record = true;
else if (targetm.small_register_classes_for_mode_p (GET_MODE (x)))
record = false;
else if (targetm.class_likely_spilled_p (REGNO_REG_CLASS (regno)))
record = false;
else
record = true;
if (!record)
{
*do_not_record_p = 1;
return 0;
}
}
hash += ((unsigned int) REG << 7);
hash += (have_reg_qty ? (unsigned) REG_QTY (regno) : regno);
return hash;
}
/* We handle SUBREG of a REG specially because the underlying
reg changes its hash value with every value change; we don't
want to have to forget unrelated subregs when one subreg changes. */
case SUBREG:
{
if (REG_P (SUBREG_REG (x)))
{
hash += (((unsigned int) SUBREG << 7)
+ REGNO (SUBREG_REG (x))
+ (SUBREG_BYTE (x) / UNITS_PER_WORD));
return hash;
}
break;
}
case CONST_INT:
hash += (((unsigned int) CONST_INT << 7) + (unsigned int) mode
+ (unsigned int) INTVAL (x));
return hash;
case CONST_DOUBLE:
/* This is like the general case, except that it only counts
the integers representing the constant. */
hash += (unsigned int) code + (unsigned int) GET_MODE (x);
if (GET_MODE (x) != VOIDmode)
hash += real_hash (CONST_DOUBLE_REAL_VALUE (x));
else
hash += ((unsigned int) CONST_DOUBLE_LOW (x)
+ (unsigned int) CONST_DOUBLE_HIGH (x));
return hash;
case CONST_FIXED:
hash += (unsigned int) code + (unsigned int) GET_MODE (x);
hash += fixed_hash (CONST_FIXED_VALUE (x));
return hash;
case CONST_VECTOR:
{
int units;
rtx elt;
units = CONST_VECTOR_NUNITS (x);
for (i = 0; i < units; ++i)
{
elt = CONST_VECTOR_ELT (x, i);
hash += hash_rtx_cb (elt, GET_MODE (elt),
do_not_record_p, hash_arg_in_memory_p,
have_reg_qty, cb);
}
return hash;
}
/* Assume there is only one rtx object for any given label. */
case LABEL_REF:
/* We don't hash on the address of the CODE_LABEL to avoid bootstrap
differences and differences between each stage's debugging dumps. */
hash += (((unsigned int) LABEL_REF << 7)
+ CODE_LABEL_NUMBER (XEXP (x, 0)));
return hash;
case SYMBOL_REF:
{
/* Don't hash on the symbol's address to avoid bootstrap differences.
Different hash values may cause expressions to be recorded in
different orders and thus different registers to be used in the
final assembler. This also avoids differences in the dump files
between various stages. */
unsigned int h = 0;
const unsigned char *p = (const unsigned char *) XSTR (x, 0);
while (*p)
h += (h << 7) + *p++; /* ??? revisit */
hash += ((unsigned int) SYMBOL_REF << 7) + h;
return hash;
}
case MEM:
/* We don't record if marked volatile or if BLKmode since we don't
know the size of the move. */
if (do_not_record_p && (MEM_VOLATILE_P (x) || GET_MODE (x) == BLKmode))
{
*do_not_record_p = 1;
return 0;
}
if (hash_arg_in_memory_p && !MEM_READONLY_P (x))
*hash_arg_in_memory_p = 1;
/* Now that we have already found this special case,
might as well speed it up as much as possible. */
hash += (unsigned) MEM;
x = XEXP (x, 0);
goto repeat;
case USE:
/* A USE that mentions non-volatile memory needs special
handling since the MEM may be BLKmode which normally
prevents an entry from being made. Pure calls are
marked by a USE which mentions BLKmode memory.
See calls.c:emit_call_1. */
if (MEM_P (XEXP (x, 0))
&& ! MEM_VOLATILE_P (XEXP (x, 0)))
{
hash += (unsigned) USE;
x = XEXP (x, 0);
if (hash_arg_in_memory_p && !MEM_READONLY_P (x))
*hash_arg_in_memory_p = 1;
/* Now that we have already found this special case,
might as well speed it up as much as possible. */
hash += (unsigned) MEM;
x = XEXP (x, 0);
goto repeat;
}
break;
case PRE_DEC:
case PRE_INC:
case POST_DEC:
case POST_INC:
case PRE_MODIFY:
case POST_MODIFY:
case PC:
case CC0:
case CALL:
case UNSPEC_VOLATILE:
if (do_not_record_p) {
*do_not_record_p = 1;
return 0;
}
else
return hash;
break;
case ASM_OPERANDS:
if (do_not_record_p && MEM_VOLATILE_P (x))
{
*do_not_record_p = 1;
return 0;
}
else
{
/* We don't want to take the filename and line into account. */
hash += (unsigned) code + (unsigned) GET_MODE (x)
+ hash_rtx_string (ASM_OPERANDS_TEMPLATE (x))
+ hash_rtx_string (ASM_OPERANDS_OUTPUT_CONSTRAINT (x))
+ (unsigned) ASM_OPERANDS_OUTPUT_IDX (x);
if (ASM_OPERANDS_INPUT_LENGTH (x))
{
for (i = 1; i < ASM_OPERANDS_INPUT_LENGTH (x); i++)
{
hash += (hash_rtx_cb (ASM_OPERANDS_INPUT (x, i),
GET_MODE (ASM_OPERANDS_INPUT (x, i)),
do_not_record_p, hash_arg_in_memory_p,
have_reg_qty, cb)
+ hash_rtx_string
(ASM_OPERANDS_INPUT_CONSTRAINT (x, i)));
}
hash += hash_rtx_string (ASM_OPERANDS_INPUT_CONSTRAINT (x, 0));
x = ASM_OPERANDS_INPUT (x, 0);
mode = GET_MODE (x);
goto repeat;
}
return hash;
}
break;
default:
break;
}
i = GET_RTX_LENGTH (code) - 1;
hash += (unsigned) code + (unsigned) GET_MODE (x);
fmt = GET_RTX_FORMAT (code);
for (; i >= 0; i--)
{
switch (fmt[i])
{
case 'e':
/* If we are about to do the last recursive call
needed at this level, change it into iteration.
This function is called enough to be worth it. */
if (i == 0)
{
x = XEXP (x, i);
goto repeat;
}
hash += hash_rtx_cb (XEXP (x, i), VOIDmode, do_not_record_p,
hash_arg_in_memory_p,
have_reg_qty, cb);
break;
case 'E':
for (j = 0; j < XVECLEN (x, i); j++)
hash += hash_rtx_cb (XVECEXP (x, i, j), VOIDmode, do_not_record_p,
hash_arg_in_memory_p,
have_reg_qty, cb);
break;
case 's':
hash += hash_rtx_string (XSTR (x, i));
break;
case 'i':
hash += (unsigned int) XINT (x, i);
break;
case '0': case 't':
/* Unused. */
break;
default:
gcc_unreachable ();
}
}
return hash;
}
/* Hash an rtx. We are careful to make sure the value is never negative.
Equivalent registers hash identically.
MODE is used in hashing for CONST_INTs only;
otherwise the mode of X is used.
Store 1 in DO_NOT_RECORD_P if any subexpression is volatile.
If HASH_ARG_IN_MEMORY_P is not NULL, store 1 in it if X contains
a MEM rtx which does not have the MEM_READONLY_P flag set.
Note that cse_insn knows that the hash code of a MEM expression
is just (int) MEM plus the hash code of the address. */
unsigned
hash_rtx (const_rtx x, enum machine_mode mode, int *do_not_record_p,
int *hash_arg_in_memory_p, bool have_reg_qty)
{
return hash_rtx_cb (x, mode, do_not_record_p,
hash_arg_in_memory_p, have_reg_qty, NULL);
}
/* Hash an rtx X for cse via hash_rtx.
Stores 1 in do_not_record if any subexpression is volatile.
Stores 1 in hash_arg_in_memory if X contains a mem rtx which
does not have the MEM_READONLY_P flag set. */
static inline unsigned
canon_hash (rtx x, enum machine_mode mode)
{
return hash_rtx (x, mode, &do_not_record, &hash_arg_in_memory, true);
}
/* Like canon_hash but with no side effects, i.e. do_not_record
and hash_arg_in_memory are not changed. */
static inline unsigned
safe_hash (rtx x, enum machine_mode mode)
{
int dummy_do_not_record;
return hash_rtx (x, mode, &dummy_do_not_record, NULL, true);
}
/* Return 1 iff X and Y would canonicalize into the same thing,
without actually constructing the canonicalization of either one.
If VALIDATE is nonzero,
we assume X is an expression being processed from the rtl
and Y was found in the hash table. We check register refs
in Y for being marked as valid.
If FOR_GCSE is true, we compare X and Y for equivalence for GCSE. */
int
exp_equiv_p (const_rtx x, const_rtx y, int validate, bool for_gcse)
{
int i, j;
enum rtx_code code;
const char *fmt;
/* Note: it is incorrect to assume an expression is equivalent to itself
if VALIDATE is nonzero. */
if (x == y && !validate)
return 1;
if (x == 0 || y == 0)
return x == y;
code = GET_CODE (x);
if (code != GET_CODE (y))
return 0;
/* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
if (GET_MODE (x) != GET_MODE (y))
return 0;
/* MEMs referring to different address space are not equivalent. */
if (code == MEM && MEM_ADDR_SPACE (x) != MEM_ADDR_SPACE (y))
return 0;
switch (code)
{
case PC:
case CC0:
CASE_CONST_UNIQUE:
return x == y;
case LABEL_REF:
return XEXP (x, 0) == XEXP (y, 0);
case SYMBOL_REF:
return XSTR (x, 0) == XSTR (y, 0);
case REG:
if (for_gcse)
return REGNO (x) == REGNO (y);
else
{
unsigned int regno = REGNO (y);
unsigned int i;
unsigned int endregno = END_REGNO (y);
/* If the quantities are not the same, the expressions are not
equivalent. If there are and we are not to validate, they
are equivalent. Otherwise, ensure all regs are up-to-date. */
if (REG_QTY (REGNO (x)) != REG_QTY (regno))
return 0;
if (! validate)
return 1;
for (i = regno; i < endregno; i++)
if (REG_IN_TABLE (i) != REG_TICK (i))
return 0;
return 1;
}
case MEM:
if (for_gcse)
{
/* A volatile mem should not be considered equivalent to any
other. */
if (MEM_VOLATILE_P (x) || MEM_VOLATILE_P (y))
return 0;
/* Can't merge two expressions in different alias sets, since we
can decide that the expression is transparent in a block when
it isn't, due to it being set with the different alias set.
Also, can't merge two expressions with different MEM_ATTRS.
They could e.g. be two different entities allocated into the
same space on the stack (see e.g. PR25130). In that case, the
MEM addresses can be the same, even though the two MEMs are
absolutely not equivalent.
But because really all MEM attributes should be the same for
equivalent MEMs, we just use the invariant that MEMs that have
the same attributes share the same mem_attrs data structure. */
if (MEM_ATTRS (x) != MEM_ATTRS (y))
return 0;
}
break;
/* For commutative operations, check both orders. */
case PLUS:
case MULT:
case AND:
case IOR:
case XOR:
case NE:
case EQ:
return ((exp_equiv_p (XEXP (x, 0), XEXP (y, 0),
validate, for_gcse)
&& exp_equiv_p (XEXP (x, 1), XEXP (y, 1),
validate, for_gcse))
|| (exp_equiv_p (XEXP (x, 0), XEXP (y, 1),
validate, for_gcse)
&& exp_equiv_p (XEXP (x, 1), XEXP (y, 0),
validate, for_gcse)));
case ASM_OPERANDS:
/* We don't use the generic code below because we want to
disregard filename and line numbers. */
/* A volatile asm isn't equivalent to any other. */
if (MEM_VOLATILE_P (x) || MEM_VOLATILE_P (y))
return 0;
if (GET_MODE (x) != GET_MODE (y)
|| strcmp (ASM_OPERANDS_TEMPLATE (x), ASM_OPERANDS_TEMPLATE (y))
|| strcmp (ASM_OPERANDS_OUTPUT_CONSTRAINT (x),
ASM_OPERANDS_OUTPUT_CONSTRAINT (y))
|| ASM_OPERANDS_OUTPUT_IDX (x) != ASM_OPERANDS_OUTPUT_IDX (y)
|| ASM_OPERANDS_INPUT_LENGTH (x) != ASM_OPERANDS_INPUT_LENGTH (y))
return 0;
if (ASM_OPERANDS_INPUT_LENGTH (x))
{
for (i = ASM_OPERANDS_INPUT_LENGTH (x) - 1; i >= 0; i--)
if (! exp_equiv_p (ASM_OPERANDS_INPUT (x, i),
ASM_OPERANDS_INPUT (y, i),
validate, for_gcse)
|| strcmp (ASM_OPERANDS_INPUT_CONSTRAINT (x, i),
ASM_OPERANDS_INPUT_CONSTRAINT (y, i)))
return 0;
}
return 1;
default:
break;
}
/* Compare the elements. If any pair of corresponding elements
fail to match, return 0 for the whole thing. */
fmt = GET_RTX_FORMAT (code);
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
{
switch (fmt[i])
{
case 'e':
if (! exp_equiv_p (XEXP (x, i), XEXP (y, i),
validate, for_gcse))
return 0;
break;
case 'E':
if (XVECLEN (x, i) != XVECLEN (y, i))
return 0;
for (j = 0; j < XVECLEN (x, i); j++)
if (! exp_equiv_p (XVECEXP (x, i, j), XVECEXP (y, i, j),
validate, for_gcse))
return 0;
break;
case 's':
if (strcmp (XSTR (x, i), XSTR (y, i)))
return 0;
break;
case 'i':
if (XINT (x, i) != XINT (y, i))
return 0;
break;
case 'w':
if (XWINT (x, i) != XWINT (y, i))
return 0;
break;
case '0':
case 't':
break;
default:
gcc_unreachable ();
}
}
return 1;
}
/* Subroutine of canon_reg. Pass *XLOC through canon_reg, and validate
the result if necessary. INSN is as for canon_reg. */
static void
validate_canon_reg (rtx *xloc, rtx insn)
{
if (*xloc)
{
rtx new_rtx = canon_reg (*xloc, insn);
/* If replacing pseudo with hard reg or vice versa, ensure the
insn remains valid. Likewise if the insn has MATCH_DUPs. */
gcc_assert (insn && new_rtx);
validate_change (insn, xloc, new_rtx, 1);
}
}
/* Canonicalize an expression:
replace each register reference inside it
with the "oldest" equivalent register.
If INSN is nonzero validate_change is used to ensure that INSN remains valid
after we make our substitution. The calls are made with IN_GROUP nonzero
so apply_change_group must be called upon the outermost return from this
function (unless INSN is zero). The result of apply_change_group can
generally be discarded since the changes we are making are optional. */
static rtx
canon_reg (rtx x, rtx insn)
{
int i;
enum rtx_code code;
const char *fmt;
if (x == 0)
return x;
code = GET_CODE (x);
switch (code)
{
case PC:
case CC0:
case CONST:
CASE_CONST_ANY:
case SYMBOL_REF:
case LABEL_REF:
case ADDR_VEC:
case ADDR_DIFF_VEC:
return x;
case REG:
{
int first;
int q;
struct qty_table_elem *ent;
/* Never replace a hard reg, because hard regs can appear
in more than one machine mode, and we must preserve the mode
of each occurrence. Also, some hard regs appear in
MEMs that are shared and mustn't be altered. Don't try to
replace any reg that maps to a reg of class NO_REGS. */
if (REGNO (x) < FIRST_PSEUDO_REGISTER
|| ! REGNO_QTY_VALID_P (REGNO (x)))
return x;
q = REG_QTY (REGNO (x));
ent = &qty_table[q];
first = ent->first_reg;
return (first >= FIRST_PSEUDO_REGISTER ? regno_reg_rtx[first]
: REGNO_REG_CLASS (first) == NO_REGS ? x
: gen_rtx_REG (ent->mode, first));
}
default:
break;
}
fmt = GET_RTX_FORMAT (code);
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
{
int j;
if (fmt[i] == 'e')
validate_canon_reg (&XEXP (x, i), insn);
else if (fmt[i] == 'E')
for (j = 0; j < XVECLEN (x, i); j++)
validate_canon_reg (&XVECEXP (x, i, j), insn);
}
return x;
}
/* Given an operation (CODE, *PARG1, *PARG2), where code is a comparison
operation (EQ, NE, GT, etc.), follow it back through the hash table and
what values are being compared.
*PARG1 and *PARG2 are updated to contain the rtx representing the values
actually being compared. For example, if *PARG1 was (cc0) and *PARG2
was (const_int 0), *PARG1 and *PARG2 will be set to the objects that were
compared to produce cc0.
The return value is the comparison operator and is either the code of
A or the code corresponding to the inverse of the comparison. */
static enum rtx_code
find_comparison_args (enum rtx_code code, rtx *parg1, rtx *parg2,
enum machine_mode *pmode1, enum machine_mode *pmode2)
{
rtx arg1, arg2;
struct pointer_set_t *visited = NULL;
/* Set nonzero when we find something of interest. */
rtx x = NULL;
arg1 = *parg1, arg2 = *parg2;
/* If ARG2 is const0_rtx, see what ARG1 is equivalent to. */
while (arg2 == CONST0_RTX (GET_MODE (arg1)))
{
int reverse_code = 0;
struct table_elt *p = 0;
/* Remember state from previous iteration. */
if (x)
{
if (!visited)
visited = pointer_set_create ();
pointer_set_insert (visited, x);
x = 0;
}
/* If arg1 is a COMPARE, extract the comparison arguments from it.
On machines with CC0, this is the only case that can occur, since
fold_rtx will return the COMPARE or item being compared with zero
when given CC0. */
if (GET_CODE (arg1) == COMPARE && arg2 == const0_rtx)
x = arg1;
/* If ARG1 is a comparison operator and CODE is testing for
STORE_FLAG_VALUE, get the inner arguments. */
else if (COMPARISON_P (arg1))
{
#ifdef FLOAT_STORE_FLAG_VALUE
REAL_VALUE_TYPE fsfv;
#endif
if (code == NE
|| (GET_MODE_CLASS (GET_MODE (arg1)) == MODE_INT
&& code == LT && STORE_FLAG_VALUE == -1)
#ifdef FLOAT_STORE_FLAG_VALUE
|| (SCALAR_FLOAT_MODE_P (GET_MODE (arg1))
&& (fsfv = FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)),
REAL_VALUE_NEGATIVE (fsfv)))
#endif
)
x = arg1;
else if (code == EQ
|| (GET_MODE_CLASS (GET_MODE (arg1)) == MODE_INT
&& code == GE && STORE_FLAG_VALUE == -1)
#ifdef FLOAT_STORE_FLAG_VALUE
|| (SCALAR_FLOAT_MODE_P (GET_MODE (arg1))
&& (fsfv = FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)),
REAL_VALUE_NEGATIVE (fsfv)))
#endif
)
x = arg1, reverse_code = 1;
}
/* ??? We could also check for
(ne (and (eq (...) (const_int 1))) (const_int 0))
and related forms, but let's wait until we see them occurring. */
if (x == 0)
/* Look up ARG1 in the hash table and see if it has an equivalence
that lets us see what is being compared. */
p = lookup (arg1, SAFE_HASH (arg1, GET_MODE (arg1)), GET_MODE (arg1));
if (p)
{
p = p->first_same_value;
/* If what we compare is already known to be constant, that is as
good as it gets.
We need to break the loop in this case, because otherwise we
can have an infinite loop when looking at a reg that is known
to be a constant which is the same as a comparison of a reg
against zero which appears later in the insn stream, which in
turn is constant and the same as the comparison of the first reg
against zero... */
if (p->is_const)
break;
}
for (; p; p = p->next_same_value)
{
enum machine_mode inner_mode = GET_MODE (p->exp);
#ifdef FLOAT_STORE_FLAG_VALUE
REAL_VALUE_TYPE fsfv;
#endif
/* If the entry isn't valid, skip it. */
if (! exp_equiv_p (p->exp, p->exp, 1, false))
continue;
/* If it's a comparison we've used before, skip it. */
if (visited && pointer_set_contains (visited, p->exp))
continue;
if (GET_CODE (p->exp) == COMPARE
/* Another possibility is that this machine has a compare insn
that includes the comparison code. In that case, ARG1 would
be equivalent to a comparison operation that would set ARG1 to
either STORE_FLAG_VALUE or zero. If this is an NE operation,
ORIG_CODE is the actual comparison being done; if it is an EQ,
we must reverse ORIG_CODE. On machine with a negative value
for STORE_FLAG_VALUE, also look at LT and GE operations. */
|| ((code == NE
|| (code == LT
&& val_signbit_known_set_p (inner_mode,
STORE_FLAG_VALUE))
#ifdef FLOAT_STORE_FLAG_VALUE
|| (code == LT
&& SCALAR_FLOAT_MODE_P (inner_mode)
&& (fsfv = FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)),
REAL_VALUE_NEGATIVE (fsfv)))
#endif
)
&& COMPARISON_P (p->exp)))
{
x = p->exp;
break;
}
else if ((code == EQ
|| (code == GE
&& val_signbit_known_set_p (inner_mode,
STORE_FLAG_VALUE))
#ifdef FLOAT_STORE_FLAG_VALUE
|| (code == GE
&& SCALAR_FLOAT_MODE_P (inner_mode)
&& (fsfv = FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)),
REAL_VALUE_NEGATIVE (fsfv)))
#endif
)
&& COMPARISON_P (p->exp))
{
reverse_code = 1;
x = p->exp;
break;
}
/* If this non-trapping address, e.g. fp + constant, the
equivalent is a better operand since it may let us predict
the value of the comparison. */
else if (!rtx_addr_can_trap_p (p->exp))
{
arg1 = p->exp;
continue;
}
}
/* If we didn't find a useful equivalence for ARG1, we are done.
Otherwise, set up for the next iteration. */
if (x == 0)
break;
/* If we need to reverse the comparison, make sure that that is
possible -- we can't necessarily infer the value of GE from LT
with floating-point operands. */
if (reverse_code)
{
enum rtx_code reversed = reversed_comparison_code (x, NULL_RTX);
if (reversed == UNKNOWN)
break;
else
code = reversed;
}
else if (COMPARISON_P (x))
code = GET_CODE (x);
arg1 = XEXP (x, 0), arg2 = XEXP (x, 1);
}
/* Return our results. Return the modes from before fold_rtx
because fold_rtx might produce const_int, and then it's too late. */
*pmode1 = GET_MODE (arg1), *pmode2 = GET_MODE (arg2);
*parg1 = fold_rtx (arg1, 0), *parg2 = fold_rtx (arg2, 0);
if (visited)
pointer_set_destroy (visited);
return code;
}
/* If X is a nontrivial arithmetic operation on an argument for which
a constant value can be determined, return the result of operating
on that value, as a constant. Otherwise, return X, possibly with
one or more operands changed to a forward-propagated constant.
If X is a register whose contents are known, we do NOT return
those contents here; equiv_constant is called to perform that task.
For SUBREGs and MEMs, we do that both here and in equiv_constant.
INSN is the insn that we may be modifying. If it is 0, make a copy
of X before modifying it. */
static rtx
fold_rtx (rtx x, rtx insn)
{
enum rtx_code code;
enum machine_mode mode;
const char *fmt;
int i;
rtx new_rtx = 0;
int changed = 0;
/* Operands of X. */
rtx folded_arg0;
rtx folded_arg1;
/* Constant equivalents of first three operands of X;
0 when no such equivalent is known. */
rtx const_arg0;
rtx const_arg1;
rtx const_arg2;
/* The mode of the first operand of X. We need this for sign and zero
extends. */
enum machine_mode mode_arg0;
if (x == 0)
return x;
/* Try to perform some initial simplifications on X. */
code = GET_CODE (x);
switch (code)
{
case MEM:
case SUBREG:
if ((new_rtx = equiv_constant (x)) != NULL_RTX)
return new_rtx;
return x;
case CONST:
CASE_CONST_ANY:
case SYMBOL_REF:
case LABEL_REF:
case REG:
case PC:
/* No use simplifying an EXPR_LIST
since they are used only for lists of args
in a function call's REG_EQUAL note. */
case EXPR_LIST:
return x;
#ifdef HAVE_cc0
case CC0:
return prev_insn_cc0;
#endif
case ASM_OPERANDS:
if (insn)
{
for (i = ASM_OPERANDS_INPUT_LENGTH (x) - 1; i >= 0; i--)
validate_change (insn, &ASM_OPERANDS_INPUT (x, i),
fold_rtx (ASM_OPERANDS_INPUT (x, i), insn), 0);
}
return x;
#ifdef NO_FUNCTION_CSE
case CALL:
if (CONSTANT_P (XEXP (XEXP (x, 0), 0)))
return x;
break;
#endif
/* Anything else goes through the loop below. */
default:
break;
}
mode = GET_MODE (x);
const_arg0 = 0;
const_arg1 = 0;
const_arg2 = 0;
mode_arg0 = VOIDmode;
/* Try folding our operands.
Then see which ones have constant values known. */
fmt = GET_RTX_FORMAT (code);
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
if (fmt[i] == 'e')
{
rtx folded_arg = XEXP (x, i), const_arg;
enum machine_mode mode_arg = GET_MODE (folded_arg);
switch (GET_CODE (folded_arg))
{
case MEM:
case REG:
case SUBREG:
const_arg = equiv_constant (folded_arg);
break;
case CONST:
CASE_CONST_ANY:
case SYMBOL_REF:
case LABEL_REF:
const_arg = folded_arg;
break;
#ifdef HAVE_cc0
case CC0:
folded_arg = prev_insn_cc0;
mode_arg = prev_insn_cc0_mode;
const_arg = equiv_constant (folded_arg);
break;
#endif
default:
folded_arg = fold_rtx (folded_arg, insn);
const_arg = equiv_constant (folded_arg);
break;
}
/* For the first three operands, see if the operand
is constant or equivalent to a constant. */
switch (i)
{
case 0:
folded_arg0 = folded_arg;
const_arg0 = const_arg;
mode_arg0 = mode_arg;
break;
case 1:
folded_arg1 = folded_arg;
const_arg1 = const_arg;
break;
case 2:
const_arg2 = const_arg;
break;
}
/* Pick the least expensive of the argument and an equivalent constant
argument. */
if (const_arg != 0
&& const_arg != folded_arg
&& COST_IN (const_arg, code, i) <= COST_IN (folded_arg, code, i)
/* It's not safe to substitute the operand of a conversion
operator with a constant, as the conversion's identity
depends upon the mode of its operand. This optimization
is handled by the call to simplify_unary_operation. */
&& (GET_RTX_CLASS (code) != RTX_UNARY
|| GET_MODE (const_arg) == mode_arg0
|| (code != ZERO_EXTEND
&& code != SIGN_EXTEND
&& code != TRUNCATE
&& code != FLOAT_TRUNCATE
&& code != FLOAT_EXTEND
&& code != FLOAT
&& code != FIX
&& code != UNSIGNED_FLOAT
&& code != UNSIGNED_FIX)))
folded_arg = const_arg;
if (folded_arg == XEXP (x, i))
continue;
if (insn == NULL_RTX && !changed)
x = copy_rtx (x);
changed = 1;
validate_unshare_change (insn, &XEXP (x, i), folded_arg, 1);
}
if (changed)
{
/* Canonicalize X if necessary, and keep const_argN and folded_argN
consistent with the order in X. */
if (canonicalize_change_group (insn, x))
{
rtx tem;
tem = const_arg0, const_arg0 = const_arg1, const_arg1 = tem;
tem = folded_arg0, folded_arg0 = folded_arg1, folded_arg1 = tem;
}
apply_change_group ();
}
/* If X is an arithmetic operation, see if we can simplify it. */
switch (GET_RTX_CLASS (code))
{
case RTX_UNARY:
{
/* We can't simplify extension ops unless we know the
original mode. */
if ((code == ZERO_EXTEND || code == SIGN_EXTEND)
&& mode_arg0 == VOIDmode)
break;
new_rtx = simplify_unary_operation (code, mode,
const_arg0 ? const_arg0 : folded_arg0,
mode_arg0);
}
break;
case RTX_COMPARE:
case RTX_COMM_COMPARE:
/* See what items are actually being compared and set FOLDED_ARG[01]
to those values and CODE to the actual comparison code. If any are
constant, set CONST_ARG0 and CONST_ARG1 appropriately. We needn't
do anything if both operands are already known to be constant. */
/* ??? Vector mode comparisons are not supported yet. */
if (VECTOR_MODE_P (mode))
break;
if (const_arg0 == 0 || const_arg1 == 0)
{
struct table_elt *p0, *p1;
rtx true_rtx, false_rtx;
enum machine_mode mode_arg1;
if (SCALAR_FLOAT_MODE_P (mode))
{
#ifdef FLOAT_STORE_FLAG_VALUE
true_rtx = (CONST_DOUBLE_FROM_REAL_VALUE
(FLOAT_STORE_FLAG_VALUE (mode), mode));
#else
true_rtx = NULL_RTX;
#endif
false_rtx = CONST0_RTX (mode);
}
else
{
true_rtx = const_true_rtx;
false_rtx = const0_rtx;
}
code = find_comparison_args (code, &folded_arg0, &folded_arg1,
&mode_arg0, &mode_arg1);
/* If the mode is VOIDmode or a MODE_CC mode, we don't know
what kinds of things are being compared, so we can't do
anything with this comparison. */
if (mode_arg0 == VOIDmode || GET_MODE_CLASS (mode_arg0) == MODE_CC)
break;
const_arg0 = equiv_constant (folded_arg0);
const_arg1 = equiv_constant (folded_arg1);
/* If we do not now have two constants being compared, see
if we can nevertheless deduce some things about the
comparison. */
if (const_arg0 == 0 || const_arg1 == 0)
{
if (const_arg1 != NULL)
{
rtx cheapest_simplification;
int cheapest_cost;
rtx simp_result;
struct table_elt *p;
/* See if we can find an equivalent of folded_arg0
that gets us a cheaper expression, possibly a
constant through simplifications. */
p = lookup (folded_arg0, SAFE_HASH (folded_arg0, mode_arg0),
mode_arg0);
if (p != NULL)
{
cheapest_simplification = x;
cheapest_cost = COST (x);
for (p = p->first_same_value; p != NULL; p = p->next_same_value)
{
int cost;
/* If the entry isn't valid, skip it. */
if (! exp_equiv_p (p->exp, p->exp, 1, false))
continue;
/* Try to simplify using this equivalence. */
simp_result
= simplify_relational_operation (code, mode,
mode_arg0,
p->exp,
const_arg1);
if (simp_result == NULL)
continue;
cost = COST (simp_result);
if (cost < cheapest_cost)
{
cheapest_cost = cost;
cheapest_simplification = simp_result;
}
}
/* If we have a cheaper expression now, use that
and try folding it further, from the top. */
if (cheapest_simplification != x)
return fold_rtx (copy_rtx (cheapest_simplification),
insn);
}
}
/* See if the two operands are the same. */
if ((REG_P (folded_arg0)
&& REG_P (folded_arg1)
&& (REG_QTY (REGNO (folded_arg0))
== REG_QTY (REGNO (folded_arg1))))
|| ((p0 = lookup (folded_arg0,
SAFE_HASH (folded_arg0, mode_arg0),
mode_arg0))
&& (p1 = lookup (folded_arg1,
SAFE_HASH (folded_arg1, mode_arg0),
mode_arg0))
&& p0->first_same_value == p1->first_same_value))
folded_arg1 = folded_arg0;
/* If FOLDED_ARG0 is a register, see if the comparison we are
doing now is either the same as we did before or the reverse
(we only check the reverse if not floating-point). */
else if (REG_P (folded_arg0))
{
int qty = REG_QTY (REGNO (folded_arg0));
if (REGNO_QTY_VALID_P (REGNO (folded_arg0)))
{
struct qty_table_elem *ent = &qty_table[qty];
if ((comparison_dominates_p (ent->comparison_code, code)
|| (! FLOAT_MODE_P (mode_arg0)
&& comparison_dominates_p (ent->comparison_code,
reverse_condition (code))))
&& (rtx_equal_p (ent->comparison_const, folded_arg1)
|| (const_arg1
&& rtx_equal_p (ent->comparison_const,
const_arg1))
|| (REG_P (folded_arg1)
&& (REG_QTY (REGNO (folded_arg1)) == ent->comparison_qty))))
{
if (comparison_dominates_p (ent->comparison_code, code))
{
if (true_rtx)
return true_rtx;
else
break;
}
else
return false_rtx;
}
}
}
}
}
/* If we are comparing against zero, see if the first operand is
equivalent to an IOR with a constant. If so, we may be able to
determine the result of this comparison. */
if (const_arg1 == const0_rtx && !const_arg0)
{
rtx y = lookup_as_function (folded_arg0, IOR);
rtx inner_const;
if (y != 0
&& (inner_const = equiv_constant (XEXP (y, 1))) != 0
&& CONST_INT_P (inner_const)
&& INTVAL (inner_const) != 0)
folded_arg0 = gen_rtx_IOR (mode_arg0, XEXP (y, 0), inner_const);
}
{
rtx op0 = const_arg0 ? const_arg0 : copy_rtx (folded_arg0);
rtx op1 = const_arg1 ? const_arg1 : copy_rtx (folded_arg1);
new_rtx = simplify_relational_operation (code, mode, mode_arg0,
op0, op1);
}
break;
case RTX_BIN_ARITH:
case RTX_COMM_ARITH:
switch (code)
{
case PLUS:
/* If the second operand is a LABEL_REF, see if the first is a MINUS
with that LABEL_REF as its second operand. If so, the result is
the first operand of that MINUS. This handles switches with an
ADDR_DIFF_VEC table. */
if (const_arg1 && GET_CODE (const_arg1) == LABEL_REF)
{
rtx y
= GET_CODE (folded_arg0) == MINUS ? folded_arg0
: lookup_as_function (folded_arg0, MINUS);
if (y != 0 && GET_CODE (XEXP (y, 1)) == LABEL_REF
&& XEXP (XEXP (y, 1), 0) == XEXP (const_arg1, 0))
return XEXP (y, 0);
/* Now try for a CONST of a MINUS like the above. */
if ((y = (GET_CODE (folded_arg0) == CONST ? folded_arg0
: lookup_as_function (folded_arg0, CONST))) != 0
&& GET_CODE (XEXP (y, 0)) == MINUS
&& GET_CODE (XEXP (XEXP (y, 0), 1)) == LABEL_REF
&& XEXP (XEXP (XEXP (y, 0), 1), 0) == XEXP (const_arg1, 0))
return XEXP (XEXP (y, 0), 0);
}
/* Likewise if the operands are in the other order. */
if (const_arg0 && GET_CODE (const_arg0) == LABEL_REF)
{
rtx y
= GET_CODE (folded_arg1) == MINUS ? folded_arg1
: lookup_as_function (folded_arg1, MINUS);
if (y != 0 && GET_CODE (XEXP (y, 1)) == LABEL_REF
&& XEXP (XEXP (y, 1), 0) == XEXP (const_arg0, 0))
return XEXP (y, 0);
/* Now try for a CONST of a MINUS like the above. */
if ((y = (GET_CODE (folded_arg1) == CONST ? folded_arg1
: lookup_as_function (folded_arg1, CONST))) != 0
&& GET_CODE (XEXP (y, 0)) == MINUS
&& GET_CODE (XEXP (XEXP (y, 0), 1)) == LABEL_REF
&& XEXP (XEXP (XEXP (y, 0), 1), 0) == XEXP (const_arg0, 0))
return XEXP (XEXP (y, 0), 0);
}
/* If second operand is a register equivalent to a negative
CONST_INT, see if we can find a register equivalent to the
positive constant. Make a MINUS if so. Don't do this for
a non-negative constant since we might then alternate between
choosing positive and negative constants. Having the positive
constant previously-used is the more common case. Be sure
the resulting constant is non-negative; if const_arg1 were
the smallest negative number this would overflow: depending
on the mode, this would either just be the same value (and
hence not save anything) or be incorrect. */
if (const_arg1 != 0 && CONST_INT_P (const_arg1)
&& INTVAL (const_arg1) < 0
/* This used to test
-INTVAL (const_arg1) >= 0
But The Sun V5.0 compilers mis-compiled that test. So
instead we test for the problematic value in a more direct
manner and hope the Sun compilers get it correct. */
&& INTVAL (const_arg1) !=
((HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT - 1))
&& REG_P (folded_arg1))
{
rtx new_const = GEN_INT (-INTVAL (const_arg1));
struct table_elt *p
= lookup (new_const, SAFE_HASH (new_const, mode), mode);
if (p)
for (p = p->first_same_value; p; p = p->next_same_value)
if (REG_P (p->exp))
return simplify_gen_binary (MINUS, mode, folded_arg0,
canon_reg (p->exp, NULL_RTX));
}
goto from_plus;
case MINUS:
/* If we have (MINUS Y C), see if Y is known to be (PLUS Z C2).
If so, produce (PLUS Z C2-C). */
if (const_arg1 != 0 && CONST_INT_P (const_arg1))
{
rtx y = lookup_as_function (XEXP (x, 0), PLUS);
if (y && CONST_INT_P (XEXP (y, 1)))
return fold_rtx (plus_constant (mode, copy_rtx (y),
-INTVAL (const_arg1)),
NULL_RTX);
}
/* Fall through. */
from_plus:
case SMIN: case SMAX: case UMIN: case UMAX:
case IOR: case AND: case XOR:
case MULT:
case ASHIFT: case LSHIFTRT: case ASHIFTRT:
/* If we have (<op> <reg> <const_int>) for an associative OP and REG
is known to be of similar form, we may be able to replace the
operation with a combined operation. This may eliminate the
intermediate operation if every use is simplified in this way.
Note that the similar optimization done by combine.c only works
if the intermediate operation's result has only one reference. */
if (REG_P (folded_arg0)
&& const_arg1 && CONST_INT_P (const_arg1))
{
int is_shift
= (code == ASHIFT || code == ASHIFTRT || code == LSHIFTRT);
rtx y, inner_const, new_const;
rtx canon_const_arg1 = const_arg1;
enum rtx_code associate_code;
if (is_shift
&& (INTVAL (const_arg1) >= GET_MODE_PRECISION (mode)
|| INTVAL (const_arg1) < 0))
{
if (SHIFT_COUNT_TRUNCATED)
canon_const_arg1 = GEN_INT (INTVAL (const_arg1)
& (GET_MODE_BITSIZE (mode)
- 1));
else
break;
}
y = lookup_as_function (folded_arg0, code);
if (y == 0)
break;
/* If we have compiled a statement like
"if (x == (x & mask1))", and now are looking at
"x & mask2", we will have a case where the first operand
of Y is the same as our first operand. Unless we detect
this case, an infinite loop will result. */
if (XEXP (y, 0) == folded_arg0)
break;
inner_const = equiv_constant (fold_rtx (XEXP (y, 1), 0));
if (!inner_const || !CONST_INT_P (inner_const))
break;
/* Don't associate these operations if they are a PLUS with the
same constant and it is a power of two. These might be doable
with a pre- or post-increment. Similarly for two subtracts of
identical powers of two with post decrement. */
if (code == PLUS && const_arg1 == inner_const
&& ((HAVE_PRE_INCREMENT
&& exact_log2 (INTVAL (const_arg1)) >= 0)
|| (HAVE_POST_INCREMENT
&& exact_log2 (INTVAL (const_arg1)) >= 0)
|| (HAVE_PRE_DECREMENT
&& exact_log2 (- INTVAL (const_arg1)) >= 0)
|| (HAVE_POST_DECREMENT
&& exact_log2 (- INTVAL (const_arg1)) >= 0)))
break;
/* ??? Vector mode shifts by scalar
shift operand are not supported yet. */
if (is_shift && VECTOR_MODE_P (mode))
break;
if (is_shift
&& (INTVAL (inner_const) >= GET_MODE_PRECISION (mode)
|| INTVAL (inner_const) < 0))
{
if (SHIFT_COUNT_TRUNCATED)
inner_const = GEN_INT (INTVAL (inner_const)
& (GET_MODE_BITSIZE (mode) - 1));
else
break;
}
/* Compute the code used to compose the constants. For example,
A-C1-C2 is A-(C1 + C2), so if CODE == MINUS, we want PLUS. */
associate_code = (is_shift || code == MINUS ? PLUS : code);
new_const = simplify_binary_operation (associate_code, mode,
canon_const_arg1,
inner_const);
if (new_const == 0)
break;
/* If we are associating shift operations, don't let this
produce a shift of the size of the object or larger.
This could occur when we follow a sign-extend by a right
shift on a machine that does a sign-extend as a pair
of shifts. */
if (is_shift
&& CONST_INT_P (new_const)
&& INTVAL (new_const) >= GET_MODE_PRECISION (mode))
{
/* As an exception, we can turn an ASHIFTRT of this
form into a shift of the number of bits - 1. */
if (code == ASHIFTRT)
new_const = GEN_INT (GET_MODE_BITSIZE (mode) - 1);
else if (!side_effects_p (XEXP (y, 0)))
return CONST0_RTX (mode);
else
break;
}
y = copy_rtx (XEXP (y, 0));
/* If Y contains our first operand (the most common way this
can happen is if Y is a MEM), we would do into an infinite
loop if we tried to fold it. So don't in that case. */
if (! reg_mentioned_p (folded_arg0, y))
y = fold_rtx (y, insn);
return simplify_gen_binary (code, mode, y, new_const);
}
break;
case DIV: case UDIV:
/* ??? The associative optimization performed immediately above is
also possible for DIV and UDIV using associate_code of MULT.
However, we would need extra code to verify that the
multiplication does not overflow, that is, there is no overflow
in the calculation of new_const. */
break;
default:
break;
}
new_rtx = simplify_binary_operation (code, mode,
const_arg0 ? const_arg0 : folded_arg0,
const_arg1 ? const_arg1 : folded_arg1);
break;
case RTX_OBJ:
/* (lo_sum (high X) X) is simply X. */
if (code == LO_SUM && const_arg0 != 0
&& GET_CODE (const_arg0) == HIGH
&& rtx_equal_p (XEXP (const_arg0, 0), const_arg1))
return const_arg1;
break;
case RTX_TERNARY:
case RTX_BITFIELD_OPS:
new_rtx = simplify_ternary_operation (code, mode, mode_arg0,
const_arg0 ? const_arg0 : folded_arg0,
const_arg1 ? const_arg1 : folded_arg1,
const_arg2 ? const_arg2 : XEXP (x, 2));
break;
default:
break;
}
return new_rtx ? new_rtx : x;
}
/* Return a constant value currently equivalent to X.
Return 0 if we don't know one. */
static rtx
equiv_constant (rtx x)
{
if (REG_P (x)
&& REGNO_QTY_VALID_P (REGNO (x)))
{
int x_q = REG_QTY (REGNO (x));
struct qty_table_elem *x_ent = &qty_table[x_q];
if (x_ent->const_rtx)
x = gen_lowpart (GET_MODE (x), x_ent->const_rtx);
}
if (x == 0 || CONSTANT_P (x))
return x;
if (GET_CODE (x) == SUBREG)
{
enum machine_mode mode = GET_MODE (x);
enum machine_mode imode = GET_MODE (SUBREG_REG (x));
rtx new_rtx;
/* See if we previously assigned a constant value to this SUBREG. */
if ((new_rtx = lookup_as_function (x, CONST_INT)) != 0
|| (new_rtx = lookup_as_function (x, CONST_DOUBLE)) != 0
|| (new_rtx = lookup_as_function (x, CONST_FIXED)) != 0)
return new_rtx;
/* If we didn't and if doing so makes sense, see if we previously
assigned a constant value to the enclosing word mode SUBREG. */
if (GET_MODE_SIZE (mode) < GET_MODE_SIZE (word_mode)
&& GET_MODE_SIZE (word_mode) < GET_MODE_SIZE (imode))
{
int byte = SUBREG_BYTE (x) - subreg_lowpart_offset (mode, word_mode);
if (byte >= 0 && (byte % UNITS_PER_WORD) == 0)
{
rtx y = gen_rtx_SUBREG (word_mode, SUBREG_REG (x), byte);
new_rtx = lookup_as_function (y, CONST_INT);
if (new_rtx)
return gen_lowpart (mode, new_rtx);
}
}
/* Otherwise see if we already have a constant for the inner REG,
and if that is enough to calculate an equivalent constant for
the subreg. Note that the upper bits of paradoxical subregs
are undefined, so they cannot be said to equal anything. */
if (REG_P (SUBREG_REG (x))
&& GET_MODE_SIZE (mode) <= GET_MODE_SIZE (imode)
&& (new_rtx = equiv_constant (SUBREG_REG (x))) != 0)
return simplify_subreg (mode, new_rtx, imode, SUBREG_BYTE (x));
return 0;
}
/* If X is a MEM, see if it is a constant-pool reference, or look it up in
the hash table in case its value was seen before. */
if (MEM_P (x))
{
struct table_elt *elt;
x = avoid_constant_pool_reference (x);
if (CONSTANT_P (x))
return x;
elt = lookup (x, SAFE_HASH (x, GET_MODE (x)), GET_MODE (x));
if (elt == 0)
return 0;
for (elt = elt->first_same_value; elt; elt = elt->next_same_value)
if (elt->is_const && CONSTANT_P (elt->exp))
return elt->exp;
}
return 0;
}
/* Given INSN, a jump insn, TAKEN indicates if we are following the
"taken" branch.
In certain cases, this can cause us to add an equivalence. For example,
if we are following the taken case of
if (i == 2)
we can add the fact that `i' and '2' are now equivalent.
In any case, we can record that this comparison was passed. If the same
comparison is seen later, we will know its value. */
static void
record_jump_equiv (rtx insn, bool taken)
{
int cond_known_true;
rtx op0, op1;
rtx set;
enum machine_mode mode, mode0, mode1;
int reversed_nonequality = 0;
enum rtx_code code;
/* Ensure this is the right kind of insn. */
gcc_assert (any_condjump_p (insn));
set = pc_set (insn);
/* See if this jump condition is known true or false. */
if (taken)
cond_known_true = (XEXP (SET_SRC (set), 2) == pc_rtx);
else
cond_known_true = (XEXP (SET_SRC (set), 1) == pc_rtx);
/* Get the type of comparison being done and the operands being compared.
If we had to reverse a non-equality condition, record that fact so we
know that it isn't valid for floating-point. */
code = GET_CODE (XEXP (SET_SRC (set), 0));
op0 = fold_rtx (XEXP (XEXP (SET_SRC (set), 0), 0), insn);
op1 = fold_rtx (XEXP (XEXP (SET_SRC (set), 0), 1), insn);
code = find_comparison_args (code, &op0, &op1, &mode0, &mode1);
if (! cond_known_true)
{
code = reversed_comparison_code_parts (code, op0, op1, insn);
/* Don't remember if we can't find the inverse. */
if (code == UNKNOWN)
return;
}
/* The mode is the mode of the non-constant. */
mode = mode0;
if (mode1 != VOIDmode)
mode = mode1;
record_jump_cond (code, mode, op0, op1, reversed_nonequality);
}
/* Yet another form of subreg creation. In this case, we want something in
MODE, and we should assume OP has MODE iff it is naturally modeless. */
static rtx
record_jump_cond_subreg (enum machine_mode mode, rtx op)
{
enum machine_mode op_mode = GET_MODE (op);
if (op_mode == mode || op_mode == VOIDmode)
return op;
return lowpart_subreg (mode, op, op_mode);
}
/* We know that comparison CODE applied to OP0 and OP1 in MODE is true.
REVERSED_NONEQUALITY is nonzero if CODE had to be swapped.
Make any useful entries we can with that information. Called from
above function and called recursively. */
static void
record_jump_cond (enum rtx_code code, enum machine_mode mode, rtx op0,
rtx op1, int reversed_nonequality)
{
unsigned op0_hash, op1_hash;
int op0_in_memory, op1_in_memory;
struct table_elt *op0_elt, *op1_elt;
/* If OP0 and OP1 are known equal, and either is a paradoxical SUBREG,
we know that they are also equal in the smaller mode (this is also
true for all smaller modes whether or not there is a SUBREG, but
is not worth testing for with no SUBREG). */
/* Note that GET_MODE (op0) may not equal MODE. */
if (code == EQ && paradoxical_subreg_p (op0))
{
enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op0));
rtx tem = record_jump_cond_subreg (inner_mode, op1);
if (tem)
record_jump_cond (code, mode, SUBREG_REG (op0), tem,
reversed_nonequality);
}
if (code == EQ && paradoxical_subreg_p (op1))
{
enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op1));
rtx tem = record_jump_cond_subreg (inner_mode, op0);
if (tem)
record_jump_cond (code, mode, SUBREG_REG (op1), tem,
reversed_nonequality);
}
/* Similarly, if this is an NE comparison, and either is a SUBREG
making a smaller mode, we know the whole thing is also NE. */
/* Note that GET_MODE (op0) may not equal MODE;
if we test MODE instead, we can get an infinite recursion
alternating between two modes each wider than MODE. */
if (code == NE && GET_CODE (op0) == SUBREG
&& subreg_lowpart_p (op0)
&& (GET_MODE_SIZE (GET_MODE (op0))
< GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0)))))
{
enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op0));
rtx tem = record_jump_cond_subreg (inner_mode, op1);
if (tem)
record_jump_cond (code, mode, SUBREG_REG (op0), tem,
reversed_nonequality);
}
if (code == NE && GET_CODE (op1) == SUBREG
&& subreg_lowpart_p (op1)
&& (GET_MODE_SIZE (GET_MODE (op1))
< GET_MODE_SIZE (GET_MODE (SUBREG_REG (op1)))))
{
enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op1));
rtx tem = record_jump_cond_subreg (inner_mode, op0);
if (tem)
record_jump_cond (code, mode, SUBREG_REG (op1), tem,
reversed_nonequality);
}
/* Hash both operands. */
do_not_record = 0;
hash_arg_in_memory = 0;
op0_hash = HASH (op0, mode);
op0_in_memory = hash_arg_in_memory;
if (do_not_record)
return;
do_not_record = 0;
hash_arg_in_memory = 0;
op1_hash = HASH (op1, mode);
op1_in_memory = hash_arg_in_memory;
if (do_not_record)
return;
/* Look up both operands. */
op0_elt = lookup (op0, op0_hash, mode);
op1_elt = lookup (op1, op1_hash, mode);
/* If both operands are already equivalent or if they are not in the
table but are identical, do nothing. */
if ((op0_elt != 0 && op1_elt != 0
&& op0_elt->first_same_value == op1_elt->first_same_value)
|| op0 == op1 || rtx_equal_p (op0, op1))
return;
/* If we aren't setting two things equal all we can do is save this
comparison. Similarly if this is floating-point. In the latter
case, OP1 might be zero and both -0.0 and 0.0 are equal to it.
If we record the equality, we might inadvertently delete code
whose intent was to change -0 to +0. */
if (code != EQ || FLOAT_MODE_P (GET_MODE (op0)))
{
struct qty_table_elem *ent;
int qty;
/* If we reversed a floating-point comparison, if OP0 is not a
register, or if OP1 is neither a register or constant, we can't
do anything. */
if (!REG_P (op1))
op1 = equiv_constant (op1);
if ((reversed_nonequality && FLOAT_MODE_P (mode))
|| !REG_P (op0) || op1 == 0)
return;
/* Put OP0 in the hash table if it isn't already. This gives it a
new quantity number. */
if (op0_elt == 0)
{
if (insert_regs (op0, NULL, 0))
{
rehash_using_reg (op0);
op0_hash = HASH (op0, mode);
/* If OP0 is contained in OP1, this changes its hash code
as well. Faster to rehash than to check, except
for the simple case of a constant. */
if (! CONSTANT_P (op1))
op1_hash = HASH (op1,mode);
}
op0_elt = insert (op0, NULL, op0_hash, mode);
op0_elt->in_memory = op0_in_memory;
}
qty = REG_QTY (REGNO (op0));
ent = &qty_table[qty];
ent->comparison_code = code;
if (REG_P (op1))
{
/* Look it up again--in case op0 and op1 are the same. */
op1_elt = lookup (op1, op1_hash, mode);
/* Put OP1 in the hash table so it gets a new quantity number. */
if (op1_elt == 0)
{
if (insert_regs (op1, NULL, 0))
{
rehash_using_reg (op1);
op1_hash = HASH (op1, mode);
}
op1_elt = insert (op1, NULL, op1_hash, mode);
op1_elt->in_memory = op1_in_memory;
}
ent->comparison_const = NULL_RTX;
ent->comparison_qty = REG_QTY (REGNO (op1));
}
else
{
ent->comparison_const = op1;
ent->comparison_qty = -1;
}
return;
}
/* If either side is still missing an equivalence, make it now,
then merge the equivalences. */
if (op0_elt == 0)
{
if (insert_regs (op0, NULL, 0))
{
rehash_using_reg (op0);
op0_hash = HASH (op0, mode);
}
op0_elt = insert (op0, NULL, op0_hash, mode);
op0_elt->in_memory = op0_in_memory;
}
if (op1_elt == 0)
{
if (insert_regs (op1, NULL, 0))
{
rehash_using_reg (op1);
op1_hash = HASH (op1, mode);
}
op1_elt = insert (op1, NULL, op1_hash, mode);
op1_elt->in_memory = op1_in_memory;
}
merge_equiv_classes (op0_elt, op1_elt);
}
/* CSE processing for one instruction.
Most "true" common subexpressions are mostly optimized away in GIMPLE,
but the few that "leak through" are cleaned up by cse_insn, and complex
addressing modes are often formed here.
The main function is cse_insn, and between here and that function
a couple of helper functions is defined to keep the size of cse_insn
within reasonable proportions.
Data is shared between the main and helper functions via STRUCT SET,
that contains all data related for every set in the instruction that
is being processed.
Note that cse_main processes all sets in the instruction. Most
passes in GCC only process simple SET insns or single_set insns, but
CSE processes insns with multiple sets as well. */
/* Data on one SET contained in the instruction. */
struct set
{
/* The SET rtx itself. */
rtx rtl;
/* The SET_SRC of the rtx (the original value, if it is changing). */
rtx src;
/* The hash-table element for the SET_SRC of the SET. */
struct table_elt *src_elt;
/* Hash value for the SET_SRC. */
unsigned src_hash;
/* Hash value for the SET_DEST. */
unsigned dest_hash;
/* The SET_DEST, with SUBREG, etc., stripped. */
rtx inner_dest;
/* Nonzero if the SET_SRC is in memory. */
char src_in_memory;
/* Nonzero if the SET_SRC contains something
whose value cannot be predicted and understood. */
char src_volatile;
/* Original machine mode, in case it becomes a CONST_INT.
The size of this field should match the size of the mode
field of struct rtx_def (see rtl.h). */
ENUM_BITFIELD(machine_mode) mode : 8;
/* A constant equivalent for SET_SRC, if any. */
rtx src_const;
/* Hash value of constant equivalent for SET_SRC. */
unsigned src_const_hash;
/* Table entry for constant equivalent for SET_SRC, if any. */
struct table_elt *src_const_elt;
/* Table entry for the destination address. */
struct table_elt *dest_addr_elt;
};
/* Special handling for (set REG0 REG1) where REG0 is the
"cheapest", cheaper than REG1. After cse, REG1 will probably not
be used in the sequel, so (if easily done) change this insn to
(set REG1 REG0) and replace REG1 with REG0 in the previous insn
that computed their value. Then REG1 will become a dead store
and won't cloud the situation for later optimizations.
Do not make this change if REG1 is a hard register, because it will
then be used in the sequel and we may be changing a two-operand insn
into a three-operand insn.
This is the last transformation that cse_insn will try to do. */
static void
try_back_substitute_reg (rtx set, rtx insn)
{
rtx dest = SET_DEST (set);
rtx src = SET_SRC (set);
if (REG_P (dest)
&& REG_P (src) && ! HARD_REGISTER_P (src)
&& REGNO_QTY_VALID_P (REGNO (src)))
{
int src_q = REG_QTY (REGNO (src));
struct qty_table_elem *src_ent = &qty_table[src_q];
if (src_ent->first_reg == REGNO (dest))
{
/* Scan for the previous nonnote insn, but stop at a basic
block boundary. */
rtx prev = insn;
rtx bb_head = BB_HEAD (BLOCK_FOR_INSN (insn));
do
{
prev = PREV_INSN (prev);
}
while (prev != bb_head && (NOTE_P (prev) || DEBUG_INSN_P (prev)));
/* Do not swap the registers around if the previous instruction
attaches a REG_EQUIV note to REG1.
??? It's not entirely clear whether we can transfer a REG_EQUIV
from the pseudo that originally shadowed an incoming argument
to another register. Some uses of REG_EQUIV might rely on it
being attached to REG1 rather than REG2.
This section previously turned the REG_EQUIV into a REG_EQUAL
note. We cannot do that because REG_EQUIV may provide an
uninitialized stack slot when REG_PARM_STACK_SPACE is used. */
if (NONJUMP_INSN_P (prev)
&& GET_CODE (PATTERN (prev)) == SET
&& SET_DEST (PATTERN (prev)) == src
&& ! find_reg_note (prev, REG_EQUIV, NULL_RTX))
{
rtx note;
validate_change (prev, &SET_DEST (PATTERN (prev)), dest, 1);
validate_change (insn, &SET_DEST (set), src, 1);
validate_change (insn, &SET_SRC (set), dest, 1);
apply_change_group ();
/* If INSN has a REG_EQUAL note, and this note mentions
REG0, then we must delete it, because the value in
REG0 has changed. If the note's value is REG1, we must
also delete it because that is now this insn's dest. */
note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
if (note != 0
&& (reg_mentioned_p (dest, XEXP (note, 0))
|| rtx_equal_p (src, XEXP (note, 0))))
remove_note (insn, note);
}
}
}
}
/* Record all the SETs in this instruction into SETS_PTR,
and return the number of recorded sets. */
static int
find_sets_in_insn (rtx insn, struct set **psets)
{
struct set *sets = *psets;
int n_sets = 0;
rtx x = PATTERN (insn);
if (GET_CODE (x) == SET)
{
/* Ignore SETs that are unconditional jumps.
They never need cse processing, so this does not hurt.
The reason is not efficiency but rather
so that we can test at the end for instructions
that have been simplified to unconditional jumps
and not be misled by unchanged instructions
that were unconditional jumps to begin with. */
if (SET_DEST (x) == pc_rtx
&& GET_CODE (SET_SRC (x)) == LABEL_REF)
;
/* Don't count call-insns, (set (reg 0) (call ...)), as a set.
The hard function value register is used only once, to copy to
someplace else, so it isn't worth cse'ing. */
else if (GET_CODE (SET_SRC (x)) == CALL)
;
else
sets[n_sets++].rtl = x;
}
else if (GET_CODE (x) == PARALLEL)
{
int i, lim = XVECLEN (x, 0);
/* Go over the epressions of the PARALLEL in forward order, to
put them in the same order in the SETS array. */
for (i = 0; i < lim; i++)
{
rtx y = XVECEXP (x, 0, i);
if (GET_CODE (y) == SET)
{
/* As above, we ignore unconditional jumps and call-insns and
ignore the result of apply_change_group. */
if (SET_DEST (y) == pc_rtx
&& GET_CODE (SET_SRC (y)) == LABEL_REF)
;
else if (GET_CODE (SET_SRC (y)) == CALL)
;
else
sets[n_sets++].rtl = y;
}
}
}
return n_sets;
}
/* Where possible, substitute every register reference in the N_SETS
number of SETS in INSN with the the canonical register.
Register canonicalization propagatest the earliest register (i.e.
one that is set before INSN) with the same value. This is a very
useful, simple form of CSE, to clean up warts from expanding GIMPLE
to RTL. For instance, a CONST for an address is usually expanded
multiple times to loads into different registers, thus creating many
subexpressions of the form:
(set (reg1) (some_const))
(set (mem (... reg1 ...) (thing)))
(set (reg2) (some_const))
(set (mem (... reg2 ...) (thing)))
After canonicalizing, the code takes the following form:
(set (reg1) (some_const))
(set (mem (... reg1 ...) (thing)))
(set (reg2) (some_const))
(set (mem (... reg1 ...) (thing)))
The set to reg2 is now trivially dead, and the memory reference (or
address, or whatever) may be a candidate for further CSEing.
In this function, the result of apply_change_group can be ignored;
see canon_reg. */
static void
canonicalize_insn (rtx insn, struct set **psets, int n_sets)
{
struct set *sets = *psets;
rtx tem;
rtx x = PATTERN (insn);
int i;
if (CALL_P (insn))
{
for (tem = CALL_INSN_FUNCTION_USAGE (insn); tem; tem = XEXP (tem, 1))
if (GET_CODE (XEXP (tem, 0)) != SET)
XEXP (tem, 0) = canon_reg (XEXP (tem, 0), insn);
}
if (GET_CODE (x) == SET && GET_CODE (SET_SRC (x)) == CALL)
{
canon_reg (SET_SRC (x), insn);
apply_change_group ();
fold_rtx (SET_SRC (x), insn);
}
else if (GET_CODE (x) == CLOBBER)
{
/* If we clobber memory, canon the address.
This does nothing when a register is clobbered
because we have already invalidated the reg. */
if (MEM_P (XEXP (x, 0)))
canon_reg (XEXP (x, 0), insn);
}
else if (GET_CODE (x) == USE
&& ! (REG_P (XEXP (x, 0))
&& REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER))
/* Canonicalize a USE of a pseudo register or memory location. */
canon_reg (x, insn);
else if (GET_CODE (x) == ASM_OPERANDS)
{
for (i = ASM_OPERANDS_INPUT_LENGTH (x) - 1; i >= 0; i--)
{
rtx input = ASM_OPERANDS_INPUT (x, i);
if (!(REG_P (input) && REGNO (input) < FIRST_PSEUDO_REGISTER))
{
input = canon_reg (input, insn);
validate_change (insn, &ASM_OPERANDS_INPUT (x, i), input, 1);
}
}
}
else if (GET_CODE (x) == CALL)
{
canon_reg (x, insn);
apply_change_group ();
fold_rtx (x, insn);
}
else if (DEBUG_INSN_P (insn))
canon_reg (PATTERN (insn), insn);
else if (GET_CODE (x) == PARALLEL)
{
for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
{
rtx y = XVECEXP (x, 0, i);
if (GET_CODE (y) == SET && GET_CODE (SET_SRC (y)) == CALL)
{
canon_reg (SET_SRC (y), insn);
apply_change_group ();
fold_rtx (SET_SRC (y), insn);
}
else if (GET_CODE (y) == CLOBBER)
{
if (MEM_P (XEXP (y, 0)))
canon_reg (XEXP (y, 0), insn);
}
else if (GET_CODE (y) == USE
&& ! (REG_P (XEXP (y, 0))
&& REGNO (XEXP (y, 0)) < FIRST_PSEUDO_REGISTER))
canon_reg (y, insn);
else if (GET_CODE (y) == CALL)
{
canon_reg (y, insn);
apply_change_group ();
fold_rtx (y, insn);
}
}
}
if (n_sets == 1 && REG_NOTES (insn) != 0
&& (tem = find_reg_note (insn, REG_EQUAL, NULL_RTX)) != 0)
{
/* We potentially will process this insn many times. Therefore,
drop the REG_EQUAL note if it is equal to the SET_SRC of the
unique set in INSN.
Do not do so if the REG_EQUAL note is for a STRICT_LOW_PART,
because cse_insn handles those specially. */
if (GET_CODE (SET_DEST (sets[0].rtl)) != STRICT_LOW_PART
&& rtx_equal_p (XEXP (tem, 0), SET_SRC (sets[0].rtl)))
remove_note (insn, tem);
else
{
canon_reg (XEXP (tem, 0), insn);
apply_change_group ();
XEXP (tem, 0) = fold_rtx (XEXP (tem, 0), insn);
df_notes_rescan (insn);
}
}
/* Canonicalize sources and addresses of destinations.
We do this in a separate pass to avoid problems when a MATCH_DUP is
present in the insn pattern. In that case, we want to ensure that
we don't break the duplicate nature of the pattern. So we will replace
both operands at the same time. Otherwise, we would fail to find an
equivalent substitution in the loop calling validate_change below.
We used to suppress canonicalization of DEST if it appears in SRC,
but we don't do this any more. */
for (i = 0; i < n_sets; i++)
{
rtx dest = SET_DEST (sets[i].rtl);
rtx src = SET_SRC (sets[i].rtl);
rtx new_rtx = canon_reg (src, insn);
validate_change (insn, &SET_SRC (sets[i].rtl), new_rtx, 1);
if (GET_CODE (dest) == ZERO_EXTRACT)
{
validate_change (insn, &XEXP (dest, 1),
canon_reg (XEXP (dest, 1), insn), 1);
validate_change (insn, &XEXP (dest, 2),
canon_reg (XEXP (dest, 2), insn), 1);
}
while (GET_CODE (dest) == SUBREG
|| GET_CODE (dest) == ZERO_EXTRACT
|| GET_CODE (dest) == STRICT_LOW_PART)
dest = XEXP (dest, 0);
if (MEM_P (dest))
canon_reg (dest, insn);
}
/* Now that we have done all the replacements, we can apply the change
group and see if they all work. Note that this will cause some
canonicalizations that would have worked individually not to be applied
because some other canonicalization didn't work, but this should not
occur often.
The result of apply_change_group can be ignored; see canon_reg. */
apply_change_group ();
}
/* Main function of CSE.
First simplify sources and addresses of all assignments
in the instruction, using previously-computed equivalents values.
Then install the new sources and destinations in the table
of available values. */
static void
cse_insn (rtx insn)
{
rtx x = PATTERN (insn);
int i;
rtx tem;
int n_sets = 0;
rtx src_eqv = 0;
struct table_elt *src_eqv_elt = 0;
int src_eqv_volatile = 0;
int src_eqv_in_memory = 0;
unsigned src_eqv_hash = 0;
struct set *sets = (struct set *) 0;
if (GET_CODE (x) == SET)
sets = XALLOCA (struct set);
else if (GET_CODE (x) == PARALLEL)
sets = XALLOCAVEC (struct set, XVECLEN (x, 0));
this_insn = insn;
#ifdef HAVE_cc0
/* Records what this insn does to set CC0. */
this_insn_cc0 = 0;
this_insn_cc0_mode = VOIDmode;
#endif
/* Find all regs explicitly clobbered in this insn,
to ensure they are not replaced with any other regs
elsewhere in this insn. */
invalidate_from_sets_and_clobbers (insn);
/* Record all the SETs in this instruction. */
n_sets = find_sets_in_insn (insn, &sets);
/* Substitute the canonical register where possible. */
canonicalize_insn (insn, &sets, n_sets);
/* If this insn has a REG_EQUAL note, store the equivalent value in SRC_EQV,
if different, or if the DEST is a STRICT_LOW_PART. The latter condition
is necessary because SRC_EQV is handled specially for this case, and if
it isn't set, then there will be no equivalence for the destination. */
if (n_sets == 1 && REG_NOTES (insn) != 0
&& (tem = find_reg_note (insn, REG_EQUAL, NULL_RTX)) != 0
&& (! rtx_equal_p (XEXP (tem, 0), SET_SRC (sets[0].rtl))
|| GET_CODE (SET_DEST (sets[0].rtl)) == STRICT_LOW_PART))
src_eqv = copy_rtx (XEXP (tem, 0));
/* Set sets[i].src_elt to the class each source belongs to.
Detect assignments from or to volatile things
and set set[i] to zero so they will be ignored
in the rest of this function.
Nothing in this loop changes the hash table or the register chains. */
for (i = 0; i < n_sets; i++)
{
bool repeat = false;
rtx src, dest;
rtx src_folded;
struct table_elt *elt = 0, *p;
enum machine_mode mode;
rtx src_eqv_here;
rtx src_const = 0;
rtx src_related = 0;
bool src_related_is_const_anchor = false;
struct table_elt *src_const_elt = 0;
int src_cost = MAX_COST;
int src_eqv_cost = MAX_COST;
int src_folded_cost = MAX_COST;
int src_related_cost = MAX_COST;
int src_elt_cost = MAX_COST;
int src_regcost = MAX_COST;
int src_eqv_regcost = MAX_COST;
int src_folded_regcost = MAX_COST;
int src_related_regcost = MAX_COST;
int src_elt_regcost = MAX_COST;
/* Set nonzero if we need to call force_const_mem on with the
contents of src_folded before using it. */
int src_folded_force_flag = 0;
dest = SET_DEST (sets[i].rtl);
src = SET_SRC (sets[i].rtl);
/* If SRC is a constant that has no machine mode,
hash it with the destination's machine mode.
This way we can keep different modes separate. */
mode = GET_MODE (src) == VOIDmode ? GET_MODE (dest) : GET_MODE (src);
sets[i].mode = mode;
if (src_eqv)
{
enum machine_mode eqvmode = mode;
if (GET_CODE (dest) == STRICT_LOW_PART)
eqvmode = GET_MODE (SUBREG_REG (XEXP (dest, 0)));
do_not_record = 0;
hash_arg_in_memory = 0;
src_eqv_hash = HASH (src_eqv, eqvmode);
/* Find the equivalence class for the equivalent expression. */
if (!do_not_record)
src_eqv_elt = lookup (src_eqv, src_eqv_hash, eqvmode);
src_eqv_volatile = do_not_record;
src_eqv_in_memory = hash_arg_in_memory;
}
/* If this is a STRICT_LOW_PART assignment, src_eqv corresponds to the
value of the INNER register, not the destination. So it is not
a valid substitution for the source. But save it for later. */
if (GET_CODE (dest) == STRICT_LOW_PART)
src_eqv_here = 0;
else
src_eqv_here = src_eqv;
/* Simplify and foldable subexpressions in SRC. Then get the fully-
simplified result, which may not necessarily be valid. */
src_folded = fold_rtx (src, insn);
#if 0
/* ??? This caused bad code to be generated for the m68k port with -O2.
Suppose src is (CONST_INT -1), and that after truncation src_folded
is (CONST_INT 3). Suppose src_folded is then used for src_const.
At the end we will add src and src_const to the same equivalence
class. We now have 3 and -1 on the same equivalence class. This
causes later instructions to be mis-optimized. */
/* If storing a constant in a bitfield, pre-truncate the constant
so we will be able to record it later. */
if (GET_CODE (SET_DEST (sets[i].rtl)) == ZERO_EXTRACT)
{
rtx width = XEXP (SET_DEST (sets[i].rtl), 1);
if (CONST_INT_P (src)
&& CONST_INT_P (width)
&& INTVAL (width) < HOST_BITS_PER_WIDE_INT
&& (INTVAL (src) & ((HOST_WIDE_INT) (-1) << INTVAL (width))))
src_folded
= GEN_INT (INTVAL (src) & (((HOST_WIDE_INT) 1
<< INTVAL (width)) - 1));
}
#endif
/* Compute SRC's hash code, and also notice if it
should not be recorded at all. In that case,
prevent any further processing of this assignment. */
do_not_record = 0;
hash_arg_in_memory = 0;
sets[i].src = src;
sets[i].src_hash = HASH (src, mode);
sets[i].src_volatile = do_not_record;
sets[i].src_in_memory = hash_arg_in_memory;
/* If SRC is a MEM, there is a REG_EQUIV note for SRC, and DEST is
a pseudo, do not record SRC. Using SRC as a replacement for
anything else will be incorrect in that situation. Note that
this usually occurs only for stack slots, in which case all the
RTL would be referring to SRC, so we don't lose any optimization
opportunities by not having SRC in the hash table. */
if (MEM_P (src)
&& find_reg_note (insn, REG_EQUIV, NULL_RTX) != 0
&& REG_P (dest)
&& REGNO (dest) >= FIRST_PSEUDO_REGISTER)
sets[i].src_volatile = 1;
#if 0
/* It is no longer clear why we used to do this, but it doesn't
appear to still be needed. So let's try without it since this
code hurts cse'ing widened ops. */
/* If source is a paradoxical subreg (such as QI treated as an SI),
treat it as volatile. It may do the work of an SI in one context
where the extra bits are not being used, but cannot replace an SI
in general. */
if (paradoxical_subreg_p (src))
sets[i].src_volatile = 1;
#endif
/* Locate all possible equivalent forms for SRC. Try to replace
SRC in the insn with each cheaper equivalent.
We have the following types of equivalents: SRC itself, a folded
version, a value given in a REG_EQUAL note, or a value related
to a constant.
Each of these equivalents may be part of an additional class
of equivalents (if more than one is in the table, they must be in
the same class; we check for this).
If the source is volatile, we don't do any table lookups.
We note any constant equivalent for possible later use in a
REG_NOTE. */
if (!sets[i].src_volatile)
elt = lookup (src, sets[i].src_hash, mode);
sets[i].src_elt = elt;
if (elt && src_eqv_here && src_eqv_elt)
{
if (elt->first_same_value != src_eqv_elt->first_same_value)
{
/* The REG_EQUAL is indicating that two formerly distinct
classes are now equivalent. So merge them. */
merge_equiv_classes (elt, src_eqv_elt);
src_eqv_hash = HASH (src_eqv, elt->mode);
src_eqv_elt = lookup (src_eqv, src_eqv_hash, elt->mode);
}
src_eqv_here = 0;
}
else if (src_eqv_elt)
elt = src_eqv_elt;
/* Try to find a constant somewhere and record it in `src_const'.
Record its table element, if any, in `src_const_elt'. Look in
any known equivalences first. (If the constant is not in the
table, also set `sets[i].src_const_hash'). */
if (elt)
for (p = elt->first_same_value; p; p = p->next_same_value)
if (p->is_const)
{
src_const = p->exp;
src_const_elt = elt;
break;
}
if (src_const == 0
&& (CONSTANT_P (src_folded)
/* Consider (minus (label_ref L1) (label_ref L2)) as
"constant" here so we will record it. This allows us
to fold switch statements when an ADDR_DIFF_VEC is used. */
|| (GET_CODE (src_folded) == MINUS
&& GET_CODE (XEXP (src_folded, 0)) == LABEL_REF
&& GET_CODE (XEXP (src_folded, 1)) == LABEL_REF)))
src_const = src_folded, src_const_elt = elt;
else if (src_const == 0 && src_eqv_here && CONSTANT_P (src_eqv_here))
src_const = src_eqv_here, src_const_elt = src_eqv_elt;
/* If we don't know if the constant is in the table, get its
hash code and look it up. */
if (src_const && src_const_elt == 0)
{
sets[i].src_const_hash = HASH (src_const, mode);
src_const_elt = lookup (src_const, sets[i].src_const_hash, mode);
}
sets[i].src_const = src_const;
sets[i].src_const_elt = src_const_elt;
/* If the constant and our source are both in the table, mark them as
equivalent. Otherwise, if a constant is in the table but the source
isn't, set ELT to it. */
if (src_const_elt && elt
&& src_const_elt->first_same_value != elt->first_same_value)
merge_equiv_classes (elt, src_const_elt);
else if (src_const_elt && elt == 0)
elt = src_const_elt;
/* See if there is a register linearly related to a constant
equivalent of SRC. */
if (src_const
&& (GET_CODE (src_const) == CONST
|| (src_const_elt && src_const_elt->related_value != 0)))
{
src_related = use_related_value (src_const, src_const_elt);
if (src_related)
{
struct table_elt *src_related_elt
= lookup (src_related, HASH (src_related, mode), mode);
if (src_related_elt && elt)
{
if (elt->first_same_value
!= src_related_elt->first_same_value)
/* This can occur when we previously saw a CONST
involving a SYMBOL_REF and then see the SYMBOL_REF
twice. Merge the involved classes. */
merge_equiv_classes (elt, src_related_elt);
src_related = 0;
src_related_elt = 0;
}
else if (src_related_elt && elt == 0)
elt = src_related_elt;
}
}
/* See if we have a CONST_INT that is already in a register in a
wider mode. */
if (src_const && src_related == 0 && CONST_INT_P (src_const)
&& GET_MODE_CLASS (mode) == MODE_INT
&& GET_MODE_PRECISION (mode) < BITS_PER_WORD)
{
enum machine_mode wider_mode;
for (wider_mode = GET_MODE_WIDER_MODE (mode);
wider_mode != VOIDmode
&& GET_MODE_PRECISION (wider_mode) <= BITS_PER_WORD
&& src_related == 0;
wider_mode = GET_MODE_WIDER_MODE (wider_mode))
{
struct table_elt *const_elt
= lookup (src_const, HASH (src_const, wider_mode), wider_mode);
if (const_elt == 0)
continue;
for (const_elt = const_elt->first_same_value;
const_elt; const_elt = const_elt->next_same_value)
if (REG_P (const_elt->exp))
{
src_related = gen_lowpart (mode, const_elt->exp);
break;
}
}
}
/* Another possibility is that we have an AND with a constant in
a mode narrower than a word. If so, it might have been generated
as part of an "if" which would narrow the AND. If we already
have done the AND in a wider mode, we can use a SUBREG of that
value. */
if (flag_expensive_optimizations && ! src_related
&& GET_CODE (src) == AND && CONST_INT_P (XEXP (src, 1))
&& GET_MODE_SIZE (mode) < UNITS_PER_WORD)
{
enum machine_mode tmode;
rtx new_and = gen_rtx_AND (VOIDmode, NULL_RTX, XEXP (src, 1));
for (tmode = GET_MODE_WIDER_MODE (mode);
GET_MODE_SIZE (tmode) <= UNITS_PER_WORD;
tmode = GET_MODE_WIDER_MODE (tmode))
{
rtx inner = gen_lowpart (tmode, XEXP (src, 0));
struct table_elt *larger_elt;
if (inner)
{
PUT_MODE (new_and, tmode);
XEXP (new_and, 0) = inner;
larger_elt = lookup (new_and, HASH (new_and, tmode), tmode);
if (larger_elt == 0)
continue;
for (larger_elt = larger_elt->first_same_value;
larger_elt; larger_elt = larger_elt->next_same_value)
if (REG_P (larger_elt->exp))
{
src_related
= gen_lowpart (mode, larger_elt->exp);
break;
}
if (src_related)
break;
}
}
}
#ifdef LOAD_EXTEND_OP
/* See if a MEM has already been loaded with a widening operation;
if it has, we can use a subreg of that. Many CISC machines
also have such operations, but this is only likely to be
beneficial on these machines. */
if (flag_expensive_optimizations && src_related == 0
&& (GET_MODE_SIZE (mode) < UNITS_PER_WORD)
&& GET_MODE_CLASS (mode) == MODE_INT
&& MEM_P (src) && ! do_not_record
&& LOAD_EXTEND_OP (mode) != UNKNOWN)
{
struct rtx_def memory_extend_buf;
rtx memory_extend_rtx = &memory_extend_buf;
enum machine_mode tmode;
/* Set what we are trying to extend and the operation it might
have been extended with. */
memset (memory_extend_rtx, 0, sizeof (*memory_extend_rtx));
PUT_CODE (memory_extend_rtx, LOAD_EXTEND_OP (mode));
XEXP (memory_extend_rtx, 0) = src;
for (tmode = GET_MODE_WIDER_MODE (mode);
GET_MODE_SIZE (tmode) <= UNITS_PER_WORD;
tmode = GET_MODE_WIDER_MODE (tmode))
{
struct table_elt *larger_elt;
PUT_MODE (memory_extend_rtx, tmode);
larger_elt = lookup (memory_extend_rtx,
HASH (memory_extend_rtx, tmode), tmode);
if (larger_elt == 0)
continue;
for (larger_elt = larger_elt->first_same_value;
larger_elt; larger_elt = larger_elt->next_same_value)
if (REG_P (larger_elt->exp))
{
src_related = gen_lowpart (mode, larger_elt->exp);
break;
}
if (src_related)
break;
}
}
#endif /* LOAD_EXTEND_OP */
/* Try to express the constant using a register+offset expression
derived from a constant anchor. */
if (targetm.const_anchor
&& !src_related
&& src_const
&& GET_CODE (src_const) == CONST_INT)
{
src_related = try_const_anchors (src_const, mode);
src_related_is_const_anchor = src_related != NULL_RTX;
}
if (src == src_folded)
src_folded = 0;
/* At this point, ELT, if nonzero, points to a class of expressions
equivalent to the source of this SET and SRC, SRC_EQV, SRC_FOLDED,
and SRC_RELATED, if nonzero, each contain additional equivalent
expressions. Prune these latter expressions by deleting expressions
already in the equivalence class.
Check for an equivalent identical to the destination. If found,
this is the preferred equivalent since it will likely lead to
elimination of the insn. Indicate this by placing it in
`src_related'. */
if (elt)
elt = elt->first_same_value;
for (p = elt; p; p = p->next_same_value)
{
enum rtx_code code = GET_CODE (p->exp);
/* If the expression is not valid, ignore it. Then we do not
have to check for validity below. In most cases, we can use
`rtx_equal_p', since canonicalization has already been done. */
if (code != REG && ! exp_equiv_p (p->exp, p->exp, 1, false))
continue;
/* Also skip paradoxical subregs, unless that's what we're
looking for. */
if (paradoxical_subreg_p (p->exp)
&& ! (src != 0
&& GET_CODE (src) == SUBREG
&& GET_MODE (src) == GET_MODE (p->exp)
&& (GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
< GET_MODE_SIZE (GET_MODE (SUBREG_REG (p->exp))))))
continue;
if (src && GET_CODE (src) == code && rtx_equal_p (src, p->exp))
src = 0;
else if (src_folded && GET_CODE (src_folded) == code
&& rtx_equal_p (src_folded, p->exp))
src_folded = 0;
else if (src_eqv_here && GET_CODE (src_eqv_here) == code
&& rtx_equal_p (src_eqv_here, p->exp))
src_eqv_here = 0;
else if (src_related && GET_CODE (src_related) == code
&& rtx_equal_p (src_related, p->exp))
src_related = 0;
/* This is the same as the destination of the insns, we want
to prefer it. Copy it to src_related. The code below will
then give it a negative cost. */
if (GET_CODE (dest) == code && rtx_equal_p (p->exp, dest))
src_related = dest;
}
/* Find the cheapest valid equivalent, trying all the available
possibilities. Prefer items not in the hash table to ones
that are when they are equal cost. Note that we can never
worsen an insn as the current contents will also succeed.
If we find an equivalent identical to the destination, use it as best,
since this insn will probably be eliminated in that case. */
if (src)
{
if (rtx_equal_p (src, dest))
src_cost = src_regcost = -1;
else
{
src_cost = COST (src);
src_regcost = approx_reg_cost (src);
}
}
if (src_eqv_here)
{
if (rtx_equal_p (src_eqv_here, dest))
src_eqv_cost = src_eqv_regcost = -1;
else
{
src_eqv_cost = COST (src_eqv_here);
src_eqv_regcost = approx_reg_cost (src_eqv_here);
}
}
if (src_folded)
{
if (rtx_equal_p (src_folded, dest))
src_folded_cost = src_folded_regcost = -1;
else
{
src_folded_cost = COST (src_folded);
src_folded_regcost = approx_reg_cost (src_folded);
}
}
if (src_related)
{
if (rtx_equal_p (src_related, dest))
src_related_cost = src_related_regcost = -1;
else
{
src_related_cost = COST (src_related);
src_related_regcost = approx_reg_cost (src_related);
/* If a const-anchor is used to synthesize a constant that
normally requires multiple instructions then slightly prefer
it over the original sequence. These instructions are likely
to become redundant now. We can't compare against the cost
of src_eqv_here because, on MIPS for example, multi-insn
constants have zero cost; they are assumed to be hoisted from
loops. */
if (src_related_is_const_anchor
&& src_related_cost == src_cost
&& src_eqv_here)
src_related_cost--;
}
}
/* If this was an indirect jump insn, a known label will really be
cheaper even though it looks more expensive. */
if (dest == pc_rtx && src_const && GET_CODE (src_const) == LABEL_REF)
src_folded = src_const, src_folded_cost = src_folded_regcost = -1;
/* Terminate loop when replacement made. This must terminate since
the current contents will be tested and will always be valid. */
while (1)
{
rtx trial;
/* Skip invalid entries. */
while (elt && !REG_P (elt->exp)
&& ! exp_equiv_p (elt->exp, elt->exp, 1, false))
elt = elt->next_same_value;
/* A paradoxical subreg would be bad here: it'll be the right
size, but later may be adjusted so that the upper bits aren't
what we want. So reject it. */
if (elt != 0
&& paradoxical_subreg_p (elt->exp)
/* It is okay, though, if the rtx we're trying to match
will ignore any of the bits we can't predict. */
&& ! (src != 0
&& GET_CODE (src) == SUBREG
&& GET_MODE (src) == GET_MODE (elt->exp)
&& (GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
< GET_MODE_SIZE (GET_MODE (SUBREG_REG (elt->exp))))))
{
elt = elt->next_same_value;
continue;
}
if (elt)
{
src_elt_cost = elt->cost;
src_elt_regcost = elt->regcost;
}
/* Find cheapest and skip it for the next time. For items
of equal cost, use this order:
src_folded, src, src_eqv, src_related and hash table entry. */
if (src_folded
&& preferable (src_folded_cost, src_folded_regcost,
src_cost, src_regcost) <= 0
&& preferable (src_folded_cost, src_folded_regcost,
src_eqv_cost, src_eqv_regcost) <= 0
&& preferable (src_folded_cost, src_folded_regcost,
src_related_cost, src_related_regcost) <= 0
&& preferable (src_folded_cost, src_folded_regcost,
src_elt_cost, src_elt_regcost) <= 0)
{
trial = src_folded, src_folded_cost = MAX_COST;
if (src_folded_force_flag)
{
rtx forced = force_const_mem (mode, trial);
if (forced)
trial = forced;
}
}
else if (src
&& preferable (src_cost, src_regcost,
src_eqv_cost, src_eqv_regcost) <= 0
&& preferable (src_cost, src_regcost,
src_related_cost, src_related_regcost) <= 0
&& preferable (src_cost, src_regcost,
src_elt_cost, src_elt_regcost) <= 0)
trial = src, src_cost = MAX_COST;
else if (src_eqv_here
&& preferable (src_eqv_cost, src_eqv_regcost,
src_related_cost, src_related_regcost) <= 0
&& preferable (src_eqv_cost, src_eqv_regcost,
src_elt_cost, src_elt_regcost) <= 0)
trial = src_eqv_here, src_eqv_cost = MAX_COST;
else if (src_related
&& preferable (src_related_cost, src_related_regcost,
src_elt_cost, src_elt_regcost) <= 0)
trial = src_related, src_related_cost = MAX_COST;
else
{
trial = elt->exp;
elt = elt->next_same_value;
src_elt_cost = MAX_COST;
}
/* Avoid creation of overlapping memory moves. */
if (MEM_P (trial) && MEM_P (SET_DEST (sets[i].rtl)))
{
rtx src, dest;
/* BLKmode moves are not handled by cse anyway. */
if (GET_MODE (trial) == BLKmode)
break;
src = canon_rtx (trial);
dest = canon_rtx (SET_DEST (sets[i].rtl));
if (!MEM_P (src) || !MEM_P (dest)
|| !nonoverlapping_memrefs_p (src, dest, false))
break;
}
/* Try to optimize
(set (reg:M N) (const_int A))
(set (reg:M2 O) (const_int B))
(set (zero_extract:M2 (reg:M N) (const_int C) (const_int D))
(reg:M2 O)). */
if (GET_CODE (SET_DEST (sets[i].rtl)) == ZERO_EXTRACT
&& CONST_INT_P (trial)
&& CONST_INT_P (XEXP (SET_DEST (sets[i].rtl), 1))
&& CONST_INT_P (XEXP (SET_DEST (sets[i].rtl), 2))
&& REG_P (XEXP (SET_DEST (sets[i].rtl), 0))
&& (GET_MODE_PRECISION (GET_MODE (SET_DEST (sets[i].rtl)))
>= INTVAL (XEXP (SET_DEST (sets[i].rtl), 1)))
&& ((unsigned) INTVAL (XEXP (SET_DEST (sets[i].rtl), 1))
+ (unsigned) INTVAL (XEXP (SET_DEST (sets[i].rtl), 2))
<= HOST_BITS_PER_WIDE_INT))
{
rtx dest_reg = XEXP (SET_DEST (sets[i].rtl), 0);
rtx width = XEXP (SET_DEST (sets[i].rtl), 1);
rtx pos = XEXP (SET_DEST (sets[i].rtl), 2);
unsigned int dest_hash = HASH (dest_reg, GET_MODE (dest_reg));
struct table_elt *dest_elt
= lookup (dest_reg, dest_hash, GET_MODE (dest_reg));
rtx dest_cst = NULL;
if (dest_elt)
for (p = dest_elt->first_same_value; p; p = p->next_same_value)
if (p->is_const && CONST_INT_P (p->exp))
{
dest_cst = p->exp;
break;
}
if (dest_cst)
{
HOST_WIDE_INT val = INTVAL (dest_cst);
HOST_WIDE_INT mask;
unsigned int shift;
if (BITS_BIG_ENDIAN)
shift = GET_MODE_PRECISION (GET_MODE (dest_reg))
- INTVAL (pos) - INTVAL (width);
else
shift = INTVAL (pos);
if (INTVAL (width) == HOST_BITS_PER_WIDE_INT)
mask = ~(HOST_WIDE_INT) 0;
else
mask = ((HOST_WIDE_INT) 1 << INTVAL (width)) - 1;
val &= ~(mask << shift);
val |= (INTVAL (trial) & mask) << shift;
val = trunc_int_for_mode (val, GET_MODE (dest_reg));
validate_unshare_change (insn, &SET_DEST (sets[i].rtl),
dest_reg, 1);
validate_unshare_change (insn, &SET_SRC (sets[i].rtl),
GEN_INT (val), 1);
if (apply_change_group ())
{
rtx note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
if (note)
{
remove_note (insn, note);
df_notes_rescan (insn);
}
src_eqv = NULL_RTX;
src_eqv_elt = NULL;
src_eqv_volatile = 0;
src_eqv_in_memory = 0;
src_eqv_hash = 0;
repeat = true;
break;
}
}
}
/* We don't normally have an insn matching (set (pc) (pc)), so
check for this separately here. We will delete such an
insn below.
For other cases such as a table jump or conditional jump
where we know the ultimate target, go ahead and replace the
operand. While that may not make a valid insn, we will
reemit the jump below (and also insert any necessary
barriers). */
if (n_sets == 1 && dest == pc_rtx
&& (trial == pc_rtx
|| (GET_CODE (trial) == LABEL_REF
&& ! condjump_p (insn))))
{
/* Don't substitute non-local labels, this confuses CFG. */
if (GET_CODE (trial) == LABEL_REF
&& LABEL_REF_NONLOCAL_P (trial))
continue;
SET_SRC (sets[i].rtl) = trial;
cse_jumps_altered = true;
break;
}
/* Reject certain invalid forms of CONST that we create. */
else if (CONSTANT_P (trial)
&& GET_CODE (trial) == CONST
/* Reject cases that will cause decode_rtx_const to
die. On the alpha when simplifying a switch, we
get (const (truncate (minus (label_ref)
(label_ref)))). */
&& (GET_CODE (XEXP (trial, 0)) == TRUNCATE
/* Likewise on IA-64, except without the
truncate. */
|| (GET_CODE (XEXP (trial, 0)) == MINUS
&& GET_CODE (XEXP (XEXP (trial, 0), 0)) == LABEL_REF
&& GET_CODE (XEXP (XEXP (trial, 0), 1)) == LABEL_REF)))
/* Do nothing for this case. */
;
/* Look for a substitution that makes a valid insn. */
else if (validate_unshare_change
(insn, &SET_SRC (sets[i].rtl), trial, 0))
{
rtx new_rtx = canon_reg (SET_SRC (sets[i].rtl), insn);
/* The result of apply_change_group can be ignored; see
canon_reg. */
validate_change (insn, &SET_SRC (sets[i].rtl), new_rtx, 1);
apply_change_group ();
break;
}
/* If we previously found constant pool entries for
constants and this is a constant, try making a
pool entry. Put it in src_folded unless we already have done
this since that is where it likely came from. */
else if (constant_pool_entries_cost
&& CONSTANT_P (trial)
&& (src_folded == 0
|| (!MEM_P (src_folded)
&& ! src_folded_force_flag))
&& GET_MODE_CLASS (mode) != MODE_CC
&& mode != VOIDmode)
{
src_folded_force_flag = 1;
src_folded = trial;
src_folded_cost = constant_pool_entries_cost;
src_folded_regcost = constant_pool_entries_regcost;
}
}
/* If we changed the insn too much, handle this set from scratch. */
if (repeat)
{
i--;
continue;
}
src = SET_SRC (sets[i].rtl);
/* In general, it is good to have a SET with SET_SRC == SET_DEST.
However, there is an important exception: If both are registers
that are not the head of their equivalence class, replace SET_SRC
with the head of the class. If we do not do this, we will have
both registers live over a portion of the basic block. This way,
their lifetimes will likely abut instead of overlapping. */
if (REG_P (dest)
&& REGNO_QTY_VALID_P (REGNO (dest)))
{
int dest_q = REG_QTY (REGNO (dest));
struct qty_table_elem *dest_ent = &qty_table[dest_q];
if (dest_ent->mode == GET_MODE (dest)
&& dest_ent->first_reg != REGNO (dest)
&& REG_P (src) && REGNO (src) == REGNO (dest)
/* Don't do this if the original insn had a hard reg as
SET_SRC or SET_DEST. */
&& (!REG_P (sets[i].src)
|| REGNO (sets[i].src) >= FIRST_PSEUDO_REGISTER)
&& (!REG_P (dest) || REGNO (dest) >= FIRST_PSEUDO_REGISTER))
/* We can't call canon_reg here because it won't do anything if
SRC is a hard register. */
{
int src_q = REG_QTY (REGNO (src));
struct qty_table_elem *src_ent = &qty_table[src_q];
int first = src_ent->first_reg;
rtx new_src
= (first >= FIRST_PSEUDO_REGISTER
? regno_reg_rtx[first] : gen_rtx_REG (GET_MODE (src), first));
/* We must use validate-change even for this, because this
might be a special no-op instruction, suitable only to
tag notes onto. */
if (validate_change (insn, &SET_SRC (sets[i].rtl), new_src, 0))
{
src = new_src;
/* If we had a constant that is cheaper than what we are now
setting SRC to, use that constant. We ignored it when we
thought we could make this into a no-op. */
if (src_const && COST (src_const) < COST (src)
&& validate_change (insn, &SET_SRC (sets[i].rtl),
src_const, 0))
src = src_const;
}
}
}
/* If we made a change, recompute SRC values. */
if (src != sets[i].src)
{
do_not_record = 0;
hash_arg_in_memory = 0;
sets[i].src = src;
sets[i].src_hash = HASH (src, mode);
sets[i].src_volatile = do_not_record;
sets[i].src_in_memory = hash_arg_in_memory;
sets[i].src_elt = lookup (src, sets[i].src_hash, mode);
}
/* If this is a single SET, we are setting a register, and we have an
equivalent constant, we want to add a REG_EQUAL note if the constant
is different from the source. We don't want to do it for a constant
pseudo since verifying that this pseudo hasn't been eliminated is a
pain; moreover such a note won't help anything.
Avoid a REG_EQUAL note for (CONST (MINUS (LABEL_REF) (LABEL_REF)))
which can be created for a reference to a compile time computable
entry in a jump table. */
if (n_sets == 1
&& REG_P (dest)
&& src_const
&& !REG_P (src_const)
&& !(GET_CODE (src_const) == SUBREG
&& REG_P (SUBREG_REG (src_const)))
&& !(GET_CODE (src_const) == CONST
&& GET_CODE (XEXP (src_const, 0)) == MINUS
&& GET_CODE (XEXP (XEXP (src_const, 0), 0)) == LABEL_REF
&& GET_CODE (XEXP (XEXP (src_const, 0), 1)) == LABEL_REF)
&& !rtx_equal_p (src, src_const))
{
/* Make sure that the rtx is not shared. */
src_const = copy_rtx (src_const);
/* Record the actual constant value in a REG_EQUAL note,
making a new one if one does not already exist. */
set_unique_reg_note (insn, REG_EQUAL, src_const);
df_notes_rescan (insn);
}
/* Now deal with the destination. */
do_not_record = 0;
/* Look within any ZERO_EXTRACT to the MEM or REG within it. */
while (GET_CODE (dest) == SUBREG
|| GET_CODE (dest) == ZERO_EXTRACT
|| GET_CODE (dest) == STRICT_LOW_PART)
dest = XEXP (dest, 0);
sets[i].inner_dest = dest;
if (MEM_P (dest))
{
#ifdef PUSH_ROUNDING
/* Stack pushes invalidate the stack pointer. */
rtx addr = XEXP (dest, 0);
if (GET_RTX_CLASS (GET_CODE (addr)) == RTX_AUTOINC
&& XEXP (addr, 0) == stack_pointer_rtx)
invalidate (stack_pointer_rtx, VOIDmode);
#endif
dest = fold_rtx (dest, insn);
}
/* Compute the hash code of the destination now,
before the effects of this instruction are recorded,
since the register values used in the address computation
are those before this instruction. */
sets[i].dest_hash = HASH (dest, mode);
/* Don't enter a bit-field in the hash table
because the value in it after the store
may not equal what was stored, due to truncation. */
if (GET_CODE (SET_DEST (sets[i].rtl)) == ZERO_EXTRACT)
{
rtx width = XEXP (SET_DEST (sets[i].rtl), 1);
if (src_const != 0 && CONST_INT_P (src_const)
&& CONST_INT_P (width)
&& INTVAL (width) < HOST_BITS_PER_WIDE_INT
&& ! (INTVAL (src_const)
& (HOST_WIDE_INT_M1U << INTVAL (width))))
/* Exception: if the value is constant,
and it won't be truncated, record it. */
;
else
{
/* This is chosen so that the destination will be invalidated
but no new value will be recorded.
We must invalidate because sometimes constant
values can be recorded for bitfields. */
sets[i].src_elt = 0;
sets[i].src_volatile = 1;
src_eqv = 0;
src_eqv_elt = 0;
}
}
/* If only one set in a JUMP_INSN and it is now a no-op, we can delete
the insn. */
else if (n_sets == 1 && dest == pc_rtx && src == pc_rtx)
{
/* One less use of the label this insn used to jump to. */
delete_insn_and_edges (insn);
cse_jumps_altered = true;
/* No more processing for this set. */
sets[i].rtl = 0;
}
/* If this SET is now setting PC to a label, we know it used to
be a conditional or computed branch. */
else if (dest == pc_rtx && GET_CODE (src) == LABEL_REF
&& !LABEL_REF_NONLOCAL_P (src))
{
/* We reemit the jump in as many cases as possible just in
case the form of an unconditional jump is significantly
different than a computed jump or conditional jump.
If this insn has multiple sets, then reemitting the
jump is nontrivial. So instead we just force rerecognition
and hope for the best. */
if (n_sets == 1)
{
rtx new_rtx, note;
new_rtx = emit_jump_insn_before (gen_jump (XEXP (src, 0)), insn);
JUMP_LABEL (new_rtx) = XEXP (src, 0);
LABEL_NUSES (XEXP (src, 0))++;
/* Make sure to copy over REG_NON_LOCAL_GOTO. */
note = find_reg_note (insn, REG_NON_LOCAL_GOTO, 0);
if (note)
{
XEXP (note, 1) = NULL_RTX;
REG_NOTES (new_rtx) = note;
}
delete_insn_and_edges (insn);
insn = new_rtx;
}
else
INSN_CODE (insn) = -1;
/* Do not bother deleting any unreachable code, let jump do it. */
cse_jumps_altered = true;
sets[i].rtl = 0;
}
/* If destination is volatile, invalidate it and then do no further
processing for this assignment. */
else if (do_not_record)
{
if (REG_P (dest) || GET_CODE (dest) == SUBREG)
invalidate (dest, VOIDmode);
else if (MEM_P (dest))
invalidate (dest, VOIDmode);
else if (GET_CODE (dest) == STRICT_LOW_PART
|| GET_CODE (dest) == ZERO_EXTRACT)
invalidate (XEXP (dest, 0), GET_MODE (dest));
sets[i].rtl = 0;
}
if (sets[i].rtl != 0 && dest != SET_DEST (sets[i].rtl))
sets[i].dest_hash = HASH (SET_DEST (sets[i].rtl), mode);
#ifdef HAVE_cc0
/* If setting CC0, record what it was set to, or a constant, if it
is equivalent to a constant. If it is being set to a floating-point
value, make a COMPARE with the appropriate constant of 0. If we
don't do this, later code can interpret this as a test against
const0_rtx, which can cause problems if we try to put it into an
insn as a floating-point operand. */
if (dest == cc0_rtx)
{
this_insn_cc0 = src_const && mode != VOIDmode ? src_const : src;
this_insn_cc0_mode = mode;
if (FLOAT_MODE_P (mode))
this_insn_cc0 = gen_rtx_COMPARE (VOIDmode, this_insn_cc0,
CONST0_RTX (mode));
}
#endif
}
/* Now enter all non-volatile source expressions in the hash table
if they are not already present.
Record their equivalence classes in src_elt.
This way we can insert the corresponding destinations into
the same classes even if the actual sources are no longer in them
(having been invalidated). */
if (src_eqv && src_eqv_elt == 0 && sets[0].rtl != 0 && ! src_eqv_volatile
&& ! rtx_equal_p (src_eqv, SET_DEST (sets[0].rtl)))
{
struct table_elt *elt;
struct table_elt *classp = sets[0].src_elt;
rtx dest = SET_DEST (sets[0].rtl);
enum machine_mode eqvmode = GET_MODE (dest);
if (GET_CODE (dest) == STRICT_LOW_PART)
{
eqvmode = GET_MODE (SUBREG_REG (XEXP (dest, 0)));
classp = 0;
}
if (insert_regs (src_eqv, classp, 0))
{
rehash_using_reg (src_eqv);
src_eqv_hash = HASH (src_eqv, eqvmode);
}
elt = insert (src_eqv, classp, src_eqv_hash, eqvmode);
elt->in_memory = src_eqv_in_memory;
src_eqv_elt = elt;
/* Check to see if src_eqv_elt is the same as a set source which
does not yet have an elt, and if so set the elt of the set source
to src_eqv_elt. */
for (i = 0; i < n_sets; i++)
if (sets[i].rtl && sets[i].src_elt == 0
&& rtx_equal_p (SET_SRC (sets[i].rtl), src_eqv))
sets[i].src_elt = src_eqv_elt;
}
for (i = 0; i < n_sets; i++)
if (sets[i].rtl && ! sets[i].src_volatile
&& ! rtx_equal_p (SET_SRC (sets[i].rtl), SET_DEST (sets[i].rtl)))
{
if (GET_CODE (SET_DEST (sets[i].rtl)) == STRICT_LOW_PART)
{
/* REG_EQUAL in setting a STRICT_LOW_PART
gives an equivalent for the entire destination register,
not just for the subreg being stored in now.
This is a more interesting equivalence, so we arrange later
to treat the entire reg as the destination. */
sets[i].src_elt = src_eqv_elt;
sets[i].src_hash = src_eqv_hash;
}
else
{
/* Insert source and constant equivalent into hash table, if not
already present. */
struct table_elt *classp = src_eqv_elt;
rtx src = sets[i].src;
rtx dest = SET_DEST (sets[i].rtl);
enum machine_mode mode
= GET_MODE (src) == VOIDmode ? GET_MODE (dest) : GET_MODE (src);
/* It's possible that we have a source value known to be
constant but don't have a REG_EQUAL note on the insn.
Lack of a note will mean src_eqv_elt will be NULL. This
can happen where we've generated a SUBREG to access a
CONST_INT that is already in a register in a wider mode.
Ensure that the source expression is put in the proper
constant class. */
if (!classp)
classp = sets[i].src_const_elt;
if (sets[i].src_elt == 0)
{
struct table_elt *elt;
/* Note that these insert_regs calls cannot remove
any of the src_elt's, because they would have failed to
match if not still valid. */
if (insert_regs (src, classp, 0))
{
rehash_using_reg (src);
sets[i].src_hash = HASH (src, mode);
}
elt = insert (src, classp, sets[i].src_hash, mode);
elt->in_memory = sets[i].src_in_memory;
sets[i].src_elt = classp = elt;
}
if (sets[i].src_const && sets[i].src_const_elt == 0
&& src != sets[i].src_const
&& ! rtx_equal_p (sets[i].src_const, src))
sets[i].src_elt = insert (sets[i].src_const, classp,
sets[i].src_const_hash, mode);
}
}
else if (sets[i].src_elt == 0)
/* If we did not insert the source into the hash table (e.g., it was
volatile), note the equivalence class for the REG_EQUAL value, if any,
so that the destination goes into that class. */
sets[i].src_elt = src_eqv_elt;
/* Record destination addresses in the hash table. This allows us to
check if they are invalidated by other sets. */
for (i = 0; i < n_sets; i++)
{
if (sets[i].rtl)
{
rtx x = sets[i].inner_dest;
struct table_elt *elt;
enum machine_mode mode;
unsigned hash;
if (MEM_P (x))
{
x = XEXP (x, 0);
mode = GET_MODE (x);
hash = HASH (x, mode);
elt = lookup (x, hash, mode);
if (!elt)
{
if (insert_regs (x, NULL, 0))
{
rtx dest = SET_DEST (sets[i].rtl);
rehash_using_reg (x);
hash = HASH (x, mode);
sets[i].dest_hash = HASH (dest, GET_MODE (dest));
}
elt = insert (x, NULL, hash, mode);
}
sets[i].dest_addr_elt = elt;
}
else
sets[i].dest_addr_elt = NULL;
}
}
invalidate_from_clobbers (insn);
/* Some registers are invalidated by subroutine calls. Memory is
invalidated by non-constant calls. */
if (CALL_P (insn))
{
if (!(RTL_CONST_OR_PURE_CALL_P (insn)))
invalidate_memory ();
invalidate_for_call ();
}
/* Now invalidate everything set by this instruction.
If a SUBREG or other funny destination is being set,
sets[i].rtl is still nonzero, so here we invalidate the reg
a part of which is being set. */
for (i = 0; i < n_sets; i++)
if (sets[i].rtl)
{
/* We can't use the inner dest, because the mode associated with
a ZERO_EXTRACT is significant. */
rtx dest = SET_DEST (sets[i].rtl);
/* Needed for registers to remove the register from its
previous quantity's chain.
Needed for memory if this is a nonvarying address, unless
we have just done an invalidate_memory that covers even those. */
if (REG_P (dest) || GET_CODE (dest) == SUBREG)
invalidate (dest, VOIDmode);
else if (MEM_P (dest))
invalidate (dest, VOIDmode);
else if (GET_CODE (dest) == STRICT_LOW_PART
|| GET_CODE (dest) == ZERO_EXTRACT)
invalidate (XEXP (dest, 0), GET_MODE (dest));
}
/* A volatile ASM or an UNSPEC_VOLATILE invalidates everything. */
if (NONJUMP_INSN_P (insn)
&& volatile_insn_p (PATTERN (insn)))
flush_hash_table ();
/* Don't cse over a call to setjmp; on some machines (eg VAX)
the regs restored by the longjmp come from a later time
than the setjmp. */
if (CALL_P (insn) && find_reg_note (insn, REG_SETJMP, NULL))
{
flush_hash_table ();
goto done;
}
/* Make sure registers mentioned in destinations
are safe for use in an expression to be inserted.
This removes from the hash table
any invalid entry that refers to one of these registers.
We don't care about the return value from mention_regs because
we are going to hash the SET_DEST values unconditionally. */
for (i = 0; i < n_sets; i++)
{
if (sets[i].rtl)
{
rtx x = SET_DEST (sets[i].rtl);
if (!REG_P (x))
mention_regs (x);
else
{
/* We used to rely on all references to a register becoming
inaccessible when a register changes to a new quantity,
since that changes the hash code. However, that is not
safe, since after HASH_SIZE new quantities we get a
hash 'collision' of a register with its own invalid
entries. And since SUBREGs have been changed not to
change their hash code with the hash code of the register,
it wouldn't work any longer at all. So we have to check
for any invalid references lying around now.
This code is similar to the REG case in mention_regs,
but it knows that reg_tick has been incremented, and
it leaves reg_in_table as -1 . */
unsigned int regno = REGNO (x);
unsigned int endregno = END_REGNO (x);
unsigned int i;
for (i = regno; i < endregno; i++)
{
if (REG_IN_TABLE (i) >= 0)
{
remove_invalid_refs (i);
REG_IN_TABLE (i) = -1;
}
}
}
}
}
/* We may have just removed some of the src_elt's from the hash table.
So replace each one with the current head of the same class.
Also check if destination addresses have been removed. */
for (i = 0; i < n_sets; i++)
if (sets[i].rtl)
{
if (sets[i].dest_addr_elt
&& sets[i].dest_addr_elt->first_same_value == 0)
{
/* The elt was removed, which means this destination is not
valid after this instruction. */
sets[i].rtl = NULL_RTX;
}
else if (sets[i].src_elt && sets[i].src_elt->first_same_value == 0)
/* If elt was removed, find current head of same class,
or 0 if nothing remains of that class. */
{
struct table_elt *elt = sets[i].src_elt;
while (elt && elt->prev_same_value)
elt = elt->prev_same_value;
while (elt && elt->first_same_value == 0)
elt = elt->next_same_value;
sets[i].src_elt = elt ? elt->first_same_value : 0;
}
}
/* Now insert the destinations into their equivalence classes. */
for (i = 0; i < n_sets; i++)
if (sets[i].rtl)
{
rtx dest = SET_DEST (sets[i].rtl);
struct table_elt *elt;
/* Don't record value if we are not supposed to risk allocating
floating-point values in registers that might be wider than
memory. */
if ((flag_float_store
&& MEM_P (dest)
&& FLOAT_MODE_P (GET_MODE (dest)))
/* Don't record BLKmode values, because we don't know the
size of it, and can't be sure that other BLKmode values
have the same or smaller size. */
|| GET_MODE (dest) == BLKmode
/* If we didn't put a REG_EQUAL value or a source into the hash
table, there is no point is recording DEST. */
|| sets[i].src_elt == 0
/* If DEST is a paradoxical SUBREG and SRC is a ZERO_EXTEND
or SIGN_EXTEND, don't record DEST since it can cause
some tracking to be wrong.
??? Think about this more later. */
|| (paradoxical_subreg_p (dest)
&& (GET_CODE (sets[i].src) == SIGN_EXTEND
|| GET_CODE (sets[i].src) == ZERO_EXTEND)))
continue;
/* STRICT_LOW_PART isn't part of the value BEING set,
and neither is the SUBREG inside it.
Note that in this case SETS[I].SRC_ELT is really SRC_EQV_ELT. */
if (GET_CODE (dest) == STRICT_LOW_PART)
dest = SUBREG_REG (XEXP (dest, 0));
if (REG_P (dest) || GET_CODE (dest) == SUBREG)
/* Registers must also be inserted into chains for quantities. */
if (insert_regs (dest, sets[i].src_elt, 1))
{
/* If `insert_regs' changes something, the hash code must be
recalculated. */
rehash_using_reg (dest);
sets[i].dest_hash = HASH (dest, GET_MODE (dest));
}
elt = insert (dest, sets[i].src_elt,
sets[i].dest_hash, GET_MODE (dest));
/* If this is a constant, insert the constant anchors with the
equivalent register-offset expressions using register DEST. */
if (targetm.const_anchor
&& REG_P (dest)
&& SCALAR_INT_MODE_P (GET_MODE (dest))
&& GET_CODE (sets[i].src_elt->exp) == CONST_INT)
insert_const_anchors (dest, sets[i].src_elt->exp, GET_MODE (dest));
elt->in_memory = (MEM_P (sets[i].inner_dest)
&& !MEM_READONLY_P (sets[i].inner_dest));
/* If we have (set (subreg:m1 (reg:m2 foo) 0) (bar:m1)), M1 is no
narrower than M2, and both M1 and M2 are the same number of words,
we are also doing (set (reg:m2 foo) (subreg:m2 (bar:m1) 0)) so
make that equivalence as well.
However, BAR may have equivalences for which gen_lowpart
will produce a simpler value than gen_lowpart applied to
BAR (e.g., if BAR was ZERO_EXTENDed from M2), so we will scan all
BAR's equivalences. If we don't get a simplified form, make
the SUBREG. It will not be used in an equivalence, but will
cause two similar assignments to be detected.
Note the loop below will find SUBREG_REG (DEST) since we have
already entered SRC and DEST of the SET in the table. */
if (GET_CODE (dest) == SUBREG
&& (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest))) - 1)
/ UNITS_PER_WORD)
== (GET_MODE_SIZE (GET_MODE (dest)) - 1) / UNITS_PER_WORD)
&& (GET_MODE_SIZE (GET_MODE (dest))
>= GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest))))
&& sets[i].src_elt != 0)
{
enum machine_mode new_mode = GET_MODE (SUBREG_REG (dest));
struct table_elt *elt, *classp = 0;
for (elt = sets[i].src_elt->first_same_value; elt;
elt = elt->next_same_value)
{
rtx new_src = 0;
unsigned src_hash;
struct table_elt *src_elt;
int byte = 0;
/* Ignore invalid entries. */
if (!REG_P (elt->exp)
&& ! exp_equiv_p (elt->exp, elt->exp, 1, false))
continue;
/* We may have already been playing subreg games. If the
mode is already correct for the destination, use it. */
if (GET_MODE (elt->exp) == new_mode)
new_src = elt->exp;
else
{
/* Calculate big endian correction for the SUBREG_BYTE.
We have already checked that M1 (GET_MODE (dest))
is not narrower than M2 (new_mode). */
if (BYTES_BIG_ENDIAN)
byte = (GET_MODE_SIZE (GET_MODE (dest))
- GET_MODE_SIZE (new_mode));
new_src = simplify_gen_subreg (new_mode, elt->exp,
GET_MODE (dest), byte);
}
/* The call to simplify_gen_subreg fails if the value
is VOIDmode, yet we can't do any simplification, e.g.
for EXPR_LISTs denoting function call results.
It is invalid to construct a SUBREG with a VOIDmode
SUBREG_REG, hence a zero new_src means we can't do
this substitution. */
if (! new_src)
continue;
src_hash = HASH (new_src, new_mode);
src_elt = lookup (new_src, src_hash, new_mode);
/* Put the new source in the hash table is if isn't
already. */
if (src_elt == 0)
{
if (insert_regs (new_src, classp, 0))
{
rehash_using_reg (new_src);
src_hash = HASH (new_src, new_mode);
}
src_elt = insert (new_src, classp, src_hash, new_mode);
src_elt->in_memory = elt->in_memory;
}
else if (classp && classp != src_elt->first_same_value)
/* Show that two things that we've seen before are
actually the same. */
merge_equiv_classes (src_elt, classp);
classp = src_elt->first_same_value;
/* Ignore invalid entries. */
while (classp
&& !REG_P (classp->exp)
&& ! exp_equiv_p (classp->exp, classp->exp, 1, false))
classp = classp->next_same_value;
}
}
}
/* Special handling for (set REG0 REG1) where REG0 is the
"cheapest", cheaper than REG1. After cse, REG1 will probably not
be used in the sequel, so (if easily done) change this insn to
(set REG1 REG0) and replace REG1 with REG0 in the previous insn
that computed their value. Then REG1 will become a dead store
and won't cloud the situation for later optimizations.
Do not make this change if REG1 is a hard register, because it will
then be used in the sequel and we may be changing a two-operand insn
into a three-operand insn.
Also do not do this if we are operating on a copy of INSN. */
if (n_sets == 1 && sets[0].rtl)
try_back_substitute_reg (sets[0].rtl, insn);
done:;
}
/* Remove from the hash table all expressions that reference memory. */
static void
invalidate_memory (void)
{
int i;
struct table_elt *p, *next;
for (i = 0; i < HASH_SIZE; i++)
for (p = table[i]; p; p = next)
{
next = p->next_same_hash;
if (p->in_memory)
remove_from_table (p, i);
}
}
/* Perform invalidation on the basis of everything about INSN,
except for invalidating the actual places that are SET in it.
This includes the places CLOBBERed, and anything that might
alias with something that is SET or CLOBBERed. */
static void
invalidate_from_clobbers (rtx insn)
{
rtx x = PATTERN (insn);
if (GET_CODE (x) == CLOBBER)
{
rtx ref = XEXP (x, 0);
if (ref)
{
if (REG_P (ref) || GET_CODE (ref) == SUBREG
|| MEM_P (ref))
invalidate (ref, VOIDmode);
else if (GET_CODE (ref) == STRICT_LOW_PART
|| GET_CODE (ref) == ZERO_EXTRACT)
invalidate (XEXP (ref, 0), GET_MODE (ref));
}
}
else if (GET_CODE (x) == PARALLEL)
{
int i;
for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
{
rtx y = XVECEXP (x, 0, i);
if (GET_CODE (y) == CLOBBER)
{
rtx ref = XEXP (y, 0);
if (REG_P (ref) || GET_CODE (ref) == SUBREG
|| MEM_P (ref))
invalidate (ref, VOIDmode);
else if (GET_CODE (ref) == STRICT_LOW_PART
|| GET_CODE (ref) == ZERO_EXTRACT)
invalidate (XEXP (ref, 0), GET_MODE (ref));
}
}
}
}
/* Perform invalidation on the basis of everything about INSN.
This includes the places CLOBBERed, and anything that might
alias with something that is SET or CLOBBERed. */
static void
invalidate_from_sets_and_clobbers (rtx insn)
{
rtx tem;
rtx x = PATTERN (insn);
if (CALL_P (insn))
{
for (tem = CALL_INSN_FUNCTION_USAGE (insn); tem; tem = XEXP (tem, 1))
if (GET_CODE (XEXP (tem, 0)) == CLOBBER)
invalidate (SET_DEST (XEXP (tem, 0)), VOIDmode);
}
/* Ensure we invalidate the destination register of a CALL insn.
This is necessary for machines where this register is a fixed_reg,
because no other code would invalidate it. */
if (GET_CODE (x) == SET && GET_CODE (SET_SRC (x)) == CALL)
invalidate (SET_DEST (x), VOIDmode);
else if (GET_CODE (x) == PARALLEL)
{
int i;
for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
{
rtx y = XVECEXP (x, 0, i);
if (GET_CODE (y) == CLOBBER)
{
rtx clobbered = XEXP (y, 0);
if (REG_P (clobbered)
|| GET_CODE (clobbered) == SUBREG)
invalidate (clobbered, VOIDmode);
else if (GET_CODE (clobbered) == STRICT_LOW_PART
|| GET_CODE (clobbered) == ZERO_EXTRACT)
invalidate (XEXP (clobbered, 0), GET_MODE (clobbered));
}
else if (GET_CODE (y) == SET && GET_CODE (SET_SRC (y)) == CALL)
invalidate (SET_DEST (y), VOIDmode);
}
}
}
/* Process X, part of the REG_NOTES of an insn. Look at any REG_EQUAL notes
and replace any registers in them with either an equivalent constant
or the canonical form of the register. If we are inside an address,
only do this if the address remains valid.
OBJECT is 0 except when within a MEM in which case it is the MEM.
Return the replacement for X. */
static rtx
cse_process_notes_1 (rtx x, rtx object, bool *changed)
{
enum rtx_code code = GET_CODE (x);
const char *fmt = GET_RTX_FORMAT (code);
int i;
switch (code)
{
case CONST:
case SYMBOL_REF:
case LABEL_REF:
CASE_CONST_ANY:
case PC:
case CC0:
case LO_SUM:
return x;
case MEM:
validate_change (x, &XEXP (x, 0),
cse_process_notes (XEXP (x, 0), x, changed), 0);
return x;
case EXPR_LIST:
if (REG_NOTE_KIND (x) == REG_EQUAL)
XEXP (x, 0) = cse_process_notes (XEXP (x, 0), NULL_RTX, changed);
/* Fall through. */
case INSN_LIST:
case INT_LIST:
if (XEXP (x, 1))
XEXP (x, 1) = cse_process_notes (XEXP (x, 1), NULL_RTX, changed);
return x;
case SIGN_EXTEND:
case ZERO_EXTEND:
case SUBREG:
{
rtx new_rtx = cse_process_notes (XEXP (x, 0), object, changed);
/* We don't substitute VOIDmode constants into these rtx,
since they would impede folding. */
if (GET_MODE (new_rtx) != VOIDmode)
validate_change (object, &XEXP (x, 0), new_rtx, 0);
return x;
}
case REG:
i = REG_QTY (REGNO (x));
/* Return a constant or a constant register. */
if (REGNO_QTY_VALID_P (REGNO (x)))
{
struct qty_table_elem *ent = &qty_table[i];
if (ent->const_rtx != NULL_RTX
&& (CONSTANT_P (ent->const_rtx)
|| REG_P (ent->const_rtx)))
{
rtx new_rtx = gen_lowpart (GET_MODE (x), ent->const_rtx);
if (new_rtx)
return copy_rtx (new_rtx);
}
}
/* Otherwise, canonicalize this register. */
return canon_reg (x, NULL_RTX);
default:
break;
}
for (i = 0; i < GET_RTX_LENGTH (code); i++)
if (fmt[i] == 'e')
validate_change (object, &XEXP (x, i),
cse_process_notes (XEXP (x, i), object, changed), 0);
return x;
}
static rtx
cse_process_notes (rtx x, rtx object, bool *changed)
{
rtx new_rtx = cse_process_notes_1 (x, object, changed);
if (new_rtx != x)
*changed = true;
return new_rtx;
}
/* Find a path in the CFG, starting with FIRST_BB to perform CSE on.
DATA is a pointer to a struct cse_basic_block_data, that is used to
describe the path.
It is filled with a queue of basic blocks, starting with FIRST_BB
and following a trace through the CFG.
If all paths starting at FIRST_BB have been followed, or no new path
starting at FIRST_BB can be constructed, this function returns FALSE.
Otherwise, DATA->path is filled and the function returns TRUE indicating
that a path to follow was found.
If FOLLOW_JUMPS is false, the maximum path length is 1 and the only
block in the path will be FIRST_BB. */
static bool
cse_find_path (basic_block first_bb, struct cse_basic_block_data *data,
int follow_jumps)
{
basic_block bb;
edge e;
int path_size;
bitmap_set_bit (cse_visited_basic_blocks, first_bb->index);
/* See if there is a previous path. */
path_size = data->path_size;
/* There is a previous path. Make sure it started with FIRST_BB. */
if (path_size)
gcc_assert (data->path[0].bb == first_bb);
/* There was only one basic block in the last path. Clear the path and
return, so that paths starting at another basic block can be tried. */
if (path_size == 1)
{
path_size = 0;
goto done;
}
/* If the path was empty from the beginning, construct a new path. */
if (path_size == 0)
data->path[path_size++].bb = first_bb;
else
{
/* Otherwise, path_size must be equal to or greater than 2, because
a previous path exists that is at least two basic blocks long.
Update the previous branch path, if any. If the last branch was
previously along the branch edge, take the fallthrough edge now. */
while (path_size >= 2)
{
basic_block last_bb_in_path, previous_bb_in_path;
edge e;
--path_size;
last_bb_in_path = data->path[path_size].bb;
previous_bb_in_path = data->path[path_size - 1].bb;
/* If we previously followed a path along the branch edge, try
the fallthru edge now. */
if (EDGE_COUNT (previous_bb_in_path->succs) == 2
&& any_condjump_p (BB_END (previous_bb_in_path))
&& (e = find_edge (previous_bb_in_path, last_bb_in_path))
&& e == BRANCH_EDGE (previous_bb_in_path))
{
bb = FALLTHRU_EDGE (previous_bb_in_path)->dest;
if (bb != EXIT_BLOCK_PTR_FOR_FN (cfun)
&& single_pred_p (bb)
/* We used to assert here that we would only see blocks
that we have not visited yet. But we may end up
visiting basic blocks twice if the CFG has changed
in this run of cse_main, because when the CFG changes
the topological sort of the CFG also changes. A basic
blocks that previously had more than two predecessors
may now have a single predecessor, and become part of
a path that starts at another basic block.
We still want to visit each basic block only once, so
halt the path here if we have already visited BB. */
&& !bitmap_bit_p (cse_visited_basic_blocks, bb->index))
{
bitmap_set_bit (cse_visited_basic_blocks, bb->index);
data->path[path_size++].bb = bb;
break;
}
}
data->path[path_size].bb = NULL;
}
/* If only one block remains in the path, bail. */
if (path_size == 1)
{
path_size = 0;
goto done;
}
}
/* Extend the path if possible. */
if (follow_jumps)
{
bb = data->path[path_size - 1].bb;
while (bb && path_size < PARAM_VALUE (PARAM_MAX_CSE_PATH_LENGTH))
{
if (single_succ_p (bb))
e = single_succ_edge (bb);
else if (EDGE_COUNT (bb->succs) == 2
&& any_condjump_p (BB_END (bb)))
{
/* First try to follow the branch. If that doesn't lead
to a useful path, follow the fallthru edge. */
e = BRANCH_EDGE (bb);
if (!single_pred_p (e->dest))
e = FALLTHRU_EDGE (bb);
}
else
e = NULL;
if (e
&& !((e->flags & EDGE_ABNORMAL_CALL) && cfun->has_nonlocal_label)
&& e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
&& single_pred_p (e->dest)
/* Avoid visiting basic blocks twice. The large comment
above explains why this can happen. */
&& !bitmap_bit_p (cse_visited_basic_blocks, e->dest->index))
{
basic_block bb2 = e->dest;
bitmap_set_bit (cse_visited_basic_blocks, bb2->index);
data->path[path_size++].bb = bb2;
bb = bb2;
}
else
bb = NULL;
}
}
done:
data->path_size = path_size;
return path_size != 0;
}
/* Dump the path in DATA to file F. NSETS is the number of sets
in the path. */
static void
cse_dump_path (struct cse_basic_block_data *data, int nsets, FILE *f)
{
int path_entry;
fprintf (f, ";; Following path with %d sets: ", nsets);
for (path_entry = 0; path_entry < data->path_size; path_entry++)
fprintf (f, "%d ", (data->path[path_entry].bb)->index);
fputc ('\n', dump_file);
fflush (f);
}
/* Return true if BB has exception handling successor edges. */
static bool
have_eh_succ_edges (basic_block bb)
{
edge e;
edge_iterator ei;
FOR_EACH_EDGE (e, ei, bb->succs)
if (e->flags & EDGE_EH)
return true;
return false;
}
/* Scan to the end of the path described by DATA. Return an estimate of
the total number of SETs of all insns in the path. */
static void
cse_prescan_path (struct cse_basic_block_data *data)
{
int nsets = 0;
int path_size = data->path_size;
int path_entry;
/* Scan to end of each basic block in the path. */
for (path_entry = 0; path_entry < path_size; path_entry++)
{
basic_block bb;
rtx insn;
bb = data->path[path_entry].bb;
FOR_BB_INSNS (bb, insn)
{
if (!INSN_P (insn))
continue;
/* A PARALLEL can have lots of SETs in it,
especially if it is really an ASM_OPERANDS. */
if (GET_CODE (PATTERN (insn)) == PARALLEL)
nsets += XVECLEN (PATTERN (insn), 0);
else
nsets += 1;
}
}
data->nsets = nsets;
}
/* Process a single extended basic block described by EBB_DATA. */
static void
cse_extended_basic_block (struct cse_basic_block_data *ebb_data)
{
int path_size = ebb_data->path_size;
int path_entry;
int num_insns = 0;
/* Allocate the space needed by qty_table. */
qty_table = XNEWVEC (struct qty_table_elem, max_qty);
new_basic_block ();
cse_ebb_live_in = df_get_live_in (ebb_data->path[0].bb);
cse_ebb_live_out = df_get_live_out (ebb_data->path[path_size - 1].bb);
for (path_entry = 0; path_entry < path_size; path_entry++)
{
basic_block bb;
rtx insn;
bb = ebb_data->path[path_entry].bb;
/* Invalidate recorded information for eh regs if there is an EH
edge pointing to that bb. */
if (bb_has_eh_pred (bb))
{
df_ref *def_rec;
for (def_rec = df_get_artificial_defs (bb->index); *def_rec; def_rec++)
{
df_ref def = *def_rec;
if (DF_REF_FLAGS (def) & DF_REF_AT_TOP)
invalidate (DF_REF_REG (def), GET_MODE (DF_REF_REG (def)));
}
}
optimize_this_for_speed_p = optimize_bb_for_speed_p (bb);
FOR_BB_INSNS (bb, insn)
{
/* If we have processed 1,000 insns, flush the hash table to
avoid extreme quadratic behavior. We must not include NOTEs
in the count since there may be more of them when generating
debugging information. If we clear the table at different
times, code generated with -g -O might be different than code
generated with -O but not -g.
FIXME: This is a real kludge and needs to be done some other
way. */
if (NONDEBUG_INSN_P (insn)
&& num_insns++ > PARAM_VALUE (PARAM_MAX_CSE_INSNS))
{
flush_hash_table ();
num_insns = 0;
}
if (INSN_P (insn))
{
/* Process notes first so we have all notes in canonical forms
when looking for duplicate operations. */
if (REG_NOTES (insn))
{
bool changed = false;
REG_NOTES (insn) = cse_process_notes (REG_NOTES (insn),
NULL_RTX, &changed);
if (changed)
df_notes_rescan (insn);
}
cse_insn (insn);
/* If we haven't already found an insn where we added a LABEL_REF,
check this one. */
if (INSN_P (insn) && !recorded_label_ref
&& for_each_rtx (&PATTERN (insn), check_for_label_ref,
(void *) insn))
recorded_label_ref = true;
#ifdef HAVE_cc0
if (NONDEBUG_INSN_P (insn))
{
/* If the previous insn sets CC0 and this insn no
longer references CC0, delete the previous insn.
Here we use fact that nothing expects CC0 to be
valid over an insn, which is true until the final
pass. */
rtx prev_insn, tem;
prev_insn = prev_nonnote_nondebug_insn (insn);
if (prev_insn && NONJUMP_INSN_P (prev_insn)
&& (tem = single_set (prev_insn)) != NULL_RTX
&& SET_DEST (tem) == cc0_rtx
&& ! reg_mentioned_p (cc0_rtx, PATTERN (insn)))
delete_insn (prev_insn);
/* If this insn is not the last insn in the basic
block, it will be PREV_INSN(insn) in the next
iteration. If we recorded any CC0-related
information for this insn, remember it. */
if (insn != BB_END (bb))
{
prev_insn_cc0 = this_insn_cc0;
prev_insn_cc0_mode = this_insn_cc0_mode;
}
}
#endif
}
}
/* With non-call exceptions, we are not always able to update
the CFG properly inside cse_insn. So clean up possibly
redundant EH edges here. */
if (cfun->can_throw_non_call_exceptions && have_eh_succ_edges (bb))
cse_cfg_altered |= purge_dead_edges (bb);
/* If we changed a conditional jump, we may have terminated
the path we are following. Check that by verifying that
the edge we would take still exists. If the edge does
not exist anymore, purge the remainder of the path.
Note that this will cause us to return to the caller. */
if (path_entry < path_size - 1)
{
basic_block next_bb = ebb_data->path[path_entry + 1].bb;
if (!find_edge (bb, next_bb))
{
do
{
path_size--;
/* If we truncate the path, we must also reset the
visited bit on the remaining blocks in the path,
or we will never visit them at all. */
bitmap_clear_bit (cse_visited_basic_blocks,
ebb_data->path[path_size].bb->index);
ebb_data->path[path_size].bb = NULL;
}
while (path_size - 1 != path_entry);
ebb_data->path_size = path_size;
}
}
/* If this is a conditional jump insn, record any known
equivalences due to the condition being tested. */
insn = BB_END (bb);
if (path_entry < path_size - 1
&& JUMP_P (insn)
&& single_set (insn)
&& any_condjump_p (insn))
{
basic_block next_bb = ebb_data->path[path_entry + 1].bb;
bool taken = (next_bb == BRANCH_EDGE (bb)->dest);
record_jump_equiv (insn, taken);
}
#ifdef HAVE_cc0
/* Clear the CC0-tracking related insns, they can't provide
useful information across basic block boundaries. */
prev_insn_cc0 = 0;
#endif
}
gcc_assert (next_qty <= max_qty);
free (qty_table);
}
/* Perform cse on the instructions of a function.
F is the first instruction.
NREGS is one plus the highest pseudo-reg number used in the instruction.
Return 2 if jump optimizations should be redone due to simplifications
in conditional jump instructions.
Return 1 if the CFG should be cleaned up because it has been modified.
Return 0 otherwise. */
static int
cse_main (rtx f ATTRIBUTE_UNUSED, int nregs)
{
struct cse_basic_block_data ebb_data;
basic_block bb;
int *rc_order = XNEWVEC (int, last_basic_block);
int i, n_blocks;
df_set_flags (DF_LR_RUN_DCE);
df_note_add_problem ();
df_analyze ();
df_set_flags (DF_DEFER_INSN_RESCAN);
reg_scan (get_insns (), max_reg_num ());
init_cse_reg_info (nregs);
ebb_data.path = XNEWVEC (struct branch_path,
PARAM_VALUE (PARAM_MAX_CSE_PATH_LENGTH));
cse_cfg_altered = false;
cse_jumps_altered = false;
recorded_label_ref = false;
constant_pool_entries_cost = 0;
constant_pool_entries_regcost = 0;
ebb_data.path_size = 0;
ebb_data.nsets = 0;
rtl_hooks = cse_rtl_hooks;
init_recog ();
init_alias_analysis ();
reg_eqv_table = XNEWVEC (struct reg_eqv_elem, nregs);
/* Set up the table of already visited basic blocks. */
cse_visited_basic_blocks = sbitmap_alloc (last_basic_block);
bitmap_clear (cse_visited_basic_blocks);
/* Loop over basic blocks in reverse completion order (RPO),
excluding the ENTRY and EXIT blocks. */
n_blocks = pre_and_rev_post_order_compute (NULL, rc_order, false);
i = 0;
while (i < n_blocks)
{
/* Find the first block in the RPO queue that we have not yet
processed before. */
do
{
bb = BASIC_BLOCK (rc_order[i++]);
}
while (bitmap_bit_p (cse_visited_basic_blocks, bb->index)
&& i < n_blocks);
/* Find all paths starting with BB, and process them. */
while (cse_find_path (bb, &ebb_data, flag_cse_follow_jumps))
{
/* Pre-scan the path. */
cse_prescan_path (&ebb_data);
/* If this basic block has no sets, skip it. */
if (ebb_data.nsets == 0)
continue;
/* Get a reasonable estimate for the maximum number of qty's
needed for this path. For this, we take the number of sets
and multiply that by MAX_RECOG_OPERANDS. */
max_qty = ebb_data.nsets * MAX_RECOG_OPERANDS;
/* Dump the path we're about to process. */
if (dump_file)
cse_dump_path (&ebb_data, ebb_data.nsets, dump_file);
cse_extended_basic_block (&ebb_data);
}
}
/* Clean up. */
end_alias_analysis ();
free (reg_eqv_table);
free (ebb_data.path);
sbitmap_free (cse_visited_basic_blocks);
free (rc_order);
rtl_hooks = general_rtl_hooks;
if (cse_jumps_altered || recorded_label_ref)
return 2;
else if (cse_cfg_altered)
return 1;
else
return 0;
}
/* Called via for_each_rtx to see if an insn is using a LABEL_REF for
which there isn't a REG_LABEL_OPERAND note.
Return one if so. DATA is the insn. */
static int
check_for_label_ref (rtx *rtl, void *data)
{
rtx insn = (rtx) data;
/* If this insn uses a LABEL_REF and there isn't a REG_LABEL_OPERAND
note for it, we must rerun jump since it needs to place the note. If
this is a LABEL_REF for a CODE_LABEL that isn't in the insn chain,
don't do this since no REG_LABEL_OPERAND will be added. */
return (GET_CODE (*rtl) == LABEL_REF
&& ! LABEL_REF_NONLOCAL_P (*rtl)
&& (!JUMP_P (insn)
|| !label_is_jump_target_p (XEXP (*rtl, 0), insn))
&& LABEL_P (XEXP (*rtl, 0))
&& INSN_UID (XEXP (*rtl, 0)) != 0
&& ! find_reg_note (insn, REG_LABEL_OPERAND, XEXP (*rtl, 0)));
}
/* Count the number of times registers are used (not set) in X.
COUNTS is an array in which we accumulate the count, INCR is how much
we count each register usage.
Don't count a usage of DEST, which is the SET_DEST of a SET which
contains X in its SET_SRC. This is because such a SET does not
modify the liveness of DEST.
DEST is set to pc_rtx for a trapping insn, or for an insn with side effects.
We must then count uses of a SET_DEST regardless, because the insn can't be
deleted here. */
static void
count_reg_usage (rtx x, int *counts, rtx dest, int incr)
{
enum rtx_code code;
rtx note;
const char *fmt;
int i, j;
if (x == 0)
return;
switch (code = GET_CODE (x))
{
case REG:
if (x != dest)
counts[REGNO (x)] += incr;
return;
case PC:
case CC0:
case CONST:
CASE_CONST_ANY:
case SYMBOL_REF:
case LABEL_REF:
return;
case CLOBBER:
/* If we are clobbering a MEM, mark any registers inside the address
as being used. */
if (MEM_P (XEXP (x, 0)))
count_reg_usage (XEXP (XEXP (x, 0), 0), counts, NULL_RTX, incr);
return;
case SET:
/* Unless we are setting a REG, count everything in SET_DEST. */
if (!REG_P (SET_DEST (x)))
count_reg_usage (SET_DEST (x), counts, NULL_RTX, incr);
count_reg_usage (SET_SRC (x), counts,
dest ? dest : SET_DEST (x),
incr);
return;
case DEBUG_INSN:
return;
case CALL_INSN:
case INSN:
case JUMP_INSN:
/* We expect dest to be NULL_RTX here. If the insn may throw,
or if it cannot be deleted due to side-effects, mark this fact
by setting DEST to pc_rtx. */
if ((!cfun->can_delete_dead_exceptions && !insn_nothrow_p (x))
|| side_effects_p (PATTERN (x)))
dest = pc_rtx;
if (code == CALL_INSN)
count_reg_usage (CALL_INSN_FUNCTION_USAGE (x), counts, dest, incr);
count_reg_usage (PATTERN (x), counts, dest, incr);
/* Things used in a REG_EQUAL note aren't dead since loop may try to
use them. */
note = find_reg_equal_equiv_note (x);
if (note)
{
rtx eqv = XEXP (note, 0);
if (GET_CODE (eqv) == EXPR_LIST)
/* This REG_EQUAL note describes the result of a function call.
Process all the arguments. */
do
{
count_reg_usage (XEXP (eqv, 0), counts, dest, incr);
eqv = XEXP (eqv, 1);
}
while (eqv && GET_CODE (eqv) == EXPR_LIST);
else
count_reg_usage (eqv, counts, dest, incr);
}
return;
case EXPR_LIST:
if (REG_NOTE_KIND (x) == REG_EQUAL
|| (REG_NOTE_KIND (x) != REG_NONNEG && GET_CODE (XEXP (x,0)) == USE)
/* FUNCTION_USAGE expression lists may include (CLOBBER (mem /u)),
involving registers in the address. */
|| GET_CODE (XEXP (x, 0)) == CLOBBER)
count_reg_usage (XEXP (x, 0), counts, NULL_RTX, incr);
count_reg_usage (XEXP (x, 1), counts, NULL_RTX, incr);
return;
case ASM_OPERANDS:
/* Iterate over just the inputs, not the constraints as well. */
for (i = ASM_OPERANDS_INPUT_LENGTH (x) - 1; i >= 0; i--)
count_reg_usage (ASM_OPERANDS_INPUT (x, i), counts, dest, incr);
return;
case INSN_LIST:
case INT_LIST:
gcc_unreachable ();
default:
break;
}
fmt = GET_RTX_FORMAT (code);
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
{
if (fmt[i] == 'e')
count_reg_usage (XEXP (x, i), counts, dest, incr);
else if (fmt[i] == 'E')
for (j = XVECLEN (x, i) - 1; j >= 0; j--)
count_reg_usage (XVECEXP (x, i, j), counts, dest, incr);
}
}
/* Return true if X is a dead register. */
static inline int
is_dead_reg (rtx x, int *counts)
{
return (REG_P (x)
&& REGNO (x) >= FIRST_PSEUDO_REGISTER
&& counts[REGNO (x)] == 0);
}
/* Return true if set is live. */
static bool
set_live_p (rtx set, rtx insn ATTRIBUTE_UNUSED, /* Only used with HAVE_cc0. */
int *counts)
{
#ifdef HAVE_cc0
rtx tem;
#endif
if (set_noop_p (set))
;
#ifdef HAVE_cc0
else if (GET_CODE (SET_DEST (set)) == CC0
&& !side_effects_p (SET_SRC (set))
&& ((tem = next_nonnote_nondebug_insn (insn)) == NULL_RTX
|| !INSN_P (tem)
|| !reg_referenced_p (cc0_rtx, PATTERN (tem))))
return false;
#endif
else if (!is_dead_reg (SET_DEST (set), counts)
|| side_effects_p (SET_SRC (set)))
return true;
return false;
}
/* Return true if insn is live. */
static bool
insn_live_p (rtx insn, int *counts)
{
int i;
if (!cfun->can_delete_dead_exceptions && !insn_nothrow_p (insn))
return true;
else if (GET_CODE (PATTERN (insn)) == SET)
return set_live_p (PATTERN (insn), insn, counts);
else if (GET_CODE (PATTERN (insn)) == PARALLEL)
{
for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
{
rtx elt = XVECEXP (PATTERN (insn), 0, i);
if (GET_CODE (elt) == SET)
{
if (set_live_p (elt, insn, counts))
return true;
}
else if (GET_CODE (elt) != CLOBBER && GET_CODE (elt) != USE)
return true;
}
return false;
}
else if (DEBUG_INSN_P (insn))
{
rtx next;
for (next = NEXT_INSN (insn); next; next = NEXT_INSN (next))
if (NOTE_P (next))
continue;
else if (!DEBUG_INSN_P (next))
return true;
else if (INSN_VAR_LOCATION_DECL (insn) == INSN_VAR_LOCATION_DECL (next))
return false;
return true;
}
else
return true;
}
/* Count the number of stores into pseudo. Callback for note_stores. */
static void
count_stores (rtx x, const_rtx set ATTRIBUTE_UNUSED, void *data)
{
int *counts = (int *) data;
if (REG_P (x) && REGNO (x) >= FIRST_PSEUDO_REGISTER)
counts[REGNO (x)]++;
}
struct dead_debug_insn_data
{
int *counts;
rtx *replacements;
bool seen_repl;
};
/* Return if a DEBUG_INSN needs to be reset because some dead
pseudo doesn't have a replacement. Callback for for_each_rtx. */
static int
is_dead_debug_insn (rtx *loc, void *data)
{
rtx x = *loc;
struct dead_debug_insn_data *ddid = (struct dead_debug_insn_data *) data;
if (is_dead_reg (x, ddid->counts))
{
if (ddid->replacements && ddid->replacements[REGNO (x)] != NULL_RTX)
ddid->seen_repl = true;
else
return 1;
}
return 0;
}
/* Replace a dead pseudo in a DEBUG_INSN with replacement DEBUG_EXPR.
Callback for simplify_replace_fn_rtx. */
static rtx
replace_dead_reg (rtx x, const_rtx old_rtx ATTRIBUTE_UNUSED, void *data)
{
rtx *replacements = (rtx *) data;
if (REG_P (x)
&& REGNO (x) >= FIRST_PSEUDO_REGISTER
&& replacements[REGNO (x)] != NULL_RTX)
{
if (GET_MODE (x) == GET_MODE (replacements[REGNO (x)]))
return replacements[REGNO (x)];
return lowpart_subreg (GET_MODE (x), replacements[REGNO (x)],
GET_MODE (replacements[REGNO (x)]));
}
return NULL_RTX;
}
/* Scan all the insns and delete any that are dead; i.e., they store a register
that is never used or they copy a register to itself.
This is used to remove insns made obviously dead by cse, loop or other
optimizations. It improves the heuristics in loop since it won't try to
move dead invariants out of loops or make givs for dead quantities. The
remaining passes of the compilation are also sped up. */
int
delete_trivially_dead_insns (rtx insns, int nreg)
{
int *counts;
rtx insn, prev;
rtx *replacements = NULL;
int ndead = 0;
timevar_push (TV_DELETE_TRIVIALLY_DEAD);
/* First count the number of times each register is used. */
if (MAY_HAVE_DEBUG_INSNS)
{
counts = XCNEWVEC (int, nreg * 3);
for (insn = insns; insn; insn = NEXT_INSN (insn))
if (DEBUG_INSN_P (insn))
count_reg_usage (INSN_VAR_LOCATION_LOC (insn), counts + nreg,
NULL_RTX, 1);
else if (INSN_P (insn))
{
count_reg_usage (insn, counts, NULL_RTX, 1);
note_stores (PATTERN (insn), count_stores, counts + nreg * 2);
}
/* If there can be debug insns, COUNTS are 3 consecutive arrays.
First one counts how many times each pseudo is used outside
of debug insns, second counts how many times each pseudo is
used in debug insns and third counts how many times a pseudo
is stored. */
}
else
{
counts = XCNEWVEC (int, nreg);
for (insn = insns; insn; insn = NEXT_INSN (insn))
if (INSN_P (insn))
count_reg_usage (insn, counts, NULL_RTX, 1);
/* If no debug insns can be present, COUNTS is just an array
which counts how many times each pseudo is used. */
}
/* Go from the last insn to the first and delete insns that only set unused
registers or copy a register to itself. As we delete an insn, remove
usage counts for registers it uses.
The first jump optimization pass may leave a real insn as the last
insn in the function. We must not skip that insn or we may end
up deleting code that is not really dead.
If some otherwise unused register is only used in DEBUG_INSNs,
try to create a DEBUG_EXPR temporary and emit a DEBUG_INSN before
the setter. Then go through DEBUG_INSNs and if a DEBUG_EXPR
has been created for the unused register, replace it with
the DEBUG_EXPR, otherwise reset the DEBUG_INSN. */
for (insn = get_last_insn (); insn; insn = prev)
{
int live_insn = 0;
prev = PREV_INSN (insn);
if (!INSN_P (insn))
continue;
live_insn = insn_live_p (insn, counts);
/* If this is a dead insn, delete it and show registers in it aren't
being used. */
if (! live_insn && dbg_cnt (delete_trivial_dead))
{
if (DEBUG_INSN_P (insn))
count_reg_usage (INSN_VAR_LOCATION_LOC (insn), counts + nreg,
NULL_RTX, -1);
else
{
rtx set;
if (MAY_HAVE_DEBUG_INSNS
&& (set = single_set (insn)) != NULL_RTX
&& is_dead_reg (SET_DEST (set), counts)
/* Used at least once in some DEBUG_INSN. */
&& counts[REGNO (SET_DEST (set)) + nreg] > 0
/* And set exactly once. */
&& counts[REGNO (SET_DEST (set)) + nreg * 2] == 1
&& !side_effects_p (SET_SRC (set))
&& asm_noperands (PATTERN (insn)) < 0)
{
rtx dval, bind;
/* Create DEBUG_EXPR (and DEBUG_EXPR_DECL). */
dval = make_debug_expr_from_rtl (SET_DEST (set));
/* Emit a debug bind insn before the insn in which
reg dies. */
bind = gen_rtx_VAR_LOCATION (GET_MODE (SET_DEST (set)),
DEBUG_EXPR_TREE_DECL (dval),
SET_SRC (set),
VAR_INIT_STATUS_INITIALIZED);
count_reg_usage (bind, counts + nreg, NULL_RTX, 1);
bind = emit_debug_insn_before (bind, insn);
df_insn_rescan (bind);
if (replacements == NULL)
replacements = XCNEWVEC (rtx, nreg);
replacements[REGNO (SET_DEST (set))] = dval;
}
count_reg_usage (insn, counts, NULL_RTX, -1);
ndead++;
}
delete_insn_and_edges (insn);
}
}
if (MAY_HAVE_DEBUG_INSNS)
{
struct dead_debug_insn_data ddid;
ddid.counts = counts;
ddid.replacements = replacements;
for (insn = get_last_insn (); insn; insn = PREV_INSN (insn))
if (DEBUG_INSN_P (insn))
{
/* If this debug insn references a dead register that wasn't replaced
with an DEBUG_EXPR, reset the DEBUG_INSN. */
ddid.seen_repl = false;
if (for_each_rtx (&INSN_VAR_LOCATION_LOC (insn),
is_dead_debug_insn, &ddid))
{
INSN_VAR_LOCATION_LOC (insn) = gen_rtx_UNKNOWN_VAR_LOC ();
df_insn_rescan (insn);
}
else if (ddid.seen_repl)
{
INSN_VAR_LOCATION_LOC (insn)
= simplify_replace_fn_rtx (INSN_VAR_LOCATION_LOC (insn),
NULL_RTX, replace_dead_reg,
replacements);
df_insn_rescan (insn);
}
}
free (replacements);
}
if (dump_file && ndead)
fprintf (dump_file, "Deleted %i trivially dead insns\n",
ndead);
/* Clean up. */
free (counts);
timevar_pop (TV_DELETE_TRIVIALLY_DEAD);
return ndead;
}
/* This function is called via for_each_rtx. The argument, NEWREG, is
a condition code register with the desired mode. If we are looking
at the same register in a different mode, replace it with
NEWREG. */
static int
cse_change_cc_mode (rtx *loc, void *data)
{
struct change_cc_mode_args* args = (struct change_cc_mode_args*)data;
if (*loc
&& REG_P (*loc)
&& REGNO (*loc) == REGNO (args->newreg)
&& GET_MODE (*loc) != GET_MODE (args->newreg))
{
validate_change (args->insn, loc, args->newreg, 1);
return -1;
}
return 0;
}
/* Change the mode of any reference to the register REGNO (NEWREG) to
GET_MODE (NEWREG) in INSN. */
static void
cse_change_cc_mode_insn (rtx insn, rtx newreg)
{
struct change_cc_mode_args args;
int success;
if (!INSN_P (insn))
return;
args.insn = insn;
args.newreg = newreg;
for_each_rtx (&PATTERN (insn), cse_change_cc_mode, &args);
for_each_rtx (®_NOTES (insn), cse_change_cc_mode, &args);
/* If the following assertion was triggered, there is most probably
something wrong with the cc_modes_compatible back end function.
CC modes only can be considered compatible if the insn - with the mode
replaced by any of the compatible modes - can still be recognized. */
success = apply_change_group ();
gcc_assert (success);
}
/* Change the mode of any reference to the register REGNO (NEWREG) to
GET_MODE (NEWREG), starting at START. Stop before END. Stop at
any instruction which modifies NEWREG. */
static void
cse_change_cc_mode_insns (rtx start, rtx end, rtx newreg)
{
rtx insn;
for (insn = start; insn != end; insn = NEXT_INSN (insn))
{
if (! INSN_P (insn))
continue;
if (reg_set_p (newreg, insn))
return;
cse_change_cc_mode_insn (insn, newreg);
}
}
/* BB is a basic block which finishes with CC_REG as a condition code
register which is set to CC_SRC. Look through the successors of BB
to find blocks which have a single predecessor (i.e., this one),
and look through those blocks for an assignment to CC_REG which is
equivalent to CC_SRC. CAN_CHANGE_MODE indicates whether we are
permitted to change the mode of CC_SRC to a compatible mode. This
returns VOIDmode if no equivalent assignments were found.
Otherwise it returns the mode which CC_SRC should wind up with.
ORIG_BB should be the same as BB in the outermost cse_cc_succs call,
but is passed unmodified down to recursive calls in order to prevent
endless recursion.
The main complexity in this function is handling the mode issues.
We may have more than one duplicate which we can eliminate, and we
try to find a mode which will work for multiple duplicates. */
static enum machine_mode
cse_cc_succs (basic_block bb, basic_block orig_bb, rtx cc_reg, rtx cc_src,
bool can_change_mode)
{
bool found_equiv;
enum machine_mode mode;
unsigned int insn_count;
edge e;
rtx insns[2];
enum machine_mode modes[2];
rtx last_insns[2];
unsigned int i;
rtx newreg;
edge_iterator ei;
/* We expect to have two successors. Look at both before picking
the final mode for the comparison. If we have more successors
(i.e., some sort of table jump, although that seems unlikely),
then we require all beyond the first two to use the same
mode. */
found_equiv = false;
mode = GET_MODE (cc_src);
insn_count = 0;
FOR_EACH_EDGE (e, ei, bb->succs)
{
rtx insn;
rtx end;
if (e->flags & EDGE_COMPLEX)
continue;
if (EDGE_COUNT (e->dest->preds) != 1
|| e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun)
/* Avoid endless recursion on unreachable blocks. */
|| e->dest == orig_bb)
continue;
end = NEXT_INSN (BB_END (e->dest));
for (insn = BB_HEAD (e->dest); insn != end; insn = NEXT_INSN (insn))
{
rtx set;
if (! INSN_P (insn))
continue;
/* If CC_SRC is modified, we have to stop looking for
something which uses it. */
if (modified_in_p (cc_src, insn))
break;
/* Check whether INSN sets CC_REG to CC_SRC. */
set = single_set (insn);
if (set
&& REG_P (SET_DEST (set))
&& REGNO (SET_DEST (set)) == REGNO (cc_reg))
{
bool found;
enum machine_mode set_mode;
enum machine_mode comp_mode;
found = false;
set_mode = GET_MODE (SET_SRC (set));
comp_mode = set_mode;
if (rtx_equal_p (cc_src, SET_SRC (set)))
found = true;
else if (GET_CODE (cc_src) == COMPARE
&& GET_CODE (SET_SRC (set)) == COMPARE
&& mode != set_mode
&& rtx_equal_p (XEXP (cc_src, 0),
XEXP (SET_SRC (set), 0))
&& rtx_equal_p (XEXP (cc_src, 1),
XEXP (SET_SRC (set), 1)))
{
comp_mode = targetm.cc_modes_compatible (mode, set_mode);
if (comp_mode != VOIDmode
&& (can_change_mode || comp_mode == mode))
found = true;
}
if (found)
{
found_equiv = true;
if (insn_count < ARRAY_SIZE (insns))
{
insns[insn_count] = insn;
modes[insn_count] = set_mode;
last_insns[insn_count] = end;
++insn_count;
if (mode != comp_mode)
{
gcc_assert (can_change_mode);
mode = comp_mode;
/* The modified insn will be re-recognized later. */
PUT_MODE (cc_src, mode);
}
}
else
{
if (set_mode != mode)
{
/* We found a matching expression in the
wrong mode, but we don't have room to
store it in the array. Punt. This case
should be rare. */
break;
}
/* INSN sets CC_REG to a value equal to CC_SRC
with the right mode. We can simply delete
it. */
delete_insn (insn);
}
/* We found an instruction to delete. Keep looking,
in the hopes of finding a three-way jump. */
continue;
}
/* We found an instruction which sets the condition
code, so don't look any farther. */
break;
}
/* If INSN sets CC_REG in some other way, don't look any
farther. */
if (reg_set_p (cc_reg, insn))
break;
}
/* If we fell off the bottom of the block, we can keep looking
through successors. We pass CAN_CHANGE_MODE as false because
we aren't prepared to handle compatibility between the
further blocks and this block. */
if (insn == end)
{
enum machine_mode submode;
submode = cse_cc_succs (e->dest, orig_bb, cc_reg, cc_src, false);
if (submode != VOIDmode)
{
gcc_assert (submode == mode);
found_equiv = true;
can_change_mode = false;
}
}
}
if (! found_equiv)
return VOIDmode;
/* Now INSN_COUNT is the number of instructions we found which set
CC_REG to a value equivalent to CC_SRC. The instructions are in
INSNS. The modes used by those instructions are in MODES. */
newreg = NULL_RTX;
for (i = 0; i < insn_count; ++i)
{
if (modes[i] != mode)
{
/* We need to change the mode of CC_REG in INSNS[i] and
subsequent instructions. */
if (! newreg)
{
if (GET_MODE (cc_reg) == mode)
newreg = cc_reg;
else
newreg = gen_rtx_REG (mode, REGNO (cc_reg));
}
cse_change_cc_mode_insns (NEXT_INSN (insns[i]), last_insns[i],
newreg);
}
delete_insn_and_edges (insns[i]);
}
return mode;
}
/* If we have a fixed condition code register (or two), walk through
the instructions and try to eliminate duplicate assignments. */
static void
cse_condition_code_reg (void)
{
unsigned int cc_regno_1;
unsigned int cc_regno_2;
rtx cc_reg_1;
rtx cc_reg_2;
basic_block bb;
if (! targetm.fixed_condition_code_regs (&cc_regno_1, &cc_regno_2))
return;
cc_reg_1 = gen_rtx_REG (CCmode, cc_regno_1);
if (cc_regno_2 != INVALID_REGNUM)
cc_reg_2 = gen_rtx_REG (CCmode, cc_regno_2);
else
cc_reg_2 = NULL_RTX;
FOR_EACH_BB (bb)
{
rtx last_insn;
rtx cc_reg;
rtx insn;
rtx cc_src_insn;
rtx cc_src;
enum machine_mode mode;
enum machine_mode orig_mode;
/* Look for blocks which end with a conditional jump based on a
condition code register. Then look for the instruction which
sets the condition code register. Then look through the
successor blocks for instructions which set the condition
code register to the same value. There are other possible
uses of the condition code register, but these are by far the
most common and the ones which we are most likely to be able
to optimize. */
last_insn = BB_END (bb);
if (!JUMP_P (last_insn))
continue;
if (reg_referenced_p (cc_reg_1, PATTERN (last_insn)))
cc_reg = cc_reg_1;
else if (cc_reg_2 && reg_referenced_p (cc_reg_2, PATTERN (last_insn)))
cc_reg = cc_reg_2;
else
continue;
cc_src_insn = NULL_RTX;
cc_src = NULL_RTX;
for (insn = PREV_INSN (last_insn);
insn && insn != PREV_INSN (BB_HEAD (bb));
insn = PREV_INSN (insn))
{
rtx set;
if (! INSN_P (insn))
continue;
set = single_set (insn);
if (set
&& REG_P (SET_DEST (set))
&& REGNO (SET_DEST (set)) == REGNO (cc_reg))
{
cc_src_insn = insn;
cc_src = SET_SRC (set);
break;
}
else if (reg_set_p (cc_reg, insn))
break;
}
if (! cc_src_insn)
continue;
if (modified_between_p (cc_src, cc_src_insn, NEXT_INSN (last_insn)))
continue;
/* Now CC_REG is a condition code register used for a
conditional jump at the end of the block, and CC_SRC, in
CC_SRC_INSN, is the value to which that condition code
register is set, and CC_SRC is still meaningful at the end of
the basic block. */
orig_mode = GET_MODE (cc_src);
mode = cse_cc_succs (bb, bb, cc_reg, cc_src, true);
if (mode != VOIDmode)
{
gcc_assert (mode == GET_MODE (cc_src));
if (mode != orig_mode)
{
rtx newreg = gen_rtx_REG (mode, REGNO (cc_reg));
cse_change_cc_mode_insn (cc_src_insn, newreg);
/* Do the same in the following insns that use the
current value of CC_REG within BB. */
cse_change_cc_mode_insns (NEXT_INSN (cc_src_insn),
NEXT_INSN (last_insn),
newreg);
}
}
}
}
/* Perform common subexpression elimination. Nonzero value from
`cse_main' means that jumps were simplified and some code may now
be unreachable, so do jump optimization again. */
static bool
gate_handle_cse (void)
{
return optimize > 0;
}
static unsigned int
rest_of_handle_cse (void)
{
int tem;
if (dump_file)
dump_flow_info (dump_file, dump_flags);
tem = cse_main (get_insns (), max_reg_num ());
/* If we are not running more CSE passes, then we are no longer
expecting CSE to be run. But always rerun it in a cheap mode. */
cse_not_expected = !flag_rerun_cse_after_loop && !flag_gcse;
if (tem == 2)
{
timevar_push (TV_JUMP);
rebuild_jump_labels (get_insns ());
cleanup_cfg (CLEANUP_CFG_CHANGED);
timevar_pop (TV_JUMP);
}
else if (tem == 1 || optimize > 1)
cleanup_cfg (0);
return 0;
}
namespace {
const pass_data pass_data_cse =
{
RTL_PASS, /* type */
"cse1", /* name */
OPTGROUP_NONE, /* optinfo_flags */
true, /* has_gate */
true, /* has_execute */
TV_CSE, /* tv_id */
0, /* properties_required */
0, /* properties_provided */
0, /* properties_destroyed */
0, /* todo_flags_start */
( TODO_df_finish | TODO_verify_rtl_sharing
| TODO_verify_flow ), /* todo_flags_finish */
};
class pass_cse : public rtl_opt_pass
{
public:
pass_cse (gcc::context *ctxt)
: rtl_opt_pass (pass_data_cse, ctxt)
{}
/* opt_pass methods: */
bool gate () { return gate_handle_cse (); }
unsigned int execute () { return rest_of_handle_cse (); }
}; // class pass_cse
} // anon namespace
rtl_opt_pass *
make_pass_cse (gcc::context *ctxt)
{
return new pass_cse (ctxt);
}
static bool
gate_handle_cse2 (void)
{
return optimize > 0 && flag_rerun_cse_after_loop;
}
/* Run second CSE pass after loop optimizations. */
static unsigned int
rest_of_handle_cse2 (void)
{
int tem;
if (dump_file)
dump_flow_info (dump_file, dump_flags);
tem = cse_main (get_insns (), max_reg_num ());
/* Run a pass to eliminate duplicated assignments to condition code
registers. We have to run this after bypass_jumps, because it
makes it harder for that pass to determine whether a jump can be
bypassed safely. */
cse_condition_code_reg ();
delete_trivially_dead_insns (get_insns (), max_reg_num ());
if (tem == 2)
{
timevar_push (TV_JUMP);
rebuild_jump_labels (get_insns ());
cleanup_cfg (CLEANUP_CFG_CHANGED);
timevar_pop (TV_JUMP);
}
else if (tem == 1)
cleanup_cfg (0);
cse_not_expected = 1;
return 0;
}
namespace {
const pass_data pass_data_cse2 =
{
RTL_PASS, /* type */
"cse2", /* name */
OPTGROUP_NONE, /* optinfo_flags */
true, /* has_gate */
true, /* has_execute */
TV_CSE2, /* tv_id */
0, /* properties_required */
0, /* properties_provided */
0, /* properties_destroyed */
0, /* todo_flags_start */
( TODO_df_finish | TODO_verify_rtl_sharing
| TODO_verify_flow ), /* todo_flags_finish */
};
class pass_cse2 : public rtl_opt_pass
{
public:
pass_cse2 (gcc::context *ctxt)
: rtl_opt_pass (pass_data_cse2, ctxt)
{}
/* opt_pass methods: */
bool gate () { return gate_handle_cse2 (); }
unsigned int execute () { return rest_of_handle_cse2 (); }
}; // class pass_cse2
} // anon namespace
rtl_opt_pass *
make_pass_cse2 (gcc::context *ctxt)
{
return new pass_cse2 (ctxt);
}
static bool
gate_handle_cse_after_global_opts (void)
{
return optimize > 0 && flag_rerun_cse_after_global_opts;
}
/* Run second CSE pass after loop optimizations. */
static unsigned int
rest_of_handle_cse_after_global_opts (void)
{
int save_cfj;
int tem;
/* We only want to do local CSE, so don't follow jumps. */
save_cfj = flag_cse_follow_jumps;
flag_cse_follow_jumps = 0;
rebuild_jump_labels (get_insns ());
tem = cse_main (get_insns (), max_reg_num ());
purge_all_dead_edges ();
delete_trivially_dead_insns (get_insns (), max_reg_num ());
cse_not_expected = !flag_rerun_cse_after_loop;
/* If cse altered any jumps, rerun jump opts to clean things up. */
if (tem == 2)
{
timevar_push (TV_JUMP);
rebuild_jump_labels (get_insns ());
cleanup_cfg (CLEANUP_CFG_CHANGED);
timevar_pop (TV_JUMP);
}
else if (tem == 1)
cleanup_cfg (0);
flag_cse_follow_jumps = save_cfj;
return 0;
}
namespace {
const pass_data pass_data_cse_after_global_opts =
{
RTL_PASS, /* type */
"cse_local", /* name */
OPTGROUP_NONE, /* optinfo_flags */
true, /* has_gate */
true, /* has_execute */
TV_CSE, /* tv_id */
0, /* properties_required */
0, /* properties_provided */
0, /* properties_destroyed */
0, /* todo_flags_start */
( TODO_df_finish | TODO_verify_rtl_sharing
| TODO_verify_flow ), /* todo_flags_finish */
};
class pass_cse_after_global_opts : public rtl_opt_pass
{
public:
pass_cse_after_global_opts (gcc::context *ctxt)
: rtl_opt_pass (pass_data_cse_after_global_opts, ctxt)
{}
/* opt_pass methods: */
bool gate () { return gate_handle_cse_after_global_opts (); }
unsigned int execute () {
return rest_of_handle_cse_after_global_opts ();
}
}; // class pass_cse_after_global_opts
} // anon namespace
rtl_opt_pass *
make_pass_cse_after_global_opts (gcc::context *ctxt)
{
return new pass_cse_after_global_opts (ctxt);
}
|