1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
|
/* RTL dead store elimination.
Copyright (C) 2005, 2006, 2007, 2008 Free Software Foundation, Inc.
Contributed by Richard Sandiford <rsandifor@codesourcery.com>
and Kenneth Zadeck <zadeck@naturalbridge.com>
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
#undef BASELINE
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "hashtab.h"
#include "tm.h"
#include "rtl.h"
#include "tree.h"
#include "tm_p.h"
#include "regs.h"
#include "hard-reg-set.h"
#include "flags.h"
#include "df.h"
#include "cselib.h"
#include "timevar.h"
#include "tree-pass.h"
#include "alloc-pool.h"
#include "alias.h"
#include "insn-config.h"
#include "expr.h"
#include "recog.h"
#include "dse.h"
#include "optabs.h"
#include "dbgcnt.h"
/* This file contains three techniques for performing Dead Store
Elimination (dse).
* The first technique performs dse locally on any base address. It
is based on the cselib which is a local value numbering technique.
This technique is local to a basic block but deals with a fairly
general addresses.
* The second technique performs dse globally but is restricted to
base addresses that are either constant or are relative to the
frame_pointer.
* The third technique, (which is only done after register allocation)
processes the spill spill slots. This differs from the second
technique because it takes advantage of the fact that spilling is
completely free from the effects of aliasing.
Logically, dse is a backwards dataflow problem. A store can be
deleted if it if cannot be reached in the backward direction by any
use of the value being stored. However, the local technique uses a
forwards scan of the basic block because cselib requires that the
block be processed in that order.
The pass is logically broken into 7 steps:
0) Initialization.
1) The local algorithm, as well as scanning the insns for the two
global algorithms.
2) Analysis to see if the global algs are necessary. In the case
of stores base on a constant address, there must be at least two
stores to that address, to make it possible to delete some of the
stores. In the case of stores off of the frame or spill related
stores, only one store to an address is necessary because those
stores die at the end of the function.
3) Set up the global dataflow equations based on processing the
info parsed in the first step.
4) Solve the dataflow equations.
5) Delete the insns that the global analysis has indicated are
unnecessary.
6) Cleanup.
This step uses cselib and canon_rtx to build the largest expression
possible for each address. This pass is a forwards pass through
each basic block. From the point of view of the global technique,
the first pass could examine a block in either direction. The
forwards ordering is to accommodate cselib.
We a simplifying assumption: addresses fall into four broad
categories:
1) base has rtx_varies_p == false, offset is constant.
2) base has rtx_varies_p == false, offset variable.
3) base has rtx_varies_p == true, offset constant.
4) base has rtx_varies_p == true, offset variable.
The local passes are able to process all 4 kinds of addresses. The
global pass only handles (1).
The global problem is formulated as follows:
A store, S1, to address A, where A is not relative to the stack
frame, can be eliminated if all paths from S1 to the end of the
of the function contain another store to A before a read to A.
If the address A is relative to the stack frame, a store S2 to A
can be eliminated if there are no paths from S1 that reach the
end of the function that read A before another store to A. In
this case S2 can be deleted if there are paths to from S2 to the
end of the function that have no reads or writes to A. This
second case allows stores to the stack frame to be deleted that
would otherwise die when the function returns. This cannot be
done if stores_off_frame_dead_at_return is not true. See the doc
for that variable for when this variable is false.
The global problem is formulated as a backwards set union
dataflow problem where the stores are the gens and reads are the
kills. Set union problems are rare and require some special
handling given our representation of bitmaps. A straightforward
implementation of requires a lot of bitmaps filled with 1s.
These are expensive and cumbersome in our bitmap formulation so
care has been taken to avoid large vectors filled with 1s. See
the comments in bb_info and in the dataflow confluence functions
for details.
There are two places for further enhancements to this algorithm:
1) The original dse which was embedded in a pass called flow also
did local address forwarding. For example in
A <- r100
... <- A
flow would replace the right hand side of the second insn with a
reference to r100. Most of the information is available to add this
to this pass. It has not done it because it is a lot of work in
the case that either r100 is assigned to between the first and
second insn and/or the second insn is a load of part of the value
stored by the first insn.
insn 5 in gcc.c-torture/compile/990203-1.c simple case.
insn 15 in gcc.c-torture/execute/20001017-2.c simple case.
insn 25 in gcc.c-torture/execute/20001026-1.c simple case.
insn 44 in gcc.c-torture/execute/20010910-1.c simple case.
2) The cleaning up of spill code is quite profitable. It currently
depends on reading tea leaves and chicken entrails left by reload.
This pass depends on reload creating a singleton alias set for each
spill slot and telling the next dse pass which of these alias sets
are the singletons. Rather than analyze the addresses of the
spills, dse's spill processing just does analysis of the loads and
stores that use those alias sets. There are three cases where this
falls short:
a) Reload sometimes creates the slot for one mode of access, and
then inserts loads and/or stores for a smaller mode. In this
case, the current code just punts on the slot. The proper thing
to do is to back out and use one bit vector position for each
byte of the entity associated with the slot. This depends on
KNOWING that reload always generates the accesses for each of the
bytes in some canonical (read that easy to understand several
passes after reload happens) way.
b) Reload sometimes decides that spill slot it allocated was not
large enough for the mode and goes back and allocates more slots
with the same mode and alias set. The backout in this case is a
little more graceful than (a). In this case the slot is unmarked
as being a spill slot and if final address comes out to be based
off the frame pointer, the global algorithm handles this slot.
c) For any pass that may prespill, there is currently no
mechanism to tell the dse pass that the slot being used has the
special properties that reload uses. It may be that all that is
required is to have those passes make the same calls that reload
does, assuming that the alias sets can be manipulated in the same
way. */
/* There are limits to the size of constant offsets we model for the
global problem. There are certainly test cases, that exceed this
limit, however, it is unlikely that there are important programs
that really have constant offsets this size. */
#define MAX_OFFSET (64 * 1024)
static bitmap scratch = NULL;
struct insn_info;
/* This structure holds information about a candidate store. */
struct store_info
{
/* False means this is a clobber. */
bool is_set;
/* The id of the mem group of the base address. If rtx_varies_p is
true, this is -1. Otherwise, it is the index into the group
table. */
int group_id;
/* This is the cselib value. */
cselib_val *cse_base;
/* This canonized mem. */
rtx mem;
/* The result of get_addr on mem. */
rtx mem_addr;
/* If this is non-zero, it is the alias set of a spill location. */
alias_set_type alias_set;
/* The offset of the first and byte before the last byte associated
with the operation. */
int begin, end;
/* An bitmask as wide as the number of bytes in the word that
contains a 1 if the byte may be needed. The store is unused if
all of the bits are 0. */
unsigned HOST_WIDE_INT positions_needed;
/* The next store info for this insn. */
struct store_info *next;
/* The right hand side of the store. This is used if there is a
subsequent reload of the mems address somewhere later in the
basic block. */
rtx rhs;
};
/* Return a bitmask with the first N low bits set. */
static unsigned HOST_WIDE_INT
lowpart_bitmask (int n)
{
unsigned HOST_WIDE_INT mask = ~(unsigned HOST_WIDE_INT) 0;
return mask >> (HOST_BITS_PER_WIDE_INT - n);
}
typedef struct store_info *store_info_t;
static alloc_pool cse_store_info_pool;
static alloc_pool rtx_store_info_pool;
/* This structure holds information about a load. These are only
built for rtx bases. */
struct read_info
{
/* The id of the mem group of the base address. */
int group_id;
/* If this is non-zero, it is the alias set of a spill location. */
alias_set_type alias_set;
/* The offset of the first and byte after the last byte associated
with the operation. If begin == end == 0, the read did not have
a constant offset. */
int begin, end;
/* The mem being read. */
rtx mem;
/* The next read_info for this insn. */
struct read_info *next;
};
typedef struct read_info *read_info_t;
static alloc_pool read_info_pool;
/* One of these records is created for each insn. */
struct insn_info
{
/* Set true if the insn contains a store but the insn itself cannot
be deleted. This is set if the insn is a parallel and there is
more than one non dead output or if the insn is in some way
volatile. */
bool cannot_delete;
/* This field is only used by the global algorithm. It is set true
if the insn contains any read of mem except for a (1). This is
also set if the insn is a call or has a clobber mem. If the insn
contains a wild read, the use_rec will be null. */
bool wild_read;
/* This field is only used for the processing of const functions.
These functions cannot read memory, but they can read the stack
because that is where they may get their parms. We need to be
this conservative because, like the store motion pass, we don't
consider CALL_INSN_FUNCTION_USAGE when processing call insns.
Moreover, we need to distinguish two cases:
1. Before reload (register elimination), the stores related to
outgoing arguments are stack pointer based and thus deemed
of non-constant base in this pass. This requires special
handling but also means that the frame pointer based stores
need not be killed upon encountering a const function call.
2. After reload, the stores related to outgoing arguments can be
either stack pointer or hard frame pointer based. This means
that we have no other choice than also killing all the frame
pointer based stores upon encountering a const function call.
This field is set after reload for const function calls. Having
this set is less severe than a wild read, it just means that all
the frame related stores are killed rather than all the stores. */
bool frame_read;
/* This field is only used for the processing of const functions.
It is set if the insn may contain a stack pointer based store. */
bool stack_pointer_based;
/* This is true if any of the sets within the store contains a
cselib base. Such stores can only be deleted by the local
algorithm. */
bool contains_cselib_groups;
/* The insn. */
rtx insn;
/* The list of mem sets or mem clobbers that are contained in this
insn. If the insn is deletable, it contains only one mem set.
But it could also contain clobbers. Insns that contain more than
one mem set are not deletable, but each of those mems are here in
order to provide info to delete other insns. */
store_info_t store_rec;
/* The linked list of mem uses in this insn. Only the reads from
rtx bases are listed here. The reads to cselib bases are
completely processed during the first scan and so are never
created. */
read_info_t read_rec;
/* The prev insn in the basic block. */
struct insn_info * prev_insn;
/* The linked list of insns that are in consideration for removal in
the forwards pass thru the basic block. This pointer may be
trash as it is not cleared when a wild read occurs. The only
time it is guaranteed to be correct is when the traversal starts
at active_local_stores. */
struct insn_info * next_local_store;
};
typedef struct insn_info *insn_info_t;
static alloc_pool insn_info_pool;
/* The linked list of stores that are under consideration in this
basic block. */
static insn_info_t active_local_stores;
struct bb_info
{
/* Pointer to the insn info for the last insn in the block. These
are linked so this is how all of the insns are reached. During
scanning this is the current insn being scanned. */
insn_info_t last_insn;
/* The info for the global dataflow problem. */
/* This is set if the transfer function should and in the wild_read
bitmap before applying the kill and gen sets. That vector knocks
out most of the bits in the bitmap and thus speeds up the
operations. */
bool apply_wild_read;
/* The set of store positions that exist in this block before a wild read. */
bitmap gen;
/* The set of load positions that exist in this block above the
same position of a store. */
bitmap kill;
/* The set of stores that reach the top of the block without being
killed by a read.
Do not represent the in if it is all ones. Note that this is
what the bitvector should logically be initialized to for a set
intersection problem. However, like the kill set, this is too
expensive. So initially, the in set will only be created for the
exit block and any block that contains a wild read. */
bitmap in;
/* The set of stores that reach the bottom of the block from it's
successors.
Do not represent the in if it is all ones. Note that this is
what the bitvector should logically be initialized to for a set
intersection problem. However, like the kill and in set, this is
too expensive. So what is done is that the confluence operator
just initializes the vector from one of the out sets of the
successors of the block. */
bitmap out;
};
typedef struct bb_info *bb_info_t;
static alloc_pool bb_info_pool;
/* Table to hold all bb_infos. */
static bb_info_t *bb_table;
/* There is a group_info for each rtx base that is used to reference
memory. There are also not many of the rtx bases because they are
very limited in scope. */
struct group_info
{
/* The actual base of the address. */
rtx rtx_base;
/* The sequential id of the base. This allows us to have a
canonical ordering of these that is not based on addresses. */
int id;
/* A mem wrapped around the base pointer for the group in order to
do read dependency. */
rtx base_mem;
/* Canonized version of base_mem, most likely the same thing. */
rtx canon_base_mem;
/* These two sets of two bitmaps are used to keep track of how many
stores are actually referencing that position from this base. We
only do this for rtx bases as this will be used to assign
positions in the bitmaps for the global problem. Bit N is set in
store1 on the first store for offset N. Bit N is set in store2
for the second store to offset N. This is all we need since we
only care about offsets that have two or more stores for them.
The "_n" suffix is for offsets less than 0 and the "_p" suffix is
for 0 and greater offsets.
There is one special case here, for stores into the stack frame,
we will or store1 into store2 before deciding which stores look
at globally. This is because stores to the stack frame that have
no other reads before the end of the function can also be
deleted. */
bitmap store1_n, store1_p, store2_n, store2_p;
/* The positions in this bitmap have the same assignments as the in,
out, gen and kill bitmaps. This bitmap is all zeros except for
the positions that are occupied by stores for this group. */
bitmap group_kill;
/* True if there are any positions that are to be processed
globally. */
bool process_globally;
/* True if the base of this group is either the frame_pointer or
hard_frame_pointer. */
bool frame_related;
/* The offset_map is used to map the offsets from this base into
positions in the global bitmaps. It is only created after all of
the all of stores have been scanned and we know which ones we
care about. */
int *offset_map_n, *offset_map_p;
int offset_map_size_n, offset_map_size_p;
};
typedef struct group_info *group_info_t;
typedef const struct group_info *const_group_info_t;
static alloc_pool rtx_group_info_pool;
/* Tables of group_info structures, hashed by base value. */
static htab_t rtx_group_table;
/* Index into the rtx_group_vec. */
static int rtx_group_next_id;
DEF_VEC_P(group_info_t);
DEF_VEC_ALLOC_P(group_info_t,heap);
static VEC(group_info_t,heap) *rtx_group_vec;
/* This structure holds the set of changes that are being deferred
when removing read operation. See replace_read. */
struct deferred_change
{
/* The mem that is being replaced. */
rtx *loc;
/* The reg it is being replaced with. */
rtx reg;
struct deferred_change *next;
};
typedef struct deferred_change *deferred_change_t;
static alloc_pool deferred_change_pool;
static deferred_change_t deferred_change_list = NULL;
/* This are used to hold the alias sets of spill variables. Since
these are never aliased and there may be a lot of them, it makes
sense to treat them specially. This bitvector is only allocated in
calls from dse_record_singleton_alias_set which currently is only
made during reload1. So when dse is called before reload this
mechanism does nothing. */
static bitmap clear_alias_sets = NULL;
/* The set of clear_alias_sets that have been disqualified because
there are loads or stores using a different mode than the alias set
was registered with. */
static bitmap disqualified_clear_alias_sets = NULL;
/* The group that holds all of the clear_alias_sets. */
static group_info_t clear_alias_group;
/* The modes of the clear_alias_sets. */
static htab_t clear_alias_mode_table;
/* Hash table element to look up the mode for an alias set. */
struct clear_alias_mode_holder
{
alias_set_type alias_set;
enum machine_mode mode;
};
static alloc_pool clear_alias_mode_pool;
/* This is true except if cfun->stdarg -- i.e. we cannot do
this for vararg functions because they play games with the frame. */
static bool stores_off_frame_dead_at_return;
/* Counter for stats. */
static int globally_deleted;
static int locally_deleted;
static int spill_deleted;
static bitmap all_blocks;
/* The number of bits used in the global bitmaps. */
static unsigned int current_position;
static bool gate_dse (void);
static bool gate_dse1 (void);
static bool gate_dse2 (void);
/*----------------------------------------------------------------------------
Zeroth step.
Initialization.
----------------------------------------------------------------------------*/
/* Hashtable callbacks for maintaining the "bases" field of
store_group_info, given that the addresses are function invariants. */
static int
clear_alias_mode_eq (const void *p1, const void *p2)
{
const struct clear_alias_mode_holder * h1
= (const struct clear_alias_mode_holder *) p1;
const struct clear_alias_mode_holder * h2
= (const struct clear_alias_mode_holder *) p2;
return h1->alias_set == h2->alias_set;
}
static hashval_t
clear_alias_mode_hash (const void *p)
{
const struct clear_alias_mode_holder *holder
= (const struct clear_alias_mode_holder *) p;
return holder->alias_set;
}
/* Find the entry associated with ALIAS_SET. */
static struct clear_alias_mode_holder *
clear_alias_set_lookup (alias_set_type alias_set)
{
struct clear_alias_mode_holder tmp_holder;
void **slot;
tmp_holder.alias_set = alias_set;
slot = htab_find_slot (clear_alias_mode_table, &tmp_holder, NO_INSERT);
gcc_assert (*slot);
return *slot;
}
/* Hashtable callbacks for maintaining the "bases" field of
store_group_info, given that the addresses are function invariants. */
static int
invariant_group_base_eq (const void *p1, const void *p2)
{
const_group_info_t gi1 = (const_group_info_t) p1;
const_group_info_t gi2 = (const_group_info_t) p2;
return rtx_equal_p (gi1->rtx_base, gi2->rtx_base);
}
static hashval_t
invariant_group_base_hash (const void *p)
{
const_group_info_t gi = (const_group_info_t) p;
int do_not_record;
return hash_rtx (gi->rtx_base, Pmode, &do_not_record, NULL, false);
}
/* Get the GROUP for BASE. Add a new group if it is not there. */
static group_info_t
get_group_info (rtx base)
{
struct group_info tmp_gi;
group_info_t gi;
void **slot;
if (base)
{
/* Find the store_base_info structure for BASE, creating a new one
if necessary. */
tmp_gi.rtx_base = base;
slot = htab_find_slot (rtx_group_table, &tmp_gi, INSERT);
gi = (group_info_t) *slot;
}
else
{
if (!clear_alias_group)
{
clear_alias_group = gi = pool_alloc (rtx_group_info_pool);
memset (gi, 0, sizeof (struct group_info));
gi->id = rtx_group_next_id++;
gi->store1_n = BITMAP_ALLOC (NULL);
gi->store1_p = BITMAP_ALLOC (NULL);
gi->store2_n = BITMAP_ALLOC (NULL);
gi->store2_p = BITMAP_ALLOC (NULL);
gi->group_kill = BITMAP_ALLOC (NULL);
gi->process_globally = false;
gi->offset_map_size_n = 0;
gi->offset_map_size_p = 0;
gi->offset_map_n = NULL;
gi->offset_map_p = NULL;
VEC_safe_push (group_info_t, heap, rtx_group_vec, gi);
}
return clear_alias_group;
}
if (gi == NULL)
{
*slot = gi = pool_alloc (rtx_group_info_pool);
gi->rtx_base = base;
gi->id = rtx_group_next_id++;
gi->base_mem = gen_rtx_MEM (QImode, base);
gi->canon_base_mem = canon_rtx (gi->base_mem);
gi->store1_n = BITMAP_ALLOC (NULL);
gi->store1_p = BITMAP_ALLOC (NULL);
gi->store2_n = BITMAP_ALLOC (NULL);
gi->store2_p = BITMAP_ALLOC (NULL);
gi->group_kill = BITMAP_ALLOC (NULL);
gi->process_globally = false;
gi->frame_related =
(base == frame_pointer_rtx) || (base == hard_frame_pointer_rtx);
gi->offset_map_size_n = 0;
gi->offset_map_size_p = 0;
gi->offset_map_n = NULL;
gi->offset_map_p = NULL;
VEC_safe_push (group_info_t, heap, rtx_group_vec, gi);
}
return gi;
}
/* Initialization of data structures. */
static void
dse_step0 (void)
{
locally_deleted = 0;
globally_deleted = 0;
spill_deleted = 0;
scratch = BITMAP_ALLOC (NULL);
rtx_store_info_pool
= create_alloc_pool ("rtx_store_info_pool",
sizeof (struct store_info), 100);
read_info_pool
= create_alloc_pool ("read_info_pool",
sizeof (struct read_info), 100);
insn_info_pool
= create_alloc_pool ("insn_info_pool",
sizeof (struct insn_info), 100);
bb_info_pool
= create_alloc_pool ("bb_info_pool",
sizeof (struct bb_info), 100);
rtx_group_info_pool
= create_alloc_pool ("rtx_group_info_pool",
sizeof (struct group_info), 100);
deferred_change_pool
= create_alloc_pool ("deferred_change_pool",
sizeof (struct deferred_change), 10);
rtx_group_table = htab_create (11, invariant_group_base_hash,
invariant_group_base_eq, NULL);
bb_table = XCNEWVEC (bb_info_t, last_basic_block);
rtx_group_next_id = 0;
stores_off_frame_dead_at_return = !cfun->stdarg;
init_alias_analysis ();
if (clear_alias_sets)
clear_alias_group = get_group_info (NULL);
else
clear_alias_group = NULL;
}
/*----------------------------------------------------------------------------
First step.
Scan all of the insns. Any random ordering of the blocks is fine.
Each block is scanned in forward order to accommodate cselib which
is used to remove stores with non-constant bases.
----------------------------------------------------------------------------*/
/* Delete all of the store_info recs from INSN_INFO. */
static void
free_store_info (insn_info_t insn_info)
{
store_info_t store_info = insn_info->store_rec;
while (store_info)
{
store_info_t next = store_info->next;
if (store_info->cse_base)
pool_free (cse_store_info_pool, store_info);
else
pool_free (rtx_store_info_pool, store_info);
store_info = next;
}
insn_info->cannot_delete = true;
insn_info->contains_cselib_groups = false;
insn_info->store_rec = NULL;
}
struct insn_size {
int size;
rtx insn;
};
/* Add an insn to do the add inside a x if it is a
PRE/POST-INC/DEC/MODIFY. D is an structure containing the insn and
the size of the mode of the MEM that this is inside of. */
static int
replace_inc_dec (rtx *r, void *d)
{
rtx x = *r;
struct insn_size *data = (struct insn_size *)d;
switch (GET_CODE (x))
{
case PRE_INC:
case POST_INC:
{
rtx r1 = XEXP (x, 0);
rtx c = gen_int_mode (Pmode, data->size);
add_insn_before (data->insn,
gen_rtx_SET (Pmode, r1,
gen_rtx_PLUS (Pmode, r1, c)),
NULL);
return -1;
}
case PRE_DEC:
case POST_DEC:
{
rtx r1 = XEXP (x, 0);
rtx c = gen_int_mode (Pmode, -data->size);
add_insn_before (data->insn,
gen_rtx_SET (Pmode, r1,
gen_rtx_PLUS (Pmode, r1, c)),
NULL);
return -1;
}
case PRE_MODIFY:
case POST_MODIFY:
{
/* We can reuse the add because we are about to delete the
insn that contained it. */
rtx add = XEXP (x, 0);
rtx r1 = XEXP (add, 0);
add_insn_before (data->insn,
gen_rtx_SET (Pmode, r1, add), NULL);
return -1;
}
default:
return 0;
}
}
/* If X is a MEM, check the address to see if it is PRE/POST-INC/DEC/MODIFY
and generate an add to replace that. */
static int
replace_inc_dec_mem (rtx *r, void *d)
{
rtx x = *r;
if (GET_CODE (x) == MEM)
{
struct insn_size data;
data.size = GET_MODE_SIZE (GET_MODE (x));
data.insn = (rtx)d;
for_each_rtx (&XEXP (x, 0), replace_inc_dec, &data);
return -1;
}
return 0;
}
/* Before we delete INSN, make sure that the auto inc/dec, if it is
there, is split into a separate insn. */
static void
check_for_inc_dec (rtx insn)
{
rtx note = find_reg_note (insn, REG_INC, NULL_RTX);
if (note)
for_each_rtx (&insn, replace_inc_dec_mem, insn);
}
/* Delete the insn and free all of the fields inside INSN_INFO. */
static void
delete_dead_store_insn (insn_info_t insn_info)
{
read_info_t read_info;
if (!dbg_cnt (dse))
return;
check_for_inc_dec (insn_info->insn);
if (dump_file)
{
fprintf (dump_file, "Locally deleting insn %d ",
INSN_UID (insn_info->insn));
if (insn_info->store_rec->alias_set)
fprintf (dump_file, "alias set %d\n",
(int) insn_info->store_rec->alias_set);
else
fprintf (dump_file, "\n");
}
free_store_info (insn_info);
read_info = insn_info->read_rec;
while (read_info)
{
read_info_t next = read_info->next;
pool_free (read_info_pool, read_info);
read_info = next;
}
insn_info->read_rec = NULL;
delete_insn (insn_info->insn);
locally_deleted++;
insn_info->insn = NULL;
insn_info->wild_read = false;
}
/* Set the store* bitmaps offset_map_size* fields in GROUP based on
OFFSET and WIDTH. */
static void
set_usage_bits (group_info_t group, HOST_WIDE_INT offset, HOST_WIDE_INT width)
{
HOST_WIDE_INT i;
if ((offset > -MAX_OFFSET) && (offset < MAX_OFFSET))
for (i=offset; i<offset+width; i++)
{
bitmap store1;
bitmap store2;
int ai;
if (i < 0)
{
store1 = group->store1_n;
store2 = group->store2_n;
ai = -i;
}
else
{
store1 = group->store1_p;
store2 = group->store2_p;
ai = i;
}
if (bitmap_bit_p (store1, ai))
bitmap_set_bit (store2, ai);
else
{
bitmap_set_bit (store1, ai);
if (i < 0)
{
if (group->offset_map_size_n < ai)
group->offset_map_size_n = ai;
}
else
{
if (group->offset_map_size_p < ai)
group->offset_map_size_p = ai;
}
}
}
}
/* Set the BB_INFO so that the last insn is marked as a wild read. */
static void
add_wild_read (bb_info_t bb_info)
{
insn_info_t insn_info = bb_info->last_insn;
read_info_t *ptr = &insn_info->read_rec;
while (*ptr)
{
read_info_t next = (*ptr)->next;
if ((*ptr)->alias_set == 0)
{
pool_free (read_info_pool, *ptr);
*ptr = next;
}
else
ptr = &(*ptr)->next;
}
insn_info->wild_read = true;
active_local_stores = NULL;
}
/* Return true if X is a constant or one of the registers that behave
as a constant over the life of a function. This is equivalent to
!rtx_varies_p for memory addresses. */
static bool
const_or_frame_p (rtx x)
{
switch (GET_CODE (x))
{
case MEM:
return MEM_READONLY_P (x);
case CONST:
case CONST_INT:
case CONST_DOUBLE:
case CONST_VECTOR:
case SYMBOL_REF:
case LABEL_REF:
return true;
case REG:
/* Note that we have to test for the actual rtx used for the frame
and arg pointers and not just the register number in case we have
eliminated the frame and/or arg pointer and are using it
for pseudos. */
if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
/* The arg pointer varies if it is not a fixed register. */
|| (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM])
|| x == pic_offset_table_rtx)
return true;
return false;
default:
return false;
}
}
/* Take all reasonable action to put the address of MEM into the form
that we can do analysis on.
The gold standard is to get the address into the form: address +
OFFSET where address is something that rtx_varies_p considers a
constant. When we can get the address in this form, we can do
global analysis on it. Note that for constant bases, address is
not actually returned, only the group_id. The address can be
obtained from that.
If that fails, we try cselib to get a value we can at least use
locally. If that fails we return false.
The GROUP_ID is set to -1 for cselib bases and the index of the
group for non_varying bases.
FOR_READ is true if this is a mem read and false if not. */
static bool
canon_address (rtx mem,
alias_set_type *alias_set_out,
int *group_id,
HOST_WIDE_INT *offset,
cselib_val **base)
{
rtx mem_address = XEXP (mem, 0);
rtx expanded_address, address;
/* Make sure that cselib is has initialized all of the operands of
the address before asking it to do the subst. */
if (clear_alias_sets)
{
/* If this is a spill, do not do any further processing. */
alias_set_type alias_set = MEM_ALIAS_SET (mem);
if (dump_file)
fprintf (dump_file, "found alias set %d\n", (int) alias_set);
if (bitmap_bit_p (clear_alias_sets, alias_set))
{
struct clear_alias_mode_holder *entry
= clear_alias_set_lookup (alias_set);
/* If the modes do not match, we cannot process this set. */
if (entry->mode != GET_MODE (mem))
{
if (dump_file)
fprintf (dump_file,
"disqualifying alias set %d, (%s) != (%s)\n",
(int) alias_set, GET_MODE_NAME (entry->mode),
GET_MODE_NAME (GET_MODE (mem)));
bitmap_set_bit (disqualified_clear_alias_sets, alias_set);
return false;
}
*alias_set_out = alias_set;
*group_id = clear_alias_group->id;
return true;
}
}
*alias_set_out = 0;
cselib_lookup (mem_address, Pmode, 1);
if (dump_file)
{
fprintf (dump_file, " mem: ");
print_inline_rtx (dump_file, mem_address, 0);
fprintf (dump_file, "\n");
}
/* Use cselib to replace all of the reg references with the full
expression. This will take care of the case where we have
r_x = base + offset;
val = *r_x;
by making it into
val = *(base + offset);
*/
expanded_address = cselib_expand_value_rtx (mem_address, scratch, 5);
/* If this fails, just go with the mem_address. */
if (!expanded_address)
expanded_address = mem_address;
/* Split the address into canonical BASE + OFFSET terms. */
address = canon_rtx (expanded_address);
*offset = 0;
if (dump_file)
{
fprintf (dump_file, "\n after cselib_expand address: ");
print_inline_rtx (dump_file, expanded_address, 0);
fprintf (dump_file, "\n");
fprintf (dump_file, "\n after canon_rtx address: ");
print_inline_rtx (dump_file, address, 0);
fprintf (dump_file, "\n");
}
if (GET_CODE (address) == CONST)
address = XEXP (address, 0);
if (GET_CODE (address) == PLUS && GET_CODE (XEXP (address, 1)) == CONST_INT)
{
*offset = INTVAL (XEXP (address, 1));
address = XEXP (address, 0);
}
if (const_or_frame_p (address))
{
group_info_t group = get_group_info (address);
if (dump_file)
fprintf (dump_file, " gid=%d offset=%d \n", group->id, (int)*offset);
*base = NULL;
*group_id = group->id;
}
else
{
*base = cselib_lookup (address, Pmode, true);
*group_id = -1;
if (*base == NULL)
{
if (dump_file)
fprintf (dump_file, " no cselib val - should be a wild read.\n");
return false;
}
if (dump_file)
fprintf (dump_file, " varying cselib base=%d offset = %d\n",
(*base)->value, (int)*offset);
}
return true;
}
/* Clear the rhs field from the active_local_stores array. */
static void
clear_rhs_from_active_local_stores (void)
{
insn_info_t ptr = active_local_stores;
while (ptr)
{
store_info_t store_info = ptr->store_rec;
/* Skip the clobbers. */
while (!store_info->is_set)
store_info = store_info->next;
store_info->rhs = NULL;
ptr = ptr->next_local_store;
}
}
/* BODY is an instruction pattern that belongs to INSN. Return 1 if
there is a candidate store, after adding it to the appropriate
local store group if so. */
static int
record_store (rtx body, bb_info_t bb_info)
{
rtx mem;
HOST_WIDE_INT offset = 0;
HOST_WIDE_INT width = 0;
alias_set_type spill_alias_set;
insn_info_t insn_info = bb_info->last_insn;
store_info_t store_info = NULL;
int group_id;
cselib_val *base = NULL;
insn_info_t ptr, last;
bool store_is_unused;
if (GET_CODE (body) != SET && GET_CODE (body) != CLOBBER)
return 0;
/* If this is not used, then this cannot be used to keep the insn
from being deleted. On the other hand, it does provide something
that can be used to prove that another store is dead. */
store_is_unused
= (find_reg_note (insn_info->insn, REG_UNUSED, body) != NULL);
/* Check whether that value is a suitable memory location. */
mem = SET_DEST (body);
if (!MEM_P (mem))
{
/* If the set or clobber is unused, then it does not effect our
ability to get rid of the entire insn. */
if (!store_is_unused)
insn_info->cannot_delete = true;
return 0;
}
/* At this point we know mem is a mem. */
if (GET_MODE (mem) == BLKmode)
{
if (GET_CODE (XEXP (mem, 0)) == SCRATCH)
{
if (dump_file)
fprintf (dump_file, " adding wild read for (clobber (mem:BLK (scratch))\n");
add_wild_read (bb_info);
insn_info->cannot_delete = true;
}
else if (!store_is_unused)
{
/* If the set or clobber is unused, then it does not effect our
ability to get rid of the entire insn. */
insn_info->cannot_delete = true;
clear_rhs_from_active_local_stores ();
}
return 0;
}
/* We can still process a volatile mem, we just cannot delete it. */
if (MEM_VOLATILE_P (mem))
insn_info->cannot_delete = true;
if (!canon_address (mem, &spill_alias_set, &group_id, &offset, &base))
{
clear_rhs_from_active_local_stores ();
return 0;
}
width = GET_MODE_SIZE (GET_MODE (mem));
if (spill_alias_set)
{
bitmap store1 = clear_alias_group->store1_p;
bitmap store2 = clear_alias_group->store2_p;
if (bitmap_bit_p (store1, spill_alias_set))
bitmap_set_bit (store2, spill_alias_set);
else
bitmap_set_bit (store1, spill_alias_set);
if (clear_alias_group->offset_map_size_p < spill_alias_set)
clear_alias_group->offset_map_size_p = spill_alias_set;
store_info = pool_alloc (rtx_store_info_pool);
if (dump_file)
fprintf (dump_file, " processing spill store %d(%s)\n",
(int) spill_alias_set, GET_MODE_NAME (GET_MODE (mem)));
}
else if (group_id >= 0)
{
/* In the restrictive case where the base is a constant or the
frame pointer we can do global analysis. */
group_info_t group
= VEC_index (group_info_t, rtx_group_vec, group_id);
store_info = pool_alloc (rtx_store_info_pool);
set_usage_bits (group, offset, width);
if (dump_file)
fprintf (dump_file, " processing const base store gid=%d[%d..%d)\n",
group_id, (int)offset, (int)(offset+width));
}
else
{
rtx base_term = find_base_term (XEXP (mem, 0));
if (!base_term
|| (GET_CODE (base_term) == ADDRESS
&& GET_MODE (base_term) == Pmode
&& XEXP (base_term, 0) == stack_pointer_rtx))
insn_info->stack_pointer_based = true;
insn_info->contains_cselib_groups = true;
store_info = pool_alloc (cse_store_info_pool);
group_id = -1;
if (dump_file)
fprintf (dump_file, " processing cselib store [%d..%d)\n",
(int)offset, (int)(offset+width));
}
/* Check to see if this stores causes some other stores to be
dead. */
ptr = active_local_stores;
last = NULL;
while (ptr)
{
insn_info_t next = ptr->next_local_store;
store_info_t s_info = ptr->store_rec;
bool delete = true;
/* Skip the clobbers. We delete the active insn if this insn
shadows the set. To have been put on the active list, it
has exactly on set. */
while (!s_info->is_set)
s_info = s_info->next;
if (s_info->alias_set != spill_alias_set)
delete = false;
else if (s_info->alias_set)
{
struct clear_alias_mode_holder *entry
= clear_alias_set_lookup (s_info->alias_set);
/* Generally, spills cannot be processed if and of the
references to the slot have a different mode. But if
we are in the same block and mode is exactly the same
between this store and one before in the same block,
we can still delete it. */
if ((GET_MODE (mem) == GET_MODE (s_info->mem))
&& (GET_MODE (mem) == entry->mode))
{
delete = true;
s_info->positions_needed = (unsigned HOST_WIDE_INT) 0;
}
if (dump_file)
fprintf (dump_file, " trying spill store in insn=%d alias_set=%d\n",
INSN_UID (ptr->insn), (int) s_info->alias_set);
}
else if ((s_info->group_id == group_id)
&& (s_info->cse_base == base))
{
HOST_WIDE_INT i;
if (dump_file)
fprintf (dump_file, " trying store in insn=%d gid=%d[%d..%d)\n",
INSN_UID (ptr->insn), s_info->group_id,
(int)s_info->begin, (int)s_info->end);
for (i = offset; i < offset+width; i++)
if (i >= s_info->begin && i < s_info->end)
s_info->positions_needed
&= ~(((unsigned HOST_WIDE_INT) 1) << (i - s_info->begin));
}
else if (s_info->rhs)
/* Need to see if it is possible for this store to overwrite
the value of store_info. If it is, set the rhs to NULL to
keep it from being used to remove a load. */
{
if (canon_true_dependence (s_info->mem,
GET_MODE (s_info->mem),
s_info->mem_addr,
mem, rtx_varies_p))
s_info->rhs = NULL;
}
/* An insn can be deleted if every position of every one of
its s_infos is zero. */
if (s_info->positions_needed != (unsigned HOST_WIDE_INT) 0)
delete = false;
if (delete)
{
insn_info_t insn_to_delete = ptr;
if (last)
last->next_local_store = ptr->next_local_store;
else
active_local_stores = ptr->next_local_store;
delete_dead_store_insn (insn_to_delete);
}
else
last = ptr;
ptr = next;
}
gcc_assert ((unsigned) width <= HOST_BITS_PER_WIDE_INT);
/* Finish filling in the store_info. */
store_info->next = insn_info->store_rec;
insn_info->store_rec = store_info;
store_info->mem = canon_rtx (mem);
store_info->alias_set = spill_alias_set;
store_info->mem_addr = get_addr (XEXP (mem, 0));
store_info->cse_base = base;
store_info->positions_needed = lowpart_bitmask (width);
store_info->group_id = group_id;
store_info->begin = offset;
store_info->end = offset + width;
store_info->is_set = GET_CODE (body) == SET;
if (store_info->is_set
/* No place to keep the value after ra. */
&& !reload_completed
&& (REG_P (SET_SRC (body))
|| GET_CODE (SET_SRC (body)) == SUBREG
|| CONSTANT_P (SET_SRC (body)))
/* Sometimes the store and reload is used for truncation and
rounding. */
&& !(FLOAT_MODE_P (GET_MODE (mem)) && (flag_float_store)))
store_info->rhs = SET_SRC (body);
else
store_info->rhs = NULL;
/* If this is a clobber, we return 0. We will only be able to
delete this insn if there is only one store USED store, but we
can use the clobber to delete other stores earlier. */
return store_info->is_set ? 1 : 0;
}
static void
dump_insn_info (const char * start, insn_info_t insn_info)
{
fprintf (dump_file, "%s insn=%d %s\n", start,
INSN_UID (insn_info->insn),
insn_info->store_rec ? "has store" : "naked");
}
/* If the modes are different and the value's source and target do not
line up, we need to extract the value from lower part of the rhs of
the store, shift it, and then put it into a form that can be shoved
into the read_insn. This function generates a right SHIFT of a
value that is at least ACCESS_SIZE bytes wide of READ_MODE. The
shift sequence is returned or NULL if we failed to find a
shift. */
static rtx
find_shift_sequence (int access_size,
store_info_t store_info,
read_info_t read_info,
int shift)
{
enum machine_mode store_mode = GET_MODE (store_info->mem);
enum machine_mode read_mode = GET_MODE (read_info->mem);
enum machine_mode new_mode;
rtx read_reg = NULL;
/* Some machines like the x86 have shift insns for each size of
operand. Other machines like the ppc or the ia-64 may only have
shift insns that shift values within 32 or 64 bit registers.
This loop tries to find the smallest shift insn that will right
justify the value we want to read but is available in one insn on
the machine. */
for (new_mode = smallest_mode_for_size (access_size * BITS_PER_UNIT,
MODE_INT);
GET_MODE_BITSIZE (new_mode) <= BITS_PER_WORD;
new_mode = GET_MODE_WIDER_MODE (new_mode))
{
rtx target, new_reg, shift_seq, insn, new_lhs;
int cost, offset;
/* Try a wider mode if truncating the store mode to NEW_MODE
requires a real instruction. */
if (GET_MODE_BITSIZE (new_mode) < GET_MODE_BITSIZE (store_mode)
&& !TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (new_mode),
GET_MODE_BITSIZE (store_mode)))
continue;
/* Also try a wider mode if the necessary punning is either not
desirable or not possible. */
if (!CONSTANT_P (store_info->rhs)
&& !MODES_TIEABLE_P (new_mode, store_mode))
continue;
offset = subreg_lowpart_offset (new_mode, store_mode);
new_lhs = simplify_gen_subreg (new_mode, copy_rtx (store_info->rhs),
store_mode, offset);
if (new_lhs == NULL_RTX)
continue;
new_reg = gen_reg_rtx (new_mode);
start_sequence ();
/* In theory we could also check for an ashr. Ian Taylor knows
of one dsp where the cost of these two was not the same. But
this really is a rare case anyway. */
target = expand_binop (new_mode, lshr_optab, new_reg,
GEN_INT (shift), new_reg, 1, OPTAB_DIRECT);
shift_seq = get_insns ();
end_sequence ();
if (target != new_reg || shift_seq == NULL)
continue;
cost = 0;
for (insn = shift_seq; insn != NULL_RTX; insn = NEXT_INSN (insn))
if (INSN_P (insn))
cost += insn_rtx_cost (PATTERN (insn));
/* The computation up to here is essentially independent
of the arguments and could be precomputed. It may
not be worth doing so. We could precompute if
worthwhile or at least cache the results. The result
technically depends on both SHIFT and ACCESS_SIZE,
but in practice the answer will depend only on ACCESS_SIZE. */
if (cost > COSTS_N_INSNS (1))
continue;
/* We found an acceptable shift. Generate a move to
take the value from the store and put it into the
shift pseudo, then shift it, then generate another
move to put in into the target of the read. */
emit_move_insn (new_reg, new_lhs);
emit_insn (shift_seq);
read_reg = extract_low_bits (read_mode, new_mode, new_reg);
break;
}
return read_reg;
}
/* Take a sequence of:
A <- r1
...
... <- A
and change it into
r2 <- r1
A <- r1
...
... <- r2
or
r3 <- extract (r1)
r3 <- r3 >> shift
r2 <- extract (r3)
... <- r2
or
r2 <- extract (r1)
... <- r2
Depending on the alignment and the mode of the store and
subsequent load.
The STORE_INFO and STORE_INSN are for the store and READ_INFO
and READ_INSN are for the read. Return true if the replacement
went ok. */
static bool
replace_read (store_info_t store_info, insn_info_t store_insn,
read_info_t read_info, insn_info_t read_insn, rtx *loc)
{
enum machine_mode store_mode = GET_MODE (store_info->mem);
enum machine_mode read_mode = GET_MODE (read_info->mem);
int shift;
int access_size; /* In bytes. */
rtx insns, read_reg;
if (!dbg_cnt (dse))
return false;
/* To get here the read is within the boundaries of the write so
shift will never be negative. Start out with the shift being in
bytes. */
if (BYTES_BIG_ENDIAN)
shift = store_info->end - read_info->end;
else
shift = read_info->begin - store_info->begin;
access_size = shift + GET_MODE_SIZE (read_mode);
/* From now on it is bits. */
shift *= BITS_PER_UNIT;
/* Create a sequence of instructions to set up the read register.
This sequence goes immediately before the store and its result
is read by the load.
We need to keep this in perspective. We are replacing a read
with a sequence of insns, but the read will almost certainly be
in cache, so it is not going to be an expensive one. Thus, we
are not willing to do a multi insn shift or worse a subroutine
call to get rid of the read. */
if (dump_file)
fprintf (dump_file, "trying to replace %smode load in insn %d"
" from %smode store in insn %d\n",
GET_MODE_NAME (read_mode), INSN_UID (read_insn->insn),
GET_MODE_NAME (store_mode), INSN_UID (store_insn->insn));
start_sequence ();
if (shift)
read_reg = find_shift_sequence (access_size, store_info, read_info, shift);
else
read_reg = extract_low_bits (read_mode, store_mode,
copy_rtx (store_info->rhs));
if (read_reg == NULL_RTX)
{
end_sequence ();
if (dump_file)
fprintf (dump_file, " -- could not extract bits of stored value\n");
return false;
}
/* Force the value into a new register so that it won't be clobbered
between the store and the load. */
read_reg = copy_to_mode_reg (read_mode, read_reg);
insns = get_insns ();
end_sequence ();
if (validate_change (read_insn->insn, loc, read_reg, 0))
{
deferred_change_t deferred_change = pool_alloc (deferred_change_pool);
/* Insert this right before the store insn where it will be safe
from later insns that might change it before the read. */
emit_insn_before (insns, store_insn->insn);
/* And now for the kludge part: cselib croaks if you just
return at this point. There are two reasons for this:
1) Cselib has an idea of how many pseudos there are and
that does not include the new ones we just added.
2) Cselib does not know about the move insn we added
above the store_info, and there is no way to tell it
about it, because it has "moved on".
Problem (1) is fixable with a certain amount of engineering.
Problem (2) is requires starting the bb from scratch. This
could be expensive.
So we are just going to have to lie. The move/extraction
insns are not really an issue, cselib did not see them. But
the use of the new pseudo read_insn is a real problem because
cselib has not scanned this insn. The way that we solve this
problem is that we are just going to put the mem back for now
and when we are finished with the block, we undo this. We
keep a table of mems to get rid of. At the end of the basic
block we can put them back. */
*loc = read_info->mem;
deferred_change->next = deferred_change_list;
deferred_change_list = deferred_change;
deferred_change->loc = loc;
deferred_change->reg = read_reg;
/* Get rid of the read_info, from the point of view of the
rest of dse, play like this read never happened. */
read_insn->read_rec = read_info->next;
pool_free (read_info_pool, read_info);
if (dump_file)
{
fprintf (dump_file, " -- replaced the loaded MEM with ");
print_simple_rtl (dump_file, read_reg);
fprintf (dump_file, "\n");
}
return true;
}
else
{
if (dump_file)
{
fprintf (dump_file, " -- replacing the loaded MEM with ");
print_simple_rtl (dump_file, read_reg);
fprintf (dump_file, " led to an invalid instruction\n");
}
return false;
}
}
/* A for_each_rtx callback in which DATA is the bb_info. Check to see
if LOC is a mem and if it is look at the address and kill any
appropriate stores that may be active. */
static int
check_mem_read_rtx (rtx *loc, void *data)
{
rtx mem = *loc;
bb_info_t bb_info;
insn_info_t insn_info;
HOST_WIDE_INT offset = 0;
HOST_WIDE_INT width = 0;
alias_set_type spill_alias_set = 0;
cselib_val *base = NULL;
int group_id;
read_info_t read_info;
if (!mem || !MEM_P (mem))
return 0;
bb_info = (bb_info_t) data;
insn_info = bb_info->last_insn;
if ((MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
|| (MEM_VOLATILE_P (mem)))
{
if (dump_file)
fprintf (dump_file, " adding wild read, volatile or barrier.\n");
add_wild_read (bb_info);
insn_info->cannot_delete = true;
return 0;
}
/* If it is reading readonly mem, then there can be no conflict with
another write. */
if (MEM_READONLY_P (mem))
return 0;
if (!canon_address (mem, &spill_alias_set, &group_id, &offset, &base))
{
if (dump_file)
fprintf (dump_file, " adding wild read, canon_address failure.\n");
add_wild_read (bb_info);
return 0;
}
if (GET_MODE (mem) == BLKmode)
width = -1;
else
width = GET_MODE_SIZE (GET_MODE (mem));
read_info = pool_alloc (read_info_pool);
read_info->group_id = group_id;
read_info->mem = mem;
read_info->alias_set = spill_alias_set;
read_info->begin = offset;
read_info->end = offset + width;
read_info->next = insn_info->read_rec;
insn_info->read_rec = read_info;
/* We ignore the clobbers in store_info. The is mildly aggressive,
but there really should not be a clobber followed by a read. */
if (spill_alias_set)
{
insn_info_t i_ptr = active_local_stores;
insn_info_t last = NULL;
if (dump_file)
fprintf (dump_file, " processing spill load %d\n",
(int) spill_alias_set);
while (i_ptr)
{
store_info_t store_info = i_ptr->store_rec;
/* Skip the clobbers. */
while (!store_info->is_set)
store_info = store_info->next;
if (store_info->alias_set == spill_alias_set)
{
if (dump_file)
dump_insn_info ("removing from active", i_ptr);
if (last)
last->next_local_store = i_ptr->next_local_store;
else
active_local_stores = i_ptr->next_local_store;
}
else
last = i_ptr;
i_ptr = i_ptr->next_local_store;
}
}
else if (group_id >= 0)
{
/* This is the restricted case where the base is a constant or
the frame pointer and offset is a constant. */
insn_info_t i_ptr = active_local_stores;
insn_info_t last = NULL;
if (dump_file)
{
if (width == -1)
fprintf (dump_file, " processing const load gid=%d[BLK]\n",
group_id);
else
fprintf (dump_file, " processing const load gid=%d[%d..%d)\n",
group_id, (int)offset, (int)(offset+width));
}
while (i_ptr)
{
bool remove = false;
store_info_t store_info = i_ptr->store_rec;
/* Skip the clobbers. */
while (!store_info->is_set)
store_info = store_info->next;
/* There are three cases here. */
if (store_info->group_id < 0)
/* We have a cselib store followed by a read from a
const base. */
remove
= canon_true_dependence (store_info->mem,
GET_MODE (store_info->mem),
store_info->mem_addr,
mem, rtx_varies_p);
else if (group_id == store_info->group_id)
{
/* This is a block mode load. We may get lucky and
canon_true_dependence may save the day. */
if (width == -1)
remove
= canon_true_dependence (store_info->mem,
GET_MODE (store_info->mem),
store_info->mem_addr,
mem, rtx_varies_p);
/* If this read is just reading back something that we just
stored, rewrite the read. */
else
{
if (store_info->rhs
&& (offset >= store_info->begin)
&& (offset + width <= store_info->end))
{
unsigned HOST_WIDE_INT mask
= (lowpart_bitmask (width)
<< (offset - store_info->begin));
if ((store_info->positions_needed & mask) == mask
&& replace_read (store_info, i_ptr,
read_info, insn_info, loc))
return 0;
}
/* The bases are the same, just see if the offsets
overlap. */
if ((offset < store_info->end)
&& (offset + width > store_info->begin))
remove = true;
}
}
/* else
The else case that is missing here is that the
bases are constant but different. There is nothing
to do here because there is no overlap. */
if (remove)
{
if (dump_file)
dump_insn_info ("removing from active", i_ptr);
if (last)
last->next_local_store = i_ptr->next_local_store;
else
active_local_stores = i_ptr->next_local_store;
}
else
last = i_ptr;
i_ptr = i_ptr->next_local_store;
}
}
else
{
insn_info_t i_ptr = active_local_stores;
insn_info_t last = NULL;
if (dump_file)
{
fprintf (dump_file, " processing cselib load mem:");
print_inline_rtx (dump_file, mem, 0);
fprintf (dump_file, "\n");
}
while (i_ptr)
{
bool remove = false;
store_info_t store_info = i_ptr->store_rec;
if (dump_file)
fprintf (dump_file, " processing cselib load against insn %d\n",
INSN_UID (i_ptr->insn));
/* Skip the clobbers. */
while (!store_info->is_set)
store_info = store_info->next;
/* If this read is just reading back something that we just
stored, rewrite the read. */
if (store_info->rhs
&& store_info->group_id == -1
&& store_info->cse_base == base
&& (offset >= store_info->begin)
&& (offset + width <= store_info->end))
{
unsigned HOST_WIDE_INT mask
= (lowpart_bitmask (width)
<< (offset - store_info->begin));
if ((store_info->positions_needed & mask) == mask
&& replace_read (store_info, i_ptr,
read_info, insn_info, loc))
return 0;
}
if (!store_info->alias_set)
remove = canon_true_dependence (store_info->mem,
GET_MODE (store_info->mem),
store_info->mem_addr,
mem, rtx_varies_p);
if (remove)
{
if (dump_file)
dump_insn_info ("removing from active", i_ptr);
if (last)
last->next_local_store = i_ptr->next_local_store;
else
active_local_stores = i_ptr->next_local_store;
}
else
last = i_ptr;
i_ptr = i_ptr->next_local_store;
}
}
return 0;
}
/* A for_each_rtx callback in which DATA points the INSN_INFO for
as check_mem_read_rtx. Nullify the pointer if i_m_r_m_r returns
true for any part of *LOC. */
static void
check_mem_read_use (rtx *loc, void *data)
{
for_each_rtx (loc, check_mem_read_rtx, data);
}
/* Apply record_store to all candidate stores in INSN. Mark INSN
if some part of it is not a candidate store and assigns to a
non-register target. */
static void
scan_insn (bb_info_t bb_info, rtx insn)
{
rtx body;
insn_info_t insn_info = pool_alloc (insn_info_pool);
int mems_found = 0;
memset (insn_info, 0, sizeof (struct insn_info));
if (dump_file)
fprintf (dump_file, "\n**scanning insn=%d\n",
INSN_UID (insn));
insn_info->prev_insn = bb_info->last_insn;
insn_info->insn = insn;
bb_info->last_insn = insn_info;
/* Cselib clears the table for this case, so we have to essentially
do the same. */
if (NONJUMP_INSN_P (insn)
&& GET_CODE (PATTERN (insn)) == ASM_OPERANDS
&& MEM_VOLATILE_P (PATTERN (insn)))
{
add_wild_read (bb_info);
insn_info->cannot_delete = true;
return;
}
/* Look at all of the uses in the insn. */
note_uses (&PATTERN (insn), check_mem_read_use, bb_info);
if (CALL_P (insn))
{
insn_info->cannot_delete = true;
/* Const functions cannot do anything bad i.e. read memory,
however, they can read their parameters which may have
been pushed onto the stack. */
if (RTL_CONST_CALL_P (insn))
{
insn_info_t i_ptr = active_local_stores;
insn_info_t last = NULL;
if (dump_file)
fprintf (dump_file, "const call %d\n", INSN_UID (insn));
/* See the head comment of the frame_read field. */
if (reload_completed)
insn_info->frame_read = true;
/* Loop over the active stores and remove those which are
killed by the const function call. */
while (i_ptr)
{
bool remove_store = false;
/* The stack pointer based stores are always killed. */
if (i_ptr->stack_pointer_based)
remove_store = true;
/* If the frame is read, the frame related stores are killed. */
else if (insn_info->frame_read)
{
store_info_t store_info = i_ptr->store_rec;
/* Skip the clobbers. */
while (!store_info->is_set)
store_info = store_info->next;
if (store_info->group_id >= 0
&& VEC_index (group_info_t, rtx_group_vec,
store_info->group_id)->frame_related)
remove_store = true;
}
if (remove_store)
{
if (dump_file)
dump_insn_info ("removing from active", i_ptr);
if (last)
last->next_local_store = i_ptr->next_local_store;
else
active_local_stores = i_ptr->next_local_store;
}
else
last = i_ptr;
i_ptr = i_ptr->next_local_store;
}
}
else
/* Every other call, including pure functions, may read memory. */
add_wild_read (bb_info);
return;
}
/* Assuming that there are sets in these insns, we cannot delete
them. */
if ((GET_CODE (PATTERN (insn)) == CLOBBER)
|| volatile_refs_p (PATTERN (insn))
|| (flag_non_call_exceptions && may_trap_p (PATTERN (insn)))
|| (RTX_FRAME_RELATED_P (insn))
|| find_reg_note (insn, REG_FRAME_RELATED_EXPR, NULL_RTX))
insn_info->cannot_delete = true;
body = PATTERN (insn);
if (GET_CODE (body) == PARALLEL)
{
int i;
for (i = 0; i < XVECLEN (body, 0); i++)
mems_found += record_store (XVECEXP (body, 0, i), bb_info);
}
else
mems_found += record_store (body, bb_info);
if (dump_file)
fprintf (dump_file, "mems_found = %d, cannot_delete = %s\n",
mems_found, insn_info->cannot_delete ? "true" : "false");
/* If we found some sets of mems, and the insn has not been marked
cannot delete, add it into the active_local_stores so that it can
be locally deleted if found dead. Otherwise mark it as cannot
delete. This simplifies the processing later. */
if (mems_found == 1 && !insn_info->cannot_delete)
{
insn_info->next_local_store = active_local_stores;
active_local_stores = insn_info;
}
else
insn_info->cannot_delete = true;
}
/* Remove BASE from the set of active_local_stores. This is a
callback from cselib that is used to get rid of the stores in
active_local_stores. */
static void
remove_useless_values (cselib_val *base)
{
insn_info_t insn_info = active_local_stores;
insn_info_t last = NULL;
while (insn_info)
{
store_info_t store_info = insn_info->store_rec;
bool delete = false;
/* If ANY of the store_infos match the cselib group that is
being deleted, then the insn can not be deleted. */
while (store_info)
{
if ((store_info->group_id == -1)
&& (store_info->cse_base == base))
{
delete = true;
break;
}
store_info = store_info->next;
}
if (delete)
{
if (last)
last->next_local_store = insn_info->next_local_store;
else
active_local_stores = insn_info->next_local_store;
free_store_info (insn_info);
}
else
last = insn_info;
insn_info = insn_info->next_local_store;
}
}
/* Do all of step 1. */
static void
dse_step1 (void)
{
basic_block bb;
cselib_init (false);
all_blocks = BITMAP_ALLOC (NULL);
bitmap_set_bit (all_blocks, ENTRY_BLOCK);
bitmap_set_bit (all_blocks, EXIT_BLOCK);
FOR_ALL_BB (bb)
{
insn_info_t ptr;
bb_info_t bb_info = pool_alloc (bb_info_pool);
memset (bb_info, 0, sizeof (struct bb_info));
bitmap_set_bit (all_blocks, bb->index);
bb_table[bb->index] = bb_info;
cselib_discard_hook = remove_useless_values;
if (bb->index >= NUM_FIXED_BLOCKS)
{
rtx insn;
cse_store_info_pool
= create_alloc_pool ("cse_store_info_pool",
sizeof (struct store_info), 100);
active_local_stores = NULL;
cselib_clear_table ();
/* Scan the insns. */
FOR_BB_INSNS (bb, insn)
{
if (INSN_P (insn))
scan_insn (bb_info, insn);
cselib_process_insn (insn);
}
/* This is something of a hack, because the global algorithm
is supposed to take care of the case where stores go dead
at the end of the function. However, the global
algorithm must take a more conservative view of block
mode reads than the local alg does. So to get the case
where you have a store to the frame followed by a non
overlapping block more read, we look at the active local
stores at the end of the function and delete all of the
frame and spill based ones. */
if (stores_off_frame_dead_at_return
&& (EDGE_COUNT (bb->succs) == 0
|| (single_succ_p (bb)
&& single_succ (bb) == EXIT_BLOCK_PTR
&& ! crtl->calls_eh_return)))
{
insn_info_t i_ptr = active_local_stores;
while (i_ptr)
{
store_info_t store_info = i_ptr->store_rec;
/* Skip the clobbers. */
while (!store_info->is_set)
store_info = store_info->next;
if (store_info->alias_set)
delete_dead_store_insn (i_ptr);
else
if (store_info->group_id >= 0)
{
group_info_t group
= VEC_index (group_info_t, rtx_group_vec, store_info->group_id);
if (group->frame_related)
delete_dead_store_insn (i_ptr);
}
i_ptr = i_ptr->next_local_store;
}
}
/* Get rid of the loads that were discovered in
replace_read. Cselib is finished with this block. */
while (deferred_change_list)
{
deferred_change_t next = deferred_change_list->next;
/* There is no reason to validate this change. That was
done earlier. */
*deferred_change_list->loc = deferred_change_list->reg;
pool_free (deferred_change_pool, deferred_change_list);
deferred_change_list = next;
}
/* Get rid of all of the cselib based store_infos in this
block and mark the containing insns as not being
deletable. */
ptr = bb_info->last_insn;
while (ptr)
{
if (ptr->contains_cselib_groups)
free_store_info (ptr);
ptr = ptr->prev_insn;
}
free_alloc_pool (cse_store_info_pool);
}
}
cselib_finish ();
htab_empty (rtx_group_table);
}
/*----------------------------------------------------------------------------
Second step.
Assign each byte position in the stores that we are going to
analyze globally to a position in the bitmaps. Returns true if
there are any bit positions assigned.
----------------------------------------------------------------------------*/
static void
dse_step2_init (void)
{
unsigned int i;
group_info_t group;
for (i = 0; VEC_iterate (group_info_t, rtx_group_vec, i, group); i++)
{
/* For all non stack related bases, we only consider a store to
be deletable if there are two or more stores for that
position. This is because it takes one store to make the
other store redundant. However, for the stores that are
stack related, we consider them if there is only one store
for the position. We do this because the stack related
stores can be deleted if their is no read between them and
the end of the function.
To make this work in the current framework, we take the stack
related bases add all of the bits from store1 into store2.
This has the effect of making the eligible even if there is
only one store. */
if (stores_off_frame_dead_at_return && group->frame_related)
{
bitmap_ior_into (group->store2_n, group->store1_n);
bitmap_ior_into (group->store2_p, group->store1_p);
if (dump_file)
fprintf (dump_file, "group %d is frame related ", i);
}
group->offset_map_size_n++;
group->offset_map_n = XNEWVEC (int, group->offset_map_size_n);
group->offset_map_size_p++;
group->offset_map_p = XNEWVEC (int, group->offset_map_size_p);
group->process_globally = false;
if (dump_file)
{
fprintf (dump_file, "group %d(%d+%d): ", i,
(int)bitmap_count_bits (group->store2_n),
(int)bitmap_count_bits (group->store2_p));
bitmap_print (dump_file, group->store2_n, "n ", " ");
bitmap_print (dump_file, group->store2_p, "p ", "\n");
}
}
}
/* Init the offset tables for the normal case. */
static bool
dse_step2_nospill (void)
{
unsigned int i;
group_info_t group;
/* Position 0 is unused because 0 is used in the maps to mean
unused. */
current_position = 1;
for (i = 0; VEC_iterate (group_info_t, rtx_group_vec, i, group); i++)
{
bitmap_iterator bi;
unsigned int j;
if (group == clear_alias_group)
continue;
memset (group->offset_map_n, 0, sizeof(int) * group->offset_map_size_n);
memset (group->offset_map_p, 0, sizeof(int) * group->offset_map_size_p);
bitmap_clear (group->group_kill);
EXECUTE_IF_SET_IN_BITMAP (group->store2_n, 0, j, bi)
{
bitmap_set_bit (group->group_kill, current_position);
group->offset_map_n[j] = current_position++;
group->process_globally = true;
}
EXECUTE_IF_SET_IN_BITMAP (group->store2_p, 0, j, bi)
{
bitmap_set_bit (group->group_kill, current_position);
group->offset_map_p[j] = current_position++;
group->process_globally = true;
}
}
return current_position != 1;
}
/* Init the offset tables for the spill case. */
static bool
dse_step2_spill (void)
{
unsigned int j;
group_info_t group = clear_alias_group;
bitmap_iterator bi;
/* Position 0 is unused because 0 is used in the maps to mean
unused. */
current_position = 1;
if (dump_file)
{
bitmap_print (dump_file, clear_alias_sets,
"clear alias sets ", "\n");
bitmap_print (dump_file, disqualified_clear_alias_sets,
"disqualified clear alias sets ", "\n");
}
memset (group->offset_map_n, 0, sizeof(int) * group->offset_map_size_n);
memset (group->offset_map_p, 0, sizeof(int) * group->offset_map_size_p);
bitmap_clear (group->group_kill);
/* Remove the disqualified positions from the store2_p set. */
bitmap_and_compl_into (group->store2_p, disqualified_clear_alias_sets);
/* We do not need to process the store2_n set because
alias_sets are always positive. */
EXECUTE_IF_SET_IN_BITMAP (group->store2_p, 0, j, bi)
{
bitmap_set_bit (group->group_kill, current_position);
group->offset_map_p[j] = current_position++;
group->process_globally = true;
}
return current_position != 1;
}
/*----------------------------------------------------------------------------
Third step.
Build the bit vectors for the transfer functions.
----------------------------------------------------------------------------*/
/* Note that this is NOT a general purpose function. Any mem that has
an alias set registered here expected to be COMPLETELY unaliased:
i.e it's addresses are not and need not be examined.
It is known that all references to this address will have this
alias set and there are NO other references to this address in the
function.
Currently the only place that is known to be clean enough to use
this interface is the code that assigns the spill locations.
All of the mems that have alias_sets registered are subjected to a
very powerful form of dse where function calls, volatile reads and
writes, and reads from random location are not taken into account.
It is also assumed that these locations go dead when the function
returns. This assumption could be relaxed if there were found to
be places that this assumption was not correct.
The MODE is passed in and saved. The mode of each load or store to
a mem with ALIAS_SET is checked against MEM. If the size of that
load or store is different from MODE, processing is halted on this
alias set. For the vast majority of aliases sets, all of the loads
and stores will use the same mode. But vectors are treated
differently: the alias set is established for the entire vector,
but reload will insert loads and stores for individual elements and
we do not necessarily have the information to track those separate
elements. So when we see a mode mismatch, we just bail. */
void
dse_record_singleton_alias_set (alias_set_type alias_set,
enum machine_mode mode)
{
struct clear_alias_mode_holder tmp_holder;
struct clear_alias_mode_holder *entry;
void **slot;
/* If we are not going to run dse, we need to return now or there
will be problems with allocating the bitmaps. */
if ((!gate_dse()) || !alias_set)
return;
if (!clear_alias_sets)
{
clear_alias_sets = BITMAP_ALLOC (NULL);
disqualified_clear_alias_sets = BITMAP_ALLOC (NULL);
clear_alias_mode_table = htab_create (11, clear_alias_mode_hash,
clear_alias_mode_eq, NULL);
clear_alias_mode_pool = create_alloc_pool ("clear_alias_mode_pool",
sizeof (struct clear_alias_mode_holder), 100);
}
bitmap_set_bit (clear_alias_sets, alias_set);
tmp_holder.alias_set = alias_set;
slot = htab_find_slot (clear_alias_mode_table, &tmp_holder, INSERT);
gcc_assert (*slot == NULL);
*slot = entry = pool_alloc (clear_alias_mode_pool);
entry->alias_set = alias_set;
entry->mode = mode;
}
/* Remove ALIAS_SET from the sets of stack slots being considered. */
void
dse_invalidate_singleton_alias_set (alias_set_type alias_set)
{
if ((!gate_dse()) || !alias_set)
return;
bitmap_clear_bit (clear_alias_sets, alias_set);
}
/* Look up the bitmap index for OFFSET in GROUP_INFO. If it is not
there, return 0. */
static int
get_bitmap_index (group_info_t group_info, HOST_WIDE_INT offset)
{
if (offset < 0)
{
HOST_WIDE_INT offset_p = -offset;
if (offset_p >= group_info->offset_map_size_n)
return 0;
return group_info->offset_map_n[offset_p];
}
else
{
if (offset >= group_info->offset_map_size_p)
return 0;
return group_info->offset_map_p[offset];
}
}
/* Process the STORE_INFOs into the bitmaps into GEN and KILL. KILL
may be NULL. */
static void
scan_stores_nospill (store_info_t store_info, bitmap gen, bitmap kill)
{
while (store_info)
{
HOST_WIDE_INT i;
group_info_t group_info
= VEC_index (group_info_t, rtx_group_vec, store_info->group_id);
if (group_info->process_globally)
for (i = store_info->begin; i < store_info->end; i++)
{
int index = get_bitmap_index (group_info, i);
if (index != 0)
{
bitmap_set_bit (gen, index);
if (kill)
bitmap_clear_bit (kill, index);
}
}
store_info = store_info->next;
}
}
/* Process the STORE_INFOs into the bitmaps into GEN and KILL. KILL
may be NULL. */
static void
scan_stores_spill (store_info_t store_info, bitmap gen, bitmap kill)
{
while (store_info)
{
if (store_info->alias_set)
{
int index = get_bitmap_index (clear_alias_group,
store_info->alias_set);
if (index != 0)
{
bitmap_set_bit (gen, index);
if (kill)
bitmap_clear_bit (kill, index);
}
}
store_info = store_info->next;
}
}
/* Process the READ_INFOs into the bitmaps into GEN and KILL. KILL
may be NULL. */
static void
scan_reads_nospill (insn_info_t insn_info, bitmap gen, bitmap kill)
{
read_info_t read_info = insn_info->read_rec;
int i;
group_info_t group;
/* If this insn reads the frame, kill all the frame related stores. */
if (insn_info->frame_read)
{
for (i = 0; VEC_iterate (group_info_t, rtx_group_vec, i, group); i++)
if (group->process_globally && group->frame_related)
{
if (kill)
bitmap_ior_into (kill, group->group_kill);
bitmap_and_compl_into (gen, group->group_kill);
}
}
while (read_info)
{
for (i = 0; VEC_iterate (group_info_t, rtx_group_vec, i, group); i++)
{
if (group->process_globally)
{
if (i == read_info->group_id)
{
if (read_info->begin > read_info->end)
{
/* Begin > end for block mode reads. */
if (kill)
bitmap_ior_into (kill, group->group_kill);
bitmap_and_compl_into (gen, group->group_kill);
}
else
{
/* The groups are the same, just process the
offsets. */
HOST_WIDE_INT j;
for (j = read_info->begin; j < read_info->end; j++)
{
int index = get_bitmap_index (group, j);
if (index != 0)
{
if (kill)
bitmap_set_bit (kill, index);
bitmap_clear_bit (gen, index);
}
}
}
}
else
{
/* The groups are different, if the alias sets
conflict, clear the entire group. We only need
to apply this test if the read_info is a cselib
read. Anything with a constant base cannot alias
something else with a different constant
base. */
if ((read_info->group_id < 0)
&& canon_true_dependence (group->base_mem,
QImode,
group->canon_base_mem,
read_info->mem, rtx_varies_p))
{
if (kill)
bitmap_ior_into (kill, group->group_kill);
bitmap_and_compl_into (gen, group->group_kill);
}
}
}
}
read_info = read_info->next;
}
}
/* Process the READ_INFOs into the bitmaps into GEN and KILL. KILL
may be NULL. */
static void
scan_reads_spill (read_info_t read_info, bitmap gen, bitmap kill)
{
while (read_info)
{
if (read_info->alias_set)
{
int index = get_bitmap_index (clear_alias_group,
read_info->alias_set);
if (index != 0)
{
if (kill)
bitmap_set_bit (kill, index);
bitmap_clear_bit (gen, index);
}
}
read_info = read_info->next;
}
}
/* Return the insn in BB_INFO before the first wild read or if there
are no wild reads in the block, return the last insn. */
static insn_info_t
find_insn_before_first_wild_read (bb_info_t bb_info)
{
insn_info_t insn_info = bb_info->last_insn;
insn_info_t last_wild_read = NULL;
while (insn_info)
{
if (insn_info->wild_read)
{
last_wild_read = insn_info->prev_insn;
/* Block starts with wild read. */
if (!last_wild_read)
return NULL;
}
insn_info = insn_info->prev_insn;
}
if (last_wild_read)
return last_wild_read;
else
return bb_info->last_insn;
}
/* Scan the insns in BB_INFO starting at PTR and going to the top of
the block in order to build the gen and kill sets for the block.
We start at ptr which may be the last insn in the block or may be
the first insn with a wild read. In the latter case we are able to
skip the rest of the block because it just does not matter:
anything that happens is hidden by the wild read. */
static void
dse_step3_scan (bool for_spills, basic_block bb)
{
bb_info_t bb_info = bb_table[bb->index];
insn_info_t insn_info;
if (for_spills)
/* There are no wild reads in the spill case. */
insn_info = bb_info->last_insn;
else
insn_info = find_insn_before_first_wild_read (bb_info);
/* In the spill case or in the no_spill case if there is no wild
read in the block, we will need a kill set. */
if (insn_info == bb_info->last_insn)
{
if (bb_info->kill)
bitmap_clear (bb_info->kill);
else
bb_info->kill = BITMAP_ALLOC (NULL);
}
else
if (bb_info->kill)
BITMAP_FREE (bb_info->kill);
while (insn_info)
{
/* There may have been code deleted by the dce pass run before
this phase. */
if (insn_info->insn && INSN_P (insn_info->insn))
{
/* Process the read(s) last. */
if (for_spills)
{
scan_stores_spill (insn_info->store_rec, bb_info->gen, bb_info->kill);
scan_reads_spill (insn_info->read_rec, bb_info->gen, bb_info->kill);
}
else
{
scan_stores_nospill (insn_info->store_rec, bb_info->gen, bb_info->kill);
scan_reads_nospill (insn_info, bb_info->gen, bb_info->kill);
}
}
insn_info = insn_info->prev_insn;
}
}
/* Set the gen set of the exit block, and also any block with no
successors that does not have a wild read. */
static void
dse_step3_exit_block_scan (bb_info_t bb_info)
{
/* The gen set is all 0's for the exit block except for the
frame_pointer_group. */
if (stores_off_frame_dead_at_return)
{
unsigned int i;
group_info_t group;
for (i = 0; VEC_iterate (group_info_t, rtx_group_vec, i, group); i++)
{
if (group->process_globally && group->frame_related)
bitmap_ior_into (bb_info->gen, group->group_kill);
}
}
}
/* Find all of the blocks that are not backwards reachable from the
exit block or any block with no successors (BB). These are the
infinite loops or infinite self loops. These blocks will still
have their bits set in UNREACHABLE_BLOCKS. */
static void
mark_reachable_blocks (sbitmap unreachable_blocks, basic_block bb)
{
edge e;
edge_iterator ei;
if (TEST_BIT (unreachable_blocks, bb->index))
{
RESET_BIT (unreachable_blocks, bb->index);
FOR_EACH_EDGE (e, ei, bb->preds)
{
mark_reachable_blocks (unreachable_blocks, e->src);
}
}
}
/* Build the transfer functions for the function. */
static void
dse_step3 (bool for_spills)
{
basic_block bb;
sbitmap unreachable_blocks = sbitmap_alloc (last_basic_block);
sbitmap_iterator sbi;
bitmap all_ones = NULL;
unsigned int i;
sbitmap_ones (unreachable_blocks);
FOR_ALL_BB (bb)
{
bb_info_t bb_info = bb_table[bb->index];
if (bb_info->gen)
bitmap_clear (bb_info->gen);
else
bb_info->gen = BITMAP_ALLOC (NULL);
if (bb->index == ENTRY_BLOCK)
;
else if (bb->index == EXIT_BLOCK)
dse_step3_exit_block_scan (bb_info);
else
dse_step3_scan (for_spills, bb);
if (EDGE_COUNT (bb->succs) == 0)
mark_reachable_blocks (unreachable_blocks, bb);
/* If this is the second time dataflow is run, delete the old
sets. */
if (bb_info->in)
BITMAP_FREE (bb_info->in);
if (bb_info->out)
BITMAP_FREE (bb_info->out);
}
/* For any block in an infinite loop, we must initialize the out set
to all ones. This could be expensive, but almost never occurs in
practice. However, it is common in regression tests. */
EXECUTE_IF_SET_IN_SBITMAP (unreachable_blocks, 0, i, sbi)
{
if (bitmap_bit_p (all_blocks, i))
{
bb_info_t bb_info = bb_table[i];
if (!all_ones)
{
unsigned int j;
group_info_t group;
all_ones = BITMAP_ALLOC (NULL);
for (j = 0; VEC_iterate (group_info_t, rtx_group_vec, j, group); j++)
bitmap_ior_into (all_ones, group->group_kill);
}
if (!bb_info->out)
{
bb_info->out = BITMAP_ALLOC (NULL);
bitmap_copy (bb_info->out, all_ones);
}
}
}
if (all_ones)
BITMAP_FREE (all_ones);
sbitmap_free (unreachable_blocks);
}
/*----------------------------------------------------------------------------
Fourth step.
Solve the bitvector equations.
----------------------------------------------------------------------------*/
/* Confluence function for blocks with no successors. Create an out
set from the gen set of the exit block. This block logically has
the exit block as a successor. */
static void
dse_confluence_0 (basic_block bb)
{
bb_info_t bb_info = bb_table[bb->index];
if (bb->index == EXIT_BLOCK)
return;
if (!bb_info->out)
{
bb_info->out = BITMAP_ALLOC (NULL);
bitmap_copy (bb_info->out, bb_table[EXIT_BLOCK]->gen);
}
}
/* Propagate the information from the in set of the dest of E to the
out set of the src of E. If the various in or out sets are not
there, that means they are all ones. */
static void
dse_confluence_n (edge e)
{
bb_info_t src_info = bb_table[e->src->index];
bb_info_t dest_info = bb_table[e->dest->index];
if (dest_info->in)
{
if (src_info->out)
bitmap_and_into (src_info->out, dest_info->in);
else
{
src_info->out = BITMAP_ALLOC (NULL);
bitmap_copy (src_info->out, dest_info->in);
}
}
}
/* Propagate the info from the out to the in set of BB_INDEX's basic
block. There are three cases:
1) The block has no kill set. In this case the kill set is all
ones. It does not matter what the out set of the block is, none of
the info can reach the top. The only thing that reaches the top is
the gen set and we just copy the set.
2) There is a kill set but no out set and bb has successors. In
this case we just return. Eventually an out set will be created and
it is better to wait than to create a set of ones.
3) There is both a kill and out set. We apply the obvious transfer
function.
*/
static bool
dse_transfer_function (int bb_index)
{
bb_info_t bb_info = bb_table[bb_index];
if (bb_info->kill)
{
if (bb_info->out)
{
/* Case 3 above. */
if (bb_info->in)
return bitmap_ior_and_compl (bb_info->in, bb_info->gen,
bb_info->out, bb_info->kill);
else
{
bb_info->in = BITMAP_ALLOC (NULL);
bitmap_ior_and_compl (bb_info->in, bb_info->gen,
bb_info->out, bb_info->kill);
return true;
}
}
else
/* Case 2 above. */
return false;
}
else
{
/* Case 1 above. If there is already an in set, nothing
happens. */
if (bb_info->in)
return false;
else
{
bb_info->in = BITMAP_ALLOC (NULL);
bitmap_copy (bb_info->in, bb_info->gen);
return true;
}
}
}
/* Solve the dataflow equations. */
static void
dse_step4 (void)
{
df_simple_dataflow (DF_BACKWARD, NULL, dse_confluence_0,
dse_confluence_n, dse_transfer_function,
all_blocks, df_get_postorder (DF_BACKWARD),
df_get_n_blocks (DF_BACKWARD));
if (dump_file)
{
basic_block bb;
fprintf (dump_file, "\n\n*** Global dataflow info after analysis.\n");
FOR_ALL_BB (bb)
{
bb_info_t bb_info = bb_table[bb->index];
df_print_bb_index (bb, dump_file);
if (bb_info->in)
bitmap_print (dump_file, bb_info->in, " in: ", "\n");
else
fprintf (dump_file, " in: *MISSING*\n");
if (bb_info->gen)
bitmap_print (dump_file, bb_info->gen, " gen: ", "\n");
else
fprintf (dump_file, " gen: *MISSING*\n");
if (bb_info->kill)
bitmap_print (dump_file, bb_info->kill, " kill: ", "\n");
else
fprintf (dump_file, " kill: *MISSING*\n");
if (bb_info->out)
bitmap_print (dump_file, bb_info->out, " out: ", "\n");
else
fprintf (dump_file, " out: *MISSING*\n\n");
}
}
}
/*----------------------------------------------------------------------------
Fifth step.
Delete the stores that can only be deleted using the global information.
----------------------------------------------------------------------------*/
static void
dse_step5_nospill (void)
{
basic_block bb;
FOR_EACH_BB (bb)
{
bb_info_t bb_info = bb_table[bb->index];
insn_info_t insn_info = bb_info->last_insn;
bitmap v = bb_info->out;
while (insn_info)
{
bool deleted = false;
if (dump_file && insn_info->insn)
{
fprintf (dump_file, "starting to process insn %d\n",
INSN_UID (insn_info->insn));
bitmap_print (dump_file, v, " v: ", "\n");
}
/* There may have been code deleted by the dce pass run before
this phase. */
if (insn_info->insn
&& INSN_P (insn_info->insn)
&& (!insn_info->cannot_delete)
&& (!bitmap_empty_p (v)))
{
store_info_t store_info = insn_info->store_rec;
/* Try to delete the current insn. */
deleted = true;
/* Skip the clobbers. */
while (!store_info->is_set)
store_info = store_info->next;
if (store_info->alias_set)
deleted = false;
else
{
HOST_WIDE_INT i;
group_info_t group_info
= VEC_index (group_info_t, rtx_group_vec, store_info->group_id);
for (i = store_info->begin; i < store_info->end; i++)
{
int index = get_bitmap_index (group_info, i);
if (dump_file)
fprintf (dump_file, "i = %d, index = %d\n", (int)i, index);
if (index == 0 || !bitmap_bit_p (v, index))
{
if (dump_file)
fprintf (dump_file, "failing at i = %d\n", (int)i);
deleted = false;
break;
}
}
}
if (deleted)
{
if (dbg_cnt (dse))
{
check_for_inc_dec (insn_info->insn);
delete_insn (insn_info->insn);
insn_info->insn = NULL;
globally_deleted++;
}
}
}
/* We do want to process the local info if the insn was
deleted. For instance, if the insn did a wild read, we
no longer need to trash the info. */
if (insn_info->insn
&& INSN_P (insn_info->insn)
&& (!deleted))
{
scan_stores_nospill (insn_info->store_rec, v, NULL);
if (insn_info->wild_read)
{
if (dump_file)
fprintf (dump_file, "wild read\n");
bitmap_clear (v);
}
else if (insn_info->read_rec)
{
if (dump_file)
fprintf (dump_file, "regular read\n");
scan_reads_nospill (insn_info, v, NULL);
}
}
insn_info = insn_info->prev_insn;
}
}
}
static void
dse_step5_spill (void)
{
basic_block bb;
FOR_EACH_BB (bb)
{
bb_info_t bb_info = bb_table[bb->index];
insn_info_t insn_info = bb_info->last_insn;
bitmap v = bb_info->out;
while (insn_info)
{
bool deleted = false;
/* There may have been code deleted by the dce pass run before
this phase. */
if (insn_info->insn
&& INSN_P (insn_info->insn)
&& (!insn_info->cannot_delete)
&& (!bitmap_empty_p (v)))
{
/* Try to delete the current insn. */
store_info_t store_info = insn_info->store_rec;
deleted = true;
while (store_info)
{
if (store_info->alias_set)
{
int index = get_bitmap_index (clear_alias_group,
store_info->alias_set);
if (index == 0 || !bitmap_bit_p (v, index))
{
deleted = false;
break;
}
}
else
deleted = false;
store_info = store_info->next;
}
if (deleted && dbg_cnt (dse))
{
if (dump_file)
fprintf (dump_file, "Spill deleting insn %d\n",
INSN_UID (insn_info->insn));
check_for_inc_dec (insn_info->insn);
delete_insn (insn_info->insn);
spill_deleted++;
insn_info->insn = NULL;
}
}
if (insn_info->insn
&& INSN_P (insn_info->insn)
&& (!deleted))
{
scan_stores_spill (insn_info->store_rec, v, NULL);
scan_reads_spill (insn_info->read_rec, v, NULL);
}
insn_info = insn_info->prev_insn;
}
}
}
/*----------------------------------------------------------------------------
Sixth step.
Destroy everything left standing.
----------------------------------------------------------------------------*/
static void
dse_step6 (bool global_done)
{
unsigned int i;
group_info_t group;
basic_block bb;
if (global_done)
{
for (i = 0; VEC_iterate (group_info_t, rtx_group_vec, i, group); i++)
{
free (group->offset_map_n);
free (group->offset_map_p);
BITMAP_FREE (group->store1_n);
BITMAP_FREE (group->store1_p);
BITMAP_FREE (group->store2_n);
BITMAP_FREE (group->store2_p);
BITMAP_FREE (group->group_kill);
}
FOR_ALL_BB (bb)
{
bb_info_t bb_info = bb_table[bb->index];
BITMAP_FREE (bb_info->gen);
if (bb_info->kill)
BITMAP_FREE (bb_info->kill);
if (bb_info->in)
BITMAP_FREE (bb_info->in);
if (bb_info->out)
BITMAP_FREE (bb_info->out);
}
}
else
{
for (i = 0; VEC_iterate (group_info_t, rtx_group_vec, i, group); i++)
{
BITMAP_FREE (group->store1_n);
BITMAP_FREE (group->store1_p);
BITMAP_FREE (group->store2_n);
BITMAP_FREE (group->store2_p);
BITMAP_FREE (group->group_kill);
}
}
if (clear_alias_sets)
{
BITMAP_FREE (clear_alias_sets);
BITMAP_FREE (disqualified_clear_alias_sets);
free_alloc_pool (clear_alias_mode_pool);
htab_delete (clear_alias_mode_table);
}
end_alias_analysis ();
free (bb_table);
htab_delete (rtx_group_table);
VEC_free (group_info_t, heap, rtx_group_vec);
BITMAP_FREE (all_blocks);
BITMAP_FREE (scratch);
free_alloc_pool (rtx_store_info_pool);
free_alloc_pool (read_info_pool);
free_alloc_pool (insn_info_pool);
free_alloc_pool (bb_info_pool);
free_alloc_pool (rtx_group_info_pool);
free_alloc_pool (deferred_change_pool);
}
/* -------------------------------------------------------------------------
DSE
------------------------------------------------------------------------- */
/* Callback for running pass_rtl_dse. */
static unsigned int
rest_of_handle_dse (void)
{
bool did_global = false;
df_set_flags (DF_DEFER_INSN_RESCAN);
dse_step0 ();
dse_step1 ();
dse_step2_init ();
if (dse_step2_nospill ())
{
df_set_flags (DF_LR_RUN_DCE);
df_analyze ();
did_global = true;
if (dump_file)
fprintf (dump_file, "doing global processing\n");
dse_step3 (false);
dse_step4 ();
dse_step5_nospill ();
}
/* For the instance of dse that runs after reload, we make a special
pass to process the spills. These are special in that they are
totally transparent, i.e, there is no aliasing issues that need
to be considered. This means that the wild reads that kill
everything else do not apply here. */
if (clear_alias_sets && dse_step2_spill ())
{
if (!did_global)
{
df_set_flags (DF_LR_RUN_DCE);
df_analyze ();
}
did_global = true;
if (dump_file)
fprintf (dump_file, "doing global spill processing\n");
dse_step3 (true);
dse_step4 ();
dse_step5_spill ();
}
dse_step6 (did_global);
if (dump_file)
fprintf (dump_file, "dse: local deletions = %d, global deletions = %d, spill deletions = %d\n",
locally_deleted, globally_deleted, spill_deleted);
return 0;
}
static bool
gate_dse (void)
{
return gate_dse1 () || gate_dse2 ();
}
static bool
gate_dse1 (void)
{
return optimize > 0 && flag_dse
&& dbg_cnt (dse1);
}
static bool
gate_dse2 (void)
{
return optimize > 0 && flag_dse
&& dbg_cnt (dse2);
}
struct rtl_opt_pass pass_rtl_dse1 =
{
{
RTL_PASS,
"dse1", /* name */
gate_dse1, /* gate */
rest_of_handle_dse, /* execute */
NULL, /* sub */
NULL, /* next */
0, /* static_pass_number */
TV_DSE1, /* tv_id */
0, /* properties_required */
0, /* properties_provided */
0, /* properties_destroyed */
0, /* todo_flags_start */
TODO_dump_func |
TODO_df_finish | TODO_verify_rtl_sharing |
TODO_ggc_collect /* todo_flags_finish */
}
};
struct rtl_opt_pass pass_rtl_dse2 =
{
{
RTL_PASS,
"dse2", /* name */
gate_dse2, /* gate */
rest_of_handle_dse, /* execute */
NULL, /* sub */
NULL, /* next */
0, /* static_pass_number */
TV_DSE2, /* tv_id */
0, /* properties_required */
0, /* properties_provided */
0, /* properties_destroyed */
0, /* todo_flags_start */
TODO_dump_func |
TODO_df_finish | TODO_verify_rtl_sharing |
TODO_ggc_collect /* todo_flags_finish */
}
};
|