summaryrefslogtreecommitdiff
path: root/gcc/emit-rtl.c
blob: aa95f68c166f2dbbb8ca07960d563c38037cef84 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
/* Emit RTL for the GCC expander.
   Copyright (C) 1987-2014 Free Software Foundation, Inc.

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.

GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3.  If not see
<http://www.gnu.org/licenses/>.  */


/* Middle-to-low level generation of rtx code and insns.

   This file contains support functions for creating rtl expressions
   and manipulating them in the doubly-linked chain of insns.

   The patterns of the insns are created by machine-dependent
   routines in insn-emit.c, which is generated automatically from
   the machine description.  These routines make the individual rtx's
   of the pattern with `gen_rtx_fmt_ee' and others in genrtl.[ch],
   which are automatically generated from rtl.def; what is machine
   dependent is the kind of rtx's they make and what arguments they
   use.  */

#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "diagnostic-core.h"
#include "rtl.h"
#include "tree.h"
#include "varasm.h"
#include "basic-block.h"
#include "tree-eh.h"
#include "tm_p.h"
#include "flags.h"
#include "hashtab.h"
#include "hash-set.h"
#include "vec.h"
#include "machmode.h"
#include "hard-reg-set.h"
#include "input.h"
#include "function.h"
#include "stringpool.h"
#include "expr.h"
#include "regs.h"
#include "insn-config.h"
#include "recog.h"
#include "bitmap.h"
#include "debug.h"
#include "langhooks.h"
#include "df.h"
#include "params.h"
#include "target.h"
#include "builtins.h"
#include "rtl-iter.h"

struct target_rtl default_target_rtl;
#if SWITCHABLE_TARGET
struct target_rtl *this_target_rtl = &default_target_rtl;
#endif

#define initial_regno_reg_rtx (this_target_rtl->x_initial_regno_reg_rtx)

/* Commonly used modes.  */

enum machine_mode byte_mode;	/* Mode whose width is BITS_PER_UNIT.  */
enum machine_mode word_mode;	/* Mode whose width is BITS_PER_WORD.  */
enum machine_mode double_mode;	/* Mode whose width is DOUBLE_TYPE_SIZE.  */
enum machine_mode ptr_mode;	/* Mode whose width is POINTER_SIZE.  */

/* Datastructures maintained for currently processed function in RTL form.  */

struct rtl_data x_rtl;

/* Indexed by pseudo register number, gives the rtx for that pseudo.
   Allocated in parallel with regno_pointer_align.
   FIXME: We could put it into emit_status struct, but gengtype is not able to deal
   with length attribute nested in top level structures.  */

rtx * regno_reg_rtx;

/* This is *not* reset after each function.  It gives each CODE_LABEL
   in the entire compilation a unique label number.  */

static GTY(()) int label_num = 1;

/* We record floating-point CONST_DOUBLEs in each floating-point mode for
   the values of 0, 1, and 2.  For the integer entries and VOIDmode, we
   record a copy of const[012]_rtx and constm1_rtx.  CONSTM1_RTX
   is set only for MODE_INT and MODE_VECTOR_INT modes.  */

rtx const_tiny_rtx[4][(int) MAX_MACHINE_MODE];

rtx const_true_rtx;

REAL_VALUE_TYPE dconst0;
REAL_VALUE_TYPE dconst1;
REAL_VALUE_TYPE dconst2;
REAL_VALUE_TYPE dconstm1;
REAL_VALUE_TYPE dconsthalf;

/* Record fixed-point constant 0 and 1.  */
FIXED_VALUE_TYPE fconst0[MAX_FCONST0];
FIXED_VALUE_TYPE fconst1[MAX_FCONST1];

/* We make one copy of (const_int C) where C is in
   [- MAX_SAVED_CONST_INT, MAX_SAVED_CONST_INT]
   to save space during the compilation and simplify comparisons of
   integers.  */

rtx const_int_rtx[MAX_SAVED_CONST_INT * 2 + 1];

/* Standard pieces of rtx, to be substituted directly into things.  */
rtx pc_rtx;
rtx ret_rtx;
rtx simple_return_rtx;
rtx cc0_rtx;

/* A hash table storing CONST_INTs whose absolute value is greater
   than MAX_SAVED_CONST_INT.  */

static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
     htab_t const_int_htab;

static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
     htab_t const_wide_int_htab;

/* A hash table storing register attribute structures.  */
static GTY ((if_marked ("ggc_marked_p"), param_is (struct reg_attrs)))
     htab_t reg_attrs_htab;

/* A hash table storing all CONST_DOUBLEs.  */
static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
     htab_t const_double_htab;

/* A hash table storing all CONST_FIXEDs.  */
static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
     htab_t const_fixed_htab;

#define cur_insn_uid (crtl->emit.x_cur_insn_uid)
#define cur_debug_insn_uid (crtl->emit.x_cur_debug_insn_uid)
#define first_label_num (crtl->emit.x_first_label_num)

static void set_used_decls (tree);
static void mark_label_nuses (rtx);
static hashval_t const_int_htab_hash (const void *);
static int const_int_htab_eq (const void *, const void *);
#if TARGET_SUPPORTS_WIDE_INT
static hashval_t const_wide_int_htab_hash (const void *);
static int const_wide_int_htab_eq (const void *, const void *);
static rtx lookup_const_wide_int (rtx);
#endif
static hashval_t const_double_htab_hash (const void *);
static int const_double_htab_eq (const void *, const void *);
static rtx lookup_const_double (rtx);
static hashval_t const_fixed_htab_hash (const void *);
static int const_fixed_htab_eq (const void *, const void *);
static rtx lookup_const_fixed (rtx);
static hashval_t reg_attrs_htab_hash (const void *);
static int reg_attrs_htab_eq (const void *, const void *);
static reg_attrs *get_reg_attrs (tree, int);
static rtx gen_const_vector (enum machine_mode, int);
static void copy_rtx_if_shared_1 (rtx *orig);

/* Probability of the conditional branch currently proceeded by try_split.
   Set to -1 otherwise.  */
int split_branch_probability = -1;

/* Returns a hash code for X (which is a really a CONST_INT).  */

static hashval_t
const_int_htab_hash (const void *x)
{
  return (hashval_t) INTVAL ((const_rtx) x);
}

/* Returns nonzero if the value represented by X (which is really a
   CONST_INT) is the same as that given by Y (which is really a
   HOST_WIDE_INT *).  */

static int
const_int_htab_eq (const void *x, const void *y)
{
  return (INTVAL ((const_rtx) x) == *((const HOST_WIDE_INT *) y));
}

#if TARGET_SUPPORTS_WIDE_INT
/* Returns a hash code for X (which is a really a CONST_WIDE_INT).  */

static hashval_t
const_wide_int_htab_hash (const void *x)
{
  int i;
  HOST_WIDE_INT hash = 0;
  const_rtx xr = (const_rtx) x;

  for (i = 0; i < CONST_WIDE_INT_NUNITS (xr); i++)
    hash += CONST_WIDE_INT_ELT (xr, i);

  return (hashval_t) hash;
}

/* Returns nonzero if the value represented by X (which is really a
   CONST_WIDE_INT) is the same as that given by Y (which is really a
   CONST_WIDE_INT).  */

static int
const_wide_int_htab_eq (const void *x, const void *y)
{
  int i;
  const_rtx xr = (const_rtx) x;
  const_rtx yr = (const_rtx) y;
  if (CONST_WIDE_INT_NUNITS (xr) != CONST_WIDE_INT_NUNITS (yr))
    return 0;

  for (i = 0; i < CONST_WIDE_INT_NUNITS (xr); i++)
    if (CONST_WIDE_INT_ELT (xr, i) != CONST_WIDE_INT_ELT (yr, i))
      return 0;

  return 1;
}
#endif

/* Returns a hash code for X (which is really a CONST_DOUBLE).  */
static hashval_t
const_double_htab_hash (const void *x)
{
  const_rtx const value = (const_rtx) x;
  hashval_t h;

  if (TARGET_SUPPORTS_WIDE_INT == 0 && GET_MODE (value) == VOIDmode)
    h = CONST_DOUBLE_LOW (value) ^ CONST_DOUBLE_HIGH (value);
  else
    {
      h = real_hash (CONST_DOUBLE_REAL_VALUE (value));
      /* MODE is used in the comparison, so it should be in the hash.  */
      h ^= GET_MODE (value);
    }
  return h;
}

/* Returns nonzero if the value represented by X (really a ...)
   is the same as that represented by Y (really a ...) */
static int
const_double_htab_eq (const void *x, const void *y)
{
  const_rtx const a = (const_rtx)x, b = (const_rtx)y;

  if (GET_MODE (a) != GET_MODE (b))
    return 0;
  if (TARGET_SUPPORTS_WIDE_INT == 0 && GET_MODE (a) == VOIDmode)
    return (CONST_DOUBLE_LOW (a) == CONST_DOUBLE_LOW (b)
	    && CONST_DOUBLE_HIGH (a) == CONST_DOUBLE_HIGH (b));
  else
    return real_identical (CONST_DOUBLE_REAL_VALUE (a),
			   CONST_DOUBLE_REAL_VALUE (b));
}

/* Returns a hash code for X (which is really a CONST_FIXED).  */

static hashval_t
const_fixed_htab_hash (const void *x)
{
  const_rtx const value = (const_rtx) x;
  hashval_t h;

  h = fixed_hash (CONST_FIXED_VALUE (value));
  /* MODE is used in the comparison, so it should be in the hash.  */
  h ^= GET_MODE (value);
  return h;
}

/* Returns nonzero if the value represented by X (really a ...)
   is the same as that represented by Y (really a ...).  */

static int
const_fixed_htab_eq (const void *x, const void *y)
{
  const_rtx const a = (const_rtx) x, b = (const_rtx) y;

  if (GET_MODE (a) != GET_MODE (b))
    return 0;
  return fixed_identical (CONST_FIXED_VALUE (a), CONST_FIXED_VALUE (b));
}

/* Return true if the given memory attributes are equal.  */

bool
mem_attrs_eq_p (const struct mem_attrs *p, const struct mem_attrs *q)
{
  if (p == q)
    return true;
  if (!p || !q)
    return false;
  return (p->alias == q->alias
	  && p->offset_known_p == q->offset_known_p
	  && (!p->offset_known_p || p->offset == q->offset)
	  && p->size_known_p == q->size_known_p
	  && (!p->size_known_p || p->size == q->size)
	  && p->align == q->align
	  && p->addrspace == q->addrspace
	  && (p->expr == q->expr
	      || (p->expr != NULL_TREE && q->expr != NULL_TREE
		  && operand_equal_p (p->expr, q->expr, 0))));
}

/* Set MEM's memory attributes so that they are the same as ATTRS.  */

static void
set_mem_attrs (rtx mem, mem_attrs *attrs)
{
  /* If everything is the default, we can just clear the attributes.  */
  if (mem_attrs_eq_p (attrs, mode_mem_attrs[(int) GET_MODE (mem)]))
    {
      MEM_ATTRS (mem) = 0;
      return;
    }

  if (!MEM_ATTRS (mem)
      || !mem_attrs_eq_p (attrs, MEM_ATTRS (mem)))
    {
      MEM_ATTRS (mem) = ggc_alloc<mem_attrs> ();
      memcpy (MEM_ATTRS (mem), attrs, sizeof (mem_attrs));
    }
}

/* Returns a hash code for X (which is a really a reg_attrs *).  */

static hashval_t
reg_attrs_htab_hash (const void *x)
{
  const reg_attrs *const p = (const reg_attrs *) x;

  return ((p->offset * 1000) ^ (intptr_t) p->decl);
}

/* Returns nonzero if the value represented by X (which is really a
   reg_attrs *) is the same as that given by Y (which is also really a
   reg_attrs *).  */

static int
reg_attrs_htab_eq (const void *x, const void *y)
{
  const reg_attrs *const p = (const reg_attrs *) x;
  const reg_attrs *const q = (const reg_attrs *) y;

  return (p->decl == q->decl && p->offset == q->offset);
}
/* Allocate a new reg_attrs structure and insert it into the hash table if
   one identical to it is not already in the table.  We are doing this for
   MEM of mode MODE.  */

static reg_attrs *
get_reg_attrs (tree decl, int offset)
{
  reg_attrs attrs;
  void **slot;

  /* If everything is the default, we can just return zero.  */
  if (decl == 0 && offset == 0)
    return 0;

  attrs.decl = decl;
  attrs.offset = offset;

  slot = htab_find_slot (reg_attrs_htab, &attrs, INSERT);
  if (*slot == 0)
    {
      *slot = ggc_alloc<reg_attrs> ();
      memcpy (*slot, &attrs, sizeof (reg_attrs));
    }

  return (reg_attrs *) *slot;
}


#if !HAVE_blockage
/* Generate an empty ASM_INPUT, which is used to block attempts to schedule,
   and to block register equivalences to be seen across this insn.  */

rtx
gen_blockage (void)
{
  rtx x = gen_rtx_ASM_INPUT (VOIDmode, "");
  MEM_VOLATILE_P (x) = true;
  return x;
}
#endif


/* Generate a new REG rtx.  Make sure ORIGINAL_REGNO is set properly, and
   don't attempt to share with the various global pieces of rtl (such as
   frame_pointer_rtx).  */

rtx
gen_raw_REG (enum machine_mode mode, int regno)
{
  rtx x = gen_rtx_raw_REG (mode, regno);
  ORIGINAL_REGNO (x) = regno;
  return x;
}

/* There are some RTL codes that require special attention; the generation
   functions do the raw handling.  If you add to this list, modify
   special_rtx in gengenrtl.c as well.  */

rtx_expr_list *
gen_rtx_EXPR_LIST (enum machine_mode mode, rtx expr, rtx expr_list)
{
  return as_a <rtx_expr_list *> (gen_rtx_fmt_ee (EXPR_LIST, mode, expr,
						 expr_list));
}

rtx_insn_list *
gen_rtx_INSN_LIST (enum machine_mode mode, rtx insn, rtx insn_list)
{
  return as_a <rtx_insn_list *> (gen_rtx_fmt_ue (INSN_LIST, mode, insn,
						 insn_list));
}

rtx_insn *
gen_rtx_INSN (enum machine_mode mode, rtx_insn *prev_insn, rtx_insn *next_insn,
	      basic_block bb, rtx pattern, int location, int code,
	      rtx reg_notes)
{
  return as_a <rtx_insn *> (gen_rtx_fmt_uuBeiie (INSN, mode,
						 prev_insn, next_insn,
						 bb, pattern, location, code,
						 reg_notes));
}

rtx
gen_rtx_CONST_INT (enum machine_mode mode ATTRIBUTE_UNUSED, HOST_WIDE_INT arg)
{
  void **slot;

  if (arg >= - MAX_SAVED_CONST_INT && arg <= MAX_SAVED_CONST_INT)
    return const_int_rtx[arg + MAX_SAVED_CONST_INT];

#if STORE_FLAG_VALUE != 1 && STORE_FLAG_VALUE != -1
  if (const_true_rtx && arg == STORE_FLAG_VALUE)
    return const_true_rtx;
#endif

  /* Look up the CONST_INT in the hash table.  */
  slot = htab_find_slot_with_hash (const_int_htab, &arg,
				   (hashval_t) arg, INSERT);
  if (*slot == 0)
    *slot = gen_rtx_raw_CONST_INT (VOIDmode, arg);

  return (rtx) *slot;
}

rtx
gen_int_mode (HOST_WIDE_INT c, enum machine_mode mode)
{
  return GEN_INT (trunc_int_for_mode (c, mode));
}

/* CONST_DOUBLEs might be created from pairs of integers, or from
   REAL_VALUE_TYPEs.  Also, their length is known only at run time,
   so we cannot use gen_rtx_raw_CONST_DOUBLE.  */

/* Determine whether REAL, a CONST_DOUBLE, already exists in the
   hash table.  If so, return its counterpart; otherwise add it
   to the hash table and return it.  */
static rtx
lookup_const_double (rtx real)
{
  void **slot = htab_find_slot (const_double_htab, real, INSERT);
  if (*slot == 0)
    *slot = real;

  return (rtx) *slot;
}

/* Return a CONST_DOUBLE rtx for a floating-point value specified by
   VALUE in mode MODE.  */
rtx
const_double_from_real_value (REAL_VALUE_TYPE value, enum machine_mode mode)
{
  rtx real = rtx_alloc (CONST_DOUBLE);
  PUT_MODE (real, mode);

  real->u.rv = value;

  return lookup_const_double (real);
}

/* Determine whether FIXED, a CONST_FIXED, already exists in the
   hash table.  If so, return its counterpart; otherwise add it
   to the hash table and return it.  */

static rtx
lookup_const_fixed (rtx fixed)
{
  void **slot = htab_find_slot (const_fixed_htab, fixed, INSERT);
  if (*slot == 0)
    *slot = fixed;

  return (rtx) *slot;
}

/* Return a CONST_FIXED rtx for a fixed-point value specified by
   VALUE in mode MODE.  */

rtx
const_fixed_from_fixed_value (FIXED_VALUE_TYPE value, enum machine_mode mode)
{
  rtx fixed = rtx_alloc (CONST_FIXED);
  PUT_MODE (fixed, mode);

  fixed->u.fv = value;

  return lookup_const_fixed (fixed);
}

#if TARGET_SUPPORTS_WIDE_INT == 0
/* Constructs double_int from rtx CST.  */

double_int
rtx_to_double_int (const_rtx cst)
{
  double_int r;

  if (CONST_INT_P (cst))
      r = double_int::from_shwi (INTVAL (cst));
  else if (CONST_DOUBLE_AS_INT_P (cst))
    {
      r.low = CONST_DOUBLE_LOW (cst);
      r.high = CONST_DOUBLE_HIGH (cst);
    }
  else
    gcc_unreachable ();
  
  return r;
}
#endif

#if TARGET_SUPPORTS_WIDE_INT
/* Determine whether CONST_WIDE_INT WINT already exists in the hash table.
   If so, return its counterpart; otherwise add it to the hash table and
   return it.  */

static rtx
lookup_const_wide_int (rtx wint)
{
  void **slot = htab_find_slot (const_wide_int_htab, wint, INSERT);
  if (*slot == 0)
    *slot = wint;

  return (rtx) *slot;
}
#endif

/* Return an rtx constant for V, given that the constant has mode MODE.
   The returned rtx will be a CONST_INT if V fits, otherwise it will be
   a CONST_DOUBLE (if !TARGET_SUPPORTS_WIDE_INT) or a CONST_WIDE_INT
   (if TARGET_SUPPORTS_WIDE_INT).  */

rtx
immed_wide_int_const (const wide_int_ref &v, enum machine_mode mode)
{
  unsigned int len = v.get_len ();
  unsigned int prec = GET_MODE_PRECISION (mode);

  /* Allow truncation but not extension since we do not know if the
     number is signed or unsigned.  */
  gcc_assert (prec <= v.get_precision ());

  if (len < 2 || prec <= HOST_BITS_PER_WIDE_INT)
    return gen_int_mode (v.elt (0), mode);

#if TARGET_SUPPORTS_WIDE_INT
  {
    unsigned int i;
    rtx value;
    unsigned int blocks_needed
      = (prec + HOST_BITS_PER_WIDE_INT - 1) / HOST_BITS_PER_WIDE_INT;

    if (len > blocks_needed)
      len = blocks_needed;

    value = const_wide_int_alloc (len);

    /* It is so tempting to just put the mode in here.  Must control
       myself ... */
    PUT_MODE (value, VOIDmode);
    CWI_PUT_NUM_ELEM (value, len);

    for (i = 0; i < len; i++)
      CONST_WIDE_INT_ELT (value, i) = v.elt (i);

    return lookup_const_wide_int (value);
  }
#else
  return immed_double_const (v.elt (0), v.elt (1), mode);
#endif
}

#if TARGET_SUPPORTS_WIDE_INT == 0
/* Return a CONST_DOUBLE or CONST_INT for a value specified as a pair
   of ints: I0 is the low-order word and I1 is the high-order word.
   For values that are larger than HOST_BITS_PER_DOUBLE_INT, the
   implied upper bits are copies of the high bit of i1.  The value
   itself is neither signed nor unsigned.  Do not use this routine for
   non-integer modes; convert to REAL_VALUE_TYPE and use
   CONST_DOUBLE_FROM_REAL_VALUE.  */

rtx
immed_double_const (HOST_WIDE_INT i0, HOST_WIDE_INT i1, enum machine_mode mode)
{
  rtx value;
  unsigned int i;

  /* There are the following cases (note that there are no modes with
     HOST_BITS_PER_WIDE_INT < GET_MODE_BITSIZE (mode) < HOST_BITS_PER_DOUBLE_INT):

     1) If GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT, then we use
	gen_int_mode.
     2) If the value of the integer fits into HOST_WIDE_INT anyway
        (i.e., i1 consists only from copies of the sign bit, and sign
	of i0 and i1 are the same), then we return a CONST_INT for i0.
     3) Otherwise, we create a CONST_DOUBLE for i0 and i1.  */
  if (mode != VOIDmode)
    {
      gcc_assert (GET_MODE_CLASS (mode) == MODE_INT
		  || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT
		  /* We can get a 0 for an error mark.  */
		  || GET_MODE_CLASS (mode) == MODE_VECTOR_INT
		  || GET_MODE_CLASS (mode) == MODE_VECTOR_FLOAT);

      if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
	return gen_int_mode (i0, mode);
    }

  /* If this integer fits in one word, return a CONST_INT.  */
  if ((i1 == 0 && i0 >= 0) || (i1 == ~0 && i0 < 0))
    return GEN_INT (i0);

  /* We use VOIDmode for integers.  */
  value = rtx_alloc (CONST_DOUBLE);
  PUT_MODE (value, VOIDmode);

  CONST_DOUBLE_LOW (value) = i0;
  CONST_DOUBLE_HIGH (value) = i1;

  for (i = 2; i < (sizeof CONST_DOUBLE_FORMAT - 1); i++)
    XWINT (value, i) = 0;

  return lookup_const_double (value);
}
#endif

rtx
gen_rtx_REG (enum machine_mode mode, unsigned int regno)
{
  /* In case the MD file explicitly references the frame pointer, have
     all such references point to the same frame pointer.  This is
     used during frame pointer elimination to distinguish the explicit
     references to these registers from pseudos that happened to be
     assigned to them.

     If we have eliminated the frame pointer or arg pointer, we will
     be using it as a normal register, for example as a spill
     register.  In such cases, we might be accessing it in a mode that
     is not Pmode and therefore cannot use the pre-allocated rtx.

     Also don't do this when we are making new REGs in reload, since
     we don't want to get confused with the real pointers.  */

  if (mode == Pmode && !reload_in_progress && !lra_in_progress)
    {
      if (regno == FRAME_POINTER_REGNUM
	  && (!reload_completed || frame_pointer_needed))
	return frame_pointer_rtx;
#if !HARD_FRAME_POINTER_IS_FRAME_POINTER
      if (regno == HARD_FRAME_POINTER_REGNUM
	  && (!reload_completed || frame_pointer_needed))
	return hard_frame_pointer_rtx;
#endif
#if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM && !HARD_FRAME_POINTER_IS_ARG_POINTER
      if (regno == ARG_POINTER_REGNUM)
	return arg_pointer_rtx;
#endif
#ifdef RETURN_ADDRESS_POINTER_REGNUM
      if (regno == RETURN_ADDRESS_POINTER_REGNUM)
	return return_address_pointer_rtx;
#endif
      if (regno == (unsigned) PIC_OFFSET_TABLE_REGNUM
	  && PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM
	  && fixed_regs[PIC_OFFSET_TABLE_REGNUM])
	return pic_offset_table_rtx;
      if (regno == STACK_POINTER_REGNUM)
	return stack_pointer_rtx;
    }

#if 0
  /* If the per-function register table has been set up, try to re-use
     an existing entry in that table to avoid useless generation of RTL.

     This code is disabled for now until we can fix the various backends
     which depend on having non-shared hard registers in some cases.   Long
     term we want to re-enable this code as it can significantly cut down
     on the amount of useless RTL that gets generated.

     We'll also need to fix some code that runs after reload that wants to
     set ORIGINAL_REGNO.  */

  if (cfun
      && cfun->emit
      && regno_reg_rtx
      && regno < FIRST_PSEUDO_REGISTER
      && reg_raw_mode[regno] == mode)
    return regno_reg_rtx[regno];
#endif

  return gen_raw_REG (mode, regno);
}

rtx
gen_rtx_MEM (enum machine_mode mode, rtx addr)
{
  rtx rt = gen_rtx_raw_MEM (mode, addr);

  /* This field is not cleared by the mere allocation of the rtx, so
     we clear it here.  */
  MEM_ATTRS (rt) = 0;

  return rt;
}

/* Generate a memory referring to non-trapping constant memory.  */

rtx
gen_const_mem (enum machine_mode mode, rtx addr)
{
  rtx mem = gen_rtx_MEM (mode, addr);
  MEM_READONLY_P (mem) = 1;
  MEM_NOTRAP_P (mem) = 1;
  return mem;
}

/* Generate a MEM referring to fixed portions of the frame, e.g., register
   save areas.  */

rtx
gen_frame_mem (enum machine_mode mode, rtx addr)
{
  rtx mem = gen_rtx_MEM (mode, addr);
  MEM_NOTRAP_P (mem) = 1;
  set_mem_alias_set (mem, get_frame_alias_set ());
  return mem;
}

/* Generate a MEM referring to a temporary use of the stack, not part
    of the fixed stack frame.  For example, something which is pushed
    by a target splitter.  */
rtx
gen_tmp_stack_mem (enum machine_mode mode, rtx addr)
{
  rtx mem = gen_rtx_MEM (mode, addr);
  MEM_NOTRAP_P (mem) = 1;
  if (!cfun->calls_alloca)
    set_mem_alias_set (mem, get_frame_alias_set ());
  return mem;
}

/* We want to create (subreg:OMODE (obj:IMODE) OFFSET).  Return true if
   this construct would be valid, and false otherwise.  */

bool
validate_subreg (enum machine_mode omode, enum machine_mode imode,
		 const_rtx reg, unsigned int offset)
{
  unsigned int isize = GET_MODE_SIZE (imode);
  unsigned int osize = GET_MODE_SIZE (omode);

  /* All subregs must be aligned.  */
  if (offset % osize != 0)
    return false;

  /* The subreg offset cannot be outside the inner object.  */
  if (offset >= isize)
    return false;

  /* ??? This should not be here.  Temporarily continue to allow word_mode
     subregs of anything.  The most common offender is (subreg:SI (reg:DF)).
     Generally, backends are doing something sketchy but it'll take time to
     fix them all.  */
  if (omode == word_mode)
    ;
  /* ??? Similarly, e.g. with (subreg:DF (reg:TI)).  Though store_bit_field
     is the culprit here, and not the backends.  */
  else if (osize >= UNITS_PER_WORD && isize >= osize)
    ;
  /* Allow component subregs of complex and vector.  Though given the below
     extraction rules, it's not always clear what that means.  */
  else if ((COMPLEX_MODE_P (imode) || VECTOR_MODE_P (imode))
	   && GET_MODE_INNER (imode) == omode)
    ;
  /* ??? x86 sse code makes heavy use of *paradoxical* vector subregs,
     i.e. (subreg:V4SF (reg:SF) 0).  This surely isn't the cleanest way to
     represent this.  It's questionable if this ought to be represented at
     all -- why can't this all be hidden in post-reload splitters that make
     arbitrarily mode changes to the registers themselves.  */
  else if (VECTOR_MODE_P (omode) && GET_MODE_INNER (omode) == imode)
    ;
  /* Subregs involving floating point modes are not allowed to
     change size.  Therefore (subreg:DI (reg:DF) 0) is fine, but
     (subreg:SI (reg:DF) 0) isn't.  */
  else if (FLOAT_MODE_P (imode) || FLOAT_MODE_P (omode))
    {
      if (! (isize == osize
	     /* LRA can use subreg to store a floating point value in
		an integer mode.  Although the floating point and the
		integer modes need the same number of hard registers,
		the size of floating point mode can be less than the
		integer mode.  LRA also uses subregs for a register
		should be used in different mode in on insn.  */
	     || lra_in_progress))
	return false;
    }

  /* Paradoxical subregs must have offset zero.  */
  if (osize > isize)
    return offset == 0;

  /* This is a normal subreg.  Verify that the offset is representable.  */

  /* For hard registers, we already have most of these rules collected in
     subreg_offset_representable_p.  */
  if (reg && REG_P (reg) && HARD_REGISTER_P (reg))
    {
      unsigned int regno = REGNO (reg);

#ifdef CANNOT_CHANGE_MODE_CLASS
      if ((COMPLEX_MODE_P (imode) || VECTOR_MODE_P (imode))
	  && GET_MODE_INNER (imode) == omode)
	;
      else if (REG_CANNOT_CHANGE_MODE_P (regno, imode, omode))
	return false;
#endif

      return subreg_offset_representable_p (regno, imode, offset, omode);
    }

  /* For pseudo registers, we want most of the same checks.  Namely:
     If the register no larger than a word, the subreg must be lowpart.
     If the register is larger than a word, the subreg must be the lowpart
     of a subword.  A subreg does *not* perform arbitrary bit extraction.
     Given that we've already checked mode/offset alignment, we only have
     to check subword subregs here.  */
  if (osize < UNITS_PER_WORD
      && ! (lra_in_progress && (FLOAT_MODE_P (imode) || FLOAT_MODE_P (omode))))
    {
      enum machine_mode wmode = isize > UNITS_PER_WORD ? word_mode : imode;
      unsigned int low_off = subreg_lowpart_offset (omode, wmode);
      if (offset % UNITS_PER_WORD != low_off)
	return false;
    }
  return true;
}

rtx
gen_rtx_SUBREG (enum machine_mode mode, rtx reg, int offset)
{
  gcc_assert (validate_subreg (mode, GET_MODE (reg), reg, offset));
  return gen_rtx_raw_SUBREG (mode, reg, offset);
}

/* Generate a SUBREG representing the least-significant part of REG if MODE
   is smaller than mode of REG, otherwise paradoxical SUBREG.  */

rtx
gen_lowpart_SUBREG (enum machine_mode mode, rtx reg)
{
  enum machine_mode inmode;

  inmode = GET_MODE (reg);
  if (inmode == VOIDmode)
    inmode = mode;
  return gen_rtx_SUBREG (mode, reg,
			 subreg_lowpart_offset (mode, inmode));
}

rtx
gen_rtx_VAR_LOCATION (enum machine_mode mode, tree decl, rtx loc,
		      enum var_init_status status)
{
  rtx x = gen_rtx_fmt_te (VAR_LOCATION, mode, decl, loc);
  PAT_VAR_LOCATION_STATUS (x) = status;
  return x;
}


/* Create an rtvec and stores within it the RTXen passed in the arguments.  */

rtvec
gen_rtvec (int n, ...)
{
  int i;
  rtvec rt_val;
  va_list p;

  va_start (p, n);

  /* Don't allocate an empty rtvec...  */
  if (n == 0)
    {
      va_end (p);
      return NULL_RTVEC;
    }

  rt_val = rtvec_alloc (n);

  for (i = 0; i < n; i++)
    rt_val->elem[i] = va_arg (p, rtx);

  va_end (p);
  return rt_val;
}

rtvec
gen_rtvec_v (int n, rtx *argp)
{
  int i;
  rtvec rt_val;

  /* Don't allocate an empty rtvec...  */
  if (n == 0)
    return NULL_RTVEC;

  rt_val = rtvec_alloc (n);

  for (i = 0; i < n; i++)
    rt_val->elem[i] = *argp++;

  return rt_val;
}

rtvec
gen_rtvec_v (int n, rtx_insn **argp)
{
  int i;
  rtvec rt_val;

  /* Don't allocate an empty rtvec...  */
  if (n == 0)
    return NULL_RTVEC;

  rt_val = rtvec_alloc (n);

  for (i = 0; i < n; i++)
    rt_val->elem[i] = *argp++;

  return rt_val;
}


/* Return the number of bytes between the start of an OUTER_MODE
   in-memory value and the start of an INNER_MODE in-memory value,
   given that the former is a lowpart of the latter.  It may be a
   paradoxical lowpart, in which case the offset will be negative
   on big-endian targets.  */

int
byte_lowpart_offset (enum machine_mode outer_mode,
		     enum machine_mode inner_mode)
{
  if (GET_MODE_SIZE (outer_mode) < GET_MODE_SIZE (inner_mode))
    return subreg_lowpart_offset (outer_mode, inner_mode);
  else
    return -subreg_lowpart_offset (inner_mode, outer_mode);
}

/* Generate a REG rtx for a new pseudo register of mode MODE.
   This pseudo is assigned the next sequential register number.  */

rtx
gen_reg_rtx (enum machine_mode mode)
{
  rtx val;
  unsigned int align = GET_MODE_ALIGNMENT (mode);

  gcc_assert (can_create_pseudo_p ());

  /* If a virtual register with bigger mode alignment is generated,
     increase stack alignment estimation because it might be spilled
     to stack later.  */
  if (SUPPORTS_STACK_ALIGNMENT
      && crtl->stack_alignment_estimated < align
      && !crtl->stack_realign_processed)
    {
      unsigned int min_align = MINIMUM_ALIGNMENT (NULL, mode, align);
      if (crtl->stack_alignment_estimated < min_align)
	crtl->stack_alignment_estimated = min_align;
    }

  if (generating_concat_p
      && (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
	  || GET_MODE_CLASS (mode) == MODE_COMPLEX_INT))
    {
      /* For complex modes, don't make a single pseudo.
	 Instead, make a CONCAT of two pseudos.
	 This allows noncontiguous allocation of the real and imaginary parts,
	 which makes much better code.  Besides, allocating DCmode
	 pseudos overstrains reload on some machines like the 386.  */
      rtx realpart, imagpart;
      enum machine_mode partmode = GET_MODE_INNER (mode);

      realpart = gen_reg_rtx (partmode);
      imagpart = gen_reg_rtx (partmode);
      return gen_rtx_CONCAT (mode, realpart, imagpart);
    }

  /* Do not call gen_reg_rtx with uninitialized crtl.  */
  gcc_assert (crtl->emit.regno_pointer_align_length);

  /* Make sure regno_pointer_align, and regno_reg_rtx are large
     enough to have an element for this pseudo reg number.  */

  if (reg_rtx_no == crtl->emit.regno_pointer_align_length)
    {
      int old_size = crtl->emit.regno_pointer_align_length;
      char *tmp;
      rtx *new1;

      tmp = XRESIZEVEC (char, crtl->emit.regno_pointer_align, old_size * 2);
      memset (tmp + old_size, 0, old_size);
      crtl->emit.regno_pointer_align = (unsigned char *) tmp;

      new1 = GGC_RESIZEVEC (rtx, regno_reg_rtx, old_size * 2);
      memset (new1 + old_size, 0, old_size * sizeof (rtx));
      regno_reg_rtx = new1;

      crtl->emit.regno_pointer_align_length = old_size * 2;
    }

  val = gen_raw_REG (mode, reg_rtx_no);
  regno_reg_rtx[reg_rtx_no++] = val;
  return val;
}

/* Return TRUE if REG is a PARM_DECL, FALSE otherwise.  */

bool
reg_is_parm_p (rtx reg)
{
  tree decl;

  gcc_assert (REG_P (reg));
  decl = REG_EXPR (reg);
  return (decl && TREE_CODE (decl) == PARM_DECL);
}

/* Update NEW with the same attributes as REG, but with OFFSET added
   to the REG_OFFSET.  */

static void
update_reg_offset (rtx new_rtx, rtx reg, int offset)
{
  REG_ATTRS (new_rtx) = get_reg_attrs (REG_EXPR (reg),
				   REG_OFFSET (reg) + offset);
}

/* Generate a register with same attributes as REG, but with OFFSET
   added to the REG_OFFSET.  */

rtx
gen_rtx_REG_offset (rtx reg, enum machine_mode mode, unsigned int regno,
		    int offset)
{
  rtx new_rtx = gen_rtx_REG (mode, regno);

  update_reg_offset (new_rtx, reg, offset);
  return new_rtx;
}

/* Generate a new pseudo-register with the same attributes as REG, but
   with OFFSET added to the REG_OFFSET.  */

rtx
gen_reg_rtx_offset (rtx reg, enum machine_mode mode, int offset)
{
  rtx new_rtx = gen_reg_rtx (mode);

  update_reg_offset (new_rtx, reg, offset);
  return new_rtx;
}

/* Adjust REG in-place so that it has mode MODE.  It is assumed that the
   new register is a (possibly paradoxical) lowpart of the old one.  */

void
adjust_reg_mode (rtx reg, enum machine_mode mode)
{
  update_reg_offset (reg, reg, byte_lowpart_offset (mode, GET_MODE (reg)));
  PUT_MODE (reg, mode);
}

/* Copy REG's attributes from X, if X has any attributes.  If REG and X
   have different modes, REG is a (possibly paradoxical) lowpart of X.  */

void
set_reg_attrs_from_value (rtx reg, rtx x)
{
  int offset;
  bool can_be_reg_pointer = true;

  /* Don't call mark_reg_pointer for incompatible pointer sign
     extension.  */
  while (GET_CODE (x) == SIGN_EXTEND
	 || GET_CODE (x) == ZERO_EXTEND
	 || GET_CODE (x) == TRUNCATE
	 || (GET_CODE (x) == SUBREG && subreg_lowpart_p (x)))
    {
#if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
      if ((GET_CODE (x) == SIGN_EXTEND && POINTERS_EXTEND_UNSIGNED)
	  || (GET_CODE (x) != SIGN_EXTEND && ! POINTERS_EXTEND_UNSIGNED))
	can_be_reg_pointer = false;
#endif
      x = XEXP (x, 0);
    }

  /* Hard registers can be reused for multiple purposes within the same
     function, so setting REG_ATTRS, REG_POINTER and REG_POINTER_ALIGN
     on them is wrong.  */
  if (HARD_REGISTER_P (reg))
    return;

  offset = byte_lowpart_offset (GET_MODE (reg), GET_MODE (x));
  if (MEM_P (x))
    {
      if (MEM_OFFSET_KNOWN_P (x))
	REG_ATTRS (reg) = get_reg_attrs (MEM_EXPR (x),
					 MEM_OFFSET (x) + offset);
      if (can_be_reg_pointer && MEM_POINTER (x))
	mark_reg_pointer (reg, 0);
    }
  else if (REG_P (x))
    {
      if (REG_ATTRS (x))
	update_reg_offset (reg, x, offset);
      if (can_be_reg_pointer && REG_POINTER (x))
	mark_reg_pointer (reg, REGNO_POINTER_ALIGN (REGNO (x)));
    }
}

/* Generate a REG rtx for a new pseudo register, copying the mode
   and attributes from X.  */

rtx
gen_reg_rtx_and_attrs (rtx x)
{
  rtx reg = gen_reg_rtx (GET_MODE (x));
  set_reg_attrs_from_value (reg, x);
  return reg;
}

/* Set the register attributes for registers contained in PARM_RTX.
   Use needed values from memory attributes of MEM.  */

void
set_reg_attrs_for_parm (rtx parm_rtx, rtx mem)
{
  if (REG_P (parm_rtx))
    set_reg_attrs_from_value (parm_rtx, mem);
  else if (GET_CODE (parm_rtx) == PARALLEL)
    {
      /* Check for a NULL entry in the first slot, used to indicate that the
	 parameter goes both on the stack and in registers.  */
      int i = XEXP (XVECEXP (parm_rtx, 0, 0), 0) ? 0 : 1;
      for (; i < XVECLEN (parm_rtx, 0); i++)
	{
	  rtx x = XVECEXP (parm_rtx, 0, i);
	  if (REG_P (XEXP (x, 0)))
	    REG_ATTRS (XEXP (x, 0))
	      = get_reg_attrs (MEM_EXPR (mem),
			       INTVAL (XEXP (x, 1)));
	}
    }
}

/* Set the REG_ATTRS for registers in value X, given that X represents
   decl T.  */

void
set_reg_attrs_for_decl_rtl (tree t, rtx x)
{
  if (GET_CODE (x) == SUBREG)
    {
      gcc_assert (subreg_lowpart_p (x));
      x = SUBREG_REG (x);
    }
  if (REG_P (x))
    REG_ATTRS (x)
      = get_reg_attrs (t, byte_lowpart_offset (GET_MODE (x),
					       DECL_MODE (t)));
  if (GET_CODE (x) == CONCAT)
    {
      if (REG_P (XEXP (x, 0)))
        REG_ATTRS (XEXP (x, 0)) = get_reg_attrs (t, 0);
      if (REG_P (XEXP (x, 1)))
	REG_ATTRS (XEXP (x, 1))
	  = get_reg_attrs (t, GET_MODE_UNIT_SIZE (GET_MODE (XEXP (x, 0))));
    }
  if (GET_CODE (x) == PARALLEL)
    {
      int i, start;

      /* Check for a NULL entry, used to indicate that the parameter goes
	 both on the stack and in registers.  */
      if (XEXP (XVECEXP (x, 0, 0), 0))
	start = 0;
      else
	start = 1;

      for (i = start; i < XVECLEN (x, 0); i++)
	{
	  rtx y = XVECEXP (x, 0, i);
	  if (REG_P (XEXP (y, 0)))
	    REG_ATTRS (XEXP (y, 0)) = get_reg_attrs (t, INTVAL (XEXP (y, 1)));
	}
    }
}

/* Assign the RTX X to declaration T.  */

void
set_decl_rtl (tree t, rtx x)
{
  DECL_WRTL_CHECK (t)->decl_with_rtl.rtl = x;
  if (x)
    set_reg_attrs_for_decl_rtl (t, x);
}

/* Assign the RTX X to parameter declaration T.  BY_REFERENCE_P is true
   if the ABI requires the parameter to be passed by reference.  */

void
set_decl_incoming_rtl (tree t, rtx x, bool by_reference_p)
{
  DECL_INCOMING_RTL (t) = x;
  if (x && !by_reference_p)
    set_reg_attrs_for_decl_rtl (t, x);
}

/* Identify REG (which may be a CONCAT) as a user register.  */

void
mark_user_reg (rtx reg)
{
  if (GET_CODE (reg) == CONCAT)
    {
      REG_USERVAR_P (XEXP (reg, 0)) = 1;
      REG_USERVAR_P (XEXP (reg, 1)) = 1;
    }
  else
    {
      gcc_assert (REG_P (reg));
      REG_USERVAR_P (reg) = 1;
    }
}

/* Identify REG as a probable pointer register and show its alignment
   as ALIGN, if nonzero.  */

void
mark_reg_pointer (rtx reg, int align)
{
  if (! REG_POINTER (reg))
    {
      REG_POINTER (reg) = 1;

      if (align)
	REGNO_POINTER_ALIGN (REGNO (reg)) = align;
    }
  else if (align && align < REGNO_POINTER_ALIGN (REGNO (reg)))
    /* We can no-longer be sure just how aligned this pointer is.  */
    REGNO_POINTER_ALIGN (REGNO (reg)) = align;
}

/* Return 1 plus largest pseudo reg number used in the current function.  */

int
max_reg_num (void)
{
  return reg_rtx_no;
}

/* Return 1 + the largest label number used so far in the current function.  */

int
max_label_num (void)
{
  return label_num;
}

/* Return first label number used in this function (if any were used).  */

int
get_first_label_num (void)
{
  return first_label_num;
}

/* If the rtx for label was created during the expansion of a nested
   function, then first_label_num won't include this label number.
   Fix this now so that array indices work later.  */

void
maybe_set_first_label_num (rtx x)
{
  if (CODE_LABEL_NUMBER (x) < first_label_num)
    first_label_num = CODE_LABEL_NUMBER (x);
}

/* Return a value representing some low-order bits of X, where the number
   of low-order bits is given by MODE.  Note that no conversion is done
   between floating-point and fixed-point values, rather, the bit
   representation is returned.

   This function handles the cases in common between gen_lowpart, below,
   and two variants in cse.c and combine.c.  These are the cases that can
   be safely handled at all points in the compilation.

   If this is not a case we can handle, return 0.  */

rtx
gen_lowpart_common (enum machine_mode mode, rtx x)
{
  int msize = GET_MODE_SIZE (mode);
  int xsize;
  int offset = 0;
  enum machine_mode innermode;

  /* Unfortunately, this routine doesn't take a parameter for the mode of X,
     so we have to make one up.  Yuk.  */
  innermode = GET_MODE (x);
  if (CONST_INT_P (x)
      && msize * BITS_PER_UNIT <= HOST_BITS_PER_WIDE_INT)
    innermode = mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0);
  else if (innermode == VOIDmode)
    innermode = mode_for_size (HOST_BITS_PER_DOUBLE_INT, MODE_INT, 0);

  xsize = GET_MODE_SIZE (innermode);

  gcc_assert (innermode != VOIDmode && innermode != BLKmode);

  if (innermode == mode)
    return x;

  /* MODE must occupy no more words than the mode of X.  */
  if ((msize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD
      > ((xsize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))
    return 0;

  /* Don't allow generating paradoxical FLOAT_MODE subregs.  */
  if (SCALAR_FLOAT_MODE_P (mode) && msize > xsize)
    return 0;

  offset = subreg_lowpart_offset (mode, innermode);

  if ((GET_CODE (x) == ZERO_EXTEND || GET_CODE (x) == SIGN_EXTEND)
      && (GET_MODE_CLASS (mode) == MODE_INT
	  || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT))
    {
      /* If we are getting the low-order part of something that has been
	 sign- or zero-extended, we can either just use the object being
	 extended or make a narrower extension.  If we want an even smaller
	 piece than the size of the object being extended, call ourselves
	 recursively.

	 This case is used mostly by combine and cse.  */

      if (GET_MODE (XEXP (x, 0)) == mode)
	return XEXP (x, 0);
      else if (msize < GET_MODE_SIZE (GET_MODE (XEXP (x, 0))))
	return gen_lowpart_common (mode, XEXP (x, 0));
      else if (msize < xsize)
	return gen_rtx_fmt_e (GET_CODE (x), mode, XEXP (x, 0));
    }
  else if (GET_CODE (x) == SUBREG || REG_P (x)
	   || GET_CODE (x) == CONCAT || GET_CODE (x) == CONST_VECTOR
	   || CONST_DOUBLE_AS_FLOAT_P (x) || CONST_SCALAR_INT_P (x))
    return simplify_gen_subreg (mode, x, innermode, offset);

  /* Otherwise, we can't do this.  */
  return 0;
}

rtx
gen_highpart (enum machine_mode mode, rtx x)
{
  unsigned int msize = GET_MODE_SIZE (mode);
  rtx result;

  /* This case loses if X is a subreg.  To catch bugs early,
     complain if an invalid MODE is used even in other cases.  */
  gcc_assert (msize <= UNITS_PER_WORD
	      || msize == (unsigned int) GET_MODE_UNIT_SIZE (GET_MODE (x)));

  result = simplify_gen_subreg (mode, x, GET_MODE (x),
				subreg_highpart_offset (mode, GET_MODE (x)));
  gcc_assert (result);

  /* simplify_gen_subreg is not guaranteed to return a valid operand for
     the target if we have a MEM.  gen_highpart must return a valid operand,
     emitting code if necessary to do so.  */
  if (MEM_P (result))
    {
      result = validize_mem (result);
      gcc_assert (result);
    }

  return result;
}

/* Like gen_highpart, but accept mode of EXP operand in case EXP can
   be VOIDmode constant.  */
rtx
gen_highpart_mode (enum machine_mode outermode, enum machine_mode innermode, rtx exp)
{
  if (GET_MODE (exp) != VOIDmode)
    {
      gcc_assert (GET_MODE (exp) == innermode);
      return gen_highpart (outermode, exp);
    }
  return simplify_gen_subreg (outermode, exp, innermode,
			      subreg_highpart_offset (outermode, innermode));
}

/* Return the SUBREG_BYTE for an OUTERMODE lowpart of an INNERMODE value.  */

unsigned int
subreg_lowpart_offset (enum machine_mode outermode, enum machine_mode innermode)
{
  unsigned int offset = 0;
  int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));

  if (difference > 0)
    {
      if (WORDS_BIG_ENDIAN)
	offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
      if (BYTES_BIG_ENDIAN)
	offset += difference % UNITS_PER_WORD;
    }

  return offset;
}

/* Return offset in bytes to get OUTERMODE high part
   of the value in mode INNERMODE stored in memory in target format.  */
unsigned int
subreg_highpart_offset (enum machine_mode outermode, enum machine_mode innermode)
{
  unsigned int offset = 0;
  int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));

  gcc_assert (GET_MODE_SIZE (innermode) >= GET_MODE_SIZE (outermode));

  if (difference > 0)
    {
      if (! WORDS_BIG_ENDIAN)
	offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
      if (! BYTES_BIG_ENDIAN)
	offset += difference % UNITS_PER_WORD;
    }

  return offset;
}

/* Return 1 iff X, assumed to be a SUBREG,
   refers to the least significant part of its containing reg.
   If X is not a SUBREG, always return 1 (it is its own low part!).  */

int
subreg_lowpart_p (const_rtx x)
{
  if (GET_CODE (x) != SUBREG)
    return 1;
  else if (GET_MODE (SUBREG_REG (x)) == VOIDmode)
    return 0;

  return (subreg_lowpart_offset (GET_MODE (x), GET_MODE (SUBREG_REG (x)))
	  == SUBREG_BYTE (x));
}

/* Return true if X is a paradoxical subreg, false otherwise.  */
bool
paradoxical_subreg_p (const_rtx x)
{
  if (GET_CODE (x) != SUBREG)
    return false;
  return (GET_MODE_PRECISION (GET_MODE (x))
	  > GET_MODE_PRECISION (GET_MODE (SUBREG_REG (x))));
}

/* Return subword OFFSET of operand OP.
   The word number, OFFSET, is interpreted as the word number starting
   at the low-order address.  OFFSET 0 is the low-order word if not
   WORDS_BIG_ENDIAN, otherwise it is the high-order word.

   If we cannot extract the required word, we return zero.  Otherwise,
   an rtx corresponding to the requested word will be returned.

   VALIDATE_ADDRESS is nonzero if the address should be validated.  Before
   reload has completed, a valid address will always be returned.  After
   reload, if a valid address cannot be returned, we return zero.

   If VALIDATE_ADDRESS is zero, we simply form the required address; validating
   it is the responsibility of the caller.

   MODE is the mode of OP in case it is a CONST_INT.

   ??? This is still rather broken for some cases.  The problem for the
   moment is that all callers of this thing provide no 'goal mode' to
   tell us to work with.  This exists because all callers were written
   in a word based SUBREG world.
   Now use of this function can be deprecated by simplify_subreg in most
   cases.
 */

rtx
operand_subword (rtx op, unsigned int offset, int validate_address, enum machine_mode mode)
{
  if (mode == VOIDmode)
    mode = GET_MODE (op);

  gcc_assert (mode != VOIDmode);

  /* If OP is narrower than a word, fail.  */
  if (mode != BLKmode
      && (GET_MODE_SIZE (mode) < UNITS_PER_WORD))
    return 0;

  /* If we want a word outside OP, return zero.  */
  if (mode != BLKmode
      && (offset + 1) * UNITS_PER_WORD > GET_MODE_SIZE (mode))
    return const0_rtx;

  /* Form a new MEM at the requested address.  */
  if (MEM_P (op))
    {
      rtx new_rtx = adjust_address_nv (op, word_mode, offset * UNITS_PER_WORD);

      if (! validate_address)
	return new_rtx;

      else if (reload_completed)
	{
	  if (! strict_memory_address_addr_space_p (word_mode,
						    XEXP (new_rtx, 0),
						    MEM_ADDR_SPACE (op)))
	    return 0;
	}
      else
	return replace_equiv_address (new_rtx, XEXP (new_rtx, 0));
    }

  /* Rest can be handled by simplify_subreg.  */
  return simplify_gen_subreg (word_mode, op, mode, (offset * UNITS_PER_WORD));
}

/* Similar to `operand_subword', but never return 0.  If we can't
   extract the required subword, put OP into a register and try again.
   The second attempt must succeed.  We always validate the address in
   this case.

   MODE is the mode of OP, in case it is CONST_INT.  */

rtx
operand_subword_force (rtx op, unsigned int offset, enum machine_mode mode)
{
  rtx result = operand_subword (op, offset, 1, mode);

  if (result)
    return result;

  if (mode != BLKmode && mode != VOIDmode)
    {
      /* If this is a register which can not be accessed by words, copy it
	 to a pseudo register.  */
      if (REG_P (op))
	op = copy_to_reg (op);
      else
	op = force_reg (mode, op);
    }

  result = operand_subword (op, offset, 1, mode);
  gcc_assert (result);

  return result;
}

/* Returns 1 if both MEM_EXPR can be considered equal
   and 0 otherwise.  */

int
mem_expr_equal_p (const_tree expr1, const_tree expr2)
{
  if (expr1 == expr2)
    return 1;

  if (! expr1 || ! expr2)
    return 0;

  if (TREE_CODE (expr1) != TREE_CODE (expr2))
    return 0;

  return operand_equal_p (expr1, expr2, 0);
}

/* Return OFFSET if XEXP (MEM, 0) - OFFSET is known to be ALIGN
   bits aligned for 0 <= OFFSET < ALIGN / BITS_PER_UNIT, or
   -1 if not known.  */

int
get_mem_align_offset (rtx mem, unsigned int align)
{
  tree expr;
  unsigned HOST_WIDE_INT offset;

  /* This function can't use
     if (!MEM_EXPR (mem) || !MEM_OFFSET_KNOWN_P (mem)
	 || (MAX (MEM_ALIGN (mem),
	          MAX (align, get_object_alignment (MEM_EXPR (mem))))
	     < align))
       return -1;
     else
       return (- MEM_OFFSET (mem)) & (align / BITS_PER_UNIT - 1);
     for two reasons:
     - COMPONENT_REFs in MEM_EXPR can have NULL first operand,
       for <variable>.  get_inner_reference doesn't handle it and
       even if it did, the alignment in that case needs to be determined
       from DECL_FIELD_CONTEXT's TYPE_ALIGN.
     - it would do suboptimal job for COMPONENT_REFs, even if MEM_EXPR
       isn't sufficiently aligned, the object it is in might be.  */
  gcc_assert (MEM_P (mem));
  expr = MEM_EXPR (mem);
  if (expr == NULL_TREE || !MEM_OFFSET_KNOWN_P (mem))
    return -1;

  offset = MEM_OFFSET (mem);
  if (DECL_P (expr))
    {
      if (DECL_ALIGN (expr) < align)
	return -1;
    }
  else if (INDIRECT_REF_P (expr))
    {
      if (TYPE_ALIGN (TREE_TYPE (expr)) < (unsigned int) align)
	return -1;
    }
  else if (TREE_CODE (expr) == COMPONENT_REF)
    {
      while (1)
	{
	  tree inner = TREE_OPERAND (expr, 0);
	  tree field = TREE_OPERAND (expr, 1);
	  tree byte_offset = component_ref_field_offset (expr);
	  tree bit_offset = DECL_FIELD_BIT_OFFSET (field);

	  if (!byte_offset
	      || !tree_fits_uhwi_p (byte_offset)
	      || !tree_fits_uhwi_p (bit_offset))
	    return -1;

	  offset += tree_to_uhwi (byte_offset);
	  offset += tree_to_uhwi (bit_offset) / BITS_PER_UNIT;

	  if (inner == NULL_TREE)
	    {
	      if (TYPE_ALIGN (DECL_FIELD_CONTEXT (field))
		  < (unsigned int) align)
		return -1;
	      break;
	    }
	  else if (DECL_P (inner))
	    {
	      if (DECL_ALIGN (inner) < align)
		return -1;
	      break;
	    }
	  else if (TREE_CODE (inner) != COMPONENT_REF)
	    return -1;
	  expr = inner;
	}
    }
  else
    return -1;

  return offset & ((align / BITS_PER_UNIT) - 1);
}

/* Given REF (a MEM) and T, either the type of X or the expression
   corresponding to REF, set the memory attributes.  OBJECTP is nonzero
   if we are making a new object of this type.  BITPOS is nonzero if
   there is an offset outstanding on T that will be applied later.  */

void
set_mem_attributes_minus_bitpos (rtx ref, tree t, int objectp,
				 HOST_WIDE_INT bitpos)
{
  HOST_WIDE_INT apply_bitpos = 0;
  tree type;
  struct mem_attrs attrs, *defattrs, *refattrs;
  addr_space_t as;

  /* It can happen that type_for_mode was given a mode for which there
     is no language-level type.  In which case it returns NULL, which
     we can see here.  */
  if (t == NULL_TREE)
    return;

  type = TYPE_P (t) ? t : TREE_TYPE (t);
  if (type == error_mark_node)
    return;

  /* If we have already set DECL_RTL = ref, get_alias_set will get the
     wrong answer, as it assumes that DECL_RTL already has the right alias
     info.  Callers should not set DECL_RTL until after the call to
     set_mem_attributes.  */
  gcc_assert (!DECL_P (t) || ref != DECL_RTL_IF_SET (t));

  memset (&attrs, 0, sizeof (attrs));

  /* Get the alias set from the expression or type (perhaps using a
     front-end routine) and use it.  */
  attrs.alias = get_alias_set (t);

  MEM_VOLATILE_P (ref) |= TYPE_VOLATILE (type);
  MEM_POINTER (ref) = POINTER_TYPE_P (type);

  /* Default values from pre-existing memory attributes if present.  */
  refattrs = MEM_ATTRS (ref);
  if (refattrs)
    {
      /* ??? Can this ever happen?  Calling this routine on a MEM that
	 already carries memory attributes should probably be invalid.  */
      attrs.expr = refattrs->expr;
      attrs.offset_known_p = refattrs->offset_known_p;
      attrs.offset = refattrs->offset;
      attrs.size_known_p = refattrs->size_known_p;
      attrs.size = refattrs->size;
      attrs.align = refattrs->align;
    }

  /* Otherwise, default values from the mode of the MEM reference.  */
  else
    {
      defattrs = mode_mem_attrs[(int) GET_MODE (ref)];
      gcc_assert (!defattrs->expr);
      gcc_assert (!defattrs->offset_known_p);

      /* Respect mode size.  */
      attrs.size_known_p = defattrs->size_known_p;
      attrs.size = defattrs->size;
      /* ??? Is this really necessary?  We probably should always get
	 the size from the type below.  */

      /* Respect mode alignment for STRICT_ALIGNMENT targets if T is a type;
         if T is an object, always compute the object alignment below.  */
      if (TYPE_P (t))
	attrs.align = defattrs->align;
      else
	attrs.align = BITS_PER_UNIT;
      /* ??? If T is a type, respecting mode alignment may *also* be wrong
	 e.g. if the type carries an alignment attribute.  Should we be
	 able to simply always use TYPE_ALIGN?  */
    }

  /* We can set the alignment from the type if we are making an object,
     this is an INDIRECT_REF, or if TYPE_ALIGN_OK.  */
  if (objectp || TREE_CODE (t) == INDIRECT_REF || TYPE_ALIGN_OK (type))
    attrs.align = MAX (attrs.align, TYPE_ALIGN (type));

  /* If the size is known, we can set that.  */
  tree new_size = TYPE_SIZE_UNIT (type);

  /* The address-space is that of the type.  */
  as = TYPE_ADDR_SPACE (type);

  /* If T is not a type, we may be able to deduce some more information about
     the expression.  */
  if (! TYPE_P (t))
    {
      tree base;

      if (TREE_THIS_VOLATILE (t))
	MEM_VOLATILE_P (ref) = 1;

      /* Now remove any conversions: they don't change what the underlying
	 object is.  Likewise for SAVE_EXPR.  */
      while (CONVERT_EXPR_P (t)
	     || TREE_CODE (t) == VIEW_CONVERT_EXPR
	     || TREE_CODE (t) == SAVE_EXPR)
	t = TREE_OPERAND (t, 0);

      /* Note whether this expression can trap.  */
      MEM_NOTRAP_P (ref) = !tree_could_trap_p (t);

      base = get_base_address (t);
      if (base)
	{
	  if (DECL_P (base)
	      && TREE_READONLY (base)
	      && (TREE_STATIC (base) || DECL_EXTERNAL (base))
	      && !TREE_THIS_VOLATILE (base))
	    MEM_READONLY_P (ref) = 1;

	  /* Mark static const strings readonly as well.  */
	  if (TREE_CODE (base) == STRING_CST
	      && TREE_READONLY (base)
	      && TREE_STATIC (base))
	    MEM_READONLY_P (ref) = 1;

	  /* Address-space information is on the base object.  */
	  if (TREE_CODE (base) == MEM_REF
	      || TREE_CODE (base) == TARGET_MEM_REF)
	    as = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (base,
								      0))));
	  else
	    as = TYPE_ADDR_SPACE (TREE_TYPE (base));
	}

      /* If this expression uses it's parent's alias set, mark it such
	 that we won't change it.  */
      if (component_uses_parent_alias_set_from (t) != NULL_TREE)
	MEM_KEEP_ALIAS_SET_P (ref) = 1;

      /* If this is a decl, set the attributes of the MEM from it.  */
      if (DECL_P (t))
	{
	  attrs.expr = t;
	  attrs.offset_known_p = true;
	  attrs.offset = 0;
	  apply_bitpos = bitpos;
	  new_size = DECL_SIZE_UNIT (t);
	}

      /* ???  If we end up with a constant here do record a MEM_EXPR.  */
      else if (CONSTANT_CLASS_P (t))
	;

      /* If this is a field reference, record it.  */
      else if (TREE_CODE (t) == COMPONENT_REF)
	{
	  attrs.expr = t;
	  attrs.offset_known_p = true;
	  attrs.offset = 0;
	  apply_bitpos = bitpos;
	  if (DECL_BIT_FIELD (TREE_OPERAND (t, 1)))
	    new_size = DECL_SIZE_UNIT (TREE_OPERAND (t, 1));
	}

      /* If this is an array reference, look for an outer field reference.  */
      else if (TREE_CODE (t) == ARRAY_REF)
	{
	  tree off_tree = size_zero_node;
	  /* We can't modify t, because we use it at the end of the
	     function.  */
	  tree t2 = t;

	  do
	    {
	      tree index = TREE_OPERAND (t2, 1);
	      tree low_bound = array_ref_low_bound (t2);
	      tree unit_size = array_ref_element_size (t2);

	      /* We assume all arrays have sizes that are a multiple of a byte.
		 First subtract the lower bound, if any, in the type of the
		 index, then convert to sizetype and multiply by the size of
		 the array element.  */
	      if (! integer_zerop (low_bound))
		index = fold_build2 (MINUS_EXPR, TREE_TYPE (index),
				     index, low_bound);

	      off_tree = size_binop (PLUS_EXPR,
				     size_binop (MULT_EXPR,
						 fold_convert (sizetype,
							       index),
						 unit_size),
				     off_tree);
	      t2 = TREE_OPERAND (t2, 0);
	    }
	  while (TREE_CODE (t2) == ARRAY_REF);

	  if (DECL_P (t2)
	      || TREE_CODE (t2) == COMPONENT_REF)
	    {
	      attrs.expr = t2;
	      attrs.offset_known_p = false;
	      if (tree_fits_uhwi_p (off_tree))
		{
		  attrs.offset_known_p = true;
		  attrs.offset = tree_to_uhwi (off_tree);
		  apply_bitpos = bitpos;
		}
	    }
	  /* Else do not record a MEM_EXPR.  */
	}

      /* If this is an indirect reference, record it.  */
      else if (TREE_CODE (t) == MEM_REF 
	       || TREE_CODE (t) == TARGET_MEM_REF)
	{
	  attrs.expr = t;
	  attrs.offset_known_p = true;
	  attrs.offset = 0;
	  apply_bitpos = bitpos;
	}

      /* Compute the alignment.  */
      unsigned int obj_align;
      unsigned HOST_WIDE_INT obj_bitpos;
      get_object_alignment_1 (t, &obj_align, &obj_bitpos);
      obj_bitpos = (obj_bitpos - bitpos) & (obj_align - 1);
      if (obj_bitpos != 0)
	obj_align = (obj_bitpos & -obj_bitpos);
      attrs.align = MAX (attrs.align, obj_align);
    }

  if (tree_fits_uhwi_p (new_size))
    {
      attrs.size_known_p = true;
      attrs.size = tree_to_uhwi (new_size);
    }

  /* If we modified OFFSET based on T, then subtract the outstanding
     bit position offset.  Similarly, increase the size of the accessed
     object to contain the negative offset.  */
  if (apply_bitpos)
    {
      gcc_assert (attrs.offset_known_p);
      attrs.offset -= apply_bitpos / BITS_PER_UNIT;
      if (attrs.size_known_p)
	attrs.size += apply_bitpos / BITS_PER_UNIT;
    }

  /* Now set the attributes we computed above.  */
  attrs.addrspace = as;
  set_mem_attrs (ref, &attrs);
}

void
set_mem_attributes (rtx ref, tree t, int objectp)
{
  set_mem_attributes_minus_bitpos (ref, t, objectp, 0);
}

/* Set the alias set of MEM to SET.  */

void
set_mem_alias_set (rtx mem, alias_set_type set)
{
  struct mem_attrs attrs;

  /* If the new and old alias sets don't conflict, something is wrong.  */
  gcc_checking_assert (alias_sets_conflict_p (set, MEM_ALIAS_SET (mem)));
  attrs = *get_mem_attrs (mem);
  attrs.alias = set;
  set_mem_attrs (mem, &attrs);
}

/* Set the address space of MEM to ADDRSPACE (target-defined).  */

void
set_mem_addr_space (rtx mem, addr_space_t addrspace)
{
  struct mem_attrs attrs;

  attrs = *get_mem_attrs (mem);
  attrs.addrspace = addrspace;
  set_mem_attrs (mem, &attrs);
}

/* Set the alignment of MEM to ALIGN bits.  */

void
set_mem_align (rtx mem, unsigned int align)
{
  struct mem_attrs attrs;

  attrs = *get_mem_attrs (mem);
  attrs.align = align;
  set_mem_attrs (mem, &attrs);
}

/* Set the expr for MEM to EXPR.  */

void
set_mem_expr (rtx mem, tree expr)
{
  struct mem_attrs attrs;

  attrs = *get_mem_attrs (mem);
  attrs.expr = expr;
  set_mem_attrs (mem, &attrs);
}

/* Set the offset of MEM to OFFSET.  */

void
set_mem_offset (rtx mem, HOST_WIDE_INT offset)
{
  struct mem_attrs attrs;

  attrs = *get_mem_attrs (mem);
  attrs.offset_known_p = true;
  attrs.offset = offset;
  set_mem_attrs (mem, &attrs);
}

/* Clear the offset of MEM.  */

void
clear_mem_offset (rtx mem)
{
  struct mem_attrs attrs;

  attrs = *get_mem_attrs (mem);
  attrs.offset_known_p = false;
  set_mem_attrs (mem, &attrs);
}

/* Set the size of MEM to SIZE.  */

void
set_mem_size (rtx mem, HOST_WIDE_INT size)
{
  struct mem_attrs attrs;

  attrs = *get_mem_attrs (mem);
  attrs.size_known_p = true;
  attrs.size = size;
  set_mem_attrs (mem, &attrs);
}

/* Clear the size of MEM.  */

void
clear_mem_size (rtx mem)
{
  struct mem_attrs attrs;

  attrs = *get_mem_attrs (mem);
  attrs.size_known_p = false;
  set_mem_attrs (mem, &attrs);
}

/* Return a memory reference like MEMREF, but with its mode changed to MODE
   and its address changed to ADDR.  (VOIDmode means don't change the mode.
   NULL for ADDR means don't change the address.)  VALIDATE is nonzero if the
   returned memory location is required to be valid.  INPLACE is true if any
   changes can be made directly to MEMREF or false if MEMREF must be treated
   as immutable.

   The memory attributes are not changed.  */

static rtx
change_address_1 (rtx memref, enum machine_mode mode, rtx addr, int validate,
		  bool inplace)
{
  addr_space_t as;
  rtx new_rtx;

  gcc_assert (MEM_P (memref));
  as = MEM_ADDR_SPACE (memref);
  if (mode == VOIDmode)
    mode = GET_MODE (memref);
  if (addr == 0)
    addr = XEXP (memref, 0);
  if (mode == GET_MODE (memref) && addr == XEXP (memref, 0)
      && (!validate || memory_address_addr_space_p (mode, addr, as)))
    return memref;

  /* Don't validate address for LRA.  LRA can make the address valid
     by itself in most efficient way.  */
  if (validate && !lra_in_progress)
    {
      if (reload_in_progress || reload_completed)
	gcc_assert (memory_address_addr_space_p (mode, addr, as));
      else
	addr = memory_address_addr_space (mode, addr, as);
    }

  if (rtx_equal_p (addr, XEXP (memref, 0)) && mode == GET_MODE (memref))
    return memref;

  if (inplace)
    {
      XEXP (memref, 0) = addr;
      return memref;
    }

  new_rtx = gen_rtx_MEM (mode, addr);
  MEM_COPY_ATTRIBUTES (new_rtx, memref);
  return new_rtx;
}

/* Like change_address_1 with VALIDATE nonzero, but we are not saying in what
   way we are changing MEMREF, so we only preserve the alias set.  */

rtx
change_address (rtx memref, enum machine_mode mode, rtx addr)
{
  rtx new_rtx = change_address_1 (memref, mode, addr, 1, false);
  enum machine_mode mmode = GET_MODE (new_rtx);
  struct mem_attrs attrs, *defattrs;

  attrs = *get_mem_attrs (memref);
  defattrs = mode_mem_attrs[(int) mmode];
  attrs.expr = NULL_TREE;
  attrs.offset_known_p = false;
  attrs.size_known_p = defattrs->size_known_p;
  attrs.size = defattrs->size;
  attrs.align = defattrs->align;

  /* If there are no changes, just return the original memory reference.  */
  if (new_rtx == memref)
    {
      if (mem_attrs_eq_p (get_mem_attrs (memref), &attrs))
	return new_rtx;

      new_rtx = gen_rtx_MEM (mmode, XEXP (memref, 0));
      MEM_COPY_ATTRIBUTES (new_rtx, memref);
    }

  set_mem_attrs (new_rtx, &attrs);
  return new_rtx;
}

/* Return a memory reference like MEMREF, but with its mode changed
   to MODE and its address offset by OFFSET bytes.  If VALIDATE is
   nonzero, the memory address is forced to be valid.
   If ADJUST_ADDRESS is zero, OFFSET is only used to update MEM_ATTRS
   and the caller is responsible for adjusting MEMREF base register.
   If ADJUST_OBJECT is zero, the underlying object associated with the
   memory reference is left unchanged and the caller is responsible for
   dealing with it.  Otherwise, if the new memory reference is outside
   the underlying object, even partially, then the object is dropped.
   SIZE, if nonzero, is the size of an access in cases where MODE
   has no inherent size.  */

rtx
adjust_address_1 (rtx memref, enum machine_mode mode, HOST_WIDE_INT offset,
		  int validate, int adjust_address, int adjust_object,
		  HOST_WIDE_INT size)
{
  rtx addr = XEXP (memref, 0);
  rtx new_rtx;
  enum machine_mode address_mode;
  int pbits;
  struct mem_attrs attrs = *get_mem_attrs (memref), *defattrs;
  unsigned HOST_WIDE_INT max_align;
#ifdef POINTERS_EXTEND_UNSIGNED
  enum machine_mode pointer_mode
    = targetm.addr_space.pointer_mode (attrs.addrspace);
#endif

  /* VOIDmode means no mode change for change_address_1.  */
  if (mode == VOIDmode)
    mode = GET_MODE (memref);

  /* Take the size of non-BLKmode accesses from the mode.  */
  defattrs = mode_mem_attrs[(int) mode];
  if (defattrs->size_known_p)
    size = defattrs->size;

  /* If there are no changes, just return the original memory reference.  */
  if (mode == GET_MODE (memref) && !offset
      && (size == 0 || (attrs.size_known_p && attrs.size == size))
      && (!validate || memory_address_addr_space_p (mode, addr,
						    attrs.addrspace)))
    return memref;

  /* ??? Prefer to create garbage instead of creating shared rtl.
     This may happen even if offset is nonzero -- consider
     (plus (plus reg reg) const_int) -- so do this always.  */
  addr = copy_rtx (addr);

  /* Convert a possibly large offset to a signed value within the
     range of the target address space.  */
  address_mode = get_address_mode (memref);
  pbits = GET_MODE_BITSIZE (address_mode);
  if (HOST_BITS_PER_WIDE_INT > pbits)
    {
      int shift = HOST_BITS_PER_WIDE_INT - pbits;
      offset = (((HOST_WIDE_INT) ((unsigned HOST_WIDE_INT) offset << shift))
		>> shift);
    }

  if (adjust_address)
    {
      /* If MEMREF is a LO_SUM and the offset is within the alignment of the
	 object, we can merge it into the LO_SUM.  */
      if (GET_MODE (memref) != BLKmode && GET_CODE (addr) == LO_SUM
	  && offset >= 0
	  && (unsigned HOST_WIDE_INT) offset
	      < GET_MODE_ALIGNMENT (GET_MODE (memref)) / BITS_PER_UNIT)
	addr = gen_rtx_LO_SUM (address_mode, XEXP (addr, 0),
			       plus_constant (address_mode,
					      XEXP (addr, 1), offset));
#ifdef POINTERS_EXTEND_UNSIGNED
      /* If MEMREF is a ZERO_EXTEND from pointer_mode and the offset is valid
	 in that mode, we merge it into the ZERO_EXTEND.  We take advantage of
	 the fact that pointers are not allowed to overflow.  */
      else if (POINTERS_EXTEND_UNSIGNED > 0
	       && GET_CODE (addr) == ZERO_EXTEND
	       && GET_MODE (XEXP (addr, 0)) == pointer_mode
	       && trunc_int_for_mode (offset, pointer_mode) == offset)
	addr = gen_rtx_ZERO_EXTEND (address_mode,
				    plus_constant (pointer_mode,
						   XEXP (addr, 0), offset));
#endif
      else
	addr = plus_constant (address_mode, addr, offset);
    }

  new_rtx = change_address_1 (memref, mode, addr, validate, false);

  /* If the address is a REG, change_address_1 rightfully returns memref,
     but this would destroy memref's MEM_ATTRS.  */
  if (new_rtx == memref && offset != 0)
    new_rtx = copy_rtx (new_rtx);

  /* Conservatively drop the object if we don't know where we start from.  */
  if (adjust_object && (!attrs.offset_known_p || !attrs.size_known_p))
    {
      attrs.expr = NULL_TREE;
      attrs.alias = 0;
    }

  /* Compute the new values of the memory attributes due to this adjustment.
     We add the offsets and update the alignment.  */
  if (attrs.offset_known_p)
    {
      attrs.offset += offset;

      /* Drop the object if the new left end is not within its bounds.  */
      if (adjust_object && attrs.offset < 0)
	{
	  attrs.expr = NULL_TREE;
	  attrs.alias = 0;
	}
    }

  /* Compute the new alignment by taking the MIN of the alignment and the
     lowest-order set bit in OFFSET, but don't change the alignment if OFFSET
     if zero.  */
  if (offset != 0)
    {
      max_align = (offset & -offset) * BITS_PER_UNIT;
      attrs.align = MIN (attrs.align, max_align);
    }

  if (size)
    {
      /* Drop the object if the new right end is not within its bounds.  */
      if (adjust_object && (offset + size) > attrs.size)
	{
	  attrs.expr = NULL_TREE;
	  attrs.alias = 0;
	}
      attrs.size_known_p = true;
      attrs.size = size;
    }
  else if (attrs.size_known_p)
    {
      gcc_assert (!adjust_object);
      attrs.size -= offset;
      /* ??? The store_by_pieces machinery generates negative sizes,
	 so don't assert for that here.  */
    }

  set_mem_attrs (new_rtx, &attrs);

  return new_rtx;
}

/* Return a memory reference like MEMREF, but with its mode changed
   to MODE and its address changed to ADDR, which is assumed to be
   MEMREF offset by OFFSET bytes.  If VALIDATE is
   nonzero, the memory address is forced to be valid.  */

rtx
adjust_automodify_address_1 (rtx memref, enum machine_mode mode, rtx addr,
			     HOST_WIDE_INT offset, int validate)
{
  memref = change_address_1 (memref, VOIDmode, addr, validate, false);
  return adjust_address_1 (memref, mode, offset, validate, 0, 0, 0);
}

/* Return a memory reference like MEMREF, but whose address is changed by
   adding OFFSET, an RTX, to it.  POW2 is the highest power of two factor
   known to be in OFFSET (possibly 1).  */

rtx
offset_address (rtx memref, rtx offset, unsigned HOST_WIDE_INT pow2)
{
  rtx new_rtx, addr = XEXP (memref, 0);
  enum machine_mode address_mode;
  struct mem_attrs attrs, *defattrs;

  attrs = *get_mem_attrs (memref);
  address_mode = get_address_mode (memref);
  new_rtx = simplify_gen_binary (PLUS, address_mode, addr, offset);

  /* At this point we don't know _why_ the address is invalid.  It
     could have secondary memory references, multiplies or anything.

     However, if we did go and rearrange things, we can wind up not
     being able to recognize the magic around pic_offset_table_rtx.
     This stuff is fragile, and is yet another example of why it is
     bad to expose PIC machinery too early.  */
  if (! memory_address_addr_space_p (GET_MODE (memref), new_rtx,
				     attrs.addrspace)
      && GET_CODE (addr) == PLUS
      && XEXP (addr, 0) == pic_offset_table_rtx)
    {
      addr = force_reg (GET_MODE (addr), addr);
      new_rtx = simplify_gen_binary (PLUS, address_mode, addr, offset);
    }

  update_temp_slot_address (XEXP (memref, 0), new_rtx);
  new_rtx = change_address_1 (memref, VOIDmode, new_rtx, 1, false);

  /* If there are no changes, just return the original memory reference.  */
  if (new_rtx == memref)
    return new_rtx;

  /* Update the alignment to reflect the offset.  Reset the offset, which
     we don't know.  */
  defattrs = mode_mem_attrs[(int) GET_MODE (new_rtx)];
  attrs.offset_known_p = false;
  attrs.size_known_p = defattrs->size_known_p;
  attrs.size = defattrs->size;
  attrs.align = MIN (attrs.align, pow2 * BITS_PER_UNIT);
  set_mem_attrs (new_rtx, &attrs);
  return new_rtx;
}

/* Return a memory reference like MEMREF, but with its address changed to
   ADDR.  The caller is asserting that the actual piece of memory pointed
   to is the same, just the form of the address is being changed, such as
   by putting something into a register.  INPLACE is true if any changes
   can be made directly to MEMREF or false if MEMREF must be treated as
   immutable.  */

rtx
replace_equiv_address (rtx memref, rtx addr, bool inplace)
{
  /* change_address_1 copies the memory attribute structure without change
     and that's exactly what we want here.  */
  update_temp_slot_address (XEXP (memref, 0), addr);
  return change_address_1 (memref, VOIDmode, addr, 1, inplace);
}

/* Likewise, but the reference is not required to be valid.  */

rtx
replace_equiv_address_nv (rtx memref, rtx addr, bool inplace)
{
  return change_address_1 (memref, VOIDmode, addr, 0, inplace);
}

/* Return a memory reference like MEMREF, but with its mode widened to
   MODE and offset by OFFSET.  This would be used by targets that e.g.
   cannot issue QImode memory operations and have to use SImode memory
   operations plus masking logic.  */

rtx
widen_memory_access (rtx memref, enum machine_mode mode, HOST_WIDE_INT offset)
{
  rtx new_rtx = adjust_address_1 (memref, mode, offset, 1, 1, 0, 0);
  struct mem_attrs attrs;
  unsigned int size = GET_MODE_SIZE (mode);

  /* If there are no changes, just return the original memory reference.  */
  if (new_rtx == memref)
    return new_rtx;

  attrs = *get_mem_attrs (new_rtx);

  /* If we don't know what offset we were at within the expression, then
     we can't know if we've overstepped the bounds.  */
  if (! attrs.offset_known_p)
    attrs.expr = NULL_TREE;

  while (attrs.expr)
    {
      if (TREE_CODE (attrs.expr) == COMPONENT_REF)
	{
	  tree field = TREE_OPERAND (attrs.expr, 1);
	  tree offset = component_ref_field_offset (attrs.expr);

	  if (! DECL_SIZE_UNIT (field))
	    {
	      attrs.expr = NULL_TREE;
	      break;
	    }

	  /* Is the field at least as large as the access?  If so, ok,
	     otherwise strip back to the containing structure.  */
	  if (TREE_CODE (DECL_SIZE_UNIT (field)) == INTEGER_CST
	      && compare_tree_int (DECL_SIZE_UNIT (field), size) >= 0
	      && attrs.offset >= 0)
	    break;

	  if (! tree_fits_uhwi_p (offset))
	    {
	      attrs.expr = NULL_TREE;
	      break;
	    }

	  attrs.expr = TREE_OPERAND (attrs.expr, 0);
	  attrs.offset += tree_to_uhwi (offset);
	  attrs.offset += (tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field))
			   / BITS_PER_UNIT);
	}
      /* Similarly for the decl.  */
      else if (DECL_P (attrs.expr)
	       && DECL_SIZE_UNIT (attrs.expr)
	       && TREE_CODE (DECL_SIZE_UNIT (attrs.expr)) == INTEGER_CST
	       && compare_tree_int (DECL_SIZE_UNIT (attrs.expr), size) >= 0
	       && (! attrs.offset_known_p || attrs.offset >= 0))
	break;
      else
	{
	  /* The widened memory access overflows the expression, which means
	     that it could alias another expression.  Zap it.  */
	  attrs.expr = NULL_TREE;
	  break;
	}
    }

  if (! attrs.expr)
    attrs.offset_known_p = false;

  /* The widened memory may alias other stuff, so zap the alias set.  */
  /* ??? Maybe use get_alias_set on any remaining expression.  */
  attrs.alias = 0;
  attrs.size_known_p = true;
  attrs.size = size;
  set_mem_attrs (new_rtx, &attrs);
  return new_rtx;
}

/* A fake decl that is used as the MEM_EXPR of spill slots.  */
static GTY(()) tree spill_slot_decl;

tree
get_spill_slot_decl (bool force_build_p)
{
  tree d = spill_slot_decl;
  rtx rd;
  struct mem_attrs attrs;

  if (d || !force_build_p)
    return d;

  d = build_decl (DECL_SOURCE_LOCATION (current_function_decl),
		  VAR_DECL, get_identifier ("%sfp"), void_type_node);
  DECL_ARTIFICIAL (d) = 1;
  DECL_IGNORED_P (d) = 1;
  TREE_USED (d) = 1;
  spill_slot_decl = d;

  rd = gen_rtx_MEM (BLKmode, frame_pointer_rtx);
  MEM_NOTRAP_P (rd) = 1;
  attrs = *mode_mem_attrs[(int) BLKmode];
  attrs.alias = new_alias_set ();
  attrs.expr = d;
  set_mem_attrs (rd, &attrs);
  SET_DECL_RTL (d, rd);

  return d;
}

/* Given MEM, a result from assign_stack_local, fill in the memory
   attributes as appropriate for a register allocator spill slot.
   These slots are not aliasable by other memory.  We arrange for
   them all to use a single MEM_EXPR, so that the aliasing code can
   work properly in the case of shared spill slots.  */

void
set_mem_attrs_for_spill (rtx mem)
{
  struct mem_attrs attrs;
  rtx addr;

  attrs = *get_mem_attrs (mem);
  attrs.expr = get_spill_slot_decl (true);
  attrs.alias = MEM_ALIAS_SET (DECL_RTL (attrs.expr));
  attrs.addrspace = ADDR_SPACE_GENERIC;

  /* We expect the incoming memory to be of the form:
	(mem:MODE (plus (reg sfp) (const_int offset)))
     with perhaps the plus missing for offset = 0.  */
  addr = XEXP (mem, 0);
  attrs.offset_known_p = true;
  attrs.offset = 0;
  if (GET_CODE (addr) == PLUS
      && CONST_INT_P (XEXP (addr, 1)))
    attrs.offset = INTVAL (XEXP (addr, 1));

  set_mem_attrs (mem, &attrs);
  MEM_NOTRAP_P (mem) = 1;
}

/* Return a newly created CODE_LABEL rtx with a unique label number.  */

rtx_code_label *
gen_label_rtx (void)
{
  return as_a <rtx_code_label *> (
	    gen_rtx_CODE_LABEL (VOIDmode, NULL_RTX, NULL_RTX,
				NULL, label_num++, NULL));
}

/* For procedure integration.  */

/* Install new pointers to the first and last insns in the chain.
   Also, set cur_insn_uid to one higher than the last in use.
   Used for an inline-procedure after copying the insn chain.  */

void
set_new_first_and_last_insn (rtx_insn *first, rtx_insn *last)
{
  rtx_insn *insn;

  set_first_insn (first);
  set_last_insn (last);
  cur_insn_uid = 0;

  if (MIN_NONDEBUG_INSN_UID || MAY_HAVE_DEBUG_INSNS)
    {
      int debug_count = 0;

      cur_insn_uid = MIN_NONDEBUG_INSN_UID - 1;
      cur_debug_insn_uid = 0;

      for (insn = first; insn; insn = NEXT_INSN (insn))
	if (INSN_UID (insn) < MIN_NONDEBUG_INSN_UID)
	  cur_debug_insn_uid = MAX (cur_debug_insn_uid, INSN_UID (insn));
	else
	  {
	    cur_insn_uid = MAX (cur_insn_uid, INSN_UID (insn));
	    if (DEBUG_INSN_P (insn))
	      debug_count++;
	  }

      if (debug_count)
	cur_debug_insn_uid = MIN_NONDEBUG_INSN_UID + debug_count;
      else
	cur_debug_insn_uid++;
    }
  else
    for (insn = first; insn; insn = NEXT_INSN (insn))
      cur_insn_uid = MAX (cur_insn_uid, INSN_UID (insn));

  cur_insn_uid++;
}

/* Go through all the RTL insn bodies and copy any invalid shared
   structure.  This routine should only be called once.  */

static void
unshare_all_rtl_1 (rtx_insn *insn)
{
  /* Unshare just about everything else.  */
  unshare_all_rtl_in_chain (insn);

  /* Make sure the addresses of stack slots found outside the insn chain
     (such as, in DECL_RTL of a variable) are not shared
     with the insn chain.

     This special care is necessary when the stack slot MEM does not
     actually appear in the insn chain.  If it does appear, its address
     is unshared from all else at that point.  */
  stack_slot_list = safe_as_a <rtx_expr_list *> (
		      copy_rtx_if_shared (stack_slot_list));
}

/* Go through all the RTL insn bodies and copy any invalid shared
   structure, again.  This is a fairly expensive thing to do so it
   should be done sparingly.  */

void
unshare_all_rtl_again (rtx_insn *insn)
{
  rtx_insn *p;
  tree decl;

  for (p = insn; p; p = NEXT_INSN (p))
    if (INSN_P (p))
      {
	reset_used_flags (PATTERN (p));
	reset_used_flags (REG_NOTES (p));
	if (CALL_P (p))
	  reset_used_flags (CALL_INSN_FUNCTION_USAGE (p));
      }

  /* Make sure that virtual stack slots are not shared.  */
  set_used_decls (DECL_INITIAL (cfun->decl));

  /* Make sure that virtual parameters are not shared.  */
  for (decl = DECL_ARGUMENTS (cfun->decl); decl; decl = DECL_CHAIN (decl))
    set_used_flags (DECL_RTL (decl));

  reset_used_flags (stack_slot_list);

  unshare_all_rtl_1 (insn);
}

unsigned int
unshare_all_rtl (void)
{
  unshare_all_rtl_1 (get_insns ());
  return 0;
}


/* Check that ORIG is not marked when it should not be and mark ORIG as in use,
   Recursively does the same for subexpressions.  */

static void
verify_rtx_sharing (rtx orig, rtx insn)
{
  rtx x = orig;
  int i;
  enum rtx_code code;
  const char *format_ptr;

  if (x == 0)
    return;

  code = GET_CODE (x);

  /* These types may be freely shared.  */

  switch (code)
    {
    case REG:
    case DEBUG_EXPR:
    case VALUE:
    CASE_CONST_ANY:
    case SYMBOL_REF:
    case LABEL_REF:
    case CODE_LABEL:
    case PC:
    case CC0:
    case RETURN:
    case SIMPLE_RETURN:
    case SCRATCH:
      /* SCRATCH must be shared because they represent distinct values.  */
      return;
    case CLOBBER:
      /* Share clobbers of hard registers (like cc0), but do not share pseudo reg
         clobbers or clobbers of hard registers that originated as pseudos.
         This is needed to allow safe register renaming.  */
      if (REG_P (XEXP (x, 0)) && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER
	  && ORIGINAL_REGNO (XEXP (x, 0)) == REGNO (XEXP (x, 0)))
	return;
      break;

    case CONST:
      if (shared_const_p (orig))
	return;
      break;

    case MEM:
      /* A MEM is allowed to be shared if its address is constant.  */
      if (CONSTANT_ADDRESS_P (XEXP (x, 0))
	  || reload_completed || reload_in_progress)
	return;

      break;

    default:
      break;
    }

  /* This rtx may not be shared.  If it has already been seen,
     replace it with a copy of itself.  */
#ifdef ENABLE_CHECKING
  if (RTX_FLAG (x, used))
    {
      error ("invalid rtl sharing found in the insn");
      debug_rtx (insn);
      error ("shared rtx");
      debug_rtx (x);
      internal_error ("internal consistency failure");
    }
#endif
  gcc_assert (!RTX_FLAG (x, used));

  RTX_FLAG (x, used) = 1;

  /* Now scan the subexpressions recursively.  */

  format_ptr = GET_RTX_FORMAT (code);

  for (i = 0; i < GET_RTX_LENGTH (code); i++)
    {
      switch (*format_ptr++)
	{
	case 'e':
	  verify_rtx_sharing (XEXP (x, i), insn);
	  break;

	case 'E':
	  if (XVEC (x, i) != NULL)
	    {
	      int j;
	      int len = XVECLEN (x, i);

	      for (j = 0; j < len; j++)
		{
		  /* We allow sharing of ASM_OPERANDS inside single
		     instruction.  */
		  if (j && GET_CODE (XVECEXP (x, i, j)) == SET
		      && (GET_CODE (SET_SRC (XVECEXP (x, i, j)))
			  == ASM_OPERANDS))
		    verify_rtx_sharing (SET_DEST (XVECEXP (x, i, j)), insn);
		  else
		    verify_rtx_sharing (XVECEXP (x, i, j), insn);
		}
	    }
	  break;
	}
    }
  return;
}

/* Reset used-flags for INSN.  */

static void
reset_insn_used_flags (rtx insn)
{
  gcc_assert (INSN_P (insn));
  reset_used_flags (PATTERN (insn));
  reset_used_flags (REG_NOTES (insn));
  if (CALL_P (insn))
    reset_used_flags (CALL_INSN_FUNCTION_USAGE (insn));
}

/* Go through all the RTL insn bodies and clear all the USED bits.  */

static void
reset_all_used_flags (void)
{
  rtx_insn *p;

  for (p = get_insns (); p; p = NEXT_INSN (p))
    if (INSN_P (p))
      {
	rtx pat = PATTERN (p);
	if (GET_CODE (pat) != SEQUENCE)
	  reset_insn_used_flags (p);
	else
	  {
	    gcc_assert (REG_NOTES (p) == NULL);
	    for (int i = 0; i < XVECLEN (pat, 0); i++)
	      {
		rtx insn = XVECEXP (pat, 0, i);
		if (INSN_P (insn))
		  reset_insn_used_flags (insn);
	      }
	  }
      }
}

/* Verify sharing in INSN.  */

static void
verify_insn_sharing (rtx insn)
{
  gcc_assert (INSN_P (insn));
  reset_used_flags (PATTERN (insn));
  reset_used_flags (REG_NOTES (insn));
  if (CALL_P (insn))
    reset_used_flags (CALL_INSN_FUNCTION_USAGE (insn));
}

/* Go through all the RTL insn bodies and check that there is no unexpected
   sharing in between the subexpressions.  */

DEBUG_FUNCTION void
verify_rtl_sharing (void)
{
  rtx_insn *p;

  timevar_push (TV_VERIFY_RTL_SHARING);

  reset_all_used_flags ();

  for (p = get_insns (); p; p = NEXT_INSN (p))
    if (INSN_P (p))
      {
	rtx pat = PATTERN (p);
	if (GET_CODE (pat) != SEQUENCE)
	  verify_insn_sharing (p);
	else
	  for (int i = 0; i < XVECLEN (pat, 0); i++)
	      {
		rtx insn = XVECEXP (pat, 0, i);
		if (INSN_P (insn))
		  verify_insn_sharing (insn);
	      }
      }

  reset_all_used_flags ();

  timevar_pop (TV_VERIFY_RTL_SHARING);
}

/* Go through all the RTL insn bodies and copy any invalid shared structure.
   Assumes the mark bits are cleared at entry.  */

void
unshare_all_rtl_in_chain (rtx_insn *insn)
{
  for (; insn; insn = NEXT_INSN (insn))
    if (INSN_P (insn))
      {
	PATTERN (insn) = copy_rtx_if_shared (PATTERN (insn));
	REG_NOTES (insn) = copy_rtx_if_shared (REG_NOTES (insn));
	if (CALL_P (insn))
	  CALL_INSN_FUNCTION_USAGE (insn)
	    = copy_rtx_if_shared (CALL_INSN_FUNCTION_USAGE (insn));
      }
}

/* Go through all virtual stack slots of a function and mark them as
   shared.  We never replace the DECL_RTLs themselves with a copy,
   but expressions mentioned into a DECL_RTL cannot be shared with
   expressions in the instruction stream.

   Note that reload may convert pseudo registers into memories in-place.
   Pseudo registers are always shared, but MEMs never are.  Thus if we
   reset the used flags on MEMs in the instruction stream, we must set
   them again on MEMs that appear in DECL_RTLs.  */

static void
set_used_decls (tree blk)
{
  tree t;

  /* Mark decls.  */
  for (t = BLOCK_VARS (blk); t; t = DECL_CHAIN (t))
    if (DECL_RTL_SET_P (t))
      set_used_flags (DECL_RTL (t));

  /* Now process sub-blocks.  */
  for (t = BLOCK_SUBBLOCKS (blk); t; t = BLOCK_CHAIN (t))
    set_used_decls (t);
}

/* Mark ORIG as in use, and return a copy of it if it was already in use.
   Recursively does the same for subexpressions.  Uses
   copy_rtx_if_shared_1 to reduce stack space.  */

rtx
copy_rtx_if_shared (rtx orig)
{
  copy_rtx_if_shared_1 (&orig);
  return orig;
}

/* Mark *ORIG1 as in use, and set it to a copy of it if it was already in
   use.  Recursively does the same for subexpressions.  */

static void
copy_rtx_if_shared_1 (rtx *orig1)
{
  rtx x;
  int i;
  enum rtx_code code;
  rtx *last_ptr;
  const char *format_ptr;
  int copied = 0;
  int length;

  /* Repeat is used to turn tail-recursion into iteration.  */
repeat:
  x = *orig1;

  if (x == 0)
    return;

  code = GET_CODE (x);

  /* These types may be freely shared.  */

  switch (code)
    {
    case REG:
    case DEBUG_EXPR:
    case VALUE:
    CASE_CONST_ANY:
    case SYMBOL_REF:
    case LABEL_REF:
    case CODE_LABEL:
    case PC:
    case CC0:
    case RETURN:
    case SIMPLE_RETURN:
    case SCRATCH:
      /* SCRATCH must be shared because they represent distinct values.  */
      return;
    case CLOBBER:
      /* Share clobbers of hard registers (like cc0), but do not share pseudo reg
         clobbers or clobbers of hard registers that originated as pseudos.
         This is needed to allow safe register renaming.  */
      if (REG_P (XEXP (x, 0)) && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER
	  && ORIGINAL_REGNO (XEXP (x, 0)) == REGNO (XEXP (x, 0)))
	return;
      break;

    case CONST:
      if (shared_const_p (x))
	return;
      break;

    case DEBUG_INSN:
    case INSN:
    case JUMP_INSN:
    case CALL_INSN:
    case NOTE:
    case BARRIER:
      /* The chain of insns is not being copied.  */
      return;

    default:
      break;
    }

  /* This rtx may not be shared.  If it has already been seen,
     replace it with a copy of itself.  */

  if (RTX_FLAG (x, used))
    {
      x = shallow_copy_rtx (x);
      copied = 1;
    }
  RTX_FLAG (x, used) = 1;

  /* Now scan the subexpressions recursively.
     We can store any replaced subexpressions directly into X
     since we know X is not shared!  Any vectors in X
     must be copied if X was copied.  */

  format_ptr = GET_RTX_FORMAT (code);
  length = GET_RTX_LENGTH (code);
  last_ptr = NULL;

  for (i = 0; i < length; i++)
    {
      switch (*format_ptr++)
	{
	case 'e':
          if (last_ptr)
            copy_rtx_if_shared_1 (last_ptr);
	  last_ptr = &XEXP (x, i);
	  break;

	case 'E':
	  if (XVEC (x, i) != NULL)
	    {
	      int j;
	      int len = XVECLEN (x, i);

              /* Copy the vector iff I copied the rtx and the length
		 is nonzero.  */
	      if (copied && len > 0)
		XVEC (x, i) = gen_rtvec_v (len, XVEC (x, i)->elem);

              /* Call recursively on all inside the vector.  */
	      for (j = 0; j < len; j++)
                {
		  if (last_ptr)
		    copy_rtx_if_shared_1 (last_ptr);
                  last_ptr = &XVECEXP (x, i, j);
                }
	    }
	  break;
	}
    }
  *orig1 = x;
  if (last_ptr)
    {
      orig1 = last_ptr;
      goto repeat;
    }
  return;
}

/* Set the USED bit in X and its non-shareable subparts to FLAG.  */

static void
mark_used_flags (rtx x, int flag)
{
  int i, j;
  enum rtx_code code;
  const char *format_ptr;
  int length;

  /* Repeat is used to turn tail-recursion into iteration.  */
repeat:
  if (x == 0)
    return;

  code = GET_CODE (x);

  /* These types may be freely shared so we needn't do any resetting
     for them.  */

  switch (code)
    {
    case REG:
    case DEBUG_EXPR:
    case VALUE:
    CASE_CONST_ANY:
    case SYMBOL_REF:
    case CODE_LABEL:
    case PC:
    case CC0:
    case RETURN:
    case SIMPLE_RETURN:
      return;

    case DEBUG_INSN:
    case INSN:
    case JUMP_INSN:
    case CALL_INSN:
    case NOTE:
    case LABEL_REF:
    case BARRIER:
      /* The chain of insns is not being copied.  */
      return;

    default:
      break;
    }

  RTX_FLAG (x, used) = flag;

  format_ptr = GET_RTX_FORMAT (code);
  length = GET_RTX_LENGTH (code);

  for (i = 0; i < length; i++)
    {
      switch (*format_ptr++)
	{
	case 'e':
          if (i == length-1)
            {
              x = XEXP (x, i);
	      goto repeat;
            }
	  mark_used_flags (XEXP (x, i), flag);
	  break;

	case 'E':
	  for (j = 0; j < XVECLEN (x, i); j++)
	    mark_used_flags (XVECEXP (x, i, j), flag);
	  break;
	}
    }
}

/* Clear all the USED bits in X to allow copy_rtx_if_shared to be used
   to look for shared sub-parts.  */

void
reset_used_flags (rtx x)
{
  mark_used_flags (x, 0);
}

/* Set all the USED bits in X to allow copy_rtx_if_shared to be used
   to look for shared sub-parts.  */

void
set_used_flags (rtx x)
{
  mark_used_flags (x, 1);
}

/* Copy X if necessary so that it won't be altered by changes in OTHER.
   Return X or the rtx for the pseudo reg the value of X was copied into.
   OTHER must be valid as a SET_DEST.  */

rtx
make_safe_from (rtx x, rtx other)
{
  while (1)
    switch (GET_CODE (other))
      {
      case SUBREG:
	other = SUBREG_REG (other);
	break;
      case STRICT_LOW_PART:
      case SIGN_EXTEND:
      case ZERO_EXTEND:
	other = XEXP (other, 0);
	break;
      default:
	goto done;
      }
 done:
  if ((MEM_P (other)
       && ! CONSTANT_P (x)
       && !REG_P (x)
       && GET_CODE (x) != SUBREG)
      || (REG_P (other)
	  && (REGNO (other) < FIRST_PSEUDO_REGISTER
	      || reg_mentioned_p (other, x))))
    {
      rtx temp = gen_reg_rtx (GET_MODE (x));
      emit_move_insn (temp, x);
      return temp;
    }
  return x;
}

/* Emission of insns (adding them to the doubly-linked list).  */

/* Return the last insn emitted, even if it is in a sequence now pushed.  */

rtx_insn *
get_last_insn_anywhere (void)
{
  struct sequence_stack *stack;
  if (get_last_insn ())
    return get_last_insn ();
  for (stack = seq_stack; stack; stack = stack->next)
    if (stack->last != 0)
      return stack->last;
  return 0;
}

/* Return the first nonnote insn emitted in current sequence or current
   function.  This routine looks inside SEQUENCEs.  */

rtx_insn *
get_first_nonnote_insn (void)
{
  rtx_insn *insn = get_insns ();

  if (insn)
    {
      if (NOTE_P (insn))
	for (insn = next_insn (insn);
	     insn && NOTE_P (insn);
	     insn = next_insn (insn))
	  continue;
      else
	{
	  if (NONJUMP_INSN_P (insn)
	      && GET_CODE (PATTERN (insn)) == SEQUENCE)
	    insn = as_a <rtx_sequence *> (PATTERN (insn))->insn (0);
	}
    }

  return insn;
}

/* Return the last nonnote insn emitted in current sequence or current
   function.  This routine looks inside SEQUENCEs.  */

rtx_insn *
get_last_nonnote_insn (void)
{
  rtx_insn *insn = get_last_insn ();

  if (insn)
    {
      if (NOTE_P (insn))
	for (insn = previous_insn (insn);
	     insn && NOTE_P (insn);
	     insn = previous_insn (insn))
	  continue;
      else
	{
	  if (NONJUMP_INSN_P (insn))
	    if (rtx_sequence *seq = dyn_cast <rtx_sequence *> (PATTERN (insn)))
	      insn = seq->insn (seq->len () - 1);
	}
    }

  return insn;
}

/* Return the number of actual (non-debug) insns emitted in this
   function.  */

int
get_max_insn_count (void)
{
  int n = cur_insn_uid;

  /* The table size must be stable across -g, to avoid codegen
     differences due to debug insns, and not be affected by
     -fmin-insn-uid, to avoid excessive table size and to simplify
     debugging of -fcompare-debug failures.  */
  if (cur_debug_insn_uid > MIN_NONDEBUG_INSN_UID)
    n -= cur_debug_insn_uid;
  else
    n -= MIN_NONDEBUG_INSN_UID;

  return n;
}


/* Return the next insn.  If it is a SEQUENCE, return the first insn
   of the sequence.  */

rtx_insn *
next_insn (rtx_insn *insn)
{
  if (insn)
    {
      insn = NEXT_INSN (insn);
      if (insn && NONJUMP_INSN_P (insn)
	  && GET_CODE (PATTERN (insn)) == SEQUENCE)
	insn = as_a <rtx_sequence *> (PATTERN (insn))->insn (0);
    }

  return insn;
}

/* Return the previous insn.  If it is a SEQUENCE, return the last insn
   of the sequence.  */

rtx_insn *
previous_insn (rtx_insn *insn)
{
  if (insn)
    {
      insn = PREV_INSN (insn);
      if (insn && NONJUMP_INSN_P (insn))
	if (rtx_sequence *seq = dyn_cast <rtx_sequence *> (PATTERN (insn)))
	  insn = seq->insn (seq->len () - 1);
    }

  return insn;
}

/* Return the next insn after INSN that is not a NOTE.  This routine does not
   look inside SEQUENCEs.  */

rtx_insn *
next_nonnote_insn (rtx uncast_insn)
{
  rtx_insn *insn = safe_as_a <rtx_insn *> (uncast_insn);
  while (insn)
    {
      insn = NEXT_INSN (insn);
      if (insn == 0 || !NOTE_P (insn))
	break;
    }

  return insn;
}

/* Return the next insn after INSN that is not a NOTE, but stop the
   search before we enter another basic block.  This routine does not
   look inside SEQUENCEs.  */

rtx_insn *
next_nonnote_insn_bb (rtx_insn *insn)
{
  while (insn)
    {
      insn = NEXT_INSN (insn);
      if (insn == 0 || !NOTE_P (insn))
	break;
      if (NOTE_INSN_BASIC_BLOCK_P (insn))
	return NULL;
    }

  return insn;
}

/* Return the previous insn before INSN that is not a NOTE.  This routine does
   not look inside SEQUENCEs.  */

rtx_insn *
prev_nonnote_insn (rtx uncast_insn)
{
  rtx_insn *insn = safe_as_a <rtx_insn *> (uncast_insn);

  while (insn)
    {
      insn = PREV_INSN (insn);
      if (insn == 0 || !NOTE_P (insn))
	break;
    }

  return insn;
}

/* Return the previous insn before INSN that is not a NOTE, but stop
   the search before we enter another basic block.  This routine does
   not look inside SEQUENCEs.  */

rtx_insn *
prev_nonnote_insn_bb (rtx uncast_insn)
{
  rtx_insn *insn = safe_as_a <rtx_insn *> (uncast_insn);

  while (insn)
    {
      insn = PREV_INSN (insn);
      if (insn == 0 || !NOTE_P (insn))
	break;
      if (NOTE_INSN_BASIC_BLOCK_P (insn))
	return NULL;
    }

  return insn;
}

/* Return the next insn after INSN that is not a DEBUG_INSN.  This
   routine does not look inside SEQUENCEs.  */

rtx_insn *
next_nondebug_insn (rtx uncast_insn)
{
  rtx_insn *insn = safe_as_a <rtx_insn *> (uncast_insn);

  while (insn)
    {
      insn = NEXT_INSN (insn);
      if (insn == 0 || !DEBUG_INSN_P (insn))
	break;
    }

  return insn;
}

/* Return the previous insn before INSN that is not a DEBUG_INSN.
   This routine does not look inside SEQUENCEs.  */

rtx_insn *
prev_nondebug_insn (rtx uncast_insn)
{
  rtx_insn *insn = safe_as_a <rtx_insn *> (uncast_insn);

  while (insn)
    {
      insn = PREV_INSN (insn);
      if (insn == 0 || !DEBUG_INSN_P (insn))
	break;
    }

  return insn;
}

/* Return the next insn after INSN that is not a NOTE nor DEBUG_INSN.
   This routine does not look inside SEQUENCEs.  */

rtx_insn *
next_nonnote_nondebug_insn (rtx uncast_insn)
{
  rtx_insn *insn = safe_as_a <rtx_insn *> (uncast_insn);

  while (insn)
    {
      insn = NEXT_INSN (insn);
      if (insn == 0 || (!NOTE_P (insn) && !DEBUG_INSN_P (insn)))
	break;
    }

  return insn;
}

/* Return the previous insn before INSN that is not a NOTE nor DEBUG_INSN.
   This routine does not look inside SEQUENCEs.  */

rtx_insn *
prev_nonnote_nondebug_insn (rtx uncast_insn)
{
  rtx_insn *insn = safe_as_a <rtx_insn *> (uncast_insn);

  while (insn)
    {
      insn = PREV_INSN (insn);
      if (insn == 0 || (!NOTE_P (insn) && !DEBUG_INSN_P (insn)))
	break;
    }

  return insn;
}

/* Return the next INSN, CALL_INSN or JUMP_INSN after INSN;
   or 0, if there is none.  This routine does not look inside
   SEQUENCEs.  */

rtx_insn *
next_real_insn (rtx uncast_insn)
{
  rtx_insn *insn = safe_as_a <rtx_insn *> (uncast_insn);

  while (insn)
    {
      insn = NEXT_INSN (insn);
      if (insn == 0 || INSN_P (insn))
	break;
    }

  return insn;
}

/* Return the last INSN, CALL_INSN or JUMP_INSN before INSN;
   or 0, if there is none.  This routine does not look inside
   SEQUENCEs.  */

rtx_insn *
prev_real_insn (rtx uncast_insn)
{
  rtx_insn *insn = safe_as_a <rtx_insn *> (uncast_insn);

  while (insn)
    {
      insn = PREV_INSN (insn);
      if (insn == 0 || INSN_P (insn))
	break;
    }

  return insn;
}

/* Return the last CALL_INSN in the current list, or 0 if there is none.
   This routine does not look inside SEQUENCEs.  */

rtx_call_insn *
last_call_insn (void)
{
  rtx_insn *insn;

  for (insn = get_last_insn ();
       insn && !CALL_P (insn);
       insn = PREV_INSN (insn))
    ;

  return safe_as_a <rtx_call_insn *> (insn);
}

/* Find the next insn after INSN that really does something.  This routine
   does not look inside SEQUENCEs.  After reload this also skips over
   standalone USE and CLOBBER insn.  */

int
active_insn_p (const_rtx insn)
{
  return (CALL_P (insn) || JUMP_P (insn)
	  || JUMP_TABLE_DATA_P (insn) /* FIXME */
	  || (NONJUMP_INSN_P (insn)
	      && (! reload_completed
		  || (GET_CODE (PATTERN (insn)) != USE
		      && GET_CODE (PATTERN (insn)) != CLOBBER))));
}

rtx_insn *
next_active_insn (rtx uncast_insn)
{
  rtx_insn *insn = safe_as_a <rtx_insn *> (uncast_insn);

  while (insn)
    {
      insn = NEXT_INSN (insn);
      if (insn == 0 || active_insn_p (insn))
	break;
    }

  return insn;
}

/* Find the last insn before INSN that really does something.  This routine
   does not look inside SEQUENCEs.  After reload this also skips over
   standalone USE and CLOBBER insn.  */

rtx_insn *
prev_active_insn (rtx uncast_insn)
{
  rtx_insn *insn = safe_as_a <rtx_insn *> (uncast_insn);

  while (insn)
    {
      insn = PREV_INSN (insn);
      if (insn == 0 || active_insn_p (insn))
	break;
    }

  return insn;
}

#ifdef HAVE_cc0
/* Return the next insn that uses CC0 after INSN, which is assumed to
   set it.  This is the inverse of prev_cc0_setter (i.e., prev_cc0_setter
   applied to the result of this function should yield INSN).

   Normally, this is simply the next insn.  However, if a REG_CC_USER note
   is present, it contains the insn that uses CC0.

   Return 0 if we can't find the insn.  */

rtx_insn *
next_cc0_user (rtx uncast_insn)
{
  rtx_insn *insn = safe_as_a <rtx_insn *> (uncast_insn);

  rtx note = find_reg_note (insn, REG_CC_USER, NULL_RTX);

  if (note)
    return safe_as_a <rtx_insn *> (XEXP (note, 0));

  insn = next_nonnote_insn (insn);
  if (insn && NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
    insn = as_a <rtx_sequence *> (PATTERN (insn))->insn (0);

  if (insn && INSN_P (insn) && reg_mentioned_p (cc0_rtx, PATTERN (insn)))
    return insn;

  return 0;
}

/* Find the insn that set CC0 for INSN.  Unless INSN has a REG_CC_SETTER
   note, it is the previous insn.  */

rtx_insn *
prev_cc0_setter (rtx uncast_insn)
{
  rtx_insn *insn = safe_as_a <rtx_insn *> (uncast_insn);

  rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);

  if (note)
    return safe_as_a <rtx_insn *> (XEXP (note, 0));

  insn = prev_nonnote_insn (insn);
  gcc_assert (sets_cc0_p (PATTERN (insn)));

  return insn;
}
#endif

#ifdef AUTO_INC_DEC
/* Find a RTX_AUTOINC class rtx which matches DATA.  */

static int
find_auto_inc (const_rtx x, const_rtx reg)
{
  subrtx_iterator::array_type array;
  FOR_EACH_SUBRTX (iter, array, x, NONCONST)
    {
      const_rtx x = *iter;
      if (GET_RTX_CLASS (GET_CODE (x)) == RTX_AUTOINC
	  && rtx_equal_p (reg, XEXP (x, 0)))
	return true;
    }
  return false;
}
#endif

/* Increment the label uses for all labels present in rtx.  */

static void
mark_label_nuses (rtx x)
{
  enum rtx_code code;
  int i, j;
  const char *fmt;

  code = GET_CODE (x);
  if (code == LABEL_REF && LABEL_P (LABEL_REF_LABEL (x)))
    LABEL_NUSES (LABEL_REF_LABEL (x))++;

  fmt = GET_RTX_FORMAT (code);
  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
    {
      if (fmt[i] == 'e')
	mark_label_nuses (XEXP (x, i));
      else if (fmt[i] == 'E')
	for (j = XVECLEN (x, i) - 1; j >= 0; j--)
	  mark_label_nuses (XVECEXP (x, i, j));
    }
}


/* Try splitting insns that can be split for better scheduling.
   PAT is the pattern which might split.
   TRIAL is the insn providing PAT.
   LAST is nonzero if we should return the last insn of the sequence produced.

   If this routine succeeds in splitting, it returns the first or last
   replacement insn depending on the value of LAST.  Otherwise, it
   returns TRIAL.  If the insn to be returned can be split, it will be.  */

rtx_insn *
try_split (rtx pat, rtx uncast_trial, int last)
{
  rtx_insn *trial = as_a <rtx_insn *> (uncast_trial);
  rtx_insn *before = PREV_INSN (trial);
  rtx_insn *after = NEXT_INSN (trial);
  rtx note;
  rtx_insn *seq, *tem;
  int probability;
  rtx_insn *insn_last, *insn;
  int njumps = 0;
  rtx call_insn = NULL_RTX;

  /* We're not good at redistributing frame information.  */
  if (RTX_FRAME_RELATED_P (trial))
    return trial;

  if (any_condjump_p (trial)
      && (note = find_reg_note (trial, REG_BR_PROB, 0)))
    split_branch_probability = XINT (note, 0);
  probability = split_branch_probability;

  seq = safe_as_a <rtx_insn *> (split_insns (pat, trial));

  split_branch_probability = -1;

  if (!seq)
    return trial;

  /* Avoid infinite loop if any insn of the result matches
     the original pattern.  */
  insn_last = seq;
  while (1)
    {
      if (INSN_P (insn_last)
	  && rtx_equal_p (PATTERN (insn_last), pat))
	return trial;
      if (!NEXT_INSN (insn_last))
	break;
      insn_last = NEXT_INSN (insn_last);
    }

  /* We will be adding the new sequence to the function.  The splitters
     may have introduced invalid RTL sharing, so unshare the sequence now.  */
  unshare_all_rtl_in_chain (seq);

  /* Mark labels and copy flags.  */
  for (insn = insn_last; insn ; insn = PREV_INSN (insn))
    {
      if (JUMP_P (insn))
	{
	  if (JUMP_P (trial))
	    CROSSING_JUMP_P (insn) = CROSSING_JUMP_P (trial);
	  mark_jump_label (PATTERN (insn), insn, 0);
	  njumps++;
	  if (probability != -1
	      && any_condjump_p (insn)
	      && !find_reg_note (insn, REG_BR_PROB, 0))
	    {
	      /* We can preserve the REG_BR_PROB notes only if exactly
		 one jump is created, otherwise the machine description
		 is responsible for this step using
		 split_branch_probability variable.  */
	      gcc_assert (njumps == 1);
	      add_int_reg_note (insn, REG_BR_PROB, probability);
	    }
	}
    }

  /* If we are splitting a CALL_INSN, look for the CALL_INSN
     in SEQ and copy any additional information across.  */
  if (CALL_P (trial))
    {
      for (insn = insn_last; insn ; insn = PREV_INSN (insn))
	if (CALL_P (insn))
	  {
	    rtx_insn *next;
	    rtx *p;

	    gcc_assert (call_insn == NULL_RTX);
	    call_insn = insn;

	    /* Add the old CALL_INSN_FUNCTION_USAGE to whatever the
	       target may have explicitly specified.  */
	    p = &CALL_INSN_FUNCTION_USAGE (insn);
	    while (*p)
	      p = &XEXP (*p, 1);
	    *p = CALL_INSN_FUNCTION_USAGE (trial);

	    /* If the old call was a sibling call, the new one must
	       be too.  */
	    SIBLING_CALL_P (insn) = SIBLING_CALL_P (trial);

	    /* If the new call is the last instruction in the sequence,
	       it will effectively replace the old call in-situ.  Otherwise
	       we must move any following NOTE_INSN_CALL_ARG_LOCATION note
	       so that it comes immediately after the new call.  */
	    if (NEXT_INSN (insn))
	      for (next = NEXT_INSN (trial);
		   next && NOTE_P (next);
		   next = NEXT_INSN (next))
		if (NOTE_KIND (next) == NOTE_INSN_CALL_ARG_LOCATION)
		  {
		    remove_insn (next);
		    add_insn_after (next, insn, NULL);
		    break;
		  }
	  }
    }

  /* Copy notes, particularly those related to the CFG.  */
  for (note = REG_NOTES (trial); note; note = XEXP (note, 1))
    {
      switch (REG_NOTE_KIND (note))
	{
	case REG_EH_REGION:
	  copy_reg_eh_region_note_backward (note, insn_last, NULL);
	  break;

	case REG_NORETURN:
	case REG_SETJMP:
	case REG_TM:
	  for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
	    {
	      if (CALL_P (insn))
		add_reg_note (insn, REG_NOTE_KIND (note), XEXP (note, 0));
	    }
	  break;

	case REG_NON_LOCAL_GOTO:
	  for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
	    {
	      if (JUMP_P (insn))
		add_reg_note (insn, REG_NOTE_KIND (note), XEXP (note, 0));
	    }
	  break;

#ifdef AUTO_INC_DEC
	case REG_INC:
	  for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
	    {
	      rtx reg = XEXP (note, 0);
	      if (!FIND_REG_INC_NOTE (insn, reg)
		  && find_auto_inc (PATTERN (insn), reg))
		add_reg_note (insn, REG_INC, reg);
	    }
	  break;
#endif

	case REG_ARGS_SIZE:
	  fixup_args_size_notes (NULL, insn_last, INTVAL (XEXP (note, 0)));
	  break;

	case REG_CALL_DECL:
	  gcc_assert (call_insn != NULL_RTX);
	  add_reg_note (call_insn, REG_NOTE_KIND (note), XEXP (note, 0));
	  break;

	default:
	  break;
	}
    }

  /* If there are LABELS inside the split insns increment the
     usage count so we don't delete the label.  */
  if (INSN_P (trial))
    {
      insn = insn_last;
      while (insn != NULL_RTX)
	{
	  /* JUMP_P insns have already been "marked" above.  */
	  if (NONJUMP_INSN_P (insn))
	    mark_label_nuses (PATTERN (insn));

	  insn = PREV_INSN (insn);
	}
    }

  tem = emit_insn_after_setloc (seq, trial, INSN_LOCATION (trial));

  delete_insn (trial);

  /* Recursively call try_split for each new insn created; by the
     time control returns here that insn will be fully split, so
     set LAST and continue from the insn after the one returned.
     We can't use next_active_insn here since AFTER may be a note.
     Ignore deleted insns, which can be occur if not optimizing.  */
  for (tem = NEXT_INSN (before); tem != after; tem = NEXT_INSN (tem))
    if (! tem->deleted () && INSN_P (tem))
      tem = try_split (PATTERN (tem), tem, 1);

  /* Return either the first or the last insn, depending on which was
     requested.  */
  return last
    ? (after ? PREV_INSN (after) : get_last_insn ())
    : NEXT_INSN (before);
}

/* Make and return an INSN rtx, initializing all its slots.
   Store PATTERN in the pattern slots.  */

rtx_insn *
make_insn_raw (rtx pattern)
{
  rtx_insn *insn;

  insn = as_a <rtx_insn *> (rtx_alloc (INSN));

  INSN_UID (insn) = cur_insn_uid++;
  PATTERN (insn) = pattern;
  INSN_CODE (insn) = -1;
  REG_NOTES (insn) = NULL;
  INSN_LOCATION (insn) = curr_insn_location ();
  BLOCK_FOR_INSN (insn) = NULL;

#ifdef ENABLE_RTL_CHECKING
  if (insn
      && INSN_P (insn)
      && (returnjump_p (insn)
	  || (GET_CODE (insn) == SET
	      && SET_DEST (insn) == pc_rtx)))
    {
      warning (0, "ICE: emit_insn used where emit_jump_insn needed:\n");
      debug_rtx (insn);
    }
#endif

  return insn;
}

/* Like `make_insn_raw' but make a DEBUG_INSN instead of an insn.  */

static rtx_insn *
make_debug_insn_raw (rtx pattern)
{
  rtx_debug_insn *insn;

  insn = as_a <rtx_debug_insn *> (rtx_alloc (DEBUG_INSN));
  INSN_UID (insn) = cur_debug_insn_uid++;
  if (cur_debug_insn_uid > MIN_NONDEBUG_INSN_UID)
    INSN_UID (insn) = cur_insn_uid++;

  PATTERN (insn) = pattern;
  INSN_CODE (insn) = -1;
  REG_NOTES (insn) = NULL;
  INSN_LOCATION (insn) = curr_insn_location ();
  BLOCK_FOR_INSN (insn) = NULL;

  return insn;
}

/* Like `make_insn_raw' but make a JUMP_INSN instead of an insn.  */

static rtx_insn *
make_jump_insn_raw (rtx pattern)
{
  rtx_jump_insn *insn;

  insn = as_a <rtx_jump_insn *> (rtx_alloc (JUMP_INSN));
  INSN_UID (insn) = cur_insn_uid++;

  PATTERN (insn) = pattern;
  INSN_CODE (insn) = -1;
  REG_NOTES (insn) = NULL;
  JUMP_LABEL (insn) = NULL;
  INSN_LOCATION (insn) = curr_insn_location ();
  BLOCK_FOR_INSN (insn) = NULL;

  return insn;
}

/* Like `make_insn_raw' but make a CALL_INSN instead of an insn.  */

static rtx_insn *
make_call_insn_raw (rtx pattern)
{
  rtx_call_insn *insn;

  insn = as_a <rtx_call_insn *> (rtx_alloc (CALL_INSN));
  INSN_UID (insn) = cur_insn_uid++;

  PATTERN (insn) = pattern;
  INSN_CODE (insn) = -1;
  REG_NOTES (insn) = NULL;
  CALL_INSN_FUNCTION_USAGE (insn) = NULL;
  INSN_LOCATION (insn) = curr_insn_location ();
  BLOCK_FOR_INSN (insn) = NULL;

  return insn;
}

/* Like `make_insn_raw' but make a NOTE instead of an insn.  */

static rtx_note *
make_note_raw (enum insn_note subtype)
{
  /* Some notes are never created this way at all.  These notes are
     only created by patching out insns.  */
  gcc_assert (subtype != NOTE_INSN_DELETED_LABEL
	      && subtype != NOTE_INSN_DELETED_DEBUG_LABEL);

  rtx_note *note = as_a <rtx_note *> (rtx_alloc (NOTE));
  INSN_UID (note) = cur_insn_uid++;
  NOTE_KIND (note) = subtype;
  BLOCK_FOR_INSN (note) = NULL;
  memset (&NOTE_DATA (note), 0, sizeof (NOTE_DATA (note)));
  return note;
}

/* Add INSN to the end of the doubly-linked list, between PREV and NEXT.
   INSN may be any object that can appear in the chain: INSN_P and NOTE_P objects,
   but also BARRIERs and JUMP_TABLE_DATAs.  PREV and NEXT may be NULL.  */

static inline void
link_insn_into_chain (rtx_insn *insn, rtx_insn *prev, rtx_insn *next)
{
  SET_PREV_INSN (insn) = prev;
  SET_NEXT_INSN (insn) = next;
  if (prev != NULL)
    {
      SET_NEXT_INSN (prev) = insn;
      if (NONJUMP_INSN_P (prev) && GET_CODE (PATTERN (prev)) == SEQUENCE)
	{
	  rtx_sequence *sequence = as_a <rtx_sequence *> (PATTERN (prev));
	  SET_NEXT_INSN (sequence->insn (sequence->len () - 1)) = insn;
	}
    }
  if (next != NULL)
    {
      SET_PREV_INSN (next) = insn;
      if (NONJUMP_INSN_P (next) && GET_CODE (PATTERN (next)) == SEQUENCE)
	{
	  rtx_sequence *sequence = as_a <rtx_sequence *> (PATTERN (next));
	  SET_PREV_INSN (sequence->insn (0)) = insn;
	}
    }

  if (NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
    {
      rtx_sequence *sequence = as_a <rtx_sequence *> (PATTERN (insn));
      SET_PREV_INSN (sequence->insn (0)) = prev;
      SET_NEXT_INSN (sequence->insn (sequence->len () - 1)) = next;
    }
}

/* Add INSN to the end of the doubly-linked list.
   INSN may be an INSN, JUMP_INSN, CALL_INSN, CODE_LABEL, BARRIER or NOTE.  */

void
add_insn (rtx_insn *insn)
{
  rtx_insn *prev = get_last_insn ();
  link_insn_into_chain (insn, prev, NULL);
  if (NULL == get_insns ())
    set_first_insn (insn);
  set_last_insn (insn);
}

/* Add INSN into the doubly-linked list after insn AFTER.  */

static void
add_insn_after_nobb (rtx_insn *insn, rtx_insn *after)
{
  rtx_insn *next = NEXT_INSN (after);

  gcc_assert (!optimize || !after->deleted ());

  link_insn_into_chain (insn, after, next);

  if (next == NULL)
    {
      if (get_last_insn () == after)
	set_last_insn (insn);
      else
	{
	  struct sequence_stack *stack = seq_stack;
	  /* Scan all pending sequences too.  */
	  for (; stack; stack = stack->next)
	    if (after == stack->last)
	      {
		stack->last = insn;
		break;
	      }
	}
    }
}

/* Add INSN into the doubly-linked list before insn BEFORE.  */

static void
add_insn_before_nobb (rtx_insn *insn, rtx_insn *before)
{
  rtx_insn *prev = PREV_INSN (before);

  gcc_assert (!optimize || !before->deleted ());

  link_insn_into_chain (insn, prev, before);

  if (prev == NULL)
    {
      if (get_insns () == before)
	set_first_insn (insn);
      else
	{
	  struct sequence_stack *stack = seq_stack;
	  /* Scan all pending sequences too.  */
	  for (; stack; stack = stack->next)
	    if (before == stack->first)
	      {
		stack->first = insn;
		break;
	      }

	  gcc_assert (stack);
	}
    }
}

/* Like add_insn_after_nobb, but try to set BLOCK_FOR_INSN.
   If BB is NULL, an attempt is made to infer the bb from before.

   This and the next function should be the only functions called
   to insert an insn once delay slots have been filled since only
   they know how to update a SEQUENCE. */

void
add_insn_after (rtx uncast_insn, rtx uncast_after, basic_block bb)
{
  rtx_insn *insn = as_a <rtx_insn *> (uncast_insn);
  rtx_insn *after = as_a <rtx_insn *> (uncast_after);
  add_insn_after_nobb (insn, after);
  if (!BARRIER_P (after)
      && !BARRIER_P (insn)
      && (bb = BLOCK_FOR_INSN (after)))
    {
      set_block_for_insn (insn, bb);
      if (INSN_P (insn))
	df_insn_rescan (insn);
      /* Should not happen as first in the BB is always
	 either NOTE or LABEL.  */
      if (BB_END (bb) == after
	  /* Avoid clobbering of structure when creating new BB.  */
	  && !BARRIER_P (insn)
	  && !NOTE_INSN_BASIC_BLOCK_P (insn))
	BB_END (bb) = insn;
    }
}

/* Like add_insn_before_nobb, but try to set BLOCK_FOR_INSN.
   If BB is NULL, an attempt is made to infer the bb from before.

   This and the previous function should be the only functions called
   to insert an insn once delay slots have been filled since only
   they know how to update a SEQUENCE. */

void
add_insn_before (rtx uncast_insn, rtx uncast_before, basic_block bb)
{
  rtx_insn *insn = as_a <rtx_insn *> (uncast_insn);
  rtx_insn *before = as_a <rtx_insn *> (uncast_before);
  add_insn_before_nobb (insn, before);

  if (!bb
      && !BARRIER_P (before)
      && !BARRIER_P (insn))
    bb = BLOCK_FOR_INSN (before);

  if (bb)
    {
      set_block_for_insn (insn, bb);
      if (INSN_P (insn))
	df_insn_rescan (insn);
      /* Should not happen as first in the BB is always either NOTE or
	 LABEL.  */
      gcc_assert (BB_HEAD (bb) != insn
		  /* Avoid clobbering of structure when creating new BB.  */
		  || BARRIER_P (insn)
		  || NOTE_INSN_BASIC_BLOCK_P (insn));
    }
}

/* Replace insn with an deleted instruction note.  */

void
set_insn_deleted (rtx insn)
{
  if (INSN_P (insn))
    df_insn_delete (as_a <rtx_insn *> (insn));
  PUT_CODE (insn, NOTE);
  NOTE_KIND (insn) = NOTE_INSN_DELETED;
}


/* Unlink INSN from the insn chain.

   This function knows how to handle sequences.
   
   This function does not invalidate data flow information associated with
   INSN (i.e. does not call df_insn_delete).  That makes this function
   usable for only disconnecting an insn from the chain, and re-emit it
   elsewhere later.

   To later insert INSN elsewhere in the insn chain via add_insn and
   similar functions, PREV_INSN and NEXT_INSN must be nullified by
   the caller.  Nullifying them here breaks many insn chain walks.

   To really delete an insn and related DF information, use delete_insn.  */

void
remove_insn (rtx uncast_insn)
{
  rtx_insn *insn = as_a <rtx_insn *> (uncast_insn);
  rtx_insn *next = NEXT_INSN (insn);
  rtx_insn *prev = PREV_INSN (insn);
  basic_block bb;

  if (prev)
    {
      SET_NEXT_INSN (prev) = next;
      if (NONJUMP_INSN_P (prev) && GET_CODE (PATTERN (prev)) == SEQUENCE)
	{
	  rtx_sequence *sequence = as_a <rtx_sequence *> (PATTERN (prev));
	  SET_NEXT_INSN (sequence->insn (sequence->len () - 1)) = next;
	}
    }
  else if (get_insns () == insn)
    {
      if (next)
        SET_PREV_INSN (next) = NULL;
      set_first_insn (next);
    }
  else
    {
      struct sequence_stack *stack = seq_stack;
      /* Scan all pending sequences too.  */
      for (; stack; stack = stack->next)
	if (insn == stack->first)
	  {
	    stack->first = next;
	    break;
	  }

      gcc_assert (stack);
    }

  if (next)
    {
      SET_PREV_INSN (next) = prev;
      if (NONJUMP_INSN_P (next) && GET_CODE (PATTERN (next)) == SEQUENCE)
	{
	  rtx_sequence *sequence = as_a <rtx_sequence *> (PATTERN (next));
	  SET_PREV_INSN (sequence->insn (0)) = prev;
	}
    }
  else if (get_last_insn () == insn)
    set_last_insn (prev);
  else
    {
      struct sequence_stack *stack = seq_stack;
      /* Scan all pending sequences too.  */
      for (; stack; stack = stack->next)
	if (insn == stack->last)
	  {
	    stack->last = prev;
	    break;
	  }

      gcc_assert (stack);
    }

  /* Fix up basic block boundaries, if necessary.  */
  if (!BARRIER_P (insn)
      && (bb = BLOCK_FOR_INSN (insn)))
    {
      if (BB_HEAD (bb) == insn)
	{
	  /* Never ever delete the basic block note without deleting whole
	     basic block.  */
	  gcc_assert (!NOTE_P (insn));
	  BB_HEAD (bb) = next;
	}
      if (BB_END (bb) == insn)
	BB_END (bb) = prev;
    }
}

/* Append CALL_FUSAGE to the CALL_INSN_FUNCTION_USAGE for CALL_INSN.  */

void
add_function_usage_to (rtx call_insn, rtx call_fusage)
{
  gcc_assert (call_insn && CALL_P (call_insn));

  /* Put the register usage information on the CALL.  If there is already
     some usage information, put ours at the end.  */
  if (CALL_INSN_FUNCTION_USAGE (call_insn))
    {
      rtx link;

      for (link = CALL_INSN_FUNCTION_USAGE (call_insn); XEXP (link, 1) != 0;
	   link = XEXP (link, 1))
	;

      XEXP (link, 1) = call_fusage;
    }
  else
    CALL_INSN_FUNCTION_USAGE (call_insn) = call_fusage;
}

/* Delete all insns made since FROM.
   FROM becomes the new last instruction.  */

void
delete_insns_since (rtx_insn *from)
{
  if (from == 0)
    set_first_insn (0);
  else
    SET_NEXT_INSN (from) = 0;
  set_last_insn (from);
}

/* This function is deprecated, please use sequences instead.

   Move a consecutive bunch of insns to a different place in the chain.
   The insns to be moved are those between FROM and TO.
   They are moved to a new position after the insn AFTER.
   AFTER must not be FROM or TO or any insn in between.

   This function does not know about SEQUENCEs and hence should not be
   called after delay-slot filling has been done.  */

void
reorder_insns_nobb (rtx_insn *from, rtx_insn *to, rtx_insn *after)
{
#ifdef ENABLE_CHECKING
  rtx_insn *x;
  for (x = from; x != to; x = NEXT_INSN (x))
    gcc_assert (after != x);
  gcc_assert (after != to);
#endif

  /* Splice this bunch out of where it is now.  */
  if (PREV_INSN (from))
    SET_NEXT_INSN (PREV_INSN (from)) = NEXT_INSN (to);
  if (NEXT_INSN (to))
    SET_PREV_INSN (NEXT_INSN (to)) = PREV_INSN (from);
  if (get_last_insn () == to)
    set_last_insn (PREV_INSN (from));
  if (get_insns () == from)
    set_first_insn (NEXT_INSN (to));

  /* Make the new neighbors point to it and it to them.  */
  if (NEXT_INSN (after))
    SET_PREV_INSN (NEXT_INSN (after)) = to;

  SET_NEXT_INSN (to) = NEXT_INSN (after);
  SET_PREV_INSN (from) = after;
  SET_NEXT_INSN (after) = from;
  if (after == get_last_insn ())
    set_last_insn (to);
}

/* Same as function above, but take care to update BB boundaries.  */
void
reorder_insns (rtx_insn *from, rtx_insn *to, rtx_insn *after)
{
  rtx_insn *prev = PREV_INSN (from);
  basic_block bb, bb2;

  reorder_insns_nobb (from, to, after);

  if (!BARRIER_P (after)
      && (bb = BLOCK_FOR_INSN (after)))
    {
      rtx_insn *x;
      df_set_bb_dirty (bb);

      if (!BARRIER_P (from)
	  && (bb2 = BLOCK_FOR_INSN (from)))
	{
	  if (BB_END (bb2) == to)
	    BB_END (bb2) = prev;
	  df_set_bb_dirty (bb2);
	}

      if (BB_END (bb) == after)
	BB_END (bb) = to;

      for (x = from; x != NEXT_INSN (to); x = NEXT_INSN (x))
	if (!BARRIER_P (x))
	  df_insn_change_bb (x, bb);
    }
}


/* Emit insn(s) of given code and pattern
   at a specified place within the doubly-linked list.

   All of the emit_foo global entry points accept an object
   X which is either an insn list or a PATTERN of a single
   instruction.

   There are thus a few canonical ways to generate code and
   emit it at a specific place in the instruction stream.  For
   example, consider the instruction named SPOT and the fact that
   we would like to emit some instructions before SPOT.  We might
   do it like this:

	start_sequence ();
	... emit the new instructions ...
	insns_head = get_insns ();
	end_sequence ();

	emit_insn_before (insns_head, SPOT);

   It used to be common to generate SEQUENCE rtl instead, but that
   is a relic of the past which no longer occurs.  The reason is that
   SEQUENCE rtl results in much fragmented RTL memory since the SEQUENCE
   generated would almost certainly die right after it was created.  */

static rtx_insn *
emit_pattern_before_noloc (rtx x, rtx before, rtx last, basic_block bb,
                           rtx_insn *(*make_raw) (rtx))
{
  rtx_insn *insn;

  gcc_assert (before);

  if (x == NULL_RTX)
    return safe_as_a <rtx_insn *> (last);

  switch (GET_CODE (x))
    {
    case DEBUG_INSN:
    case INSN:
    case JUMP_INSN:
    case CALL_INSN:
    case CODE_LABEL:
    case BARRIER:
    case NOTE:
      insn = as_a <rtx_insn *> (x);
      while (insn)
	{
	  rtx_insn *next = NEXT_INSN (insn);
	  add_insn_before (insn, before, bb);
	  last = insn;
	  insn = next;
	}
      break;

#ifdef ENABLE_RTL_CHECKING
    case SEQUENCE:
      gcc_unreachable ();
      break;
#endif

    default:
      last = (*make_raw) (x);
      add_insn_before (last, before, bb);
      break;
    }

  return safe_as_a <rtx_insn *> (last);
}

/* Make X be output before the instruction BEFORE.  */

rtx_insn *
emit_insn_before_noloc (rtx x, rtx_insn *before, basic_block bb)
{
  return emit_pattern_before_noloc (x, before, before, bb, make_insn_raw);
}

/* Make an instruction with body X and code JUMP_INSN
   and output it before the instruction BEFORE.  */

rtx_insn *
emit_jump_insn_before_noloc (rtx x, rtx_insn *before)
{
  return emit_pattern_before_noloc (x, before, NULL_RTX, NULL,
				    make_jump_insn_raw);
}

/* Make an instruction with body X and code CALL_INSN
   and output it before the instruction BEFORE.  */

rtx_insn *
emit_call_insn_before_noloc (rtx x, rtx_insn *before)
{
  return emit_pattern_before_noloc (x, before, NULL_RTX, NULL,
				    make_call_insn_raw);
}

/* Make an instruction with body X and code DEBUG_INSN
   and output it before the instruction BEFORE.  */

rtx_insn *
emit_debug_insn_before_noloc (rtx x, rtx before)
{
  return emit_pattern_before_noloc (x, before, NULL_RTX, NULL,
				    make_debug_insn_raw);
}

/* Make an insn of code BARRIER
   and output it before the insn BEFORE.  */

rtx_barrier *
emit_barrier_before (rtx before)
{
  rtx_barrier *insn = as_a <rtx_barrier *> (rtx_alloc (BARRIER));

  INSN_UID (insn) = cur_insn_uid++;

  add_insn_before (insn, before, NULL);
  return insn;
}

/* Emit the label LABEL before the insn BEFORE.  */

rtx_insn *
emit_label_before (rtx label, rtx_insn *before)
{
  gcc_checking_assert (INSN_UID (label) == 0);
  INSN_UID (label) = cur_insn_uid++;
  add_insn_before (label, before, NULL);
  return as_a <rtx_insn *> (label);
}

/* Helper for emit_insn_after, handles lists of instructions
   efficiently.  */

static rtx_insn *
emit_insn_after_1 (rtx_insn *first, rtx uncast_after, basic_block bb)
{
  rtx_insn *after = safe_as_a <rtx_insn *> (uncast_after);
  rtx_insn *last;
  rtx_insn *after_after;
  if (!bb && !BARRIER_P (after))
    bb = BLOCK_FOR_INSN (after);

  if (bb)
    {
      df_set_bb_dirty (bb);
      for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
	if (!BARRIER_P (last))
	  {
	    set_block_for_insn (last, bb);
	    df_insn_rescan (last);
	  }
      if (!BARRIER_P (last))
	{
	  set_block_for_insn (last, bb);
	  df_insn_rescan (last);
	}
      if (BB_END (bb) == after)
	BB_END (bb) = last;
    }
  else
    for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
      continue;

  after_after = NEXT_INSN (after);

  SET_NEXT_INSN (after) = first;
  SET_PREV_INSN (first) = after;
  SET_NEXT_INSN (last) = after_after;
  if (after_after)
    SET_PREV_INSN (after_after) = last;

  if (after == get_last_insn ())
    set_last_insn (last);

  return last;
}

static rtx_insn *
emit_pattern_after_noloc (rtx x, rtx uncast_after, basic_block bb,
			  rtx_insn *(*make_raw)(rtx))
{
  rtx_insn *after = safe_as_a <rtx_insn *> (uncast_after);
  rtx_insn *last = after;

  gcc_assert (after);

  if (x == NULL_RTX)
    return last;

  switch (GET_CODE (x))
    {
    case DEBUG_INSN:
    case INSN:
    case JUMP_INSN:
    case CALL_INSN:
    case CODE_LABEL:
    case BARRIER:
    case NOTE:
      last = emit_insn_after_1 (as_a <rtx_insn *> (x), after, bb);
      break;

#ifdef ENABLE_RTL_CHECKING
    case SEQUENCE:
      gcc_unreachable ();
      break;
#endif

    default:
      last = (*make_raw) (x);
      add_insn_after (last, after, bb);
      break;
    }

  return last;
}

/* Make X be output after the insn AFTER and set the BB of insn.  If
   BB is NULL, an attempt is made to infer the BB from AFTER.  */

rtx_insn *
emit_insn_after_noloc (rtx x, rtx after, basic_block bb)
{
  return emit_pattern_after_noloc (x, after, bb, make_insn_raw);
}


/* Make an insn of code JUMP_INSN with body X
   and output it after the insn AFTER.  */

rtx_insn *
emit_jump_insn_after_noloc (rtx x, rtx after)
{
  return emit_pattern_after_noloc (x, after, NULL, make_jump_insn_raw);
}

/* Make an instruction with body X and code CALL_INSN
   and output it after the instruction AFTER.  */

rtx_insn *
emit_call_insn_after_noloc (rtx x, rtx after)
{
  return emit_pattern_after_noloc (x, after, NULL, make_call_insn_raw);
}

/* Make an instruction with body X and code CALL_INSN
   and output it after the instruction AFTER.  */

rtx_insn *
emit_debug_insn_after_noloc (rtx x, rtx after)
{
  return emit_pattern_after_noloc (x, after, NULL, make_debug_insn_raw);
}

/* Make an insn of code BARRIER
   and output it after the insn AFTER.  */

rtx_barrier *
emit_barrier_after (rtx after)
{
  rtx_barrier *insn = as_a <rtx_barrier *> (rtx_alloc (BARRIER));

  INSN_UID (insn) = cur_insn_uid++;

  add_insn_after (insn, after, NULL);
  return insn;
}

/* Emit the label LABEL after the insn AFTER.  */

rtx_insn *
emit_label_after (rtx label, rtx_insn *after)
{
  gcc_checking_assert (INSN_UID (label) == 0);
  INSN_UID (label) = cur_insn_uid++;
  add_insn_after (label, after, NULL);
  return as_a <rtx_insn *> (label);
}

/* Notes require a bit of special handling: Some notes need to have their
   BLOCK_FOR_INSN set, others should never have it set, and some should
   have it set or clear depending on the context.   */

/* Return true iff a note of kind SUBTYPE should be emitted with routines
   that never set BLOCK_FOR_INSN on NOTE.  BB_BOUNDARY is true if the
   caller is asked to emit a note before BB_HEAD, or after BB_END.  */

static bool
note_outside_basic_block_p (enum insn_note subtype, bool on_bb_boundary_p)
{
  switch (subtype)
    {
      /* NOTE_INSN_SWITCH_TEXT_SECTIONS only appears between basic blocks.  */
      case NOTE_INSN_SWITCH_TEXT_SECTIONS:
	return true;

      /* Notes for var tracking and EH region markers can appear between or
	 inside basic blocks.  If the caller is emitting on the basic block
	 boundary, do not set BLOCK_FOR_INSN on the new note.  */
      case NOTE_INSN_VAR_LOCATION:
      case NOTE_INSN_CALL_ARG_LOCATION:
      case NOTE_INSN_EH_REGION_BEG:
      case NOTE_INSN_EH_REGION_END:
	return on_bb_boundary_p;

      /* Otherwise, BLOCK_FOR_INSN must be set.  */
      default:
	return false;
    }
}

/* Emit a note of subtype SUBTYPE after the insn AFTER.  */

rtx_note *
emit_note_after (enum insn_note subtype, rtx uncast_after)
{
  rtx_insn *after = as_a <rtx_insn *> (uncast_after);
  rtx_note *note = make_note_raw (subtype);
  basic_block bb = BARRIER_P (after) ? NULL : BLOCK_FOR_INSN (after);
  bool on_bb_boundary_p = (bb != NULL && BB_END (bb) == after);

  if (note_outside_basic_block_p (subtype, on_bb_boundary_p))
    add_insn_after_nobb (note, after);
  else
    add_insn_after (note, after, bb);
  return note;
}

/* Emit a note of subtype SUBTYPE before the insn BEFORE.  */

rtx_note *
emit_note_before (enum insn_note subtype, rtx uncast_before)
{
  rtx_insn *before = as_a <rtx_insn *> (uncast_before);
  rtx_note *note = make_note_raw (subtype);
  basic_block bb = BARRIER_P (before) ? NULL : BLOCK_FOR_INSN (before);
  bool on_bb_boundary_p = (bb != NULL && BB_HEAD (bb) == before);

  if (note_outside_basic_block_p (subtype, on_bb_boundary_p))
    add_insn_before_nobb (note, before);
  else
    add_insn_before (note, before, bb);
  return note;
}

/* Insert PATTERN after AFTER, setting its INSN_LOCATION to LOC.
   MAKE_RAW indicates how to turn PATTERN into a real insn.  */

static rtx_insn *
emit_pattern_after_setloc (rtx pattern, rtx uncast_after, int loc,
			   rtx_insn *(*make_raw) (rtx))
{
  rtx_insn *after = safe_as_a <rtx_insn *> (uncast_after);
  rtx last = emit_pattern_after_noloc (pattern, after, NULL, make_raw);

  if (pattern == NULL_RTX || !loc)
    return safe_as_a <rtx_insn *> (last);

  after = NEXT_INSN (after);
  while (1)
    {
      if (active_insn_p (after) && !INSN_LOCATION (after))
	INSN_LOCATION (after) = loc;
      if (after == last)
	break;
      after = NEXT_INSN (after);
    }
  return safe_as_a <rtx_insn *> (last);
}

/* Insert PATTERN after AFTER.  MAKE_RAW indicates how to turn PATTERN
   into a real insn.  SKIP_DEBUG_INSNS indicates whether to insert after
   any DEBUG_INSNs.  */

static rtx_insn *
emit_pattern_after (rtx pattern, rtx uncast_after, bool skip_debug_insns,
		    rtx_insn *(*make_raw) (rtx))
{
  rtx_insn *after = safe_as_a <rtx_insn *> (uncast_after);
  rtx_insn *prev = after;

  if (skip_debug_insns)
    while (DEBUG_INSN_P (prev))
      prev = PREV_INSN (prev);

  if (INSN_P (prev))
    return emit_pattern_after_setloc (pattern, after, INSN_LOCATION (prev),
				      make_raw);
  else
    return emit_pattern_after_noloc (pattern, after, NULL, make_raw);
}

/* Like emit_insn_after_noloc, but set INSN_LOCATION according to LOC.  */
rtx_insn *
emit_insn_after_setloc (rtx pattern, rtx after, int loc)
{
  return emit_pattern_after_setloc (pattern, after, loc, make_insn_raw);
}

/* Like emit_insn_after_noloc, but set INSN_LOCATION according to AFTER.  */
rtx_insn *
emit_insn_after (rtx pattern, rtx after)
{
  return emit_pattern_after (pattern, after, true, make_insn_raw);
}

/* Like emit_jump_insn_after_noloc, but set INSN_LOCATION according to LOC.  */
rtx_insn *
emit_jump_insn_after_setloc (rtx pattern, rtx after, int loc)
{
  return emit_pattern_after_setloc (pattern, after, loc, make_jump_insn_raw);
}

/* Like emit_jump_insn_after_noloc, but set INSN_LOCATION according to AFTER.  */
rtx_insn *
emit_jump_insn_after (rtx pattern, rtx after)
{
  return emit_pattern_after (pattern, after, true, make_jump_insn_raw);
}

/* Like emit_call_insn_after_noloc, but set INSN_LOCATION according to LOC.  */
rtx_insn *
emit_call_insn_after_setloc (rtx pattern, rtx after, int loc)
{
  return emit_pattern_after_setloc (pattern, after, loc, make_call_insn_raw);
}

/* Like emit_call_insn_after_noloc, but set INSN_LOCATION according to AFTER.  */
rtx_insn *
emit_call_insn_after (rtx pattern, rtx after)
{
  return emit_pattern_after (pattern, after, true, make_call_insn_raw);
}

/* Like emit_debug_insn_after_noloc, but set INSN_LOCATION according to LOC.  */
rtx_insn *
emit_debug_insn_after_setloc (rtx pattern, rtx after, int loc)
{
  return emit_pattern_after_setloc (pattern, after, loc, make_debug_insn_raw);
}

/* Like emit_debug_insn_after_noloc, but set INSN_LOCATION according to AFTER.  */
rtx_insn *
emit_debug_insn_after (rtx pattern, rtx after)
{
  return emit_pattern_after (pattern, after, false, make_debug_insn_raw);
}

/* Insert PATTERN before BEFORE, setting its INSN_LOCATION to LOC.
   MAKE_RAW indicates how to turn PATTERN into a real insn.  INSNP
   indicates if PATTERN is meant for an INSN as opposed to a JUMP_INSN,
   CALL_INSN, etc.  */

static rtx_insn *
emit_pattern_before_setloc (rtx pattern, rtx uncast_before, int loc, bool insnp,
			    rtx_insn *(*make_raw) (rtx))
{
  rtx_insn *before = as_a <rtx_insn *> (uncast_before);
  rtx_insn *first = PREV_INSN (before);
  rtx_insn *last = emit_pattern_before_noloc (pattern, before,
					      insnp ? before : NULL_RTX,
					      NULL, make_raw);

  if (pattern == NULL_RTX || !loc)
    return last;

  if (!first)
    first = get_insns ();
  else
    first = NEXT_INSN (first);
  while (1)
    {
      if (active_insn_p (first) && !INSN_LOCATION (first))
	INSN_LOCATION (first) = loc;
      if (first == last)
	break;
      first = NEXT_INSN (first);
    }
  return last;
}

/* Insert PATTERN before BEFORE.  MAKE_RAW indicates how to turn PATTERN
   into a real insn.  SKIP_DEBUG_INSNS indicates whether to insert
   before any DEBUG_INSNs.  INSNP indicates if PATTERN is meant for an
   INSN as opposed to a JUMP_INSN, CALL_INSN, etc.  */

static rtx_insn *
emit_pattern_before (rtx pattern, rtx uncast_before, bool skip_debug_insns,
		     bool insnp, rtx_insn *(*make_raw) (rtx))
{
  rtx_insn *before = safe_as_a <rtx_insn *> (uncast_before);
  rtx_insn *next = before;

  if (skip_debug_insns)
    while (DEBUG_INSN_P (next))
      next = PREV_INSN (next);

  if (INSN_P (next))
    return emit_pattern_before_setloc (pattern, before, INSN_LOCATION (next),
				       insnp, make_raw);
  else
    return emit_pattern_before_noloc (pattern, before,
                                      insnp ? before : NULL_RTX,
                                      NULL, make_raw);
}

/* Like emit_insn_before_noloc, but set INSN_LOCATION according to LOC.  */
rtx_insn *
emit_insn_before_setloc (rtx pattern, rtx_insn *before, int loc)
{
  return emit_pattern_before_setloc (pattern, before, loc, true,
				     make_insn_raw);
}

/* Like emit_insn_before_noloc, but set INSN_LOCATION according to BEFORE.  */
rtx_insn *
emit_insn_before (rtx pattern, rtx before)
{
  return emit_pattern_before (pattern, before, true, true, make_insn_raw);
}

/* like emit_insn_before_noloc, but set INSN_LOCATION according to LOC.  */
rtx_insn *
emit_jump_insn_before_setloc (rtx pattern, rtx_insn *before, int loc)
{
  return emit_pattern_before_setloc (pattern, before, loc, false,
				     make_jump_insn_raw);
}

/* Like emit_jump_insn_before_noloc, but set INSN_LOCATION according to BEFORE.  */
rtx_insn *
emit_jump_insn_before (rtx pattern, rtx before)
{
  return emit_pattern_before (pattern, before, true, false,
			      make_jump_insn_raw);
}

/* Like emit_insn_before_noloc, but set INSN_LOCATION according to LOC.  */
rtx_insn *
emit_call_insn_before_setloc (rtx pattern, rtx_insn *before, int loc)
{
  return emit_pattern_before_setloc (pattern, before, loc, false,
				     make_call_insn_raw);
}

/* Like emit_call_insn_before_noloc,
   but set insn_location according to BEFORE.  */
rtx_insn *
emit_call_insn_before (rtx pattern, rtx_insn *before)
{
  return emit_pattern_before (pattern, before, true, false,
			      make_call_insn_raw);
}

/* Like emit_insn_before_noloc, but set INSN_LOCATION according to LOC.  */
rtx_insn *
emit_debug_insn_before_setloc (rtx pattern, rtx before, int loc)
{
  return emit_pattern_before_setloc (pattern, before, loc, false,
				     make_debug_insn_raw);
}

/* Like emit_debug_insn_before_noloc,
   but set insn_location according to BEFORE.  */
rtx_insn *
emit_debug_insn_before (rtx pattern, rtx before)
{
  return emit_pattern_before (pattern, before, false, false,
			      make_debug_insn_raw);
}

/* Take X and emit it at the end of the doubly-linked
   INSN list.

   Returns the last insn emitted.  */

rtx_insn *
emit_insn (rtx x)
{
  rtx_insn *last = get_last_insn ();
  rtx_insn *insn;

  if (x == NULL_RTX)
    return last;

  switch (GET_CODE (x))
    {
    case DEBUG_INSN:
    case INSN:
    case JUMP_INSN:
    case CALL_INSN:
    case CODE_LABEL:
    case BARRIER:
    case NOTE:
      insn = as_a <rtx_insn *> (x);
      while (insn)
	{
	  rtx_insn *next = NEXT_INSN (insn);
	  add_insn (insn);
	  last = insn;
	  insn = next;
	}
      break;

#ifdef ENABLE_RTL_CHECKING
    case JUMP_TABLE_DATA:
    case SEQUENCE:
      gcc_unreachable ();
      break;
#endif

    default:
      last = make_insn_raw (x);
      add_insn (last);
      break;
    }

  return last;
}

/* Make an insn of code DEBUG_INSN with pattern X
   and add it to the end of the doubly-linked list.  */

rtx_insn *
emit_debug_insn (rtx x)
{
  rtx_insn *last = get_last_insn ();
  rtx_insn *insn;

  if (x == NULL_RTX)
    return last;

  switch (GET_CODE (x))
    {
    case DEBUG_INSN:
    case INSN:
    case JUMP_INSN:
    case CALL_INSN:
    case CODE_LABEL:
    case BARRIER:
    case NOTE:
      insn = as_a <rtx_insn *> (x);
      while (insn)
	{
	  rtx_insn *next = NEXT_INSN (insn);
	  add_insn (insn);
	  last = insn;
	  insn = next;
	}
      break;

#ifdef ENABLE_RTL_CHECKING
    case JUMP_TABLE_DATA:
    case SEQUENCE:
      gcc_unreachable ();
      break;
#endif

    default:
      last = make_debug_insn_raw (x);
      add_insn (last);
      break;
    }

  return last;
}

/* Make an insn of code JUMP_INSN with pattern X
   and add it to the end of the doubly-linked list.  */

rtx_insn *
emit_jump_insn (rtx x)
{
  rtx_insn *last = NULL;
  rtx_insn *insn;

  switch (GET_CODE (x))
    {
    case DEBUG_INSN:
    case INSN:
    case JUMP_INSN:
    case CALL_INSN:
    case CODE_LABEL:
    case BARRIER:
    case NOTE:
      insn = as_a <rtx_insn *> (x);
      while (insn)
	{
	  rtx_insn *next = NEXT_INSN (insn);
	  add_insn (insn);
	  last = insn;
	  insn = next;
	}
      break;

#ifdef ENABLE_RTL_CHECKING
    case JUMP_TABLE_DATA:
    case SEQUENCE:
      gcc_unreachable ();
      break;
#endif

    default:
      last = make_jump_insn_raw (x);
      add_insn (last);
      break;
    }

  return last;
}

/* Make an insn of code CALL_INSN with pattern X
   and add it to the end of the doubly-linked list.  */

rtx_insn *
emit_call_insn (rtx x)
{
  rtx_insn *insn;

  switch (GET_CODE (x))
    {
    case DEBUG_INSN:
    case INSN:
    case JUMP_INSN:
    case CALL_INSN:
    case CODE_LABEL:
    case BARRIER:
    case NOTE:
      insn = emit_insn (x);
      break;

#ifdef ENABLE_RTL_CHECKING
    case SEQUENCE:
    case JUMP_TABLE_DATA:
      gcc_unreachable ();
      break;
#endif

    default:
      insn = make_call_insn_raw (x);
      add_insn (insn);
      break;
    }

  return insn;
}

/* Add the label LABEL to the end of the doubly-linked list.  */

rtx_insn *
emit_label (rtx label)
{
  gcc_checking_assert (INSN_UID (label) == 0);
  INSN_UID (label) = cur_insn_uid++;
  add_insn (as_a <rtx_insn *> (label));
  return as_a <rtx_insn *> (label);
}

/* Make an insn of code JUMP_TABLE_DATA
   and add it to the end of the doubly-linked list.  */

rtx_jump_table_data *
emit_jump_table_data (rtx table)
{
  rtx_jump_table_data *jump_table_data =
    as_a <rtx_jump_table_data *> (rtx_alloc (JUMP_TABLE_DATA));
  INSN_UID (jump_table_data) = cur_insn_uid++;
  PATTERN (jump_table_data) = table;
  BLOCK_FOR_INSN (jump_table_data) = NULL;
  add_insn (jump_table_data);
  return jump_table_data;
}

/* Make an insn of code BARRIER
   and add it to the end of the doubly-linked list.  */

rtx_barrier *
emit_barrier (void)
{
  rtx_barrier *barrier = as_a <rtx_barrier *> (rtx_alloc (BARRIER));
  INSN_UID (barrier) = cur_insn_uid++;
  add_insn (barrier);
  return barrier;
}

/* Emit a copy of note ORIG.  */

rtx_note *
emit_note_copy (rtx_note *orig)
{
  enum insn_note kind = (enum insn_note) NOTE_KIND (orig);
  rtx_note *note = make_note_raw (kind);
  NOTE_DATA (note) = NOTE_DATA (orig);
  add_insn (note);
  return note;
}

/* Make an insn of code NOTE or type NOTE_NO
   and add it to the end of the doubly-linked list.  */

rtx_note *
emit_note (enum insn_note kind)
{
  rtx_note *note = make_note_raw (kind);
  add_insn (note);
  return note;
}

/* Emit a clobber of lvalue X.  */

rtx_insn *
emit_clobber (rtx x)
{
  /* CONCATs should not appear in the insn stream.  */
  if (GET_CODE (x) == CONCAT)
    {
      emit_clobber (XEXP (x, 0));
      return emit_clobber (XEXP (x, 1));
    }
  return emit_insn (gen_rtx_CLOBBER (VOIDmode, x));
}

/* Return a sequence of insns to clobber lvalue X.  */

rtx_insn *
gen_clobber (rtx x)
{
  rtx_insn *seq;

  start_sequence ();
  emit_clobber (x);
  seq = get_insns ();
  end_sequence ();
  return seq;
}

/* Emit a use of rvalue X.  */

rtx_insn *
emit_use (rtx x)
{
  /* CONCATs should not appear in the insn stream.  */
  if (GET_CODE (x) == CONCAT)
    {
      emit_use (XEXP (x, 0));
      return emit_use (XEXP (x, 1));
    }
  return emit_insn (gen_rtx_USE (VOIDmode, x));
}

/* Return a sequence of insns to use rvalue X.  */

rtx_insn *
gen_use (rtx x)
{
  rtx_insn *seq;

  start_sequence ();
  emit_use (x);
  seq = get_insns ();
  end_sequence ();
  return seq;
}

/* Notes like REG_EQUAL and REG_EQUIV refer to a set in an instruction.
   Return the set in INSN that such notes describe, or NULL if the notes
   have no meaning for INSN.  */

rtx
set_for_reg_notes (rtx insn)
{
  rtx pat, reg;

  if (!INSN_P (insn))
    return NULL_RTX;

  pat = PATTERN (insn);
  if (GET_CODE (pat) == PARALLEL)
    {
      /* We do not use single_set because that ignores SETs of unused
	 registers.  REG_EQUAL and REG_EQUIV notes really do require the
	 PARALLEL to have a single SET.  */
      if (multiple_sets (insn))
	return NULL_RTX;
      pat = XVECEXP (pat, 0, 0);
    }

  if (GET_CODE (pat) != SET)
    return NULL_RTX;

  reg = SET_DEST (pat);

  /* Notes apply to the contents of a STRICT_LOW_PART.  */
  if (GET_CODE (reg) == STRICT_LOW_PART)
    reg = XEXP (reg, 0);

  /* Check that we have a register.  */
  if (!(REG_P (reg) || GET_CODE (reg) == SUBREG))
    return NULL_RTX;

  return pat;
}

/* Place a note of KIND on insn INSN with DATUM as the datum. If a
   note of this type already exists, remove it first.  */

rtx
set_unique_reg_note (rtx insn, enum reg_note kind, rtx datum)
{
  rtx note = find_reg_note (insn, kind, NULL_RTX);

  switch (kind)
    {
    case REG_EQUAL:
    case REG_EQUIV:
      if (!set_for_reg_notes (insn))
	return NULL_RTX;

      /* Don't add ASM_OPERAND REG_EQUAL/REG_EQUIV notes.
	 It serves no useful purpose and breaks eliminate_regs.  */
      if (GET_CODE (datum) == ASM_OPERANDS)
	return NULL_RTX;

      /* Notes with side effects are dangerous.  Even if the side-effect
	 initially mirrors one in PATTERN (INSN), later optimizations
	 might alter the way that the final register value is calculated
	 and so move or alter the side-effect in some way.  The note would
	 then no longer be a valid substitution for SET_SRC.  */
      if (side_effects_p (datum))
	return NULL_RTX;
      break;

    default:
      break;
    }

  if (note)
    XEXP (note, 0) = datum;
  else
    {
      add_reg_note (insn, kind, datum);
      note = REG_NOTES (insn);
    }

  switch (kind)
    {
    case REG_EQUAL:
    case REG_EQUIV:
      df_notes_rescan (as_a <rtx_insn *> (insn));
      break;
    default:
      break;
    }

  return note;
}

/* Like set_unique_reg_note, but don't do anything unless INSN sets DST.  */
rtx
set_dst_reg_note (rtx insn, enum reg_note kind, rtx datum, rtx dst)
{
  rtx set = set_for_reg_notes (insn);

  if (set && SET_DEST (set) == dst)
    return set_unique_reg_note (insn, kind, datum);
  return NULL_RTX;
}

/* Return an indication of which type of insn should have X as a body.
   The value is CODE_LABEL, INSN, CALL_INSN or JUMP_INSN.  */

static enum rtx_code
classify_insn (rtx x)
{
  if (LABEL_P (x))
    return CODE_LABEL;
  if (GET_CODE (x) == CALL)
    return CALL_INSN;
  if (ANY_RETURN_P (x))
    return JUMP_INSN;
  if (GET_CODE (x) == SET)
    {
      if (SET_DEST (x) == pc_rtx)
	return JUMP_INSN;
      else if (GET_CODE (SET_SRC (x)) == CALL)
	return CALL_INSN;
      else
	return INSN;
    }
  if (GET_CODE (x) == PARALLEL)
    {
      int j;
      for (j = XVECLEN (x, 0) - 1; j >= 0; j--)
	if (GET_CODE (XVECEXP (x, 0, j)) == CALL)
	  return CALL_INSN;
	else if (GET_CODE (XVECEXP (x, 0, j)) == SET
		 && SET_DEST (XVECEXP (x, 0, j)) == pc_rtx)
	  return JUMP_INSN;
	else if (GET_CODE (XVECEXP (x, 0, j)) == SET
		 && GET_CODE (SET_SRC (XVECEXP (x, 0, j))) == CALL)
	  return CALL_INSN;
    }
  return INSN;
}

/* Emit the rtl pattern X as an appropriate kind of insn.
   If X is a label, it is simply added into the insn chain.  */

rtx_insn *
emit (rtx x)
{
  enum rtx_code code = classify_insn (x);

  switch (code)
    {
    case CODE_LABEL:
      return emit_label (x);
    case INSN:
      return emit_insn (x);
    case  JUMP_INSN:
      {
	rtx_insn *insn = emit_jump_insn (x);
	if (any_uncondjump_p (insn) || GET_CODE (x) == RETURN)
	  return emit_barrier ();
	return insn;
      }
    case CALL_INSN:
      return emit_call_insn (x);
    case DEBUG_INSN:
      return emit_debug_insn (x);
    default:
      gcc_unreachable ();
    }
}

/* Space for free sequence stack entries.  */
static GTY ((deletable)) struct sequence_stack *free_sequence_stack;

/* Begin emitting insns to a sequence.  If this sequence will contain
   something that might cause the compiler to pop arguments to function
   calls (because those pops have previously been deferred; see
   INHIBIT_DEFER_POP for more details), use do_pending_stack_adjust
   before calling this function.  That will ensure that the deferred
   pops are not accidentally emitted in the middle of this sequence.  */

void
start_sequence (void)
{
  struct sequence_stack *tem;

  if (free_sequence_stack != NULL)
    {
      tem = free_sequence_stack;
      free_sequence_stack = tem->next;
    }
  else
    tem = ggc_alloc<sequence_stack> ();

  tem->next = seq_stack;
  tem->first = get_insns ();
  tem->last = get_last_insn ();

  seq_stack = tem;

  set_first_insn (0);
  set_last_insn (0);
}

/* Set up the insn chain starting with FIRST as the current sequence,
   saving the previously current one.  See the documentation for
   start_sequence for more information about how to use this function.  */

void
push_to_sequence (rtx_insn *first)
{
  rtx_insn *last;

  start_sequence ();

  for (last = first; last && NEXT_INSN (last); last = NEXT_INSN (last))
    ;

  set_first_insn (first);
  set_last_insn (last);
}

/* Like push_to_sequence, but take the last insn as an argument to avoid
   looping through the list.  */

void
push_to_sequence2 (rtx_insn *first, rtx_insn *last)
{
  start_sequence ();

  set_first_insn (first);
  set_last_insn (last);
}

/* Set up the outer-level insn chain
   as the current sequence, saving the previously current one.  */

void
push_topmost_sequence (void)
{
  struct sequence_stack *stack, *top = NULL;

  start_sequence ();

  for (stack = seq_stack; stack; stack = stack->next)
    top = stack;

  set_first_insn (top->first);
  set_last_insn (top->last);
}

/* After emitting to the outer-level insn chain, update the outer-level
   insn chain, and restore the previous saved state.  */

void
pop_topmost_sequence (void)
{
  struct sequence_stack *stack, *top = NULL;

  for (stack = seq_stack; stack; stack = stack->next)
    top = stack;

  top->first = get_insns ();
  top->last = get_last_insn ();

  end_sequence ();
}

/* After emitting to a sequence, restore previous saved state.

   To get the contents of the sequence just made, you must call
   `get_insns' *before* calling here.

   If the compiler might have deferred popping arguments while
   generating this sequence, and this sequence will not be immediately
   inserted into the instruction stream, use do_pending_stack_adjust
   before calling get_insns.  That will ensure that the deferred
   pops are inserted into this sequence, and not into some random
   location in the instruction stream.  See INHIBIT_DEFER_POP for more
   information about deferred popping of arguments.  */

void
end_sequence (void)
{
  struct sequence_stack *tem = seq_stack;

  set_first_insn (tem->first);
  set_last_insn (tem->last);
  seq_stack = tem->next;

  memset (tem, 0, sizeof (*tem));
  tem->next = free_sequence_stack;
  free_sequence_stack = tem;
}

/* Return 1 if currently emitting into a sequence.  */

int
in_sequence_p (void)
{
  return seq_stack != 0;
}

/* Put the various virtual registers into REGNO_REG_RTX.  */

static void
init_virtual_regs (void)
{
  regno_reg_rtx[VIRTUAL_INCOMING_ARGS_REGNUM] = virtual_incoming_args_rtx;
  regno_reg_rtx[VIRTUAL_STACK_VARS_REGNUM] = virtual_stack_vars_rtx;
  regno_reg_rtx[VIRTUAL_STACK_DYNAMIC_REGNUM] = virtual_stack_dynamic_rtx;
  regno_reg_rtx[VIRTUAL_OUTGOING_ARGS_REGNUM] = virtual_outgoing_args_rtx;
  regno_reg_rtx[VIRTUAL_CFA_REGNUM] = virtual_cfa_rtx;
  regno_reg_rtx[VIRTUAL_PREFERRED_STACK_BOUNDARY_REGNUM]
    = virtual_preferred_stack_boundary_rtx;
}


/* Used by copy_insn_1 to avoid copying SCRATCHes more than once.  */
static rtx copy_insn_scratch_in[MAX_RECOG_OPERANDS];
static rtx copy_insn_scratch_out[MAX_RECOG_OPERANDS];
static int copy_insn_n_scratches;

/* When an insn is being copied by copy_insn_1, this is nonzero if we have
   copied an ASM_OPERANDS.
   In that case, it is the original input-operand vector.  */
static rtvec orig_asm_operands_vector;

/* When an insn is being copied by copy_insn_1, this is nonzero if we have
   copied an ASM_OPERANDS.
   In that case, it is the copied input-operand vector.  */
static rtvec copy_asm_operands_vector;

/* Likewise for the constraints vector.  */
static rtvec orig_asm_constraints_vector;
static rtvec copy_asm_constraints_vector;

/* Recursively create a new copy of an rtx for copy_insn.
   This function differs from copy_rtx in that it handles SCRATCHes and
   ASM_OPERANDs properly.
   Normally, this function is not used directly; use copy_insn as front end.
   However, you could first copy an insn pattern with copy_insn and then use
   this function afterwards to properly copy any REG_NOTEs containing
   SCRATCHes.  */

rtx
copy_insn_1 (rtx orig)
{
  rtx copy;
  int i, j;
  RTX_CODE code;
  const char *format_ptr;

  if (orig == NULL)
    return NULL;

  code = GET_CODE (orig);

  switch (code)
    {
    case REG:
    case DEBUG_EXPR:
    CASE_CONST_ANY:
    case SYMBOL_REF:
    case CODE_LABEL:
    case PC:
    case CC0:
    case RETURN:
    case SIMPLE_RETURN:
      return orig;
    case CLOBBER:
      /* Share clobbers of hard registers (like cc0), but do not share pseudo reg
         clobbers or clobbers of hard registers that originated as pseudos.
         This is needed to allow safe register renaming.  */
      if (REG_P (XEXP (orig, 0)) && REGNO (XEXP (orig, 0)) < FIRST_PSEUDO_REGISTER
	  && ORIGINAL_REGNO (XEXP (orig, 0)) == REGNO (XEXP (orig, 0)))
	return orig;
      break;

    case SCRATCH:
      for (i = 0; i < copy_insn_n_scratches; i++)
	if (copy_insn_scratch_in[i] == orig)
	  return copy_insn_scratch_out[i];
      break;

    case CONST:
      if (shared_const_p (orig))
	return orig;
      break;

      /* A MEM with a constant address is not sharable.  The problem is that
	 the constant address may need to be reloaded.  If the mem is shared,
	 then reloading one copy of this mem will cause all copies to appear
	 to have been reloaded.  */

    default:
      break;
    }

  /* Copy the various flags, fields, and other information.  We assume
     that all fields need copying, and then clear the fields that should
     not be copied.  That is the sensible default behavior, and forces
     us to explicitly document why we are *not* copying a flag.  */
  copy = shallow_copy_rtx (orig);

  /* We do not copy the USED flag, which is used as a mark bit during
     walks over the RTL.  */
  RTX_FLAG (copy, used) = 0;

  /* We do not copy JUMP, CALL, or FRAME_RELATED for INSNs.  */
  if (INSN_P (orig))
    {
      RTX_FLAG (copy, jump) = 0;
      RTX_FLAG (copy, call) = 0;
      RTX_FLAG (copy, frame_related) = 0;
    }

  format_ptr = GET_RTX_FORMAT (GET_CODE (copy));

  for (i = 0; i < GET_RTX_LENGTH (GET_CODE (copy)); i++)
    switch (*format_ptr++)
      {
      case 'e':
	if (XEXP (orig, i) != NULL)
	  XEXP (copy, i) = copy_insn_1 (XEXP (orig, i));
	break;

      case 'E':
      case 'V':
	if (XVEC (orig, i) == orig_asm_constraints_vector)
	  XVEC (copy, i) = copy_asm_constraints_vector;
	else if (XVEC (orig, i) == orig_asm_operands_vector)
	  XVEC (copy, i) = copy_asm_operands_vector;
	else if (XVEC (orig, i) != NULL)
	  {
	    XVEC (copy, i) = rtvec_alloc (XVECLEN (orig, i));
	    for (j = 0; j < XVECLEN (copy, i); j++)
	      XVECEXP (copy, i, j) = copy_insn_1 (XVECEXP (orig, i, j));
	  }
	break;

      case 't':
      case 'w':
      case 'i':
      case 's':
      case 'S':
      case 'u':
      case '0':
	/* These are left unchanged.  */
	break;

      default:
	gcc_unreachable ();
      }

  if (code == SCRATCH)
    {
      i = copy_insn_n_scratches++;
      gcc_assert (i < MAX_RECOG_OPERANDS);
      copy_insn_scratch_in[i] = orig;
      copy_insn_scratch_out[i] = copy;
    }
  else if (code == ASM_OPERANDS)
    {
      orig_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (orig);
      copy_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (copy);
      orig_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (orig);
      copy_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (copy);
    }

  return copy;
}

/* Create a new copy of an rtx.
   This function differs from copy_rtx in that it handles SCRATCHes and
   ASM_OPERANDs properly.
   INSN doesn't really have to be a full INSN; it could be just the
   pattern.  */
rtx
copy_insn (rtx insn)
{
  copy_insn_n_scratches = 0;
  orig_asm_operands_vector = 0;
  orig_asm_constraints_vector = 0;
  copy_asm_operands_vector = 0;
  copy_asm_constraints_vector = 0;
  return copy_insn_1 (insn);
}

/* Return a copy of INSN that can be used in a SEQUENCE delay slot,
   on that assumption that INSN itself remains in its original place.  */

rtx_insn *
copy_delay_slot_insn (rtx_insn *insn)
{
  /* Copy INSN with its rtx_code, all its notes, location etc.  */
  insn = as_a <rtx_insn *> (copy_rtx (insn));
  INSN_UID (insn) = cur_insn_uid++;
  return insn;
}

/* Initialize data structures and variables in this file
   before generating rtl for each function.  */

void
init_emit (void)
{
  set_first_insn (NULL);
  set_last_insn (NULL);
  if (MIN_NONDEBUG_INSN_UID)
    cur_insn_uid = MIN_NONDEBUG_INSN_UID;
  else
    cur_insn_uid = 1;
  cur_debug_insn_uid = 1;
  reg_rtx_no = LAST_VIRTUAL_REGISTER + 1;
  first_label_num = label_num;
  seq_stack = NULL;

  /* Init the tables that describe all the pseudo regs.  */

  crtl->emit.regno_pointer_align_length = LAST_VIRTUAL_REGISTER + 101;

  crtl->emit.regno_pointer_align
    = XCNEWVEC (unsigned char, crtl->emit.regno_pointer_align_length);

  regno_reg_rtx = ggc_vec_alloc<rtx> (crtl->emit.regno_pointer_align_length);

  /* Put copies of all the hard registers into regno_reg_rtx.  */
  memcpy (regno_reg_rtx,
	  initial_regno_reg_rtx,
	  FIRST_PSEUDO_REGISTER * sizeof (rtx));

  /* Put copies of all the virtual register rtx into regno_reg_rtx.  */
  init_virtual_regs ();

  /* Indicate that the virtual registers and stack locations are
     all pointers.  */
  REG_POINTER (stack_pointer_rtx) = 1;
  REG_POINTER (frame_pointer_rtx) = 1;
  REG_POINTER (hard_frame_pointer_rtx) = 1;
  REG_POINTER (arg_pointer_rtx) = 1;

  REG_POINTER (virtual_incoming_args_rtx) = 1;
  REG_POINTER (virtual_stack_vars_rtx) = 1;
  REG_POINTER (virtual_stack_dynamic_rtx) = 1;
  REG_POINTER (virtual_outgoing_args_rtx) = 1;
  REG_POINTER (virtual_cfa_rtx) = 1;

#ifdef STACK_BOUNDARY
  REGNO_POINTER_ALIGN (STACK_POINTER_REGNUM) = STACK_BOUNDARY;
  REGNO_POINTER_ALIGN (FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
  REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
  REGNO_POINTER_ALIGN (ARG_POINTER_REGNUM) = STACK_BOUNDARY;

  REGNO_POINTER_ALIGN (VIRTUAL_INCOMING_ARGS_REGNUM) = STACK_BOUNDARY;
  REGNO_POINTER_ALIGN (VIRTUAL_STACK_VARS_REGNUM) = STACK_BOUNDARY;
  REGNO_POINTER_ALIGN (VIRTUAL_STACK_DYNAMIC_REGNUM) = STACK_BOUNDARY;
  REGNO_POINTER_ALIGN (VIRTUAL_OUTGOING_ARGS_REGNUM) = STACK_BOUNDARY;
  REGNO_POINTER_ALIGN (VIRTUAL_CFA_REGNUM) = BITS_PER_WORD;
#endif

#ifdef INIT_EXPANDERS
  INIT_EXPANDERS;
#endif
}

/* Generate a vector constant for mode MODE and constant value CONSTANT.  */

static rtx
gen_const_vector (enum machine_mode mode, int constant)
{
  rtx tem;
  rtvec v;
  int units, i;
  enum machine_mode inner;

  units = GET_MODE_NUNITS (mode);
  inner = GET_MODE_INNER (mode);

  gcc_assert (!DECIMAL_FLOAT_MODE_P (inner));

  v = rtvec_alloc (units);

  /* We need to call this function after we set the scalar const_tiny_rtx
     entries.  */
  gcc_assert (const_tiny_rtx[constant][(int) inner]);

  for (i = 0; i < units; ++i)
    RTVEC_ELT (v, i) = const_tiny_rtx[constant][(int) inner];

  tem = gen_rtx_raw_CONST_VECTOR (mode, v);
  return tem;
}

/* Generate a vector like gen_rtx_raw_CONST_VEC, but use the zero vector when
   all elements are zero, and the one vector when all elements are one.  */
rtx
gen_rtx_CONST_VECTOR (enum machine_mode mode, rtvec v)
{
  enum machine_mode inner = GET_MODE_INNER (mode);
  int nunits = GET_MODE_NUNITS (mode);
  rtx x;
  int i;

  /* Check to see if all of the elements have the same value.  */
  x = RTVEC_ELT (v, nunits - 1);
  for (i = nunits - 2; i >= 0; i--)
    if (RTVEC_ELT (v, i) != x)
      break;

  /* If the values are all the same, check to see if we can use one of the
     standard constant vectors.  */
  if (i == -1)
    {
      if (x == CONST0_RTX (inner))
	return CONST0_RTX (mode);
      else if (x == CONST1_RTX (inner))
	return CONST1_RTX (mode);
      else if (x == CONSTM1_RTX (inner))
	return CONSTM1_RTX (mode);
    }

  return gen_rtx_raw_CONST_VECTOR (mode, v);
}

/* Initialise global register information required by all functions.  */

void
init_emit_regs (void)
{
  int i;
  enum machine_mode mode;
  mem_attrs *attrs;

  /* Reset register attributes */
  htab_empty (reg_attrs_htab);

  /* We need reg_raw_mode, so initialize the modes now.  */
  init_reg_modes_target ();

  /* Assign register numbers to the globally defined register rtx.  */
  stack_pointer_rtx = gen_raw_REG (Pmode, STACK_POINTER_REGNUM);
  frame_pointer_rtx = gen_raw_REG (Pmode, FRAME_POINTER_REGNUM);
  hard_frame_pointer_rtx = gen_raw_REG (Pmode, HARD_FRAME_POINTER_REGNUM);
  arg_pointer_rtx = gen_raw_REG (Pmode, ARG_POINTER_REGNUM);
  virtual_incoming_args_rtx =
    gen_raw_REG (Pmode, VIRTUAL_INCOMING_ARGS_REGNUM);
  virtual_stack_vars_rtx =
    gen_raw_REG (Pmode, VIRTUAL_STACK_VARS_REGNUM);
  virtual_stack_dynamic_rtx =
    gen_raw_REG (Pmode, VIRTUAL_STACK_DYNAMIC_REGNUM);
  virtual_outgoing_args_rtx =
    gen_raw_REG (Pmode, VIRTUAL_OUTGOING_ARGS_REGNUM);
  virtual_cfa_rtx = gen_raw_REG (Pmode, VIRTUAL_CFA_REGNUM);
  virtual_preferred_stack_boundary_rtx =
    gen_raw_REG (Pmode, VIRTUAL_PREFERRED_STACK_BOUNDARY_REGNUM);

  /* Initialize RTL for commonly used hard registers.  These are
     copied into regno_reg_rtx as we begin to compile each function.  */
  for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
    initial_regno_reg_rtx[i] = gen_raw_REG (reg_raw_mode[i], i);

#ifdef RETURN_ADDRESS_POINTER_REGNUM
  return_address_pointer_rtx
    = gen_raw_REG (Pmode, RETURN_ADDRESS_POINTER_REGNUM);
#endif

  if ((unsigned) PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM)
    pic_offset_table_rtx = gen_raw_REG (Pmode, PIC_OFFSET_TABLE_REGNUM);
  else
    pic_offset_table_rtx = NULL_RTX;

  for (i = 0; i < (int) MAX_MACHINE_MODE; i++)
    {
      mode = (enum machine_mode) i;
      attrs = ggc_cleared_alloc<mem_attrs> ();
      attrs->align = BITS_PER_UNIT;
      attrs->addrspace = ADDR_SPACE_GENERIC;
      if (mode != BLKmode)
	{
	  attrs->size_known_p = true;
	  attrs->size = GET_MODE_SIZE (mode);
	  if (STRICT_ALIGNMENT)
	    attrs->align = GET_MODE_ALIGNMENT (mode);
	}
      mode_mem_attrs[i] = attrs;
    }
}

/* Initialize global machine_mode variables.  */

void
init_derived_machine_modes (void)
{
  byte_mode = VOIDmode;
  word_mode = VOIDmode;

  for (enum machine_mode mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
       mode != VOIDmode;
       mode = GET_MODE_WIDER_MODE (mode))
    {
      if (GET_MODE_BITSIZE (mode) == BITS_PER_UNIT
	  && byte_mode == VOIDmode)
	byte_mode = mode;

      if (GET_MODE_BITSIZE (mode) == BITS_PER_WORD
	  && word_mode == VOIDmode)
	word_mode = mode;
    }

  ptr_mode = mode_for_size (POINTER_SIZE, GET_MODE_CLASS (Pmode), 0);
}

/* Create some permanent unique rtl objects shared between all functions.  */

void
init_emit_once (void)
{
  int i;
  enum machine_mode mode;
  enum machine_mode double_mode;

  /* Initialize the CONST_INT, CONST_WIDE_INT, CONST_DOUBLE,
     CONST_FIXED, and memory attribute hash tables.  */
  const_int_htab = htab_create_ggc (37, const_int_htab_hash,
				    const_int_htab_eq, NULL);

#if TARGET_SUPPORTS_WIDE_INT
  const_wide_int_htab = htab_create_ggc (37, const_wide_int_htab_hash,
					 const_wide_int_htab_eq, NULL);
#endif
  const_double_htab = htab_create_ggc (37, const_double_htab_hash,
				       const_double_htab_eq, NULL);

  const_fixed_htab = htab_create_ggc (37, const_fixed_htab_hash,
				      const_fixed_htab_eq, NULL);

  reg_attrs_htab = htab_create_ggc (37, reg_attrs_htab_hash,
				    reg_attrs_htab_eq, NULL);

#ifdef INIT_EXPANDERS
  /* This is to initialize {init|mark|free}_machine_status before the first
     call to push_function_context_to.  This is needed by the Chill front
     end which calls push_function_context_to before the first call to
     init_function_start.  */
  INIT_EXPANDERS;
#endif

  /* Create the unique rtx's for certain rtx codes and operand values.  */

  /* Don't use gen_rtx_CONST_INT here since gen_rtx_CONST_INT in this case
     tries to use these variables.  */
  for (i = - MAX_SAVED_CONST_INT; i <= MAX_SAVED_CONST_INT; i++)
    const_int_rtx[i + MAX_SAVED_CONST_INT] =
      gen_rtx_raw_CONST_INT (VOIDmode, (HOST_WIDE_INT) i);

  if (STORE_FLAG_VALUE >= - MAX_SAVED_CONST_INT
      && STORE_FLAG_VALUE <= MAX_SAVED_CONST_INT)
    const_true_rtx = const_int_rtx[STORE_FLAG_VALUE + MAX_SAVED_CONST_INT];
  else
    const_true_rtx = gen_rtx_CONST_INT (VOIDmode, STORE_FLAG_VALUE);

  double_mode = mode_for_size (DOUBLE_TYPE_SIZE, MODE_FLOAT, 0);

  real_from_integer (&dconst0, double_mode, 0, SIGNED);
  real_from_integer (&dconst1, double_mode, 1, SIGNED);
  real_from_integer (&dconst2, double_mode, 2, SIGNED);

  dconstm1 = dconst1;
  dconstm1.sign = 1;

  dconsthalf = dconst1;
  SET_REAL_EXP (&dconsthalf, REAL_EXP (&dconsthalf) - 1);

  for (i = 0; i < 3; i++)
    {
      const REAL_VALUE_TYPE *const r =
	(i == 0 ? &dconst0 : i == 1 ? &dconst1 : &dconst2);

      for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
	   mode != VOIDmode;
	   mode = GET_MODE_WIDER_MODE (mode))
	const_tiny_rtx[i][(int) mode] =
	  CONST_DOUBLE_FROM_REAL_VALUE (*r, mode);

      for (mode = GET_CLASS_NARROWEST_MODE (MODE_DECIMAL_FLOAT);
	   mode != VOIDmode;
	   mode = GET_MODE_WIDER_MODE (mode))
	const_tiny_rtx[i][(int) mode] =
	  CONST_DOUBLE_FROM_REAL_VALUE (*r, mode);

      const_tiny_rtx[i][(int) VOIDmode] = GEN_INT (i);

      for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
	   mode != VOIDmode;
	   mode = GET_MODE_WIDER_MODE (mode))
	const_tiny_rtx[i][(int) mode] = GEN_INT (i);

      for (mode = MIN_MODE_PARTIAL_INT;
	   mode <= MAX_MODE_PARTIAL_INT;
	   mode = (enum machine_mode)((int)(mode) + 1))
	const_tiny_rtx[i][(int) mode] = GEN_INT (i);
    }

  const_tiny_rtx[3][(int) VOIDmode] = constm1_rtx;

  for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
       mode != VOIDmode;
       mode = GET_MODE_WIDER_MODE (mode))
    const_tiny_rtx[3][(int) mode] = constm1_rtx;

  for (mode = MIN_MODE_PARTIAL_INT;
       mode <= MAX_MODE_PARTIAL_INT;
       mode = (enum machine_mode)((int)(mode) + 1))
    const_tiny_rtx[3][(int) mode] = constm1_rtx;
      
  for (mode = GET_CLASS_NARROWEST_MODE (MODE_COMPLEX_INT);
       mode != VOIDmode;
       mode = GET_MODE_WIDER_MODE (mode))
    {
      rtx inner = const_tiny_rtx[0][(int)GET_MODE_INNER (mode)];
      const_tiny_rtx[0][(int) mode] = gen_rtx_CONCAT (mode, inner, inner);
    }

  for (mode = GET_CLASS_NARROWEST_MODE (MODE_COMPLEX_FLOAT);
       mode != VOIDmode;
       mode = GET_MODE_WIDER_MODE (mode))
    {
      rtx inner = const_tiny_rtx[0][(int)GET_MODE_INNER (mode)];
      const_tiny_rtx[0][(int) mode] = gen_rtx_CONCAT (mode, inner, inner);
    }

  for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_INT);
       mode != VOIDmode;
       mode = GET_MODE_WIDER_MODE (mode))
    {
      const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
      const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
      const_tiny_rtx[3][(int) mode] = gen_const_vector (mode, 3);
    }

  for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FLOAT);
       mode != VOIDmode;
       mode = GET_MODE_WIDER_MODE (mode))
    {
      const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
      const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
    }

  for (mode = GET_CLASS_NARROWEST_MODE (MODE_FRACT);
       mode != VOIDmode;
       mode = GET_MODE_WIDER_MODE (mode))
    {
      FCONST0 (mode).data.high = 0;
      FCONST0 (mode).data.low = 0;
      FCONST0 (mode).mode = mode;
      const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
				      FCONST0 (mode), mode);
    }

  for (mode = GET_CLASS_NARROWEST_MODE (MODE_UFRACT);
       mode != VOIDmode;
       mode = GET_MODE_WIDER_MODE (mode))
    {
      FCONST0 (mode).data.high = 0;
      FCONST0 (mode).data.low = 0;
      FCONST0 (mode).mode = mode;
      const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
				      FCONST0 (mode), mode);
    }

  for (mode = GET_CLASS_NARROWEST_MODE (MODE_ACCUM);
       mode != VOIDmode;
       mode = GET_MODE_WIDER_MODE (mode))
    {
      FCONST0 (mode).data.high = 0;
      FCONST0 (mode).data.low = 0;
      FCONST0 (mode).mode = mode;
      const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
				      FCONST0 (mode), mode);

      /* We store the value 1.  */
      FCONST1 (mode).data.high = 0;
      FCONST1 (mode).data.low = 0;
      FCONST1 (mode).mode = mode;
      FCONST1 (mode).data
	= double_int_one.lshift (GET_MODE_FBIT (mode),
				 HOST_BITS_PER_DOUBLE_INT,
				 SIGNED_FIXED_POINT_MODE_P (mode));
      const_tiny_rtx[1][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
				      FCONST1 (mode), mode);
    }

  for (mode = GET_CLASS_NARROWEST_MODE (MODE_UACCUM);
       mode != VOIDmode;
       mode = GET_MODE_WIDER_MODE (mode))
    {
      FCONST0 (mode).data.high = 0;
      FCONST0 (mode).data.low = 0;
      FCONST0 (mode).mode = mode;
      const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
				      FCONST0 (mode), mode);

      /* We store the value 1.  */
      FCONST1 (mode).data.high = 0;
      FCONST1 (mode).data.low = 0;
      FCONST1 (mode).mode = mode;
      FCONST1 (mode).data
	= double_int_one.lshift (GET_MODE_FBIT (mode),
				 HOST_BITS_PER_DOUBLE_INT,
				 SIGNED_FIXED_POINT_MODE_P (mode));
      const_tiny_rtx[1][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
				      FCONST1 (mode), mode);
    }

  for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FRACT);
       mode != VOIDmode;
       mode = GET_MODE_WIDER_MODE (mode))
    {
      const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
    }

  for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_UFRACT);
       mode != VOIDmode;
       mode = GET_MODE_WIDER_MODE (mode))
    {
      const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
    }

  for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_ACCUM);
       mode != VOIDmode;
       mode = GET_MODE_WIDER_MODE (mode))
    {
      const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
      const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
    }

  for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_UACCUM);
       mode != VOIDmode;
       mode = GET_MODE_WIDER_MODE (mode))
    {
      const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
      const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
    }

  for (i = (int) CCmode; i < (int) MAX_MACHINE_MODE; ++i)
    if (GET_MODE_CLASS ((enum machine_mode) i) == MODE_CC)
      const_tiny_rtx[0][i] = const0_rtx;

  const_tiny_rtx[0][(int) BImode] = const0_rtx;
  if (STORE_FLAG_VALUE == 1)
    const_tiny_rtx[1][(int) BImode] = const1_rtx;

  pc_rtx = gen_rtx_fmt_ (PC, VOIDmode);
  ret_rtx = gen_rtx_fmt_ (RETURN, VOIDmode);
  simple_return_rtx = gen_rtx_fmt_ (SIMPLE_RETURN, VOIDmode);
  cc0_rtx = gen_rtx_fmt_ (CC0, VOIDmode);
}

/* Produce exact duplicate of insn INSN after AFTER.
   Care updating of libcall regions if present.  */

rtx_insn *
emit_copy_of_insn_after (rtx_insn *insn, rtx_insn *after)
{
  rtx_insn *new_rtx;
  rtx link;

  switch (GET_CODE (insn))
    {
    case INSN:
      new_rtx = emit_insn_after (copy_insn (PATTERN (insn)), after);
      break;

    case JUMP_INSN:
      new_rtx = emit_jump_insn_after (copy_insn (PATTERN (insn)), after);
      CROSSING_JUMP_P (new_rtx) = CROSSING_JUMP_P (insn);
      break;

    case DEBUG_INSN:
      new_rtx = emit_debug_insn_after (copy_insn (PATTERN (insn)), after);
      break;

    case CALL_INSN:
      new_rtx = emit_call_insn_after (copy_insn (PATTERN (insn)), after);
      if (CALL_INSN_FUNCTION_USAGE (insn))
	CALL_INSN_FUNCTION_USAGE (new_rtx)
	  = copy_insn (CALL_INSN_FUNCTION_USAGE (insn));
      SIBLING_CALL_P (new_rtx) = SIBLING_CALL_P (insn);
      RTL_CONST_CALL_P (new_rtx) = RTL_CONST_CALL_P (insn);
      RTL_PURE_CALL_P (new_rtx) = RTL_PURE_CALL_P (insn);
      RTL_LOOPING_CONST_OR_PURE_CALL_P (new_rtx)
	= RTL_LOOPING_CONST_OR_PURE_CALL_P (insn);
      break;

    default:
      gcc_unreachable ();
    }

  /* Update LABEL_NUSES.  */
  mark_jump_label (PATTERN (new_rtx), new_rtx, 0);

  INSN_LOCATION (new_rtx) = INSN_LOCATION (insn);

  /* If the old insn is frame related, then so is the new one.  This is
     primarily needed for IA-64 unwind info which marks epilogue insns,
     which may be duplicated by the basic block reordering code.  */
  RTX_FRAME_RELATED_P (new_rtx) = RTX_FRAME_RELATED_P (insn);

  /* Copy all REG_NOTES except REG_LABEL_OPERAND since mark_jump_label
     will make them.  REG_LABEL_TARGETs are created there too, but are
     supposed to be sticky, so we copy them.  */
  for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
    if (REG_NOTE_KIND (link) != REG_LABEL_OPERAND)
      {
	if (GET_CODE (link) == EXPR_LIST)
	  add_reg_note (new_rtx, REG_NOTE_KIND (link),
			copy_insn_1 (XEXP (link, 0)));
	else
	  add_shallow_copy_of_reg_note (new_rtx, link);
      }

  INSN_CODE (new_rtx) = INSN_CODE (insn);
  return new_rtx;
}

static GTY((deletable)) rtx hard_reg_clobbers [NUM_MACHINE_MODES][FIRST_PSEUDO_REGISTER];
rtx
gen_hard_reg_clobber (enum machine_mode mode, unsigned int regno)
{
  if (hard_reg_clobbers[mode][regno])
    return hard_reg_clobbers[mode][regno];
  else
    return (hard_reg_clobbers[mode][regno] =
	    gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (mode, regno)));
}

location_t prologue_location;
location_t epilogue_location;

/* Hold current location information and last location information, so the
   datastructures are built lazily only when some instructions in given
   place are needed.  */
static location_t curr_location;

/* Allocate insn location datastructure.  */
void
insn_locations_init (void)
{
  prologue_location = epilogue_location = 0;
  curr_location = UNKNOWN_LOCATION;
}

/* At the end of emit stage, clear current location.  */
void
insn_locations_finalize (void)
{
  epilogue_location = curr_location;
  curr_location = UNKNOWN_LOCATION;
}

/* Set current location.  */
void
set_curr_insn_location (location_t location)
{
  curr_location = location;
}

/* Get current location.  */
location_t
curr_insn_location (void)
{
  return curr_location;
}

/* Return lexical scope block insn belongs to.  */
tree
insn_scope (const rtx_insn *insn)
{
  return LOCATION_BLOCK (INSN_LOCATION (insn));
}

/* Return line number of the statement that produced this insn.  */
int
insn_line (const rtx_insn *insn)
{
  return LOCATION_LINE (INSN_LOCATION (insn));
}

/* Return source file of the statement that produced this insn.  */
const char *
insn_file (const rtx_insn *insn)
{
  return LOCATION_FILE (INSN_LOCATION (insn));
}

/* Return expanded location of the statement that produced this insn.  */
expanded_location
insn_location (const rtx_insn *insn)
{
  return expand_location (INSN_LOCATION (insn));
}

/* Return true if memory model MODEL requires a pre-operation (release-style)
   barrier or a post-operation (acquire-style) barrier.  While not universal,
   this function matches behavior of several targets.  */

bool
need_atomic_barrier_p (enum memmodel model, bool pre)
{
  switch (model & MEMMODEL_MASK)
    {
    case MEMMODEL_RELAXED:
    case MEMMODEL_CONSUME:
      return false;
    case MEMMODEL_RELEASE:
      return pre;
    case MEMMODEL_ACQUIRE:
      return !pre;
    case MEMMODEL_ACQ_REL:
    case MEMMODEL_SEQ_CST:
      return true;
    default:
      gcc_unreachable ();
    }
}

#include "gt-emit-rtl.h"