1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
|
/* DDG - Data Dependence Graph implementation.
Copyright (C) 2004, 2005, 2006, 2007, 2008, 2009
Free Software Foundation, Inc.
Contributed by Ayal Zaks and Mustafa Hagog <zaks,mustafa@il.ibm.com>
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "toplev.h"
#include "rtl.h"
#include "tm_p.h"
#include "hard-reg-set.h"
#include "regs.h"
#include "function.h"
#include "flags.h"
#include "insn-config.h"
#include "insn-attr.h"
#include "except.h"
#include "recog.h"
#include "sched-int.h"
#include "target.h"
#include "cfglayout.h"
#include "cfgloop.h"
#include "sbitmap.h"
#include "expr.h"
#include "bitmap.h"
#include "ddg.h"
#ifdef INSN_SCHEDULING
/* A flag indicating that a ddg edge belongs to an SCC or not. */
enum edge_flag {NOT_IN_SCC = 0, IN_SCC};
/* Forward declarations. */
static void add_backarc_to_ddg (ddg_ptr, ddg_edge_ptr);
static void add_backarc_to_scc (ddg_scc_ptr, ddg_edge_ptr);
static void add_scc_to_ddg (ddg_all_sccs_ptr, ddg_scc_ptr);
static void create_ddg_dep_from_intra_loop_link (ddg_ptr, ddg_node_ptr,
ddg_node_ptr, dep_t);
static void create_ddg_dep_no_link (ddg_ptr, ddg_node_ptr, ddg_node_ptr,
dep_type, dep_data_type, int);
static ddg_edge_ptr create_ddg_edge (ddg_node_ptr, ddg_node_ptr, dep_type,
dep_data_type, int, int);
static void add_edge_to_ddg (ddg_ptr g, ddg_edge_ptr);
/* Auxiliary variable for mem_read_insn_p/mem_write_insn_p. */
static bool mem_ref_p;
/* Auxiliary function for mem_read_insn_p. */
static int
mark_mem_use (rtx *x, void *data ATTRIBUTE_UNUSED)
{
if (MEM_P (*x))
mem_ref_p = true;
return 0;
}
/* Auxiliary function for mem_read_insn_p. */
static void
mark_mem_use_1 (rtx *x, void *data)
{
for_each_rtx (x, mark_mem_use, data);
}
/* Returns nonzero if INSN reads from memory. */
static bool
mem_read_insn_p (rtx insn)
{
mem_ref_p = false;
note_uses (&PATTERN (insn), mark_mem_use_1, NULL);
return mem_ref_p;
}
static void
mark_mem_store (rtx loc, const_rtx setter ATTRIBUTE_UNUSED, void *data ATTRIBUTE_UNUSED)
{
if (MEM_P (loc))
mem_ref_p = true;
}
/* Returns nonzero if INSN writes to memory. */
static bool
mem_write_insn_p (rtx insn)
{
mem_ref_p = false;
note_stores (PATTERN (insn), mark_mem_store, NULL);
return mem_ref_p;
}
/* Returns nonzero if X has access to memory. */
static bool
rtx_mem_access_p (rtx x)
{
int i, j;
const char *fmt;
enum rtx_code code;
if (x == 0)
return false;
if (MEM_P (x))
return true;
code = GET_CODE (x);
fmt = GET_RTX_FORMAT (code);
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
{
if (fmt[i] == 'e')
{
if (rtx_mem_access_p (XEXP (x, i)))
return true;
}
else if (fmt[i] == 'E')
for (j = 0; j < XVECLEN (x, i); j++)
{
if (rtx_mem_access_p (XVECEXP (x, i, j)))
return true;
}
}
return false;
}
/* Returns nonzero if INSN reads to or writes from memory. */
static bool
mem_access_insn_p (rtx insn)
{
return rtx_mem_access_p (PATTERN (insn));
}
/* Computes the dependence parameters (latency, distance etc.), creates
a ddg_edge and adds it to the given DDG. */
static void
create_ddg_dep_from_intra_loop_link (ddg_ptr g, ddg_node_ptr src_node,
ddg_node_ptr dest_node, dep_t link)
{
ddg_edge_ptr e;
int latency, distance = 0;
dep_type t = TRUE_DEP;
dep_data_type dt = (mem_access_insn_p (src_node->insn)
&& mem_access_insn_p (dest_node->insn) ? MEM_DEP
: REG_DEP);
gcc_assert (src_node->cuid < dest_node->cuid);
gcc_assert (link);
/* Note: REG_DEP_ANTI applies to MEM ANTI_DEP as well!! */
if (DEP_TYPE (link) == REG_DEP_ANTI)
t = ANTI_DEP;
else if (DEP_TYPE (link) == REG_DEP_OUTPUT)
t = OUTPUT_DEP;
gcc_assert (!DEBUG_INSN_P (dest_node->insn) || t == ANTI_DEP);
gcc_assert (!DEBUG_INSN_P (src_node->insn) || DEBUG_INSN_P (dest_node->insn));
/* We currently choose not to create certain anti-deps edges and
compensate for that by generating reg-moves based on the life-range
analysis. The anti-deps that will be deleted are the ones which
have true-deps edges in the opposite direction (in other words
the kernel has only one def of the relevant register). TODO:
support the removal of all anti-deps edges, i.e. including those
whose register has multiple defs in the loop. */
if (flag_modulo_sched_allow_regmoves && (t == ANTI_DEP && dt == REG_DEP))
{
rtx set;
set = single_set (dest_node->insn);
/* TODO: Handle registers that REG_P is not true for them, i.e.
subregs and special registers. */
if (set && REG_P (SET_DEST (set)))
{
int regno = REGNO (SET_DEST (set));
df_ref first_def;
struct df_rd_bb_info *bb_info = DF_RD_BB_INFO (g->bb);
first_def = df_bb_regno_first_def_find (g->bb, regno);
gcc_assert (first_def);
if (bitmap_bit_p (bb_info->gen, DF_REF_ID (first_def)))
return;
}
}
latency = dep_cost (link);
e = create_ddg_edge (src_node, dest_node, t, dt, latency, distance);
add_edge_to_ddg (g, e);
}
/* The same as the above function, but it doesn't require a link parameter. */
static void
create_ddg_dep_no_link (ddg_ptr g, ddg_node_ptr from, ddg_node_ptr to,
dep_type d_t, dep_data_type d_dt, int distance)
{
ddg_edge_ptr e;
int l;
enum reg_note dep_kind;
struct _dep _dep, *dep = &_dep;
gcc_assert (!DEBUG_INSN_P (to->insn) || d_t == ANTI_DEP);
gcc_assert (!DEBUG_INSN_P (from->insn) || DEBUG_INSN_P (to->insn));
if (d_t == ANTI_DEP)
dep_kind = REG_DEP_ANTI;
else if (d_t == OUTPUT_DEP)
dep_kind = REG_DEP_OUTPUT;
else
{
gcc_assert (d_t == TRUE_DEP);
dep_kind = REG_DEP_TRUE;
}
init_dep (dep, from->insn, to->insn, dep_kind);
l = dep_cost (dep);
e = create_ddg_edge (from, to, d_t, d_dt, l, distance);
if (distance > 0)
add_backarc_to_ddg (g, e);
else
add_edge_to_ddg (g, e);
}
/* Given a downwards exposed register def LAST_DEF (which is the last
definition of that register in the bb), add inter-loop true dependences
to all its uses in the next iteration, an output dependence to the
first def of the same register (possibly itself) in the next iteration
and anti-dependences from its uses in the current iteration to the
first definition in the next iteration. */
static void
add_cross_iteration_register_deps (ddg_ptr g, df_ref last_def)
{
int regno = DF_REF_REGNO (last_def);
struct df_link *r_use;
int has_use_in_bb_p = false;
rtx def_insn = DF_REF_INSN (last_def);
ddg_node_ptr last_def_node = get_node_of_insn (g, def_insn);
ddg_node_ptr use_node;
#ifdef ENABLE_CHECKING
struct df_rd_bb_info *bb_info = DF_RD_BB_INFO (g->bb);
#endif
df_ref first_def = df_bb_regno_first_def_find (g->bb, regno);
gcc_assert (last_def_node);
gcc_assert (first_def);
#ifdef ENABLE_CHECKING
if (DF_REF_ID (last_def) != DF_REF_ID (first_def))
gcc_assert (!bitmap_bit_p (bb_info->gen, DF_REF_ID (first_def)));
#endif
/* Create inter-loop true dependences and anti dependences. */
for (r_use = DF_REF_CHAIN (last_def); r_use != NULL; r_use = r_use->next)
{
rtx use_insn = DF_REF_INSN (r_use->ref);
if (BLOCK_FOR_INSN (use_insn) != g->bb)
continue;
/* ??? Do not handle uses with DF_REF_IN_NOTE notes. */
use_node = get_node_of_insn (g, use_insn);
gcc_assert (use_node);
has_use_in_bb_p = true;
if (use_node->cuid <= last_def_node->cuid)
{
/* Add true deps from last_def to it's uses in the next
iteration. Any such upwards exposed use appears before
the last_def def. */
create_ddg_dep_no_link (g, last_def_node, use_node,
DEBUG_INSN_P (use_insn) ? ANTI_DEP : TRUE_DEP,
REG_DEP, 1);
}
else if (!DEBUG_INSN_P (use_insn))
{
/* Add anti deps from last_def's uses in the current iteration
to the first def in the next iteration. We do not add ANTI
dep when there is an intra-loop TRUE dep in the opposite
direction, but use regmoves to fix such disregarded ANTI
deps when broken. If the first_def reaches the USE then
there is such a dep. */
ddg_node_ptr first_def_node = get_node_of_insn (g,
DF_REF_INSN (first_def));
gcc_assert (first_def_node);
if (DF_REF_ID (last_def) != DF_REF_ID (first_def)
|| !flag_modulo_sched_allow_regmoves)
create_ddg_dep_no_link (g, use_node, first_def_node, ANTI_DEP,
REG_DEP, 1);
}
}
/* Create an inter-loop output dependence between LAST_DEF (which is the
last def in its block, being downwards exposed) and the first def in
its block. Avoid creating a self output dependence. Avoid creating
an output dependence if there is a dependence path between the two
defs starting with a true dependence to a use which can be in the
next iteration; followed by an anti dependence of that use to the
first def (i.e. if there is a use between the two defs.) */
if (!has_use_in_bb_p)
{
ddg_node_ptr dest_node;
if (DF_REF_ID (last_def) == DF_REF_ID (first_def))
return;
dest_node = get_node_of_insn (g, DF_REF_INSN (first_def));
gcc_assert (dest_node);
create_ddg_dep_no_link (g, last_def_node, dest_node,
OUTPUT_DEP, REG_DEP, 1);
}
}
/* Build inter-loop dependencies, by looking at DF analysis backwards. */
static void
build_inter_loop_deps (ddg_ptr g)
{
unsigned rd_num;
struct df_rd_bb_info *rd_bb_info;
bitmap_iterator bi;
rd_bb_info = DF_RD_BB_INFO (g->bb);
/* Find inter-loop register output, true and anti deps. */
EXECUTE_IF_SET_IN_BITMAP (rd_bb_info->gen, 0, rd_num, bi)
{
df_ref rd = DF_DEFS_GET (rd_num);
add_cross_iteration_register_deps (g, rd);
}
}
/* Given two nodes, analyze their RTL insns and add inter-loop mem deps
to ddg G. */
static void
add_inter_loop_mem_dep (ddg_ptr g, ddg_node_ptr from, ddg_node_ptr to)
{
if (!insn_alias_sets_conflict_p (from->insn, to->insn))
/* Do not create edge if memory references have disjoint alias sets. */
return;
if (mem_write_insn_p (from->insn))
{
if (mem_read_insn_p (to->insn))
create_ddg_dep_no_link (g, from, to, TRUE_DEP, MEM_DEP, 1);
else if (from->cuid != to->cuid)
create_ddg_dep_no_link (g, from, to, OUTPUT_DEP, MEM_DEP, 1);
}
else
{
if (mem_read_insn_p (to->insn))
return;
else if (from->cuid != to->cuid)
{
create_ddg_dep_no_link (g, from, to, ANTI_DEP, MEM_DEP, 1);
create_ddg_dep_no_link (g, to, from, TRUE_DEP, MEM_DEP, 1);
}
}
}
/* Perform intra-block Data Dependency analysis and connect the nodes in
the DDG. We assume the loop has a single basic block. */
static void
build_intra_loop_deps (ddg_ptr g)
{
int i;
/* Hold the dependency analysis state during dependency calculations. */
struct deps tmp_deps;
rtx head, tail;
/* Build the dependence information, using the sched_analyze function. */
init_deps_global ();
init_deps (&tmp_deps);
/* Do the intra-block data dependence analysis for the given block. */
get_ebb_head_tail (g->bb, g->bb, &head, &tail);
sched_analyze (&tmp_deps, head, tail);
/* Build intra-loop data dependencies using the scheduler dependency
analysis. */
for (i = 0; i < g->num_nodes; i++)
{
ddg_node_ptr dest_node = &g->nodes[i];
sd_iterator_def sd_it;
dep_t dep;
if (! INSN_P (dest_node->insn))
continue;
FOR_EACH_DEP (dest_node->insn, SD_LIST_BACK, sd_it, dep)
{
ddg_node_ptr src_node = get_node_of_insn (g, DEP_PRO (dep));
if (!src_node)
continue;
create_ddg_dep_from_intra_loop_link (g, src_node, dest_node, dep);
}
/* If this insn modifies memory, add an edge to all insns that access
memory. */
if (mem_access_insn_p (dest_node->insn))
{
int j;
for (j = 0; j <= i; j++)
{
ddg_node_ptr j_node = &g->nodes[j];
if (DEBUG_INSN_P (j_node->insn))
continue;
if (mem_access_insn_p (j_node->insn))
/* Don't bother calculating inter-loop dep if an intra-loop dep
already exists. */
if (! TEST_BIT (dest_node->successors, j))
add_inter_loop_mem_dep (g, dest_node, j_node);
}
}
}
/* Free the INSN_LISTs. */
finish_deps_global ();
free_deps (&tmp_deps);
/* Free dependencies. */
sched_free_deps (head, tail, false);
}
/* Given a basic block, create its DDG and return a pointer to a variable
of ddg type that represents it.
Initialize the ddg structure fields to the appropriate values. */
ddg_ptr
create_ddg (basic_block bb, int closing_branch_deps)
{
ddg_ptr g;
rtx insn, first_note;
int i;
int num_nodes = 0;
g = (ddg_ptr) xcalloc (1, sizeof (struct ddg));
g->bb = bb;
g->closing_branch_deps = closing_branch_deps;
/* Count the number of insns in the BB. */
for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb));
insn = NEXT_INSN (insn))
{
if (! INSN_P (insn) || GET_CODE (PATTERN (insn)) == USE)
continue;
if (DEBUG_INSN_P (insn))
g->num_debug++;
else
{
if (mem_read_insn_p (insn))
g->num_loads++;
if (mem_write_insn_p (insn))
g->num_stores++;
}
num_nodes++;
}
/* There is nothing to do for this BB. */
if (num_nodes <= 1)
{
free (g);
return NULL;
}
/* Allocate the nodes array, and initialize the nodes. */
g->num_nodes = num_nodes;
g->nodes = (ddg_node_ptr) xcalloc (num_nodes, sizeof (struct ddg_node));
g->closing_branch = NULL;
i = 0;
first_note = NULL_RTX;
for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb));
insn = NEXT_INSN (insn))
{
if (! INSN_P (insn))
{
if (! first_note && NOTE_P (insn)
&& NOTE_KIND (insn) != NOTE_INSN_BASIC_BLOCK)
first_note = insn;
continue;
}
if (JUMP_P (insn))
{
gcc_assert (!g->closing_branch);
g->closing_branch = &g->nodes[i];
}
else if (GET_CODE (PATTERN (insn)) == USE)
{
if (! first_note)
first_note = insn;
continue;
}
g->nodes[i].cuid = i;
g->nodes[i].successors = sbitmap_alloc (num_nodes);
sbitmap_zero (g->nodes[i].successors);
g->nodes[i].predecessors = sbitmap_alloc (num_nodes);
sbitmap_zero (g->nodes[i].predecessors);
g->nodes[i].first_note = (first_note ? first_note : insn);
g->nodes[i++].insn = insn;
first_note = NULL_RTX;
}
/* We must have found a branch in DDG. */
gcc_assert (g->closing_branch);
/* Build the data dependency graph. */
build_intra_loop_deps (g);
build_inter_loop_deps (g);
return g;
}
/* Free all the memory allocated for the DDG. */
void
free_ddg (ddg_ptr g)
{
int i;
if (!g)
return;
for (i = 0; i < g->num_nodes; i++)
{
ddg_edge_ptr e = g->nodes[i].out;
while (e)
{
ddg_edge_ptr next = e->next_out;
free (e);
e = next;
}
sbitmap_free (g->nodes[i].successors);
sbitmap_free (g->nodes[i].predecessors);
}
if (g->num_backarcs > 0)
free (g->backarcs);
free (g->nodes);
free (g);
}
void
print_ddg_edge (FILE *file, ddg_edge_ptr e)
{
char dep_c;
switch (e->type)
{
case OUTPUT_DEP :
dep_c = 'O';
break;
case ANTI_DEP :
dep_c = 'A';
break;
default:
dep_c = 'T';
}
fprintf (file, " [%d -(%c,%d,%d)-> %d] ", INSN_UID (e->src->insn),
dep_c, e->latency, e->distance, INSN_UID (e->dest->insn));
}
/* Print the DDG nodes with there in/out edges to the dump file. */
void
print_ddg (FILE *file, ddg_ptr g)
{
int i;
for (i = 0; i < g->num_nodes; i++)
{
ddg_edge_ptr e;
fprintf (file, "Node num: %d\n", g->nodes[i].cuid);
print_rtl_single (file, g->nodes[i].insn);
fprintf (file, "OUT ARCS: ");
for (e = g->nodes[i].out; e; e = e->next_out)
print_ddg_edge (file, e);
fprintf (file, "\nIN ARCS: ");
for (e = g->nodes[i].in; e; e = e->next_in)
print_ddg_edge (file, e);
fprintf (file, "\n");
}
}
/* Print the given DDG in VCG format. */
void
vcg_print_ddg (FILE *file, ddg_ptr g)
{
int src_cuid;
fprintf (file, "graph: {\n");
for (src_cuid = 0; src_cuid < g->num_nodes; src_cuid++)
{
ddg_edge_ptr e;
int src_uid = INSN_UID (g->nodes[src_cuid].insn);
fprintf (file, "node: {title: \"%d_%d\" info1: \"", src_cuid, src_uid);
print_rtl_single (file, g->nodes[src_cuid].insn);
fprintf (file, "\"}\n");
for (e = g->nodes[src_cuid].out; e; e = e->next_out)
{
int dst_uid = INSN_UID (e->dest->insn);
int dst_cuid = e->dest->cuid;
/* Give the backarcs a different color. */
if (e->distance > 0)
fprintf (file, "backedge: {color: red ");
else
fprintf (file, "edge: { ");
fprintf (file, "sourcename: \"%d_%d\" ", src_cuid, src_uid);
fprintf (file, "targetname: \"%d_%d\" ", dst_cuid, dst_uid);
fprintf (file, "label: \"%d_%d\"}\n", e->latency, e->distance);
}
}
fprintf (file, "}\n");
}
/* Dump the sccs in SCCS. */
void
print_sccs (FILE *file, ddg_all_sccs_ptr sccs, ddg_ptr g)
{
unsigned int u = 0;
sbitmap_iterator sbi;
int i;
if (!file)
return;
fprintf (file, "\n;; Number of SCC nodes - %d\n", sccs->num_sccs);
for (i = 0; i < sccs->num_sccs; i++)
{
fprintf (file, "SCC number: %d\n", i);
EXECUTE_IF_SET_IN_SBITMAP (sccs->sccs[i]->nodes, 0, u, sbi)
{
fprintf (file, "insn num %d\n", u);
print_rtl_single (file, g->nodes[u].insn);
}
}
fprintf (file, "\n");
}
/* Create an edge and initialize it with given values. */
static ddg_edge_ptr
create_ddg_edge (ddg_node_ptr src, ddg_node_ptr dest,
dep_type t, dep_data_type dt, int l, int d)
{
ddg_edge_ptr e = (ddg_edge_ptr) xmalloc (sizeof (struct ddg_edge));
e->src = src;
e->dest = dest;
e->type = t;
e->data_type = dt;
e->latency = l;
e->distance = d;
e->next_in = e->next_out = NULL;
e->aux.info = 0;
return e;
}
/* Add the given edge to the in/out linked lists of the DDG nodes. */
static void
add_edge_to_ddg (ddg_ptr g ATTRIBUTE_UNUSED, ddg_edge_ptr e)
{
ddg_node_ptr src = e->src;
ddg_node_ptr dest = e->dest;
/* Should have allocated the sbitmaps. */
gcc_assert (src->successors && dest->predecessors);
SET_BIT (src->successors, dest->cuid);
SET_BIT (dest->predecessors, src->cuid);
e->next_in = dest->in;
dest->in = e;
e->next_out = src->out;
src->out = e;
}
/* Algorithm for computing the recurrence_length of an scc. We assume at
for now that cycles in the data dependence graph contain a single backarc.
This simplifies the algorithm, and can be generalized later. */
static void
set_recurrence_length (ddg_scc_ptr scc, ddg_ptr g)
{
int j;
int result = -1;
for (j = 0; j < scc->num_backarcs; j++)
{
ddg_edge_ptr backarc = scc->backarcs[j];
int length;
int distance = backarc->distance;
ddg_node_ptr src = backarc->dest;
ddg_node_ptr dest = backarc->src;
length = longest_simple_path (g, src->cuid, dest->cuid, scc->nodes);
if (length < 0 )
{
/* fprintf (stderr, "Backarc not on simple cycle in SCC.\n"); */
continue;
}
length += backarc->latency;
result = MAX (result, (length / distance));
}
scc->recurrence_length = result;
}
/* Create a new SCC given the set of its nodes. Compute its recurrence_length
and mark edges that belong to this scc as IN_SCC. */
static ddg_scc_ptr
create_scc (ddg_ptr g, sbitmap nodes)
{
ddg_scc_ptr scc;
unsigned int u = 0;
sbitmap_iterator sbi;
scc = (ddg_scc_ptr) xmalloc (sizeof (struct ddg_scc));
scc->backarcs = NULL;
scc->num_backarcs = 0;
scc->nodes = sbitmap_alloc (g->num_nodes);
sbitmap_copy (scc->nodes, nodes);
/* Mark the backarcs that belong to this SCC. */
EXECUTE_IF_SET_IN_SBITMAP (nodes, 0, u, sbi)
{
ddg_edge_ptr e;
ddg_node_ptr n = &g->nodes[u];
for (e = n->out; e; e = e->next_out)
if (TEST_BIT (nodes, e->dest->cuid))
{
e->aux.count = IN_SCC;
if (e->distance > 0)
add_backarc_to_scc (scc, e);
}
}
set_recurrence_length (scc, g);
return scc;
}
/* Cleans the memory allocation of a given SCC. */
static void
free_scc (ddg_scc_ptr scc)
{
if (!scc)
return;
sbitmap_free (scc->nodes);
if (scc->num_backarcs > 0)
free (scc->backarcs);
free (scc);
}
/* Add a given edge known to be a backarc to the given DDG. */
static void
add_backarc_to_ddg (ddg_ptr g, ddg_edge_ptr e)
{
int size = (g->num_backarcs + 1) * sizeof (ddg_edge_ptr);
add_edge_to_ddg (g, e);
g->backarcs = (ddg_edge_ptr *) xrealloc (g->backarcs, size);
g->backarcs[g->num_backarcs++] = e;
}
/* Add backarc to an SCC. */
static void
add_backarc_to_scc (ddg_scc_ptr scc, ddg_edge_ptr e)
{
int size = (scc->num_backarcs + 1) * sizeof (ddg_edge_ptr);
scc->backarcs = (ddg_edge_ptr *) xrealloc (scc->backarcs, size);
scc->backarcs[scc->num_backarcs++] = e;
}
/* Add the given SCC to the DDG. */
static void
add_scc_to_ddg (ddg_all_sccs_ptr g, ddg_scc_ptr scc)
{
int size = (g->num_sccs + 1) * sizeof (ddg_scc_ptr);
g->sccs = (ddg_scc_ptr *) xrealloc (g->sccs, size);
g->sccs[g->num_sccs++] = scc;
}
/* Given the instruction INSN return the node that represents it. */
ddg_node_ptr
get_node_of_insn (ddg_ptr g, rtx insn)
{
int i;
for (i = 0; i < g->num_nodes; i++)
if (insn == g->nodes[i].insn)
return &g->nodes[i];
return NULL;
}
/* Given a set OPS of nodes in the DDG, find the set of their successors
which are not in OPS, and set their bits in SUCC. Bits corresponding to
OPS are cleared from SUCC. Leaves the other bits in SUCC unchanged. */
void
find_successors (sbitmap succ, ddg_ptr g, sbitmap ops)
{
unsigned int i = 0;
sbitmap_iterator sbi;
EXECUTE_IF_SET_IN_SBITMAP (ops, 0, i, sbi)
{
const sbitmap node_succ = NODE_SUCCESSORS (&g->nodes[i]);
sbitmap_a_or_b (succ, succ, node_succ);
};
/* We want those that are not in ops. */
sbitmap_difference (succ, succ, ops);
}
/* Given a set OPS of nodes in the DDG, find the set of their predecessors
which are not in OPS, and set their bits in PREDS. Bits corresponding to
OPS are cleared from PREDS. Leaves the other bits in PREDS unchanged. */
void
find_predecessors (sbitmap preds, ddg_ptr g, sbitmap ops)
{
unsigned int i = 0;
sbitmap_iterator sbi;
EXECUTE_IF_SET_IN_SBITMAP (ops, 0, i, sbi)
{
const sbitmap node_preds = NODE_PREDECESSORS (&g->nodes[i]);
sbitmap_a_or_b (preds, preds, node_preds);
};
/* We want those that are not in ops. */
sbitmap_difference (preds, preds, ops);
}
/* Compare function to be passed to qsort to order the backarcs in descending
recMII order. */
static int
compare_sccs (const void *s1, const void *s2)
{
const int rec_l1 = (*(const ddg_scc_ptr *)s1)->recurrence_length;
const int rec_l2 = (*(const ddg_scc_ptr *)s2)->recurrence_length;
return ((rec_l2 > rec_l1) - (rec_l2 < rec_l1));
}
/* Order the backarcs in descending recMII order using compare_sccs. */
static void
order_sccs (ddg_all_sccs_ptr g)
{
qsort (g->sccs, g->num_sccs, sizeof (ddg_scc_ptr),
(int (*) (const void *, const void *)) compare_sccs);
}
#ifdef ENABLE_CHECKING
/* Check that every node in SCCS belongs to exactly one strongly connected
component and that no element of SCCS is empty. */
static void
check_sccs (ddg_all_sccs_ptr sccs, int num_nodes)
{
int i = 0;
sbitmap tmp = sbitmap_alloc (num_nodes);
sbitmap_zero (tmp);
for (i = 0; i < sccs->num_sccs; i++)
{
gcc_assert (!sbitmap_empty_p (sccs->sccs[i]->nodes));
/* Verify that every node in sccs is in exactly one strongly
connected component. */
gcc_assert (!sbitmap_any_common_bits (tmp, sccs->sccs[i]->nodes));
sbitmap_a_or_b (tmp, tmp, sccs->sccs[i]->nodes);
}
sbitmap_free (tmp);
}
#endif
/* Perform the Strongly Connected Components decomposing algorithm on the
DDG and return DDG_ALL_SCCS structure that contains them. */
ddg_all_sccs_ptr
create_ddg_all_sccs (ddg_ptr g)
{
int i;
int num_nodes = g->num_nodes;
sbitmap from = sbitmap_alloc (num_nodes);
sbitmap to = sbitmap_alloc (num_nodes);
sbitmap scc_nodes = sbitmap_alloc (num_nodes);
ddg_all_sccs_ptr sccs = (ddg_all_sccs_ptr)
xmalloc (sizeof (struct ddg_all_sccs));
sccs->ddg = g;
sccs->sccs = NULL;
sccs->num_sccs = 0;
for (i = 0; i < g->num_backarcs; i++)
{
ddg_scc_ptr scc;
ddg_edge_ptr backarc = g->backarcs[i];
ddg_node_ptr src = backarc->src;
ddg_node_ptr dest = backarc->dest;
/* If the backarc already belongs to an SCC, continue. */
if (backarc->aux.count == IN_SCC)
continue;
sbitmap_zero (scc_nodes);
sbitmap_zero (from);
sbitmap_zero (to);
SET_BIT (from, dest->cuid);
SET_BIT (to, src->cuid);
if (find_nodes_on_paths (scc_nodes, g, from, to))
{
scc = create_scc (g, scc_nodes);
add_scc_to_ddg (sccs, scc);
}
}
order_sccs (sccs);
sbitmap_free (from);
sbitmap_free (to);
sbitmap_free (scc_nodes);
#ifdef ENABLE_CHECKING
check_sccs (sccs, num_nodes);
#endif
return sccs;
}
/* Frees the memory allocated for all SCCs of the DDG, but keeps the DDG. */
void
free_ddg_all_sccs (ddg_all_sccs_ptr all_sccs)
{
int i;
if (!all_sccs)
return;
for (i = 0; i < all_sccs->num_sccs; i++)
free_scc (all_sccs->sccs[i]);
free (all_sccs);
}
/* Given FROM - a bitmap of source nodes - and TO - a bitmap of destination
nodes - find all nodes that lie on paths from FROM to TO (not excluding
nodes from FROM and TO). Return nonzero if nodes exist. */
int
find_nodes_on_paths (sbitmap result, ddg_ptr g, sbitmap from, sbitmap to)
{
int answer;
int change;
unsigned int u = 0;
int num_nodes = g->num_nodes;
sbitmap_iterator sbi;
sbitmap workset = sbitmap_alloc (num_nodes);
sbitmap reachable_from = sbitmap_alloc (num_nodes);
sbitmap reach_to = sbitmap_alloc (num_nodes);
sbitmap tmp = sbitmap_alloc (num_nodes);
sbitmap_copy (reachable_from, from);
sbitmap_copy (tmp, from);
change = 1;
while (change)
{
change = 0;
sbitmap_copy (workset, tmp);
sbitmap_zero (tmp);
EXECUTE_IF_SET_IN_SBITMAP (workset, 0, u, sbi)
{
ddg_edge_ptr e;
ddg_node_ptr u_node = &g->nodes[u];
for (e = u_node->out; e != (ddg_edge_ptr) 0; e = e->next_out)
{
ddg_node_ptr v_node = e->dest;
int v = v_node->cuid;
if (!TEST_BIT (reachable_from, v))
{
SET_BIT (reachable_from, v);
SET_BIT (tmp, v);
change = 1;
}
}
}
}
sbitmap_copy (reach_to, to);
sbitmap_copy (tmp, to);
change = 1;
while (change)
{
change = 0;
sbitmap_copy (workset, tmp);
sbitmap_zero (tmp);
EXECUTE_IF_SET_IN_SBITMAP (workset, 0, u, sbi)
{
ddg_edge_ptr e;
ddg_node_ptr u_node = &g->nodes[u];
for (e = u_node->in; e != (ddg_edge_ptr) 0; e = e->next_in)
{
ddg_node_ptr v_node = e->src;
int v = v_node->cuid;
if (!TEST_BIT (reach_to, v))
{
SET_BIT (reach_to, v);
SET_BIT (tmp, v);
change = 1;
}
}
}
}
answer = sbitmap_a_and_b_cg (result, reachable_from, reach_to);
sbitmap_free (workset);
sbitmap_free (reachable_from);
sbitmap_free (reach_to);
sbitmap_free (tmp);
return answer;
}
/* Updates the counts of U_NODE's successors (that belong to NODES) to be
at-least as large as the count of U_NODE plus the latency between them.
Sets a bit in TMP for each successor whose count was changed (increased).
Returns nonzero if any count was changed. */
static int
update_dist_to_successors (ddg_node_ptr u_node, sbitmap nodes, sbitmap tmp)
{
ddg_edge_ptr e;
int result = 0;
for (e = u_node->out; e; e = e->next_out)
{
ddg_node_ptr v_node = e->dest;
int v = v_node->cuid;
if (TEST_BIT (nodes, v)
&& (e->distance == 0)
&& (v_node->aux.count < u_node->aux.count + e->latency))
{
v_node->aux.count = u_node->aux.count + e->latency;
SET_BIT (tmp, v);
result = 1;
}
}
return result;
}
/* Find the length of a longest path from SRC to DEST in G,
going only through NODES, and disregarding backarcs. */
int
longest_simple_path (struct ddg * g, int src, int dest, sbitmap nodes)
{
int i;
unsigned int u = 0;
int change = 1;
int result;
int num_nodes = g->num_nodes;
sbitmap workset = sbitmap_alloc (num_nodes);
sbitmap tmp = sbitmap_alloc (num_nodes);
/* Data will hold the distance of the longest path found so far from
src to each node. Initialize to -1 = less than minimum. */
for (i = 0; i < g->num_nodes; i++)
g->nodes[i].aux.count = -1;
g->nodes[src].aux.count = 0;
sbitmap_zero (tmp);
SET_BIT (tmp, src);
while (change)
{
sbitmap_iterator sbi;
change = 0;
sbitmap_copy (workset, tmp);
sbitmap_zero (tmp);
EXECUTE_IF_SET_IN_SBITMAP (workset, 0, u, sbi)
{
ddg_node_ptr u_node = &g->nodes[u];
change |= update_dist_to_successors (u_node, nodes, tmp);
}
}
result = g->nodes[dest].aux.count;
sbitmap_free (workset);
sbitmap_free (tmp);
return result;
}
#endif /* INSN_SCHEDULING */
|