1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
|
@c Copyright (C) 2014-2015 Free Software Foundation, Inc.
@c Free Software Foundation, Inc.
@c This is part of the GCC manual.
@c For copying conditions, see the file gcc.texi.
@node Match and Simplify
@chapter Match and Simplify
@cindex Match and Simplify
The GIMPLE and GENERIC pattern matching project match-and-simplify
tries to address several issues.
@enumerate
@item unify expression simplifications currently spread and duplicated
over separate files like fold-const.c, gimple-fold.c and builtins.c
@item allow for a cheap way to implement building and simplifying
non-trivial GIMPLE expressions, avoiding the need to go through
building and simplifying GENERIC via fold_buildN and then
gimplifying via force_gimple_operand
@end enumerate
To address these the project introduces a simple domain specific language
to write expression simplifications from which code targeting GIMPLE
and GENERIC is auto-generated. The GENERIC variant follows the
fold_buildN API while for the GIMPLE variant and to address 2) new
APIs are introduced.
@menu
* GIMPLE API::
* The Language::
@end menu
@node GIMPLE API
@section GIMPLE API
@cindex GIMPLE API
@deftypefn {GIMPLE function} tree gimple_simplify (enum tree_code, tree, tree, gimple_seq *, tree (*)(tree))
@deftypefnx {GIMPLE function} tree gimple_simplify (enum tree_code, tree, tree, tree, gimple_seq *, tree (*)(tree))
@deftypefnx {GIMPLE function} tree gimple_simplify (enum tree_code, tree, tree, tree, tree, gimple_seq *, tree (*)(tree))
@deftypefnx {GIMPLE function} tree gimple_simplify (enum built_in_function, tree, tree, gimple_seq *, tree (*)(tree))
@deftypefnx {GIMPLE function} tree gimple_simplify (enum built_in_function, tree, tree, tree, gimple_seq *, tree (*)(tree))
@deftypefnx {GIMPLE function} tree gimple_simplify (enum built_in_function, tree, tree, tree, gimple_seq *, tree (*)(tree))
The main GIMPLE API entry to the expression simplifications mimicing
that of the GENERIC fold_@{unary,binary,ternary@} functions.
@end deftypefn
thus providing n-ary overloads for operation or function. The
additional arguments are a gimple_seq where built statements are
inserted on (if @code{NULL} then simplifications requiring new statements
are not performed) and a valueization hook that can be used to
tie simplifications to a SSA lattice.
In addition to those APIs @code{fold_stmt} is overloaded with
a valueization hook:
@deftypefn bool fold_stmt (gimple_stmt_iterator *, tree (*)(tree));
@end deftypefn
Ontop of these a @code{fold_buildN}-like API for GIMPLE is introduced:
@deftypefn {GIMPLE function} tree gimple_build (gimple_seq *, location_t, enum tree_code, tree, tree, tree (*valueize) (tree) = NULL);
@deftypefnx {GIMPLE function} tree gimple_build (gimple_seq *, location_t, enum tree_code, tree, tree, tree, tree (*valueize) (tree) = NULL);
@deftypefnx {GIMPLE function} tree gimple_build (gimple_seq *, location_t, enum tree_code, tree, tree, tree, tree, tree (*valueize) (tree) = NULL);
@deftypefnx {GIMPLE function} tree gimple_build (gimple_seq *, location_t, enum built_in_function, tree, tree, tree (*valueize) (tree) = NULL);
@deftypefnx {GIMPLE function} tree gimple_build (gimple_seq *, location_t, enum built_in_function, tree, tree, tree, tree (*valueize) (tree) = NULL);
@deftypefnx {GIMPLE function} tree gimple_convert (gimple_seq *, location_t, tree, tree);
@end deftypefn
which is supposed to replace @code{force_gimple_operand (fold_buildN (...), ...)}
and calls to @code{fold_convert}. Overloads without the @code{location_t}
argument exist. Built statements are inserted on the provided sequence
and simplification is performed using the optional valueization hook.
@node The Language
@section The Language
@cindex The Language
The language to write expression simplifications in resembles other
domain-specific languages GCC uses. Thus it is lispy. Lets start
with an example from the match.pd file:
@smallexample
(simplify
(bit_and @@0 integer_all_onesp)
@@0)
@end smallexample
This example contains all required parts of an expression simplification.
A simplification is wrapped inside a @code{(simplify ...)} expression.
That contains at least two operands - an expression that is matched
with the GIMPLE or GENERIC IL and a replacement expression that is
returned if the match was successful.
Expressions have an operator ID, @code{bit_and} in this case. Expressions can
be lower-case tree codes with @code{_expr} stripped off or builtin
function code names in all-caps, like @code{BUILT_IN_SQRT}.
@code{@@n} denotes a so-called capture. It captures the operand and lets
you refer to it in other places of the match-and-simplify. In the
above example it is refered to in the replacement expression. Captures
are @code{@@} followed by a number or an identifier.
@smallexample
(simplify
(bit_xor @@0 @@0)
@{ build_zero_cst (type); @})
@end smallexample
In this example @code{@@0} is mentioned twice which constrains the matched
expression to have two equal operands. This example also introduces
operands written in C code. These can be used in the expression
replacements and are supposed to evaluate to a tree node which has to
be a valid GIMPLE operand (so you cannot generate expressions in C code).
@smallexample
(simplify
(trunc_mod integer_zerop@@0 @@1)
(if (!integer_zerop (@@1)))
@@0)
@end smallexample
Here @code{@@0} captures the first operand of the trunc_mod expression
which is also predicated with @code{integer_zerop}. Expression operands
may be either expressions, predicates or captures. Captures
can be unconstrained or capture expresions or predicates.
This example introduces an optional operand of simplify,
the if-expression. This condition is evaluated after the
expression matched in the IL and is required to evaluate to true
to enable the replacement expression. The expression operand
of the @code{if} is a standard C expression which may contain references
to captures.
A @code{if} expression can be used to specify a common condition
for multiple simplify patterns, avoiding the need
to repeat that multiple times:
@smallexample
(if (!TYPE_SATURATING (type)
&& !FLOAT_TYPE_P (type) && !FIXED_POINT_TYPE_P (type))
(simplify
(minus (plus @@0 @@1) @@0)
@@1)
(simplify
(minus (minus @@0 @@1) @@0)
(negate @@1)))
@end smallexample
Ifs can be nested.
Captures can also be used for capturing results of sub-expressions.
@smallexample
#if GIMPLE
(simplify
(pointer_plus (addr@@2 @@0) INTEGER_CST_P@@1)
(if (is_gimple_min_invariant (@@2)))
@{
HOST_WIDE_INT off;
tree base = get_addr_base_and_unit_offset (@@0, &off);
off += tree_to_uhwi (@@1);
/* Now with that we should be able to simply write
(addr (mem_ref (addr @@base) (plus @@off @@1))) */
build1 (ADDR_EXPR, type,
build2 (MEM_REF, TREE_TYPE (TREE_TYPE (@@2)),
build_fold_addr_expr (base),
build_int_cst (ptr_type_node, off)));
@})
#endif
@end smallexample
In the above example, @code{@@2} captures the result of the expression
@code{(addr @@0)}. For outermost expression only its type can be captured,
and the keyword @code{type} is reserved for this purpose. The above
example also gives a way to conditionalize patterns to only apply
to @code{GIMPLE} or @code{GENERIC} by means of using the pre-defined
preprocessor macros @code{GIMPLE} and @code{GENERIC} and using
preprocessor directives.
@smallexample
(simplify
(bit_and:c integral_op_p@@0 (bit_ior:c (bit_not @@0) @@1))
(bit_and @@1 @@0))
@end smallexample
Here we introduce flags on match expressions. There is currently
a single flag, @code{c}, which denotes that the expression should
be also matched commutated. Thus the above match expression
is really the following four match expressions:
(bit_and integral_op_p@@0 (bit_ior (bit_not @@0) @@1))
(bit_and (bit_ior (bit_not @@0) @@1) integral_op_p@@0)
(bit_and integral_op_p@@0 (bit_ior @@1 (bit_not @@0)))
(bit_and (bit_ior @@1 (bit_not @@0)) integral_op_p@@0)
Usual canonicalizations you know from GENERIC expressions are
applied before matching, so for example constant operands always
come second in commutative expressions.
More features exist to avoid too much repetition.
@smallexample
(for op (plus pointer_plus minus bit_ior bit_xor)
(simplify
(op @@0 integer_zerop)
@@0))
@end smallexample
A @code{for} expression can be used to repeat a pattern for each
operator specified, substituting @code{op}. @code{for} can be
nested and a @code{for} can have multiple operators to iterate.
@smallexample
(for opa (plus minus)
opb (minus plus)
(for opc (plus minus)
(simplify...
@end smallexample
In this example the pattern will be repeated four times with
@code{opa, opb, opc} being @code{plus, minus, plus},
@code{plus, minus, minus}, @code{minus, plus, plus},
@code{minus, plus, minus}.
To avoid repeating operator lists in @code{for} you can name
them via
@smallexample
(define_operator_list pmm plus minus mult)
@end smallexample
and use them in @code{for} operator lists where they get expanded.
@smallexample
(for opa (pmm trunc_div)
(simplify...
@end smallexample
So this example iterates over @code{plus}, @code{minus}, @code{mult}
and @code{trunc_div}.
Using operator lists can also remove the need to explicitely write
a @code{for}. All operator list uses that appear in a @code{simplify}
or @code{match} pattern in operator positions will implicitely
be added to a new @code{for}. For example
@smallexample
(define_operator_list SQRT BUILT_IN_SQRTF BUILT_IN_SQRT BUILT_IN_SQRTL)
(define_operator_list POW BUILT_IN_POWF BUILT_IN_POW BUILT_IN_POWL)
(simplify
(SQRT (POW @@0 @@1))
(POW (abs @@0) (mult @@1 @{ built_real (TREE_TYPE (@@1), dconsthalf); @})))
@end smallexample
is the same as
@smallexample
(for SQRT (BUILT_IN_SQRTF BUILT_IN_SQRT BUILT_IN_SQRTL)
POW (BUILT_IN_POWF BUILT_IN_POW BUILT_IN_POWL)
(simplify
(SQRT (POW @@0 @@1))
(POW (abs @@0) (mult @@1 @{ built_real (TREE_TYPE (@@1), dconsthalf); @}))))
@end smallexample
Another building block are @code{with} expressions in the
result expression which nest the generated code in a new C block
followed by its argument:
@smallexample
(simplify
(convert (mult @@0 @@1))
(with @{ tree utype = unsigned_type_for (type); @}
(convert (mult (convert:utype @@0) (convert:utype @@1)))))
@end smallexample
This allows code nested in the @code{with} to refer to the declared
variables. In the above case we use the feature to specify the
type of a generated expression with the @code{:type} syntax where
@code{type} needs to be an identifier that refers to the desired type.
Usually the types of the generated result expressions are
determined from the context, but sometimes like in the above case
it is required that you specify them explicitely.
As intermediate conversions are often optional there is a way to
avoid the need to repeat patterns both with and without such
conversions. Namely you can mark a conversion as being optional
with a @code{?}:
@smallexample
(simplify
(eq (convert@@0 @@1) (convert? @@2))
(eq @@1 (convert @@2)))
@end smallexample
which will match both @code{(eq (convert @@1) (convert @@2))} and
@code{(eq (convert @@1) @@2)}. The optional converts are supposed
to be all either present or not, thus
@code{(eq (convert? @@1) (convert? @@2))} will result in two
patterns only. If you want to match all four combinations you
have access to two additional conditional converts as in
@code{(eq (convert1? @@1) (convert2? @@2))}.
Predicates available from the GCC middle-end need to be made
available explicitely via @code{define_predicates}:
@smallexample
(define_predicates
integer_onep integer_zerop integer_all_onesp)
@end smallexample
You can also define predicates using the pattern matching language
and the @code{match} form:
@smallexample
(match negate_expr_p
INTEGER_CST
(if (TYPE_OVERFLOW_WRAPS (type)
|| may_negate_without_overflow_p (t))))
(match negate_expr_p
(negate @@0))
@end smallexample
This shows that for @code{match} expressions there is @code{t}
available which captures the outermost expression (something
not possible in the @code{simplify} context). As you can see
@code{match} has an identifier as first operand which is how
you refer to the predicate in patterns. Multiple @code{match}
for the same identifier add additional cases where the predicate
matches.
Predicates can also match an expression in which case you need
to provide a template specifying the identifier and where to
get its operands from:
@smallexample
(match (logical_inverted_value @@0)
(eq @@0 integer_zerop))
(match (logical_inverted_value @@0)
(bit_not truth_valued_p@@0))
@end smallexample
You can use the above predicate like
@smallexample
(simplify
(bit_and @@0 (logical_inverted_value @@0))
@{ build_zero_cst (type); @})
@end smallexample
Which will match a bitwise and of an operand with its logical
inverted value.
|