summaryrefslogtreecommitdiff
path: root/gcc/df.h
blob: 3ff7f39834c81c9583dc3faca6a4c016bbe10d74 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
/* Form lists of pseudo register references for autoinc optimization
   for GNU compiler.  This is part of flow optimization.
   Copyright (C) 1999, 2000, 2001, 2003, 2004, 2005, 2006, 2007
   Free Software Foundation, Inc.
   Originally contributed by Michael P. Hayes 
             (m.hayes@elec.canterbury.ac.nz, mhayes@redhat.com)
   Major rewrite contributed by Danny Berlin (dberlin@dberlin.org)
             and Kenneth Zadeck (zadeck@naturalbridge.com).

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.

GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3.  If not see
<http://www.gnu.org/licenses/>.  */

#ifndef GCC_DF_H
#define GCC_DF_H

#include "bitmap.h"
#include "basic-block.h"
#include "alloc-pool.h"

struct dataflow;
struct df;
struct df_problem;
struct df_link;

/* Data flow problems.  All problems must have a unique id here.  */ 
/* Scanning is not really a dataflow problem, but it is useful to have
   the basic block functions in the vector so that things get done in
   a uniform manner.  The first four problems are always defined.  The
   last 5 are optional and can be added or deleted at any time.  */
#define DF_SCAN  0 
#define DF_LR    1      /* Live Registers backward. */
#define DF_LIVE  2      /* Live Registers & Uninitialized Registers */

#define DF_RD    3      /* Reaching Defs. */
#define DF_UREC  4      /* Uninitialized Registers with Early Clobber. */
#define DF_CHAIN 5      /* Def-Use and/or Use-Def Chains. */
#define DF_NOTE  6      /* REG_DEF and REG_UNUSED notes. */

#define DF_LAST_PROBLEM_PLUS1 (DF_NOTE + 1)

/* Dataflow direction.  */
enum df_flow_dir
  {
    DF_NONE,
    DF_FORWARD,
    DF_BACKWARD
  };


/* The first of these is a set of a register.  The remaining three are
   all uses of a register (the mem_load and mem_store relate to how
   the register as an addressing operand).  */
enum df_ref_type {DF_REF_REG_DEF, DF_REF_REG_USE, DF_REF_REG_MEM_LOAD,
		  DF_REF_REG_MEM_STORE};

#define DF_REF_TYPE_NAMES {"def", "use", "mem load", "mem store"}

enum df_ref_flags
  {
    /* Read-modify-write refs generate both a use and a def and
       these are marked with this flag to show that they are not
       independent.  */
    DF_REF_READ_WRITE = 1 << 0,

    /* If this flag is set for an artificial use or def, that ref
       logically happens at the top of the block.  If it is not set
       for an artificial use or def, that ref logically happens at the
       bottom of the block.  This is never set for regular refs.  */
    DF_REF_AT_TOP = 1 << 1,

    /* This flag is set if the use is inside a REG_EQUAL or REG_EQUIV
       note.  */
    DF_REF_IN_NOTE = 1 << 2,

    /* This flag is set if this ref, generally a def, may clobber the
       referenced register.  This is generally only set for hard
       registers that cross a call site.  With better information
       about calls, some of these could be changed in the future to
       DF_REF_MUST_CLOBBER.  */
    DF_REF_MAY_CLOBBER = 1 << 3,



    /* This flag is set if this ref, generally a def, is a real
       clobber. This is not currently set for registers live across a
       call because that clobbering may or may not happen.  

       Most of the uses of this are with sets that have a
       GET_CODE(..)==CLOBBER.  Note that this is set even if the
       clobber is to a subreg.  So in order to tell if the clobber
       wipes out the entire register, it is necessary to also check
       the DF_REF_PARTIAL flag.  */
    DF_REF_MUST_CLOBBER = 1 << 4,

    /* This bit is true if this ref is part of a multiword hardreg.  */
    DF_REF_MW_HARDREG = 1 << 5,

    /* This flag is set if this ref is a partial use or def of the
       associated register.  */
    DF_REF_PARTIAL = 1 << 6,
    
    /* This flag is set if this ref occurs inside of a conditional
       execution instruction.  */
    DF_REF_CONDITIONAL = 1 << 7,



    /* This flag is set if this ref is inside a pre/post modify.  */
    DF_REF_PRE_POST_MODIFY = 1 << 8,

    /* This flag is set if this ref is a usage of the stack pointer by
       a function call.  */
    DF_REF_CALL_STACK_USAGE = 1 << 9,

    /* This flag is used for verification of existing refs. */
    DF_REF_REG_MARKER = 1 << 10,

    /* This bit is true if this ref can make regs_ever_live true for
       this regno.  */
    DF_HARD_REG_LIVE = 1 << 11
  };

/* The possible ordering of refs within the df_ref_info.  */
enum df_ref_order
  {
    /* There is not table.  */ 
    DF_REF_ORDER_NO_TABLE,

    /* There is a table of refs but it is not (or no longer) organized
       by one of the following methods.  */
    DF_REF_ORDER_UNORDERED,
    DF_REF_ORDER_UNORDERED_WITH_NOTES,
  
    /* Organize the table by reg order, all of the refs with regno 0
       followed by all of the refs with regno 1 ... .  Within all of
       the regs for a particular regno, the refs are unordered.  */
    DF_REF_ORDER_BY_REG,

    /* For uses, the refs within eq notes may be added for
       DF_REF_ORDER_BY_REG.  */
    DF_REF_ORDER_BY_REG_WITH_NOTES,

    /* Organize the refs in insn order.  The insns are ordered within a
       block, and the blocks are ordered by FOR_ALL_BB.  */  
    DF_REF_ORDER_BY_INSN,

    /* For uses, the refs within eq notes may be added for
       DF_REF_ORDER_BY_INSN.  */
    DF_REF_ORDER_BY_INSN_WITH_NOTES
  };

/* Function prototypes added to df_problem instance.  */

/* Allocate the problem specific data.  */
typedef void (*df_alloc_function) (bitmap);

/* This function is called if the problem has global data that needs
   to be cleared when ever the set of blocks changes.  The bitmap
   contains the set of blocks that may require special attention.
   This call is only made if some of the blocks are going to change.
   If everything is to be deleted, the wholesale deletion mechanisms
   apply. */
typedef void (*df_reset_function) (bitmap);

/* Free the basic block info.  Called from the block reordering code
   to get rid of the blocks that have been squished down.   */
typedef void (*df_free_bb_function) (basic_block, void *);

/* Local compute function.  */
typedef void (*df_local_compute_function) (bitmap);

/* Init the solution specific data.  */
typedef void (*df_init_function) (bitmap);

/* Iterative dataflow function.  */
typedef void (*df_dataflow_function) (struct dataflow *, bitmap, int *, int);

/* Confluence operator for blocks with 0 out (or in) edges.  */
typedef void (*df_confluence_function_0) (basic_block);

/* Confluence operator for blocks with 1 or more out (or in) edges.  */
typedef void (*df_confluence_function_n) (edge);

/* Transfer function for blocks.  */
typedef bool (*df_transfer_function) (int);

/* Function to massage the information after the problem solving.  */
typedef void (*df_finalizer_function) (bitmap);

/* Function to free all of the problem specific datastructures.  */
typedef void (*df_free_function) (void);

/* Function to remove this problem from the stack of dataflow problems
   without effecting the other problems in the stack except for those
   that depend on this problem.  */
typedef void (*df_remove_problem_function) (void);

/* Function to dump basic block independent results to FILE.  */
typedef void (*df_dump_problem_function) (FILE *);

/* Function to dump top or bottom of basic block results to FILE.  */
typedef void (*df_dump_bb_problem_function) (basic_block, FILE *);

/* Function to dump top or bottom of basic block results to FILE.  */
typedef void (*df_verify_solution_start) (void);

/* Function to dump top or bottom of basic block results to FILE.  */
typedef void (*df_verify_solution_end) (void);

/* The static description of a dataflow problem to solve.  See above
   typedefs for doc for the function fields.  */

struct df_problem {
  /* The unique id of the problem.  This is used it index into
     df->defined_problems to make accessing the problem data easy.  */
  unsigned int id;                        
  enum df_flow_dir dir;			/* Dataflow direction.  */
  df_alloc_function alloc_fun;
  df_reset_function reset_fun;
  df_free_bb_function free_bb_fun;
  df_local_compute_function local_compute_fun;
  df_init_function init_fun;
  df_dataflow_function dataflow_fun;
  df_confluence_function_0 con_fun_0;
  df_confluence_function_n con_fun_n;
  df_transfer_function trans_fun;
  df_finalizer_function finalize_fun;
  df_free_function free_fun;
  df_remove_problem_function remove_problem_fun;
  df_dump_problem_function dump_start_fun;
  df_dump_bb_problem_function dump_top_fun;
  df_dump_bb_problem_function dump_bottom_fun;
  df_verify_solution_start verify_start_fun;
  df_verify_solution_end verify_end_fun;
  struct df_problem *dependent_problem;

  /* The timevar id associated with this pass.  */
  unsigned int tv_id;

  /* True if the df_set_blocks should null out the basic block info if
     this block drops out of df->blocks_to_analyze.  */
  bool free_blocks_on_set_blocks;
};


/* The specific instance of the problem to solve.  */
struct dataflow
{
  struct df_problem *problem;           /* The problem to be solved.  */

  /* Array indexed by bb->index, that contains basic block problem and
     solution specific information.  */
  void **block_info;
  unsigned int block_info_size;

  /* The pool to allocate the block_info from. */
  alloc_pool block_pool;                

  /* The lr and live problems have their transfer functions recomputed
     only if necessary.  This is possible for them because, the
     problems are kept active for the entire backend and their
     transfer functions are indexed by the REGNO.  These are not
     defined for any other problem.  */
  bitmap out_of_date_transfer_functions;

  /* Other problem specific data that is not on a per basic block
     basis.  The structure is generally defined privately for the
     problem.  The exception being the scanning problem where it is
     fully public.  */
  void *problem_data;

  /* Local flags for some of the problems. */
  unsigned int local_flags;
  
  /* True if this problem of this instance has been initialized.  This
     is used by the dumpers to keep garbage out of the dumps if, for
     debugging a dump is produced before the first call to
     df_analyze after a new problem is added.  */
  bool computed;

  /* True if the something has changed which invalidates the dataflow
     solutions.  Note that this bit is always true for all problems except 
     lr and live.  */
  bool solutions_dirty;

  /* If true, this pass is deleted by df_finish_pass.  This is never
     true for DF_SCAN and DF_LR.  It is true for DF_LIVE if optimize >
     1.  It is always true for the other problems.  */
  bool optional_p;
};


/* The set of multiword hardregs used as operands to this
   instruction. These are factored into individual uses and defs but
   the aggregate is still needed to service the REG_DEAD and
   REG_UNUSED notes.  */
struct df_mw_hardreg
{
  rtx mw_reg;                   /* The multiword hardreg.  */ 
  /* These two bitfields are intentionally oversized, in the hope that
     accesses to 16-bit fields will usually be quicker.  */
  ENUM_BITFIELD(df_ref_type) type : 16;
				/* Used to see if the ref is read or write.  */
  ENUM_BITFIELD(df_ref_flags) flags : 16;
				/* Various flags.  */
  unsigned int start_regno;     /* First word of the multi word subreg.  */
  unsigned int end_regno;       /* Last word of the multi word subreg.  */
  unsigned int mw_order;        /* Same as df_ref.ref_order.  */
};
 

/* One of these structures is allocated for every insn.  */
struct df_insn_info
{
  rtx insn;                     /* The insn this info comes from.  */
  struct df_ref **defs;	        /* Head of insn-def chain.  */
  struct df_ref **uses;	        /* Head of insn-use chain.  */
  /* Head of insn-use chain for uses in REG_EQUAL/EQUIV notes.  */
  struct df_ref **eq_uses;       
  struct df_mw_hardreg **mw_hardregs;
  /* The logical uid of the insn in the basic block.  This is valid
     after any call to df_analyze but may rot after insns are added,
     deleted or moved. */
  int luid; 
};


/* Define a register reference structure.  One of these is allocated
   for every register reference (use or def).  Note some register
   references (e.g., post_inc, subreg) generate both a def and a use.  */
struct df_ref
{
  rtx reg;			/* The register referenced.  */
  basic_block bb;               /* Basic block containing the instruction. */

  /* Insn containing ref. This will be null if this is an artificial
     reference.  */
  rtx insn;
  rtx *loc;			/* The location of the reg.  */
  struct df_link *chain;	/* Head of def-use, use-def.  */
  /* Location in the ref table.  This is only valid after a call to 
     df_maybe_reorganize_[use,def]_refs which is an expensive operation.  */
  int id;
  /* The index at which the operand was scanned in the insn.  This is
     used to totally order the refs in an insn.  */
  unsigned int ref_order;

  unsigned int regno;		/* The register number referenced.  */
  /* These two bitfields are intentionally oversized, in the hope that
     accesses to 16-bit fields will usually be quicker.  */
  ENUM_BITFIELD(df_ref_type) type : 16;
				/* Type of ref.  */
  ENUM_BITFIELD(df_ref_flags) flags : 16;
				/* Various flags.  */

  /* For each regno, there are three chains of refs, one for the uses,
     the eq_uses and the defs.  These chains go thru the refs
     themselves rather than using an external structure.  */
  struct df_ref *next_reg;     /* Next ref with same regno and type.  */
  struct df_ref *prev_reg;     /* Prev ref with same regno and type.  */
};

/* These links are used for two purposes:
   1) def-use or use-def chains. 
   2) Multiword hard registers that underly a single hardware register.  */
struct df_link
{
  struct df_ref *ref;
  struct df_link *next;
};


enum df_chain_flags
{
  /* Flags that control the building of chains.  */
  DF_DU_CHAIN      =  1, /* Build DU chains.  */  
  DF_UD_CHAIN      =  2  /* Build UD chains.  */
};

enum df_changeable_flags 
{
  /* Scanning flags.  */
  /* Flag to control the running of dce as a side effect of building LR.  */
  DF_LR_RUN_DCE           =  1, /* Run DCE.  */
  DF_NO_HARD_REGS         =  2, /* Skip hard registers in RD and CHAIN Building.  */
  DF_EQ_NOTES             =  4, /* Build chains with uses present in EQUIV/EQUAL notes. */
  DF_NO_REGS_EVER_LIVE    =  8, /* Do not compute the regs_ever_live.  */

  /* Cause df_insn_rescan df_notes_rescan and df_insn_delete, to
  return immediately.  This is used by passes that know how to update
  the scanning them selves.  */
  DF_NO_INSN_RESCAN       = 16,

  /* Cause df_insn_rescan df_notes_rescan and df_insn_delete, to
  return after marking the insn for later processing.  This allows all
  rescans to be batched.  */
  DF_DEFER_INSN_RESCAN    = 32,

  DF_VERIFY_SCHEDULED     = 64
};

/* Two of these structures are inline in df, one for the uses and one
   for the defs.  This structure is only contains the refs within the
   boundary of the df_set_blocks if that has been defined.  */
struct df_ref_info
{
  struct df_ref **refs;         /* Ref table, indexed by id.  */
  unsigned int *begin;          /* First ref_index for this pseudo.  */
  unsigned int *count;          /* Count of refs for this pseudo.  */
  unsigned int refs_size;       /* Size of currently allocated refs table.  */

  /* Table_size is the number of elements in the refs table.  This
     will also be the width of the bitvectors in the rd and ru
     problems.  Total_size is the number of refs.  These will be the
     same if the focus has not been reduced by df_set_blocks.  If the
     focus has been reduced, table_size will be smaller since it only
     contains the refs in the set blocks.  */
  unsigned int table_size;
  unsigned int total_size;

  enum df_ref_order ref_order;
};

/* Three of these structures are allocated for every pseudo reg. One
   for the uses, one for the eq_uses and one for the defs.  */
struct df_reg_info
{
  /* Head of chain for refs of that type and regno.  */
  struct df_ref *reg_chain;
  /* Number of refs in the chain.  */
  unsigned int n_refs;
};


/*----------------------------------------------------------------------------
   Problem data for the scanning dataflow problem.  Unlike the other
   dataflow problems, the problem data for scanning is fully exposed and
   used by owners of the problem.
----------------------------------------------------------------------------*/

struct df
{

  /* The set of problems to be solved is stored in two arrays.  In
     PROBLEMS_IN_ORDER, the problems are stored in the order that they
     are solved.  This is an internally dense array that may have
     nulls at the end of it.  In PROBLEMS_BY_INDEX, the problem is
     stored by the value in df_problem.id.  These are used to access
     the problem local data without having to search the first
     array.  */

  struct dataflow *problems_in_order[DF_LAST_PROBLEM_PLUS1]; 
  struct dataflow *problems_by_index[DF_LAST_PROBLEM_PLUS1]; 
  int num_problems_defined;

  /* If not NULL, this subset of blocks of the program to be
     considered for analysis.  At certain times, this will contain all
     the blocks in the function so it cannot be used as an indicator
     of if we are analyzing a subset.  See analyze_subset.  */ 
  bitmap blocks_to_analyze;

  /* If this is true, then only a subset of the blocks of the program
     is considered to compute the solutions of dataflow problems.  */
  bool analyze_subset;

  /* True if someone added or deleted something from regs_ever_live so
     that the entry and exit blocks need be reprocessed.  */
  bool redo_entry_and_exit;

  /* The following information is really the problem data for the
     scanning instance but it is used too often by the other problems
     to keep getting it from there.  */
  struct df_ref_info def_info;   /* Def info.  */
  struct df_ref_info use_info;   /* Use info.  */

  /* The following three arrays are allocated in parallel.   They contain
     the sets of refs of each type for each reg.  */
  struct df_reg_info **def_regs;       /* Def reg info.  */
  struct df_reg_info **use_regs;       /* Eq_use reg info.  */
  struct df_reg_info **eq_use_regs;    /* Eq_use info.  */
  unsigned int regs_size;       /* Size of currently allocated regs table.  */
  unsigned int regs_inited;     /* Number of regs with reg_infos allocated.  */


  struct df_insn_info **insns;   /* Insn table, indexed by insn UID.  */
  unsigned int insns_size;       /* Size of insn table.  */
  bitmap hardware_regs_used;     /* The set of hardware registers used.  */
  /* The set of hard regs that are in the artificial uses at the end
     of a regular basic block.  */
  bitmap regular_block_artificial_uses;
  /* The set of hard regs that are in the artificial uses at the end
     of a basic block that has an EH pred.  */
  bitmap eh_block_artificial_uses;
  /* The set of hardware registers live on entry to the function.  */
  bitmap entry_block_defs;
  bitmap exit_block_uses;        /* The set of hardware registers used in exit block.  */

  /* Insns to delete, rescan or reprocess the notes at next
     df_rescan_all or df_process_deferred_rescans. */
  bitmap insns_to_delete;
  bitmap insns_to_rescan;
  bitmap insns_to_notes_rescan;
  int *postorder;                /* The current set of basic blocks 
                                    in reverse postorder.  */
  int *postorder_inverted;       /* The current set of basic blocks 
                                    in reverse postorder of inverted CFG.  */
  int n_blocks;                  /* The number of blocks in reverse postorder.  */
  int n_blocks_inverted;         /* The number of blocks 
                                    in reverse postorder of inverted CFG.  */

  /* An array [FIRST_PSEUDO_REGISTER], indexed by regno, of the number
     of refs that qualify as being real hard regs uses.  Artificial
     uses and defs as well as refs in eq notes are ignored.  If the
     ref is a def, it cannot be a MAY_CLOBBER def.  If the ref is a
     use, it cannot be the emim_reg_set or be the frame or arg pointer
     register.

     IT IS NOT ACCEPTABLE TO MANUALLY CHANGE THIS ARRAY.  This array
     always reflects the actual number of refs in the insn stream that
     satisfy the above criteria.  */
  unsigned int *hard_regs_live_count;

  /* This counter provides a way to totally order refs without using
     addresses.  It is incremented whenever a ref is created.  */
  unsigned int ref_order;

  /* Problem specific control information.  */
  enum df_changeable_flags changeable_flags;
};

#define DF_SCAN_BB_INFO(BB) (df_scan_get_bb_info((BB)->index))
#define DF_RD_BB_INFO(BB) (df_rd_get_bb_info((BB)->index))
#define DF_LR_BB_INFO(BB) (df_lr_get_bb_info((BB)->index))
#define DF_UREC_BB_INFO(BB) (df_urec_get_bb_info((BB)->index))
#define DF_LIVE_BB_INFO(BB) (df_live_get_bb_info((BB)->index))

/* Most transformations that wish to use live register analysis will
   use these macros.  This info is the and of the lr and live sets.  */
#define DF_LIVE_IN(BB) (DF_LIVE_BB_INFO(BB)->in) 
#define DF_LIVE_OUT(BB) (DF_LIVE_BB_INFO(BB)->out) 


/* Live in for register allocation also takes into account several other factors.  */
#define DF_RA_LIVE_IN(BB) (DF_UREC_BB_INFO(BB)->in) 
#define DF_RA_LIVE_TOP(BB) (DF_UREC_BB_INFO(BB)->top) 
#define DF_RA_LIVE_OUT(BB) (DF_UREC_BB_INFO(BB)->out) 

/* These macros are currently used by only reg-stack since it is not
   tolerant of uninitialized variables.  This intolerance should be
   fixed because it causes other problems.  */ 
#define DF_LR_IN(BB) (DF_LR_BB_INFO(BB)->in) 
#define DF_LR_TOP(BB) (DF_LR_BB_INFO(BB)->top) 
#define DF_LR_OUT(BB) (DF_LR_BB_INFO(BB)->out) 

/* Macros to access the elements within the ref structure.  */


#define DF_REF_REAL_REG(REF) (GET_CODE ((REF)->reg) == SUBREG \
				? SUBREG_REG ((REF)->reg) : ((REF)->reg))
#define DF_REF_REGNO(REF) ((REF)->regno)
#define DF_REF_REAL_LOC(REF) (GET_CODE (*((REF)->loc)) == SUBREG \
                               ? &SUBREG_REG (*((REF)->loc)) : ((REF)->loc))
#define DF_REF_REG(REF) ((REF)->reg)
#define DF_REF_LOC(REF) ((REF)->loc)
#define DF_REF_BB(REF) ((REF)->bb)
#define DF_REF_BBNO(REF) (DF_REF_BB (REF)->index)
#define DF_REF_INSN(REF) ((REF)->insn)
#define DF_REF_INSN_UID(REF) (INSN_UID ((REF)->insn))
#define DF_REF_TYPE(REF) ((REF)->type)
#define DF_REF_CHAIN(REF) ((REF)->chain)
#define DF_REF_ID(REF) ((REF)->id)
#define DF_REF_FLAGS(REF) ((REF)->flags)
#define DF_REF_FLAGS_IS_SET(REF, v) ((DF_REF_FLAGS (REF) & (v)) != 0)
#define DF_REF_FLAGS_SET(REF, v) (DF_REF_FLAGS (REF) |= (v))
#define DF_REF_FLAGS_CLEAR(REF, v) (DF_REF_FLAGS (REF) &= ~(v))
#define DF_REF_ORDER(REF) ((REF)->ref_order)
/* If DF_REF_IS_ARTIFICIAL () is true, this is not a real definition/use, 
   but an artificial one created to model 
   always live registers, eh uses, etc.  
   ARTIFICIAL refs has NULL insn.  */
#define DF_REF_IS_ARTIFICIAL(REF) ((REF)->insn == NULL)
#define DF_REF_REG_MARK(REF) (DF_REF_FLAGS_SET ((REF),DF_REF_REG_MARKER))
#define DF_REF_REG_UNMARK(REF) (DF_REF_FLAGS_CLEAR ((REF),DF_REF_REG_MARKER))
#define DF_REF_IS_REG_MARKED(REF) (DF_REF_FLAGS_IS_SET ((REF),DF_REF_REG_MARKER))
#define DF_REF_NEXT_REG(REF) ((REF)->next_reg)
#define DF_REF_PREV_REG(REF) ((REF)->prev_reg)

/* Macros to determine the reference type.  */

#define DF_REF_REG_DEF_P(REF) (DF_REF_TYPE (REF) == DF_REF_REG_DEF)
#define DF_REF_REG_USE_P(REF) ((REF) && !DF_REF_REG_DEF_P (REF))
#define DF_REF_REG_MEM_STORE_P(REF) (DF_REF_TYPE (REF) == DF_REF_REG_MEM_STORE)
#define DF_REF_REG_MEM_LOAD_P(REF) (DF_REF_TYPE (REF) == DF_REF_REG_MEM_LOAD)
#define DF_REF_REG_MEM_P(REF) (DF_REF_REG_MEM_STORE_P (REF) \
                               || DF_REF_REG_MEM_LOAD_P (REF))

/* Macros to get the refs out of def_info or use_info refs table.  If
   the focus of the dataflow has been set to some subset of blocks
   with df_set_blocks, these macros will only find the uses and defs
   in that subset of blocks.  

   These macros should be used with care.  The def macros are only
   usable after a call to df_maybe_reorganize_def_refs and the use
   macros are only usable after a call to
   df_maybe_reorganize_use_refs.  HOWEVER, BUILDING AND USING THESE
   ARRAYS ARE A CACHE LOCALITY KILLER.  */

#define DF_DEFS_TABLE_SIZE() (df->def_info.table_size)
#define DF_DEFS_GET(ID) (df->def_info.refs[(ID)])
#define DF_DEFS_SET(ID,VAL) (df->def_info.refs[(ID)]=(VAL))
#define DF_DEFS_COUNT(ID) (df->def_info.count[(ID)])
#define DF_DEFS_BEGIN(ID) (df->def_info.begin[(ID)])
#define DF_USES_TABLE_SIZE() (df->use_info.table_size)
#define DF_USES_GET(ID) (df->use_info.refs[(ID)])
#define DF_USES_SET(ID,VAL) (df->use_info.refs[(ID)]=(VAL))
#define DF_USES_COUNT(ID) (df->use_info.count[(ID)])
#define DF_USES_BEGIN(ID) (df->use_info.begin[(ID)])

/* Macros to access the register information from scan dataflow record.  */

#define DF_REG_SIZE(DF) (df->regs_inited)
#define DF_REG_DEF_GET(REG) (df->def_regs[(REG)])
#define DF_REG_DEF_CHAIN(REG) (df->def_regs[(REG)]->reg_chain)
#define DF_REG_DEF_COUNT(REG) (df->def_regs[(REG)]->n_refs)
#define DF_REG_USE_GET(REG) (df->use_regs[(REG)])
#define DF_REG_USE_CHAIN(REG) (df->use_regs[(REG)]->reg_chain)
#define DF_REG_USE_COUNT(REG) (df->use_regs[(REG)]->n_refs)
#define DF_REG_EQ_USE_GET(REG) (df->eq_use_regs[(REG)])
#define DF_REG_EQ_USE_CHAIN(REG) (df->eq_use_regs[(REG)]->reg_chain)
#define DF_REG_EQ_USE_COUNT(REG) (df->eq_use_regs[(REG)]->n_refs)

/* Macros to access the elements within the reg_info structure table.  */

#define DF_REGNO_FIRST_DEF(REGNUM) \
(DF_REG_DEF_GET(REGNUM) ? DF_REG_DEF_GET(REGNUM) : 0)
#define DF_REGNO_LAST_USE(REGNUM) \
(DF_REG_USE_GET(REGNUM) ? DF_REG_USE_GET(REGNUM) : 0)

/* Macros to access the elements within the insn_info structure table.  */

#define DF_INSN_SIZE() ((df)->insns_size)
#define DF_INSN_GET(INSN) (df->insns[(INSN_UID(INSN))])
#define DF_INSN_SET(INSN,VAL) (df->insns[(INSN_UID (INSN))]=(VAL))
#define DF_INSN_LUID(INSN) (DF_INSN_GET(INSN)->luid)
#define DF_INSN_DEFS(INSN) (DF_INSN_GET(INSN)->defs)
#define DF_INSN_USES(INSN) (DF_INSN_GET(INSN)->uses)
#define DF_INSN_EQ_USES(INSN) (DF_INSN_GET(INSN)->eq_uses)

#define DF_INSN_UID_GET(UID) (df->insns[(UID)])
#define DF_INSN_UID_SET(UID,VAL) (df->insns[(UID)]=(VAL))
#define DF_INSN_UID_SAFE_GET(UID) (((unsigned)(UID) < DF_INSN_SIZE())	\
                                     ? DF_INSN_UID_GET (UID) \
                                     : NULL)
#define DF_INSN_UID_LUID(INSN) (DF_INSN_UID_GET(INSN)->luid)
#define DF_INSN_UID_DEFS(INSN) (DF_INSN_UID_GET(INSN)->defs)
#define DF_INSN_UID_USES(INSN) (DF_INSN_UID_GET(INSN)->uses)
#define DF_INSN_UID_EQ_USES(INSN) (DF_INSN_UID_GET(INSN)->eq_uses)
#define DF_INSN_UID_MWS(INSN) (DF_INSN_UID_GET(INSN)->mw_hardregs)

/* An obstack for bitmap not related to specific dataflow problems.
   This obstack should e.g. be used for bitmaps with a short life time
   such as temporary bitmaps.  This obstack is declared in df-core.c.  */

extern bitmap_obstack df_bitmap_obstack;

/* This is a bitmap copy of regs_invalidated_by_call so that we can
   easily add it into bitmaps, etc. */ 

extern bitmap df_invalidated_by_call;


/* One of these structures is allocated for every basic block.  */
struct df_scan_bb_info
{
  /* Defs at the start of a basic block that is the target of an
     exception edge.  */
  struct df_ref **artificial_defs;

  /* Uses of hard registers that are live at every block.  */
  struct df_ref **artificial_uses;
};


/* Reaching definitions.  All bitmaps are indexed by the id field of
   the ref except sparse_kill (see above).  */
struct df_rd_bb_info 
{
  /* Local sets to describe the basic blocks.  See the note in the RU
     datastructures for kill and sparse_kill.  */
  bitmap kill;  
  bitmap sparse_kill;
  bitmap gen;   /* The set of defs generated in this block.  */

  /* The results of the dataflow problem.  */
  bitmap in;    /* At the top of the block.  */
  bitmap out;   /* At the bottom of the block.  */
};


/* Live registers.  All bitmaps are referenced by the register number.  

   df_lr_bb_info:IN is the "in" set of the traditional dataflow sense
   which is the confluence of out sets of all predecessor blocks.
   The difference between IN and TOP is 
   due to the artificial defs and uses at the top (DF_REF_TOP)
   (e.g. exception handling dispatch block, which can have
   a few registers defined by the runtime) - which is NOT included
   in the "in" set before this function but is included after.  
   For the initial live set of forward scanning, TOP should be used
   instead of IN - otherwise, artificial defs won't be in IN set
   causing the bad transformation. TOP set can not simply be
   the union of IN set and artificial defs at the top, 
   because artificial defs might not be used at all,
   in which case those defs are not live at any point
   (except as a dangling def) - hence TOP has to be calculated
   during the LR problem computation and stored in df_lr_bb_info.  */

struct df_lr_bb_info 
{
  /* Local sets to describe the basic blocks.  */
  bitmap def;   /* The set of registers set in this block 
                   - except artificial defs at the top.  */
  bitmap use;   /* The set of registers used in this block.  */
  bitmap adef;  /* The artificial defs at top. */
  bitmap ause;  /* The artificial uses at top. */

  /* The results of the dataflow problem.  */
  bitmap in;    /* Just before the block itself. */
  bitmap top;   /* Just before the first insn in the block. */
  bitmap out;   /* At the bottom of the block.  */
};


/* Uninitialized registers.  All bitmaps are referenced by the
   register number.  Anded results of the forwards and backward live
   info.  Note that the forwards live information is not available
   separately.  */
struct df_live_bb_info 
{
  /* Local sets to describe the basic blocks.  */
  bitmap kill;  /* The set of registers unset in this block.  Calls,
		   for instance, unset registers.  */
  bitmap gen;   /* The set of registers set in this block.  */

  /* The results of the dataflow problem.  */
  bitmap in;    /* At the top of the block.  */
  bitmap out;   /* At the bottom of the block.  */
};


/* Uninitialized registers.  All bitmaps are referenced by the register number.  */
struct df_urec_bb_info 
{
  /* Local sets to describe the basic blocks.  */
  bitmap earlyclobber;  /* The set of registers that are referenced
			   with an early clobber mode.  */
  /* Kill and gen are defined as in the UR problem.  */
  bitmap kill;
  bitmap gen;

  /* The results of the dataflow problem.  */
  bitmap in;    /* Just before the block.  */
  bitmap top;   /* Just before the first insn in the block. */
  bitmap out;   /* At the bottom of the block.  */
};


/* This is used for debugging and for the dumpers to find the latest
   instance so that the df info can be added to the dumps.  This
   should not be used by regular code.  */ 
extern struct df *df;
#define df_scan  (df->problems_by_index[DF_SCAN])
#define df_rd    (df->problems_by_index[DF_RD])
#define df_lr    (df->problems_by_index[DF_LR])
#define df_live  (df->problems_by_index[DF_LIVE])
#define df_urec  (df->problems_by_index[DF_UREC])
#define df_chain (df->problems_by_index[DF_CHAIN])
#define df_note  (df->problems_by_index[DF_NOTE])

/* This symbol turns on checking that each modification of the cfg has
  been identified to the appropriate df routines.  It is not part of
  verification per se because the check that the final solution has
  not changed covers this.  However, if the solution is not being
  properly recomputed because the cfg is being modified, adding in
  calls to df_check_cfg_clean can be used to find the source of that
  kind of problem.  */
#if 0
#define DF_DEBUG_CFG
#endif


/* Functions defined in df-core.c.  */

extern void df_add_problem (struct df_problem *);
extern enum df_changeable_flags df_set_flags (enum df_changeable_flags);
extern enum df_changeable_flags df_clear_flags (enum df_changeable_flags);
extern void df_set_blocks (bitmap);
extern void df_remove_problem (struct dataflow *);
extern void df_finish_pass (bool);
extern void df_analyze_problem (struct dataflow *, bitmap, int *, int);
extern void df_analyze (void);
extern int df_get_n_blocks (enum df_flow_dir);
extern int *df_get_postorder (enum df_flow_dir);
extern void df_simple_dataflow (enum df_flow_dir, df_init_function,
				df_confluence_function_0, df_confluence_function_n,
				df_transfer_function, bitmap, int *, int);
extern void df_mark_solutions_dirty (void);
extern bool df_get_bb_dirty (basic_block);
extern void df_set_bb_dirty (basic_block);
extern void df_compact_blocks (void);
extern void df_bb_replace (int, basic_block);
extern void df_bb_delete (int);
extern void df_verify (void);
#ifdef DF_DEBUG_CFG
extern void df_check_cfg_clean (void);
#endif
extern struct df_ref *df_bb_regno_first_def_find (basic_block, unsigned int);
extern struct df_ref *df_bb_regno_last_def_find (basic_block, unsigned int);
extern struct df_ref *df_find_def (rtx, rtx);
extern bool df_reg_defined (rtx, rtx);
extern struct df_ref *df_find_use (rtx, rtx);
extern bool df_reg_used (rtx, rtx);
extern void df_worklist_dataflow (struct dataflow *,bitmap, int *, int);
extern void df_print_regset (FILE *file, bitmap r);
extern void df_dump (FILE *);
extern void df_dump_region (FILE *);
extern void df_dump_start (FILE *);
extern void df_dump_top (basic_block, FILE *);
extern void df_dump_bottom (basic_block, FILE *);
extern void df_refs_chain_dump (struct df_ref **, bool, FILE *);
extern void df_regs_chain_dump (struct df_ref *,  FILE *);
extern void df_insn_debug (rtx, bool, FILE *);
extern void df_insn_debug_regno (rtx, FILE *);
extern void df_regno_debug (unsigned int, FILE *);
extern void df_ref_debug (struct df_ref *, FILE *);
extern void debug_df_insn (rtx);
extern void debug_df_regno (unsigned int);
extern void debug_df_reg (rtx);
extern void debug_df_defno (unsigned int);
extern void debug_df_useno (unsigned int);
extern void debug_df_ref (struct df_ref *);
extern void debug_df_chain (struct df_link *);

/* Functions defined in df-problems.c. */

extern struct df_link *df_chain_create (struct df_ref *, struct df_ref *);
extern void df_chain_unlink (struct df_ref *);
extern void df_chain_copy (struct df_ref *, struct df_link *);
extern bitmap df_get_live_in (basic_block);
extern bitmap df_get_live_out (basic_block);
extern bitmap df_get_live_top (basic_block);
extern void df_grow_bb_info (struct dataflow *);
extern void df_chain_dump (struct df_link *, FILE *);
extern void df_print_bb_index (basic_block bb, FILE *file);
extern void df_rd_add_problem (void);
extern void df_lr_add_problem (void);
extern void df_lr_verify_transfer_functions (void);
extern void df_live_verify_transfer_functions (void);
extern void df_live_add_problem (void);
extern void df_live_set_all_dirty (void);
extern void df_urec_add_problem (void);
extern void df_chain_add_problem (enum df_chain_flags);
extern void df_note_add_problem (void);
extern void df_simulate_find_defs (rtx, bitmap);
extern void df_simulate_defs (rtx, bitmap);
extern void df_simulate_uses (rtx, bitmap);
extern void df_simulate_artificial_refs_at_top (basic_block, bitmap);
extern void df_simulate_one_insn_forwards (basic_block, rtx, bitmap);
extern void df_simulate_artificial_refs_at_end (basic_block, bitmap);
extern void df_simulate_one_insn_backwards (basic_block, rtx, bitmap);

/* Functions defined in df-scan.c.  */

extern void df_scan_alloc (bitmap);
extern void df_scan_add_problem (void);
extern void df_grow_reg_info (void);
extern void df_grow_insn_info (void);
extern void df_scan_blocks (void);
extern struct df_ref *df_ref_create (rtx, rtx *, rtx,basic_block, 
				     enum df_ref_type, enum df_ref_flags);
extern void df_ref_remove (struct df_ref *);
extern struct df_insn_info * df_insn_create_insn_record (rtx);
extern void df_insn_delete (basic_block, unsigned int);
extern void df_bb_refs_record (int, bool);
extern bool df_insn_rescan (rtx);
extern void df_insn_rescan_all (void);
extern void df_process_deferred_rescans (void);
extern bool df_has_eh_preds (basic_block);
extern void df_recompute_luids (basic_block);
extern void df_insn_change_bb (rtx);
extern void df_maybe_reorganize_use_refs (enum df_ref_order);
extern void df_maybe_reorganize_def_refs (enum df_ref_order);
extern void df_ref_change_reg_with_loc (int, int, rtx);
extern void df_notes_rescan (rtx);
extern void df_hard_reg_init (void);
extern void df_update_entry_block_defs (void);
extern void df_update_exit_block_uses (void);
extern void df_update_entry_exit_and_calls (void);
extern bool df_hard_reg_used_p (unsigned int);
extern unsigned int df_hard_reg_used_count (unsigned int);
extern bool df_regs_ever_live_p (unsigned int);
extern void df_set_regs_ever_live (unsigned int, bool);
extern void df_compute_regs_ever_live (bool);
extern bool df_read_modify_subreg_p (rtx);
extern void df_scan_verify (void);


/* Get basic block info.  */

static inline struct df_scan_bb_info *
df_scan_get_bb_info (unsigned int index)
{
  if (index < df_scan->block_info_size)
    return (struct df_scan_bb_info *) df_scan->block_info[index];
  else
    return NULL;
}

static inline struct df_rd_bb_info *
df_rd_get_bb_info (unsigned int index)
{
  if (index < df_rd->block_info_size)
    return (struct df_rd_bb_info *) df_rd->block_info[index];
  else
    return NULL;
}

static inline struct df_lr_bb_info *
df_lr_get_bb_info (unsigned int index)
{
  if (index < df_lr->block_info_size)
    return (struct df_lr_bb_info *) df_lr->block_info[index];
  else
    return NULL;
}

static inline struct df_live_bb_info *
df_live_get_bb_info (unsigned int index)
{
  if (index < df_live->block_info_size)
    return (struct df_live_bb_info *) df_live->block_info[index];
  else
    return NULL;
}

static inline struct df_urec_bb_info *
df_urec_get_bb_info (unsigned int index)
{
  if (index < df_urec->block_info_size)
    return (struct df_urec_bb_info *) df_urec->block_info[index];
  else
    return NULL;
}


/* Get the artificial defs for a basic block.  */

static inline struct df_ref **
df_get_artificial_defs (unsigned int bb_index)
{
  return df_scan_get_bb_info (bb_index)->artificial_defs;
}


/* Get the artificial uses for a basic block.  */

static inline struct df_ref **
df_get_artificial_uses (unsigned int bb_index)
{
  return df_scan_get_bb_info (bb_index)->artificial_uses;
}


/* web */

/* This entry is allocated for each reference in the insn stream.  */
struct web_entry
{
  /* Pointer to the parent in the union/find tree.  */
  struct web_entry *pred;
  /* Newly assigned register to the entry.  Set only for roots.  */
  rtx reg;
  void* extra_info;
};

extern struct web_entry *unionfind_root (struct web_entry *);
extern bool unionfind_union (struct web_entry *, struct web_entry *);
extern void union_defs (struct df_ref *,
                        struct web_entry *, struct web_entry *,
			bool (*fun) (struct web_entry *, struct web_entry *));

#endif /* GCC_DF_H */