1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
7288
7289
7290
7291
7292
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
7347
7348
7349
7350
7351
7352
7353
7354
7355
7356
7357
7358
7359
7360
7361
7362
7363
7364
7365
7366
7367
7368
7369
7370
7371
7372
7373
7374
7375
7376
7377
7378
7379
7380
7381
7382
7383
7384
7385
7386
7387
7388
7389
7390
7391
7392
7393
7394
7395
7396
7397
7398
7399
7400
7401
7402
7403
7404
7405
7406
7407
7408
7409
7410
7411
7412
7413
7414
7415
7416
7417
7418
7419
7420
7421
7422
7423
7424
7425
7426
7427
7428
7429
7430
7431
7432
7433
7434
7435
7436
7437
7438
7439
7440
7441
7442
7443
7444
7445
7446
7447
7448
7449
7450
7451
7452
7453
7454
7455
7456
7457
7458
7459
7460
7461
7462
7463
7464
7465
7466
7467
7468
7469
7470
7471
7472
7473
7474
7475
7476
7477
7478
7479
7480
7481
7482
7483
7484
7485
7486
7487
7488
7489
7490
7491
7492
7493
7494
7495
7496
7497
7498
7499
7500
7501
7502
7503
7504
7505
7506
7507
7508
7509
7510
7511
7512
7513
7514
7515
7516
7517
7518
7519
7520
7521
7522
7523
7524
7525
7526
7527
7528
7529
7530
7531
7532
7533
7534
7535
7536
7537
7538
7539
7540
7541
7542
7543
7544
7545
7546
7547
7548
7549
7550
7551
7552
7553
7554
7555
7556
7557
7558
7559
7560
7561
7562
7563
7564
7565
7566
7567
7568
7569
7570
7571
7572
7573
7574
7575
7576
7577
7578
7579
7580
7581
7582
7583
7584
7585
7586
7587
7588
7589
7590
7591
7592
7593
7594
7595
7596
7597
7598
7599
7600
7601
7602
7603
7604
7605
7606
7607
7608
7609
7610
7611
7612
7613
7614
7615
7616
7617
7618
7619
7620
7621
7622
7623
7624
7625
7626
7627
7628
7629
7630
7631
7632
7633
7634
7635
7636
7637
7638
7639
7640
7641
7642
7643
7644
7645
7646
7647
7648
7649
7650
7651
7652
7653
7654
7655
7656
7657
7658
7659
7660
7661
7662
7663
7664
7665
7666
7667
7668
7669
7670
7671
7672
7673
7674
7675
7676
7677
7678
7679
7680
7681
7682
7683
7684
7685
7686
7687
7688
7689
7690
7691
7692
7693
7694
7695
7696
7697
7698
7699
7700
7701
7702
7703
7704
7705
7706
7707
7708
7709
7710
7711
7712
7713
7714
7715
7716
7717
7718
7719
7720
7721
7722
7723
7724
7725
7726
7727
7728
7729
7730
7731
7732
7733
7734
7735
7736
7737
7738
7739
7740
7741
7742
7743
7744
7745
7746
7747
7748
7749
7750
7751
7752
7753
7754
7755
7756
7757
7758
7759
7760
7761
7762
7763
7764
7765
7766
7767
7768
7769
7770
7771
7772
7773
7774
7775
7776
7777
7778
7779
7780
7781
7782
7783
7784
7785
7786
7787
7788
7789
7790
7791
7792
7793
7794
7795
7796
7797
7798
7799
7800
7801
7802
7803
7804
7805
7806
7807
7808
7809
7810
7811
7812
7813
7814
7815
7816
7817
7818
7819
7820
7821
7822
7823
7824
7825
7826
7827
7828
7829
7830
7831
7832
7833
7834
7835
7836
7837
7838
7839
7840
7841
7842
7843
7844
7845
7846
7847
7848
7849
7850
7851
7852
7853
7854
7855
7856
7857
7858
7859
7860
7861
7862
7863
7864
7865
7866
7867
7868
7869
7870
7871
7872
7873
7874
7875
7876
7877
7878
7879
7880
7881
7882
7883
7884
7885
7886
7887
7888
7889
7890
7891
7892
7893
7894
7895
7896
7897
7898
7899
7900
7901
7902
7903
7904
7905
7906
7907
7908
7909
7910
7911
7912
7913
7914
7915
7916
7917
7918
7919
7920
7921
7922
7923
7924
7925
7926
7927
7928
7929
7930
7931
7932
7933
7934
7935
7936
7937
7938
7939
7940
7941
7942
7943
7944
7945
7946
7947
7948
7949
7950
7951
7952
7953
7954
7955
7956
7957
7958
7959
7960
7961
7962
7963
7964
7965
7966
7967
7968
7969
7970
7971
7972
7973
7974
7975
7976
7977
7978
7979
7980
7981
7982
7983
7984
7985
7986
7987
7988
7989
7990
7991
7992
7993
7994
7995
7996
7997
7998
7999
8000
8001
8002
8003
8004
8005
8006
8007
8008
8009
8010
8011
8012
8013
8014
8015
8016
8017
8018
8019
8020
8021
8022
8023
8024
8025
8026
8027
8028
8029
8030
8031
8032
8033
8034
8035
8036
8037
8038
8039
8040
8041
8042
8043
8044
8045
8046
8047
8048
8049
8050
8051
8052
8053
8054
8055
8056
8057
8058
8059
8060
8061
8062
8063
8064
8065
8066
8067
8068
8069
8070
8071
8072
8073
8074
8075
8076
8077
8078
8079
8080
8081
8082
8083
8084
8085
8086
8087
8088
8089
8090
8091
8092
8093
8094
8095
8096
8097
8098
8099
8100
8101
8102
8103
8104
8105
8106
8107
8108
8109
8110
8111
8112
8113
8114
8115
8116
8117
8118
8119
8120
8121
8122
8123
8124
8125
8126
8127
8128
8129
8130
8131
8132
8133
8134
8135
8136
8137
8138
8139
8140
8141
8142
8143
8144
8145
8146
8147
8148
8149
8150
8151
8152
8153
8154
8155
8156
8157
8158
8159
8160
8161
8162
8163
8164
8165
8166
8167
8168
8169
8170
8171
8172
8173
8174
8175
8176
8177
8178
8179
8180
8181
8182
8183
8184
8185
8186
8187
8188
8189
8190
8191
8192
8193
8194
8195
8196
8197
8198
8199
8200
8201
8202
8203
8204
8205
8206
8207
8208
8209
8210
8211
8212
8213
8214
8215
8216
8217
8218
8219
8220
8221
8222
8223
8224
8225
8226
8227
8228
8229
8230
8231
8232
8233
8234
8235
8236
8237
8238
8239
8240
8241
8242
8243
8244
8245
8246
8247
8248
8249
8250
8251
8252
8253
8254
8255
8256
8257
8258
8259
8260
8261
8262
8263
8264
8265
8266
8267
8268
8269
8270
8271
8272
8273
8274
8275
8276
8277
8278
8279
8280
8281
8282
8283
8284
8285
8286
8287
8288
8289
8290
8291
8292
8293
8294
8295
8296
8297
8298
8299
8300
8301
8302
8303
8304
8305
8306
8307
8308
8309
8310
8311
8312
8313
8314
8315
8316
8317
8318
8319
8320
8321
8322
8323
8324
8325
8326
8327
8328
8329
8330
8331
8332
8333
8334
8335
8336
8337
8338
8339
8340
8341
8342
8343
8344
8345
8346
8347
8348
8349
8350
8351
8352
8353
8354
8355
8356
8357
8358
8359
8360
8361
8362
8363
8364
8365
8366
8367
8368
8369
8370
8371
8372
8373
8374
8375
8376
8377
8378
8379
8380
8381
8382
8383
8384
8385
8386
8387
8388
8389
8390
8391
8392
8393
8394
8395
8396
8397
8398
8399
8400
8401
8402
8403
8404
8405
8406
8407
8408
8409
8410
8411
8412
8413
8414
8415
8416
8417
8418
8419
8420
8421
8422
8423
8424
8425
8426
8427
8428
8429
8430
8431
8432
8433
8434
8435
8436
8437
8438
8439
8440
8441
8442
8443
8444
8445
8446
8447
8448
8449
8450
8451
8452
8453
8454
8455
8456
8457
8458
8459
8460
8461
8462
8463
8464
8465
8466
8467
8468
8469
8470
8471
8472
8473
8474
8475
8476
8477
8478
8479
8480
8481
8482
8483
8484
8485
8486
8487
8488
8489
8490
8491
8492
8493
8494
8495
8496
8497
8498
8499
8500
8501
8502
8503
8504
8505
8506
8507
8508
8509
8510
8511
8512
8513
8514
8515
8516
8517
8518
8519
8520
8521
8522
8523
8524
8525
8526
8527
8528
8529
8530
8531
8532
8533
8534
8535
8536
8537
8538
8539
8540
8541
8542
8543
8544
8545
8546
8547
8548
8549
8550
8551
8552
8553
8554
8555
8556
8557
8558
8559
8560
8561
8562
8563
8564
8565
8566
8567
8568
8569
8570
8571
8572
8573
8574
8575
8576
8577
8578
8579
8580
8581
8582
8583
8584
8585
8586
8587
8588
8589
8590
8591
8592
8593
8594
8595
8596
8597
8598
8599
8600
8601
8602
8603
8604
8605
8606
8607
8608
8609
8610
8611
8612
8613
8614
8615
8616
8617
8618
8619
8620
8621
8622
8623
8624
8625
8626
8627
8628
8629
8630
8631
8632
8633
8634
8635
8636
8637
8638
8639
8640
8641
8642
8643
8644
8645
8646
8647
8648
8649
8650
8651
8652
8653
8654
8655
8656
8657
8658
8659
8660
8661
8662
8663
8664
8665
8666
8667
8668
8669
8670
8671
8672
8673
8674
8675
8676
8677
8678
8679
8680
8681
8682
8683
8684
8685
8686
8687
8688
8689
8690
8691
8692
8693
8694
8695
8696
8697
8698
8699
8700
8701
8702
8703
8704
8705
8706
8707
8708
8709
8710
8711
8712
8713
8714
8715
8716
8717
8718
8719
8720
8721
8722
8723
8724
8725
8726
8727
8728
8729
8730
8731
8732
8733
8734
8735
8736
8737
8738
8739
8740
8741
8742
8743
8744
8745
8746
8747
8748
8749
8750
8751
8752
8753
8754
8755
8756
8757
8758
8759
8760
8761
8762
8763
8764
8765
8766
8767
8768
8769
8770
8771
8772
8773
8774
8775
8776
8777
8778
8779
8780
8781
8782
8783
8784
8785
8786
8787
8788
8789
8790
8791
8792
8793
8794
8795
8796
8797
8798
8799
8800
8801
8802
8803
8804
8805
8806
8807
8808
8809
8810
8811
8812
8813
8814
8815
8816
8817
8818
8819
8820
8821
8822
8823
8824
8825
8826
8827
8828
8829
8830
8831
8832
8833
8834
8835
8836
8837
8838
8839
8840
8841
8842
8843
8844
8845
8846
8847
8848
8849
8850
8851
8852
8853
8854
8855
8856
8857
8858
8859
8860
8861
8862
8863
8864
8865
8866
8867
8868
8869
8870
8871
8872
8873
8874
8875
8876
8877
8878
8879
8880
8881
8882
8883
8884
8885
8886
8887
8888
8889
8890
8891
8892
8893
8894
8895
8896
8897
8898
8899
8900
8901
8902
8903
8904
8905
8906
8907
8908
8909
8910
8911
8912
8913
8914
8915
8916
8917
8918
8919
8920
8921
8922
8923
8924
8925
8926
8927
8928
8929
8930
8931
8932
8933
8934
8935
8936
8937
8938
8939
8940
8941
8942
8943
8944
8945
8946
8947
8948
8949
8950
8951
8952
8953
8954
8955
8956
8957
8958
8959
8960
8961
8962
8963
8964
8965
8966
8967
8968
8969
8970
8971
8972
8973
8974
8975
8976
8977
8978
8979
8980
8981
8982
8983
8984
8985
8986
8987
8988
8989
8990
8991
8992
8993
8994
8995
8996
8997
8998
8999
9000
9001
9002
9003
9004
9005
9006
9007
9008
9009
9010
9011
9012
9013
9014
9015
9016
9017
9018
9019
9020
9021
9022
9023
9024
9025
9026
9027
9028
9029
9030
9031
9032
9033
9034
9035
9036
9037
9038
9039
9040
9041
9042
9043
9044
9045
9046
9047
9048
9049
9050
9051
9052
9053
9054
9055
9056
9057
9058
9059
9060
9061
9062
9063
9064
9065
9066
9067
9068
9069
9070
9071
9072
9073
9074
9075
9076
9077
9078
9079
9080
9081
9082
9083
9084
9085
9086
9087
9088
9089
9090
9091
9092
9093
9094
9095
9096
9097
9098
9099
9100
9101
9102
9103
9104
9105
9106
9107
9108
9109
9110
9111
9112
9113
9114
9115
9116
9117
9118
9119
9120
9121
9122
9123
9124
9125
9126
9127
9128
9129
9130
9131
9132
9133
9134
9135
9136
9137
9138
9139
9140
9141
9142
9143
9144
9145
9146
9147
9148
9149
9150
9151
9152
9153
9154
9155
9156
9157
9158
9159
9160
9161
9162
9163
9164
9165
9166
9167
9168
9169
9170
9171
9172
9173
9174
9175
9176
9177
9178
9179
9180
9181
9182
9183
9184
9185
9186
9187
9188
9189
9190
9191
9192
9193
9194
9195
9196
9197
9198
9199
9200
9201
9202
9203
9204
9205
9206
9207
9208
9209
9210
9211
9212
9213
9214
9215
9216
9217
9218
9219
9220
9221
9222
9223
9224
9225
9226
9227
9228
9229
9230
9231
9232
9233
9234
9235
9236
9237
9238
9239
9240
9241
9242
9243
9244
9245
9246
9247
9248
9249
9250
9251
9252
9253
9254
9255
9256
9257
9258
9259
9260
9261
9262
9263
9264
9265
9266
9267
9268
9269
9270
9271
9272
9273
9274
9275
9276
9277
9278
9279
9280
9281
9282
9283
9284
9285
9286
9287
9288
9289
9290
9291
9292
9293
9294
9295
9296
9297
9298
9299
9300
9301
9302
9303
9304
9305
9306
9307
9308
9309
9310
9311
9312
9313
9314
9315
9316
9317
9318
9319
9320
9321
9322
9323
9324
9325
9326
9327
9328
9329
9330
9331
9332
9333
9334
9335
9336
9337
9338
9339
9340
9341
9342
9343
9344
9345
9346
9347
9348
9349
9350
9351
9352
9353
9354
9355
9356
9357
9358
9359
9360
9361
9362
9363
9364
9365
9366
9367
9368
9369
9370
9371
9372
9373
9374
9375
9376
9377
9378
9379
9380
9381
9382
9383
9384
9385
9386
9387
9388
9389
9390
9391
9392
9393
9394
9395
9396
9397
9398
9399
9400
9401
9402
9403
9404
9405
9406
9407
9408
9409
9410
9411
9412
9413
9414
9415
9416
9417
9418
9419
9420
9421
9422
9423
9424
9425
9426
9427
9428
9429
9430
9431
9432
9433
9434
9435
9436
9437
9438
9439
9440
9441
9442
9443
9444
9445
9446
9447
9448
9449
9450
9451
9452
9453
9454
9455
9456
9457
9458
9459
9460
9461
9462
9463
9464
9465
9466
9467
9468
9469
9470
9471
9472
9473
9474
9475
9476
9477
9478
9479
9480
9481
9482
9483
9484
9485
9486
9487
9488
9489
9490
9491
9492
9493
9494
9495
9496
9497
9498
9499
9500
9501
9502
9503
9504
9505
9506
9507
9508
9509
9510
9511
9512
9513
9514
9515
9516
9517
9518
9519
9520
9521
9522
9523
9524
9525
9526
9527
9528
9529
9530
9531
9532
9533
9534
9535
9536
9537
9538
9539
9540
9541
9542
9543
9544
9545
9546
9547
9548
9549
9550
9551
9552
9553
9554
9555
9556
9557
9558
9559
9560
9561
9562
9563
9564
9565
9566
9567
9568
9569
9570
9571
9572
9573
9574
9575
9576
9577
9578
9579
9580
9581
9582
9583
9584
9585
9586
9587
9588
9589
9590
9591
9592
9593
9594
9595
9596
9597
9598
9599
9600
9601
9602
9603
9604
9605
9606
9607
9608
9609
9610
9611
9612
9613
9614
9615
9616
9617
9618
9619
9620
9621
9622
9623
9624
9625
9626
9627
9628
9629
9630
9631
9632
9633
9634
9635
9636
9637
9638
9639
9640
9641
9642
9643
9644
9645
9646
9647
9648
9649
9650
9651
9652
9653
9654
9655
9656
9657
9658
9659
9660
9661
9662
9663
9664
9665
9666
9667
9668
9669
9670
9671
9672
9673
9674
9675
9676
9677
9678
9679
9680
9681
9682
9683
9684
9685
9686
9687
9688
9689
9690
9691
9692
9693
9694
9695
9696
9697
9698
9699
9700
9701
9702
9703
9704
9705
9706
9707
9708
9709
9710
9711
9712
9713
9714
9715
9716
9717
9718
9719
9720
9721
9722
9723
9724
9725
9726
9727
9728
9729
9730
9731
9732
9733
9734
9735
9736
9737
9738
9739
9740
9741
9742
9743
9744
9745
9746
9747
9748
9749
9750
9751
9752
9753
9754
9755
9756
9757
9758
9759
9760
9761
9762
9763
9764
9765
9766
9767
9768
9769
9770
9771
9772
9773
9774
9775
9776
9777
9778
9779
9780
9781
9782
9783
9784
9785
9786
9787
9788
9789
9790
9791
9792
9793
9794
9795
9796
9797
9798
9799
9800
9801
9802
9803
9804
9805
9806
9807
9808
9809
9810
9811
9812
9813
9814
9815
9816
9817
9818
9819
9820
9821
9822
9823
9824
9825
9826
9827
9828
9829
9830
9831
9832
9833
9834
9835
9836
9837
9838
9839
9840
9841
9842
9843
9844
9845
9846
9847
9848
9849
9850
9851
9852
9853
9854
9855
9856
9857
9858
9859
9860
9861
9862
9863
9864
9865
9866
9867
9868
9869
9870
9871
9872
9873
9874
9875
9876
9877
9878
9879
9880
9881
9882
9883
9884
9885
9886
9887
9888
9889
9890
9891
9892
9893
9894
9895
9896
9897
9898
9899
9900
9901
9902
9903
9904
9905
9906
9907
9908
9909
9910
9911
9912
9913
9914
9915
9916
9917
9918
9919
9920
9921
9922
9923
9924
9925
9926
9927
9928
9929
9930
9931
9932
9933
9934
9935
9936
9937
9938
9939
9940
9941
9942
9943
9944
9945
9946
9947
9948
9949
9950
9951
9952
9953
9954
9955
9956
9957
9958
9959
9960
9961
9962
9963
9964
9965
9966
9967
9968
9969
9970
9971
9972
9973
9974
9975
9976
9977
9978
9979
9980
9981
9982
9983
9984
9985
9986
9987
9988
9989
9990
9991
9992
9993
9994
9995
9996
9997
9998
9999
10000
10001
10002
10003
10004
10005
10006
10007
10008
10009
10010
10011
10012
10013
10014
10015
10016
10017
10018
10019
10020
10021
10022
10023
10024
10025
10026
10027
10028
10029
10030
10031
10032
10033
10034
10035
10036
10037
10038
10039
10040
10041
10042
10043
10044
10045
10046
10047
10048
10049
10050
10051
10052
10053
10054
10055
10056
10057
10058
10059
10060
10061
10062
10063
10064
10065
10066
10067
10068
10069
10070
10071
10072
10073
10074
10075
10076
10077
10078
10079
10080
10081
10082
10083
10084
10085
10086
10087
10088
10089
10090
10091
10092
10093
10094
10095
10096
10097
10098
10099
10100
10101
10102
10103
10104
10105
10106
10107
10108
10109
10110
10111
10112
10113
10114
10115
10116
10117
10118
10119
10120
10121
10122
10123
10124
10125
10126
10127
10128
10129
10130
10131
10132
10133
10134
10135
10136
10137
10138
10139
10140
10141
10142
10143
10144
10145
10146
10147
10148
10149
10150
10151
10152
10153
10154
10155
10156
10157
10158
10159
10160
10161
10162
10163
10164
10165
10166
10167
10168
10169
10170
10171
10172
10173
10174
10175
10176
10177
10178
10179
10180
10181
10182
10183
10184
10185
10186
10187
10188
10189
10190
10191
10192
10193
10194
10195
10196
10197
10198
10199
10200
10201
10202
10203
10204
10205
10206
10207
10208
10209
10210
10211
10212
10213
10214
10215
10216
10217
10218
10219
10220
10221
10222
10223
10224
10225
10226
10227
10228
10229
10230
10231
10232
10233
10234
10235
10236
10237
10238
10239
10240
10241
10242
10243
10244
10245
10246
10247
10248
10249
10250
10251
10252
10253
10254
10255
10256
10257
10258
10259
10260
10261
10262
10263
10264
10265
10266
10267
10268
10269
10270
10271
10272
10273
10274
10275
10276
10277
10278
10279
10280
10281
10282
10283
10284
10285
10286
10287
10288
10289
10290
10291
10292
10293
10294
10295
10296
10297
10298
10299
10300
10301
10302
10303
10304
10305
10306
10307
10308
10309
10310
10311
10312
10313
10314
10315
10316
10317
10318
10319
10320
10321
10322
10323
10324
10325
10326
10327
10328
10329
10330
10331
10332
10333
10334
10335
10336
10337
10338
10339
10340
10341
10342
10343
10344
10345
10346
10347
10348
10349
10350
10351
10352
10353
10354
10355
10356
10357
10358
10359
10360
10361
10362
10363
10364
10365
10366
10367
10368
10369
10370
10371
10372
10373
10374
10375
10376
10377
10378
10379
10380
10381
10382
10383
10384
10385
10386
10387
10388
10389
10390
10391
10392
10393
10394
10395
10396
10397
10398
10399
10400
10401
10402
10403
10404
10405
10406
10407
10408
10409
10410
10411
10412
10413
10414
10415
10416
10417
10418
10419
10420
10421
10422
10423
10424
10425
10426
10427
10428
10429
10430
10431
10432
10433
10434
10435
10436
10437
10438
10439
10440
10441
10442
10443
10444
10445
10446
10447
10448
10449
10450
10451
10452
10453
10454
10455
10456
10457
10458
10459
10460
10461
10462
10463
10464
10465
10466
10467
10468
10469
10470
10471
10472
10473
10474
10475
10476
10477
10478
10479
10480
10481
10482
10483
10484
10485
10486
10487
10488
10489
10490
10491
10492
10493
10494
10495
10496
10497
10498
10499
10500
10501
10502
10503
10504
10505
10506
10507
10508
10509
10510
10511
10512
10513
10514
10515
10516
10517
10518
10519
10520
10521
10522
10523
10524
10525
10526
10527
10528
10529
10530
10531
10532
10533
10534
10535
10536
10537
10538
10539
10540
10541
10542
10543
10544
10545
10546
10547
10548
10549
10550
10551
10552
10553
10554
10555
10556
10557
10558
10559
10560
10561
10562
10563
10564
10565
10566
10567
10568
10569
10570
10571
10572
10573
10574
10575
10576
10577
10578
10579
10580
10581
10582
10583
10584
10585
10586
10587
10588
10589
10590
10591
10592
10593
10594
10595
10596
10597
10598
10599
10600
10601
10602
10603
10604
10605
10606
10607
10608
10609
10610
10611
10612
10613
10614
10615
10616
10617
10618
10619
10620
10621
10622
10623
10624
10625
10626
10627
10628
10629
10630
10631
10632
10633
10634
10635
10636
10637
10638
10639
10640
10641
10642
10643
10644
10645
10646
10647
10648
10649
10650
10651
10652
10653
10654
10655
10656
10657
10658
10659
10660
10661
10662
10663
10664
10665
10666
10667
10668
10669
10670
10671
10672
10673
10674
10675
10676
10677
10678
10679
10680
10681
10682
10683
10684
10685
10686
10687
10688
10689
10690
10691
10692
10693
10694
10695
10696
10697
10698
10699
10700
10701
10702
10703
10704
10705
10706
10707
10708
10709
10710
10711
10712
10713
10714
10715
10716
10717
10718
10719
10720
10721
10722
10723
10724
10725
10726
10727
10728
10729
10730
10731
10732
10733
10734
10735
10736
10737
10738
10739
10740
10741
10742
10743
10744
10745
10746
10747
10748
10749
10750
10751
10752
10753
10754
10755
10756
10757
10758
10759
10760
10761
10762
10763
10764
10765
10766
10767
10768
10769
10770
10771
10772
10773
10774
10775
10776
10777
10778
10779
10780
10781
10782
10783
10784
10785
10786
10787
10788
10789
10790
10791
10792
10793
10794
10795
10796
10797
10798
10799
10800
10801
10802
10803
10804
10805
10806
10807
10808
10809
10810
10811
10812
10813
10814
10815
10816
10817
10818
10819
10820
10821
10822
10823
10824
10825
10826
10827
10828
10829
10830
10831
10832
10833
10834
10835
10836
10837
10838
10839
10840
10841
10842
10843
10844
10845
10846
10847
10848
10849
10850
10851
10852
10853
10854
10855
10856
10857
10858
10859
10860
10861
10862
10863
10864
10865
10866
10867
10868
10869
10870
10871
10872
10873
10874
10875
10876
10877
10878
10879
10880
10881
10882
10883
10884
10885
10886
10887
10888
10889
10890
10891
10892
10893
10894
10895
10896
10897
10898
10899
10900
10901
10902
10903
10904
10905
10906
10907
10908
10909
10910
10911
10912
10913
10914
10915
10916
10917
10918
10919
10920
10921
10922
10923
10924
10925
10926
10927
10928
10929
10930
10931
10932
10933
10934
10935
10936
10937
10938
10939
10940
10941
10942
10943
10944
10945
10946
10947
10948
10949
10950
10951
10952
10953
10954
10955
10956
10957
10958
10959
10960
10961
10962
10963
10964
10965
10966
10967
10968
10969
10970
10971
10972
10973
10974
10975
10976
10977
10978
|
/* Convert tree expression to rtl instructions, for GNU compiler.
Copyright (C) 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
2000, 2001 Free Software Foundation, Inc.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 2, or (at your option) any later
version.
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING. If not, write to the Free
Software Foundation, 59 Temple Place - Suite 330, Boston, MA
02111-1307, USA. */
#include "config.h"
#include "system.h"
#include "machmode.h"
#include "rtl.h"
#include "tree.h"
#include "obstack.h"
#include "flags.h"
#include "regs.h"
#include "hard-reg-set.h"
#include "except.h"
#include "function.h"
#include "insn-config.h"
/* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
#include "expr.h"
#include "optabs.h"
#include "libfuncs.h"
#include "recog.h"
#include "reload.h"
#include "output.h"
#include "typeclass.h"
#include "toplev.h"
#include "ggc.h"
#include "intl.h"
#include "tm_p.h"
/* Decide whether a function's arguments should be processed
from first to last or from last to first.
They should if the stack and args grow in opposite directions, but
only if we have push insns. */
#ifdef PUSH_ROUNDING
#if defined (STACK_GROWS_DOWNWARD) != defined (ARGS_GROW_DOWNWARD)
#define PUSH_ARGS_REVERSED /* If it's last to first. */
#endif
#endif
#ifndef STACK_PUSH_CODE
#ifdef STACK_GROWS_DOWNWARD
#define STACK_PUSH_CODE PRE_DEC
#else
#define STACK_PUSH_CODE PRE_INC
#endif
#endif
/* Assume that case vectors are not pc-relative. */
#ifndef CASE_VECTOR_PC_RELATIVE
#define CASE_VECTOR_PC_RELATIVE 0
#endif
/* Hook called by safe_from_p for language-specific tree codes. It is
up to the language front-end to install a hook if it has any such
codes that safe_from_p needs to know about. Since same_from_p will
recursively explore the TREE_OPERANDs of an expression, this hook
should not reexamine those pieces. This routine may recursively
call safe_from_p; it should always pass `0' as the TOP_P
parameter. */
int (*lang_safe_from_p) PARAMS ((rtx, tree));
/* If this is nonzero, we do not bother generating VOLATILE
around volatile memory references, and we are willing to
output indirect addresses. If cse is to follow, we reject
indirect addresses so a useful potential cse is generated;
if it is used only once, instruction combination will produce
the same indirect address eventually. */
int cse_not_expected;
/* Don't check memory usage, since code is being emitted to check a memory
usage. Used when current_function_check_memory_usage is true, to avoid
infinite recursion. */
static int in_check_memory_usage;
/* Chain of pending expressions for PLACEHOLDER_EXPR to replace. */
static tree placeholder_list = 0;
/* This structure is used by move_by_pieces to describe the move to
be performed. */
struct move_by_pieces
{
rtx to;
rtx to_addr;
int autinc_to;
int explicit_inc_to;
rtx from;
rtx from_addr;
int autinc_from;
int explicit_inc_from;
unsigned HOST_WIDE_INT len;
HOST_WIDE_INT offset;
int reverse;
};
/* This structure is used by store_by_pieces to describe the clear to
be performed. */
struct store_by_pieces
{
rtx to;
rtx to_addr;
int autinc_to;
int explicit_inc_to;
unsigned HOST_WIDE_INT len;
HOST_WIDE_INT offset;
rtx (*constfun) PARAMS ((PTR, HOST_WIDE_INT, enum machine_mode));
PTR constfundata;
int reverse;
};
extern struct obstack permanent_obstack;
static rtx get_push_address PARAMS ((int));
static rtx enqueue_insn PARAMS ((rtx, rtx));
static unsigned HOST_WIDE_INT move_by_pieces_ninsns
PARAMS ((unsigned HOST_WIDE_INT,
unsigned int));
static void move_by_pieces_1 PARAMS ((rtx (*) (rtx, ...), enum machine_mode,
struct move_by_pieces *));
static rtx clear_by_pieces_1 PARAMS ((PTR, HOST_WIDE_INT,
enum machine_mode));
static void clear_by_pieces PARAMS ((rtx, unsigned HOST_WIDE_INT,
unsigned int));
static void store_by_pieces_1 PARAMS ((struct store_by_pieces *,
unsigned int));
static void store_by_pieces_2 PARAMS ((rtx (*) (rtx, ...),
enum machine_mode,
struct store_by_pieces *));
static rtx get_subtarget PARAMS ((rtx));
static int is_zeros_p PARAMS ((tree));
static int mostly_zeros_p PARAMS ((tree));
static void store_constructor_field PARAMS ((rtx, unsigned HOST_WIDE_INT,
HOST_WIDE_INT, enum machine_mode,
tree, tree, unsigned int, int,
int));
static void store_constructor PARAMS ((tree, rtx, unsigned int, int,
HOST_WIDE_INT));
static rtx store_field PARAMS ((rtx, HOST_WIDE_INT,
HOST_WIDE_INT, enum machine_mode,
tree, enum machine_mode, int,
unsigned int, HOST_WIDE_INT, int));
static enum memory_use_mode
get_memory_usage_from_modifier PARAMS ((enum expand_modifier));
static rtx var_rtx PARAMS ((tree));
static HOST_WIDE_INT highest_pow2_factor PARAMS ((tree));
static rtx expand_expr_unaligned PARAMS ((tree, unsigned int *));
static rtx expand_increment PARAMS ((tree, int, int));
static void do_jump_by_parts_greater PARAMS ((tree, int, rtx, rtx));
static void do_jump_by_parts_equality PARAMS ((tree, rtx, rtx));
static void do_compare_and_jump PARAMS ((tree, enum rtx_code, enum rtx_code,
rtx, rtx));
static rtx do_store_flag PARAMS ((tree, rtx, enum machine_mode, int));
#ifdef PUSH_ROUNDING
static void emit_single_push_insn PARAMS ((enum machine_mode, rtx, tree));
#endif
static void do_tablejump PARAMS ((rtx, enum machine_mode, rtx, rtx, rtx));
/* Record for each mode whether we can move a register directly to or
from an object of that mode in memory. If we can't, we won't try
to use that mode directly when accessing a field of that mode. */
static char direct_load[NUM_MACHINE_MODES];
static char direct_store[NUM_MACHINE_MODES];
/* If a memory-to-memory move would take MOVE_RATIO or more simple
move-instruction sequences, we will do a movstr or libcall instead. */
#ifndef MOVE_RATIO
#if defined (HAVE_movstrqi) || defined (HAVE_movstrhi) || defined (HAVE_movstrsi) || defined (HAVE_movstrdi) || defined (HAVE_movstrti)
#define MOVE_RATIO 2
#else
/* If we are optimizing for space (-Os), cut down the default move ratio. */
#define MOVE_RATIO (optimize_size ? 3 : 15)
#endif
#endif
/* This macro is used to determine whether move_by_pieces should be called
to perform a structure copy. */
#ifndef MOVE_BY_PIECES_P
#define MOVE_BY_PIECES_P(SIZE, ALIGN) \
(move_by_pieces_ninsns (SIZE, ALIGN) < (unsigned int) MOVE_RATIO)
#endif
/* This array records the insn_code of insns to perform block moves. */
enum insn_code movstr_optab[NUM_MACHINE_MODES];
/* This array records the insn_code of insns to perform block clears. */
enum insn_code clrstr_optab[NUM_MACHINE_MODES];
/* SLOW_UNALIGNED_ACCESS is non-zero if unaligned accesses are very slow. */
#ifndef SLOW_UNALIGNED_ACCESS
#define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) STRICT_ALIGNMENT
#endif
/* This is run once per compilation to set up which modes can be used
directly in memory and to initialize the block move optab. */
void
init_expr_once ()
{
rtx insn, pat;
enum machine_mode mode;
int num_clobbers;
rtx mem, mem1;
start_sequence ();
/* Try indexing by frame ptr and try by stack ptr.
It is known that on the Convex the stack ptr isn't a valid index.
With luck, one or the other is valid on any machine. */
mem = gen_rtx_MEM (VOIDmode, stack_pointer_rtx);
mem1 = gen_rtx_MEM (VOIDmode, frame_pointer_rtx);
insn = emit_insn (gen_rtx_SET (0, NULL_RTX, NULL_RTX));
pat = PATTERN (insn);
for (mode = VOIDmode; (int) mode < NUM_MACHINE_MODES;
mode = (enum machine_mode) ((int) mode + 1))
{
int regno;
rtx reg;
direct_load[(int) mode] = direct_store[(int) mode] = 0;
PUT_MODE (mem, mode);
PUT_MODE (mem1, mode);
/* See if there is some register that can be used in this mode and
directly loaded or stored from memory. */
if (mode != VOIDmode && mode != BLKmode)
for (regno = 0; regno < FIRST_PSEUDO_REGISTER
&& (direct_load[(int) mode] == 0 || direct_store[(int) mode] == 0);
regno++)
{
if (! HARD_REGNO_MODE_OK (regno, mode))
continue;
reg = gen_rtx_REG (mode, regno);
SET_SRC (pat) = mem;
SET_DEST (pat) = reg;
if (recog (pat, insn, &num_clobbers) >= 0)
direct_load[(int) mode] = 1;
SET_SRC (pat) = mem1;
SET_DEST (pat) = reg;
if (recog (pat, insn, &num_clobbers) >= 0)
direct_load[(int) mode] = 1;
SET_SRC (pat) = reg;
SET_DEST (pat) = mem;
if (recog (pat, insn, &num_clobbers) >= 0)
direct_store[(int) mode] = 1;
SET_SRC (pat) = reg;
SET_DEST (pat) = mem1;
if (recog (pat, insn, &num_clobbers) >= 0)
direct_store[(int) mode] = 1;
}
}
end_sequence ();
}
/* This is run at the start of compiling a function. */
void
init_expr ()
{
cfun->expr = (struct expr_status *) xmalloc (sizeof (struct expr_status));
pending_chain = 0;
pending_stack_adjust = 0;
stack_pointer_delta = 0;
inhibit_defer_pop = 0;
saveregs_value = 0;
apply_args_value = 0;
forced_labels = 0;
}
void
mark_expr_status (p)
struct expr_status *p;
{
if (p == NULL)
return;
ggc_mark_rtx (p->x_saveregs_value);
ggc_mark_rtx (p->x_apply_args_value);
ggc_mark_rtx (p->x_forced_labels);
}
void
free_expr_status (f)
struct function *f;
{
free (f->expr);
f->expr = NULL;
}
/* Small sanity check that the queue is empty at the end of a function. */
void
finish_expr_for_function ()
{
if (pending_chain)
abort ();
}
/* Manage the queue of increment instructions to be output
for POSTINCREMENT_EXPR expressions, etc. */
/* Queue up to increment (or change) VAR later. BODY says how:
BODY should be the same thing you would pass to emit_insn
to increment right away. It will go to emit_insn later on.
The value is a QUEUED expression to be used in place of VAR
where you want to guarantee the pre-incrementation value of VAR. */
static rtx
enqueue_insn (var, body)
rtx var, body;
{
pending_chain = gen_rtx_QUEUED (GET_MODE (var), var, NULL_RTX, NULL_RTX,
body, pending_chain);
return pending_chain;
}
/* Use protect_from_queue to convert a QUEUED expression
into something that you can put immediately into an instruction.
If the queued incrementation has not happened yet,
protect_from_queue returns the variable itself.
If the incrementation has happened, protect_from_queue returns a temp
that contains a copy of the old value of the variable.
Any time an rtx which might possibly be a QUEUED is to be put
into an instruction, it must be passed through protect_from_queue first.
QUEUED expressions are not meaningful in instructions.
Do not pass a value through protect_from_queue and then hold
on to it for a while before putting it in an instruction!
If the queue is flushed in between, incorrect code will result. */
rtx
protect_from_queue (x, modify)
rtx x;
int modify;
{
RTX_CODE code = GET_CODE (x);
#if 0 /* A QUEUED can hang around after the queue is forced out. */
/* Shortcut for most common case. */
if (pending_chain == 0)
return x;
#endif
if (code != QUEUED)
{
/* A special hack for read access to (MEM (QUEUED ...)) to facilitate
use of autoincrement. Make a copy of the contents of the memory
location rather than a copy of the address, but not if the value is
of mode BLKmode. Don't modify X in place since it might be
shared. */
if (code == MEM && GET_MODE (x) != BLKmode
&& GET_CODE (XEXP (x, 0)) == QUEUED && !modify)
{
rtx y = XEXP (x, 0);
rtx new = replace_equiv_address_nv (x, QUEUED_VAR (y));
if (QUEUED_INSN (y))
{
rtx temp = gen_reg_rtx (GET_MODE (x));
emit_insn_before (gen_move_insn (temp, new),
QUEUED_INSN (y));
return temp;
}
/* Copy the address into a pseudo, so that the returned value
remains correct across calls to emit_queue. */
return replace_equiv_address (new, copy_to_reg (XEXP (new, 0)));
}
/* Otherwise, recursively protect the subexpressions of all
the kinds of rtx's that can contain a QUEUED. */
if (code == MEM)
{
rtx tem = protect_from_queue (XEXP (x, 0), 0);
if (tem != XEXP (x, 0))
{
x = copy_rtx (x);
XEXP (x, 0) = tem;
}
}
else if (code == PLUS || code == MULT)
{
rtx new0 = protect_from_queue (XEXP (x, 0), 0);
rtx new1 = protect_from_queue (XEXP (x, 1), 0);
if (new0 != XEXP (x, 0) || new1 != XEXP (x, 1))
{
x = copy_rtx (x);
XEXP (x, 0) = new0;
XEXP (x, 1) = new1;
}
}
return x;
}
/* If the increment has not happened, use the variable itself. Copy it
into a new pseudo so that the value remains correct across calls to
emit_queue. */
if (QUEUED_INSN (x) == 0)
return copy_to_reg (QUEUED_VAR (x));
/* If the increment has happened and a pre-increment copy exists,
use that copy. */
if (QUEUED_COPY (x) != 0)
return QUEUED_COPY (x);
/* The increment has happened but we haven't set up a pre-increment copy.
Set one up now, and use it. */
QUEUED_COPY (x) = gen_reg_rtx (GET_MODE (QUEUED_VAR (x)));
emit_insn_before (gen_move_insn (QUEUED_COPY (x), QUEUED_VAR (x)),
QUEUED_INSN (x));
return QUEUED_COPY (x);
}
/* Return nonzero if X contains a QUEUED expression:
if it contains anything that will be altered by a queued increment.
We handle only combinations of MEM, PLUS, MINUS and MULT operators
since memory addresses generally contain only those. */
int
queued_subexp_p (x)
rtx x;
{
enum rtx_code code = GET_CODE (x);
switch (code)
{
case QUEUED:
return 1;
case MEM:
return queued_subexp_p (XEXP (x, 0));
case MULT:
case PLUS:
case MINUS:
return (queued_subexp_p (XEXP (x, 0))
|| queued_subexp_p (XEXP (x, 1)));
default:
return 0;
}
}
/* Perform all the pending incrementations. */
void
emit_queue ()
{
rtx p;
while ((p = pending_chain))
{
rtx body = QUEUED_BODY (p);
if (GET_CODE (body) == SEQUENCE)
{
QUEUED_INSN (p) = XVECEXP (QUEUED_BODY (p), 0, 0);
emit_insn (QUEUED_BODY (p));
}
else
QUEUED_INSN (p) = emit_insn (QUEUED_BODY (p));
pending_chain = QUEUED_NEXT (p);
}
}
/* Copy data from FROM to TO, where the machine modes are not the same.
Both modes may be integer, or both may be floating.
UNSIGNEDP should be nonzero if FROM is an unsigned type.
This causes zero-extension instead of sign-extension. */
void
convert_move (to, from, unsignedp)
rtx to, from;
int unsignedp;
{
enum machine_mode to_mode = GET_MODE (to);
enum machine_mode from_mode = GET_MODE (from);
int to_real = GET_MODE_CLASS (to_mode) == MODE_FLOAT;
int from_real = GET_MODE_CLASS (from_mode) == MODE_FLOAT;
enum insn_code code;
rtx libcall;
/* rtx code for making an equivalent value. */
enum rtx_code equiv_code = (unsignedp ? ZERO_EXTEND : SIGN_EXTEND);
to = protect_from_queue (to, 1);
from = protect_from_queue (from, 0);
if (to_real != from_real)
abort ();
/* If FROM is a SUBREG that indicates that we have already done at least
the required extension, strip it. We don't handle such SUBREGs as
TO here. */
if (GET_CODE (from) == SUBREG && SUBREG_PROMOTED_VAR_P (from)
&& (GET_MODE_SIZE (GET_MODE (SUBREG_REG (from)))
>= GET_MODE_SIZE (to_mode))
&& SUBREG_PROMOTED_UNSIGNED_P (from) == unsignedp)
from = gen_lowpart (to_mode, from), from_mode = to_mode;
if (GET_CODE (to) == SUBREG && SUBREG_PROMOTED_VAR_P (to))
abort ();
if (to_mode == from_mode
|| (from_mode == VOIDmode && CONSTANT_P (from)))
{
emit_move_insn (to, from);
return;
}
if (VECTOR_MODE_P (to_mode) || VECTOR_MODE_P (from_mode))
{
if (GET_MODE_BITSIZE (from_mode) != GET_MODE_BITSIZE (to_mode))
abort ();
if (VECTOR_MODE_P (to_mode))
from = simplify_gen_subreg (to_mode, from, GET_MODE (from), 0);
else
to = simplify_gen_subreg (from_mode, to, GET_MODE (to), 0);
emit_move_insn (to, from);
return;
}
if (to_real != from_real)
abort ();
if (to_real)
{
rtx value, insns;
if (GET_MODE_BITSIZE (from_mode) < GET_MODE_BITSIZE (to_mode))
{
/* Try converting directly if the insn is supported. */
if ((code = can_extend_p (to_mode, from_mode, 0))
!= CODE_FOR_nothing)
{
emit_unop_insn (code, to, from, UNKNOWN);
return;
}
}
#ifdef HAVE_trunchfqf2
if (HAVE_trunchfqf2 && from_mode == HFmode && to_mode == QFmode)
{
emit_unop_insn (CODE_FOR_trunchfqf2, to, from, UNKNOWN);
return;
}
#endif
#ifdef HAVE_trunctqfqf2
if (HAVE_trunctqfqf2 && from_mode == TQFmode && to_mode == QFmode)
{
emit_unop_insn (CODE_FOR_trunctqfqf2, to, from, UNKNOWN);
return;
}
#endif
#ifdef HAVE_truncsfqf2
if (HAVE_truncsfqf2 && from_mode == SFmode && to_mode == QFmode)
{
emit_unop_insn (CODE_FOR_truncsfqf2, to, from, UNKNOWN);
return;
}
#endif
#ifdef HAVE_truncdfqf2
if (HAVE_truncdfqf2 && from_mode == DFmode && to_mode == QFmode)
{
emit_unop_insn (CODE_FOR_truncdfqf2, to, from, UNKNOWN);
return;
}
#endif
#ifdef HAVE_truncxfqf2
if (HAVE_truncxfqf2 && from_mode == XFmode && to_mode == QFmode)
{
emit_unop_insn (CODE_FOR_truncxfqf2, to, from, UNKNOWN);
return;
}
#endif
#ifdef HAVE_trunctfqf2
if (HAVE_trunctfqf2 && from_mode == TFmode && to_mode == QFmode)
{
emit_unop_insn (CODE_FOR_trunctfqf2, to, from, UNKNOWN);
return;
}
#endif
#ifdef HAVE_trunctqfhf2
if (HAVE_trunctqfhf2 && from_mode == TQFmode && to_mode == HFmode)
{
emit_unop_insn (CODE_FOR_trunctqfhf2, to, from, UNKNOWN);
return;
}
#endif
#ifdef HAVE_truncsfhf2
if (HAVE_truncsfhf2 && from_mode == SFmode && to_mode == HFmode)
{
emit_unop_insn (CODE_FOR_truncsfhf2, to, from, UNKNOWN);
return;
}
#endif
#ifdef HAVE_truncdfhf2
if (HAVE_truncdfhf2 && from_mode == DFmode && to_mode == HFmode)
{
emit_unop_insn (CODE_FOR_truncdfhf2, to, from, UNKNOWN);
return;
}
#endif
#ifdef HAVE_truncxfhf2
if (HAVE_truncxfhf2 && from_mode == XFmode && to_mode == HFmode)
{
emit_unop_insn (CODE_FOR_truncxfhf2, to, from, UNKNOWN);
return;
}
#endif
#ifdef HAVE_trunctfhf2
if (HAVE_trunctfhf2 && from_mode == TFmode && to_mode == HFmode)
{
emit_unop_insn (CODE_FOR_trunctfhf2, to, from, UNKNOWN);
return;
}
#endif
#ifdef HAVE_truncsftqf2
if (HAVE_truncsftqf2 && from_mode == SFmode && to_mode == TQFmode)
{
emit_unop_insn (CODE_FOR_truncsftqf2, to, from, UNKNOWN);
return;
}
#endif
#ifdef HAVE_truncdftqf2
if (HAVE_truncdftqf2 && from_mode == DFmode && to_mode == TQFmode)
{
emit_unop_insn (CODE_FOR_truncdftqf2, to, from, UNKNOWN);
return;
}
#endif
#ifdef HAVE_truncxftqf2
if (HAVE_truncxftqf2 && from_mode == XFmode && to_mode == TQFmode)
{
emit_unop_insn (CODE_FOR_truncxftqf2, to, from, UNKNOWN);
return;
}
#endif
#ifdef HAVE_trunctftqf2
if (HAVE_trunctftqf2 && from_mode == TFmode && to_mode == TQFmode)
{
emit_unop_insn (CODE_FOR_trunctftqf2, to, from, UNKNOWN);
return;
}
#endif
#ifdef HAVE_truncdfsf2
if (HAVE_truncdfsf2 && from_mode == DFmode && to_mode == SFmode)
{
emit_unop_insn (CODE_FOR_truncdfsf2, to, from, UNKNOWN);
return;
}
#endif
#ifdef HAVE_truncxfsf2
if (HAVE_truncxfsf2 && from_mode == XFmode && to_mode == SFmode)
{
emit_unop_insn (CODE_FOR_truncxfsf2, to, from, UNKNOWN);
return;
}
#endif
#ifdef HAVE_trunctfsf2
if (HAVE_trunctfsf2 && from_mode == TFmode && to_mode == SFmode)
{
emit_unop_insn (CODE_FOR_trunctfsf2, to, from, UNKNOWN);
return;
}
#endif
#ifdef HAVE_truncxfdf2
if (HAVE_truncxfdf2 && from_mode == XFmode && to_mode == DFmode)
{
emit_unop_insn (CODE_FOR_truncxfdf2, to, from, UNKNOWN);
return;
}
#endif
#ifdef HAVE_trunctfdf2
if (HAVE_trunctfdf2 && from_mode == TFmode && to_mode == DFmode)
{
emit_unop_insn (CODE_FOR_trunctfdf2, to, from, UNKNOWN);
return;
}
#endif
libcall = (rtx) 0;
switch (from_mode)
{
case SFmode:
switch (to_mode)
{
case DFmode:
libcall = extendsfdf2_libfunc;
break;
case XFmode:
libcall = extendsfxf2_libfunc;
break;
case TFmode:
libcall = extendsftf2_libfunc;
break;
default:
break;
}
break;
case DFmode:
switch (to_mode)
{
case SFmode:
libcall = truncdfsf2_libfunc;
break;
case XFmode:
libcall = extenddfxf2_libfunc;
break;
case TFmode:
libcall = extenddftf2_libfunc;
break;
default:
break;
}
break;
case XFmode:
switch (to_mode)
{
case SFmode:
libcall = truncxfsf2_libfunc;
break;
case DFmode:
libcall = truncxfdf2_libfunc;
break;
default:
break;
}
break;
case TFmode:
switch (to_mode)
{
case SFmode:
libcall = trunctfsf2_libfunc;
break;
case DFmode:
libcall = trunctfdf2_libfunc;
break;
default:
break;
}
break;
default:
break;
}
if (libcall == (rtx) 0)
/* This conversion is not implemented yet. */
abort ();
start_sequence ();
value = emit_library_call_value (libcall, NULL_RTX, LCT_CONST, to_mode,
1, from, from_mode);
insns = get_insns ();
end_sequence ();
emit_libcall_block (insns, to, value, gen_rtx_FLOAT_TRUNCATE (to_mode,
from));
return;
}
/* Now both modes are integers. */
/* Handle expanding beyond a word. */
if (GET_MODE_BITSIZE (from_mode) < GET_MODE_BITSIZE (to_mode)
&& GET_MODE_BITSIZE (to_mode) > BITS_PER_WORD)
{
rtx insns;
rtx lowpart;
rtx fill_value;
rtx lowfrom;
int i;
enum machine_mode lowpart_mode;
int nwords = CEIL (GET_MODE_SIZE (to_mode), UNITS_PER_WORD);
/* Try converting directly if the insn is supported. */
if ((code = can_extend_p (to_mode, from_mode, unsignedp))
!= CODE_FOR_nothing)
{
/* If FROM is a SUBREG, put it into a register. Do this
so that we always generate the same set of insns for
better cse'ing; if an intermediate assignment occurred,
we won't be doing the operation directly on the SUBREG. */
if (optimize > 0 && GET_CODE (from) == SUBREG)
from = force_reg (from_mode, from);
emit_unop_insn (code, to, from, equiv_code);
return;
}
/* Next, try converting via full word. */
else if (GET_MODE_BITSIZE (from_mode) < BITS_PER_WORD
&& ((code = can_extend_p (to_mode, word_mode, unsignedp))
!= CODE_FOR_nothing))
{
if (GET_CODE (to) == REG)
emit_insn (gen_rtx_CLOBBER (VOIDmode, to));
convert_move (gen_lowpart (word_mode, to), from, unsignedp);
emit_unop_insn (code, to,
gen_lowpart (word_mode, to), equiv_code);
return;
}
/* No special multiword conversion insn; do it by hand. */
start_sequence ();
/* Since we will turn this into a no conflict block, we must ensure
that the source does not overlap the target. */
if (reg_overlap_mentioned_p (to, from))
from = force_reg (from_mode, from);
/* Get a copy of FROM widened to a word, if necessary. */
if (GET_MODE_BITSIZE (from_mode) < BITS_PER_WORD)
lowpart_mode = word_mode;
else
lowpart_mode = from_mode;
lowfrom = convert_to_mode (lowpart_mode, from, unsignedp);
lowpart = gen_lowpart (lowpart_mode, to);
emit_move_insn (lowpart, lowfrom);
/* Compute the value to put in each remaining word. */
if (unsignedp)
fill_value = const0_rtx;
else
{
#ifdef HAVE_slt
if (HAVE_slt
&& insn_data[(int) CODE_FOR_slt].operand[0].mode == word_mode
&& STORE_FLAG_VALUE == -1)
{
emit_cmp_insn (lowfrom, const0_rtx, NE, NULL_RTX,
lowpart_mode, 0, 0);
fill_value = gen_reg_rtx (word_mode);
emit_insn (gen_slt (fill_value));
}
else
#endif
{
fill_value
= expand_shift (RSHIFT_EXPR, lowpart_mode, lowfrom,
size_int (GET_MODE_BITSIZE (lowpart_mode) - 1),
NULL_RTX, 0);
fill_value = convert_to_mode (word_mode, fill_value, 1);
}
}
/* Fill the remaining words. */
for (i = GET_MODE_SIZE (lowpart_mode) / UNITS_PER_WORD; i < nwords; i++)
{
int index = (WORDS_BIG_ENDIAN ? nwords - i - 1 : i);
rtx subword = operand_subword (to, index, 1, to_mode);
if (subword == 0)
abort ();
if (fill_value != subword)
emit_move_insn (subword, fill_value);
}
insns = get_insns ();
end_sequence ();
emit_no_conflict_block (insns, to, from, NULL_RTX,
gen_rtx_fmt_e (equiv_code, to_mode, copy_rtx (from)));
return;
}
/* Truncating multi-word to a word or less. */
if (GET_MODE_BITSIZE (from_mode) > BITS_PER_WORD
&& GET_MODE_BITSIZE (to_mode) <= BITS_PER_WORD)
{
if (!((GET_CODE (from) == MEM
&& ! MEM_VOLATILE_P (from)
&& direct_load[(int) to_mode]
&& ! mode_dependent_address_p (XEXP (from, 0)))
|| GET_CODE (from) == REG
|| GET_CODE (from) == SUBREG))
from = force_reg (from_mode, from);
convert_move (to, gen_lowpart (word_mode, from), 0);
return;
}
/* Handle pointer conversion. */ /* SPEE 900220. */
if (to_mode == PQImode)
{
if (from_mode != QImode)
from = convert_to_mode (QImode, from, unsignedp);
#ifdef HAVE_truncqipqi2
if (HAVE_truncqipqi2)
{
emit_unop_insn (CODE_FOR_truncqipqi2, to, from, UNKNOWN);
return;
}
#endif /* HAVE_truncqipqi2 */
abort ();
}
if (from_mode == PQImode)
{
if (to_mode != QImode)
{
from = convert_to_mode (QImode, from, unsignedp);
from_mode = QImode;
}
else
{
#ifdef HAVE_extendpqiqi2
if (HAVE_extendpqiqi2)
{
emit_unop_insn (CODE_FOR_extendpqiqi2, to, from, UNKNOWN);
return;
}
#endif /* HAVE_extendpqiqi2 */
abort ();
}
}
if (to_mode == PSImode)
{
if (from_mode != SImode)
from = convert_to_mode (SImode, from, unsignedp);
#ifdef HAVE_truncsipsi2
if (HAVE_truncsipsi2)
{
emit_unop_insn (CODE_FOR_truncsipsi2, to, from, UNKNOWN);
return;
}
#endif /* HAVE_truncsipsi2 */
abort ();
}
if (from_mode == PSImode)
{
if (to_mode != SImode)
{
from = convert_to_mode (SImode, from, unsignedp);
from_mode = SImode;
}
else
{
#ifdef HAVE_extendpsisi2
if (! unsignedp && HAVE_extendpsisi2)
{
emit_unop_insn (CODE_FOR_extendpsisi2, to, from, UNKNOWN);
return;
}
#endif /* HAVE_extendpsisi2 */
#ifdef HAVE_zero_extendpsisi2
if (unsignedp && HAVE_zero_extendpsisi2)
{
emit_unop_insn (CODE_FOR_zero_extendpsisi2, to, from, UNKNOWN);
return;
}
#endif /* HAVE_zero_extendpsisi2 */
abort ();
}
}
if (to_mode == PDImode)
{
if (from_mode != DImode)
from = convert_to_mode (DImode, from, unsignedp);
#ifdef HAVE_truncdipdi2
if (HAVE_truncdipdi2)
{
emit_unop_insn (CODE_FOR_truncdipdi2, to, from, UNKNOWN);
return;
}
#endif /* HAVE_truncdipdi2 */
abort ();
}
if (from_mode == PDImode)
{
if (to_mode != DImode)
{
from = convert_to_mode (DImode, from, unsignedp);
from_mode = DImode;
}
else
{
#ifdef HAVE_extendpdidi2
if (HAVE_extendpdidi2)
{
emit_unop_insn (CODE_FOR_extendpdidi2, to, from, UNKNOWN);
return;
}
#endif /* HAVE_extendpdidi2 */
abort ();
}
}
/* Now follow all the conversions between integers
no more than a word long. */
/* For truncation, usually we can just refer to FROM in a narrower mode. */
if (GET_MODE_BITSIZE (to_mode) < GET_MODE_BITSIZE (from_mode)
&& TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (to_mode),
GET_MODE_BITSIZE (from_mode)))
{
if (!((GET_CODE (from) == MEM
&& ! MEM_VOLATILE_P (from)
&& direct_load[(int) to_mode]
&& ! mode_dependent_address_p (XEXP (from, 0)))
|| GET_CODE (from) == REG
|| GET_CODE (from) == SUBREG))
from = force_reg (from_mode, from);
if (GET_CODE (from) == REG && REGNO (from) < FIRST_PSEUDO_REGISTER
&& ! HARD_REGNO_MODE_OK (REGNO (from), to_mode))
from = copy_to_reg (from);
emit_move_insn (to, gen_lowpart (to_mode, from));
return;
}
/* Handle extension. */
if (GET_MODE_BITSIZE (to_mode) > GET_MODE_BITSIZE (from_mode))
{
/* Convert directly if that works. */
if ((code = can_extend_p (to_mode, from_mode, unsignedp))
!= CODE_FOR_nothing)
{
emit_unop_insn (code, to, from, equiv_code);
return;
}
else
{
enum machine_mode intermediate;
rtx tmp;
tree shift_amount;
/* Search for a mode to convert via. */
for (intermediate = from_mode; intermediate != VOIDmode;
intermediate = GET_MODE_WIDER_MODE (intermediate))
if (((can_extend_p (to_mode, intermediate, unsignedp)
!= CODE_FOR_nothing)
|| (GET_MODE_SIZE (to_mode) < GET_MODE_SIZE (intermediate)
&& TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (to_mode),
GET_MODE_BITSIZE (intermediate))))
&& (can_extend_p (intermediate, from_mode, unsignedp)
!= CODE_FOR_nothing))
{
convert_move (to, convert_to_mode (intermediate, from,
unsignedp), unsignedp);
return;
}
/* No suitable intermediate mode.
Generate what we need with shifts. */
shift_amount = build_int_2 (GET_MODE_BITSIZE (to_mode)
- GET_MODE_BITSIZE (from_mode), 0);
from = gen_lowpart (to_mode, force_reg (from_mode, from));
tmp = expand_shift (LSHIFT_EXPR, to_mode, from, shift_amount,
to, unsignedp);
tmp = expand_shift (RSHIFT_EXPR, to_mode, tmp, shift_amount,
to, unsignedp);
if (tmp != to)
emit_move_insn (to, tmp);
return;
}
}
/* Support special truncate insns for certain modes. */
if (from_mode == DImode && to_mode == SImode)
{
#ifdef HAVE_truncdisi2
if (HAVE_truncdisi2)
{
emit_unop_insn (CODE_FOR_truncdisi2, to, from, UNKNOWN);
return;
}
#endif
convert_move (to, force_reg (from_mode, from), unsignedp);
return;
}
if (from_mode == DImode && to_mode == HImode)
{
#ifdef HAVE_truncdihi2
if (HAVE_truncdihi2)
{
emit_unop_insn (CODE_FOR_truncdihi2, to, from, UNKNOWN);
return;
}
#endif
convert_move (to, force_reg (from_mode, from), unsignedp);
return;
}
if (from_mode == DImode && to_mode == QImode)
{
#ifdef HAVE_truncdiqi2
if (HAVE_truncdiqi2)
{
emit_unop_insn (CODE_FOR_truncdiqi2, to, from, UNKNOWN);
return;
}
#endif
convert_move (to, force_reg (from_mode, from), unsignedp);
return;
}
if (from_mode == SImode && to_mode == HImode)
{
#ifdef HAVE_truncsihi2
if (HAVE_truncsihi2)
{
emit_unop_insn (CODE_FOR_truncsihi2, to, from, UNKNOWN);
return;
}
#endif
convert_move (to, force_reg (from_mode, from), unsignedp);
return;
}
if (from_mode == SImode && to_mode == QImode)
{
#ifdef HAVE_truncsiqi2
if (HAVE_truncsiqi2)
{
emit_unop_insn (CODE_FOR_truncsiqi2, to, from, UNKNOWN);
return;
}
#endif
convert_move (to, force_reg (from_mode, from), unsignedp);
return;
}
if (from_mode == HImode && to_mode == QImode)
{
#ifdef HAVE_trunchiqi2
if (HAVE_trunchiqi2)
{
emit_unop_insn (CODE_FOR_trunchiqi2, to, from, UNKNOWN);
return;
}
#endif
convert_move (to, force_reg (from_mode, from), unsignedp);
return;
}
if (from_mode == TImode && to_mode == DImode)
{
#ifdef HAVE_trunctidi2
if (HAVE_trunctidi2)
{
emit_unop_insn (CODE_FOR_trunctidi2, to, from, UNKNOWN);
return;
}
#endif
convert_move (to, force_reg (from_mode, from), unsignedp);
return;
}
if (from_mode == TImode && to_mode == SImode)
{
#ifdef HAVE_trunctisi2
if (HAVE_trunctisi2)
{
emit_unop_insn (CODE_FOR_trunctisi2, to, from, UNKNOWN);
return;
}
#endif
convert_move (to, force_reg (from_mode, from), unsignedp);
return;
}
if (from_mode == TImode && to_mode == HImode)
{
#ifdef HAVE_trunctihi2
if (HAVE_trunctihi2)
{
emit_unop_insn (CODE_FOR_trunctihi2, to, from, UNKNOWN);
return;
}
#endif
convert_move (to, force_reg (from_mode, from), unsignedp);
return;
}
if (from_mode == TImode && to_mode == QImode)
{
#ifdef HAVE_trunctiqi2
if (HAVE_trunctiqi2)
{
emit_unop_insn (CODE_FOR_trunctiqi2, to, from, UNKNOWN);
return;
}
#endif
convert_move (to, force_reg (from_mode, from), unsignedp);
return;
}
/* Handle truncation of volatile memrefs, and so on;
the things that couldn't be truncated directly,
and for which there was no special instruction. */
if (GET_MODE_BITSIZE (to_mode) < GET_MODE_BITSIZE (from_mode))
{
rtx temp = force_reg (to_mode, gen_lowpart (to_mode, from));
emit_move_insn (to, temp);
return;
}
/* Mode combination is not recognized. */
abort ();
}
/* Return an rtx for a value that would result
from converting X to mode MODE.
Both X and MODE may be floating, or both integer.
UNSIGNEDP is nonzero if X is an unsigned value.
This can be done by referring to a part of X in place
or by copying to a new temporary with conversion.
This function *must not* call protect_from_queue
except when putting X into an insn (in which case convert_move does it). */
rtx
convert_to_mode (mode, x, unsignedp)
enum machine_mode mode;
rtx x;
int unsignedp;
{
return convert_modes (mode, VOIDmode, x, unsignedp);
}
/* Return an rtx for a value that would result
from converting X from mode OLDMODE to mode MODE.
Both modes may be floating, or both integer.
UNSIGNEDP is nonzero if X is an unsigned value.
This can be done by referring to a part of X in place
or by copying to a new temporary with conversion.
You can give VOIDmode for OLDMODE, if you are sure X has a nonvoid mode.
This function *must not* call protect_from_queue
except when putting X into an insn (in which case convert_move does it). */
rtx
convert_modes (mode, oldmode, x, unsignedp)
enum machine_mode mode, oldmode;
rtx x;
int unsignedp;
{
rtx temp;
/* If FROM is a SUBREG that indicates that we have already done at least
the required extension, strip it. */
if (GET_CODE (x) == SUBREG && SUBREG_PROMOTED_VAR_P (x)
&& GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))) >= GET_MODE_SIZE (mode)
&& SUBREG_PROMOTED_UNSIGNED_P (x) == unsignedp)
x = gen_lowpart (mode, x);
if (GET_MODE (x) != VOIDmode)
oldmode = GET_MODE (x);
if (mode == oldmode)
return x;
/* There is one case that we must handle specially: If we are converting
a CONST_INT into a mode whose size is twice HOST_BITS_PER_WIDE_INT and
we are to interpret the constant as unsigned, gen_lowpart will do
the wrong if the constant appears negative. What we want to do is
make the high-order word of the constant zero, not all ones. */
if (unsignedp && GET_MODE_CLASS (mode) == MODE_INT
&& GET_MODE_BITSIZE (mode) == 2 * HOST_BITS_PER_WIDE_INT
&& GET_CODE (x) == CONST_INT && INTVAL (x) < 0)
{
HOST_WIDE_INT val = INTVAL (x);
if (oldmode != VOIDmode
&& HOST_BITS_PER_WIDE_INT > GET_MODE_BITSIZE (oldmode))
{
int width = GET_MODE_BITSIZE (oldmode);
/* We need to zero extend VAL. */
val &= ((HOST_WIDE_INT) 1 << width) - 1;
}
return immed_double_const (val, (HOST_WIDE_INT) 0, mode);
}
/* We can do this with a gen_lowpart if both desired and current modes
are integer, and this is either a constant integer, a register, or a
non-volatile MEM. Except for the constant case where MODE is no
wider than HOST_BITS_PER_WIDE_INT, we must be narrowing the operand. */
if ((GET_CODE (x) == CONST_INT
&& GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
|| (GET_MODE_CLASS (mode) == MODE_INT
&& GET_MODE_CLASS (oldmode) == MODE_INT
&& (GET_CODE (x) == CONST_DOUBLE
|| (GET_MODE_SIZE (mode) <= GET_MODE_SIZE (oldmode)
&& ((GET_CODE (x) == MEM && ! MEM_VOLATILE_P (x)
&& direct_load[(int) mode])
|| (GET_CODE (x) == REG
&& TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
GET_MODE_BITSIZE (GET_MODE (x)))))))))
{
/* ?? If we don't know OLDMODE, we have to assume here that
X does not need sign- or zero-extension. This may not be
the case, but it's the best we can do. */
if (GET_CODE (x) == CONST_INT && oldmode != VOIDmode
&& GET_MODE_SIZE (mode) > GET_MODE_SIZE (oldmode))
{
HOST_WIDE_INT val = INTVAL (x);
int width = GET_MODE_BITSIZE (oldmode);
/* We must sign or zero-extend in this case. Start by
zero-extending, then sign extend if we need to. */
val &= ((HOST_WIDE_INT) 1 << width) - 1;
if (! unsignedp
&& (val & ((HOST_WIDE_INT) 1 << (width - 1))))
val |= (HOST_WIDE_INT) (-1) << width;
return GEN_INT (trunc_int_for_mode (val, mode));
}
return gen_lowpart (mode, x);
}
temp = gen_reg_rtx (mode);
convert_move (temp, x, unsignedp);
return temp;
}
/* This macro is used to determine what the largest unit size that
move_by_pieces can use is. */
/* MOVE_MAX_PIECES is the number of bytes at a time which we can
move efficiently, as opposed to MOVE_MAX which is the maximum
number of bytes we can move with a single instruction. */
#ifndef MOVE_MAX_PIECES
#define MOVE_MAX_PIECES MOVE_MAX
#endif
/* Generate several move instructions to copy LEN bytes from block FROM to
block TO. (These are MEM rtx's with BLKmode). The caller must pass FROM
and TO through protect_from_queue before calling.
If PUSH_ROUNDING is defined and TO is NULL, emit_single_push_insn is
used to push FROM to the stack.
ALIGN is maximum alignment we can assume. */
void
move_by_pieces (to, from, len, align)
rtx to, from;
unsigned HOST_WIDE_INT len;
unsigned int align;
{
struct move_by_pieces data;
rtx to_addr, from_addr = XEXP (from, 0);
unsigned int max_size = MOVE_MAX_PIECES + 1;
enum machine_mode mode = VOIDmode, tmode;
enum insn_code icode;
data.offset = 0;
data.from_addr = from_addr;
if (to)
{
to_addr = XEXP (to, 0);
data.to = to;
data.autinc_to
= (GET_CODE (to_addr) == PRE_INC || GET_CODE (to_addr) == PRE_DEC
|| GET_CODE (to_addr) == POST_INC || GET_CODE (to_addr) == POST_DEC);
data.reverse
= (GET_CODE (to_addr) == PRE_DEC || GET_CODE (to_addr) == POST_DEC);
}
else
{
to_addr = NULL_RTX;
data.to = NULL_RTX;
data.autinc_to = 1;
#ifdef STACK_GROWS_DOWNWARD
data.reverse = 1;
#else
data.reverse = 0;
#endif
}
data.to_addr = to_addr;
data.from = from;
data.autinc_from
= (GET_CODE (from_addr) == PRE_INC || GET_CODE (from_addr) == PRE_DEC
|| GET_CODE (from_addr) == POST_INC
|| GET_CODE (from_addr) == POST_DEC);
data.explicit_inc_from = 0;
data.explicit_inc_to = 0;
if (data.reverse) data.offset = len;
data.len = len;
/* If copying requires more than two move insns,
copy addresses to registers (to make displacements shorter)
and use post-increment if available. */
if (!(data.autinc_from && data.autinc_to)
&& move_by_pieces_ninsns (len, align) > 2)
{
/* Find the mode of the largest move... */
for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
tmode != VOIDmode; tmode = GET_MODE_WIDER_MODE (tmode))
if (GET_MODE_SIZE (tmode) < max_size)
mode = tmode;
if (USE_LOAD_PRE_DECREMENT (mode) && data.reverse && ! data.autinc_from)
{
data.from_addr = copy_addr_to_reg (plus_constant (from_addr, len));
data.autinc_from = 1;
data.explicit_inc_from = -1;
}
if (USE_LOAD_POST_INCREMENT (mode) && ! data.autinc_from)
{
data.from_addr = copy_addr_to_reg (from_addr);
data.autinc_from = 1;
data.explicit_inc_from = 1;
}
if (!data.autinc_from && CONSTANT_P (from_addr))
data.from_addr = copy_addr_to_reg (from_addr);
if (USE_STORE_PRE_DECREMENT (mode) && data.reverse && ! data.autinc_to)
{
data.to_addr = copy_addr_to_reg (plus_constant (to_addr, len));
data.autinc_to = 1;
data.explicit_inc_to = -1;
}
if (USE_STORE_POST_INCREMENT (mode) && ! data.reverse && ! data.autinc_to)
{
data.to_addr = copy_addr_to_reg (to_addr);
data.autinc_to = 1;
data.explicit_inc_to = 1;
}
if (!data.autinc_to && CONSTANT_P (to_addr))
data.to_addr = copy_addr_to_reg (to_addr);
}
if (! SLOW_UNALIGNED_ACCESS (word_mode, align)
|| align > MOVE_MAX * BITS_PER_UNIT || align >= BIGGEST_ALIGNMENT)
align = MOVE_MAX * BITS_PER_UNIT;
/* First move what we can in the largest integer mode, then go to
successively smaller modes. */
while (max_size > 1)
{
for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
tmode != VOIDmode; tmode = GET_MODE_WIDER_MODE (tmode))
if (GET_MODE_SIZE (tmode) < max_size)
mode = tmode;
if (mode == VOIDmode)
break;
icode = mov_optab->handlers[(int) mode].insn_code;
if (icode != CODE_FOR_nothing && align >= GET_MODE_ALIGNMENT (mode))
move_by_pieces_1 (GEN_FCN (icode), mode, &data);
max_size = GET_MODE_SIZE (mode);
}
/* The code above should have handled everything. */
if (data.len > 0)
abort ();
}
/* Return number of insns required to move L bytes by pieces.
ALIGN (in bits) is maximum alignment we can assume. */
static unsigned HOST_WIDE_INT
move_by_pieces_ninsns (l, align)
unsigned HOST_WIDE_INT l;
unsigned int align;
{
unsigned HOST_WIDE_INT n_insns = 0;
unsigned HOST_WIDE_INT max_size = MOVE_MAX + 1;
if (! SLOW_UNALIGNED_ACCESS (word_mode, align)
|| align > MOVE_MAX * BITS_PER_UNIT || align >= BIGGEST_ALIGNMENT)
align = MOVE_MAX * BITS_PER_UNIT;
while (max_size > 1)
{
enum machine_mode mode = VOIDmode, tmode;
enum insn_code icode;
for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
tmode != VOIDmode; tmode = GET_MODE_WIDER_MODE (tmode))
if (GET_MODE_SIZE (tmode) < max_size)
mode = tmode;
if (mode == VOIDmode)
break;
icode = mov_optab->handlers[(int) mode].insn_code;
if (icode != CODE_FOR_nothing && align >= GET_MODE_ALIGNMENT (mode))
n_insns += l / GET_MODE_SIZE (mode), l %= GET_MODE_SIZE (mode);
max_size = GET_MODE_SIZE (mode);
}
if (l)
abort ();
return n_insns;
}
/* Subroutine of move_by_pieces. Move as many bytes as appropriate
with move instructions for mode MODE. GENFUN is the gen_... function
to make a move insn for that mode. DATA has all the other info. */
static void
move_by_pieces_1 (genfun, mode, data)
rtx (*genfun) PARAMS ((rtx, ...));
enum machine_mode mode;
struct move_by_pieces *data;
{
unsigned int size = GET_MODE_SIZE (mode);
rtx to1 = NULL_RTX, from1;
while (data->len >= size)
{
if (data->reverse)
data->offset -= size;
if (data->to)
{
if (data->autinc_to)
{
to1 = replace_equiv_address (data->to, data->to_addr);
to1 = adjust_address (to1, mode, 0);
}
else
to1 = adjust_address (data->to, mode, data->offset);
}
if (data->autinc_from)
{
from1 = replace_equiv_address (data->from, data->from_addr);
from1 = adjust_address (from1, mode, 0);
}
else
from1 = adjust_address (data->from, mode, data->offset);
if (HAVE_PRE_DECREMENT && data->explicit_inc_to < 0)
emit_insn (gen_add2_insn (data->to_addr, GEN_INT (-size)));
if (HAVE_PRE_DECREMENT && data->explicit_inc_from < 0)
emit_insn (gen_add2_insn (data->from_addr, GEN_INT (-size)));
if (data->to)
emit_insn ((*genfun) (to1, from1));
else
{
#ifdef PUSH_ROUNDING
emit_single_push_insn (mode, from1, NULL);
#else
abort ();
#endif
}
if (HAVE_POST_INCREMENT && data->explicit_inc_to > 0)
emit_insn (gen_add2_insn (data->to_addr, GEN_INT (size)));
if (HAVE_POST_INCREMENT && data->explicit_inc_from > 0)
emit_insn (gen_add2_insn (data->from_addr, GEN_INT (size)));
if (! data->reverse)
data->offset += size;
data->len -= size;
}
}
/* Emit code to move a block Y to a block X.
This may be done with string-move instructions,
with multiple scalar move instructions, or with a library call.
Both X and Y must be MEM rtx's (perhaps inside VOLATILE)
with mode BLKmode.
SIZE is an rtx that says how long they are.
ALIGN is the maximum alignment we can assume they have.
Return the address of the new block, if memcpy is called and returns it,
0 otherwise. */
rtx
emit_block_move (x, y, size)
rtx x, y;
rtx size;
{
rtx retval = 0;
#ifdef TARGET_MEM_FUNCTIONS
static tree fn;
tree call_expr, arg_list;
#endif
unsigned int align = MIN (MEM_ALIGN (x), MEM_ALIGN (y));
if (GET_MODE (x) != BLKmode)
abort ();
if (GET_MODE (y) != BLKmode)
abort ();
x = protect_from_queue (x, 1);
y = protect_from_queue (y, 0);
size = protect_from_queue (size, 0);
if (GET_CODE (x) != MEM)
abort ();
if (GET_CODE (y) != MEM)
abort ();
if (size == 0)
abort ();
if (GET_CODE (size) == CONST_INT && MOVE_BY_PIECES_P (INTVAL (size), align))
move_by_pieces (x, y, INTVAL (size), align);
else
{
/* Try the most limited insn first, because there's no point
including more than one in the machine description unless
the more limited one has some advantage. */
rtx opalign = GEN_INT (align / BITS_PER_UNIT);
enum machine_mode mode;
/* Since this is a move insn, we don't care about volatility. */
volatile_ok = 1;
for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
mode = GET_MODE_WIDER_MODE (mode))
{
enum insn_code code = movstr_optab[(int) mode];
insn_operand_predicate_fn pred;
if (code != CODE_FOR_nothing
/* We don't need MODE to be narrower than BITS_PER_HOST_WIDE_INT
here because if SIZE is less than the mode mask, as it is
returned by the macro, it will definitely be less than the
actual mode mask. */
&& ((GET_CODE (size) == CONST_INT
&& ((unsigned HOST_WIDE_INT) INTVAL (size)
<= (GET_MODE_MASK (mode) >> 1)))
|| GET_MODE_BITSIZE (mode) >= BITS_PER_WORD)
&& ((pred = insn_data[(int) code].operand[0].predicate) == 0
|| (*pred) (x, BLKmode))
&& ((pred = insn_data[(int) code].operand[1].predicate) == 0
|| (*pred) (y, BLKmode))
&& ((pred = insn_data[(int) code].operand[3].predicate) == 0
|| (*pred) (opalign, VOIDmode)))
{
rtx op2;
rtx last = get_last_insn ();
rtx pat;
op2 = convert_to_mode (mode, size, 1);
pred = insn_data[(int) code].operand[2].predicate;
if (pred != 0 && ! (*pred) (op2, mode))
op2 = copy_to_mode_reg (mode, op2);
pat = GEN_FCN ((int) code) (x, y, op2, opalign);
if (pat)
{
emit_insn (pat);
volatile_ok = 0;
return 0;
}
else
delete_insns_since (last);
}
}
volatile_ok = 0;
/* X, Y, or SIZE may have been passed through protect_from_queue.
It is unsafe to save the value generated by protect_from_queue
and reuse it later. Consider what happens if emit_queue is
called before the return value from protect_from_queue is used.
Expansion of the CALL_EXPR below will call emit_queue before
we are finished emitting RTL for argument setup. So if we are
not careful we could get the wrong value for an argument.
To avoid this problem we go ahead and emit code to copy X, Y &
SIZE into new pseudos. We can then place those new pseudos
into an RTL_EXPR and use them later, even after a call to
emit_queue.
Note this is not strictly needed for library calls since they
do not call emit_queue before loading their arguments. However,
we may need to have library calls call emit_queue in the future
since failing to do so could cause problems for targets which
define SMALL_REGISTER_CLASSES and pass arguments in registers. */
x = copy_to_mode_reg (Pmode, XEXP (x, 0));
y = copy_to_mode_reg (Pmode, XEXP (y, 0));
#ifdef TARGET_MEM_FUNCTIONS
size = copy_to_mode_reg (TYPE_MODE (sizetype), size);
#else
size = convert_to_mode (TYPE_MODE (integer_type_node), size,
TREE_UNSIGNED (integer_type_node));
size = copy_to_mode_reg (TYPE_MODE (integer_type_node), size);
#endif
#ifdef TARGET_MEM_FUNCTIONS
/* It is incorrect to use the libcall calling conventions to call
memcpy in this context.
This could be a user call to memcpy and the user may wish to
examine the return value from memcpy.
For targets where libcalls and normal calls have different conventions
for returning pointers, we could end up generating incorrect code.
So instead of using a libcall sequence we build up a suitable
CALL_EXPR and expand the call in the normal fashion. */
if (fn == NULL_TREE)
{
tree fntype;
/* This was copied from except.c, I don't know if all this is
necessary in this context or not. */
fn = get_identifier ("memcpy");
fntype = build_pointer_type (void_type_node);
fntype = build_function_type (fntype, NULL_TREE);
fn = build_decl (FUNCTION_DECL, fn, fntype);
ggc_add_tree_root (&fn, 1);
DECL_EXTERNAL (fn) = 1;
TREE_PUBLIC (fn) = 1;
DECL_ARTIFICIAL (fn) = 1;
TREE_NOTHROW (fn) = 1;
make_decl_rtl (fn, NULL);
assemble_external (fn);
}
/* We need to make an argument list for the function call.
memcpy has three arguments, the first two are void * addresses and
the last is a size_t byte count for the copy. */
arg_list
= build_tree_list (NULL_TREE,
make_tree (build_pointer_type (void_type_node), x));
TREE_CHAIN (arg_list)
= build_tree_list (NULL_TREE,
make_tree (build_pointer_type (void_type_node), y));
TREE_CHAIN (TREE_CHAIN (arg_list))
= build_tree_list (NULL_TREE, make_tree (sizetype, size));
TREE_CHAIN (TREE_CHAIN (TREE_CHAIN (arg_list))) = NULL_TREE;
/* Now we have to build up the CALL_EXPR itself. */
call_expr = build1 (ADDR_EXPR, build_pointer_type (TREE_TYPE (fn)), fn);
call_expr = build (CALL_EXPR, TREE_TYPE (TREE_TYPE (fn)),
call_expr, arg_list, NULL_TREE);
TREE_SIDE_EFFECTS (call_expr) = 1;
retval = expand_expr (call_expr, NULL_RTX, VOIDmode, 0);
#else
emit_library_call (bcopy_libfunc, LCT_NORMAL,
VOIDmode, 3, y, Pmode, x, Pmode,
convert_to_mode (TYPE_MODE (integer_type_node), size,
TREE_UNSIGNED (integer_type_node)),
TYPE_MODE (integer_type_node));
#endif
}
return retval;
}
/* Copy all or part of a value X into registers starting at REGNO.
The number of registers to be filled is NREGS. */
void
move_block_to_reg (regno, x, nregs, mode)
int regno;
rtx x;
int nregs;
enum machine_mode mode;
{
int i;
#ifdef HAVE_load_multiple
rtx pat;
rtx last;
#endif
if (nregs == 0)
return;
if (CONSTANT_P (x) && ! LEGITIMATE_CONSTANT_P (x))
x = validize_mem (force_const_mem (mode, x));
/* See if the machine can do this with a load multiple insn. */
#ifdef HAVE_load_multiple
if (HAVE_load_multiple)
{
last = get_last_insn ();
pat = gen_load_multiple (gen_rtx_REG (word_mode, regno), x,
GEN_INT (nregs));
if (pat)
{
emit_insn (pat);
return;
}
else
delete_insns_since (last);
}
#endif
for (i = 0; i < nregs; i++)
emit_move_insn (gen_rtx_REG (word_mode, regno + i),
operand_subword_force (x, i, mode));
}
/* Copy all or part of a BLKmode value X out of registers starting at REGNO.
The number of registers to be filled is NREGS. SIZE indicates the number
of bytes in the object X. */
void
move_block_from_reg (regno, x, nregs, size)
int regno;
rtx x;
int nregs;
int size;
{
int i;
#ifdef HAVE_store_multiple
rtx pat;
rtx last;
#endif
enum machine_mode mode;
if (nregs == 0)
return;
/* If SIZE is that of a mode no bigger than a word, just use that
mode's store operation. */
if (size <= UNITS_PER_WORD
&& (mode = mode_for_size (size * BITS_PER_UNIT, MODE_INT, 0)) != BLKmode)
{
emit_move_insn (adjust_address (x, mode, 0), gen_rtx_REG (mode, regno));
return;
}
/* Blocks smaller than a word on a BYTES_BIG_ENDIAN machine must be aligned
to the left before storing to memory. Note that the previous test
doesn't handle all cases (e.g. SIZE == 3). */
if (size < UNITS_PER_WORD && BYTES_BIG_ENDIAN)
{
rtx tem = operand_subword (x, 0, 1, BLKmode);
rtx shift;
if (tem == 0)
abort ();
shift = expand_shift (LSHIFT_EXPR, word_mode,
gen_rtx_REG (word_mode, regno),
build_int_2 ((UNITS_PER_WORD - size)
* BITS_PER_UNIT, 0), NULL_RTX, 0);
emit_move_insn (tem, shift);
return;
}
/* See if the machine can do this with a store multiple insn. */
#ifdef HAVE_store_multiple
if (HAVE_store_multiple)
{
last = get_last_insn ();
pat = gen_store_multiple (x, gen_rtx_REG (word_mode, regno),
GEN_INT (nregs));
if (pat)
{
emit_insn (pat);
return;
}
else
delete_insns_since (last);
}
#endif
for (i = 0; i < nregs; i++)
{
rtx tem = operand_subword (x, i, 1, BLKmode);
if (tem == 0)
abort ();
emit_move_insn (tem, gen_rtx_REG (word_mode, regno + i));
}
}
/* Emit code to move a block SRC to a block DST, where DST is non-consecutive
registers represented by a PARALLEL. SSIZE represents the total size of
block SRC in bytes, or -1 if not known. ALIGN is the known alignment of
SRC in bits. */
/* ??? If SSIZE % UNITS_PER_WORD != 0, we make the blatent assumption that
the balance will be in what would be the low-order memory addresses, i.e.
left justified for big endian, right justified for little endian. This
happens to be true for the targets currently using this support. If this
ever changes, a new target macro along the lines of FUNCTION_ARG_PADDING
would be needed. */
void
emit_group_load (dst, orig_src, ssize, align)
rtx dst, orig_src;
unsigned int align;
int ssize;
{
rtx *tmps, src;
int start, i;
if (GET_CODE (dst) != PARALLEL)
abort ();
/* Check for a NULL entry, used to indicate that the parameter goes
both on the stack and in registers. */
if (XEXP (XVECEXP (dst, 0, 0), 0))
start = 0;
else
start = 1;
tmps = (rtx *) alloca (sizeof (rtx) * XVECLEN (dst, 0));
/* Process the pieces. */
for (i = start; i < XVECLEN (dst, 0); i++)
{
enum machine_mode mode = GET_MODE (XEXP (XVECEXP (dst, 0, i), 0));
HOST_WIDE_INT bytepos = INTVAL (XEXP (XVECEXP (dst, 0, i), 1));
unsigned int bytelen = GET_MODE_SIZE (mode);
int shift = 0;
/* Handle trailing fragments that run over the size of the struct. */
if (ssize >= 0 && bytepos + (HOST_WIDE_INT) bytelen > ssize)
{
shift = (bytelen - (ssize - bytepos)) * BITS_PER_UNIT;
bytelen = ssize - bytepos;
if (bytelen <= 0)
abort ();
}
/* If we won't be loading directly from memory, protect the real source
from strange tricks we might play; but make sure that the source can
be loaded directly into the destination. */
src = orig_src;
if (GET_CODE (orig_src) != MEM
&& (!CONSTANT_P (orig_src)
|| (GET_MODE (orig_src) != mode
&& GET_MODE (orig_src) != VOIDmode)))
{
if (GET_MODE (orig_src) == VOIDmode)
src = gen_reg_rtx (mode);
else
src = gen_reg_rtx (GET_MODE (orig_src));
emit_move_insn (src, orig_src);
}
/* Optimize the access just a bit. */
if (GET_CODE (src) == MEM
&& align >= GET_MODE_ALIGNMENT (mode)
&& bytepos * BITS_PER_UNIT % GET_MODE_ALIGNMENT (mode) == 0
&& bytelen == GET_MODE_SIZE (mode))
{
tmps[i] = gen_reg_rtx (mode);
emit_move_insn (tmps[i], adjust_address (src, mode, bytepos));
}
else if (GET_CODE (src) == CONCAT)
{
if (bytepos == 0
&& bytelen == GET_MODE_SIZE (GET_MODE (XEXP (src, 0))))
tmps[i] = XEXP (src, 0);
else if (bytepos == (HOST_WIDE_INT) GET_MODE_SIZE (GET_MODE (XEXP (src, 0)))
&& bytelen == GET_MODE_SIZE (GET_MODE (XEXP (src, 1))))
tmps[i] = XEXP (src, 1);
else if (bytepos == 0)
{
rtx mem;
mem = assign_stack_temp (GET_MODE (src),
GET_MODE_SIZE (GET_MODE (src)), 0);
emit_move_insn (mem, src);
tmps[i] = change_address (mem, mode, XEXP (mem, 0));
}
else
abort ();
}
else if (CONSTANT_P (src)
|| (GET_CODE (src) == REG && GET_MODE (src) == mode))
tmps[i] = src;
else
tmps[i] = extract_bit_field (src, bytelen * BITS_PER_UNIT,
bytepos * BITS_PER_UNIT, 1, NULL_RTX,
mode, mode, align, ssize);
if (BYTES_BIG_ENDIAN && shift)
expand_binop (mode, ashl_optab, tmps[i], GEN_INT (shift),
tmps[i], 0, OPTAB_WIDEN);
}
emit_queue ();
/* Copy the extracted pieces into the proper (probable) hard regs. */
for (i = start; i < XVECLEN (dst, 0); i++)
emit_move_insn (XEXP (XVECEXP (dst, 0, i), 0), tmps[i]);
}
/* Emit code to move a block SRC to a block DST, where SRC is non-consecutive
registers represented by a PARALLEL. SSIZE represents the total size of
block DST, or -1 if not known. ALIGN is the known alignment of DST. */
void
emit_group_store (orig_dst, src, ssize, align)
rtx orig_dst, src;
int ssize;
unsigned int align;
{
rtx *tmps, dst;
int start, i;
if (GET_CODE (src) != PARALLEL)
abort ();
/* Check for a NULL entry, used to indicate that the parameter goes
both on the stack and in registers. */
if (XEXP (XVECEXP (src, 0, 0), 0))
start = 0;
else
start = 1;
tmps = (rtx *) alloca (sizeof (rtx) * XVECLEN (src, 0));
/* Copy the (probable) hard regs into pseudos. */
for (i = start; i < XVECLEN (src, 0); i++)
{
rtx reg = XEXP (XVECEXP (src, 0, i), 0);
tmps[i] = gen_reg_rtx (GET_MODE (reg));
emit_move_insn (tmps[i], reg);
}
emit_queue ();
/* If we won't be storing directly into memory, protect the real destination
from strange tricks we might play. */
dst = orig_dst;
if (GET_CODE (dst) == PARALLEL)
{
rtx temp;
/* We can get a PARALLEL dst if there is a conditional expression in
a return statement. In that case, the dst and src are the same,
so no action is necessary. */
if (rtx_equal_p (dst, src))
return;
/* It is unclear if we can ever reach here, but we may as well handle
it. Allocate a temporary, and split this into a store/load to/from
the temporary. */
temp = assign_stack_temp (GET_MODE (dst), ssize, 0);
emit_group_store (temp, src, ssize, align);
emit_group_load (dst, temp, ssize, align);
return;
}
else if (GET_CODE (dst) != MEM)
{
dst = gen_reg_rtx (GET_MODE (orig_dst));
/* Make life a bit easier for combine. */
emit_move_insn (dst, const0_rtx);
}
/* Process the pieces. */
for (i = start; i < XVECLEN (src, 0); i++)
{
HOST_WIDE_INT bytepos = INTVAL (XEXP (XVECEXP (src, 0, i), 1));
enum machine_mode mode = GET_MODE (tmps[i]);
unsigned int bytelen = GET_MODE_SIZE (mode);
/* Handle trailing fragments that run over the size of the struct. */
if (ssize >= 0 && bytepos + (HOST_WIDE_INT) bytelen > ssize)
{
if (BYTES_BIG_ENDIAN)
{
int shift = (bytelen - (ssize - bytepos)) * BITS_PER_UNIT;
expand_binop (mode, ashr_optab, tmps[i], GEN_INT (shift),
tmps[i], 0, OPTAB_WIDEN);
}
bytelen = ssize - bytepos;
}
/* Optimize the access just a bit. */
if (GET_CODE (dst) == MEM
&& align >= GET_MODE_ALIGNMENT (mode)
&& bytepos * BITS_PER_UNIT % GET_MODE_ALIGNMENT (mode) == 0
&& bytelen == GET_MODE_SIZE (mode))
emit_move_insn (adjust_address (dst, mode, bytepos), tmps[i]);
else
store_bit_field (dst, bytelen * BITS_PER_UNIT, bytepos * BITS_PER_UNIT,
mode, tmps[i], align, ssize);
}
emit_queue ();
/* Copy from the pseudo into the (probable) hard reg. */
if (GET_CODE (dst) == REG)
emit_move_insn (orig_dst, dst);
}
/* Generate code to copy a BLKmode object of TYPE out of a
set of registers starting with SRCREG into TGTBLK. If TGTBLK
is null, a stack temporary is created. TGTBLK is returned.
The primary purpose of this routine is to handle functions
that return BLKmode structures in registers. Some machines
(the PA for example) want to return all small structures
in registers regardless of the structure's alignment. */
rtx
copy_blkmode_from_reg (tgtblk, srcreg, type)
rtx tgtblk;
rtx srcreg;
tree type;
{
unsigned HOST_WIDE_INT bytes = int_size_in_bytes (type);
rtx src = NULL, dst = NULL;
unsigned HOST_WIDE_INT bitsize = MIN (TYPE_ALIGN (type), BITS_PER_WORD);
unsigned HOST_WIDE_INT bitpos, xbitpos, big_endian_correction = 0;
if (tgtblk == 0)
{
tgtblk = assign_temp (build_qualified_type (type,
(TYPE_QUALS (type)
| TYPE_QUAL_CONST)),
0, 1, 1);
preserve_temp_slots (tgtblk);
}
/* This code assumes srcreg is at least a full word. If it isn't,
copy it into a new pseudo which is a full word. */
if (GET_MODE (srcreg) != BLKmode
&& GET_MODE_SIZE (GET_MODE (srcreg)) < UNITS_PER_WORD)
srcreg = convert_to_mode (word_mode, srcreg, TREE_UNSIGNED (type));
/* Structures whose size is not a multiple of a word are aligned
to the least significant byte (to the right). On a BYTES_BIG_ENDIAN
machine, this means we must skip the empty high order bytes when
calculating the bit offset. */
if (BYTES_BIG_ENDIAN && bytes % UNITS_PER_WORD)
big_endian_correction
= (BITS_PER_WORD - ((bytes % UNITS_PER_WORD) * BITS_PER_UNIT));
/* Copy the structure BITSIZE bites at a time.
We could probably emit more efficient code for machines which do not use
strict alignment, but it doesn't seem worth the effort at the current
time. */
for (bitpos = 0, xbitpos = big_endian_correction;
bitpos < bytes * BITS_PER_UNIT;
bitpos += bitsize, xbitpos += bitsize)
{
/* We need a new source operand each time xbitpos is on a
word boundary and when xbitpos == big_endian_correction
(the first time through). */
if (xbitpos % BITS_PER_WORD == 0
|| xbitpos == big_endian_correction)
src = operand_subword_force (srcreg, xbitpos / BITS_PER_WORD,
GET_MODE (srcreg));
/* We need a new destination operand each time bitpos is on
a word boundary. */
if (bitpos % BITS_PER_WORD == 0)
dst = operand_subword (tgtblk, bitpos / BITS_PER_WORD, 1, BLKmode);
/* Use xbitpos for the source extraction (right justified) and
xbitpos for the destination store (left justified). */
store_bit_field (dst, bitsize, bitpos % BITS_PER_WORD, word_mode,
extract_bit_field (src, bitsize,
xbitpos % BITS_PER_WORD, 1,
NULL_RTX, word_mode, word_mode,
bitsize, BITS_PER_WORD),
bitsize, BITS_PER_WORD);
}
return tgtblk;
}
/* Add a USE expression for REG to the (possibly empty) list pointed
to by CALL_FUSAGE. REG must denote a hard register. */
void
use_reg (call_fusage, reg)
rtx *call_fusage, reg;
{
if (GET_CODE (reg) != REG
|| REGNO (reg) >= FIRST_PSEUDO_REGISTER)
abort ();
*call_fusage
= gen_rtx_EXPR_LIST (VOIDmode,
gen_rtx_USE (VOIDmode, reg), *call_fusage);
}
/* Add USE expressions to *CALL_FUSAGE for each of NREGS consecutive regs,
starting at REGNO. All of these registers must be hard registers. */
void
use_regs (call_fusage, regno, nregs)
rtx *call_fusage;
int regno;
int nregs;
{
int i;
if (regno + nregs > FIRST_PSEUDO_REGISTER)
abort ();
for (i = 0; i < nregs; i++)
use_reg (call_fusage, gen_rtx_REG (reg_raw_mode[regno + i], regno + i));
}
/* Add USE expressions to *CALL_FUSAGE for each REG contained in the
PARALLEL REGS. This is for calls that pass values in multiple
non-contiguous locations. The Irix 6 ABI has examples of this. */
void
use_group_regs (call_fusage, regs)
rtx *call_fusage;
rtx regs;
{
int i;
for (i = 0; i < XVECLEN (regs, 0); i++)
{
rtx reg = XEXP (XVECEXP (regs, 0, i), 0);
/* A NULL entry means the parameter goes both on the stack and in
registers. This can also be a MEM for targets that pass values
partially on the stack and partially in registers. */
if (reg != 0 && GET_CODE (reg) == REG)
use_reg (call_fusage, reg);
}
}
int
can_store_by_pieces (len, constfun, constfundata, align)
unsigned HOST_WIDE_INT len;
rtx (*constfun) PARAMS ((PTR, HOST_WIDE_INT, enum machine_mode));
PTR constfundata;
unsigned int align;
{
unsigned HOST_WIDE_INT max_size, l;
HOST_WIDE_INT offset = 0;
enum machine_mode mode, tmode;
enum insn_code icode;
int reverse;
rtx cst;
if (! MOVE_BY_PIECES_P (len, align))
return 0;
if (! SLOW_UNALIGNED_ACCESS (word_mode, align)
|| align > MOVE_MAX * BITS_PER_UNIT || align >= BIGGEST_ALIGNMENT)
align = MOVE_MAX * BITS_PER_UNIT;
/* We would first store what we can in the largest integer mode, then go to
successively smaller modes. */
for (reverse = 0;
reverse <= (HAVE_PRE_DECREMENT || HAVE_POST_DECREMENT);
reverse++)
{
l = len;
mode = VOIDmode;
max_size = MOVE_MAX_PIECES + 1;
while (max_size > 1)
{
for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
tmode != VOIDmode; tmode = GET_MODE_WIDER_MODE (tmode))
if (GET_MODE_SIZE (tmode) < max_size)
mode = tmode;
if (mode == VOIDmode)
break;
icode = mov_optab->handlers[(int) mode].insn_code;
if (icode != CODE_FOR_nothing
&& align >= GET_MODE_ALIGNMENT (mode))
{
unsigned int size = GET_MODE_SIZE (mode);
while (l >= size)
{
if (reverse)
offset -= size;
cst = (*constfun) (constfundata, offset, mode);
if (!LEGITIMATE_CONSTANT_P (cst))
return 0;
if (!reverse)
offset += size;
l -= size;
}
}
max_size = GET_MODE_SIZE (mode);
}
/* The code above should have handled everything. */
if (l != 0)
abort ();
}
return 1;
}
/* Generate several move instructions to store LEN bytes generated by
CONSTFUN to block TO. (A MEM rtx with BLKmode). CONSTFUNDATA is a
pointer which will be passed as argument in every CONSTFUN call.
ALIGN is maximum alignment we can assume. */
void
store_by_pieces (to, len, constfun, constfundata, align)
rtx to;
unsigned HOST_WIDE_INT len;
rtx (*constfun) PARAMS ((PTR, HOST_WIDE_INT, enum machine_mode));
PTR constfundata;
unsigned int align;
{
struct store_by_pieces data;
if (! MOVE_BY_PIECES_P (len, align))
abort ();
to = protect_from_queue (to, 1);
data.constfun = constfun;
data.constfundata = constfundata;
data.len = len;
data.to = to;
store_by_pieces_1 (&data, align);
}
/* Generate several move instructions to clear LEN bytes of block TO. (A MEM
rtx with BLKmode). The caller must pass TO through protect_from_queue
before calling. ALIGN is maximum alignment we can assume. */
static void
clear_by_pieces (to, len, align)
rtx to;
unsigned HOST_WIDE_INT len;
unsigned int align;
{
struct store_by_pieces data;
data.constfun = clear_by_pieces_1;
data.constfundata = NULL;
data.len = len;
data.to = to;
store_by_pieces_1 (&data, align);
}
/* Callback routine for clear_by_pieces.
Return const0_rtx unconditionally. */
static rtx
clear_by_pieces_1 (data, offset, mode)
PTR data ATTRIBUTE_UNUSED;
HOST_WIDE_INT offset ATTRIBUTE_UNUSED;
enum machine_mode mode ATTRIBUTE_UNUSED;
{
return const0_rtx;
}
/* Subroutine of clear_by_pieces and store_by_pieces.
Generate several move instructions to store LEN bytes of block TO. (A MEM
rtx with BLKmode). The caller must pass TO through protect_from_queue
before calling. ALIGN is maximum alignment we can assume. */
static void
store_by_pieces_1 (data, align)
struct store_by_pieces *data;
unsigned int align;
{
rtx to_addr = XEXP (data->to, 0);
unsigned HOST_WIDE_INT max_size = MOVE_MAX_PIECES + 1;
enum machine_mode mode = VOIDmode, tmode;
enum insn_code icode;
data->offset = 0;
data->to_addr = to_addr;
data->autinc_to
= (GET_CODE (to_addr) == PRE_INC || GET_CODE (to_addr) == PRE_DEC
|| GET_CODE (to_addr) == POST_INC || GET_CODE (to_addr) == POST_DEC);
data->explicit_inc_to = 0;
data->reverse
= (GET_CODE (to_addr) == PRE_DEC || GET_CODE (to_addr) == POST_DEC);
if (data->reverse)
data->offset = data->len;
/* If storing requires more than two move insns,
copy addresses to registers (to make displacements shorter)
and use post-increment if available. */
if (!data->autinc_to
&& move_by_pieces_ninsns (data->len, align) > 2)
{
/* Determine the main mode we'll be using. */
for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
tmode != VOIDmode; tmode = GET_MODE_WIDER_MODE (tmode))
if (GET_MODE_SIZE (tmode) < max_size)
mode = tmode;
if (USE_STORE_PRE_DECREMENT (mode) && data->reverse && ! data->autinc_to)
{
data->to_addr = copy_addr_to_reg (plus_constant (to_addr, data->len));
data->autinc_to = 1;
data->explicit_inc_to = -1;
}
if (USE_STORE_POST_INCREMENT (mode) && ! data->reverse
&& ! data->autinc_to)
{
data->to_addr = copy_addr_to_reg (to_addr);
data->autinc_to = 1;
data->explicit_inc_to = 1;
}
if ( !data->autinc_to && CONSTANT_P (to_addr))
data->to_addr = copy_addr_to_reg (to_addr);
}
if (! SLOW_UNALIGNED_ACCESS (word_mode, align)
|| align > MOVE_MAX * BITS_PER_UNIT || align >= BIGGEST_ALIGNMENT)
align = MOVE_MAX * BITS_PER_UNIT;
/* First store what we can in the largest integer mode, then go to
successively smaller modes. */
while (max_size > 1)
{
for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
tmode != VOIDmode; tmode = GET_MODE_WIDER_MODE (tmode))
if (GET_MODE_SIZE (tmode) < max_size)
mode = tmode;
if (mode == VOIDmode)
break;
icode = mov_optab->handlers[(int) mode].insn_code;
if (icode != CODE_FOR_nothing && align >= GET_MODE_ALIGNMENT (mode))
store_by_pieces_2 (GEN_FCN (icode), mode, data);
max_size = GET_MODE_SIZE (mode);
}
/* The code above should have handled everything. */
if (data->len != 0)
abort ();
}
/* Subroutine of store_by_pieces_1. Store as many bytes as appropriate
with move instructions for mode MODE. GENFUN is the gen_... function
to make a move insn for that mode. DATA has all the other info. */
static void
store_by_pieces_2 (genfun, mode, data)
rtx (*genfun) PARAMS ((rtx, ...));
enum machine_mode mode;
struct store_by_pieces *data;
{
unsigned int size = GET_MODE_SIZE (mode);
rtx to1, cst;
while (data->len >= size)
{
if (data->reverse)
data->offset -= size;
if (data->autinc_to)
{
to1 = replace_equiv_address (data->to, data->to_addr);
to1 = adjust_address (to1, mode, 0);
}
else
to1 = adjust_address (data->to, mode, data->offset);
if (HAVE_PRE_DECREMENT && data->explicit_inc_to < 0)
emit_insn (gen_add2_insn (data->to_addr,
GEN_INT (-(HOST_WIDE_INT) size)));
cst = (*data->constfun) (data->constfundata, data->offset, mode);
emit_insn ((*genfun) (to1, cst));
if (HAVE_POST_INCREMENT && data->explicit_inc_to > 0)
emit_insn (gen_add2_insn (data->to_addr, GEN_INT (size)));
if (! data->reverse)
data->offset += size;
data->len -= size;
}
}
/* Write zeros through the storage of OBJECT. If OBJECT has BLKmode, SIZE is
its length in bytes. */
rtx
clear_storage (object, size)
rtx object;
rtx size;
{
#ifdef TARGET_MEM_FUNCTIONS
static tree fn;
tree call_expr, arg_list;
#endif
rtx retval = 0;
unsigned int align = (GET_CODE (object) == MEM ? MEM_ALIGN (object)
: GET_MODE_ALIGNMENT (GET_MODE (object)));
/* If OBJECT is not BLKmode and SIZE is the same size as its mode,
just move a zero. Otherwise, do this a piece at a time. */
if (GET_MODE (object) != BLKmode
&& GET_CODE (size) == CONST_INT
&& GET_MODE_SIZE (GET_MODE (object)) == (unsigned int) INTVAL (size))
emit_move_insn (object, CONST0_RTX (GET_MODE (object)));
else
{
object = protect_from_queue (object, 1);
size = protect_from_queue (size, 0);
if (GET_CODE (size) == CONST_INT
&& MOVE_BY_PIECES_P (INTVAL (size), align))
clear_by_pieces (object, INTVAL (size), align);
else
{
/* Try the most limited insn first, because there's no point
including more than one in the machine description unless
the more limited one has some advantage. */
rtx opalign = GEN_INT (align / BITS_PER_UNIT);
enum machine_mode mode;
for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
mode = GET_MODE_WIDER_MODE (mode))
{
enum insn_code code = clrstr_optab[(int) mode];
insn_operand_predicate_fn pred;
if (code != CODE_FOR_nothing
/* We don't need MODE to be narrower than
BITS_PER_HOST_WIDE_INT here because if SIZE is less than
the mode mask, as it is returned by the macro, it will
definitely be less than the actual mode mask. */
&& ((GET_CODE (size) == CONST_INT
&& ((unsigned HOST_WIDE_INT) INTVAL (size)
<= (GET_MODE_MASK (mode) >> 1)))
|| GET_MODE_BITSIZE (mode) >= BITS_PER_WORD)
&& ((pred = insn_data[(int) code].operand[0].predicate) == 0
|| (*pred) (object, BLKmode))
&& ((pred = insn_data[(int) code].operand[2].predicate) == 0
|| (*pred) (opalign, VOIDmode)))
{
rtx op1;
rtx last = get_last_insn ();
rtx pat;
op1 = convert_to_mode (mode, size, 1);
pred = insn_data[(int) code].operand[1].predicate;
if (pred != 0 && ! (*pred) (op1, mode))
op1 = copy_to_mode_reg (mode, op1);
pat = GEN_FCN ((int) code) (object, op1, opalign);
if (pat)
{
emit_insn (pat);
return 0;
}
else
delete_insns_since (last);
}
}
/* OBJECT or SIZE may have been passed through protect_from_queue.
It is unsafe to save the value generated by protect_from_queue
and reuse it later. Consider what happens if emit_queue is
called before the return value from protect_from_queue is used.
Expansion of the CALL_EXPR below will call emit_queue before
we are finished emitting RTL for argument setup. So if we are
not careful we could get the wrong value for an argument.
To avoid this problem we go ahead and emit code to copy OBJECT
and SIZE into new pseudos. We can then place those new pseudos
into an RTL_EXPR and use them later, even after a call to
emit_queue.
Note this is not strictly needed for library calls since they
do not call emit_queue before loading their arguments. However,
we may need to have library calls call emit_queue in the future
since failing to do so could cause problems for targets which
define SMALL_REGISTER_CLASSES and pass arguments in registers. */
object = copy_to_mode_reg (Pmode, XEXP (object, 0));
#ifdef TARGET_MEM_FUNCTIONS
size = copy_to_mode_reg (TYPE_MODE (sizetype), size);
#else
size = convert_to_mode (TYPE_MODE (integer_type_node), size,
TREE_UNSIGNED (integer_type_node));
size = copy_to_mode_reg (TYPE_MODE (integer_type_node), size);
#endif
#ifdef TARGET_MEM_FUNCTIONS
/* It is incorrect to use the libcall calling conventions to call
memset in this context.
This could be a user call to memset and the user may wish to
examine the return value from memset.
For targets where libcalls and normal calls have different
conventions for returning pointers, we could end up generating
incorrect code.
So instead of using a libcall sequence we build up a suitable
CALL_EXPR and expand the call in the normal fashion. */
if (fn == NULL_TREE)
{
tree fntype;
/* This was copied from except.c, I don't know if all this is
necessary in this context or not. */
fn = get_identifier ("memset");
fntype = build_pointer_type (void_type_node);
fntype = build_function_type (fntype, NULL_TREE);
fn = build_decl (FUNCTION_DECL, fn, fntype);
ggc_add_tree_root (&fn, 1);
DECL_EXTERNAL (fn) = 1;
TREE_PUBLIC (fn) = 1;
DECL_ARTIFICIAL (fn) = 1;
TREE_NOTHROW (fn) = 1;
make_decl_rtl (fn, NULL);
assemble_external (fn);
}
/* We need to make an argument list for the function call.
memset has three arguments, the first is a void * addresses, the
second an integer with the initialization value, the last is a
size_t byte count for the copy. */
arg_list
= build_tree_list (NULL_TREE,
make_tree (build_pointer_type (void_type_node),
object));
TREE_CHAIN (arg_list)
= build_tree_list (NULL_TREE,
make_tree (integer_type_node, const0_rtx));
TREE_CHAIN (TREE_CHAIN (arg_list))
= build_tree_list (NULL_TREE, make_tree (sizetype, size));
TREE_CHAIN (TREE_CHAIN (TREE_CHAIN (arg_list))) = NULL_TREE;
/* Now we have to build up the CALL_EXPR itself. */
call_expr = build1 (ADDR_EXPR,
build_pointer_type (TREE_TYPE (fn)), fn);
call_expr = build (CALL_EXPR, TREE_TYPE (TREE_TYPE (fn)),
call_expr, arg_list, NULL_TREE);
TREE_SIDE_EFFECTS (call_expr) = 1;
retval = expand_expr (call_expr, NULL_RTX, VOIDmode, 0);
#else
emit_library_call (bzero_libfunc, LCT_NORMAL,
VOIDmode, 2, object, Pmode, size,
TYPE_MODE (integer_type_node));
#endif
}
}
return retval;
}
/* Generate code to copy Y into X.
Both Y and X must have the same mode, except that
Y can be a constant with VOIDmode.
This mode cannot be BLKmode; use emit_block_move for that.
Return the last instruction emitted. */
rtx
emit_move_insn (x, y)
rtx x, y;
{
enum machine_mode mode = GET_MODE (x);
rtx y_cst = NULL_RTX;
rtx last_insn;
x = protect_from_queue (x, 1);
y = protect_from_queue (y, 0);
if (mode == BLKmode || (GET_MODE (y) != mode && GET_MODE (y) != VOIDmode))
abort ();
/* Never force constant_p_rtx to memory. */
if (GET_CODE (y) == CONSTANT_P_RTX)
;
else if (CONSTANT_P (y) && ! LEGITIMATE_CONSTANT_P (y))
{
y_cst = y;
y = force_const_mem (mode, y);
}
/* If X or Y are memory references, verify that their addresses are valid
for the machine. */
if (GET_CODE (x) == MEM
&& ((! memory_address_p (GET_MODE (x), XEXP (x, 0))
&& ! push_operand (x, GET_MODE (x)))
|| (flag_force_addr
&& CONSTANT_ADDRESS_P (XEXP (x, 0)))))
x = validize_mem (x);
if (GET_CODE (y) == MEM
&& (! memory_address_p (GET_MODE (y), XEXP (y, 0))
|| (flag_force_addr
&& CONSTANT_ADDRESS_P (XEXP (y, 0)))))
y = validize_mem (y);
if (mode == BLKmode)
abort ();
last_insn = emit_move_insn_1 (x, y);
if (y_cst && GET_CODE (x) == REG)
set_unique_reg_note (last_insn, REG_EQUAL, y_cst);
return last_insn;
}
/* Low level part of emit_move_insn.
Called just like emit_move_insn, but assumes X and Y
are basically valid. */
rtx
emit_move_insn_1 (x, y)
rtx x, y;
{
enum machine_mode mode = GET_MODE (x);
enum machine_mode submode;
enum mode_class class = GET_MODE_CLASS (mode);
unsigned int i;
if ((unsigned int) mode >= (unsigned int) MAX_MACHINE_MODE)
abort ();
if (mov_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
return
emit_insn (GEN_FCN (mov_optab->handlers[(int) mode].insn_code) (x, y));
/* Expand complex moves by moving real part and imag part, if possible. */
else if ((class == MODE_COMPLEX_FLOAT || class == MODE_COMPLEX_INT)
&& BLKmode != (submode = mode_for_size ((GET_MODE_UNIT_SIZE (mode)
* BITS_PER_UNIT),
(class == MODE_COMPLEX_INT
? MODE_INT : MODE_FLOAT),
0))
&& (mov_optab->handlers[(int) submode].insn_code
!= CODE_FOR_nothing))
{
/* Don't split destination if it is a stack push. */
int stack = push_operand (x, GET_MODE (x));
#ifdef PUSH_ROUNDING
/* In case we output to the stack, but the size is smaller machine can
push exactly, we need to use move instructions. */
if (stack
&& PUSH_ROUNDING (GET_MODE_SIZE (submode)) != GET_MODE_SIZE (submode))
{
rtx temp;
int offset1, offset2;
/* Do not use anti_adjust_stack, since we don't want to update
stack_pointer_delta. */
temp = expand_binop (Pmode,
#ifdef STACK_GROWS_DOWNWARD
sub_optab,
#else
add_optab,
#endif
stack_pointer_rtx,
GEN_INT
(PUSH_ROUNDING (GET_MODE_SIZE (GET_MODE (x)))),
stack_pointer_rtx,
0,
OPTAB_LIB_WIDEN);
if (temp != stack_pointer_rtx)
emit_move_insn (stack_pointer_rtx, temp);
#ifdef STACK_GROWS_DOWNWARD
offset1 = 0;
offset2 = GET_MODE_SIZE (submode);
#else
offset1 = -PUSH_ROUNDING (GET_MODE_SIZE (GET_MODE (x)));
offset2 = (-PUSH_ROUNDING (GET_MODE_SIZE (GET_MODE (x)))
+ GET_MODE_SIZE (submode));
#endif
emit_move_insn (change_address (x, submode,
gen_rtx_PLUS (Pmode,
stack_pointer_rtx,
GEN_INT (offset1))),
gen_realpart (submode, y));
emit_move_insn (change_address (x, submode,
gen_rtx_PLUS (Pmode,
stack_pointer_rtx,
GEN_INT (offset2))),
gen_imagpart (submode, y));
}
else
#endif
/* If this is a stack, push the highpart first, so it
will be in the argument order.
In that case, change_address is used only to convert
the mode, not to change the address. */
if (stack)
{
/* Note that the real part always precedes the imag part in memory
regardless of machine's endianness. */
#ifdef STACK_GROWS_DOWNWARD
emit_insn (GEN_FCN (mov_optab->handlers[(int) submode].insn_code)
(gen_rtx_MEM (submode, XEXP (x, 0)),
gen_imagpart (submode, y)));
emit_insn (GEN_FCN (mov_optab->handlers[(int) submode].insn_code)
(gen_rtx_MEM (submode, XEXP (x, 0)),
gen_realpart (submode, y)));
#else
emit_insn (GEN_FCN (mov_optab->handlers[(int) submode].insn_code)
(gen_rtx_MEM (submode, XEXP (x, 0)),
gen_realpart (submode, y)));
emit_insn (GEN_FCN (mov_optab->handlers[(int) submode].insn_code)
(gen_rtx_MEM (submode, XEXP (x, 0)),
gen_imagpart (submode, y)));
#endif
}
else
{
rtx realpart_x, realpart_y;
rtx imagpart_x, imagpart_y;
/* If this is a complex value with each part being smaller than a
word, the usual calling sequence will likely pack the pieces into
a single register. Unfortunately, SUBREG of hard registers only
deals in terms of words, so we have a problem converting input
arguments to the CONCAT of two registers that is used elsewhere
for complex values. If this is before reload, we can copy it into
memory and reload. FIXME, we should see about using extract and
insert on integer registers, but complex short and complex char
variables should be rarely used. */
if (GET_MODE_BITSIZE (mode) < 2 * BITS_PER_WORD
&& (reload_in_progress | reload_completed) == 0)
{
int packed_dest_p = (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER);
int packed_src_p = (REG_P (y) && REGNO (y) < FIRST_PSEUDO_REGISTER);
if (packed_dest_p || packed_src_p)
{
enum mode_class reg_class = ((class == MODE_COMPLEX_FLOAT)
? MODE_FLOAT : MODE_INT);
enum machine_mode reg_mode
= mode_for_size (GET_MODE_BITSIZE (mode), reg_class, 1);
if (reg_mode != BLKmode)
{
rtx mem = assign_stack_temp (reg_mode,
GET_MODE_SIZE (mode), 0);
rtx cmem = adjust_address (mem, mode, 0);
cfun->cannot_inline
= N_("function using short complex types cannot be inline");
if (packed_dest_p)
{
rtx sreg = gen_rtx_SUBREG (reg_mode, x, 0);
emit_move_insn_1 (cmem, y);
return emit_move_insn_1 (sreg, mem);
}
else
{
rtx sreg = gen_rtx_SUBREG (reg_mode, y, 0);
emit_move_insn_1 (mem, sreg);
return emit_move_insn_1 (x, cmem);
}
}
}
}
realpart_x = gen_realpart (submode, x);
realpart_y = gen_realpart (submode, y);
imagpart_x = gen_imagpart (submode, x);
imagpart_y = gen_imagpart (submode, y);
/* Show the output dies here. This is necessary for SUBREGs
of pseudos since we cannot track their lifetimes correctly;
hard regs shouldn't appear here except as return values.
We never want to emit such a clobber after reload. */
if (x != y
&& ! (reload_in_progress || reload_completed)
&& (GET_CODE (realpart_x) == SUBREG
|| GET_CODE (imagpart_x) == SUBREG))
{
emit_insn (gen_rtx_CLOBBER (VOIDmode, x));
}
emit_insn (GEN_FCN (mov_optab->handlers[(int) submode].insn_code)
(realpart_x, realpart_y));
emit_insn (GEN_FCN (mov_optab->handlers[(int) submode].insn_code)
(imagpart_x, imagpart_y));
}
return get_last_insn ();
}
/* This will handle any multi-word mode that lacks a move_insn pattern.
However, you will get better code if you define such patterns,
even if they must turn into multiple assembler instructions. */
else if (GET_MODE_SIZE (mode) > UNITS_PER_WORD)
{
rtx last_insn = 0;
rtx seq, inner;
int need_clobber;
#ifdef PUSH_ROUNDING
/* If X is a push on the stack, do the push now and replace
X with a reference to the stack pointer. */
if (push_operand (x, GET_MODE (x)))
{
rtx temp;
enum rtx_code code;
/* Do not use anti_adjust_stack, since we don't want to update
stack_pointer_delta. */
temp = expand_binop (Pmode,
#ifdef STACK_GROWS_DOWNWARD
sub_optab,
#else
add_optab,
#endif
stack_pointer_rtx,
GEN_INT
(PUSH_ROUNDING (GET_MODE_SIZE (GET_MODE (x)))),
stack_pointer_rtx,
0,
OPTAB_LIB_WIDEN);
if (temp != stack_pointer_rtx)
emit_move_insn (stack_pointer_rtx, temp);
code = GET_CODE (XEXP (x, 0));
/* Just hope that small offsets off SP are OK. */
if (code == POST_INC)
temp = gen_rtx_PLUS (Pmode, stack_pointer_rtx,
GEN_INT (-(HOST_WIDE_INT)
GET_MODE_SIZE (GET_MODE (x))));
else if (code == POST_DEC)
temp = gen_rtx_PLUS (Pmode, stack_pointer_rtx,
GEN_INT (GET_MODE_SIZE (GET_MODE (x))));
else
temp = stack_pointer_rtx;
x = change_address (x, VOIDmode, temp);
}
#endif
/* If we are in reload, see if either operand is a MEM whose address
is scheduled for replacement. */
if (reload_in_progress && GET_CODE (x) == MEM
&& (inner = find_replacement (&XEXP (x, 0))) != XEXP (x, 0))
x = replace_equiv_address_nv (x, inner);
if (reload_in_progress && GET_CODE (y) == MEM
&& (inner = find_replacement (&XEXP (y, 0))) != XEXP (y, 0))
y = replace_equiv_address_nv (y, inner);
start_sequence ();
need_clobber = 0;
for (i = 0;
i < (GET_MODE_SIZE (mode) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD;
i++)
{
rtx xpart = operand_subword (x, i, 1, mode);
rtx ypart = operand_subword (y, i, 1, mode);
/* If we can't get a part of Y, put Y into memory if it is a
constant. Otherwise, force it into a register. If we still
can't get a part of Y, abort. */
if (ypart == 0 && CONSTANT_P (y))
{
y = force_const_mem (mode, y);
ypart = operand_subword (y, i, 1, mode);
}
else if (ypart == 0)
ypart = operand_subword_force (y, i, mode);
if (xpart == 0 || ypart == 0)
abort ();
need_clobber |= (GET_CODE (xpart) == SUBREG);
last_insn = emit_move_insn (xpart, ypart);
}
seq = gen_sequence ();
end_sequence ();
/* Show the output dies here. This is necessary for SUBREGs
of pseudos since we cannot track their lifetimes correctly;
hard regs shouldn't appear here except as return values.
We never want to emit such a clobber after reload. */
if (x != y
&& ! (reload_in_progress || reload_completed)
&& need_clobber != 0)
{
emit_insn (gen_rtx_CLOBBER (VOIDmode, x));
}
emit_insn (seq);
return last_insn;
}
else
abort ();
}
/* Pushing data onto the stack. */
/* Push a block of length SIZE (perhaps variable)
and return an rtx to address the beginning of the block.
Note that it is not possible for the value returned to be a QUEUED.
The value may be virtual_outgoing_args_rtx.
EXTRA is the number of bytes of padding to push in addition to SIZE.
BELOW nonzero means this padding comes at low addresses;
otherwise, the padding comes at high addresses. */
rtx
push_block (size, extra, below)
rtx size;
int extra, below;
{
rtx temp;
size = convert_modes (Pmode, ptr_mode, size, 1);
if (CONSTANT_P (size))
anti_adjust_stack (plus_constant (size, extra));
else if (GET_CODE (size) == REG && extra == 0)
anti_adjust_stack (size);
else
{
temp = copy_to_mode_reg (Pmode, size);
if (extra != 0)
temp = expand_binop (Pmode, add_optab, temp, GEN_INT (extra),
temp, 0, OPTAB_LIB_WIDEN);
anti_adjust_stack (temp);
}
#ifndef STACK_GROWS_DOWNWARD
if (0)
#else
if (1)
#endif
{
temp = virtual_outgoing_args_rtx;
if (extra != 0 && below)
temp = plus_constant (temp, extra);
}
else
{
if (GET_CODE (size) == CONST_INT)
temp = plus_constant (virtual_outgoing_args_rtx,
-INTVAL (size) - (below ? 0 : extra));
else if (extra != 0 && !below)
temp = gen_rtx_PLUS (Pmode, virtual_outgoing_args_rtx,
negate_rtx (Pmode, plus_constant (size, extra)));
else
temp = gen_rtx_PLUS (Pmode, virtual_outgoing_args_rtx,
negate_rtx (Pmode, size));
}
return memory_address (GET_CLASS_NARROWEST_MODE (MODE_INT), temp);
}
/* Return an rtx for the address of the beginning of an as-if-it-was-pushed
block of SIZE bytes. */
static rtx
get_push_address (size)
int size;
{
rtx temp;
if (STACK_PUSH_CODE == POST_DEC)
temp = gen_rtx_PLUS (Pmode, stack_pointer_rtx, GEN_INT (size));
else if (STACK_PUSH_CODE == POST_INC)
temp = gen_rtx_MINUS (Pmode, stack_pointer_rtx, GEN_INT (size));
else
temp = stack_pointer_rtx;
return copy_to_reg (temp);
}
#ifdef PUSH_ROUNDING
/* Emit single push insn. */
static void
emit_single_push_insn (mode, x, type)
rtx x;
enum machine_mode mode;
tree type;
{
rtx dest_addr;
unsigned rounded_size = PUSH_ROUNDING (GET_MODE_SIZE (mode));
rtx dest;
enum insn_code icode;
insn_operand_predicate_fn pred;
stack_pointer_delta += PUSH_ROUNDING (GET_MODE_SIZE (mode));
/* If there is push pattern, use it. Otherwise try old way of throwing
MEM representing push operation to move expander. */
icode = push_optab->handlers[(int) mode].insn_code;
if (icode != CODE_FOR_nothing)
{
if (((pred = insn_data[(int) icode].operand[0].predicate)
&& !((*pred) (x, mode))))
x = force_reg (mode, x);
emit_insn (GEN_FCN (icode) (x));
return;
}
if (GET_MODE_SIZE (mode) == rounded_size)
dest_addr = gen_rtx_fmt_e (STACK_PUSH_CODE, Pmode, stack_pointer_rtx);
else
{
#ifdef STACK_GROWS_DOWNWARD
dest_addr = gen_rtx_PLUS (Pmode, stack_pointer_rtx,
GEN_INT (-(HOST_WIDE_INT)rounded_size));
#else
dest_addr = gen_rtx_PLUS (Pmode, stack_pointer_rtx,
GEN_INT (rounded_size));
#endif
dest_addr = gen_rtx_PRE_MODIFY (Pmode, stack_pointer_rtx, dest_addr);
}
dest = gen_rtx_MEM (mode, dest_addr);
if (type != 0)
{
set_mem_attributes (dest, type, 1);
/* Function incoming arguments may overlap with sibling call
outgoing arguments and we cannot allow reordering of reads
from function arguments with stores to outgoing arguments
of sibling calls. */
set_mem_alias_set (dest, 0);
}
emit_move_insn (dest, x);
}
#endif
/* Generate code to push X onto the stack, assuming it has mode MODE and
type TYPE.
MODE is redundant except when X is a CONST_INT (since they don't
carry mode info).
SIZE is an rtx for the size of data to be copied (in bytes),
needed only if X is BLKmode.
ALIGN (in bits) is maximum alignment we can assume.
If PARTIAL and REG are both nonzero, then copy that many of the first
words of X into registers starting with REG, and push the rest of X.
The amount of space pushed is decreased by PARTIAL words,
rounded *down* to a multiple of PARM_BOUNDARY.
REG must be a hard register in this case.
If REG is zero but PARTIAL is not, take any all others actions for an
argument partially in registers, but do not actually load any
registers.
EXTRA is the amount in bytes of extra space to leave next to this arg.
This is ignored if an argument block has already been allocated.
On a machine that lacks real push insns, ARGS_ADDR is the address of
the bottom of the argument block for this call. We use indexing off there
to store the arg. On machines with push insns, ARGS_ADDR is 0 when a
argument block has not been preallocated.
ARGS_SO_FAR is the size of args previously pushed for this call.
REG_PARM_STACK_SPACE is nonzero if functions require stack space
for arguments passed in registers. If nonzero, it will be the number
of bytes required. */
void
emit_push_insn (x, mode, type, size, align, partial, reg, extra,
args_addr, args_so_far, reg_parm_stack_space,
alignment_pad)
rtx x;
enum machine_mode mode;
tree type;
rtx size;
unsigned int align;
int partial;
rtx reg;
int extra;
rtx args_addr;
rtx args_so_far;
int reg_parm_stack_space;
rtx alignment_pad;
{
rtx xinner;
enum direction stack_direction
#ifdef STACK_GROWS_DOWNWARD
= downward;
#else
= upward;
#endif
/* Decide where to pad the argument: `downward' for below,
`upward' for above, or `none' for don't pad it.
Default is below for small data on big-endian machines; else above. */
enum direction where_pad = FUNCTION_ARG_PADDING (mode, type);
/* Invert direction if stack is post-decrement.
FIXME: why? */
if (STACK_PUSH_CODE == POST_DEC)
if (where_pad != none)
where_pad = (where_pad == downward ? upward : downward);
xinner = x = protect_from_queue (x, 0);
if (mode == BLKmode)
{
/* Copy a block into the stack, entirely or partially. */
rtx temp;
int used = partial * UNITS_PER_WORD;
int offset = used % (PARM_BOUNDARY / BITS_PER_UNIT);
int skip;
if (size == 0)
abort ();
used -= offset;
/* USED is now the # of bytes we need not copy to the stack
because registers will take care of them. */
if (partial != 0)
xinner = adjust_address (xinner, BLKmode, used);
/* If the partial register-part of the arg counts in its stack size,
skip the part of stack space corresponding to the registers.
Otherwise, start copying to the beginning of the stack space,
by setting SKIP to 0. */
skip = (reg_parm_stack_space == 0) ? 0 : used;
#ifdef PUSH_ROUNDING
/* Do it with several push insns if that doesn't take lots of insns
and if there is no difficulty with push insns that skip bytes
on the stack for alignment purposes. */
if (args_addr == 0
&& PUSH_ARGS
&& GET_CODE (size) == CONST_INT
&& skip == 0
&& (MOVE_BY_PIECES_P ((unsigned) INTVAL (size) - used, align))
/* Here we avoid the case of a structure whose weak alignment
forces many pushes of a small amount of data,
and such small pushes do rounding that causes trouble. */
&& ((! SLOW_UNALIGNED_ACCESS (word_mode, align))
|| align >= BIGGEST_ALIGNMENT
|| (PUSH_ROUNDING (align / BITS_PER_UNIT)
== (align / BITS_PER_UNIT)))
&& PUSH_ROUNDING (INTVAL (size)) == INTVAL (size))
{
/* Push padding now if padding above and stack grows down,
or if padding below and stack grows up.
But if space already allocated, this has already been done. */
if (extra && args_addr == 0
&& where_pad != none && where_pad != stack_direction)
anti_adjust_stack (GEN_INT (extra));
move_by_pieces (NULL, xinner, INTVAL (size) - used, align);
if (current_function_check_memory_usage && ! in_check_memory_usage)
{
rtx temp;
in_check_memory_usage = 1;
temp = get_push_address (INTVAL (size) - used);
if (GET_CODE (x) == MEM && type && AGGREGATE_TYPE_P (type))
emit_library_call (chkr_copy_bitmap_libfunc,
LCT_CONST_MAKE_BLOCK, VOIDmode, 3, temp,
Pmode, XEXP (xinner, 0), Pmode,
GEN_INT (INTVAL (size) - used),
TYPE_MODE (sizetype));
else
emit_library_call (chkr_set_right_libfunc,
LCT_CONST_MAKE_BLOCK, VOIDmode, 3, temp,
Pmode, GEN_INT (INTVAL (size) - used),
TYPE_MODE (sizetype),
GEN_INT (MEMORY_USE_RW),
TYPE_MODE (integer_type_node));
in_check_memory_usage = 0;
}
}
else
#endif /* PUSH_ROUNDING */
{
rtx target;
/* Otherwise make space on the stack and copy the data
to the address of that space. */
/* Deduct words put into registers from the size we must copy. */
if (partial != 0)
{
if (GET_CODE (size) == CONST_INT)
size = GEN_INT (INTVAL (size) - used);
else
size = expand_binop (GET_MODE (size), sub_optab, size,
GEN_INT (used), NULL_RTX, 0,
OPTAB_LIB_WIDEN);
}
/* Get the address of the stack space.
In this case, we do not deal with EXTRA separately.
A single stack adjust will do. */
if (! args_addr)
{
temp = push_block (size, extra, where_pad == downward);
extra = 0;
}
else if (GET_CODE (args_so_far) == CONST_INT)
temp = memory_address (BLKmode,
plus_constant (args_addr,
skip + INTVAL (args_so_far)));
else
temp = memory_address (BLKmode,
plus_constant (gen_rtx_PLUS (Pmode,
args_addr,
args_so_far),
skip));
if (current_function_check_memory_usage && ! in_check_memory_usage)
{
in_check_memory_usage = 1;
target = copy_to_reg (temp);
if (GET_CODE (x) == MEM && type && AGGREGATE_TYPE_P (type))
emit_library_call (chkr_copy_bitmap_libfunc,
LCT_CONST_MAKE_BLOCK, VOIDmode, 3,
target, Pmode,
XEXP (xinner, 0), Pmode,
size, TYPE_MODE (sizetype));
else
emit_library_call (chkr_set_right_libfunc,
LCT_CONST_MAKE_BLOCK, VOIDmode, 3,
target, Pmode,
size, TYPE_MODE (sizetype),
GEN_INT (MEMORY_USE_RW),
TYPE_MODE (integer_type_node));
in_check_memory_usage = 0;
}
target = gen_rtx_MEM (BLKmode, temp);
if (type != 0)
{
set_mem_attributes (target, type, 1);
/* Function incoming arguments may overlap with sibling call
outgoing arguments and we cannot allow reordering of reads
from function arguments with stores to outgoing arguments
of sibling calls. */
set_mem_alias_set (target, 0);
}
else
set_mem_align (target, align);
/* TEMP is the address of the block. Copy the data there. */
if (GET_CODE (size) == CONST_INT
&& MOVE_BY_PIECES_P ((unsigned) INTVAL (size), align))
{
move_by_pieces (target, xinner, INTVAL (size), align);
goto ret;
}
else
{
rtx opalign = GEN_INT (align / BITS_PER_UNIT);
enum machine_mode mode;
for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
mode != VOIDmode;
mode = GET_MODE_WIDER_MODE (mode))
{
enum insn_code code = movstr_optab[(int) mode];
insn_operand_predicate_fn pred;
if (code != CODE_FOR_nothing
&& ((GET_CODE (size) == CONST_INT
&& ((unsigned HOST_WIDE_INT) INTVAL (size)
<= (GET_MODE_MASK (mode) >> 1)))
|| GET_MODE_BITSIZE (mode) >= BITS_PER_WORD)
&& (!(pred = insn_data[(int) code].operand[0].predicate)
|| ((*pred) (target, BLKmode)))
&& (!(pred = insn_data[(int) code].operand[1].predicate)
|| ((*pred) (xinner, BLKmode)))
&& (!(pred = insn_data[(int) code].operand[3].predicate)
|| ((*pred) (opalign, VOIDmode))))
{
rtx op2 = convert_to_mode (mode, size, 1);
rtx last = get_last_insn ();
rtx pat;
pred = insn_data[(int) code].operand[2].predicate;
if (pred != 0 && ! (*pred) (op2, mode))
op2 = copy_to_mode_reg (mode, op2);
pat = GEN_FCN ((int) code) (target, xinner,
op2, opalign);
if (pat)
{
emit_insn (pat);
goto ret;
}
else
delete_insns_since (last);
}
}
}
if (!ACCUMULATE_OUTGOING_ARGS)
{
/* If the source is referenced relative to the stack pointer,
copy it to another register to stabilize it. We do not need
to do this if we know that we won't be changing sp. */
if (reg_mentioned_p (virtual_stack_dynamic_rtx, temp)
|| reg_mentioned_p (virtual_outgoing_args_rtx, temp))
temp = copy_to_reg (temp);
}
/* Make inhibit_defer_pop nonzero around the library call
to force it to pop the bcopy-arguments right away. */
NO_DEFER_POP;
#ifdef TARGET_MEM_FUNCTIONS
emit_library_call (memcpy_libfunc, LCT_NORMAL,
VOIDmode, 3, temp, Pmode, XEXP (xinner, 0), Pmode,
convert_to_mode (TYPE_MODE (sizetype),
size, TREE_UNSIGNED (sizetype)),
TYPE_MODE (sizetype));
#else
emit_library_call (bcopy_libfunc, LCT_NORMAL,
VOIDmode, 3, XEXP (xinner, 0), Pmode, temp, Pmode,
convert_to_mode (TYPE_MODE (integer_type_node),
size,
TREE_UNSIGNED (integer_type_node)),
TYPE_MODE (integer_type_node));
#endif
OK_DEFER_POP;
}
}
else if (partial > 0)
{
/* Scalar partly in registers. */
int size = GET_MODE_SIZE (mode) / UNITS_PER_WORD;
int i;
int not_stack;
/* # words of start of argument
that we must make space for but need not store. */
int offset = partial % (PARM_BOUNDARY / BITS_PER_WORD);
int args_offset = INTVAL (args_so_far);
int skip;
/* Push padding now if padding above and stack grows down,
or if padding below and stack grows up.
But if space already allocated, this has already been done. */
if (extra && args_addr == 0
&& where_pad != none && where_pad != stack_direction)
anti_adjust_stack (GEN_INT (extra));
/* If we make space by pushing it, we might as well push
the real data. Otherwise, we can leave OFFSET nonzero
and leave the space uninitialized. */
if (args_addr == 0)
offset = 0;
/* Now NOT_STACK gets the number of words that we don't need to
allocate on the stack. */
not_stack = partial - offset;
/* If the partial register-part of the arg counts in its stack size,
skip the part of stack space corresponding to the registers.
Otherwise, start copying to the beginning of the stack space,
by setting SKIP to 0. */
skip = (reg_parm_stack_space == 0) ? 0 : not_stack;
if (CONSTANT_P (x) && ! LEGITIMATE_CONSTANT_P (x))
x = validize_mem (force_const_mem (mode, x));
/* If X is a hard register in a non-integer mode, copy it into a pseudo;
SUBREGs of such registers are not allowed. */
if ((GET_CODE (x) == REG && REGNO (x) < FIRST_PSEUDO_REGISTER
&& GET_MODE_CLASS (GET_MODE (x)) != MODE_INT))
x = copy_to_reg (x);
/* Loop over all the words allocated on the stack for this arg. */
/* We can do it by words, because any scalar bigger than a word
has a size a multiple of a word. */
#ifndef PUSH_ARGS_REVERSED
for (i = not_stack; i < size; i++)
#else
for (i = size - 1; i >= not_stack; i--)
#endif
if (i >= not_stack + offset)
emit_push_insn (operand_subword_force (x, i, mode),
word_mode, NULL_TREE, NULL_RTX, align, 0, NULL_RTX,
0, args_addr,
GEN_INT (args_offset + ((i - not_stack + skip)
* UNITS_PER_WORD)),
reg_parm_stack_space, alignment_pad);
}
else
{
rtx addr;
rtx target = NULL_RTX;
rtx dest;
/* Push padding now if padding above and stack grows down,
or if padding below and stack grows up.
But if space already allocated, this has already been done. */
if (extra && args_addr == 0
&& where_pad != none && where_pad != stack_direction)
anti_adjust_stack (GEN_INT (extra));
#ifdef PUSH_ROUNDING
if (args_addr == 0 && PUSH_ARGS)
emit_single_push_insn (mode, x, type);
else
#endif
{
if (GET_CODE (args_so_far) == CONST_INT)
addr
= memory_address (mode,
plus_constant (args_addr,
INTVAL (args_so_far)));
else
addr = memory_address (mode, gen_rtx_PLUS (Pmode, args_addr,
args_so_far));
target = addr;
dest = gen_rtx_MEM (mode, addr);
if (type != 0)
{
set_mem_attributes (dest, type, 1);
/* Function incoming arguments may overlap with sibling call
outgoing arguments and we cannot allow reordering of reads
from function arguments with stores to outgoing arguments
of sibling calls. */
set_mem_alias_set (dest, 0);
}
emit_move_insn (dest, x);
}
if (current_function_check_memory_usage && ! in_check_memory_usage)
{
in_check_memory_usage = 1;
if (target == 0)
target = get_push_address (GET_MODE_SIZE (mode));
if (GET_CODE (x) == MEM && type && AGGREGATE_TYPE_P (type))
emit_library_call (chkr_copy_bitmap_libfunc,
LCT_CONST_MAKE_BLOCK, VOIDmode, 3, target,
Pmode, XEXP (x, 0), Pmode,
GEN_INT (GET_MODE_SIZE (mode)),
TYPE_MODE (sizetype));
else
emit_library_call (chkr_set_right_libfunc,
LCT_CONST_MAKE_BLOCK, VOIDmode, 3, target,
Pmode, GEN_INT (GET_MODE_SIZE (mode)),
TYPE_MODE (sizetype),
GEN_INT (MEMORY_USE_RW),
TYPE_MODE (integer_type_node));
in_check_memory_usage = 0;
}
}
ret:
/* If part should go in registers, copy that part
into the appropriate registers. Do this now, at the end,
since mem-to-mem copies above may do function calls. */
if (partial > 0 && reg != 0)
{
/* Handle calls that pass values in multiple non-contiguous locations.
The Irix 6 ABI has examples of this. */
if (GET_CODE (reg) == PARALLEL)
emit_group_load (reg, x, -1, align); /* ??? size? */
else
move_block_to_reg (REGNO (reg), x, partial, mode);
}
if (extra && args_addr == 0 && where_pad == stack_direction)
anti_adjust_stack (GEN_INT (extra));
if (alignment_pad && args_addr == 0)
anti_adjust_stack (alignment_pad);
}
/* Return X if X can be used as a subtarget in a sequence of arithmetic
operations. */
static rtx
get_subtarget (x)
rtx x;
{
return ((x == 0
/* Only registers can be subtargets. */
|| GET_CODE (x) != REG
/* If the register is readonly, it can't be set more than once. */
|| RTX_UNCHANGING_P (x)
/* Don't use hard regs to avoid extending their life. */
|| REGNO (x) < FIRST_PSEUDO_REGISTER
/* Avoid subtargets inside loops,
since they hide some invariant expressions. */
|| preserve_subexpressions_p ())
? 0 : x);
}
/* Expand an assignment that stores the value of FROM into TO.
If WANT_VALUE is nonzero, return an rtx for the value of TO.
(This may contain a QUEUED rtx;
if the value is constant, this rtx is a constant.)
Otherwise, the returned value is NULL_RTX.
SUGGEST_REG is no longer actually used.
It used to mean, copy the value through a register
and return that register, if that is possible.
We now use WANT_VALUE to decide whether to do this. */
rtx
expand_assignment (to, from, want_value, suggest_reg)
tree to, from;
int want_value;
int suggest_reg ATTRIBUTE_UNUSED;
{
rtx to_rtx = 0;
rtx result;
/* Don't crash if the lhs of the assignment was erroneous. */
if (TREE_CODE (to) == ERROR_MARK)
{
result = expand_expr (from, NULL_RTX, VOIDmode, 0);
return want_value ? result : NULL_RTX;
}
/* Assignment of a structure component needs special treatment
if the structure component's rtx is not simply a MEM.
Assignment of an array element at a constant index, and assignment of
an array element in an unaligned packed structure field, has the same
problem. */
if (TREE_CODE (to) == COMPONENT_REF || TREE_CODE (to) == BIT_FIELD_REF
|| TREE_CODE (to) == ARRAY_REF || TREE_CODE (to) == ARRAY_RANGE_REF)
{
enum machine_mode mode1;
HOST_WIDE_INT bitsize, bitpos;
tree offset;
int unsignedp;
int volatilep = 0;
tree tem;
unsigned int alignment;
push_temp_slots ();
tem = get_inner_reference (to, &bitsize, &bitpos, &offset, &mode1,
&unsignedp, &volatilep, &alignment);
/* If we are going to use store_bit_field and extract_bit_field,
make sure to_rtx will be safe for multiple use. */
if (mode1 == VOIDmode && want_value)
tem = stabilize_reference (tem);
to_rtx = expand_expr (tem, NULL_RTX, VOIDmode, EXPAND_MEMORY_USE_DONT);
if (offset != 0)
{
rtx offset_rtx = expand_expr (offset, NULL_RTX, VOIDmode, 0);
if (GET_CODE (to_rtx) != MEM)
abort ();
if (GET_MODE (offset_rtx) != ptr_mode)
offset_rtx = convert_to_mode (ptr_mode, offset_rtx, 0);
#ifdef POINTERS_EXTEND_UNSIGNED
if (GET_MODE (offset_rtx) != Pmode)
offset_rtx = convert_memory_address (Pmode, offset_rtx);
#endif
/* A constant address in TO_RTX can have VOIDmode, we must not try
to call force_reg for that case. Avoid that case. */
if (GET_CODE (to_rtx) == MEM
&& GET_MODE (to_rtx) == BLKmode
&& GET_MODE (XEXP (to_rtx, 0)) != VOIDmode
&& bitsize
&& (bitpos % bitsize) == 0
&& (bitsize % GET_MODE_ALIGNMENT (mode1)) == 0
&& alignment == GET_MODE_ALIGNMENT (mode1))
{
rtx temp
= adjust_address (to_rtx, mode1, bitpos / BITS_PER_UNIT);
if (GET_CODE (XEXP (temp, 0)) == REG)
to_rtx = temp;
else
to_rtx = (replace_equiv_address
(to_rtx, force_reg (GET_MODE (XEXP (temp, 0)),
XEXP (temp, 0))));
bitpos = 0;
}
to_rtx = offset_address (to_rtx, offset_rtx,
highest_pow2_factor (offset));
}
if (volatilep)
{
if (GET_CODE (to_rtx) == MEM)
{
/* When the offset is zero, to_rtx is the address of the
structure we are storing into, and hence may be shared.
We must make a new MEM before setting the volatile bit. */
if (offset == 0)
to_rtx = copy_rtx (to_rtx);
MEM_VOLATILE_P (to_rtx) = 1;
}
#if 0 /* This was turned off because, when a field is volatile
in an object which is not volatile, the object may be in a register,
and then we would abort over here. */
else
abort ();
#endif
}
if (TREE_CODE (to) == COMPONENT_REF
&& TREE_READONLY (TREE_OPERAND (to, 1)))
{
if (offset == 0)
to_rtx = copy_rtx (to_rtx);
RTX_UNCHANGING_P (to_rtx) = 1;
}
/* Check the access. */
if (current_function_check_memory_usage && GET_CODE (to_rtx) == MEM)
{
rtx to_addr;
int size;
int best_mode_size;
enum machine_mode best_mode;
best_mode = get_best_mode (bitsize, bitpos,
TYPE_ALIGN (TREE_TYPE (tem)),
mode1, volatilep);
if (best_mode == VOIDmode)
best_mode = QImode;
best_mode_size = GET_MODE_BITSIZE (best_mode);
to_addr = plus_constant (XEXP (to_rtx, 0), (bitpos / BITS_PER_UNIT));
size = CEIL ((bitpos % best_mode_size) + bitsize, best_mode_size);
size *= GET_MODE_SIZE (best_mode);
/* Check the access right of the pointer. */
in_check_memory_usage = 1;
if (size)
emit_library_call (chkr_check_addr_libfunc, LCT_CONST_MAKE_BLOCK,
VOIDmode, 3, to_addr, Pmode,
GEN_INT (size), TYPE_MODE (sizetype),
GEN_INT (MEMORY_USE_WO),
TYPE_MODE (integer_type_node));
in_check_memory_usage = 0;
}
/* If this is a varying-length object, we must get the address of
the source and do an explicit block move. */
if (bitsize < 0)
{
unsigned int from_align;
rtx from_rtx = expand_expr_unaligned (from, &from_align);
rtx inner_to_rtx
= adjust_address (to_rtx, BLKmode, bitpos / BITS_PER_UNIT);
emit_block_move (inner_to_rtx, from_rtx, expr_size (from));
free_temp_slots ();
pop_temp_slots ();
return to_rtx;
}
else
{
if (! can_address_p (to))
{
to_rtx = copy_rtx (to_rtx);
MEM_KEEP_ALIAS_SET_P (to_rtx) = 1;
}
result = store_field (to_rtx, bitsize, bitpos, mode1, from,
(want_value
/* Spurious cast for HPUX compiler. */
? ((enum machine_mode)
TYPE_MODE (TREE_TYPE (to)))
: VOIDmode),
unsignedp,
alignment,
int_size_in_bytes (TREE_TYPE (tem)),
get_alias_set (to));
preserve_temp_slots (result);
free_temp_slots ();
pop_temp_slots ();
/* If the value is meaningful, convert RESULT to the proper mode.
Otherwise, return nothing. */
return (want_value ? convert_modes (TYPE_MODE (TREE_TYPE (to)),
TYPE_MODE (TREE_TYPE (from)),
result,
TREE_UNSIGNED (TREE_TYPE (to)))
: NULL_RTX);
}
}
/* If the rhs is a function call and its value is not an aggregate,
call the function before we start to compute the lhs.
This is needed for correct code for cases such as
val = setjmp (buf) on machines where reference to val
requires loading up part of an address in a separate insn.
Don't do this if TO is a VAR_DECL or PARM_DECL whose DECL_RTL is REG
since it might be a promoted variable where the zero- or sign- extension
needs to be done. Handling this in the normal way is safe because no
computation is done before the call. */
if (TREE_CODE (from) == CALL_EXPR && ! aggregate_value_p (from)
&& TREE_CODE (TYPE_SIZE (TREE_TYPE (from))) == INTEGER_CST
&& ! ((TREE_CODE (to) == VAR_DECL || TREE_CODE (to) == PARM_DECL)
&& GET_CODE (DECL_RTL (to)) == REG))
{
rtx value;
push_temp_slots ();
value = expand_expr (from, NULL_RTX, VOIDmode, 0);
if (to_rtx == 0)
to_rtx = expand_expr (to, NULL_RTX, VOIDmode, EXPAND_MEMORY_USE_WO);
/* Handle calls that return values in multiple non-contiguous locations.
The Irix 6 ABI has examples of this. */
if (GET_CODE (to_rtx) == PARALLEL)
emit_group_load (to_rtx, value, int_size_in_bytes (TREE_TYPE (from)),
TYPE_ALIGN (TREE_TYPE (from)));
else if (GET_MODE (to_rtx) == BLKmode)
emit_block_move (to_rtx, value, expr_size (from));
else
{
#ifdef POINTERS_EXTEND_UNSIGNED
if (POINTER_TYPE_P (TREE_TYPE (to))
&& GET_MODE (to_rtx) != GET_MODE (value))
value = convert_memory_address (GET_MODE (to_rtx), value);
#endif
emit_move_insn (to_rtx, value);
}
preserve_temp_slots (to_rtx);
free_temp_slots ();
pop_temp_slots ();
return want_value ? to_rtx : NULL_RTX;
}
/* Ordinary treatment. Expand TO to get a REG or MEM rtx.
Don't re-expand if it was expanded already (in COMPONENT_REF case). */
if (to_rtx == 0)
to_rtx = expand_expr (to, NULL_RTX, VOIDmode, EXPAND_MEMORY_USE_WO);
/* Don't move directly into a return register. */
if (TREE_CODE (to) == RESULT_DECL
&& (GET_CODE (to_rtx) == REG || GET_CODE (to_rtx) == PARALLEL))
{
rtx temp;
push_temp_slots ();
temp = expand_expr (from, 0, GET_MODE (to_rtx), 0);
if (GET_CODE (to_rtx) == PARALLEL)
emit_group_load (to_rtx, temp, int_size_in_bytes (TREE_TYPE (from)),
TYPE_ALIGN (TREE_TYPE (from)));
else
emit_move_insn (to_rtx, temp);
preserve_temp_slots (to_rtx);
free_temp_slots ();
pop_temp_slots ();
return want_value ? to_rtx : NULL_RTX;
}
/* In case we are returning the contents of an object which overlaps
the place the value is being stored, use a safe function when copying
a value through a pointer into a structure value return block. */
if (TREE_CODE (to) == RESULT_DECL && TREE_CODE (from) == INDIRECT_REF
&& current_function_returns_struct
&& !current_function_returns_pcc_struct)
{
rtx from_rtx, size;
push_temp_slots ();
size = expr_size (from);
from_rtx = expand_expr (from, NULL_RTX, VOIDmode,
EXPAND_MEMORY_USE_DONT);
/* Copy the rights of the bitmap. */
if (current_function_check_memory_usage)
emit_library_call (chkr_copy_bitmap_libfunc, LCT_CONST_MAKE_BLOCK,
VOIDmode, 3, XEXP (to_rtx, 0), Pmode,
XEXP (from_rtx, 0), Pmode,
convert_to_mode (TYPE_MODE (sizetype),
size, TREE_UNSIGNED (sizetype)),
TYPE_MODE (sizetype));
#ifdef TARGET_MEM_FUNCTIONS
emit_library_call (memmove_libfunc, LCT_NORMAL,
VOIDmode, 3, XEXP (to_rtx, 0), Pmode,
XEXP (from_rtx, 0), Pmode,
convert_to_mode (TYPE_MODE (sizetype),
size, TREE_UNSIGNED (sizetype)),
TYPE_MODE (sizetype));
#else
emit_library_call (bcopy_libfunc, LCT_NORMAL,
VOIDmode, 3, XEXP (from_rtx, 0), Pmode,
XEXP (to_rtx, 0), Pmode,
convert_to_mode (TYPE_MODE (integer_type_node),
size, TREE_UNSIGNED (integer_type_node)),
TYPE_MODE (integer_type_node));
#endif
preserve_temp_slots (to_rtx);
free_temp_slots ();
pop_temp_slots ();
return want_value ? to_rtx : NULL_RTX;
}
/* Compute FROM and store the value in the rtx we got. */
push_temp_slots ();
result = store_expr (from, to_rtx, want_value);
preserve_temp_slots (result);
free_temp_slots ();
pop_temp_slots ();
return want_value ? result : NULL_RTX;
}
/* Generate code for computing expression EXP,
and storing the value into TARGET.
TARGET may contain a QUEUED rtx.
If WANT_VALUE is nonzero, return a copy of the value
not in TARGET, so that we can be sure to use the proper
value in a containing expression even if TARGET has something
else stored in it. If possible, we copy the value through a pseudo
and return that pseudo. Or, if the value is constant, we try to
return the constant. In some cases, we return a pseudo
copied *from* TARGET.
If the mode is BLKmode then we may return TARGET itself.
It turns out that in BLKmode it doesn't cause a problem.
because C has no operators that could combine two different
assignments into the same BLKmode object with different values
with no sequence point. Will other languages need this to
be more thorough?
If WANT_VALUE is 0, we return NULL, to make sure
to catch quickly any cases where the caller uses the value
and fails to set WANT_VALUE. */
rtx
store_expr (exp, target, want_value)
tree exp;
rtx target;
int want_value;
{
rtx temp;
int dont_return_target = 0;
int dont_store_target = 0;
if (TREE_CODE (exp) == COMPOUND_EXPR)
{
/* Perform first part of compound expression, then assign from second
part. */
expand_expr (TREE_OPERAND (exp, 0), const0_rtx, VOIDmode, 0);
emit_queue ();
return store_expr (TREE_OPERAND (exp, 1), target, want_value);
}
else if (TREE_CODE (exp) == COND_EXPR && GET_MODE (target) == BLKmode)
{
/* For conditional expression, get safe form of the target. Then
test the condition, doing the appropriate assignment on either
side. This avoids the creation of unnecessary temporaries.
For non-BLKmode, it is more efficient not to do this. */
rtx lab1 = gen_label_rtx (), lab2 = gen_label_rtx ();
emit_queue ();
target = protect_from_queue (target, 1);
do_pending_stack_adjust ();
NO_DEFER_POP;
jumpifnot (TREE_OPERAND (exp, 0), lab1);
start_cleanup_deferral ();
store_expr (TREE_OPERAND (exp, 1), target, 0);
end_cleanup_deferral ();
emit_queue ();
emit_jump_insn (gen_jump (lab2));
emit_barrier ();
emit_label (lab1);
start_cleanup_deferral ();
store_expr (TREE_OPERAND (exp, 2), target, 0);
end_cleanup_deferral ();
emit_queue ();
emit_label (lab2);
OK_DEFER_POP;
return want_value ? target : NULL_RTX;
}
else if (queued_subexp_p (target))
/* If target contains a postincrement, let's not risk
using it as the place to generate the rhs. */
{
if (GET_MODE (target) != BLKmode && GET_MODE (target) != VOIDmode)
{
/* Expand EXP into a new pseudo. */
temp = gen_reg_rtx (GET_MODE (target));
temp = expand_expr (exp, temp, GET_MODE (target), 0);
}
else
temp = expand_expr (exp, NULL_RTX, GET_MODE (target), 0);
/* If target is volatile, ANSI requires accessing the value
*from* the target, if it is accessed. So make that happen.
In no case return the target itself. */
if (! MEM_VOLATILE_P (target) && want_value)
dont_return_target = 1;
}
else if (want_value && GET_CODE (target) == MEM && ! MEM_VOLATILE_P (target)
&& GET_MODE (target) != BLKmode)
/* If target is in memory and caller wants value in a register instead,
arrange that. Pass TARGET as target for expand_expr so that,
if EXP is another assignment, WANT_VALUE will be nonzero for it.
We know expand_expr will not use the target in that case.
Don't do this if TARGET is volatile because we are supposed
to write it and then read it. */
{
temp = expand_expr (exp, target, GET_MODE (target), 0);
if (GET_MODE (temp) != BLKmode && GET_MODE (temp) != VOIDmode)
{
/* If TEMP is already in the desired TARGET, only copy it from
memory and don't store it there again. */
if (temp == target
|| (rtx_equal_p (temp, target)
&& ! side_effects_p (temp) && ! side_effects_p (target)))
dont_store_target = 1;
temp = copy_to_reg (temp);
}
dont_return_target = 1;
}
else if (GET_CODE (target) == SUBREG && SUBREG_PROMOTED_VAR_P (target))
/* If this is an scalar in a register that is stored in a wider mode
than the declared mode, compute the result into its declared mode
and then convert to the wider mode. Our value is the computed
expression. */
{
/* If we don't want a value, we can do the conversion inside EXP,
which will often result in some optimizations. Do the conversion
in two steps: first change the signedness, if needed, then
the extend. But don't do this if the type of EXP is a subtype
of something else since then the conversion might involve
more than just converting modes. */
if (! want_value && INTEGRAL_TYPE_P (TREE_TYPE (exp))
&& TREE_TYPE (TREE_TYPE (exp)) == 0)
{
if (TREE_UNSIGNED (TREE_TYPE (exp))
!= SUBREG_PROMOTED_UNSIGNED_P (target))
exp
= convert
(signed_or_unsigned_type (SUBREG_PROMOTED_UNSIGNED_P (target),
TREE_TYPE (exp)),
exp);
exp = convert (type_for_mode (GET_MODE (SUBREG_REG (target)),
SUBREG_PROMOTED_UNSIGNED_P (target)),
exp);
}
temp = expand_expr (exp, NULL_RTX, VOIDmode, 0);
/* If TEMP is a volatile MEM and we want a result value, make
the access now so it gets done only once. Likewise if
it contains TARGET. */
if (GET_CODE (temp) == MEM && want_value
&& (MEM_VOLATILE_P (temp)
|| reg_mentioned_p (SUBREG_REG (target), XEXP (temp, 0))))
temp = copy_to_reg (temp);
/* If TEMP is a VOIDmode constant, use convert_modes to make
sure that we properly convert it. */
if (CONSTANT_P (temp) && GET_MODE (temp) == VOIDmode)
{
temp = convert_modes (GET_MODE (target), TYPE_MODE (TREE_TYPE (exp)),
temp, SUBREG_PROMOTED_UNSIGNED_P (target));
temp = convert_modes (GET_MODE (SUBREG_REG (target)),
GET_MODE (target), temp,
SUBREG_PROMOTED_UNSIGNED_P (target));
}
convert_move (SUBREG_REG (target), temp,
SUBREG_PROMOTED_UNSIGNED_P (target));
/* If we promoted a constant, change the mode back down to match
target. Otherwise, the caller might get confused by a result whose
mode is larger than expected. */
if (want_value && GET_MODE (temp) != GET_MODE (target)
&& GET_MODE (temp) != VOIDmode)
{
temp = gen_lowpart_SUBREG (GET_MODE (target), temp);
SUBREG_PROMOTED_VAR_P (temp) = 1;
SUBREG_PROMOTED_UNSIGNED_P (temp)
= SUBREG_PROMOTED_UNSIGNED_P (target);
}
return want_value ? temp : NULL_RTX;
}
else
{
temp = expand_expr (exp, target, GET_MODE (target), 0);
/* Return TARGET if it's a specified hardware register.
If TARGET is a volatile mem ref, either return TARGET
or return a reg copied *from* TARGET; ANSI requires this.
Otherwise, if TEMP is not TARGET, return TEMP
if it is constant (for efficiency),
or if we really want the correct value. */
if (!(target && GET_CODE (target) == REG
&& REGNO (target) < FIRST_PSEUDO_REGISTER)
&& !(GET_CODE (target) == MEM && MEM_VOLATILE_P (target))
&& ! rtx_equal_p (temp, target)
&& (CONSTANT_P (temp) || want_value))
dont_return_target = 1;
}
/* If TEMP is a VOIDmode constant and the mode of the type of EXP is not
the same as that of TARGET, adjust the constant. This is needed, for
example, in case it is a CONST_DOUBLE and we want only a word-sized
value. */
if (CONSTANT_P (temp) && GET_MODE (temp) == VOIDmode
&& TREE_CODE (exp) != ERROR_MARK
&& GET_MODE (target) != TYPE_MODE (TREE_TYPE (exp)))
temp = convert_modes (GET_MODE (target), TYPE_MODE (TREE_TYPE (exp)),
temp, TREE_UNSIGNED (TREE_TYPE (exp)));
if (current_function_check_memory_usage
&& GET_CODE (target) == MEM
&& AGGREGATE_TYPE_P (TREE_TYPE (exp)))
{
in_check_memory_usage = 1;
if (GET_CODE (temp) == MEM)
emit_library_call (chkr_copy_bitmap_libfunc, LCT_CONST_MAKE_BLOCK,
VOIDmode, 3, XEXP (target, 0), Pmode,
XEXP (temp, 0), Pmode,
expr_size (exp), TYPE_MODE (sizetype));
else
emit_library_call (chkr_check_addr_libfunc, LCT_CONST_MAKE_BLOCK,
VOIDmode, 3, XEXP (target, 0), Pmode,
expr_size (exp), TYPE_MODE (sizetype),
GEN_INT (MEMORY_USE_WO),
TYPE_MODE (integer_type_node));
in_check_memory_usage = 0;
}
/* If value was not generated in the target, store it there.
Convert the value to TARGET's type first if nec. */
/* If TEMP and TARGET compare equal according to rtx_equal_p, but
one or both of them are volatile memory refs, we have to distinguish
two cases:
- expand_expr has used TARGET. In this case, we must not generate
another copy. This can be detected by TARGET being equal according
to == .
- expand_expr has not used TARGET - that means that the source just
happens to have the same RTX form. Since temp will have been created
by expand_expr, it will compare unequal according to == .
We must generate a copy in this case, to reach the correct number
of volatile memory references. */
if ((! rtx_equal_p (temp, target)
|| (temp != target && (side_effects_p (temp)
|| side_effects_p (target))))
&& TREE_CODE (exp) != ERROR_MARK
&& ! dont_store_target)
{
target = protect_from_queue (target, 1);
if (GET_MODE (temp) != GET_MODE (target)
&& GET_MODE (temp) != VOIDmode)
{
int unsignedp = TREE_UNSIGNED (TREE_TYPE (exp));
if (dont_return_target)
{
/* In this case, we will return TEMP,
so make sure it has the proper mode.
But don't forget to store the value into TARGET. */
temp = convert_to_mode (GET_MODE (target), temp, unsignedp);
emit_move_insn (target, temp);
}
else
convert_move (target, temp, unsignedp);
}
else if (GET_MODE (temp) == BLKmode && TREE_CODE (exp) == STRING_CST)
{
/* Handle copying a string constant into an array.
The string constant may be shorter than the array.
So copy just the string's actual length, and clear the rest. */
rtx size;
rtx addr;
/* Get the size of the data type of the string,
which is actually the size of the target. */
size = expr_size (exp);
if (GET_CODE (size) == CONST_INT
&& INTVAL (size) < TREE_STRING_LENGTH (exp))
emit_block_move (target, temp, size);
else
{
/* Compute the size of the data to copy from the string. */
tree copy_size
= size_binop (MIN_EXPR,
make_tree (sizetype, size),
size_int (TREE_STRING_LENGTH (exp)));
rtx copy_size_rtx = expand_expr (copy_size, NULL_RTX,
VOIDmode, 0);
rtx label = 0;
/* Copy that much. */
emit_block_move (target, temp, copy_size_rtx);
/* Figure out how much is left in TARGET that we have to clear.
Do all calculations in ptr_mode. */
addr = XEXP (target, 0);
addr = convert_modes (ptr_mode, Pmode, addr, 1);
if (GET_CODE (copy_size_rtx) == CONST_INT)
{
addr = plus_constant (addr, TREE_STRING_LENGTH (exp));
size = plus_constant (size, -TREE_STRING_LENGTH (exp));
}
else
{
addr = force_reg (ptr_mode, addr);
addr = expand_binop (ptr_mode, add_optab, addr,
copy_size_rtx, NULL_RTX, 0,
OPTAB_LIB_WIDEN);
size = expand_binop (ptr_mode, sub_optab, size,
copy_size_rtx, NULL_RTX, 0,
OPTAB_LIB_WIDEN);
label = gen_label_rtx ();
emit_cmp_and_jump_insns (size, const0_rtx, LT, NULL_RTX,
GET_MODE (size), 0, 0, label);
}
if (size != const0_rtx)
{
rtx dest = gen_rtx_MEM (BLKmode, addr);
MEM_COPY_ATTRIBUTES (dest, target);
/* Be sure we can write on ADDR. */
in_check_memory_usage = 1;
if (current_function_check_memory_usage)
emit_library_call (chkr_check_addr_libfunc,
LCT_CONST_MAKE_BLOCK, VOIDmode, 3,
addr, Pmode,
size, TYPE_MODE (sizetype),
GEN_INT (MEMORY_USE_WO),
TYPE_MODE (integer_type_node));
in_check_memory_usage = 0;
clear_storage (dest, size);
}
if (label)
emit_label (label);
}
}
/* Handle calls that return values in multiple non-contiguous locations.
The Irix 6 ABI has examples of this. */
else if (GET_CODE (target) == PARALLEL)
emit_group_load (target, temp, int_size_in_bytes (TREE_TYPE (exp)),
TYPE_ALIGN (TREE_TYPE (exp)));
else if (GET_MODE (temp) == BLKmode)
emit_block_move (target, temp, expr_size (exp));
else
emit_move_insn (target, temp);
}
/* If we don't want a value, return NULL_RTX. */
if (! want_value)
return NULL_RTX;
/* If we are supposed to return TEMP, do so as long as it isn't a MEM.
??? The latter test doesn't seem to make sense. */
else if (dont_return_target && GET_CODE (temp) != MEM)
return temp;
/* Return TARGET itself if it is a hard register. */
else if (want_value && GET_MODE (target) != BLKmode
&& ! (GET_CODE (target) == REG
&& REGNO (target) < FIRST_PSEUDO_REGISTER))
return copy_to_reg (target);
else
return target;
}
/* Return 1 if EXP just contains zeros. */
static int
is_zeros_p (exp)
tree exp;
{
tree elt;
switch (TREE_CODE (exp))
{
case CONVERT_EXPR:
case NOP_EXPR:
case NON_LVALUE_EXPR:
return is_zeros_p (TREE_OPERAND (exp, 0));
case INTEGER_CST:
return integer_zerop (exp);
case COMPLEX_CST:
return
is_zeros_p (TREE_REALPART (exp)) && is_zeros_p (TREE_IMAGPART (exp));
case REAL_CST:
return REAL_VALUES_IDENTICAL (TREE_REAL_CST (exp), dconst0);
case CONSTRUCTOR:
if (TREE_TYPE (exp) && TREE_CODE (TREE_TYPE (exp)) == SET_TYPE)
return CONSTRUCTOR_ELTS (exp) == NULL_TREE;
for (elt = CONSTRUCTOR_ELTS (exp); elt; elt = TREE_CHAIN (elt))
if (! is_zeros_p (TREE_VALUE (elt)))
return 0;
return 1;
default:
return 0;
}
}
/* Return 1 if EXP contains mostly (3/4) zeros. */
static int
mostly_zeros_p (exp)
tree exp;
{
if (TREE_CODE (exp) == CONSTRUCTOR)
{
int elts = 0, zeros = 0;
tree elt = CONSTRUCTOR_ELTS (exp);
if (TREE_TYPE (exp) && TREE_CODE (TREE_TYPE (exp)) == SET_TYPE)
{
/* If there are no ranges of true bits, it is all zero. */
return elt == NULL_TREE;
}
for (; elt; elt = TREE_CHAIN (elt))
{
/* We do not handle the case where the index is a RANGE_EXPR,
so the statistic will be somewhat inaccurate.
We do make a more accurate count in store_constructor itself,
so since this function is only used for nested array elements,
this should be close enough. */
if (mostly_zeros_p (TREE_VALUE (elt)))
zeros++;
elts++;
}
return 4 * zeros >= 3 * elts;
}
return is_zeros_p (exp);
}
/* Helper function for store_constructor.
TARGET, BITSIZE, BITPOS, MODE, EXP are as for store_field.
TYPE is the type of the CONSTRUCTOR, not the element type.
ALIGN and CLEARED are as for store_constructor.
ALIAS_SET is the alias set to use for any stores.
This provides a recursive shortcut back to store_constructor when it isn't
necessary to go through store_field. This is so that we can pass through
the cleared field to let store_constructor know that we may not have to
clear a substructure if the outer structure has already been cleared. */
static void
store_constructor_field (target, bitsize, bitpos,
mode, exp, type, align, cleared, alias_set)
rtx target;
unsigned HOST_WIDE_INT bitsize;
HOST_WIDE_INT bitpos;
enum machine_mode mode;
tree exp, type;
unsigned int align;
int cleared;
int alias_set;
{
if (TREE_CODE (exp) == CONSTRUCTOR
&& bitpos % BITS_PER_UNIT == 0
/* If we have a non-zero bitpos for a register target, then we just
let store_field do the bitfield handling. This is unlikely to
generate unnecessary clear instructions anyways. */
&& (bitpos == 0 || GET_CODE (target) == MEM))
{
if (GET_CODE (target) == MEM)
target
= adjust_address (target,
GET_MODE (target) == BLKmode
|| 0 != (bitpos
% GET_MODE_ALIGNMENT (GET_MODE (target)))
? BLKmode : VOIDmode, bitpos / BITS_PER_UNIT);
/* Show the alignment may no longer be what it was and update the alias
set, if required. */
if (bitpos != 0)
align = MIN (align, (unsigned int) bitpos & - bitpos);
if (GET_CODE (target) == MEM && ! MEM_KEEP_ALIAS_SET_P (target)
&& MEM_ALIAS_SET (target) != 0)
{
target = copy_rtx (target);
set_mem_alias_set (target, alias_set);
}
store_constructor (exp, target, align, cleared, bitsize / BITS_PER_UNIT);
}
else
store_field (target, bitsize, bitpos, mode, exp, VOIDmode, 0, align,
int_size_in_bytes (type), alias_set);
}
/* Store the value of constructor EXP into the rtx TARGET.
TARGET is either a REG or a MEM.
ALIGN is the maximum known alignment for TARGET.
CLEARED is true if TARGET is known to have been zero'd.
SIZE is the number of bytes of TARGET we are allowed to modify: this
may not be the same as the size of EXP if we are assigning to a field
which has been packed to exclude padding bits. */
static void
store_constructor (exp, target, align, cleared, size)
tree exp;
rtx target;
unsigned int align;
int cleared;
HOST_WIDE_INT size;
{
tree type = TREE_TYPE (exp);
#ifdef WORD_REGISTER_OPERATIONS
HOST_WIDE_INT exp_size = int_size_in_bytes (type);
#endif
/* We know our target cannot conflict, since safe_from_p has been called. */
#if 0
/* Don't try copying piece by piece into a hard register
since that is vulnerable to being clobbered by EXP.
Instead, construct in a pseudo register and then copy it all. */
if (GET_CODE (target) == REG && REGNO (target) < FIRST_PSEUDO_REGISTER)
{
rtx temp = gen_reg_rtx (GET_MODE (target));
store_constructor (exp, temp, align, cleared, size);
emit_move_insn (target, temp);
return;
}
#endif
if (TREE_CODE (type) == RECORD_TYPE || TREE_CODE (type) == UNION_TYPE
|| TREE_CODE (type) == QUAL_UNION_TYPE)
{
tree elt;
/* Inform later passes that the whole union value is dead. */
if ((TREE_CODE (type) == UNION_TYPE
|| TREE_CODE (type) == QUAL_UNION_TYPE)
&& ! cleared)
{
emit_insn (gen_rtx_CLOBBER (VOIDmode, target));
/* If the constructor is empty, clear the union. */
if (! CONSTRUCTOR_ELTS (exp) && ! cleared)
clear_storage (target, expr_size (exp));
}
/* If we are building a static constructor into a register,
set the initial value as zero so we can fold the value into
a constant. But if more than one register is involved,
this probably loses. */
else if (GET_CODE (target) == REG && TREE_STATIC (exp)
&& GET_MODE_SIZE (GET_MODE (target)) <= UNITS_PER_WORD)
{
if (! cleared)
emit_move_insn (target, CONST0_RTX (GET_MODE (target)));
cleared = 1;
}
/* If the constructor has fewer fields than the structure
or if we are initializing the structure to mostly zeros,
clear the whole structure first. Don't do this if TARGET is a
register whose mode size isn't equal to SIZE since clear_storage
can't handle this case. */
else if (size > 0
&& ((list_length (CONSTRUCTOR_ELTS (exp))
!= fields_length (type))
|| mostly_zeros_p (exp))
&& (GET_CODE (target) != REG
|| (HOST_WIDE_INT) GET_MODE_SIZE (GET_MODE (target)) == size))
{
if (! cleared)
clear_storage (target, GEN_INT (size));
cleared = 1;
}
else if (! cleared)
/* Inform later passes that the old value is dead. */
emit_insn (gen_rtx_CLOBBER (VOIDmode, target));
/* Store each element of the constructor into
the corresponding field of TARGET. */
for (elt = CONSTRUCTOR_ELTS (exp); elt; elt = TREE_CHAIN (elt))
{
tree field = TREE_PURPOSE (elt);
#ifdef WORD_REGISTER_OPERATIONS
tree value = TREE_VALUE (elt);
#endif
enum machine_mode mode;
HOST_WIDE_INT bitsize;
HOST_WIDE_INT bitpos = 0;
int unsignedp;
tree offset;
rtx to_rtx = target;
/* Just ignore missing fields.
We cleared the whole structure, above,
if any fields are missing. */
if (field == 0)
continue;
if (cleared && is_zeros_p (TREE_VALUE (elt)))
continue;
if (host_integerp (DECL_SIZE (field), 1))
bitsize = tree_low_cst (DECL_SIZE (field), 1);
else
bitsize = -1;
unsignedp = TREE_UNSIGNED (field);
mode = DECL_MODE (field);
if (DECL_BIT_FIELD (field))
mode = VOIDmode;
offset = DECL_FIELD_OFFSET (field);
if (host_integerp (offset, 0)
&& host_integerp (bit_position (field), 0))
{
bitpos = int_bit_position (field);
offset = 0;
}
else
bitpos = tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 0);
if (offset)
{
rtx offset_rtx;
if (contains_placeholder_p (offset))
offset = build (WITH_RECORD_EXPR, sizetype,
offset, make_tree (TREE_TYPE (exp), target));
offset_rtx = expand_expr (offset, NULL_RTX, VOIDmode, 0);
if (GET_CODE (to_rtx) != MEM)
abort ();
if (GET_MODE (offset_rtx) != ptr_mode)
offset_rtx = convert_to_mode (ptr_mode, offset_rtx, 0);
#ifdef POINTERS_EXTEND_UNSIGNED
if (GET_MODE (offset_rtx) != Pmode)
offset_rtx = convert_memory_address (Pmode, offset_rtx);
#endif
to_rtx = offset_address (to_rtx, offset_rtx,
highest_pow2_factor (offset));
align = DECL_OFFSET_ALIGN (field);
}
if (TREE_READONLY (field))
{
if (GET_CODE (to_rtx) == MEM)
to_rtx = copy_rtx (to_rtx);
RTX_UNCHANGING_P (to_rtx) = 1;
}
#ifdef WORD_REGISTER_OPERATIONS
/* If this initializes a field that is smaller than a word, at the
start of a word, try to widen it to a full word.
This special case allows us to output C++ member function
initializations in a form that the optimizers can understand. */
if (GET_CODE (target) == REG
&& bitsize < BITS_PER_WORD
&& bitpos % BITS_PER_WORD == 0
&& GET_MODE_CLASS (mode) == MODE_INT
&& TREE_CODE (value) == INTEGER_CST
&& exp_size >= 0
&& bitpos + BITS_PER_WORD <= exp_size * BITS_PER_UNIT)
{
tree type = TREE_TYPE (value);
if (TYPE_PRECISION (type) < BITS_PER_WORD)
{
type = type_for_size (BITS_PER_WORD, TREE_UNSIGNED (type));
value = convert (type, value);
}
if (BYTES_BIG_ENDIAN)
value
= fold (build (LSHIFT_EXPR, type, value,
build_int_2 (BITS_PER_WORD - bitsize, 0)));
bitsize = BITS_PER_WORD;
mode = word_mode;
}
#endif
if (GET_CODE (to_rtx) == MEM && !MEM_KEEP_ALIAS_SET_P (to_rtx)
&& DECL_NONADDRESSABLE_P (field))
{
to_rtx = copy_rtx (to_rtx);
MEM_KEEP_ALIAS_SET_P (to_rtx) = 1;
}
store_constructor_field (to_rtx, bitsize, bitpos, mode,
TREE_VALUE (elt), type, align, cleared,
get_alias_set (TREE_TYPE (field)));
}
}
else if (TREE_CODE (type) == ARRAY_TYPE)
{
tree elt;
int i;
int need_to_clear;
tree domain = TYPE_DOMAIN (type);
tree elttype = TREE_TYPE (type);
int const_bounds_p = (TYPE_MIN_VALUE (domain)
&& TYPE_MAX_VALUE (domain)
&& host_integerp (TYPE_MIN_VALUE (domain), 0)
&& host_integerp (TYPE_MAX_VALUE (domain), 0));
HOST_WIDE_INT minelt = 0;
HOST_WIDE_INT maxelt = 0;
/* If we have constant bounds for the range of the type, get them. */
if (const_bounds_p)
{
minelt = tree_low_cst (TYPE_MIN_VALUE (domain), 0);
maxelt = tree_low_cst (TYPE_MAX_VALUE (domain), 0);
}
/* If the constructor has fewer elements than the array,
clear the whole array first. Similarly if this is
static constructor of a non-BLKmode object. */
if (cleared || (GET_CODE (target) == REG && TREE_STATIC (exp)))
need_to_clear = 1;
else
{
HOST_WIDE_INT count = 0, zero_count = 0;
need_to_clear = ! const_bounds_p;
/* This loop is a more accurate version of the loop in
mostly_zeros_p (it handles RANGE_EXPR in an index).
It is also needed to check for missing elements. */
for (elt = CONSTRUCTOR_ELTS (exp);
elt != NULL_TREE && ! need_to_clear;
elt = TREE_CHAIN (elt))
{
tree index = TREE_PURPOSE (elt);
HOST_WIDE_INT this_node_count;
if (index != NULL_TREE && TREE_CODE (index) == RANGE_EXPR)
{
tree lo_index = TREE_OPERAND (index, 0);
tree hi_index = TREE_OPERAND (index, 1);
if (! host_integerp (lo_index, 1)
|| ! host_integerp (hi_index, 1))
{
need_to_clear = 1;
break;
}
this_node_count = (tree_low_cst (hi_index, 1)
- tree_low_cst (lo_index, 1) + 1);
}
else
this_node_count = 1;
count += this_node_count;
if (mostly_zeros_p (TREE_VALUE (elt)))
zero_count += this_node_count;
}
/* Clear the entire array first if there are any missing elements,
or if the incidence of zero elements is >= 75%. */
if (! need_to_clear
&& (count < maxelt - minelt + 1 || 4 * zero_count >= 3 * count))
need_to_clear = 1;
}
if (need_to_clear && size > 0)
{
if (! cleared)
clear_storage (target, GEN_INT (size));
cleared = 1;
}
else if (REG_P (target))
/* Inform later passes that the old value is dead. */
emit_insn (gen_rtx_CLOBBER (VOIDmode, target));
/* Store each element of the constructor into
the corresponding element of TARGET, determined
by counting the elements. */
for (elt = CONSTRUCTOR_ELTS (exp), i = 0;
elt;
elt = TREE_CHAIN (elt), i++)
{
enum machine_mode mode;
HOST_WIDE_INT bitsize;
HOST_WIDE_INT bitpos;
int unsignedp;
tree value = TREE_VALUE (elt);
unsigned int align = TYPE_ALIGN (TREE_TYPE (value));
tree index = TREE_PURPOSE (elt);
rtx xtarget = target;
if (cleared && is_zeros_p (value))
continue;
unsignedp = TREE_UNSIGNED (elttype);
mode = TYPE_MODE (elttype);
if (mode == BLKmode)
bitsize = (host_integerp (TYPE_SIZE (elttype), 1)
? tree_low_cst (TYPE_SIZE (elttype), 1)
: -1);
else
bitsize = GET_MODE_BITSIZE (mode);
if (index != NULL_TREE && TREE_CODE (index) == RANGE_EXPR)
{
tree lo_index = TREE_OPERAND (index, 0);
tree hi_index = TREE_OPERAND (index, 1);
rtx index_r, pos_rtx, hi_r, loop_top, loop_end;
struct nesting *loop;
HOST_WIDE_INT lo, hi, count;
tree position;
/* If the range is constant and "small", unroll the loop. */
if (const_bounds_p
&& host_integerp (lo_index, 0)
&& host_integerp (hi_index, 0)
&& (lo = tree_low_cst (lo_index, 0),
hi = tree_low_cst (hi_index, 0),
count = hi - lo + 1,
(GET_CODE (target) != MEM
|| count <= 2
|| (host_integerp (TYPE_SIZE (elttype), 1)
&& (tree_low_cst (TYPE_SIZE (elttype), 1) * count
<= 40 * 8)))))
{
lo -= minelt; hi -= minelt;
for (; lo <= hi; lo++)
{
bitpos = lo * tree_low_cst (TYPE_SIZE (elttype), 0);
if (GET_CODE (target) == MEM
&& !MEM_KEEP_ALIAS_SET_P (target)
&& TYPE_NONALIASED_COMPONENT (type))
{
target = copy_rtx (target);
MEM_KEEP_ALIAS_SET_P (target) = 1;
}
store_constructor_field
(target, bitsize, bitpos, mode, value, type, align,
cleared, get_alias_set (elttype));
}
}
else
{
hi_r = expand_expr (hi_index, NULL_RTX, VOIDmode, 0);
loop_top = gen_label_rtx ();
loop_end = gen_label_rtx ();
unsignedp = TREE_UNSIGNED (domain);
index = build_decl (VAR_DECL, NULL_TREE, domain);
index_r
= gen_reg_rtx (promote_mode (domain, DECL_MODE (index),
&unsignedp, 0));
SET_DECL_RTL (index, index_r);
if (TREE_CODE (value) == SAVE_EXPR
&& SAVE_EXPR_RTL (value) == 0)
{
/* Make sure value gets expanded once before the
loop. */
expand_expr (value, const0_rtx, VOIDmode, 0);
emit_queue ();
}
store_expr (lo_index, index_r, 0);
loop = expand_start_loop (0);
/* Assign value to element index. */
position
= convert (ssizetype,
fold (build (MINUS_EXPR, TREE_TYPE (index),
index, TYPE_MIN_VALUE (domain))));
position = size_binop (MULT_EXPR, position,
convert (ssizetype,
TYPE_SIZE_UNIT (elttype)));
pos_rtx = expand_expr (position, 0, VOIDmode, 0);
xtarget = offset_address (target, pos_rtx,
highest_pow2_factor (position));
xtarget = adjust_address (xtarget, mode, 0);
if (TREE_CODE (value) == CONSTRUCTOR)
store_constructor (value, xtarget, align, cleared,
bitsize / BITS_PER_UNIT);
else
store_expr (value, xtarget, 0);
expand_exit_loop_if_false (loop,
build (LT_EXPR, integer_type_node,
index, hi_index));
expand_increment (build (PREINCREMENT_EXPR,
TREE_TYPE (index),
index, integer_one_node), 0, 0);
expand_end_loop ();
emit_label (loop_end);
}
}
else if ((index != 0 && ! host_integerp (index, 0))
|| ! host_integerp (TYPE_SIZE (elttype), 1))
{
tree position;
if (index == 0)
index = ssize_int (1);
if (minelt)
index = convert (ssizetype,
fold (build (MINUS_EXPR, index,
TYPE_MIN_VALUE (domain))));
position = size_binop (MULT_EXPR, index,
convert (ssizetype,
TYPE_SIZE_UNIT (elttype)));
xtarget = offset_address (target,
expand_expr (position, 0, VOIDmode, 0),
highest_pow2_factor (position));
xtarget = adjust_address (xtarget, mode, 0);
store_expr (value, xtarget, 0);
}
else
{
if (index != 0)
bitpos = ((tree_low_cst (index, 0) - minelt)
* tree_low_cst (TYPE_SIZE (elttype), 1));
else
bitpos = (i * tree_low_cst (TYPE_SIZE (elttype), 1));
if (GET_CODE (target) == MEM && !MEM_KEEP_ALIAS_SET_P (target)
&& TYPE_NONALIASED_COMPONENT (type))
{
target = copy_rtx (target);
MEM_KEEP_ALIAS_SET_P (target) = 1;
}
store_constructor_field (target, bitsize, bitpos, mode, value,
type, align, cleared,
get_alias_set (elttype));
}
}
}
/* Set constructor assignments. */
else if (TREE_CODE (type) == SET_TYPE)
{
tree elt = CONSTRUCTOR_ELTS (exp);
unsigned HOST_WIDE_INT nbytes = int_size_in_bytes (type), nbits;
tree domain = TYPE_DOMAIN (type);
tree domain_min, domain_max, bitlength;
/* The default implementation strategy is to extract the constant
parts of the constructor, use that to initialize the target,
and then "or" in whatever non-constant ranges we need in addition.
If a large set is all zero or all ones, it is
probably better to set it using memset (if available) or bzero.
Also, if a large set has just a single range, it may also be
better to first clear all the first clear the set (using
bzero/memset), and set the bits we want. */
/* Check for all zeros. */
if (elt == NULL_TREE && size > 0)
{
if (!cleared)
clear_storage (target, GEN_INT (size));
return;
}
domain_min = convert (sizetype, TYPE_MIN_VALUE (domain));
domain_max = convert (sizetype, TYPE_MAX_VALUE (domain));
bitlength = size_binop (PLUS_EXPR,
size_diffop (domain_max, domain_min),
ssize_int (1));
nbits = tree_low_cst (bitlength, 1);
/* For "small" sets, or "medium-sized" (up to 32 bytes) sets that
are "complicated" (more than one range), initialize (the
constant parts) by copying from a constant. */
if (GET_MODE (target) != BLKmode || nbits <= 2 * BITS_PER_WORD
|| (nbytes <= 32 && TREE_CHAIN (elt) != NULL_TREE))
{
unsigned int set_word_size = TYPE_ALIGN (TREE_TYPE (exp));
enum machine_mode mode = mode_for_size (set_word_size, MODE_INT, 1);
char *bit_buffer = (char *) alloca (nbits);
HOST_WIDE_INT word = 0;
unsigned int bit_pos = 0;
unsigned int ibit = 0;
unsigned int offset = 0; /* In bytes from beginning of set. */
elt = get_set_constructor_bits (exp, bit_buffer, nbits);
for (;;)
{
if (bit_buffer[ibit])
{
if (BYTES_BIG_ENDIAN)
word |= (1 << (set_word_size - 1 - bit_pos));
else
word |= 1 << bit_pos;
}
bit_pos++; ibit++;
if (bit_pos >= set_word_size || ibit == nbits)
{
if (word != 0 || ! cleared)
{
rtx datum = GEN_INT (word);
rtx to_rtx;
/* The assumption here is that it is safe to use
XEXP if the set is multi-word, but not if
it's single-word. */
if (GET_CODE (target) == MEM)
to_rtx = adjust_address (target, mode, offset);
else if (offset == 0)
to_rtx = target;
else
abort ();
emit_move_insn (to_rtx, datum);
}
if (ibit == nbits)
break;
word = 0;
bit_pos = 0;
offset += set_word_size / BITS_PER_UNIT;
}
}
}
else if (!cleared)
/* Don't bother clearing storage if the set is all ones. */
if (TREE_CHAIN (elt) != NULL_TREE
|| (TREE_PURPOSE (elt) == NULL_TREE
? nbits != 1
: ( ! host_integerp (TREE_VALUE (elt), 0)
|| ! host_integerp (TREE_PURPOSE (elt), 0)
|| (tree_low_cst (TREE_VALUE (elt), 0)
- tree_low_cst (TREE_PURPOSE (elt), 0) + 1
!= (HOST_WIDE_INT) nbits))))
clear_storage (target, expr_size (exp));
for (; elt != NULL_TREE; elt = TREE_CHAIN (elt))
{
/* Start of range of element or NULL. */
tree startbit = TREE_PURPOSE (elt);
/* End of range of element, or element value. */
tree endbit = TREE_VALUE (elt);
#ifdef TARGET_MEM_FUNCTIONS
HOST_WIDE_INT startb, endb;
#endif
rtx bitlength_rtx, startbit_rtx, endbit_rtx, targetx;
bitlength_rtx = expand_expr (bitlength,
NULL_RTX, MEM, EXPAND_CONST_ADDRESS);
/* Handle non-range tuple element like [ expr ]. */
if (startbit == NULL_TREE)
{
startbit = save_expr (endbit);
endbit = startbit;
}
startbit = convert (sizetype, startbit);
endbit = convert (sizetype, endbit);
if (! integer_zerop (domain_min))
{
startbit = size_binop (MINUS_EXPR, startbit, domain_min);
endbit = size_binop (MINUS_EXPR, endbit, domain_min);
}
startbit_rtx = expand_expr (startbit, NULL_RTX, MEM,
EXPAND_CONST_ADDRESS);
endbit_rtx = expand_expr (endbit, NULL_RTX, MEM,
EXPAND_CONST_ADDRESS);
if (REG_P (target))
{
targetx
= assign_temp
((build_qualified_type (type_for_mode (GET_MODE (target), 0),
TYPE_QUAL_CONST)),
0, 1, 1);
emit_move_insn (targetx, target);
}
else if (GET_CODE (target) == MEM)
targetx = target;
else
abort ();
#ifdef TARGET_MEM_FUNCTIONS
/* Optimization: If startbit and endbit are
constants divisible by BITS_PER_UNIT,
call memset instead. */
if (TREE_CODE (startbit) == INTEGER_CST
&& TREE_CODE (endbit) == INTEGER_CST
&& (startb = TREE_INT_CST_LOW (startbit)) % BITS_PER_UNIT == 0
&& (endb = TREE_INT_CST_LOW (endbit) + 1) % BITS_PER_UNIT == 0)
{
emit_library_call (memset_libfunc, LCT_NORMAL,
VOIDmode, 3,
plus_constant (XEXP (targetx, 0),
startb / BITS_PER_UNIT),
Pmode,
constm1_rtx, TYPE_MODE (integer_type_node),
GEN_INT ((endb - startb) / BITS_PER_UNIT),
TYPE_MODE (sizetype));
}
else
#endif
emit_library_call (gen_rtx_SYMBOL_REF (Pmode, "__setbits"),
LCT_NORMAL, VOIDmode, 4, XEXP (targetx, 0),
Pmode, bitlength_rtx, TYPE_MODE (sizetype),
startbit_rtx, TYPE_MODE (sizetype),
endbit_rtx, TYPE_MODE (sizetype));
if (REG_P (target))
emit_move_insn (target, targetx);
}
}
else
abort ();
}
/* Store the value of EXP (an expression tree)
into a subfield of TARGET which has mode MODE and occupies
BITSIZE bits, starting BITPOS bits from the start of TARGET.
If MODE is VOIDmode, it means that we are storing into a bit-field.
If VALUE_MODE is VOIDmode, return nothing in particular.
UNSIGNEDP is not used in this case.
Otherwise, return an rtx for the value stored. This rtx
has mode VALUE_MODE if that is convenient to do.
In this case, UNSIGNEDP must be nonzero if the value is an unsigned type.
ALIGN is the alignment that TARGET is known to have.
TOTAL_SIZE is the size in bytes of the structure, or -1 if varying.
ALIAS_SET is the alias set for the destination. This value will
(in general) be different from that for TARGET, since TARGET is a
reference to the containing structure. */
static rtx
store_field (target, bitsize, bitpos, mode, exp, value_mode,
unsignedp, align, total_size, alias_set)
rtx target;
HOST_WIDE_INT bitsize;
HOST_WIDE_INT bitpos;
enum machine_mode mode;
tree exp;
enum machine_mode value_mode;
int unsignedp;
unsigned int align;
HOST_WIDE_INT total_size;
int alias_set;
{
HOST_WIDE_INT width_mask = 0;
if (TREE_CODE (exp) == ERROR_MARK)
return const0_rtx;
/* If we have nothing to store, do nothing unless the expression has
side-effects. */
if (bitsize == 0)
return expand_expr (exp, const0_rtx, VOIDmode, 0);
if (bitsize < HOST_BITS_PER_WIDE_INT)
width_mask = ((HOST_WIDE_INT) 1 << bitsize) - 1;
/* If we are storing into an unaligned field of an aligned union that is
in a register, we may have the mode of TARGET being an integer mode but
MODE == BLKmode. In that case, get an aligned object whose size and
alignment are the same as TARGET and store TARGET into it (we can avoid
the store if the field being stored is the entire width of TARGET). Then
call ourselves recursively to store the field into a BLKmode version of
that object. Finally, load from the object into TARGET. This is not
very efficient in general, but should only be slightly more expensive
than the otherwise-required unaligned accesses. Perhaps this can be
cleaned up later. */
if (mode == BLKmode
&& (GET_CODE (target) == REG || GET_CODE (target) == SUBREG))
{
rtx object
= assign_temp
(build_qualified_type (type_for_mode (GET_MODE (target), 0),
TYPE_QUAL_CONST),
0, 1, 1);
rtx blk_object = copy_rtx (object);
PUT_MODE (blk_object, BLKmode);
if (bitsize != (HOST_WIDE_INT) GET_MODE_BITSIZE (GET_MODE (target)))
emit_move_insn (object, target);
store_field (blk_object, bitsize, bitpos, mode, exp, VOIDmode, 0,
align, total_size, alias_set);
/* Even though we aren't returning target, we need to
give it the updated value. */
emit_move_insn (target, object);
return blk_object;
}
if (GET_CODE (target) == CONCAT)
{
/* We're storing into a struct containing a single __complex. */
if (bitpos != 0)
abort ();
return store_expr (exp, target, 0);
}
/* If the structure is in a register or if the component
is a bit field, we cannot use addressing to access it.
Use bit-field techniques or SUBREG to store in it. */
if (mode == VOIDmode
|| (mode != BLKmode && ! direct_store[(int) mode]
&& GET_MODE_CLASS (mode) != MODE_COMPLEX_INT
&& GET_MODE_CLASS (mode) != MODE_COMPLEX_FLOAT)
|| GET_CODE (target) == REG
|| GET_CODE (target) == SUBREG
/* If the field isn't aligned enough to store as an ordinary memref,
store it as a bit field. */
|| (mode != BLKmode && SLOW_UNALIGNED_ACCESS (mode, align)
&& (align < GET_MODE_ALIGNMENT (mode)
|| bitpos % GET_MODE_ALIGNMENT (mode)))
|| (mode == BLKmode && SLOW_UNALIGNED_ACCESS (mode, align)
&& (TYPE_ALIGN (TREE_TYPE (exp)) > align
|| bitpos % TYPE_ALIGN (TREE_TYPE (exp)) != 0))
/* If the RHS and field are a constant size and the size of the
RHS isn't the same size as the bitfield, we must use bitfield
operations. */
|| (bitsize >= 0
&& TREE_CODE (TYPE_SIZE (TREE_TYPE (exp))) == INTEGER_CST
&& compare_tree_int (TYPE_SIZE (TREE_TYPE (exp)), bitsize) != 0))
{
rtx temp = expand_expr (exp, NULL_RTX, VOIDmode, 0);
/* If BITSIZE is narrower than the size of the type of EXP
we will be narrowing TEMP. Normally, what's wanted are the
low-order bits. However, if EXP's type is a record and this is
big-endian machine, we want the upper BITSIZE bits. */
if (BYTES_BIG_ENDIAN && GET_MODE_CLASS (GET_MODE (temp)) == MODE_INT
&& bitsize < GET_MODE_BITSIZE (GET_MODE (temp))
&& TREE_CODE (TREE_TYPE (exp)) == RECORD_TYPE)
temp = expand_shift (RSHIFT_EXPR, GET_MODE (temp), temp,
size_int (GET_MODE_BITSIZE (GET_MODE (temp))
- bitsize),
temp, 1);
/* Unless MODE is VOIDmode or BLKmode, convert TEMP to
MODE. */
if (mode != VOIDmode && mode != BLKmode
&& mode != TYPE_MODE (TREE_TYPE (exp)))
temp = convert_modes (mode, TYPE_MODE (TREE_TYPE (exp)), temp, 1);
/* If the modes of TARGET and TEMP are both BLKmode, both
must be in memory and BITPOS must be aligned on a byte
boundary. If so, we simply do a block copy. */
if (GET_MODE (target) == BLKmode && GET_MODE (temp) == BLKmode)
{
unsigned int exp_align = expr_align (exp);
if (GET_CODE (target) != MEM || GET_CODE (temp) != MEM
|| bitpos % BITS_PER_UNIT != 0)
abort ();
target = adjust_address (target, VOIDmode, bitpos / BITS_PER_UNIT);
/* Make sure that ALIGN is no stricter than the alignment of EXP. */
align = MIN (exp_align, align);
/* Find an alignment that is consistent with the bit position. */
while ((bitpos % align) != 0)
align >>= 1;
emit_block_move (target, temp,
bitsize == -1 ? expr_size (exp)
: GEN_INT ((bitsize + BITS_PER_UNIT - 1)
/ BITS_PER_UNIT));
return value_mode == VOIDmode ? const0_rtx : target;
}
/* Store the value in the bitfield. */
store_bit_field (target, bitsize, bitpos, mode, temp, align, total_size);
if (value_mode != VOIDmode)
{
/* The caller wants an rtx for the value. */
/* If possible, avoid refetching from the bitfield itself. */
if (width_mask != 0
&& ! (GET_CODE (target) == MEM && MEM_VOLATILE_P (target)))
{
tree count;
enum machine_mode tmode;
if (unsignedp)
return expand_and (temp,
GEN_INT
(trunc_int_for_mode
(width_mask,
GET_MODE (temp) == VOIDmode
? value_mode
: GET_MODE (temp))), NULL_RTX);
tmode = GET_MODE (temp);
if (tmode == VOIDmode)
tmode = value_mode;
count = build_int_2 (GET_MODE_BITSIZE (tmode) - bitsize, 0);
temp = expand_shift (LSHIFT_EXPR, tmode, temp, count, 0, 0);
return expand_shift (RSHIFT_EXPR, tmode, temp, count, 0, 0);
}
return extract_bit_field (target, bitsize, bitpos, unsignedp,
NULL_RTX, value_mode, 0, align,
total_size);
}
return const0_rtx;
}
else
{
rtx addr = XEXP (target, 0);
rtx to_rtx;
/* If a value is wanted, it must be the lhs;
so make the address stable for multiple use. */
if (value_mode != VOIDmode && GET_CODE (addr) != REG
&& ! CONSTANT_ADDRESS_P (addr)
/* A frame-pointer reference is already stable. */
&& ! (GET_CODE (addr) == PLUS
&& GET_CODE (XEXP (addr, 1)) == CONST_INT
&& (XEXP (addr, 0) == virtual_incoming_args_rtx
|| XEXP (addr, 0) == virtual_stack_vars_rtx)))
target = replace_equiv_address (target, copy_to_reg (addr));
/* Now build a reference to just the desired component. */
to_rtx = copy_rtx (adjust_address (target, mode,
bitpos / BITS_PER_UNIT));
MEM_SET_IN_STRUCT_P (to_rtx, 1);
if (!MEM_KEEP_ALIAS_SET_P (to_rtx) && MEM_ALIAS_SET (to_rtx) != 0)
{
to_rtx = copy_rtx (to_rtx);
set_mem_alias_set (to_rtx, alias_set);
}
return store_expr (exp, to_rtx, value_mode != VOIDmode);
}
}
/* Given an expression EXP that may be a COMPONENT_REF, a BIT_FIELD_REF,
an ARRAY_REF, or an ARRAY_RANGE_REF, look for nested operations of these
codes and find the ultimate containing object, which we return.
We set *PBITSIZE to the size in bits that we want, *PBITPOS to the
bit position, and *PUNSIGNEDP to the signedness of the field.
If the position of the field is variable, we store a tree
giving the variable offset (in units) in *POFFSET.
This offset is in addition to the bit position.
If the position is not variable, we store 0 in *POFFSET.
We set *PALIGNMENT to the alignment of the address that will be
computed. This is the alignment of the thing we return if *POFFSET
is zero, but can be more less strictly aligned if *POFFSET is nonzero.
If any of the extraction expressions is volatile,
we store 1 in *PVOLATILEP. Otherwise we don't change that.
If the field is a bit-field, *PMODE is set to VOIDmode. Otherwise, it
is a mode that can be used to access the field. In that case, *PBITSIZE
is redundant.
If the field describes a variable-sized object, *PMODE is set to
VOIDmode and *PBITSIZE is set to -1. An access cannot be made in
this case, but the address of the object can be found. */
tree
get_inner_reference (exp, pbitsize, pbitpos, poffset, pmode,
punsignedp, pvolatilep, palignment)
tree exp;
HOST_WIDE_INT *pbitsize;
HOST_WIDE_INT *pbitpos;
tree *poffset;
enum machine_mode *pmode;
int *punsignedp;
int *pvolatilep;
unsigned int *palignment;
{
tree size_tree = 0;
enum machine_mode mode = VOIDmode;
tree offset = size_zero_node;
tree bit_offset = bitsize_zero_node;
unsigned int alignment = BIGGEST_ALIGNMENT;
tree placeholder_ptr = 0;
tree tem;
/* First get the mode, signedness, and size. We do this from just the
outermost expression. */
if (TREE_CODE (exp) == COMPONENT_REF)
{
size_tree = DECL_SIZE (TREE_OPERAND (exp, 1));
if (! DECL_BIT_FIELD (TREE_OPERAND (exp, 1)))
mode = DECL_MODE (TREE_OPERAND (exp, 1));
*punsignedp = TREE_UNSIGNED (TREE_OPERAND (exp, 1));
}
else if (TREE_CODE (exp) == BIT_FIELD_REF)
{
size_tree = TREE_OPERAND (exp, 1);
*punsignedp = TREE_UNSIGNED (exp);
}
else
{
mode = TYPE_MODE (TREE_TYPE (exp));
*punsignedp = TREE_UNSIGNED (TREE_TYPE (exp));
if (mode == BLKmode)
size_tree = TYPE_SIZE (TREE_TYPE (exp));
else
*pbitsize = GET_MODE_BITSIZE (mode);
}
if (size_tree != 0)
{
if (! host_integerp (size_tree, 1))
mode = BLKmode, *pbitsize = -1;
else
*pbitsize = tree_low_cst (size_tree, 1);
}
/* Compute cumulative bit-offset for nested component-refs and array-refs,
and find the ultimate containing object. */
while (1)
{
if (TREE_CODE (exp) == BIT_FIELD_REF)
bit_offset = size_binop (PLUS_EXPR, bit_offset, TREE_OPERAND (exp, 2));
else if (TREE_CODE (exp) == COMPONENT_REF)
{
tree field = TREE_OPERAND (exp, 1);
tree this_offset = DECL_FIELD_OFFSET (field);
/* If this field hasn't been filled in yet, don't go
past it. This should only happen when folding expressions
made during type construction. */
if (this_offset == 0)
break;
else if (! TREE_CONSTANT (this_offset)
&& contains_placeholder_p (this_offset))
this_offset = build (WITH_RECORD_EXPR, sizetype, this_offset, exp);
offset = size_binop (PLUS_EXPR, offset, this_offset);
bit_offset = size_binop (PLUS_EXPR, bit_offset,
DECL_FIELD_BIT_OFFSET (field));
if (! host_integerp (offset, 0))
alignment = MIN (alignment, DECL_OFFSET_ALIGN (field));
}
else if (TREE_CODE (exp) == ARRAY_REF
|| TREE_CODE (exp) == ARRAY_RANGE_REF)
{
tree index = TREE_OPERAND (exp, 1);
tree array = TREE_OPERAND (exp, 0);
tree domain = TYPE_DOMAIN (TREE_TYPE (array));
tree low_bound = (domain ? TYPE_MIN_VALUE (domain) : 0);
tree unit_size = TYPE_SIZE_UNIT (TREE_TYPE (TREE_TYPE (array)));
/* We assume all arrays have sizes that are a multiple of a byte.
First subtract the lower bound, if any, in the type of the
index, then convert to sizetype and multiply by the size of the
array element. */
if (low_bound != 0 && ! integer_zerop (low_bound))
index = fold (build (MINUS_EXPR, TREE_TYPE (index),
index, low_bound));
/* If the index has a self-referential type, pass it to a
WITH_RECORD_EXPR; if the component size is, pass our
component to one. */
if (! TREE_CONSTANT (index)
&& contains_placeholder_p (index))
index = build (WITH_RECORD_EXPR, TREE_TYPE (index), index, exp);
if (! TREE_CONSTANT (unit_size)
&& contains_placeholder_p (unit_size))
unit_size = build (WITH_RECORD_EXPR, sizetype, unit_size, array);
offset = size_binop (PLUS_EXPR, offset,
size_binop (MULT_EXPR,
convert (sizetype, index),
unit_size));
}
else if (TREE_CODE (exp) == PLACEHOLDER_EXPR)
{
tree new = find_placeholder (exp, &placeholder_ptr);
/* If we couldn't find the replacement, return the PLACEHOLDER_EXPR.
We might have been called from tree optimization where we
haven't set up an object yet. */
if (new == 0)
break;
else
exp = new;
continue;
}
else if (TREE_CODE (exp) != NON_LVALUE_EXPR
&& ! ((TREE_CODE (exp) == NOP_EXPR
|| TREE_CODE (exp) == CONVERT_EXPR)
&& (TYPE_MODE (TREE_TYPE (exp))
== TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 0))))))
break;
/* If any reference in the chain is volatile, the effect is volatile. */
if (TREE_THIS_VOLATILE (exp))
*pvolatilep = 1;
/* If the offset is non-constant already, then we can't assume any
alignment more than the alignment here. */
if (! TREE_CONSTANT (offset))
alignment = MIN (alignment, TYPE_ALIGN (TREE_TYPE (exp)));
exp = TREE_OPERAND (exp, 0);
}
if (DECL_P (exp))
alignment = MIN (alignment, DECL_ALIGN (exp));
else if (TREE_TYPE (exp) != 0)
alignment = MIN (alignment, TYPE_ALIGN (TREE_TYPE (exp)));
/* If OFFSET is constant, see if we can return the whole thing as a
constant bit position. Otherwise, split it up. */
if (host_integerp (offset, 0)
&& 0 != (tem = size_binop (MULT_EXPR, convert (bitsizetype, offset),
bitsize_unit_node))
&& 0 != (tem = size_binop (PLUS_EXPR, tem, bit_offset))
&& host_integerp (tem, 0))
*pbitpos = tree_low_cst (tem, 0), *poffset = 0;
else
*pbitpos = tree_low_cst (bit_offset, 0), *poffset = offset;
*pmode = mode;
*palignment = alignment;
return exp;
}
/* Subroutine of expand_exp: compute memory_usage from modifier. */
static enum memory_use_mode
get_memory_usage_from_modifier (modifier)
enum expand_modifier modifier;
{
switch (modifier)
{
case EXPAND_NORMAL:
case EXPAND_SUM:
return MEMORY_USE_RO;
break;
case EXPAND_MEMORY_USE_WO:
return MEMORY_USE_WO;
break;
case EXPAND_MEMORY_USE_RW:
return MEMORY_USE_RW;
break;
case EXPAND_MEMORY_USE_DONT:
/* EXPAND_CONST_ADDRESS and EXPAND_INITIALIZER are converted into
MEMORY_USE_DONT, because they are modifiers to a call of
expand_expr in the ADDR_EXPR case of expand_expr. */
case EXPAND_CONST_ADDRESS:
case EXPAND_INITIALIZER:
return MEMORY_USE_DONT;
case EXPAND_MEMORY_USE_BAD:
default:
abort ();
}
}
/* Given an rtx VALUE that may contain additions and multiplications, return
an equivalent value that just refers to a register, memory, or constant.
This is done by generating instructions to perform the arithmetic and
returning a pseudo-register containing the value.
The returned value may be a REG, SUBREG, MEM or constant. */
rtx
force_operand (value, target)
rtx value, target;
{
optab binoptab = 0;
/* Use a temporary to force order of execution of calls to
`force_operand'. */
rtx tmp;
rtx op2;
/* Use subtarget as the target for operand 0 of a binary operation. */
rtx subtarget = get_subtarget (target);
/* Check for a PIC address load. */
if (flag_pic
&& (GET_CODE (value) == PLUS || GET_CODE (value) == MINUS)
&& XEXP (value, 0) == pic_offset_table_rtx
&& (GET_CODE (XEXP (value, 1)) == SYMBOL_REF
|| GET_CODE (XEXP (value, 1)) == LABEL_REF
|| GET_CODE (XEXP (value, 1)) == CONST))
{
if (!subtarget)
subtarget = gen_reg_rtx (GET_MODE (value));
emit_move_insn (subtarget, value);
return subtarget;
}
if (GET_CODE (value) == PLUS)
binoptab = add_optab;
else if (GET_CODE (value) == MINUS)
binoptab = sub_optab;
else if (GET_CODE (value) == MULT)
{
op2 = XEXP (value, 1);
if (!CONSTANT_P (op2)
&& !(GET_CODE (op2) == REG && op2 != subtarget))
subtarget = 0;
tmp = force_operand (XEXP (value, 0), subtarget);
return expand_mult (GET_MODE (value), tmp,
force_operand (op2, NULL_RTX),
target, 1);
}
if (binoptab)
{
op2 = XEXP (value, 1);
if (!CONSTANT_P (op2)
&& !(GET_CODE (op2) == REG && op2 != subtarget))
subtarget = 0;
if (binoptab == sub_optab && GET_CODE (op2) == CONST_INT)
{
binoptab = add_optab;
op2 = negate_rtx (GET_MODE (value), op2);
}
/* Check for an addition with OP2 a constant integer and our first
operand a PLUS of a virtual register and something else. In that
case, we want to emit the sum of the virtual register and the
constant first and then add the other value. This allows virtual
register instantiation to simply modify the constant rather than
creating another one around this addition. */
if (binoptab == add_optab && GET_CODE (op2) == CONST_INT
&& GET_CODE (XEXP (value, 0)) == PLUS
&& GET_CODE (XEXP (XEXP (value, 0), 0)) == REG
&& REGNO (XEXP (XEXP (value, 0), 0)) >= FIRST_VIRTUAL_REGISTER
&& REGNO (XEXP (XEXP (value, 0), 0)) <= LAST_VIRTUAL_REGISTER)
{
rtx temp = expand_binop (GET_MODE (value), binoptab,
XEXP (XEXP (value, 0), 0), op2,
subtarget, 0, OPTAB_LIB_WIDEN);
return expand_binop (GET_MODE (value), binoptab, temp,
force_operand (XEXP (XEXP (value, 0), 1), 0),
target, 0, OPTAB_LIB_WIDEN);
}
tmp = force_operand (XEXP (value, 0), subtarget);
return expand_binop (GET_MODE (value), binoptab, tmp,
force_operand (op2, NULL_RTX),
target, 0, OPTAB_LIB_WIDEN);
/* We give UNSIGNEDP = 0 to expand_binop
because the only operations we are expanding here are signed ones. */
}
return value;
}
/* Subroutine of expand_expr: return nonzero iff there is no way that
EXP can reference X, which is being modified. TOP_P is nonzero if this
call is going to be used to determine whether we need a temporary
for EXP, as opposed to a recursive call to this function.
It is always safe for this routine to return zero since it merely
searches for optimization opportunities. */
int
safe_from_p (x, exp, top_p)
rtx x;
tree exp;
int top_p;
{
rtx exp_rtl = 0;
int i, nops;
static tree save_expr_list;
if (x == 0
/* If EXP has varying size, we MUST use a target since we currently
have no way of allocating temporaries of variable size
(except for arrays that have TYPE_ARRAY_MAX_SIZE set).
So we assume here that something at a higher level has prevented a
clash. This is somewhat bogus, but the best we can do. Only
do this when X is BLKmode and when we are at the top level. */
|| (top_p && TREE_TYPE (exp) != 0 && COMPLETE_TYPE_P (TREE_TYPE (exp))
&& TREE_CODE (TYPE_SIZE (TREE_TYPE (exp))) != INTEGER_CST
&& (TREE_CODE (TREE_TYPE (exp)) != ARRAY_TYPE
|| TYPE_ARRAY_MAX_SIZE (TREE_TYPE (exp)) == NULL_TREE
|| TREE_CODE (TYPE_ARRAY_MAX_SIZE (TREE_TYPE (exp)))
!= INTEGER_CST)
&& GET_MODE (x) == BLKmode)
/* If X is in the outgoing argument area, it is always safe. */
|| (GET_CODE (x) == MEM
&& (XEXP (x, 0) == virtual_outgoing_args_rtx
|| (GET_CODE (XEXP (x, 0)) == PLUS
&& XEXP (XEXP (x, 0), 0) == virtual_outgoing_args_rtx))))
return 1;
/* If this is a subreg of a hard register, declare it unsafe, otherwise,
find the underlying pseudo. */
if (GET_CODE (x) == SUBREG)
{
x = SUBREG_REG (x);
if (GET_CODE (x) == REG && REGNO (x) < FIRST_PSEUDO_REGISTER)
return 0;
}
/* A SAVE_EXPR might appear many times in the expression passed to the
top-level safe_from_p call, and if it has a complex subexpression,
examining it multiple times could result in a combinatorial explosion.
E.g. on an Alpha running at least 200MHz, a Fortran test case compiled
with optimization took about 28 minutes to compile -- even though it was
only a few lines long. So we mark each SAVE_EXPR we see with TREE_PRIVATE
and turn that off when we are done. We keep a list of the SAVE_EXPRs
we have processed. Note that the only test of top_p was above. */
if (top_p)
{
int rtn;
tree t;
save_expr_list = 0;
rtn = safe_from_p (x, exp, 0);
for (t = save_expr_list; t != 0; t = TREE_CHAIN (t))
TREE_PRIVATE (TREE_PURPOSE (t)) = 0;
return rtn;
}
/* Now look at our tree code and possibly recurse. */
switch (TREE_CODE_CLASS (TREE_CODE (exp)))
{
case 'd':
exp_rtl = DECL_RTL_SET_P (exp) ? DECL_RTL (exp) : NULL_RTX;
break;
case 'c':
return 1;
case 'x':
if (TREE_CODE (exp) == TREE_LIST)
return ((TREE_VALUE (exp) == 0
|| safe_from_p (x, TREE_VALUE (exp), 0))
&& (TREE_CHAIN (exp) == 0
|| safe_from_p (x, TREE_CHAIN (exp), 0)));
else if (TREE_CODE (exp) == ERROR_MARK)
return 1; /* An already-visited SAVE_EXPR? */
else
return 0;
case '1':
return safe_from_p (x, TREE_OPERAND (exp, 0), 0);
case '2':
case '<':
return (safe_from_p (x, TREE_OPERAND (exp, 0), 0)
&& safe_from_p (x, TREE_OPERAND (exp, 1), 0));
case 'e':
case 'r':
/* Now do code-specific tests. EXP_RTL is set to any rtx we find in
the expression. If it is set, we conflict iff we are that rtx or
both are in memory. Otherwise, we check all operands of the
expression recursively. */
switch (TREE_CODE (exp))
{
case ADDR_EXPR:
/* If the operand is static or we are static, we can't conflict.
Likewise if we don't conflict with the operand at all. */
if (staticp (TREE_OPERAND (exp, 0))
|| TREE_STATIC (exp)
|| safe_from_p (x, TREE_OPERAND (exp, 0), 0))
return 1;
/* Otherwise, the only way this can conflict is if we are taking
the address of a DECL a that address if part of X, which is
very rare. */
exp = TREE_OPERAND (exp, 0);
if (DECL_P (exp))
{
if (!DECL_RTL_SET_P (exp)
|| GET_CODE (DECL_RTL (exp)) != MEM)
return 0;
else
exp_rtl = XEXP (DECL_RTL (exp), 0);
}
break;
case INDIRECT_REF:
if (GET_CODE (x) == MEM
&& alias_sets_conflict_p (MEM_ALIAS_SET (x),
get_alias_set (exp)))
return 0;
break;
case CALL_EXPR:
/* Assume that the call will clobber all hard registers and
all of memory. */
if ((GET_CODE (x) == REG && REGNO (x) < FIRST_PSEUDO_REGISTER)
|| GET_CODE (x) == MEM)
return 0;
break;
case RTL_EXPR:
/* If a sequence exists, we would have to scan every instruction
in the sequence to see if it was safe. This is probably not
worthwhile. */
if (RTL_EXPR_SEQUENCE (exp))
return 0;
exp_rtl = RTL_EXPR_RTL (exp);
break;
case WITH_CLEANUP_EXPR:
exp_rtl = WITH_CLEANUP_EXPR_RTL (exp);
break;
case CLEANUP_POINT_EXPR:
return safe_from_p (x, TREE_OPERAND (exp, 0), 0);
case SAVE_EXPR:
exp_rtl = SAVE_EXPR_RTL (exp);
if (exp_rtl)
break;
/* If we've already scanned this, don't do it again. Otherwise,
show we've scanned it and record for clearing the flag if we're
going on. */
if (TREE_PRIVATE (exp))
return 1;
TREE_PRIVATE (exp) = 1;
if (! safe_from_p (x, TREE_OPERAND (exp, 0), 0))
{
TREE_PRIVATE (exp) = 0;
return 0;
}
save_expr_list = tree_cons (exp, NULL_TREE, save_expr_list);
return 1;
case BIND_EXPR:
/* The only operand we look at is operand 1. The rest aren't
part of the expression. */
return safe_from_p (x, TREE_OPERAND (exp, 1), 0);
case METHOD_CALL_EXPR:
/* This takes an rtx argument, but shouldn't appear here. */
abort ();
default:
break;
}
/* If we have an rtx, we do not need to scan our operands. */
if (exp_rtl)
break;
nops = first_rtl_op (TREE_CODE (exp));
for (i = 0; i < nops; i++)
if (TREE_OPERAND (exp, i) != 0
&& ! safe_from_p (x, TREE_OPERAND (exp, i), 0))
return 0;
/* If this is a language-specific tree code, it may require
special handling. */
if ((unsigned int) TREE_CODE (exp)
>= (unsigned int) LAST_AND_UNUSED_TREE_CODE
&& lang_safe_from_p
&& !(*lang_safe_from_p) (x, exp))
return 0;
}
/* If we have an rtl, find any enclosed object. Then see if we conflict
with it. */
if (exp_rtl)
{
if (GET_CODE (exp_rtl) == SUBREG)
{
exp_rtl = SUBREG_REG (exp_rtl);
if (GET_CODE (exp_rtl) == REG
&& REGNO (exp_rtl) < FIRST_PSEUDO_REGISTER)
return 0;
}
/* If the rtl is X, then it is not safe. Otherwise, it is unless both
are memory and they conflict. */
return ! (rtx_equal_p (x, exp_rtl)
|| (GET_CODE (x) == MEM && GET_CODE (exp_rtl) == MEM
&& true_dependence (exp_rtl, GET_MODE (x), x,
rtx_addr_varies_p)));
}
/* If we reach here, it is safe. */
return 1;
}
/* Subroutine of expand_expr: return rtx if EXP is a
variable or parameter; else return 0. */
static rtx
var_rtx (exp)
tree exp;
{
STRIP_NOPS (exp);
switch (TREE_CODE (exp))
{
case PARM_DECL:
case VAR_DECL:
return DECL_RTL (exp);
default:
return 0;
}
}
#ifdef MAX_INTEGER_COMPUTATION_MODE
void
check_max_integer_computation_mode (exp)
tree exp;
{
enum tree_code code;
enum machine_mode mode;
/* Strip any NOPs that don't change the mode. */
STRIP_NOPS (exp);
code = TREE_CODE (exp);
/* We must allow conversions of constants to MAX_INTEGER_COMPUTATION_MODE. */
if (code == NOP_EXPR
&& TREE_CODE (TREE_OPERAND (exp, 0)) == INTEGER_CST)
return;
/* First check the type of the overall operation. We need only look at
unary, binary and relational operations. */
if (TREE_CODE_CLASS (code) == '1'
|| TREE_CODE_CLASS (code) == '2'
|| TREE_CODE_CLASS (code) == '<')
{
mode = TYPE_MODE (TREE_TYPE (exp));
if (GET_MODE_CLASS (mode) == MODE_INT
&& mode > MAX_INTEGER_COMPUTATION_MODE)
internal_error ("unsupported wide integer operation");
}
/* Check operand of a unary op. */
if (TREE_CODE_CLASS (code) == '1')
{
mode = TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 0)));
if (GET_MODE_CLASS (mode) == MODE_INT
&& mode > MAX_INTEGER_COMPUTATION_MODE)
internal_error ("unsupported wide integer operation");
}
/* Check operands of a binary/comparison op. */
if (TREE_CODE_CLASS (code) == '2' || TREE_CODE_CLASS (code) == '<')
{
mode = TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 0)));
if (GET_MODE_CLASS (mode) == MODE_INT
&& mode > MAX_INTEGER_COMPUTATION_MODE)
internal_error ("unsupported wide integer operation");
mode = TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 1)));
if (GET_MODE_CLASS (mode) == MODE_INT
&& mode > MAX_INTEGER_COMPUTATION_MODE)
internal_error ("unsupported wide integer operation");
}
}
#endif
/* Return the highest power of two that EXP is known to be a multiple of.
This is used in updating alignment of MEMs in array references. */
static HOST_WIDE_INT
highest_pow2_factor (exp)
tree exp;
{
HOST_WIDE_INT c0, c1;
switch (TREE_CODE (exp))
{
case INTEGER_CST:
/* If the integer is expressable in a HOST_WIDE_INT, we can find
the lowest bit that's a one. If the result is zero or negative,
pessimize by returning 1. This is overly-conservative, but such
things should not happen in the offset expressions that we are
called with. */
if (host_integerp (exp, 0))
{
c0 = tree_low_cst (exp, 0);
return c0 >= 0 ? c0 & -c0 : 1;
}
break;
case PLUS_EXPR: case MINUS_EXPR:
c0 = highest_pow2_factor (TREE_OPERAND (exp, 0));
c1 = highest_pow2_factor (TREE_OPERAND (exp, 1));
return MIN (c0, c1);
case MULT_EXPR:
c0 = highest_pow2_factor (TREE_OPERAND (exp, 0));
c1 = highest_pow2_factor (TREE_OPERAND (exp, 1));
return c0 * c1;
case ROUND_DIV_EXPR: case TRUNC_DIV_EXPR: case FLOOR_DIV_EXPR:
case CEIL_DIV_EXPR:
c0 = highest_pow2_factor (TREE_OPERAND (exp, 0));
c1 = highest_pow2_factor (TREE_OPERAND (exp, 1));
return MAX (1, c0 / c1);
case NON_LVALUE_EXPR: case NOP_EXPR: case CONVERT_EXPR:
case COMPOUND_EXPR: case SAVE_EXPR:
return highest_pow2_factor (TREE_OPERAND (exp, 0));
case COND_EXPR:
c0 = highest_pow2_factor (TREE_OPERAND (exp, 1));
c1 = highest_pow2_factor (TREE_OPERAND (exp, 2));
return MIN (c0, c1);
default:
break;
}
return 1;
}
/* Return an object on the placeholder list that matches EXP, a
PLACEHOLDER_EXPR. An object "matches" if it is of the type of the
PLACEHOLDER_EXPR or a pointer type to it. For further information, see
tree.def. If no such object is found, return 0. If PLIST is nonzero, it
is a location which initially points to a starting location in the
placeholder list (zero means start of the list) and where a pointer into
the placeholder list at which the object is found is placed. */
tree
find_placeholder (exp, plist)
tree exp;
tree *plist;
{
tree type = TREE_TYPE (exp);
tree placeholder_expr;
for (placeholder_expr
= plist && *plist ? TREE_CHAIN (*plist) : placeholder_list;
placeholder_expr != 0;
placeholder_expr = TREE_CHAIN (placeholder_expr))
{
tree need_type = TYPE_MAIN_VARIANT (type);
tree elt;
/* Find the outermost reference that is of the type we want. If none,
see if any object has a type that is a pointer to the type we
want. */
for (elt = TREE_PURPOSE (placeholder_expr); elt != 0;
elt = ((TREE_CODE (elt) == COMPOUND_EXPR
|| TREE_CODE (elt) == COND_EXPR)
? TREE_OPERAND (elt, 1)
: (TREE_CODE_CLASS (TREE_CODE (elt)) == 'r'
|| TREE_CODE_CLASS (TREE_CODE (elt)) == '1'
|| TREE_CODE_CLASS (TREE_CODE (elt)) == '2'
|| TREE_CODE_CLASS (TREE_CODE (elt)) == 'e')
? TREE_OPERAND (elt, 0) : 0))
if (TYPE_MAIN_VARIANT (TREE_TYPE (elt)) == need_type)
{
if (plist)
*plist = placeholder_expr;
return elt;
}
for (elt = TREE_PURPOSE (placeholder_expr); elt != 0;
elt
= ((TREE_CODE (elt) == COMPOUND_EXPR
|| TREE_CODE (elt) == COND_EXPR)
? TREE_OPERAND (elt, 1)
: (TREE_CODE_CLASS (TREE_CODE (elt)) == 'r'
|| TREE_CODE_CLASS (TREE_CODE (elt)) == '1'
|| TREE_CODE_CLASS (TREE_CODE (elt)) == '2'
|| TREE_CODE_CLASS (TREE_CODE (elt)) == 'e')
? TREE_OPERAND (elt, 0) : 0))
if (POINTER_TYPE_P (TREE_TYPE (elt))
&& (TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (elt)))
== need_type))
{
if (plist)
*plist = placeholder_expr;
return build1 (INDIRECT_REF, need_type, elt);
}
}
return 0;
}
/* expand_expr: generate code for computing expression EXP.
An rtx for the computed value is returned. The value is never null.
In the case of a void EXP, const0_rtx is returned.
The value may be stored in TARGET if TARGET is nonzero.
TARGET is just a suggestion; callers must assume that
the rtx returned may not be the same as TARGET.
If TARGET is CONST0_RTX, it means that the value will be ignored.
If TMODE is not VOIDmode, it suggests generating the
result in mode TMODE. But this is done only when convenient.
Otherwise, TMODE is ignored and the value generated in its natural mode.
TMODE is just a suggestion; callers must assume that
the rtx returned may not have mode TMODE.
Note that TARGET may have neither TMODE nor MODE. In that case, it
probably will not be used.
If MODIFIER is EXPAND_SUM then when EXP is an addition
we can return an rtx of the form (MULT (REG ...) (CONST_INT ...))
or a nest of (PLUS ...) and (MINUS ...) where the terms are
products as above, or REG or MEM, or constant.
Ordinarily in such cases we would output mul or add instructions
and then return a pseudo reg containing the sum.
EXPAND_INITIALIZER is much like EXPAND_SUM except that
it also marks a label as absolutely required (it can't be dead).
It also makes a ZERO_EXTEND or SIGN_EXTEND instead of emitting extend insns.
This is used for outputting expressions used in initializers.
EXPAND_CONST_ADDRESS says that it is okay to return a MEM
with a constant address even if that address is not normally legitimate.
EXPAND_INITIALIZER and EXPAND_SUM also have this effect. */
rtx
expand_expr (exp, target, tmode, modifier)
tree exp;
rtx target;
enum machine_mode tmode;
enum expand_modifier modifier;
{
rtx op0, op1, temp;
tree type = TREE_TYPE (exp);
int unsignedp = TREE_UNSIGNED (type);
enum machine_mode mode;
enum tree_code code = TREE_CODE (exp);
optab this_optab;
rtx subtarget, original_target;
int ignore;
tree context;
/* Used by check-memory-usage to make modifier read only. */
enum expand_modifier ro_modifier;
/* Handle ERROR_MARK before anybody tries to access its type. */
if (TREE_CODE (exp) == ERROR_MARK || TREE_CODE (type) == ERROR_MARK)
{
op0 = CONST0_RTX (tmode);
if (op0 != 0)
return op0;
return const0_rtx;
}
mode = TYPE_MODE (type);
/* Use subtarget as the target for operand 0 of a binary operation. */
subtarget = get_subtarget (target);
original_target = target;
ignore = (target == const0_rtx
|| ((code == NON_LVALUE_EXPR || code == NOP_EXPR
|| code == CONVERT_EXPR || code == REFERENCE_EXPR
|| code == COND_EXPR)
&& TREE_CODE (type) == VOID_TYPE));
/* Make a read-only version of the modifier. */
if (modifier == EXPAND_NORMAL || modifier == EXPAND_SUM
|| modifier == EXPAND_CONST_ADDRESS || modifier == EXPAND_INITIALIZER)
ro_modifier = modifier;
else
ro_modifier = EXPAND_NORMAL;
/* If we are going to ignore this result, we need only do something
if there is a side-effect somewhere in the expression. If there
is, short-circuit the most common cases here. Note that we must
not call expand_expr with anything but const0_rtx in case this
is an initial expansion of a size that contains a PLACEHOLDER_EXPR. */
if (ignore)
{
if (! TREE_SIDE_EFFECTS (exp))
return const0_rtx;
/* Ensure we reference a volatile object even if value is ignored, but
don't do this if all we are doing is taking its address. */
if (TREE_THIS_VOLATILE (exp)
&& TREE_CODE (exp) != FUNCTION_DECL
&& mode != VOIDmode && mode != BLKmode
&& modifier != EXPAND_CONST_ADDRESS)
{
temp = expand_expr (exp, NULL_RTX, VOIDmode, ro_modifier);
if (GET_CODE (temp) == MEM)
temp = copy_to_reg (temp);
return const0_rtx;
}
if (TREE_CODE_CLASS (code) == '1' || code == COMPONENT_REF
|| code == INDIRECT_REF || code == BUFFER_REF)
return expand_expr (TREE_OPERAND (exp, 0), const0_rtx,
VOIDmode, ro_modifier);
else if (TREE_CODE_CLASS (code) == '2' || TREE_CODE_CLASS (code) == '<'
|| code == ARRAY_REF || code == ARRAY_RANGE_REF)
{
expand_expr (TREE_OPERAND (exp, 0), const0_rtx, VOIDmode,
ro_modifier);
expand_expr (TREE_OPERAND (exp, 1), const0_rtx, VOIDmode,
ro_modifier);
return const0_rtx;
}
else if ((code == TRUTH_ANDIF_EXPR || code == TRUTH_ORIF_EXPR)
&& ! TREE_SIDE_EFFECTS (TREE_OPERAND (exp, 1)))
/* If the second operand has no side effects, just evaluate
the first. */
return expand_expr (TREE_OPERAND (exp, 0), const0_rtx,
VOIDmode, ro_modifier);
else if (code == BIT_FIELD_REF)
{
expand_expr (TREE_OPERAND (exp, 0), const0_rtx, VOIDmode,
ro_modifier);
expand_expr (TREE_OPERAND (exp, 1), const0_rtx, VOIDmode,
ro_modifier);
expand_expr (TREE_OPERAND (exp, 2), const0_rtx, VOIDmode,
ro_modifier);
return const0_rtx;
}
;
target = 0;
}
#ifdef MAX_INTEGER_COMPUTATION_MODE
/* Only check stuff here if the mode we want is different from the mode
of the expression; if it's the same, check_max_integer_computiation_mode
will handle it. Do we really need to check this stuff at all? */
if (target
&& GET_MODE (target) != mode
&& TREE_CODE (exp) != INTEGER_CST
&& TREE_CODE (exp) != PARM_DECL
&& TREE_CODE (exp) != ARRAY_REF
&& TREE_CODE (exp) != ARRAY_RANGE_REF
&& TREE_CODE (exp) != COMPONENT_REF
&& TREE_CODE (exp) != BIT_FIELD_REF
&& TREE_CODE (exp) != INDIRECT_REF
&& TREE_CODE (exp) != CALL_EXPR
&& TREE_CODE (exp) != VAR_DECL
&& TREE_CODE (exp) != RTL_EXPR)
{
enum machine_mode mode = GET_MODE (target);
if (GET_MODE_CLASS (mode) == MODE_INT
&& mode > MAX_INTEGER_COMPUTATION_MODE)
internal_error ("unsupported wide integer operation");
}
if (tmode != mode
&& TREE_CODE (exp) != INTEGER_CST
&& TREE_CODE (exp) != PARM_DECL
&& TREE_CODE (exp) != ARRAY_REF
&& TREE_CODE (exp) != ARRAY_RANGE_REF
&& TREE_CODE (exp) != COMPONENT_REF
&& TREE_CODE (exp) != BIT_FIELD_REF
&& TREE_CODE (exp) != INDIRECT_REF
&& TREE_CODE (exp) != VAR_DECL
&& TREE_CODE (exp) != CALL_EXPR
&& TREE_CODE (exp) != RTL_EXPR
&& GET_MODE_CLASS (tmode) == MODE_INT
&& tmode > MAX_INTEGER_COMPUTATION_MODE)
internal_error ("unsupported wide integer operation");
check_max_integer_computation_mode (exp);
#endif
/* If will do cse, generate all results into pseudo registers
since 1) that allows cse to find more things
and 2) otherwise cse could produce an insn the machine
cannot support. */
if (! cse_not_expected && mode != BLKmode && target
&& (GET_CODE (target) != REG || REGNO (target) < FIRST_PSEUDO_REGISTER))
target = subtarget;
switch (code)
{
case LABEL_DECL:
{
tree function = decl_function_context (exp);
/* Handle using a label in a containing function. */
if (function != current_function_decl
&& function != inline_function_decl && function != 0)
{
struct function *p = find_function_data (function);
p->expr->x_forced_labels
= gen_rtx_EXPR_LIST (VOIDmode, label_rtx (exp),
p->expr->x_forced_labels);
}
else
{
if (modifier == EXPAND_INITIALIZER)
forced_labels = gen_rtx_EXPR_LIST (VOIDmode,
label_rtx (exp),
forced_labels);
}
temp = gen_rtx_MEM (FUNCTION_MODE,
gen_rtx_LABEL_REF (Pmode, label_rtx (exp)));
if (function != current_function_decl
&& function != inline_function_decl && function != 0)
LABEL_REF_NONLOCAL_P (XEXP (temp, 0)) = 1;
return temp;
}
case PARM_DECL:
if (DECL_RTL (exp) == 0)
{
error_with_decl (exp, "prior parameter's size depends on `%s'");
return CONST0_RTX (mode);
}
/* ... fall through ... */
case VAR_DECL:
/* If a static var's type was incomplete when the decl was written,
but the type is complete now, lay out the decl now. */
if (DECL_SIZE (exp) == 0 && COMPLETE_TYPE_P (TREE_TYPE (exp))
&& (TREE_STATIC (exp) || DECL_EXTERNAL (exp)))
{
layout_decl (exp, 0);
PUT_MODE (DECL_RTL (exp), DECL_MODE (exp));
}
/* Although static-storage variables start off initialized, according to
ANSI C, a memcpy could overwrite them with uninitialized values. So
we check them too. This also lets us check for read-only variables
accessed via a non-const declaration, in case it won't be detected
any other way (e.g., in an embedded system or OS kernel without
memory protection).
Aggregates are not checked here; they're handled elsewhere. */
if (cfun && current_function_check_memory_usage
&& code == VAR_DECL
&& GET_CODE (DECL_RTL (exp)) == MEM
&& ! AGGREGATE_TYPE_P (TREE_TYPE (exp)))
{
enum memory_use_mode memory_usage;
memory_usage = get_memory_usage_from_modifier (modifier);
in_check_memory_usage = 1;
if (memory_usage != MEMORY_USE_DONT)
emit_library_call (chkr_check_addr_libfunc,
LCT_CONST_MAKE_BLOCK, VOIDmode, 3,
XEXP (DECL_RTL (exp), 0), Pmode,
GEN_INT (int_size_in_bytes (type)),
TYPE_MODE (sizetype),
GEN_INT (memory_usage),
TYPE_MODE (integer_type_node));
in_check_memory_usage = 0;
}
/* ... fall through ... */
case FUNCTION_DECL:
case RESULT_DECL:
if (DECL_RTL (exp) == 0)
abort ();
/* Ensure variable marked as used even if it doesn't go through
a parser. If it hasn't be used yet, write out an external
definition. */
if (! TREE_USED (exp))
{
assemble_external (exp);
TREE_USED (exp) = 1;
}
/* Show we haven't gotten RTL for this yet. */
temp = 0;
/* Handle variables inherited from containing functions. */
context = decl_function_context (exp);
/* We treat inline_function_decl as an alias for the current function
because that is the inline function whose vars, types, etc.
are being merged into the current function.
See expand_inline_function. */
if (context != 0 && context != current_function_decl
&& context != inline_function_decl
/* If var is static, we don't need a static chain to access it. */
&& ! (GET_CODE (DECL_RTL (exp)) == MEM
&& CONSTANT_P (XEXP (DECL_RTL (exp), 0))))
{
rtx addr;
/* Mark as non-local and addressable. */
DECL_NONLOCAL (exp) = 1;
if (DECL_NO_STATIC_CHAIN (current_function_decl))
abort ();
mark_addressable (exp);
if (GET_CODE (DECL_RTL (exp)) != MEM)
abort ();
addr = XEXP (DECL_RTL (exp), 0);
if (GET_CODE (addr) == MEM)
addr
= replace_equiv_address (addr,
fix_lexical_addr (XEXP (addr, 0), exp));
else
addr = fix_lexical_addr (addr, exp);
temp = replace_equiv_address (DECL_RTL (exp), addr);
}
/* This is the case of an array whose size is to be determined
from its initializer, while the initializer is still being parsed.
See expand_decl. */
else if (GET_CODE (DECL_RTL (exp)) == MEM
&& GET_CODE (XEXP (DECL_RTL (exp), 0)) == REG)
temp = validize_mem (DECL_RTL (exp));
/* If DECL_RTL is memory, we are in the normal case and either
the address is not valid or it is not a register and -fforce-addr
is specified, get the address into a register. */
else if (GET_CODE (DECL_RTL (exp)) == MEM
&& modifier != EXPAND_CONST_ADDRESS
&& modifier != EXPAND_SUM
&& modifier != EXPAND_INITIALIZER
&& (! memory_address_p (DECL_MODE (exp),
XEXP (DECL_RTL (exp), 0))
|| (flag_force_addr
&& GET_CODE (XEXP (DECL_RTL (exp), 0)) != REG)))
temp = replace_equiv_address (DECL_RTL (exp),
copy_rtx (XEXP (DECL_RTL (exp), 0)));
/* If we got something, return it. But first, set the alignment
if the address is a register. */
if (temp != 0)
{
if (GET_CODE (temp) == MEM && GET_CODE (XEXP (temp, 0)) == REG)
mark_reg_pointer (XEXP (temp, 0), DECL_ALIGN (exp));
return temp;
}
/* If the mode of DECL_RTL does not match that of the decl, it
must be a promoted value. We return a SUBREG of the wanted mode,
but mark it so that we know that it was already extended. */
if (GET_CODE (DECL_RTL (exp)) == REG
&& GET_MODE (DECL_RTL (exp)) != mode)
{
/* Get the signedness used for this variable. Ensure we get the
same mode we got when the variable was declared. */
if (GET_MODE (DECL_RTL (exp))
!= promote_mode (type, DECL_MODE (exp), &unsignedp, 0))
abort ();
temp = gen_lowpart_SUBREG (mode, DECL_RTL (exp));
SUBREG_PROMOTED_VAR_P (temp) = 1;
SUBREG_PROMOTED_UNSIGNED_P (temp) = unsignedp;
return temp;
}
return DECL_RTL (exp);
case INTEGER_CST:
return immed_double_const (TREE_INT_CST_LOW (exp),
TREE_INT_CST_HIGH (exp), mode);
case CONST_DECL:
return expand_expr (DECL_INITIAL (exp), target, VOIDmode,
EXPAND_MEMORY_USE_BAD);
case REAL_CST:
/* If optimized, generate immediate CONST_DOUBLE
which will be turned into memory by reload if necessary.
We used to force a register so that loop.c could see it. But
this does not allow gen_* patterns to perform optimizations with
the constants. It also produces two insns in cases like "x = 1.0;".
On most machines, floating-point constants are not permitted in
many insns, so we'd end up copying it to a register in any case.
Now, we do the copying in expand_binop, if appropriate. */
return immed_real_const (exp);
case COMPLEX_CST:
case STRING_CST:
if (! TREE_CST_RTL (exp))
output_constant_def (exp, 1);
/* TREE_CST_RTL probably contains a constant address.
On RISC machines where a constant address isn't valid,
make some insns to get that address into a register. */
if (GET_CODE (TREE_CST_RTL (exp)) == MEM
&& modifier != EXPAND_CONST_ADDRESS
&& modifier != EXPAND_INITIALIZER
&& modifier != EXPAND_SUM
&& (! memory_address_p (mode, XEXP (TREE_CST_RTL (exp), 0))
|| (flag_force_addr
&& GET_CODE (XEXP (TREE_CST_RTL (exp), 0)) != REG)))
return replace_equiv_address (TREE_CST_RTL (exp),
copy_rtx (XEXP (TREE_CST_RTL (exp), 0)));
return TREE_CST_RTL (exp);
case EXPR_WITH_FILE_LOCATION:
{
rtx to_return;
const char *saved_input_filename = input_filename;
int saved_lineno = lineno;
input_filename = EXPR_WFL_FILENAME (exp);
lineno = EXPR_WFL_LINENO (exp);
if (EXPR_WFL_EMIT_LINE_NOTE (exp))
emit_line_note (input_filename, lineno);
/* Possibly avoid switching back and forth here. */
to_return = expand_expr (EXPR_WFL_NODE (exp), target, tmode, modifier);
input_filename = saved_input_filename;
lineno = saved_lineno;
return to_return;
}
case SAVE_EXPR:
context = decl_function_context (exp);
/* If this SAVE_EXPR was at global context, assume we are an
initialization function and move it into our context. */
if (context == 0)
SAVE_EXPR_CONTEXT (exp) = current_function_decl;
/* We treat inline_function_decl as an alias for the current function
because that is the inline function whose vars, types, etc.
are being merged into the current function.
See expand_inline_function. */
if (context == current_function_decl || context == inline_function_decl)
context = 0;
/* If this is non-local, handle it. */
if (context)
{
/* The following call just exists to abort if the context is
not of a containing function. */
find_function_data (context);
temp = SAVE_EXPR_RTL (exp);
if (temp && GET_CODE (temp) == REG)
{
put_var_into_stack (exp);
temp = SAVE_EXPR_RTL (exp);
}
if (temp == 0 || GET_CODE (temp) != MEM)
abort ();
return
replace_equiv_address (temp,
fix_lexical_addr (XEXP (temp, 0), exp));
}
if (SAVE_EXPR_RTL (exp) == 0)
{
if (mode == VOIDmode)
temp = const0_rtx;
else
temp = assign_temp (build_qualified_type (type,
(TYPE_QUALS (type)
| TYPE_QUAL_CONST)),
3, 0, 0);
SAVE_EXPR_RTL (exp) = temp;
if (!optimize && GET_CODE (temp) == REG)
save_expr_regs = gen_rtx_EXPR_LIST (VOIDmode, temp,
save_expr_regs);
/* If the mode of TEMP does not match that of the expression, it
must be a promoted value. We pass store_expr a SUBREG of the
wanted mode but mark it so that we know that it was already
extended. Note that `unsignedp' was modified above in
this case. */
if (GET_CODE (temp) == REG && GET_MODE (temp) != mode)
{
temp = gen_lowpart_SUBREG (mode, SAVE_EXPR_RTL (exp));
SUBREG_PROMOTED_VAR_P (temp) = 1;
SUBREG_PROMOTED_UNSIGNED_P (temp) = unsignedp;
}
if (temp == const0_rtx)
expand_expr (TREE_OPERAND (exp, 0), const0_rtx, VOIDmode,
EXPAND_MEMORY_USE_BAD);
else
store_expr (TREE_OPERAND (exp, 0), temp, 0);
TREE_USED (exp) = 1;
}
/* If the mode of SAVE_EXPR_RTL does not match that of the expression, it
must be a promoted value. We return a SUBREG of the wanted mode,
but mark it so that we know that it was already extended. */
if (GET_CODE (SAVE_EXPR_RTL (exp)) == REG
&& GET_MODE (SAVE_EXPR_RTL (exp)) != mode)
{
/* Compute the signedness and make the proper SUBREG. */
promote_mode (type, mode, &unsignedp, 0);
temp = gen_lowpart_SUBREG (mode, SAVE_EXPR_RTL (exp));
SUBREG_PROMOTED_VAR_P (temp) = 1;
SUBREG_PROMOTED_UNSIGNED_P (temp) = unsignedp;
return temp;
}
return SAVE_EXPR_RTL (exp);
case UNSAVE_EXPR:
{
rtx temp;
temp = expand_expr (TREE_OPERAND (exp, 0), target, tmode, modifier);
TREE_OPERAND (exp, 0) = unsave_expr_now (TREE_OPERAND (exp, 0));
return temp;
}
case PLACEHOLDER_EXPR:
{
tree old_list = placeholder_list;
tree placeholder_expr = 0;
exp = find_placeholder (exp, &placeholder_expr);
if (exp == 0)
abort ();
placeholder_list = TREE_CHAIN (placeholder_expr);
temp = expand_expr (exp, original_target, tmode, ro_modifier);
placeholder_list = old_list;
return temp;
}
/* We can't find the object or there was a missing WITH_RECORD_EXPR. */
abort ();
case WITH_RECORD_EXPR:
/* Put the object on the placeholder list, expand our first operand,
and pop the list. */
placeholder_list = tree_cons (TREE_OPERAND (exp, 1), NULL_TREE,
placeholder_list);
target = expand_expr (TREE_OPERAND (exp, 0), original_target,
tmode, ro_modifier);
placeholder_list = TREE_CHAIN (placeholder_list);
return target;
case GOTO_EXPR:
if (TREE_CODE (TREE_OPERAND (exp, 0)) == LABEL_DECL)
expand_goto (TREE_OPERAND (exp, 0));
else
expand_computed_goto (TREE_OPERAND (exp, 0));
return const0_rtx;
case EXIT_EXPR:
expand_exit_loop_if_false (NULL,
invert_truthvalue (TREE_OPERAND (exp, 0)));
return const0_rtx;
case LABELED_BLOCK_EXPR:
if (LABELED_BLOCK_BODY (exp))
expand_expr_stmt (LABELED_BLOCK_BODY (exp));
/* Should perhaps use expand_label, but this is simpler and safer. */
do_pending_stack_adjust ();
emit_label (label_rtx (LABELED_BLOCK_LABEL (exp)));
return const0_rtx;
case EXIT_BLOCK_EXPR:
if (EXIT_BLOCK_RETURN (exp))
sorry ("returned value in block_exit_expr");
expand_goto (LABELED_BLOCK_LABEL (EXIT_BLOCK_LABELED_BLOCK (exp)));
return const0_rtx;
case LOOP_EXPR:
push_temp_slots ();
expand_start_loop (1);
expand_expr_stmt (TREE_OPERAND (exp, 0));
expand_end_loop ();
pop_temp_slots ();
return const0_rtx;
case BIND_EXPR:
{
tree vars = TREE_OPERAND (exp, 0);
int vars_need_expansion = 0;
/* Need to open a binding contour here because
if there are any cleanups they must be contained here. */
expand_start_bindings (2);
/* Mark the corresponding BLOCK for output in its proper place. */
if (TREE_OPERAND (exp, 2) != 0
&& ! TREE_USED (TREE_OPERAND (exp, 2)))
insert_block (TREE_OPERAND (exp, 2));
/* If VARS have not yet been expanded, expand them now. */
while (vars)
{
if (!DECL_RTL_SET_P (vars))
{
vars_need_expansion = 1;
expand_decl (vars);
}
expand_decl_init (vars);
vars = TREE_CHAIN (vars);
}
temp = expand_expr (TREE_OPERAND (exp, 1), target, tmode, ro_modifier);
expand_end_bindings (TREE_OPERAND (exp, 0), 0, 0);
return temp;
}
case RTL_EXPR:
if (RTL_EXPR_SEQUENCE (exp))
{
if (RTL_EXPR_SEQUENCE (exp) == const0_rtx)
abort ();
emit_insns (RTL_EXPR_SEQUENCE (exp));
RTL_EXPR_SEQUENCE (exp) = const0_rtx;
}
preserve_rtl_expr_result (RTL_EXPR_RTL (exp));
free_temps_for_rtl_expr (exp);
return RTL_EXPR_RTL (exp);
case CONSTRUCTOR:
/* If we don't need the result, just ensure we evaluate any
subexpressions. */
if (ignore)
{
tree elt;
for (elt = CONSTRUCTOR_ELTS (exp); elt; elt = TREE_CHAIN (elt))
expand_expr (TREE_VALUE (elt), const0_rtx, VOIDmode,
EXPAND_MEMORY_USE_BAD);
return const0_rtx;
}
/* All elts simple constants => refer to a constant in memory. But
if this is a non-BLKmode mode, let it store a field at a time
since that should make a CONST_INT or CONST_DOUBLE when we
fold. Likewise, if we have a target we can use, it is best to
store directly into the target unless the type is large enough
that memcpy will be used. If we are making an initializer and
all operands are constant, put it in memory as well. */
else if ((TREE_STATIC (exp)
&& ((mode == BLKmode
&& ! (target != 0 && safe_from_p (target, exp, 1)))
|| TREE_ADDRESSABLE (exp)
|| (host_integerp (TYPE_SIZE_UNIT (type), 1)
&& (! MOVE_BY_PIECES_P
(tree_low_cst (TYPE_SIZE_UNIT (type), 1),
TYPE_ALIGN (type)))
&& ! mostly_zeros_p (exp))))
|| (modifier == EXPAND_INITIALIZER && TREE_CONSTANT (exp)))
{
rtx constructor = output_constant_def (exp, 1);
if (modifier != EXPAND_CONST_ADDRESS
&& modifier != EXPAND_INITIALIZER
&& modifier != EXPAND_SUM)
constructor = validize_mem (constructor);
return constructor;
}
else
{
/* Handle calls that pass values in multiple non-contiguous
locations. The Irix 6 ABI has examples of this. */
if (target == 0 || ! safe_from_p (target, exp, 1)
|| GET_CODE (target) == PARALLEL)
target
= assign_temp (build_qualified_type (type,
(TYPE_QUALS (type)
| (TREE_READONLY (exp)
* TYPE_QUAL_CONST))),
TREE_ADDRESSABLE (exp), 1, 1);
store_constructor (exp, target, TYPE_ALIGN (TREE_TYPE (exp)), 0,
int_size_in_bytes (TREE_TYPE (exp)));
return target;
}
case INDIRECT_REF:
{
tree exp1 = TREE_OPERAND (exp, 0);
tree index;
tree string = string_constant (exp1, &index);
/* Try to optimize reads from const strings. */
if (string
&& TREE_CODE (string) == STRING_CST
&& TREE_CODE (index) == INTEGER_CST
&& compare_tree_int (index, TREE_STRING_LENGTH (string)) < 0
&& GET_MODE_CLASS (mode) == MODE_INT
&& GET_MODE_SIZE (mode) == 1
&& modifier != EXPAND_MEMORY_USE_WO)
return
GEN_INT (TREE_STRING_POINTER (string)[TREE_INT_CST_LOW (index)]);
op0 = expand_expr (exp1, NULL_RTX, VOIDmode, EXPAND_SUM);
op0 = memory_address (mode, op0);
if (cfun && current_function_check_memory_usage
&& ! AGGREGATE_TYPE_P (TREE_TYPE (exp)))
{
enum memory_use_mode memory_usage;
memory_usage = get_memory_usage_from_modifier (modifier);
if (memory_usage != MEMORY_USE_DONT)
{
in_check_memory_usage = 1;
emit_library_call (chkr_check_addr_libfunc,
LCT_CONST_MAKE_BLOCK, VOIDmode, 3, op0,
Pmode, GEN_INT (int_size_in_bytes (type)),
TYPE_MODE (sizetype),
GEN_INT (memory_usage),
TYPE_MODE (integer_type_node));
in_check_memory_usage = 0;
}
}
temp = gen_rtx_MEM (mode, op0);
set_mem_attributes (temp, exp, 0);
/* If we are writing to this object and its type is a record with
readonly fields, we must mark it as readonly so it will
conflict with readonly references to those fields. */
if (modifier == EXPAND_MEMORY_USE_WO && readonly_fields_p (type))
RTX_UNCHANGING_P (temp) = 1;
return temp;
}
case ARRAY_REF:
if (TREE_CODE (TREE_TYPE (TREE_OPERAND (exp, 0))) != ARRAY_TYPE)
abort ();
{
tree array = TREE_OPERAND (exp, 0);
tree domain = TYPE_DOMAIN (TREE_TYPE (array));
tree low_bound = domain ? TYPE_MIN_VALUE (domain) : integer_zero_node;
tree index = convert (sizetype, TREE_OPERAND (exp, 1));
HOST_WIDE_INT i;
/* Optimize the special-case of a zero lower bound.
We convert the low_bound to sizetype to avoid some problems
with constant folding. (E.g. suppose the lower bound is 1,
and its mode is QI. Without the conversion, (ARRAY
+(INDEX-(unsigned char)1)) becomes ((ARRAY+(-(unsigned char)1))
+INDEX), which becomes (ARRAY+255+INDEX). Oops!) */
if (! integer_zerop (low_bound))
index = size_diffop (index, convert (sizetype, low_bound));
/* Fold an expression like: "foo"[2].
This is not done in fold so it won't happen inside &.
Don't fold if this is for wide characters since it's too
difficult to do correctly and this is a very rare case. */
if (modifier != EXPAND_CONST_ADDRESS && modifier != EXPAND_INITIALIZER
&& TREE_CODE (array) == STRING_CST
&& TREE_CODE (index) == INTEGER_CST
&& compare_tree_int (index, TREE_STRING_LENGTH (array)) < 0
&& GET_MODE_CLASS (mode) == MODE_INT
&& GET_MODE_SIZE (mode) == 1)
return
GEN_INT (TREE_STRING_POINTER (array)[TREE_INT_CST_LOW (index)]);
/* If this is a constant index into a constant array,
just get the value from the array. Handle both the cases when
we have an explicit constructor and when our operand is a variable
that was declared const. */
if (modifier != EXPAND_CONST_ADDRESS && modifier != EXPAND_INITIALIZER
&& TREE_CODE (array) == CONSTRUCTOR && ! TREE_SIDE_EFFECTS (array)
&& TREE_CODE (index) == INTEGER_CST
&& 0 > compare_tree_int (index,
list_length (CONSTRUCTOR_ELTS
(TREE_OPERAND (exp, 0)))))
{
tree elem;
for (elem = CONSTRUCTOR_ELTS (TREE_OPERAND (exp, 0)),
i = TREE_INT_CST_LOW (index);
elem != 0 && i != 0; i--, elem = TREE_CHAIN (elem))
;
if (elem)
return expand_expr (fold (TREE_VALUE (elem)), target,
tmode, ro_modifier);
}
else if (optimize >= 1
&& modifier != EXPAND_CONST_ADDRESS
&& modifier != EXPAND_INITIALIZER
&& TREE_READONLY (array) && ! TREE_SIDE_EFFECTS (array)
&& TREE_CODE (array) == VAR_DECL && DECL_INITIAL (array)
&& TREE_CODE (DECL_INITIAL (array)) != ERROR_MARK)
{
if (TREE_CODE (index) == INTEGER_CST)
{
tree init = DECL_INITIAL (array);
if (TREE_CODE (init) == CONSTRUCTOR)
{
tree elem;
for (elem = CONSTRUCTOR_ELTS (init);
(elem
&& !tree_int_cst_equal (TREE_PURPOSE (elem), index));
elem = TREE_CHAIN (elem))
;
if (elem && !TREE_SIDE_EFFECTS (TREE_VALUE (elem)))
return expand_expr (fold (TREE_VALUE (elem)), target,
tmode, ro_modifier);
}
else if (TREE_CODE (init) == STRING_CST
&& 0 > compare_tree_int (index,
TREE_STRING_LENGTH (init)))
{
tree type = TREE_TYPE (TREE_TYPE (init));
enum machine_mode mode = TYPE_MODE (type);
if (GET_MODE_CLASS (mode) == MODE_INT
&& GET_MODE_SIZE (mode) == 1)
return (GEN_INT
(TREE_STRING_POINTER
(init)[TREE_INT_CST_LOW (index)]));
}
}
}
}
/* Fall through. */
case COMPONENT_REF:
case BIT_FIELD_REF:
case ARRAY_RANGE_REF:
/* If the operand is a CONSTRUCTOR, we can just extract the
appropriate field if it is present. Don't do this if we have
already written the data since we want to refer to that copy
and varasm.c assumes that's what we'll do. */
if (code == COMPONENT_REF
&& TREE_CODE (TREE_OPERAND (exp, 0)) == CONSTRUCTOR
&& TREE_CST_RTL (TREE_OPERAND (exp, 0)) == 0)
{
tree elt;
for (elt = CONSTRUCTOR_ELTS (TREE_OPERAND (exp, 0)); elt;
elt = TREE_CHAIN (elt))
if (TREE_PURPOSE (elt) == TREE_OPERAND (exp, 1)
/* We can normally use the value of the field in the
CONSTRUCTOR. However, if this is a bitfield in
an integral mode that we can fit in a HOST_WIDE_INT,
we must mask only the number of bits in the bitfield,
since this is done implicitly by the constructor. If
the bitfield does not meet either of those conditions,
we can't do this optimization. */
&& (! DECL_BIT_FIELD (TREE_PURPOSE (elt))
|| ((GET_MODE_CLASS (DECL_MODE (TREE_PURPOSE (elt)))
== MODE_INT)
&& (GET_MODE_BITSIZE (DECL_MODE (TREE_PURPOSE (elt)))
<= HOST_BITS_PER_WIDE_INT))))
{
op0 = expand_expr (TREE_VALUE (elt), target, tmode, modifier);
if (DECL_BIT_FIELD (TREE_PURPOSE (elt)))
{
HOST_WIDE_INT bitsize
= TREE_INT_CST_LOW (DECL_SIZE (TREE_PURPOSE (elt)));
if (TREE_UNSIGNED (TREE_TYPE (TREE_PURPOSE (elt))))
{
op1 = GEN_INT (((HOST_WIDE_INT) 1 << bitsize) - 1);
op0 = expand_and (op0, op1, target);
}
else
{
enum machine_mode imode
= TYPE_MODE (TREE_TYPE (TREE_PURPOSE (elt)));
tree count
= build_int_2 (GET_MODE_BITSIZE (imode) - bitsize,
0);
op0 = expand_shift (LSHIFT_EXPR, imode, op0, count,
target, 0);
op0 = expand_shift (RSHIFT_EXPR, imode, op0, count,
target, 0);
}
}
return op0;
}
}
{
enum machine_mode mode1;
HOST_WIDE_INT bitsize, bitpos;
tree offset;
int volatilep = 0;
unsigned int alignment;
tree tem = get_inner_reference (exp, &bitsize, &bitpos, &offset,
&mode1, &unsignedp, &volatilep,
&alignment);
rtx orig_op0;
/* If we got back the original object, something is wrong. Perhaps
we are evaluating an expression too early. In any event, don't
infinitely recurse. */
if (tem == exp)
abort ();
/* If TEM's type is a union of variable size, pass TARGET to the inner
computation, since it will need a temporary and TARGET is known
to have to do. This occurs in unchecked conversion in Ada. */
orig_op0 = op0
= expand_expr (tem,
(TREE_CODE (TREE_TYPE (tem)) == UNION_TYPE
&& (TREE_CODE (TYPE_SIZE (TREE_TYPE (tem)))
!= INTEGER_CST)
? target : NULL_RTX),
VOIDmode,
(modifier == EXPAND_INITIALIZER
|| modifier == EXPAND_CONST_ADDRESS)
? modifier : EXPAND_NORMAL);
/* If this is a constant, put it into a register if it is a
legitimate constant and OFFSET is 0 and memory if it isn't. */
if (CONSTANT_P (op0))
{
enum machine_mode mode = TYPE_MODE (TREE_TYPE (tem));
if (mode != BLKmode && LEGITIMATE_CONSTANT_P (op0)
&& offset == 0)
op0 = force_reg (mode, op0);
else
op0 = validize_mem (force_const_mem (mode, op0));
}
if (offset != 0)
{
rtx offset_rtx = expand_expr (offset, NULL_RTX, VOIDmode, 0);
/* If this object is in a register, put it into memory.
This case can't occur in C, but can in Ada if we have
unchecked conversion of an expression from a scalar type to
an array or record type. */
if (GET_CODE (op0) == REG || GET_CODE (op0) == SUBREG
|| GET_CODE (op0) == CONCAT || GET_CODE (op0) == ADDRESSOF)
{
/* If the operand is a SAVE_EXPR, we can deal with this by
forcing the SAVE_EXPR into memory. */
if (TREE_CODE (TREE_OPERAND (exp, 0)) == SAVE_EXPR)
{
put_var_into_stack (TREE_OPERAND (exp, 0));
op0 = SAVE_EXPR_RTL (TREE_OPERAND (exp, 0));
}
else
{
tree nt
= build_qualified_type (TREE_TYPE (tem),
(TYPE_QUALS (TREE_TYPE (tem))
| TYPE_QUAL_CONST));
rtx memloc = assign_temp (nt, 1, 1, 1);
mark_temp_addr_taken (memloc);
emit_move_insn (memloc, op0);
op0 = memloc;
}
}
if (GET_CODE (op0) != MEM)
abort ();
if (GET_MODE (offset_rtx) != ptr_mode)
offset_rtx = convert_to_mode (ptr_mode, offset_rtx, 0);
#ifdef POINTERS_EXTEND_UNSIGNED
if (GET_MODE (offset_rtx) != Pmode)
offset_rtx = convert_memory_address (Pmode, offset_rtx);
#endif
/* A constant address in OP0 can have VOIDmode, we must not try
to call force_reg for that case. Avoid that case. */
if (GET_CODE (op0) == MEM
&& GET_MODE (op0) == BLKmode
&& GET_MODE (XEXP (op0, 0)) != VOIDmode
&& bitsize != 0
&& (bitpos % bitsize) == 0
&& (bitsize % GET_MODE_ALIGNMENT (mode1)) == 0
&& alignment == GET_MODE_ALIGNMENT (mode1))
{
rtx temp = adjust_address (op0, mode1, bitpos / BITS_PER_UNIT);
if (GET_CODE (XEXP (temp, 0)) == REG)
op0 = temp;
else
op0 = (replace_equiv_address
(op0,
force_reg (GET_MODE (XEXP (temp, 0)),
XEXP (temp, 0))));
bitpos = 0;
}
op0 = offset_address (op0, offset_rtx,
highest_pow2_factor (offset));
}
/* Don't forget about volatility even if this is a bitfield. */
if (GET_CODE (op0) == MEM && volatilep && ! MEM_VOLATILE_P (op0))
{
if (op0 == orig_op0)
op0 = copy_rtx (op0);
MEM_VOLATILE_P (op0) = 1;
}
/* Check the access. */
if (cfun != 0 && current_function_check_memory_usage
&& GET_CODE (op0) == MEM)
{
enum memory_use_mode memory_usage;
memory_usage = get_memory_usage_from_modifier (modifier);
if (memory_usage != MEMORY_USE_DONT)
{
rtx to;
int size;
to = plus_constant (XEXP (op0, 0), (bitpos / BITS_PER_UNIT));
size = (bitpos % BITS_PER_UNIT) + bitsize + BITS_PER_UNIT - 1;
/* Check the access right of the pointer. */
in_check_memory_usage = 1;
if (size > BITS_PER_UNIT)
emit_library_call (chkr_check_addr_libfunc,
LCT_CONST_MAKE_BLOCK, VOIDmode, 3, to,
Pmode, GEN_INT (size / BITS_PER_UNIT),
TYPE_MODE (sizetype),
GEN_INT (memory_usage),
TYPE_MODE (integer_type_node));
in_check_memory_usage = 0;
}
}
/* In cases where an aligned union has an unaligned object
as a field, we might be extracting a BLKmode value from
an integer-mode (e.g., SImode) object. Handle this case
by doing the extract into an object as wide as the field
(which we know to be the width of a basic mode), then
storing into memory, and changing the mode to BLKmode. */
if (mode1 == VOIDmode
|| GET_CODE (op0) == REG || GET_CODE (op0) == SUBREG
|| (mode1 != BLKmode && ! direct_load[(int) mode1]
&& GET_MODE_CLASS (mode) != MODE_COMPLEX_INT
&& GET_MODE_CLASS (mode) != MODE_COMPLEX_FLOAT
&& modifier != EXPAND_CONST_ADDRESS
&& modifier != EXPAND_INITIALIZER)
/* If the field isn't aligned enough to fetch as a memref,
fetch it as a bit field. */
|| (mode1 != BLKmode
&& SLOW_UNALIGNED_ACCESS (mode1, alignment)
&& ((TYPE_ALIGN (TREE_TYPE (tem))
< GET_MODE_ALIGNMENT (mode))
|| (bitpos % GET_MODE_ALIGNMENT (mode) != 0)))
/* If the type and the field are a constant size and the
size of the type isn't the same size as the bitfield,
we must use bitfield operations. */
|| (bitsize >= 0
&& (TREE_CODE (TYPE_SIZE (TREE_TYPE (exp)))
== INTEGER_CST)
&& 0 != compare_tree_int (TYPE_SIZE (TREE_TYPE (exp)),
bitsize))
|| (mode == BLKmode
&& SLOW_UNALIGNED_ACCESS (mode, alignment)
&& (TYPE_ALIGN (type) > alignment
|| bitpos % TYPE_ALIGN (type) != 0)))
{
enum machine_mode ext_mode = mode;
if (ext_mode == BLKmode
&& ! (target != 0 && GET_CODE (op0) == MEM
&& GET_CODE (target) == MEM
&& bitpos % BITS_PER_UNIT == 0))
ext_mode = mode_for_size (bitsize, MODE_INT, 1);
if (ext_mode == BLKmode)
{
/* In this case, BITPOS must start at a byte boundary and
TARGET, if specified, must be a MEM. */
if (GET_CODE (op0) != MEM
|| (target != 0 && GET_CODE (target) != MEM)
|| bitpos % BITS_PER_UNIT != 0)
abort ();
op0 = adjust_address (op0, VOIDmode, bitpos / BITS_PER_UNIT);
if (target == 0)
target = assign_temp (type, 0, 1, 1);
emit_block_move (target, op0,
bitsize == -1 ? expr_size (exp)
: GEN_INT ((bitsize + BITS_PER_UNIT - 1)
/ BITS_PER_UNIT));
return target;
}
op0 = validize_mem (op0);
if (GET_CODE (op0) == MEM && GET_CODE (XEXP (op0, 0)) == REG)
mark_reg_pointer (XEXP (op0, 0), alignment);
op0 = extract_bit_field (op0, bitsize, bitpos,
unsignedp, target, ext_mode, ext_mode,
alignment,
int_size_in_bytes (TREE_TYPE (tem)));
/* If the result is a record type and BITSIZE is narrower than
the mode of OP0, an integral mode, and this is a big endian
machine, we must put the field into the high-order bits. */
if (TREE_CODE (type) == RECORD_TYPE && BYTES_BIG_ENDIAN
&& GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
&& bitsize < GET_MODE_BITSIZE (GET_MODE (op0)))
op0 = expand_shift (LSHIFT_EXPR, GET_MODE (op0), op0,
size_int (GET_MODE_BITSIZE (GET_MODE (op0))
- bitsize),
op0, 1);
if (mode == BLKmode)
{
tree nt = build_qualified_type (type_for_mode (ext_mode, 0),
TYPE_QUAL_CONST);
rtx new = assign_temp (nt, 0, 1, 1);
emit_move_insn (new, op0);
op0 = copy_rtx (new);
PUT_MODE (op0, BLKmode);
}
return op0;
}
/* If the result is BLKmode, use that to access the object
now as well. */
if (mode == BLKmode)
mode1 = BLKmode;
/* Get a reference to just this component. */
if (modifier == EXPAND_CONST_ADDRESS
|| modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER)
op0 = adjust_address_nv (op0, mode1, bitpos / BITS_PER_UNIT);
else
op0 = adjust_address (op0, mode1, bitpos / BITS_PER_UNIT);
if (op0 == orig_op0)
op0 = copy_rtx (op0);
set_mem_attributes (op0, exp, 0);
if (GET_CODE (XEXP (op0, 0)) == REG)
mark_reg_pointer (XEXP (op0, 0), alignment);
MEM_VOLATILE_P (op0) |= volatilep;
if (mode == mode1 || mode1 == BLKmode || mode1 == tmode
|| modifier == EXPAND_CONST_ADDRESS
|| modifier == EXPAND_INITIALIZER)
return op0;
else if (target == 0)
target = gen_reg_rtx (tmode != VOIDmode ? tmode : mode);
convert_move (target, op0, unsignedp);
return target;
}
case VTABLE_REF:
{
rtx insn, before = get_last_insn (), vtbl_ref;
/* Evaluate the interior expression. */
subtarget = expand_expr (TREE_OPERAND (exp, 0), target,
tmode, modifier);
/* Get or create an instruction off which to hang a note. */
if (REG_P (subtarget))
{
target = subtarget;
insn = get_last_insn ();
if (insn == before)
abort ();
if (! INSN_P (insn))
insn = prev_nonnote_insn (insn);
}
else
{
target = gen_reg_rtx (GET_MODE (subtarget));
insn = emit_move_insn (target, subtarget);
}
/* Collect the data for the note. */
vtbl_ref = XEXP (DECL_RTL (TREE_OPERAND (exp, 1)), 0);
vtbl_ref = plus_constant (vtbl_ref,
tree_low_cst (TREE_OPERAND (exp, 2), 0));
/* Discard the initial CONST that was added. */
vtbl_ref = XEXP (vtbl_ref, 0);
REG_NOTES (insn)
= gen_rtx_EXPR_LIST (REG_VTABLE_REF, vtbl_ref, REG_NOTES (insn));
return target;
}
/* Intended for a reference to a buffer of a file-object in Pascal.
But it's not certain that a special tree code will really be
necessary for these. INDIRECT_REF might work for them. */
case BUFFER_REF:
abort ();
case IN_EXPR:
{
/* Pascal set IN expression.
Algorithm:
rlo = set_low - (set_low%bits_per_word);
the_word = set [ (index - rlo)/bits_per_word ];
bit_index = index % bits_per_word;
bitmask = 1 << bit_index;
return !!(the_word & bitmask); */
tree set = TREE_OPERAND (exp, 0);
tree index = TREE_OPERAND (exp, 1);
int iunsignedp = TREE_UNSIGNED (TREE_TYPE (index));
tree set_type = TREE_TYPE (set);
tree set_low_bound = TYPE_MIN_VALUE (TYPE_DOMAIN (set_type));
tree set_high_bound = TYPE_MAX_VALUE (TYPE_DOMAIN (set_type));
rtx index_val = expand_expr (index, 0, VOIDmode, 0);
rtx lo_r = expand_expr (set_low_bound, 0, VOIDmode, 0);
rtx hi_r = expand_expr (set_high_bound, 0, VOIDmode, 0);
rtx setval = expand_expr (set, 0, VOIDmode, 0);
rtx setaddr = XEXP (setval, 0);
enum machine_mode index_mode = TYPE_MODE (TREE_TYPE (index));
rtx rlow;
rtx diff, quo, rem, addr, bit, result;
/* If domain is empty, answer is no. Likewise if index is constant
and out of bounds. */
if (((TREE_CODE (set_high_bound) == INTEGER_CST
&& TREE_CODE (set_low_bound) == INTEGER_CST
&& tree_int_cst_lt (set_high_bound, set_low_bound))
|| (TREE_CODE (index) == INTEGER_CST
&& TREE_CODE (set_low_bound) == INTEGER_CST
&& tree_int_cst_lt (index, set_low_bound))
|| (TREE_CODE (set_high_bound) == INTEGER_CST
&& TREE_CODE (index) == INTEGER_CST
&& tree_int_cst_lt (set_high_bound, index))))
return const0_rtx;
if (target == 0)
target = gen_reg_rtx (tmode != VOIDmode ? tmode : mode);
/* If we get here, we have to generate the code for both cases
(in range and out of range). */
op0 = gen_label_rtx ();
op1 = gen_label_rtx ();
if (! (GET_CODE (index_val) == CONST_INT
&& GET_CODE (lo_r) == CONST_INT))
{
emit_cmp_and_jump_insns (index_val, lo_r, LT, NULL_RTX,
GET_MODE (index_val), iunsignedp, 0, op1);
}
if (! (GET_CODE (index_val) == CONST_INT
&& GET_CODE (hi_r) == CONST_INT))
{
emit_cmp_and_jump_insns (index_val, hi_r, GT, NULL_RTX,
GET_MODE (index_val), iunsignedp, 0, op1);
}
/* Calculate the element number of bit zero in the first word
of the set. */
if (GET_CODE (lo_r) == CONST_INT)
rlow = GEN_INT (INTVAL (lo_r)
& ~((HOST_WIDE_INT) 1 << BITS_PER_UNIT));
else
rlow = expand_binop (index_mode, and_optab, lo_r,
GEN_INT (~((HOST_WIDE_INT) 1 << BITS_PER_UNIT)),
NULL_RTX, iunsignedp, OPTAB_LIB_WIDEN);
diff = expand_binop (index_mode, sub_optab, index_val, rlow,
NULL_RTX, iunsignedp, OPTAB_LIB_WIDEN);
quo = expand_divmod (0, TRUNC_DIV_EXPR, index_mode, diff,
GEN_INT (BITS_PER_UNIT), NULL_RTX, iunsignedp);
rem = expand_divmod (1, TRUNC_MOD_EXPR, index_mode, index_val,
GEN_INT (BITS_PER_UNIT), NULL_RTX, iunsignedp);
addr = memory_address (byte_mode,
expand_binop (index_mode, add_optab, diff,
setaddr, NULL_RTX, iunsignedp,
OPTAB_LIB_WIDEN));
/* Extract the bit we want to examine. */
bit = expand_shift (RSHIFT_EXPR, byte_mode,
gen_rtx_MEM (byte_mode, addr),
make_tree (TREE_TYPE (index), rem),
NULL_RTX, 1);
result = expand_binop (byte_mode, and_optab, bit, const1_rtx,
GET_MODE (target) == byte_mode ? target : 0,
1, OPTAB_LIB_WIDEN);
if (result != target)
convert_move (target, result, 1);
/* Output the code to handle the out-of-range case. */
emit_jump (op0);
emit_label (op1);
emit_move_insn (target, const0_rtx);
emit_label (op0);
return target;
}
case WITH_CLEANUP_EXPR:
if (WITH_CLEANUP_EXPR_RTL (exp) == 0)
{
WITH_CLEANUP_EXPR_RTL (exp)
= expand_expr (TREE_OPERAND (exp, 0), target, tmode, ro_modifier);
expand_decl_cleanup (NULL_TREE, TREE_OPERAND (exp, 1));
/* That's it for this cleanup. */
TREE_OPERAND (exp, 1) = 0;
}
return WITH_CLEANUP_EXPR_RTL (exp);
case CLEANUP_POINT_EXPR:
{
/* Start a new binding layer that will keep track of all cleanup
actions to be performed. */
expand_start_bindings (2);
target_temp_slot_level = temp_slot_level;
op0 = expand_expr (TREE_OPERAND (exp, 0), target, tmode, ro_modifier);
/* If we're going to use this value, load it up now. */
if (! ignore)
op0 = force_not_mem (op0);
preserve_temp_slots (op0);
expand_end_bindings (NULL_TREE, 0, 0);
}
return op0;
case CALL_EXPR:
/* Check for a built-in function. */
if (TREE_CODE (TREE_OPERAND (exp, 0)) == ADDR_EXPR
&& (TREE_CODE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0))
== FUNCTION_DECL)
&& DECL_BUILT_IN (TREE_OPERAND (TREE_OPERAND (exp, 0), 0)))
{
if (DECL_BUILT_IN_CLASS (TREE_OPERAND (TREE_OPERAND (exp, 0), 0))
== BUILT_IN_FRONTEND)
return (*lang_expand_expr) (exp, original_target, tmode, modifier);
else
return expand_builtin (exp, target, subtarget, tmode, ignore);
}
return expand_call (exp, target, ignore);
case NON_LVALUE_EXPR:
case NOP_EXPR:
case CONVERT_EXPR:
case REFERENCE_EXPR:
if (TREE_OPERAND (exp, 0) == error_mark_node)
return const0_rtx;
if (TREE_CODE (type) == UNION_TYPE)
{
tree valtype = TREE_TYPE (TREE_OPERAND (exp, 0));
/* If both input and output are BLKmode, this conversion
isn't actually doing anything unless we need to make the
alignment stricter. */
if (mode == BLKmode && TYPE_MODE (valtype) == BLKmode
&& (TYPE_ALIGN (type) <= TYPE_ALIGN (valtype)
|| TYPE_ALIGN (type) >= BIGGEST_ALIGNMENT))
return expand_expr (TREE_OPERAND (exp, 0), target, tmode,
modifier);
if (target == 0)
target = assign_temp (type, 0, 1, 1);
if (GET_CODE (target) == MEM)
/* Store data into beginning of memory target. */
store_expr (TREE_OPERAND (exp, 0),
adjust_address (target, TYPE_MODE (valtype), 0), 0);
else if (GET_CODE (target) == REG)
/* Store this field into a union of the proper type. */
store_field (target,
MIN ((int_size_in_bytes (TREE_TYPE
(TREE_OPERAND (exp, 0)))
* BITS_PER_UNIT),
(HOST_WIDE_INT) GET_MODE_BITSIZE (mode)),
0, TYPE_MODE (valtype), TREE_OPERAND (exp, 0),
VOIDmode, 0, BITS_PER_UNIT,
int_size_in_bytes (type), 0);
else
abort ();
/* Return the entire union. */
return target;
}
if (mode == TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 0))))
{
op0 = expand_expr (TREE_OPERAND (exp, 0), target, VOIDmode,
ro_modifier);
/* If the signedness of the conversion differs and OP0 is
a promoted SUBREG, clear that indication since we now
have to do the proper extension. */
if (TREE_UNSIGNED (TREE_TYPE (TREE_OPERAND (exp, 0))) != unsignedp
&& GET_CODE (op0) == SUBREG)
SUBREG_PROMOTED_VAR_P (op0) = 0;
return op0;
}
op0 = expand_expr (TREE_OPERAND (exp, 0), NULL_RTX, mode, 0);
if (GET_MODE (op0) == mode)
return op0;
/* If OP0 is a constant, just convert it into the proper mode. */
if (CONSTANT_P (op0))
return
convert_modes (mode, TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 0))),
op0, TREE_UNSIGNED (TREE_TYPE (TREE_OPERAND (exp, 0))));
if (modifier == EXPAND_INITIALIZER)
return gen_rtx_fmt_e (unsignedp ? ZERO_EXTEND : SIGN_EXTEND, mode, op0);
if (target == 0)
return
convert_to_mode (mode, op0,
TREE_UNSIGNED (TREE_TYPE (TREE_OPERAND (exp, 0))));
else
convert_move (target, op0,
TREE_UNSIGNED (TREE_TYPE (TREE_OPERAND (exp, 0))));
return target;
case PLUS_EXPR:
/* We come here from MINUS_EXPR when the second operand is a
constant. */
plus_expr:
this_optab = ! unsignedp && flag_trapv
&& (GET_MODE_CLASS(mode) == MODE_INT)
? addv_optab : add_optab;
/* If we are adding a constant, an RTL_EXPR that is sp, fp, or ap, and
something else, make sure we add the register to the constant and
then to the other thing. This case can occur during strength
reduction and doing it this way will produce better code if the
frame pointer or argument pointer is eliminated.
fold-const.c will ensure that the constant is always in the inner
PLUS_EXPR, so the only case we need to do anything about is if
sp, ap, or fp is our second argument, in which case we must swap
the innermost first argument and our second argument. */
if (TREE_CODE (TREE_OPERAND (exp, 0)) == PLUS_EXPR
&& TREE_CODE (TREE_OPERAND (TREE_OPERAND (exp, 0), 1)) == INTEGER_CST
&& TREE_CODE (TREE_OPERAND (exp, 1)) == RTL_EXPR
&& (RTL_EXPR_RTL (TREE_OPERAND (exp, 1)) == frame_pointer_rtx
|| RTL_EXPR_RTL (TREE_OPERAND (exp, 1)) == stack_pointer_rtx
|| RTL_EXPR_RTL (TREE_OPERAND (exp, 1)) == arg_pointer_rtx))
{
tree t = TREE_OPERAND (exp, 1);
TREE_OPERAND (exp, 1) = TREE_OPERAND (TREE_OPERAND (exp, 0), 0);
TREE_OPERAND (TREE_OPERAND (exp, 0), 0) = t;
}
/* If the result is to be ptr_mode and we are adding an integer to
something, we might be forming a constant. So try to use
plus_constant. If it produces a sum and we can't accept it,
use force_operand. This allows P = &ARR[const] to generate
efficient code on machines where a SYMBOL_REF is not a valid
address.
If this is an EXPAND_SUM call, always return the sum. */
if (modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER
|| (mode == ptr_mode && (unsignedp || ! flag_trapv)))
{
if (TREE_CODE (TREE_OPERAND (exp, 0)) == INTEGER_CST
&& GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
&& TREE_CONSTANT (TREE_OPERAND (exp, 1)))
{
rtx constant_part;
op1 = expand_expr (TREE_OPERAND (exp, 1), subtarget, VOIDmode,
EXPAND_SUM);
/* Use immed_double_const to ensure that the constant is
truncated according to the mode of OP1, then sign extended
to a HOST_WIDE_INT. Using the constant directly can result
in non-canonical RTL in a 64x32 cross compile. */
constant_part
= immed_double_const (TREE_INT_CST_LOW (TREE_OPERAND (exp, 0)),
(HOST_WIDE_INT) 0,
TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 1))));
op1 = plus_constant (op1, INTVAL (constant_part));
if (modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
op1 = force_operand (op1, target);
return op1;
}
else if (TREE_CODE (TREE_OPERAND (exp, 1)) == INTEGER_CST
&& GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_INT
&& TREE_CONSTANT (TREE_OPERAND (exp, 0)))
{
rtx constant_part;
op0 = expand_expr (TREE_OPERAND (exp, 0), subtarget, VOIDmode,
EXPAND_SUM);
if (! CONSTANT_P (op0))
{
op1 = expand_expr (TREE_OPERAND (exp, 1), NULL_RTX,
VOIDmode, modifier);
/* Don't go to both_summands if modifier
says it's not right to return a PLUS. */
if (modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
goto binop2;
goto both_summands;
}
/* Use immed_double_const to ensure that the constant is
truncated according to the mode of OP1, then sign extended
to a HOST_WIDE_INT. Using the constant directly can result
in non-canonical RTL in a 64x32 cross compile. */
constant_part
= immed_double_const (TREE_INT_CST_LOW (TREE_OPERAND (exp, 1)),
(HOST_WIDE_INT) 0,
TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 0))));
op0 = plus_constant (op0, INTVAL (constant_part));
if (modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
op0 = force_operand (op0, target);
return op0;
}
}
/* No sense saving up arithmetic to be done
if it's all in the wrong mode to form part of an address.
And force_operand won't know whether to sign-extend or
zero-extend. */
if ((modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
|| mode != ptr_mode)
goto binop;
if (! safe_from_p (subtarget, TREE_OPERAND (exp, 1), 1))
subtarget = 0;
op0 = expand_expr (TREE_OPERAND (exp, 0), subtarget, VOIDmode, ro_modifier);
op1 = expand_expr (TREE_OPERAND (exp, 1), NULL_RTX, VOIDmode, ro_modifier);
both_summands:
/* Make sure any term that's a sum with a constant comes last. */
if (GET_CODE (op0) == PLUS
&& CONSTANT_P (XEXP (op0, 1)))
{
temp = op0;
op0 = op1;
op1 = temp;
}
/* If adding to a sum including a constant,
associate it to put the constant outside. */
if (GET_CODE (op1) == PLUS
&& CONSTANT_P (XEXP (op1, 1)))
{
rtx constant_term = const0_rtx;
temp = simplify_binary_operation (PLUS, mode, XEXP (op1, 0), op0);
if (temp != 0)
op0 = temp;
/* Ensure that MULT comes first if there is one. */
else if (GET_CODE (op0) == MULT)
op0 = gen_rtx_PLUS (mode, op0, XEXP (op1, 0));
else
op0 = gen_rtx_PLUS (mode, XEXP (op1, 0), op0);
/* Let's also eliminate constants from op0 if possible. */
op0 = eliminate_constant_term (op0, &constant_term);
/* CONSTANT_TERM and XEXP (op1, 1) are known to be constant, so
their sum should be a constant. Form it into OP1, since the
result we want will then be OP0 + OP1. */
temp = simplify_binary_operation (PLUS, mode, constant_term,
XEXP (op1, 1));
if (temp != 0)
op1 = temp;
else
op1 = gen_rtx_PLUS (mode, constant_term, XEXP (op1, 1));
}
/* Put a constant term last and put a multiplication first. */
if (CONSTANT_P (op0) || GET_CODE (op1) == MULT)
temp = op1, op1 = op0, op0 = temp;
temp = simplify_binary_operation (PLUS, mode, op0, op1);
return temp ? temp : gen_rtx_PLUS (mode, op0, op1);
case MINUS_EXPR:
/* For initializers, we are allowed to return a MINUS of two
symbolic constants. Here we handle all cases when both operands
are constant. */
/* Handle difference of two symbolic constants,
for the sake of an initializer. */
if ((modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER)
&& really_constant_p (TREE_OPERAND (exp, 0))
&& really_constant_p (TREE_OPERAND (exp, 1)))
{
rtx op0 = expand_expr (TREE_OPERAND (exp, 0), NULL_RTX,
VOIDmode, ro_modifier);
rtx op1 = expand_expr (TREE_OPERAND (exp, 1), NULL_RTX,
VOIDmode, ro_modifier);
/* If the last operand is a CONST_INT, use plus_constant of
the negated constant. Else make the MINUS. */
if (GET_CODE (op1) == CONST_INT)
return plus_constant (op0, - INTVAL (op1));
else
return gen_rtx_MINUS (mode, op0, op1);
}
/* Convert A - const to A + (-const). */
if (TREE_CODE (TREE_OPERAND (exp, 1)) == INTEGER_CST)
{
tree negated = fold (build1 (NEGATE_EXPR, type,
TREE_OPERAND (exp, 1)));
if (TREE_UNSIGNED (type) || TREE_OVERFLOW (negated))
/* If we can't negate the constant in TYPE, leave it alone and
expand_binop will negate it for us. We used to try to do it
here in the signed version of TYPE, but that doesn't work
on POINTER_TYPEs. */;
else
{
exp = build (PLUS_EXPR, type, TREE_OPERAND (exp, 0), negated);
goto plus_expr;
}
}
this_optab = ! unsignedp && flag_trapv
&& (GET_MODE_CLASS(mode) == MODE_INT)
? subv_optab : sub_optab;
goto binop;
case MULT_EXPR:
/* If first operand is constant, swap them.
Thus the following special case checks need only
check the second operand. */
if (TREE_CODE (TREE_OPERAND (exp, 0)) == INTEGER_CST)
{
tree t1 = TREE_OPERAND (exp, 0);
TREE_OPERAND (exp, 0) = TREE_OPERAND (exp, 1);
TREE_OPERAND (exp, 1) = t1;
}
/* Attempt to return something suitable for generating an
indexed address, for machines that support that. */
if (modifier == EXPAND_SUM && mode == ptr_mode
&& TREE_CODE (TREE_OPERAND (exp, 1)) == INTEGER_CST
&& GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
{
op0 = expand_expr (TREE_OPERAND (exp, 0), subtarget, VOIDmode,
EXPAND_SUM);
/* Apply distributive law if OP0 is x+c. */
if (GET_CODE (op0) == PLUS
&& GET_CODE (XEXP (op0, 1)) == CONST_INT)
return
gen_rtx_PLUS
(mode,
gen_rtx_MULT
(mode, XEXP (op0, 0),
GEN_INT (TREE_INT_CST_LOW (TREE_OPERAND (exp, 1)))),
GEN_INT (TREE_INT_CST_LOW (TREE_OPERAND (exp, 1))
* INTVAL (XEXP (op0, 1))));
if (GET_CODE (op0) != REG)
op0 = force_operand (op0, NULL_RTX);
if (GET_CODE (op0) != REG)
op0 = copy_to_mode_reg (mode, op0);
return
gen_rtx_MULT (mode, op0,
GEN_INT (TREE_INT_CST_LOW (TREE_OPERAND (exp, 1))));
}
if (! safe_from_p (subtarget, TREE_OPERAND (exp, 1), 1))
subtarget = 0;
/* Check for multiplying things that have been extended
from a narrower type. If this machine supports multiplying
in that narrower type with a result in the desired type,
do it that way, and avoid the explicit type-conversion. */
if (TREE_CODE (TREE_OPERAND (exp, 0)) == NOP_EXPR
&& TREE_CODE (type) == INTEGER_TYPE
&& (TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0)))
< TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (exp, 0))))
&& ((TREE_CODE (TREE_OPERAND (exp, 1)) == INTEGER_CST
&& int_fits_type_p (TREE_OPERAND (exp, 1),
TREE_TYPE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0)))
/* Don't use a widening multiply if a shift will do. */
&& ((GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 1))))
> HOST_BITS_PER_WIDE_INT)
|| exact_log2 (TREE_INT_CST_LOW (TREE_OPERAND (exp, 1))) < 0))
||
(TREE_CODE (TREE_OPERAND (exp, 1)) == NOP_EXPR
&& (TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (TREE_OPERAND (exp, 1), 0)))
==
TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0))))
/* If both operands are extended, they must either both
be zero-extended or both be sign-extended. */
&& (TREE_UNSIGNED (TREE_TYPE (TREE_OPERAND (TREE_OPERAND (exp, 1), 0)))
==
TREE_UNSIGNED (TREE_TYPE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0)))))))
{
enum machine_mode innermode
= TYPE_MODE (TREE_TYPE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0)));
optab other_optab = (TREE_UNSIGNED (TREE_TYPE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0)))
? smul_widen_optab : umul_widen_optab);
this_optab = (TREE_UNSIGNED (TREE_TYPE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0)))
? umul_widen_optab : smul_widen_optab);
if (mode == GET_MODE_WIDER_MODE (innermode))
{
if (this_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
{
op0 = expand_expr (TREE_OPERAND (TREE_OPERAND (exp, 0), 0),
NULL_RTX, VOIDmode, 0);
if (TREE_CODE (TREE_OPERAND (exp, 1)) == INTEGER_CST)
op1 = expand_expr (TREE_OPERAND (exp, 1), NULL_RTX,
VOIDmode, 0);
else
op1 = expand_expr (TREE_OPERAND (TREE_OPERAND (exp, 1), 0),
NULL_RTX, VOIDmode, 0);
goto binop2;
}
else if (other_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing
&& innermode == word_mode)
{
rtx htem;
op0 = expand_expr (TREE_OPERAND (TREE_OPERAND (exp, 0), 0),
NULL_RTX, VOIDmode, 0);
if (TREE_CODE (TREE_OPERAND (exp, 1)) == INTEGER_CST)
op1 = convert_modes (innermode, mode,
expand_expr (TREE_OPERAND (exp, 1),
NULL_RTX, VOIDmode, 0),
unsignedp);
else
op1 = expand_expr (TREE_OPERAND (TREE_OPERAND (exp, 1), 0),
NULL_RTX, VOIDmode, 0);
temp = expand_binop (mode, other_optab, op0, op1, target,
unsignedp, OPTAB_LIB_WIDEN);
htem = expand_mult_highpart_adjust (innermode,
gen_highpart (innermode, temp),
op0, op1,
gen_highpart (innermode, temp),
unsignedp);
emit_move_insn (gen_highpart (innermode, temp), htem);
return temp;
}
}
}
op0 = expand_expr (TREE_OPERAND (exp, 0), subtarget, VOIDmode, 0);
op1 = expand_expr (TREE_OPERAND (exp, 1), NULL_RTX, VOIDmode, 0);
return expand_mult (mode, op0, op1, target, unsignedp);
case TRUNC_DIV_EXPR:
case FLOOR_DIV_EXPR:
case CEIL_DIV_EXPR:
case ROUND_DIV_EXPR:
case EXACT_DIV_EXPR:
if (! safe_from_p (subtarget, TREE_OPERAND (exp, 1), 1))
subtarget = 0;
/* Possible optimization: compute the dividend with EXPAND_SUM
then if the divisor is constant can optimize the case
where some terms of the dividend have coeffs divisible by it. */
op0 = expand_expr (TREE_OPERAND (exp, 0), subtarget, VOIDmode, 0);
op1 = expand_expr (TREE_OPERAND (exp, 1), NULL_RTX, VOIDmode, 0);
return expand_divmod (0, code, mode, op0, op1, target, unsignedp);
case RDIV_EXPR:
/* Emit a/b as a*(1/b). Later we may manage CSE the reciprocal saving
expensive divide. If not, combine will rebuild the original
computation. */
if (flag_unsafe_math_optimizations && optimize && !optimize_size
&& !real_onep (TREE_OPERAND (exp, 0)))
return expand_expr (build (MULT_EXPR, type, TREE_OPERAND (exp, 0),
build (RDIV_EXPR, type,
build_real (type, dconst1),
TREE_OPERAND (exp, 1))),
target, tmode, unsignedp);
this_optab = sdiv_optab;
goto binop;
case TRUNC_MOD_EXPR:
case FLOOR_MOD_EXPR:
case CEIL_MOD_EXPR:
case ROUND_MOD_EXPR:
if (! safe_from_p (subtarget, TREE_OPERAND (exp, 1), 1))
subtarget = 0;
op0 = expand_expr (TREE_OPERAND (exp, 0), subtarget, VOIDmode, 0);
op1 = expand_expr (TREE_OPERAND (exp, 1), NULL_RTX, VOIDmode, 0);
return expand_divmod (1, code, mode, op0, op1, target, unsignedp);
case FIX_ROUND_EXPR:
case FIX_FLOOR_EXPR:
case FIX_CEIL_EXPR:
abort (); /* Not used for C. */
case FIX_TRUNC_EXPR:
op0 = expand_expr (TREE_OPERAND (exp, 0), NULL_RTX, VOIDmode, 0);
if (target == 0)
target = gen_reg_rtx (mode);
expand_fix (target, op0, unsignedp);
return target;
case FLOAT_EXPR:
op0 = expand_expr (TREE_OPERAND (exp, 0), NULL_RTX, VOIDmode, 0);
if (target == 0)
target = gen_reg_rtx (mode);
/* expand_float can't figure out what to do if FROM has VOIDmode.
So give it the correct mode. With -O, cse will optimize this. */
if (GET_MODE (op0) == VOIDmode)
op0 = copy_to_mode_reg (TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 0))),
op0);
expand_float (target, op0,
TREE_UNSIGNED (TREE_TYPE (TREE_OPERAND (exp, 0))));
return target;
case NEGATE_EXPR:
op0 = expand_expr (TREE_OPERAND (exp, 0), subtarget, VOIDmode, 0);
temp = expand_unop (mode,
! unsignedp && flag_trapv
&& (GET_MODE_CLASS(mode) == MODE_INT)
? negv_optab : neg_optab, op0, target, 0);
if (temp == 0)
abort ();
return temp;
case ABS_EXPR:
op0 = expand_expr (TREE_OPERAND (exp, 0), subtarget, VOIDmode, 0);
/* Handle complex values specially. */
if (GET_MODE_CLASS (mode) == MODE_COMPLEX_INT
|| GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT)
return expand_complex_abs (mode, op0, target, unsignedp);
/* Unsigned abs is simply the operand. Testing here means we don't
risk generating incorrect code below. */
if (TREE_UNSIGNED (type))
return op0;
return expand_abs (mode, op0, target, unsignedp,
safe_from_p (target, TREE_OPERAND (exp, 0), 1));
case MAX_EXPR:
case MIN_EXPR:
target = original_target;
if (target == 0 || ! safe_from_p (target, TREE_OPERAND (exp, 1), 1)
|| (GET_CODE (target) == MEM && MEM_VOLATILE_P (target))
|| GET_MODE (target) != mode
|| (GET_CODE (target) == REG
&& REGNO (target) < FIRST_PSEUDO_REGISTER))
target = gen_reg_rtx (mode);
op1 = expand_expr (TREE_OPERAND (exp, 1), NULL_RTX, VOIDmode, 0);
op0 = expand_expr (TREE_OPERAND (exp, 0), target, VOIDmode, 0);
/* First try to do it with a special MIN or MAX instruction.
If that does not win, use a conditional jump to select the proper
value. */
this_optab = (TREE_UNSIGNED (type)
? (code == MIN_EXPR ? umin_optab : umax_optab)
: (code == MIN_EXPR ? smin_optab : smax_optab));
temp = expand_binop (mode, this_optab, op0, op1, target, unsignedp,
OPTAB_WIDEN);
if (temp != 0)
return temp;
/* At this point, a MEM target is no longer useful; we will get better
code without it. */
if (GET_CODE (target) == MEM)
target = gen_reg_rtx (mode);
if (target != op0)
emit_move_insn (target, op0);
op0 = gen_label_rtx ();
/* If this mode is an integer too wide to compare properly,
compare word by word. Rely on cse to optimize constant cases. */
if (GET_MODE_CLASS (mode) == MODE_INT
&& ! can_compare_p (GE, mode, ccp_jump))
{
if (code == MAX_EXPR)
do_jump_by_parts_greater_rtx (mode, TREE_UNSIGNED (type),
target, op1, NULL_RTX, op0);
else
do_jump_by_parts_greater_rtx (mode, TREE_UNSIGNED (type),
op1, target, NULL_RTX, op0);
}
else
{
int unsignedp = TREE_UNSIGNED (TREE_TYPE (TREE_OPERAND (exp, 1)));
do_compare_rtx_and_jump (target, op1, code == MAX_EXPR ? GE : LE,
unsignedp, mode, NULL_RTX, 0, NULL_RTX,
op0);
}
emit_move_insn (target, op1);
emit_label (op0);
return target;
case BIT_NOT_EXPR:
op0 = expand_expr (TREE_OPERAND (exp, 0), subtarget, VOIDmode, 0);
temp = expand_unop (mode, one_cmpl_optab, op0, target, 1);
if (temp == 0)
abort ();
return temp;
case FFS_EXPR:
op0 = expand_expr (TREE_OPERAND (exp, 0), subtarget, VOIDmode, 0);
temp = expand_unop (mode, ffs_optab, op0, target, 1);
if (temp == 0)
abort ();
return temp;
/* ??? Can optimize bitwise operations with one arg constant.
Can optimize (a bitwise1 n) bitwise2 (a bitwise3 b)
and (a bitwise1 b) bitwise2 b (etc)
but that is probably not worth while. */
/* BIT_AND_EXPR is for bitwise anding. TRUTH_AND_EXPR is for anding two
boolean values when we want in all cases to compute both of them. In
general it is fastest to do TRUTH_AND_EXPR by computing both operands
as actual zero-or-1 values and then bitwise anding. In cases where
there cannot be any side effects, better code would be made by
treating TRUTH_AND_EXPR like TRUTH_ANDIF_EXPR; but the question is
how to recognize those cases. */
case TRUTH_AND_EXPR:
case BIT_AND_EXPR:
this_optab = and_optab;
goto binop;
case TRUTH_OR_EXPR:
case BIT_IOR_EXPR:
this_optab = ior_optab;
goto binop;
case TRUTH_XOR_EXPR:
case BIT_XOR_EXPR:
this_optab = xor_optab;
goto binop;
case LSHIFT_EXPR:
case RSHIFT_EXPR:
case LROTATE_EXPR:
case RROTATE_EXPR:
if (! safe_from_p (subtarget, TREE_OPERAND (exp, 1), 1))
subtarget = 0;
op0 = expand_expr (TREE_OPERAND (exp, 0), subtarget, VOIDmode, 0);
return expand_shift (code, mode, op0, TREE_OPERAND (exp, 1), target,
unsignedp);
/* Could determine the answer when only additive constants differ. Also,
the addition of one can be handled by changing the condition. */
case LT_EXPR:
case LE_EXPR:
case GT_EXPR:
case GE_EXPR:
case EQ_EXPR:
case NE_EXPR:
case UNORDERED_EXPR:
case ORDERED_EXPR:
case UNLT_EXPR:
case UNLE_EXPR:
case UNGT_EXPR:
case UNGE_EXPR:
case UNEQ_EXPR:
temp = do_store_flag (exp, target, tmode != VOIDmode ? tmode : mode, 0);
if (temp != 0)
return temp;
/* For foo != 0, load foo, and if it is nonzero load 1 instead. */
if (code == NE_EXPR && integer_zerop (TREE_OPERAND (exp, 1))
&& original_target
&& GET_CODE (original_target) == REG
&& (GET_MODE (original_target)
== TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 0)))))
{
temp = expand_expr (TREE_OPERAND (exp, 0), original_target,
VOIDmode, 0);
if (temp != original_target)
temp = copy_to_reg (temp);
op1 = gen_label_rtx ();
emit_cmp_and_jump_insns (temp, const0_rtx, EQ, NULL_RTX,
GET_MODE (temp), unsignedp, 0, op1);
emit_move_insn (temp, const1_rtx);
emit_label (op1);
return temp;
}
/* If no set-flag instruction, must generate a conditional
store into a temporary variable. Drop through
and handle this like && and ||. */
case TRUTH_ANDIF_EXPR:
case TRUTH_ORIF_EXPR:
if (! ignore
&& (target == 0 || ! safe_from_p (target, exp, 1)
/* Make sure we don't have a hard reg (such as function's return
value) live across basic blocks, if not optimizing. */
|| (!optimize && GET_CODE (target) == REG
&& REGNO (target) < FIRST_PSEUDO_REGISTER)))
target = gen_reg_rtx (tmode != VOIDmode ? tmode : mode);
if (target)
emit_clr_insn (target);
op1 = gen_label_rtx ();
jumpifnot (exp, op1);
if (target)
emit_0_to_1_insn (target);
emit_label (op1);
return ignore ? const0_rtx : target;
case TRUTH_NOT_EXPR:
op0 = expand_expr (TREE_OPERAND (exp, 0), target, VOIDmode, 0);
/* The parser is careful to generate TRUTH_NOT_EXPR
only with operands that are always zero or one. */
temp = expand_binop (mode, xor_optab, op0, const1_rtx,
target, 1, OPTAB_LIB_WIDEN);
if (temp == 0)
abort ();
return temp;
case COMPOUND_EXPR:
expand_expr (TREE_OPERAND (exp, 0), const0_rtx, VOIDmode, 0);
emit_queue ();
return expand_expr (TREE_OPERAND (exp, 1),
(ignore ? const0_rtx : target),
VOIDmode, 0);
case COND_EXPR:
/* If we would have a "singleton" (see below) were it not for a
conversion in each arm, bring that conversion back out. */
if (TREE_CODE (TREE_OPERAND (exp, 1)) == NOP_EXPR
&& TREE_CODE (TREE_OPERAND (exp, 2)) == NOP_EXPR
&& (TREE_TYPE (TREE_OPERAND (TREE_OPERAND (exp, 1), 0))
== TREE_TYPE (TREE_OPERAND (TREE_OPERAND (exp, 2), 0))))
{
tree iftrue = TREE_OPERAND (TREE_OPERAND (exp, 1), 0);
tree iffalse = TREE_OPERAND (TREE_OPERAND (exp, 2), 0);
if ((TREE_CODE_CLASS (TREE_CODE (iftrue)) == '2'
&& operand_equal_p (iffalse, TREE_OPERAND (iftrue, 0), 0))
|| (TREE_CODE_CLASS (TREE_CODE (iffalse)) == '2'
&& operand_equal_p (iftrue, TREE_OPERAND (iffalse, 0), 0))
|| (TREE_CODE_CLASS (TREE_CODE (iftrue)) == '1'
&& operand_equal_p (iffalse, TREE_OPERAND (iftrue, 0), 0))
|| (TREE_CODE_CLASS (TREE_CODE (iffalse)) == '1'
&& operand_equal_p (iftrue, TREE_OPERAND (iffalse, 0), 0)))
return expand_expr (build1 (NOP_EXPR, type,
build (COND_EXPR, TREE_TYPE (iftrue),
TREE_OPERAND (exp, 0),
iftrue, iffalse)),
target, tmode, modifier);
}
{
/* Note that COND_EXPRs whose type is a structure or union
are required to be constructed to contain assignments of
a temporary variable, so that we can evaluate them here
for side effect only. If type is void, we must do likewise. */
/* If an arm of the branch requires a cleanup,
only that cleanup is performed. */
tree singleton = 0;
tree binary_op = 0, unary_op = 0;
/* If this is (A ? 1 : 0) and A is a condition, just evaluate it and
convert it to our mode, if necessary. */
if (integer_onep (TREE_OPERAND (exp, 1))
&& integer_zerop (TREE_OPERAND (exp, 2))
&& TREE_CODE_CLASS (TREE_CODE (TREE_OPERAND (exp, 0))) == '<')
{
if (ignore)
{
expand_expr (TREE_OPERAND (exp, 0), const0_rtx, VOIDmode,
ro_modifier);
return const0_rtx;
}
op0 = expand_expr (TREE_OPERAND (exp, 0), target, mode, ro_modifier);
if (GET_MODE (op0) == mode)
return op0;
if (target == 0)
target = gen_reg_rtx (mode);
convert_move (target, op0, unsignedp);
return target;
}
/* Check for X ? A + B : A. If we have this, we can copy A to the
output and conditionally add B. Similarly for unary operations.
Don't do this if X has side-effects because those side effects
might affect A or B and the "?" operation is a sequence point in
ANSI. (operand_equal_p tests for side effects.) */
if (TREE_CODE_CLASS (TREE_CODE (TREE_OPERAND (exp, 1))) == '2'
&& operand_equal_p (TREE_OPERAND (exp, 2),
TREE_OPERAND (TREE_OPERAND (exp, 1), 0), 0))
singleton = TREE_OPERAND (exp, 2), binary_op = TREE_OPERAND (exp, 1);
else if (TREE_CODE_CLASS (TREE_CODE (TREE_OPERAND (exp, 2))) == '2'
&& operand_equal_p (TREE_OPERAND (exp, 1),
TREE_OPERAND (TREE_OPERAND (exp, 2), 0), 0))
singleton = TREE_OPERAND (exp, 1), binary_op = TREE_OPERAND (exp, 2);
else if (TREE_CODE_CLASS (TREE_CODE (TREE_OPERAND (exp, 1))) == '1'
&& operand_equal_p (TREE_OPERAND (exp, 2),
TREE_OPERAND (TREE_OPERAND (exp, 1), 0), 0))
singleton = TREE_OPERAND (exp, 2), unary_op = TREE_OPERAND (exp, 1);
else if (TREE_CODE_CLASS (TREE_CODE (TREE_OPERAND (exp, 2))) == '1'
&& operand_equal_p (TREE_OPERAND (exp, 1),
TREE_OPERAND (TREE_OPERAND (exp, 2), 0), 0))
singleton = TREE_OPERAND (exp, 1), unary_op = TREE_OPERAND (exp, 2);
/* If we are not to produce a result, we have no target. Otherwise,
if a target was specified use it; it will not be used as an
intermediate target unless it is safe. If no target, use a
temporary. */
if (ignore)
temp = 0;
else if (original_target
&& (safe_from_p (original_target, TREE_OPERAND (exp, 0), 1)
|| (singleton && GET_CODE (original_target) == REG
&& REGNO (original_target) >= FIRST_PSEUDO_REGISTER
&& original_target == var_rtx (singleton)))
&& GET_MODE (original_target) == mode
#ifdef HAVE_conditional_move
&& (! can_conditionally_move_p (mode)
|| GET_CODE (original_target) == REG
|| TREE_ADDRESSABLE (type))
#endif
&& (GET_CODE (original_target) != MEM
|| TREE_ADDRESSABLE (type)))
temp = original_target;
else if (TREE_ADDRESSABLE (type))
abort ();
else
temp = assign_temp (type, 0, 0, 1);
/* If we had X ? A + C : A, with C a constant power of 2, and we can
do the test of X as a store-flag operation, do this as
A + ((X != 0) << log C). Similarly for other simple binary
operators. Only do for C == 1 if BRANCH_COST is low. */
if (temp && singleton && binary_op
&& (TREE_CODE (binary_op) == PLUS_EXPR
|| TREE_CODE (binary_op) == MINUS_EXPR
|| TREE_CODE (binary_op) == BIT_IOR_EXPR
|| TREE_CODE (binary_op) == BIT_XOR_EXPR)
&& (BRANCH_COST >= 3 ? integer_pow2p (TREE_OPERAND (binary_op, 1))
: integer_onep (TREE_OPERAND (binary_op, 1)))
&& TREE_CODE_CLASS (TREE_CODE (TREE_OPERAND (exp, 0))) == '<')
{
rtx result;
optab boptab = (TREE_CODE (binary_op) == PLUS_EXPR
? (TYPE_TRAP_SIGNED (TREE_TYPE (binary_op))
? addv_optab : add_optab)
: TREE_CODE (binary_op) == MINUS_EXPR
? (TYPE_TRAP_SIGNED (TREE_TYPE (binary_op))
? subv_optab : sub_optab)
: TREE_CODE (binary_op) == BIT_IOR_EXPR ? ior_optab
: xor_optab);
/* If we had X ? A : A + 1, do this as A + (X == 0).
We have to invert the truth value here and then put it
back later if do_store_flag fails. We cannot simply copy
TREE_OPERAND (exp, 0) to another variable and modify that
because invert_truthvalue can modify the tree pointed to
by its argument. */
if (singleton == TREE_OPERAND (exp, 1))
TREE_OPERAND (exp, 0)
= invert_truthvalue (TREE_OPERAND (exp, 0));
result = do_store_flag (TREE_OPERAND (exp, 0),
(safe_from_p (temp, singleton, 1)
? temp : NULL_RTX),
mode, BRANCH_COST <= 1);
if (result != 0 && ! integer_onep (TREE_OPERAND (binary_op, 1)))
result = expand_shift (LSHIFT_EXPR, mode, result,
build_int_2 (tree_log2
(TREE_OPERAND
(binary_op, 1)),
0),
(safe_from_p (temp, singleton, 1)
? temp : NULL_RTX), 0);
if (result)
{
op1 = expand_expr (singleton, NULL_RTX, VOIDmode, 0);
return expand_binop (mode, boptab, op1, result, temp,
unsignedp, OPTAB_LIB_WIDEN);
}
else if (singleton == TREE_OPERAND (exp, 1))
TREE_OPERAND (exp, 0)
= invert_truthvalue (TREE_OPERAND (exp, 0));
}
do_pending_stack_adjust ();
NO_DEFER_POP;
op0 = gen_label_rtx ();
if (singleton && ! TREE_SIDE_EFFECTS (TREE_OPERAND (exp, 0)))
{
if (temp != 0)
{
/* If the target conflicts with the other operand of the
binary op, we can't use it. Also, we can't use the target
if it is a hard register, because evaluating the condition
might clobber it. */
if ((binary_op
&& ! safe_from_p (temp, TREE_OPERAND (binary_op, 1), 1))
|| (GET_CODE (temp) == REG
&& REGNO (temp) < FIRST_PSEUDO_REGISTER))
temp = gen_reg_rtx (mode);
store_expr (singleton, temp, 0);
}
else
expand_expr (singleton,
ignore ? const0_rtx : NULL_RTX, VOIDmode, 0);
if (singleton == TREE_OPERAND (exp, 1))
jumpif (TREE_OPERAND (exp, 0), op0);
else
jumpifnot (TREE_OPERAND (exp, 0), op0);
start_cleanup_deferral ();
if (binary_op && temp == 0)
/* Just touch the other operand. */
expand_expr (TREE_OPERAND (binary_op, 1),
ignore ? const0_rtx : NULL_RTX, VOIDmode, 0);
else if (binary_op)
store_expr (build (TREE_CODE (binary_op), type,
make_tree (type, temp),
TREE_OPERAND (binary_op, 1)),
temp, 0);
else
store_expr (build1 (TREE_CODE (unary_op), type,
make_tree (type, temp)),
temp, 0);
op1 = op0;
}
/* Check for A op 0 ? A : FOO and A op 0 ? FOO : A where OP is any
comparison operator. If we have one of these cases, set the
output to A, branch on A (cse will merge these two references),
then set the output to FOO. */
else if (temp
&& TREE_CODE_CLASS (TREE_CODE (TREE_OPERAND (exp, 0))) == '<'
&& integer_zerop (TREE_OPERAND (TREE_OPERAND (exp, 0), 1))
&& operand_equal_p (TREE_OPERAND (TREE_OPERAND (exp, 0), 0),
TREE_OPERAND (exp, 1), 0)
&& (! TREE_SIDE_EFFECTS (TREE_OPERAND (exp, 0))
|| TREE_CODE (TREE_OPERAND (exp, 1)) == SAVE_EXPR)
&& safe_from_p (temp, TREE_OPERAND (exp, 2), 1))
{
if (GET_CODE (temp) == REG
&& REGNO (temp) < FIRST_PSEUDO_REGISTER)
temp = gen_reg_rtx (mode);
store_expr (TREE_OPERAND (exp, 1), temp, 0);
jumpif (TREE_OPERAND (exp, 0), op0);
start_cleanup_deferral ();
store_expr (TREE_OPERAND (exp, 2), temp, 0);
op1 = op0;
}
else if (temp
&& TREE_CODE_CLASS (TREE_CODE (TREE_OPERAND (exp, 0))) == '<'
&& integer_zerop (TREE_OPERAND (TREE_OPERAND (exp, 0), 1))
&& operand_equal_p (TREE_OPERAND (TREE_OPERAND (exp, 0), 0),
TREE_OPERAND (exp, 2), 0)
&& (! TREE_SIDE_EFFECTS (TREE_OPERAND (exp, 0))
|| TREE_CODE (TREE_OPERAND (exp, 2)) == SAVE_EXPR)
&& safe_from_p (temp, TREE_OPERAND (exp, 1), 1))
{
if (GET_CODE (temp) == REG
&& REGNO (temp) < FIRST_PSEUDO_REGISTER)
temp = gen_reg_rtx (mode);
store_expr (TREE_OPERAND (exp, 2), temp, 0);
jumpifnot (TREE_OPERAND (exp, 0), op0);
start_cleanup_deferral ();
store_expr (TREE_OPERAND (exp, 1), temp, 0);
op1 = op0;
}
else
{
op1 = gen_label_rtx ();
jumpifnot (TREE_OPERAND (exp, 0), op0);
start_cleanup_deferral ();
/* One branch of the cond can be void, if it never returns. For
example A ? throw : E */
if (temp != 0
&& TREE_TYPE (TREE_OPERAND (exp, 1)) != void_type_node)
store_expr (TREE_OPERAND (exp, 1), temp, 0);
else
expand_expr (TREE_OPERAND (exp, 1),
ignore ? const0_rtx : NULL_RTX, VOIDmode, 0);
end_cleanup_deferral ();
emit_queue ();
emit_jump_insn (gen_jump (op1));
emit_barrier ();
emit_label (op0);
start_cleanup_deferral ();
if (temp != 0
&& TREE_TYPE (TREE_OPERAND (exp, 2)) != void_type_node)
store_expr (TREE_OPERAND (exp, 2), temp, 0);
else
expand_expr (TREE_OPERAND (exp, 2),
ignore ? const0_rtx : NULL_RTX, VOIDmode, 0);
}
end_cleanup_deferral ();
emit_queue ();
emit_label (op1);
OK_DEFER_POP;
return temp;
}
case TARGET_EXPR:
{
/* Something needs to be initialized, but we didn't know
where that thing was when building the tree. For example,
it could be the return value of a function, or a parameter
to a function which lays down in the stack, or a temporary
variable which must be passed by reference.
We guarantee that the expression will either be constructed
or copied into our original target. */
tree slot = TREE_OPERAND (exp, 0);
tree cleanups = NULL_TREE;
tree exp1;
if (TREE_CODE (slot) != VAR_DECL)
abort ();
if (! ignore)
target = original_target;
/* Set this here so that if we get a target that refers to a
register variable that's already been used, put_reg_into_stack
knows that it should fix up those uses. */
TREE_USED (slot) = 1;
if (target == 0)
{
if (DECL_RTL_SET_P (slot))
{
target = DECL_RTL (slot);
/* If we have already expanded the slot, so don't do
it again. (mrs) */
if (TREE_OPERAND (exp, 1) == NULL_TREE)
return target;
}
else
{
target = assign_temp (type, 2, 0, 1);
/* All temp slots at this level must not conflict. */
preserve_temp_slots (target);
SET_DECL_RTL (slot, target);
if (TREE_ADDRESSABLE (slot))
put_var_into_stack (slot);
/* Since SLOT is not known to the called function
to belong to its stack frame, we must build an explicit
cleanup. This case occurs when we must build up a reference
to pass the reference as an argument. In this case,
it is very likely that such a reference need not be
built here. */
if (TREE_OPERAND (exp, 2) == 0)
TREE_OPERAND (exp, 2) = maybe_build_cleanup (slot);
cleanups = TREE_OPERAND (exp, 2);
}
}
else
{
/* This case does occur, when expanding a parameter which
needs to be constructed on the stack. The target
is the actual stack address that we want to initialize.
The function we call will perform the cleanup in this case. */
/* If we have already assigned it space, use that space,
not target that we were passed in, as our target
parameter is only a hint. */
if (DECL_RTL_SET_P (slot))
{
target = DECL_RTL (slot);
/* If we have already expanded the slot, so don't do
it again. (mrs) */
if (TREE_OPERAND (exp, 1) == NULL_TREE)
return target;
}
else
{
SET_DECL_RTL (slot, target);
/* If we must have an addressable slot, then make sure that
the RTL that we just stored in slot is OK. */
if (TREE_ADDRESSABLE (slot))
put_var_into_stack (slot);
}
}
exp1 = TREE_OPERAND (exp, 3) = TREE_OPERAND (exp, 1);
/* Mark it as expanded. */
TREE_OPERAND (exp, 1) = NULL_TREE;
store_expr (exp1, target, 0);
expand_decl_cleanup (NULL_TREE, cleanups);
return target;
}
case INIT_EXPR:
{
tree lhs = TREE_OPERAND (exp, 0);
tree rhs = TREE_OPERAND (exp, 1);
temp = expand_assignment (lhs, rhs, ! ignore, original_target != 0);
return temp;
}
case MODIFY_EXPR:
{
/* If lhs is complex, expand calls in rhs before computing it.
That's so we don't compute a pointer and save it over a
call. If lhs is simple, compute it first so we can give it
as a target if the rhs is just a call. This avoids an
extra temp and copy and that prevents a partial-subsumption
which makes bad code. Actually we could treat
component_ref's of vars like vars. */
tree lhs = TREE_OPERAND (exp, 0);
tree rhs = TREE_OPERAND (exp, 1);
temp = 0;
/* Check for |= or &= of a bitfield of size one into another bitfield
of size 1. In this case, (unless we need the result of the
assignment) we can do this more efficiently with a
test followed by an assignment, if necessary.
??? At this point, we can't get a BIT_FIELD_REF here. But if
things change so we do, this code should be enhanced to
support it. */
if (ignore
&& TREE_CODE (lhs) == COMPONENT_REF
&& (TREE_CODE (rhs) == BIT_IOR_EXPR
|| TREE_CODE (rhs) == BIT_AND_EXPR)
&& TREE_OPERAND (rhs, 0) == lhs
&& TREE_CODE (TREE_OPERAND (rhs, 1)) == COMPONENT_REF
&& integer_onep (DECL_SIZE (TREE_OPERAND (lhs, 1)))
&& integer_onep (DECL_SIZE (TREE_OPERAND (TREE_OPERAND (rhs, 1), 1))))
{
rtx label = gen_label_rtx ();
do_jump (TREE_OPERAND (rhs, 1),
TREE_CODE (rhs) == BIT_IOR_EXPR ? label : 0,
TREE_CODE (rhs) == BIT_AND_EXPR ? label : 0);
expand_assignment (lhs, convert (TREE_TYPE (rhs),
(TREE_CODE (rhs) == BIT_IOR_EXPR
? integer_one_node
: integer_zero_node)),
0, 0);
do_pending_stack_adjust ();
emit_label (label);
return const0_rtx;
}
temp = expand_assignment (lhs, rhs, ! ignore, original_target != 0);
return temp;
}
case RETURN_EXPR:
if (!TREE_OPERAND (exp, 0))
expand_null_return ();
else
expand_return (TREE_OPERAND (exp, 0));
return const0_rtx;
case PREINCREMENT_EXPR:
case PREDECREMENT_EXPR:
return expand_increment (exp, 0, ignore);
case POSTINCREMENT_EXPR:
case POSTDECREMENT_EXPR:
/* Faster to treat as pre-increment if result is not used. */
return expand_increment (exp, ! ignore, ignore);
case ADDR_EXPR:
/* If nonzero, TEMP will be set to the address of something that might
be a MEM corresponding to a stack slot. */
temp = 0;
/* Are we taking the address of a nested function? */
if (TREE_CODE (TREE_OPERAND (exp, 0)) == FUNCTION_DECL
&& decl_function_context (TREE_OPERAND (exp, 0)) != 0
&& ! DECL_NO_STATIC_CHAIN (TREE_OPERAND (exp, 0))
&& ! TREE_STATIC (exp))
{
op0 = trampoline_address (TREE_OPERAND (exp, 0));
op0 = force_operand (op0, target);
}
/* If we are taking the address of something erroneous, just
return a zero. */
else if (TREE_CODE (TREE_OPERAND (exp, 0)) == ERROR_MARK)
return const0_rtx;
/* If we are taking the address of a constant and are at the
top level, we have to use output_constant_def since we can't
call force_const_mem at top level. */
else if (cfun == 0
&& (TREE_CODE (TREE_OPERAND (exp, 0)) == CONSTRUCTOR
|| (TREE_CODE_CLASS (TREE_CODE (TREE_OPERAND (exp, 0)))
== 'c')))
op0 = XEXP (output_constant_def (TREE_OPERAND (exp, 0), 0), 0);
else
{
/* We make sure to pass const0_rtx down if we came in with
ignore set, to avoid doing the cleanups twice for something. */
op0 = expand_expr (TREE_OPERAND (exp, 0),
ignore ? const0_rtx : NULL_RTX, VOIDmode,
(modifier == EXPAND_INITIALIZER
? modifier : EXPAND_CONST_ADDRESS));
/* If we are going to ignore the result, OP0 will have been set
to const0_rtx, so just return it. Don't get confused and
think we are taking the address of the constant. */
if (ignore)
return op0;
/* Pass 1 for MODIFY, so that protect_from_queue doesn't get
clever and returns a REG when given a MEM. */
op0 = protect_from_queue (op0, 1);
/* We would like the object in memory. If it is a constant, we can
have it be statically allocated into memory. For a non-constant,
we need to allocate some memory and store the value into it. */
if (CONSTANT_P (op0))
op0 = force_const_mem (TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 0))),
op0);
else if (GET_CODE (op0) == MEM)
{
mark_temp_addr_taken (op0);
temp = XEXP (op0, 0);
}
else if (GET_CODE (op0) == REG || GET_CODE (op0) == SUBREG
|| GET_CODE (op0) == CONCAT || GET_CODE (op0) == ADDRESSOF
|| GET_CODE (op0) == PARALLEL)
{
/* If this object is in a register, it must be not
be BLKmode. */
tree inner_type = TREE_TYPE (TREE_OPERAND (exp, 0));
tree nt = build_qualified_type (inner_type,
(TYPE_QUALS (inner_type)
| TYPE_QUAL_CONST));
rtx memloc = assign_temp (nt, 1, 1, 1);
mark_temp_addr_taken (memloc);
if (GET_CODE (op0) == PARALLEL)
/* Handle calls that pass values in multiple non-contiguous
locations. The Irix 6 ABI has examples of this. */
emit_group_store (memloc, op0,
int_size_in_bytes (inner_type),
TYPE_ALIGN (inner_type));
else
emit_move_insn (memloc, op0);
op0 = memloc;
}
if (GET_CODE (op0) != MEM)
abort ();
if (modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER)
{
temp = XEXP (op0, 0);
#ifdef POINTERS_EXTEND_UNSIGNED
if (GET_MODE (temp) == Pmode && GET_MODE (temp) != mode
&& mode == ptr_mode)
temp = convert_memory_address (ptr_mode, temp);
#endif
return temp;
}
op0 = force_operand (XEXP (op0, 0), target);
}
if (flag_force_addr && GET_CODE (op0) != REG)
op0 = force_reg (Pmode, op0);
if (GET_CODE (op0) == REG
&& ! REG_USERVAR_P (op0))
mark_reg_pointer (op0, TYPE_ALIGN (TREE_TYPE (type)));
/* If we might have had a temp slot, add an equivalent address
for it. */
if (temp != 0)
update_temp_slot_address (temp, op0);
#ifdef POINTERS_EXTEND_UNSIGNED
if (GET_MODE (op0) == Pmode && GET_MODE (op0) != mode
&& mode == ptr_mode)
op0 = convert_memory_address (ptr_mode, op0);
#endif
return op0;
case ENTRY_VALUE_EXPR:
abort ();
/* COMPLEX type for Extended Pascal & Fortran */
case COMPLEX_EXPR:
{
enum machine_mode mode = TYPE_MODE (TREE_TYPE (TREE_TYPE (exp)));
rtx insns;
/* Get the rtx code of the operands. */
op0 = expand_expr (TREE_OPERAND (exp, 0), 0, VOIDmode, 0);
op1 = expand_expr (TREE_OPERAND (exp, 1), 0, VOIDmode, 0);
if (! target)
target = gen_reg_rtx (TYPE_MODE (TREE_TYPE (exp)));
start_sequence ();
/* Move the real (op0) and imaginary (op1) parts to their location. */
emit_move_insn (gen_realpart (mode, target), op0);
emit_move_insn (gen_imagpart (mode, target), op1);
insns = get_insns ();
end_sequence ();
/* Complex construction should appear as a single unit. */
/* If TARGET is a CONCAT, we got insns like RD = RS, ID = IS,
each with a separate pseudo as destination.
It's not correct for flow to treat them as a unit. */
if (GET_CODE (target) != CONCAT)
emit_no_conflict_block (insns, target, op0, op1, NULL_RTX);
else
emit_insns (insns);
return target;
}
case REALPART_EXPR:
op0 = expand_expr (TREE_OPERAND (exp, 0), 0, VOIDmode, 0);
return gen_realpart (mode, op0);
case IMAGPART_EXPR:
op0 = expand_expr (TREE_OPERAND (exp, 0), 0, VOIDmode, 0);
return gen_imagpart (mode, op0);
case CONJ_EXPR:
{
enum machine_mode partmode = TYPE_MODE (TREE_TYPE (TREE_TYPE (exp)));
rtx imag_t;
rtx insns;
op0 = expand_expr (TREE_OPERAND (exp, 0), 0, VOIDmode, 0);
if (! target)
target = gen_reg_rtx (mode);
start_sequence ();
/* Store the realpart and the negated imagpart to target. */
emit_move_insn (gen_realpart (partmode, target),
gen_realpart (partmode, op0));
imag_t = gen_imagpart (partmode, target);
temp = expand_unop (partmode,
! unsignedp && flag_trapv
&& (GET_MODE_CLASS(partmode) == MODE_INT)
? negv_optab : neg_optab,
gen_imagpart (partmode, op0), imag_t, 0);
if (temp != imag_t)
emit_move_insn (imag_t, temp);
insns = get_insns ();
end_sequence ();
/* Conjugate should appear as a single unit
If TARGET is a CONCAT, we got insns like RD = RS, ID = - IS,
each with a separate pseudo as destination.
It's not correct for flow to treat them as a unit. */
if (GET_CODE (target) != CONCAT)
emit_no_conflict_block (insns, target, op0, NULL_RTX, NULL_RTX);
else
emit_insns (insns);
return target;
}
case TRY_CATCH_EXPR:
{
tree handler = TREE_OPERAND (exp, 1);
expand_eh_region_start ();
op0 = expand_expr (TREE_OPERAND (exp, 0), 0, VOIDmode, 0);
expand_eh_region_end_cleanup (handler);
return op0;
}
case TRY_FINALLY_EXPR:
{
tree try_block = TREE_OPERAND (exp, 0);
tree finally_block = TREE_OPERAND (exp, 1);
rtx finally_label = gen_label_rtx ();
rtx done_label = gen_label_rtx ();
rtx return_link = gen_reg_rtx (Pmode);
tree cleanup = build (GOTO_SUBROUTINE_EXPR, void_type_node,
(tree) finally_label, (tree) return_link);
TREE_SIDE_EFFECTS (cleanup) = 1;
/* Start a new binding layer that will keep track of all cleanup
actions to be performed. */
expand_start_bindings (2);
target_temp_slot_level = temp_slot_level;
expand_decl_cleanup (NULL_TREE, cleanup);
op0 = expand_expr (try_block, target, tmode, modifier);
preserve_temp_slots (op0);
expand_end_bindings (NULL_TREE, 0, 0);
emit_jump (done_label);
emit_label (finally_label);
expand_expr (finally_block, const0_rtx, VOIDmode, 0);
emit_indirect_jump (return_link);
emit_label (done_label);
return op0;
}
case GOTO_SUBROUTINE_EXPR:
{
rtx subr = (rtx) TREE_OPERAND (exp, 0);
rtx return_link = *(rtx *) &TREE_OPERAND (exp, 1);
rtx return_address = gen_label_rtx ();
emit_move_insn (return_link,
gen_rtx_LABEL_REF (Pmode, return_address));
emit_jump (subr);
emit_label (return_address);
return const0_rtx;
}
case VA_ARG_EXPR:
return expand_builtin_va_arg (TREE_OPERAND (exp, 0), type);
case EXC_PTR_EXPR:
return get_exception_pointer (cfun);
case FDESC_EXPR:
/* Function descriptors are not valid except for as
initialization constants, and should not be expanded. */
abort ();
default:
return (*lang_expand_expr) (exp, original_target, tmode, modifier);
}
/* Here to do an ordinary binary operator, generating an instruction
from the optab already placed in `this_optab'. */
binop:
if (! safe_from_p (subtarget, TREE_OPERAND (exp, 1), 1))
subtarget = 0;
op0 = expand_expr (TREE_OPERAND (exp, 0), subtarget, VOIDmode, 0);
op1 = expand_expr (TREE_OPERAND (exp, 1), NULL_RTX, VOIDmode, 0);
binop2:
temp = expand_binop (mode, this_optab, op0, op1, target,
unsignedp, OPTAB_LIB_WIDEN);
if (temp == 0)
abort ();
return temp;
}
/* Similar to expand_expr, except that we don't specify a target, target
mode, or modifier and we return the alignment of the inner type. This is
used in cases where it is not necessary to align the result to the
alignment of its type as long as we know the alignment of the result, for
example for comparisons of BLKmode values. */
static rtx
expand_expr_unaligned (exp, palign)
tree exp;
unsigned int *palign;
{
rtx op0;
tree type = TREE_TYPE (exp);
enum machine_mode mode = TYPE_MODE (type);
/* Default the alignment we return to that of the type. */
*palign = TYPE_ALIGN (type);
/* The only cases in which we do anything special is if the resulting mode
is BLKmode. */
if (mode != BLKmode)
return expand_expr (exp, NULL_RTX, VOIDmode, EXPAND_NORMAL);
switch (TREE_CODE (exp))
{
case CONVERT_EXPR:
case NOP_EXPR:
case NON_LVALUE_EXPR:
/* Conversions between BLKmode values don't change the underlying
alignment or value. */
if (TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 0))) == BLKmode)
return expand_expr_unaligned (TREE_OPERAND (exp, 0), palign);
break;
case ARRAY_REF:
/* Much of the code for this case is copied directly from expand_expr.
We need to duplicate it here because we will do something different
in the fall-through case, so we need to handle the same exceptions
it does. */
{
tree array = TREE_OPERAND (exp, 0);
tree domain = TYPE_DOMAIN (TREE_TYPE (array));
tree low_bound = domain ? TYPE_MIN_VALUE (domain) : integer_zero_node;
tree index = convert (sizetype, TREE_OPERAND (exp, 1));
HOST_WIDE_INT i;
if (TREE_CODE (TREE_TYPE (TREE_OPERAND (exp, 0))) != ARRAY_TYPE)
abort ();
/* Optimize the special-case of a zero lower bound.
We convert the low_bound to sizetype to avoid some problems
with constant folding. (E.g. suppose the lower bound is 1,
and its mode is QI. Without the conversion, (ARRAY
+(INDEX-(unsigned char)1)) becomes ((ARRAY+(-(unsigned char)1))
+INDEX), which becomes (ARRAY+255+INDEX). Oops!) */
if (! integer_zerop (low_bound))
index = size_diffop (index, convert (sizetype, low_bound));
/* If this is a constant index into a constant array,
just get the value from the array. Handle both the cases when
we have an explicit constructor and when our operand is a variable
that was declared const. */
if (TREE_CODE (array) == CONSTRUCTOR && ! TREE_SIDE_EFFECTS (array)
&& host_integerp (index, 0)
&& 0 > compare_tree_int (index,
list_length (CONSTRUCTOR_ELTS
(TREE_OPERAND (exp, 0)))))
{
tree elem;
for (elem = CONSTRUCTOR_ELTS (TREE_OPERAND (exp, 0)),
i = tree_low_cst (index, 0);
elem != 0 && i != 0; i--, elem = TREE_CHAIN (elem))
;
if (elem)
return expand_expr_unaligned (fold (TREE_VALUE (elem)), palign);
}
else if (optimize >= 1
&& TREE_READONLY (array) && ! TREE_SIDE_EFFECTS (array)
&& TREE_CODE (array) == VAR_DECL && DECL_INITIAL (array)
&& TREE_CODE (DECL_INITIAL (array)) != ERROR_MARK)
{
if (TREE_CODE (index) == INTEGER_CST)
{
tree init = DECL_INITIAL (array);
if (TREE_CODE (init) == CONSTRUCTOR)
{
tree elem;
for (elem = CONSTRUCTOR_ELTS (init);
! tree_int_cst_equal (TREE_PURPOSE (elem), index);
elem = TREE_CHAIN (elem))
;
if (elem)
return expand_expr_unaligned (fold (TREE_VALUE (elem)),
palign);
}
}
}
}
/* Fall through. */
case COMPONENT_REF:
case BIT_FIELD_REF:
case ARRAY_RANGE_REF:
/* If the operand is a CONSTRUCTOR, we can just extract the
appropriate field if it is present. Don't do this if we have
already written the data since we want to refer to that copy
and varasm.c assumes that's what we'll do. */
if (TREE_CODE (exp) == COMPONENT_REF
&& TREE_CODE (TREE_OPERAND (exp, 0)) == CONSTRUCTOR
&& TREE_CST_RTL (TREE_OPERAND (exp, 0)) == 0)
{
tree elt;
for (elt = CONSTRUCTOR_ELTS (TREE_OPERAND (exp, 0)); elt;
elt = TREE_CHAIN (elt))
if (TREE_PURPOSE (elt) == TREE_OPERAND (exp, 1))
/* Note that unlike the case in expand_expr, we know this is
BLKmode and hence not an integer. */
return expand_expr_unaligned (TREE_VALUE (elt), palign);
}
{
enum machine_mode mode1;
HOST_WIDE_INT bitsize, bitpos;
tree offset;
int volatilep = 0;
unsigned int alignment;
int unsignedp;
tree tem = get_inner_reference (exp, &bitsize, &bitpos, &offset,
&mode1, &unsignedp, &volatilep,
&alignment);
/* If we got back the original object, something is wrong. Perhaps
we are evaluating an expression too early. In any event, don't
infinitely recurse. */
if (tem == exp)
abort ();
op0 = expand_expr (tem, NULL_RTX, VOIDmode, EXPAND_NORMAL);
/* If this is a constant, put it into a register if it is a
legitimate constant and OFFSET is 0 and memory if it isn't. */
if (CONSTANT_P (op0))
{
enum machine_mode inner_mode = TYPE_MODE (TREE_TYPE (tem));
if (inner_mode != BLKmode && LEGITIMATE_CONSTANT_P (op0)
&& offset == 0)
op0 = force_reg (inner_mode, op0);
else
op0 = validize_mem (force_const_mem (inner_mode, op0));
}
if (offset != 0)
{
rtx offset_rtx = expand_expr (offset, NULL_RTX, VOIDmode, 0);
/* If this object is in a register, put it into memory.
This case can't occur in C, but can in Ada if we have
unchecked conversion of an expression from a scalar type to
an array or record type. */
if (GET_CODE (op0) == REG || GET_CODE (op0) == SUBREG
|| GET_CODE (op0) == CONCAT || GET_CODE (op0) == ADDRESSOF)
{
tree nt = build_qualified_type (TREE_TYPE (tem),
(TYPE_QUALS (TREE_TYPE (tem))
| TYPE_QUAL_CONST));
rtx memloc = assign_temp (nt, 1, 1, 1);
mark_temp_addr_taken (memloc);
emit_move_insn (memloc, op0);
op0 = memloc;
}
if (GET_CODE (op0) != MEM)
abort ();
if (GET_MODE (offset_rtx) != ptr_mode)
offset_rtx = convert_to_mode (ptr_mode, offset_rtx, 0);
#ifdef POINTERS_EXTEND_UNSIGNED
if (GET_MODE (offset_rtx) != Pmode)
offset_rtx = convert_memory_address (Pmode, offset_rtx);
#endif
op0 = offset_address (op0, offset_rtx,
highest_pow2_factor (offset));
}
/* Don't forget about volatility even if this is a bitfield. */
if (GET_CODE (op0) == MEM && volatilep && ! MEM_VOLATILE_P (op0))
{
op0 = copy_rtx (op0);
MEM_VOLATILE_P (op0) = 1;
}
/* Check the access. */
if (current_function_check_memory_usage && GET_CODE (op0) == MEM)
{
rtx to;
int size;
to = plus_constant (XEXP (op0, 0), (bitpos / BITS_PER_UNIT));
size = (bitpos % BITS_PER_UNIT) + bitsize + BITS_PER_UNIT - 1;
/* Check the access right of the pointer. */
in_check_memory_usage = 1;
if (size > BITS_PER_UNIT)
emit_library_call (chkr_check_addr_libfunc,
LCT_CONST_MAKE_BLOCK, VOIDmode, 3,
to, ptr_mode, GEN_INT (size / BITS_PER_UNIT),
TYPE_MODE (sizetype),
GEN_INT (MEMORY_USE_RO),
TYPE_MODE (integer_type_node));
in_check_memory_usage = 0;
}
/* In cases where an aligned union has an unaligned object
as a field, we might be extracting a BLKmode value from
an integer-mode (e.g., SImode) object. Handle this case
by doing the extract into an object as wide as the field
(which we know to be the width of a basic mode), then
storing into memory, and changing the mode to BLKmode.
If we ultimately want the address (EXPAND_CONST_ADDRESS or
EXPAND_INITIALIZER), then we must not copy to a temporary. */
if (mode1 == VOIDmode
|| GET_CODE (op0) == REG || GET_CODE (op0) == SUBREG
|| (SLOW_UNALIGNED_ACCESS (mode1, alignment)
&& (TYPE_ALIGN (type) > alignment
|| bitpos % TYPE_ALIGN (type) != 0)))
{
enum machine_mode ext_mode = mode_for_size (bitsize, MODE_INT, 1);
if (ext_mode == BLKmode)
{
/* In this case, BITPOS must start at a byte boundary. */
if (GET_CODE (op0) != MEM
|| bitpos % BITS_PER_UNIT != 0)
abort ();
op0 = adjust_address (op0, VOIDmode, bitpos / BITS_PER_UNIT);
}
else
{
tree nt = build_qualified_type (type_for_mode (ext_mode, 0),
TYPE_QUAL_CONST);
rtx new = assign_temp (nt, 0, 1, 1);
op0 = extract_bit_field (validize_mem (op0), bitsize, bitpos,
unsignedp, NULL_RTX, ext_mode,
ext_mode, alignment,
int_size_in_bytes (TREE_TYPE (tem)));
/* If the result is a record type and BITSIZE is narrower than
the mode of OP0, an integral mode, and this is a big endian
machine, we must put the field into the high-order bits. */
if (TREE_CODE (type) == RECORD_TYPE && BYTES_BIG_ENDIAN
&& GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
&& bitsize < GET_MODE_BITSIZE (GET_MODE (op0)))
op0 = expand_shift (LSHIFT_EXPR, GET_MODE (op0), op0,
size_int (GET_MODE_BITSIZE
(GET_MODE (op0))
- bitsize),
op0, 1);
emit_move_insn (new, op0);
op0 = copy_rtx (new);
PUT_MODE (op0, BLKmode);
}
}
else
/* Get a reference to just this component. */
op0 = adjust_address (op0, mode1, bitpos / BITS_PER_UNIT);
set_mem_attributes (op0, exp, 0);
/* Adjust the alignment in case the bit position is not
a multiple of the alignment of the inner object. */
while (bitpos % alignment != 0)
alignment >>= 1;
if (GET_CODE (XEXP (op0, 0)) == REG)
mark_reg_pointer (XEXP (op0, 0), alignment);
MEM_IN_STRUCT_P (op0) = 1;
MEM_VOLATILE_P (op0) |= volatilep;
*palign = alignment;
return op0;
}
default:
break;
}
return expand_expr (exp, NULL_RTX, VOIDmode, EXPAND_NORMAL);
}
/* Return the tree node if a ARG corresponds to a string constant or zero
if it doesn't. If we return non-zero, set *PTR_OFFSET to the offset
in bytes within the string that ARG is accessing. The type of the
offset will be `sizetype'. */
tree
string_constant (arg, ptr_offset)
tree arg;
tree *ptr_offset;
{
STRIP_NOPS (arg);
if (TREE_CODE (arg) == ADDR_EXPR
&& TREE_CODE (TREE_OPERAND (arg, 0)) == STRING_CST)
{
*ptr_offset = size_zero_node;
return TREE_OPERAND (arg, 0);
}
else if (TREE_CODE (arg) == PLUS_EXPR)
{
tree arg0 = TREE_OPERAND (arg, 0);
tree arg1 = TREE_OPERAND (arg, 1);
STRIP_NOPS (arg0);
STRIP_NOPS (arg1);
if (TREE_CODE (arg0) == ADDR_EXPR
&& TREE_CODE (TREE_OPERAND (arg0, 0)) == STRING_CST)
{
*ptr_offset = convert (sizetype, arg1);
return TREE_OPERAND (arg0, 0);
}
else if (TREE_CODE (arg1) == ADDR_EXPR
&& TREE_CODE (TREE_OPERAND (arg1, 0)) == STRING_CST)
{
*ptr_offset = convert (sizetype, arg0);
return TREE_OPERAND (arg1, 0);
}
}
return 0;
}
/* Expand code for a post- or pre- increment or decrement
and return the RTX for the result.
POST is 1 for postinc/decrements and 0 for preinc/decrements. */
static rtx
expand_increment (exp, post, ignore)
tree exp;
int post, ignore;
{
rtx op0, op1;
rtx temp, value;
tree incremented = TREE_OPERAND (exp, 0);
optab this_optab = add_optab;
int icode;
enum machine_mode mode = TYPE_MODE (TREE_TYPE (exp));
int op0_is_copy = 0;
int single_insn = 0;
/* 1 means we can't store into OP0 directly,
because it is a subreg narrower than a word,
and we don't dare clobber the rest of the word. */
int bad_subreg = 0;
/* Stabilize any component ref that might need to be
evaluated more than once below. */
if (!post
|| TREE_CODE (incremented) == BIT_FIELD_REF
|| (TREE_CODE (incremented) == COMPONENT_REF
&& (TREE_CODE (TREE_OPERAND (incremented, 0)) != INDIRECT_REF
|| DECL_BIT_FIELD (TREE_OPERAND (incremented, 1)))))
incremented = stabilize_reference (incremented);
/* Nested *INCREMENT_EXPRs can happen in C++. We must force innermost
ones into save exprs so that they don't accidentally get evaluated
more than once by the code below. */
if (TREE_CODE (incremented) == PREINCREMENT_EXPR
|| TREE_CODE (incremented) == PREDECREMENT_EXPR)
incremented = save_expr (incremented);
/* Compute the operands as RTX.
Note whether OP0 is the actual lvalue or a copy of it:
I believe it is a copy iff it is a register or subreg
and insns were generated in computing it. */
temp = get_last_insn ();
op0 = expand_expr (incremented, NULL_RTX, VOIDmode, EXPAND_MEMORY_USE_RW);
/* If OP0 is a SUBREG made for a promoted variable, we cannot increment
in place but instead must do sign- or zero-extension during assignment,
so we copy it into a new register and let the code below use it as
a copy.
Note that we can safely modify this SUBREG since it is know not to be
shared (it was made by the expand_expr call above). */
if (GET_CODE (op0) == SUBREG && SUBREG_PROMOTED_VAR_P (op0))
{
if (post)
SUBREG_REG (op0) = copy_to_reg (SUBREG_REG (op0));
else
bad_subreg = 1;
}
else if (GET_CODE (op0) == SUBREG
&& GET_MODE_BITSIZE (GET_MODE (op0)) < BITS_PER_WORD)
{
/* We cannot increment this SUBREG in place. If we are
post-incrementing, get a copy of the old value. Otherwise,
just mark that we cannot increment in place. */
if (post)
op0 = copy_to_reg (op0);
else
bad_subreg = 1;
}
op0_is_copy = ((GET_CODE (op0) == SUBREG || GET_CODE (op0) == REG)
&& temp != get_last_insn ());
op1 = expand_expr (TREE_OPERAND (exp, 1), NULL_RTX, VOIDmode,
EXPAND_MEMORY_USE_BAD);
/* Decide whether incrementing or decrementing. */
if (TREE_CODE (exp) == POSTDECREMENT_EXPR
|| TREE_CODE (exp) == PREDECREMENT_EXPR)
this_optab = sub_optab;
/* Convert decrement by a constant into a negative increment. */
if (this_optab == sub_optab
&& GET_CODE (op1) == CONST_INT)
{
op1 = GEN_INT (-INTVAL (op1));
this_optab = add_optab;
}
if (TYPE_TRAP_SIGNED (TREE_TYPE (exp)))
this_optab = this_optab == add_optab ? addv_optab : subv_optab;
/* For a preincrement, see if we can do this with a single instruction. */
if (!post)
{
icode = (int) this_optab->handlers[(int) mode].insn_code;
if (icode != (int) CODE_FOR_nothing
/* Make sure that OP0 is valid for operands 0 and 1
of the insn we want to queue. */
&& (*insn_data[icode].operand[0].predicate) (op0, mode)
&& (*insn_data[icode].operand[1].predicate) (op0, mode)
&& (*insn_data[icode].operand[2].predicate) (op1, mode))
single_insn = 1;
}
/* If OP0 is not the actual lvalue, but rather a copy in a register,
then we cannot just increment OP0. We must therefore contrive to
increment the original value. Then, for postincrement, we can return
OP0 since it is a copy of the old value. For preincrement, expand here
unless we can do it with a single insn.
Likewise if storing directly into OP0 would clobber high bits
we need to preserve (bad_subreg). */
if (op0_is_copy || (!post && !single_insn) || bad_subreg)
{
/* This is the easiest way to increment the value wherever it is.
Problems with multiple evaluation of INCREMENTED are prevented
because either (1) it is a component_ref or preincrement,
in which case it was stabilized above, or (2) it is an array_ref
with constant index in an array in a register, which is
safe to reevaluate. */
tree newexp = build (((TREE_CODE (exp) == POSTDECREMENT_EXPR
|| TREE_CODE (exp) == PREDECREMENT_EXPR)
? MINUS_EXPR : PLUS_EXPR),
TREE_TYPE (exp),
incremented,
TREE_OPERAND (exp, 1));
while (TREE_CODE (incremented) == NOP_EXPR
|| TREE_CODE (incremented) == CONVERT_EXPR)
{
newexp = convert (TREE_TYPE (incremented), newexp);
incremented = TREE_OPERAND (incremented, 0);
}
temp = expand_assignment (incremented, newexp, ! post && ! ignore , 0);
return post ? op0 : temp;
}
if (post)
{
/* We have a true reference to the value in OP0.
If there is an insn to add or subtract in this mode, queue it.
Queueing the increment insn avoids the register shuffling
that often results if we must increment now and first save
the old value for subsequent use. */
#if 0 /* Turned off to avoid making extra insn for indexed memref. */
op0 = stabilize (op0);
#endif
icode = (int) this_optab->handlers[(int) mode].insn_code;
if (icode != (int) CODE_FOR_nothing
/* Make sure that OP0 is valid for operands 0 and 1
of the insn we want to queue. */
&& (*insn_data[icode].operand[0].predicate) (op0, mode)
&& (*insn_data[icode].operand[1].predicate) (op0, mode))
{
if (! (*insn_data[icode].operand[2].predicate) (op1, mode))
op1 = force_reg (mode, op1);
return enqueue_insn (op0, GEN_FCN (icode) (op0, op0, op1));
}
if (icode != (int) CODE_FOR_nothing && GET_CODE (op0) == MEM)
{
rtx addr = (general_operand (XEXP (op0, 0), mode)
? force_reg (Pmode, XEXP (op0, 0))
: copy_to_reg (XEXP (op0, 0)));
rtx temp, result;
op0 = replace_equiv_address (op0, addr);
temp = force_reg (GET_MODE (op0), op0);
if (! (*insn_data[icode].operand[2].predicate) (op1, mode))
op1 = force_reg (mode, op1);
/* The increment queue is LIFO, thus we have to `queue'
the instructions in reverse order. */
enqueue_insn (op0, gen_move_insn (op0, temp));
result = enqueue_insn (temp, GEN_FCN (icode) (temp, temp, op1));
return result;
}
}
/* Preincrement, or we can't increment with one simple insn. */
if (post)
/* Save a copy of the value before inc or dec, to return it later. */
temp = value = copy_to_reg (op0);
else
/* Arrange to return the incremented value. */
/* Copy the rtx because expand_binop will protect from the queue,
and the results of that would be invalid for us to return
if our caller does emit_queue before using our result. */
temp = copy_rtx (value = op0);
/* Increment however we can. */
op1 = expand_binop (mode, this_optab, value, op1,
current_function_check_memory_usage ? NULL_RTX : op0,
TREE_UNSIGNED (TREE_TYPE (exp)), OPTAB_LIB_WIDEN);
/* Make sure the value is stored into OP0. */
if (op1 != op0)
emit_move_insn (op0, op1);
return temp;
}
/* At the start of a function, record that we have no previously-pushed
arguments waiting to be popped. */
void
init_pending_stack_adjust ()
{
pending_stack_adjust = 0;
}
/* When exiting from function, if safe, clear out any pending stack adjust
so the adjustment won't get done.
Note, if the current function calls alloca, then it must have a
frame pointer regardless of the value of flag_omit_frame_pointer. */
void
clear_pending_stack_adjust ()
{
#ifdef EXIT_IGNORE_STACK
if (optimize > 0
&& (! flag_omit_frame_pointer || current_function_calls_alloca)
&& EXIT_IGNORE_STACK
&& ! (DECL_INLINE (current_function_decl) && ! flag_no_inline)
&& ! flag_inline_functions)
{
stack_pointer_delta -= pending_stack_adjust,
pending_stack_adjust = 0;
}
#endif
}
/* Pop any previously-pushed arguments that have not been popped yet. */
void
do_pending_stack_adjust ()
{
if (inhibit_defer_pop == 0)
{
if (pending_stack_adjust != 0)
adjust_stack (GEN_INT (pending_stack_adjust));
pending_stack_adjust = 0;
}
}
/* Expand conditional expressions. */
/* Generate code to evaluate EXP and jump to LABEL if the value is zero.
LABEL is an rtx of code CODE_LABEL, in this function and all the
functions here. */
void
jumpifnot (exp, label)
tree exp;
rtx label;
{
do_jump (exp, label, NULL_RTX);
}
/* Generate code to evaluate EXP and jump to LABEL if the value is nonzero. */
void
jumpif (exp, label)
tree exp;
rtx label;
{
do_jump (exp, NULL_RTX, label);
}
/* Generate code to evaluate EXP and jump to IF_FALSE_LABEL if
the result is zero, or IF_TRUE_LABEL if the result is one.
Either of IF_FALSE_LABEL and IF_TRUE_LABEL may be zero,
meaning fall through in that case.
do_jump always does any pending stack adjust except when it does not
actually perform a jump. An example where there is no jump
is when EXP is `(foo (), 0)' and IF_FALSE_LABEL is null.
This function is responsible for optimizing cases such as
&&, || and comparison operators in EXP. */
void
do_jump (exp, if_false_label, if_true_label)
tree exp;
rtx if_false_label, if_true_label;
{
enum tree_code code = TREE_CODE (exp);
/* Some cases need to create a label to jump to
in order to properly fall through.
These cases set DROP_THROUGH_LABEL nonzero. */
rtx drop_through_label = 0;
rtx temp;
int i;
tree type;
enum machine_mode mode;
#ifdef MAX_INTEGER_COMPUTATION_MODE
check_max_integer_computation_mode (exp);
#endif
emit_queue ();
switch (code)
{
case ERROR_MARK:
break;
case INTEGER_CST:
temp = integer_zerop (exp) ? if_false_label : if_true_label;
if (temp)
emit_jump (temp);
break;
#if 0
/* This is not true with #pragma weak */
case ADDR_EXPR:
/* The address of something can never be zero. */
if (if_true_label)
emit_jump (if_true_label);
break;
#endif
case NOP_EXPR:
if (TREE_CODE (TREE_OPERAND (exp, 0)) == COMPONENT_REF
|| TREE_CODE (TREE_OPERAND (exp, 0)) == BIT_FIELD_REF
|| TREE_CODE (TREE_OPERAND (exp, 0)) == ARRAY_REF
|| TREE_CODE (TREE_OPERAND (exp, 0)) == ARRAY_RANGE_REF)
goto normal;
case CONVERT_EXPR:
/* If we are narrowing the operand, we have to do the compare in the
narrower mode. */
if ((TYPE_PRECISION (TREE_TYPE (exp))
< TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (exp, 0)))))
goto normal;
case NON_LVALUE_EXPR:
case REFERENCE_EXPR:
case ABS_EXPR:
case NEGATE_EXPR:
case LROTATE_EXPR:
case RROTATE_EXPR:
/* These cannot change zero->non-zero or vice versa. */
do_jump (TREE_OPERAND (exp, 0), if_false_label, if_true_label);
break;
case WITH_RECORD_EXPR:
/* Put the object on the placeholder list, recurse through our first
operand, and pop the list. */
placeholder_list = tree_cons (TREE_OPERAND (exp, 1), NULL_TREE,
placeholder_list);
do_jump (TREE_OPERAND (exp, 0), if_false_label, if_true_label);
placeholder_list = TREE_CHAIN (placeholder_list);
break;
#if 0
/* This is never less insns than evaluating the PLUS_EXPR followed by
a test and can be longer if the test is eliminated. */
case PLUS_EXPR:
/* Reduce to minus. */
exp = build (MINUS_EXPR, TREE_TYPE (exp),
TREE_OPERAND (exp, 0),
fold (build1 (NEGATE_EXPR, TREE_TYPE (TREE_OPERAND (exp, 1)),
TREE_OPERAND (exp, 1))));
/* Process as MINUS. */
#endif
case MINUS_EXPR:
/* Non-zero iff operands of minus differ. */
do_compare_and_jump (build (NE_EXPR, TREE_TYPE (exp),
TREE_OPERAND (exp, 0),
TREE_OPERAND (exp, 1)),
NE, NE, if_false_label, if_true_label);
break;
case BIT_AND_EXPR:
/* If we are AND'ing with a small constant, do this comparison in the
smallest type that fits. If the machine doesn't have comparisons
that small, it will be converted back to the wider comparison.
This helps if we are testing the sign bit of a narrower object.
combine can't do this for us because it can't know whether a
ZERO_EXTRACT or a compare in a smaller mode exists, but we do. */
if (! SLOW_BYTE_ACCESS
&& TREE_CODE (TREE_OPERAND (exp, 1)) == INTEGER_CST
&& TYPE_PRECISION (TREE_TYPE (exp)) <= HOST_BITS_PER_WIDE_INT
&& (i = tree_floor_log2 (TREE_OPERAND (exp, 1))) >= 0
&& (mode = mode_for_size (i + 1, MODE_INT, 0)) != BLKmode
&& (type = type_for_mode (mode, 1)) != 0
&& TYPE_PRECISION (type) < TYPE_PRECISION (TREE_TYPE (exp))
&& (cmp_optab->handlers[(int) TYPE_MODE (type)].insn_code
!= CODE_FOR_nothing))
{
do_jump (convert (type, exp), if_false_label, if_true_label);
break;
}
goto normal;
case TRUTH_NOT_EXPR:
do_jump (TREE_OPERAND (exp, 0), if_true_label, if_false_label);
break;
case TRUTH_ANDIF_EXPR:
if (if_false_label == 0)
if_false_label = drop_through_label = gen_label_rtx ();
do_jump (TREE_OPERAND (exp, 0), if_false_label, NULL_RTX);
start_cleanup_deferral ();
do_jump (TREE_OPERAND (exp, 1), if_false_label, if_true_label);
end_cleanup_deferral ();
break;
case TRUTH_ORIF_EXPR:
if (if_true_label == 0)
if_true_label = drop_through_label = gen_label_rtx ();
do_jump (TREE_OPERAND (exp, 0), NULL_RTX, if_true_label);
start_cleanup_deferral ();
do_jump (TREE_OPERAND (exp, 1), if_false_label, if_true_label);
end_cleanup_deferral ();
break;
case COMPOUND_EXPR:
push_temp_slots ();
expand_expr (TREE_OPERAND (exp, 0), const0_rtx, VOIDmode, 0);
preserve_temp_slots (NULL_RTX);
free_temp_slots ();
pop_temp_slots ();
emit_queue ();
do_pending_stack_adjust ();
do_jump (TREE_OPERAND (exp, 1), if_false_label, if_true_label);
break;
case COMPONENT_REF:
case BIT_FIELD_REF:
case ARRAY_REF:
case ARRAY_RANGE_REF:
{
HOST_WIDE_INT bitsize, bitpos;
int unsignedp;
enum machine_mode mode;
tree type;
tree offset;
int volatilep = 0;
unsigned int alignment;
/* Get description of this reference. We don't actually care
about the underlying object here. */
get_inner_reference (exp, &bitsize, &bitpos, &offset, &mode,
&unsignedp, &volatilep, &alignment);
type = type_for_size (bitsize, unsignedp);
if (! SLOW_BYTE_ACCESS
&& type != 0 && bitsize >= 0
&& TYPE_PRECISION (type) < TYPE_PRECISION (TREE_TYPE (exp))
&& (cmp_optab->handlers[(int) TYPE_MODE (type)].insn_code
!= CODE_FOR_nothing))
{
do_jump (convert (type, exp), if_false_label, if_true_label);
break;
}
goto normal;
}
case COND_EXPR:
/* Do (a ? 1 : 0) and (a ? 0 : 1) as special cases. */
if (integer_onep (TREE_OPERAND (exp, 1))
&& integer_zerop (TREE_OPERAND (exp, 2)))
do_jump (TREE_OPERAND (exp, 0), if_false_label, if_true_label);
else if (integer_zerop (TREE_OPERAND (exp, 1))
&& integer_onep (TREE_OPERAND (exp, 2)))
do_jump (TREE_OPERAND (exp, 0), if_true_label, if_false_label);
else
{
rtx label1 = gen_label_rtx ();
drop_through_label = gen_label_rtx ();
do_jump (TREE_OPERAND (exp, 0), label1, NULL_RTX);
start_cleanup_deferral ();
/* Now the THEN-expression. */
do_jump (TREE_OPERAND (exp, 1),
if_false_label ? if_false_label : drop_through_label,
if_true_label ? if_true_label : drop_through_label);
/* In case the do_jump just above never jumps. */
do_pending_stack_adjust ();
emit_label (label1);
/* Now the ELSE-expression. */
do_jump (TREE_OPERAND (exp, 2),
if_false_label ? if_false_label : drop_through_label,
if_true_label ? if_true_label : drop_through_label);
end_cleanup_deferral ();
}
break;
case EQ_EXPR:
{
tree inner_type = TREE_TYPE (TREE_OPERAND (exp, 0));
if (GET_MODE_CLASS (TYPE_MODE (inner_type)) == MODE_COMPLEX_FLOAT
|| GET_MODE_CLASS (TYPE_MODE (inner_type)) == MODE_COMPLEX_INT)
{
tree exp0 = save_expr (TREE_OPERAND (exp, 0));
tree exp1 = save_expr (TREE_OPERAND (exp, 1));
do_jump
(fold
(build (TRUTH_ANDIF_EXPR, TREE_TYPE (exp),
fold (build (EQ_EXPR, TREE_TYPE (exp),
fold (build1 (REALPART_EXPR,
TREE_TYPE (inner_type),
exp0)),
fold (build1 (REALPART_EXPR,
TREE_TYPE (inner_type),
exp1)))),
fold (build (EQ_EXPR, TREE_TYPE (exp),
fold (build1 (IMAGPART_EXPR,
TREE_TYPE (inner_type),
exp0)),
fold (build1 (IMAGPART_EXPR,
TREE_TYPE (inner_type),
exp1)))))),
if_false_label, if_true_label);
}
else if (integer_zerop (TREE_OPERAND (exp, 1)))
do_jump (TREE_OPERAND (exp, 0), if_true_label, if_false_label);
else if (GET_MODE_CLASS (TYPE_MODE (inner_type)) == MODE_INT
&& !can_compare_p (EQ, TYPE_MODE (inner_type), ccp_jump))
do_jump_by_parts_equality (exp, if_false_label, if_true_label);
else
do_compare_and_jump (exp, EQ, EQ, if_false_label, if_true_label);
break;
}
case NE_EXPR:
{
tree inner_type = TREE_TYPE (TREE_OPERAND (exp, 0));
if (GET_MODE_CLASS (TYPE_MODE (inner_type)) == MODE_COMPLEX_FLOAT
|| GET_MODE_CLASS (TYPE_MODE (inner_type)) == MODE_COMPLEX_INT)
{
tree exp0 = save_expr (TREE_OPERAND (exp, 0));
tree exp1 = save_expr (TREE_OPERAND (exp, 1));
do_jump
(fold
(build (TRUTH_ORIF_EXPR, TREE_TYPE (exp),
fold (build (NE_EXPR, TREE_TYPE (exp),
fold (build1 (REALPART_EXPR,
TREE_TYPE (inner_type),
exp0)),
fold (build1 (REALPART_EXPR,
TREE_TYPE (inner_type),
exp1)))),
fold (build (NE_EXPR, TREE_TYPE (exp),
fold (build1 (IMAGPART_EXPR,
TREE_TYPE (inner_type),
exp0)),
fold (build1 (IMAGPART_EXPR,
TREE_TYPE (inner_type),
exp1)))))),
if_false_label, if_true_label);
}
else if (integer_zerop (TREE_OPERAND (exp, 1)))
do_jump (TREE_OPERAND (exp, 0), if_false_label, if_true_label);
else if (GET_MODE_CLASS (TYPE_MODE (inner_type)) == MODE_INT
&& !can_compare_p (NE, TYPE_MODE (inner_type), ccp_jump))
do_jump_by_parts_equality (exp, if_true_label, if_false_label);
else
do_compare_and_jump (exp, NE, NE, if_false_label, if_true_label);
break;
}
case LT_EXPR:
mode = TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 0)));
if (GET_MODE_CLASS (mode) == MODE_INT
&& ! can_compare_p (LT, mode, ccp_jump))
do_jump_by_parts_greater (exp, 1, if_false_label, if_true_label);
else
do_compare_and_jump (exp, LT, LTU, if_false_label, if_true_label);
break;
case LE_EXPR:
mode = TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 0)));
if (GET_MODE_CLASS (mode) == MODE_INT
&& ! can_compare_p (LE, mode, ccp_jump))
do_jump_by_parts_greater (exp, 0, if_true_label, if_false_label);
else
do_compare_and_jump (exp, LE, LEU, if_false_label, if_true_label);
break;
case GT_EXPR:
mode = TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 0)));
if (GET_MODE_CLASS (mode) == MODE_INT
&& ! can_compare_p (GT, mode, ccp_jump))
do_jump_by_parts_greater (exp, 0, if_false_label, if_true_label);
else
do_compare_and_jump (exp, GT, GTU, if_false_label, if_true_label);
break;
case GE_EXPR:
mode = TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 0)));
if (GET_MODE_CLASS (mode) == MODE_INT
&& ! can_compare_p (GE, mode, ccp_jump))
do_jump_by_parts_greater (exp, 1, if_true_label, if_false_label);
else
do_compare_and_jump (exp, GE, GEU, if_false_label, if_true_label);
break;
case UNORDERED_EXPR:
case ORDERED_EXPR:
{
enum rtx_code cmp, rcmp;
int do_rev;
if (code == UNORDERED_EXPR)
cmp = UNORDERED, rcmp = ORDERED;
else
cmp = ORDERED, rcmp = UNORDERED;
mode = TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 0)));
do_rev = 0;
if (! can_compare_p (cmp, mode, ccp_jump)
&& (can_compare_p (rcmp, mode, ccp_jump)
/* If the target doesn't provide either UNORDERED or ORDERED
comparisons, canonicalize on UNORDERED for the library. */
|| rcmp == UNORDERED))
do_rev = 1;
if (! do_rev)
do_compare_and_jump (exp, cmp, cmp, if_false_label, if_true_label);
else
do_compare_and_jump (exp, rcmp, rcmp, if_true_label, if_false_label);
}
break;
{
enum rtx_code rcode1;
enum tree_code tcode2;
case UNLT_EXPR:
rcode1 = UNLT;
tcode2 = LT_EXPR;
goto unordered_bcc;
case UNLE_EXPR:
rcode1 = UNLE;
tcode2 = LE_EXPR;
goto unordered_bcc;
case UNGT_EXPR:
rcode1 = UNGT;
tcode2 = GT_EXPR;
goto unordered_bcc;
case UNGE_EXPR:
rcode1 = UNGE;
tcode2 = GE_EXPR;
goto unordered_bcc;
case UNEQ_EXPR:
rcode1 = UNEQ;
tcode2 = EQ_EXPR;
goto unordered_bcc;
unordered_bcc:
mode = TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 0)));
if (can_compare_p (rcode1, mode, ccp_jump))
do_compare_and_jump (exp, rcode1, rcode1, if_false_label,
if_true_label);
else
{
tree op0 = save_expr (TREE_OPERAND (exp, 0));
tree op1 = save_expr (TREE_OPERAND (exp, 1));
tree cmp0, cmp1;
/* If the target doesn't support combined unordered
compares, decompose into UNORDERED + comparison. */
cmp0 = fold (build (UNORDERED_EXPR, TREE_TYPE (exp), op0, op1));
cmp1 = fold (build (tcode2, TREE_TYPE (exp), op0, op1));
exp = build (TRUTH_ORIF_EXPR, TREE_TYPE (exp), cmp0, cmp1);
do_jump (exp, if_false_label, if_true_label);
}
}
break;
/* Special case:
__builtin_expect (<test>, 0) and
__builtin_expect (<test>, 1)
We need to do this here, so that <test> is not converted to a SCC
operation on machines that use condition code registers and COMPARE
like the PowerPC, and then the jump is done based on whether the SCC
operation produced a 1 or 0. */
case CALL_EXPR:
/* Check for a built-in function. */
if (TREE_CODE (TREE_OPERAND (exp, 0)) == ADDR_EXPR)
{
tree fndecl = TREE_OPERAND (TREE_OPERAND (exp, 0), 0);
tree arglist = TREE_OPERAND (exp, 1);
if (TREE_CODE (fndecl) == FUNCTION_DECL
&& DECL_BUILT_IN (fndecl)
&& DECL_FUNCTION_CODE (fndecl) == BUILT_IN_EXPECT
&& arglist != NULL_TREE
&& TREE_CHAIN (arglist) != NULL_TREE)
{
rtx seq = expand_builtin_expect_jump (exp, if_false_label,
if_true_label);
if (seq != NULL_RTX)
{
emit_insn (seq);
return;
}
}
}
/* fall through and generate the normal code. */
default:
normal:
temp = expand_expr (exp, NULL_RTX, VOIDmode, 0);
#if 0
/* This is not needed any more and causes poor code since it causes
comparisons and tests from non-SI objects to have different code
sequences. */
/* Copy to register to avoid generating bad insns by cse
from (set (mem ...) (arithop)) (set (cc0) (mem ...)). */
if (!cse_not_expected && GET_CODE (temp) == MEM)
temp = copy_to_reg (temp);
#endif
do_pending_stack_adjust ();
/* Do any postincrements in the expression that was tested. */
emit_queue ();
if (GET_CODE (temp) == CONST_INT
|| (GET_CODE (temp) == CONST_DOUBLE && GET_MODE (temp) == VOIDmode)
|| GET_CODE (temp) == LABEL_REF)
{
rtx target = temp == const0_rtx ? if_false_label : if_true_label;
if (target)
emit_jump (target);
}
else if (GET_MODE_CLASS (GET_MODE (temp)) == MODE_INT
&& ! can_compare_p (NE, GET_MODE (temp), ccp_jump))
/* Note swapping the labels gives us not-equal. */
do_jump_by_parts_equality_rtx (temp, if_true_label, if_false_label);
else if (GET_MODE (temp) != VOIDmode)
do_compare_rtx_and_jump (temp, CONST0_RTX (GET_MODE (temp)),
NE, TREE_UNSIGNED (TREE_TYPE (exp)),
GET_MODE (temp), NULL_RTX, 0,
if_false_label, if_true_label);
else
abort ();
}
if (drop_through_label)
{
/* If do_jump produces code that might be jumped around,
do any stack adjusts from that code, before the place
where control merges in. */
do_pending_stack_adjust ();
emit_label (drop_through_label);
}
}
/* Given a comparison expression EXP for values too wide to be compared
with one insn, test the comparison and jump to the appropriate label.
The code of EXP is ignored; we always test GT if SWAP is 0,
and LT if SWAP is 1. */
static void
do_jump_by_parts_greater (exp, swap, if_false_label, if_true_label)
tree exp;
int swap;
rtx if_false_label, if_true_label;
{
rtx op0 = expand_expr (TREE_OPERAND (exp, swap), NULL_RTX, VOIDmode, 0);
rtx op1 = expand_expr (TREE_OPERAND (exp, !swap), NULL_RTX, VOIDmode, 0);
enum machine_mode mode = TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 0)));
int unsignedp = TREE_UNSIGNED (TREE_TYPE (TREE_OPERAND (exp, 0)));
do_jump_by_parts_greater_rtx (mode, unsignedp, op0, op1, if_false_label, if_true_label);
}
/* Compare OP0 with OP1, word at a time, in mode MODE.
UNSIGNEDP says to do unsigned comparison.
Jump to IF_TRUE_LABEL if OP0 is greater, IF_FALSE_LABEL otherwise. */
void
do_jump_by_parts_greater_rtx (mode, unsignedp, op0, op1, if_false_label, if_true_label)
enum machine_mode mode;
int unsignedp;
rtx op0, op1;
rtx if_false_label, if_true_label;
{
int nwords = (GET_MODE_SIZE (mode) / UNITS_PER_WORD);
rtx drop_through_label = 0;
int i;
if (! if_true_label || ! if_false_label)
drop_through_label = gen_label_rtx ();
if (! if_true_label)
if_true_label = drop_through_label;
if (! if_false_label)
if_false_label = drop_through_label;
/* Compare a word at a time, high order first. */
for (i = 0; i < nwords; i++)
{
rtx op0_word, op1_word;
if (WORDS_BIG_ENDIAN)
{
op0_word = operand_subword_force (op0, i, mode);
op1_word = operand_subword_force (op1, i, mode);
}
else
{
op0_word = operand_subword_force (op0, nwords - 1 - i, mode);
op1_word = operand_subword_force (op1, nwords - 1 - i, mode);
}
/* All but high-order word must be compared as unsigned. */
do_compare_rtx_and_jump (op0_word, op1_word, GT,
(unsignedp || i > 0), word_mode, NULL_RTX, 0,
NULL_RTX, if_true_label);
/* Consider lower words only if these are equal. */
do_compare_rtx_and_jump (op0_word, op1_word, NE, unsignedp, word_mode,
NULL_RTX, 0, NULL_RTX, if_false_label);
}
if (if_false_label)
emit_jump (if_false_label);
if (drop_through_label)
emit_label (drop_through_label);
}
/* Given an EQ_EXPR expression EXP for values too wide to be compared
with one insn, test the comparison and jump to the appropriate label. */
static void
do_jump_by_parts_equality (exp, if_false_label, if_true_label)
tree exp;
rtx if_false_label, if_true_label;
{
rtx op0 = expand_expr (TREE_OPERAND (exp, 0), NULL_RTX, VOIDmode, 0);
rtx op1 = expand_expr (TREE_OPERAND (exp, 1), NULL_RTX, VOIDmode, 0);
enum machine_mode mode = TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 0)));
int nwords = (GET_MODE_SIZE (mode) / UNITS_PER_WORD);
int i;
rtx drop_through_label = 0;
if (! if_false_label)
drop_through_label = if_false_label = gen_label_rtx ();
for (i = 0; i < nwords; i++)
do_compare_rtx_and_jump (operand_subword_force (op0, i, mode),
operand_subword_force (op1, i, mode),
EQ, TREE_UNSIGNED (TREE_TYPE (exp)),
word_mode, NULL_RTX, 0, if_false_label,
NULL_RTX);
if (if_true_label)
emit_jump (if_true_label);
if (drop_through_label)
emit_label (drop_through_label);
}
/* Jump according to whether OP0 is 0.
We assume that OP0 has an integer mode that is too wide
for the available compare insns. */
void
do_jump_by_parts_equality_rtx (op0, if_false_label, if_true_label)
rtx op0;
rtx if_false_label, if_true_label;
{
int nwords = GET_MODE_SIZE (GET_MODE (op0)) / UNITS_PER_WORD;
rtx part;
int i;
rtx drop_through_label = 0;
/* The fastest way of doing this comparison on almost any machine is to
"or" all the words and compare the result. If all have to be loaded
from memory and this is a very wide item, it's possible this may
be slower, but that's highly unlikely. */
part = gen_reg_rtx (word_mode);
emit_move_insn (part, operand_subword_force (op0, 0, GET_MODE (op0)));
for (i = 1; i < nwords && part != 0; i++)
part = expand_binop (word_mode, ior_optab, part,
operand_subword_force (op0, i, GET_MODE (op0)),
part, 1, OPTAB_WIDEN);
if (part != 0)
{
do_compare_rtx_and_jump (part, const0_rtx, EQ, 1, word_mode,
NULL_RTX, 0, if_false_label, if_true_label);
return;
}
/* If we couldn't do the "or" simply, do this with a series of compares. */
if (! if_false_label)
drop_through_label = if_false_label = gen_label_rtx ();
for (i = 0; i < nwords; i++)
do_compare_rtx_and_jump (operand_subword_force (op0, i, GET_MODE (op0)),
const0_rtx, EQ, 1, word_mode, NULL_RTX, 0,
if_false_label, NULL_RTX);
if (if_true_label)
emit_jump (if_true_label);
if (drop_through_label)
emit_label (drop_through_label);
}
/* Generate code for a comparison of OP0 and OP1 with rtx code CODE.
(including code to compute the values to be compared)
and set (CC0) according to the result.
The decision as to signed or unsigned comparison must be made by the caller.
We force a stack adjustment unless there are currently
things pushed on the stack that aren't yet used.
If MODE is BLKmode, SIZE is an RTX giving the size of the objects being
compared.
If ALIGN is non-zero, it is the alignment of this type; if zero, the
size of MODE should be used. */
rtx
compare_from_rtx (op0, op1, code, unsignedp, mode, size, align)
rtx op0, op1;
enum rtx_code code;
int unsignedp;
enum machine_mode mode;
rtx size;
unsigned int align;
{
rtx tem;
/* If one operand is constant, make it the second one. Only do this
if the other operand is not constant as well. */
if (swap_commutative_operands_p (op0, op1))
{
tem = op0;
op0 = op1;
op1 = tem;
code = swap_condition (code);
}
if (flag_force_mem)
{
op0 = force_not_mem (op0);
op1 = force_not_mem (op1);
}
do_pending_stack_adjust ();
if (GET_CODE (op0) == CONST_INT && GET_CODE (op1) == CONST_INT
&& (tem = simplify_relational_operation (code, mode, op0, op1)) != 0)
return tem;
#if 0
/* There's no need to do this now that combine.c can eliminate lots of
sign extensions. This can be less efficient in certain cases on other
machines. */
/* If this is a signed equality comparison, we can do it as an
unsigned comparison since zero-extension is cheaper than sign
extension and comparisons with zero are done as unsigned. This is
the case even on machines that can do fast sign extension, since
zero-extension is easier to combine with other operations than
sign-extension is. If we are comparing against a constant, we must
convert it to what it would look like unsigned. */
if ((code == EQ || code == NE) && ! unsignedp
&& GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT)
{
if (GET_CODE (op1) == CONST_INT
&& (INTVAL (op1) & GET_MODE_MASK (GET_MODE (op0))) != INTVAL (op1))
op1 = GEN_INT (INTVAL (op1) & GET_MODE_MASK (GET_MODE (op0)));
unsignedp = 1;
}
#endif
emit_cmp_insn (op0, op1, code, size, mode, unsignedp, align);
return gen_rtx_fmt_ee (code, VOIDmode, cc0_rtx, const0_rtx);
}
/* Like do_compare_and_jump but expects the values to compare as two rtx's.
The decision as to signed or unsigned comparison must be made by the caller.
If MODE is BLKmode, SIZE is an RTX giving the size of the objects being
compared.
If ALIGN is non-zero, it is the alignment of this type; if zero, the
size of MODE should be used. */
void
do_compare_rtx_and_jump (op0, op1, code, unsignedp, mode, size, align,
if_false_label, if_true_label)
rtx op0, op1;
enum rtx_code code;
int unsignedp;
enum machine_mode mode;
rtx size;
unsigned int align;
rtx if_false_label, if_true_label;
{
rtx tem;
int dummy_true_label = 0;
/* Reverse the comparison if that is safe and we want to jump if it is
false. */
if (! if_true_label && ! FLOAT_MODE_P (mode))
{
if_true_label = if_false_label;
if_false_label = 0;
code = reverse_condition (code);
}
/* If one operand is constant, make it the second one. Only do this
if the other operand is not constant as well. */
if (swap_commutative_operands_p (op0, op1))
{
tem = op0;
op0 = op1;
op1 = tem;
code = swap_condition (code);
}
if (flag_force_mem)
{
op0 = force_not_mem (op0);
op1 = force_not_mem (op1);
}
do_pending_stack_adjust ();
if (GET_CODE (op0) == CONST_INT && GET_CODE (op1) == CONST_INT
&& (tem = simplify_relational_operation (code, mode, op0, op1)) != 0)
{
if (tem == const_true_rtx)
{
if (if_true_label)
emit_jump (if_true_label);
}
else
{
if (if_false_label)
emit_jump (if_false_label);
}
return;
}
#if 0
/* There's no need to do this now that combine.c can eliminate lots of
sign extensions. This can be less efficient in certain cases on other
machines. */
/* If this is a signed equality comparison, we can do it as an
unsigned comparison since zero-extension is cheaper than sign
extension and comparisons with zero are done as unsigned. This is
the case even on machines that can do fast sign extension, since
zero-extension is easier to combine with other operations than
sign-extension is. If we are comparing against a constant, we must
convert it to what it would look like unsigned. */
if ((code == EQ || code == NE) && ! unsignedp
&& GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT)
{
if (GET_CODE (op1) == CONST_INT
&& (INTVAL (op1) & GET_MODE_MASK (GET_MODE (op0))) != INTVAL (op1))
op1 = GEN_INT (INTVAL (op1) & GET_MODE_MASK (GET_MODE (op0)));
unsignedp = 1;
}
#endif
if (! if_true_label)
{
dummy_true_label = 1;
if_true_label = gen_label_rtx ();
}
emit_cmp_and_jump_insns (op0, op1, code, size, mode, unsignedp, align,
if_true_label);
if (if_false_label)
emit_jump (if_false_label);
if (dummy_true_label)
emit_label (if_true_label);
}
/* Generate code for a comparison expression EXP (including code to compute
the values to be compared) and a conditional jump to IF_FALSE_LABEL and/or
IF_TRUE_LABEL. One of the labels can be NULL_RTX, in which case the
generated code will drop through.
SIGNED_CODE should be the rtx operation for this comparison for
signed data; UNSIGNED_CODE, likewise for use if data is unsigned.
We force a stack adjustment unless there are currently
things pushed on the stack that aren't yet used. */
static void
do_compare_and_jump (exp, signed_code, unsigned_code, if_false_label,
if_true_label)
tree exp;
enum rtx_code signed_code, unsigned_code;
rtx if_false_label, if_true_label;
{
unsigned int align0, align1;
rtx op0, op1;
tree type;
enum machine_mode mode;
int unsignedp;
enum rtx_code code;
/* Don't crash if the comparison was erroneous. */
op0 = expand_expr_unaligned (TREE_OPERAND (exp, 0), &align0);
if (TREE_CODE (TREE_OPERAND (exp, 0)) == ERROR_MARK)
return;
op1 = expand_expr_unaligned (TREE_OPERAND (exp, 1), &align1);
if (TREE_CODE (TREE_OPERAND (exp, 1)) == ERROR_MARK)
return;
type = TREE_TYPE (TREE_OPERAND (exp, 0));
mode = TYPE_MODE (type);
if (TREE_CODE (TREE_OPERAND (exp, 0)) == INTEGER_CST
&& (TREE_CODE (TREE_OPERAND (exp, 1)) != INTEGER_CST
|| (GET_MODE_BITSIZE (mode)
> GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp,
1)))))))
{
/* op0 might have been replaced by promoted constant, in which
case the type of second argument should be used. */
type = TREE_TYPE (TREE_OPERAND (exp, 1));
mode = TYPE_MODE (type);
}
unsignedp = TREE_UNSIGNED (type);
code = unsignedp ? unsigned_code : signed_code;
#ifdef HAVE_canonicalize_funcptr_for_compare
/* If function pointers need to be "canonicalized" before they can
be reliably compared, then canonicalize them. */
if (HAVE_canonicalize_funcptr_for_compare
&& TREE_CODE (TREE_TYPE (TREE_OPERAND (exp, 0))) == POINTER_TYPE
&& (TREE_CODE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 0))))
== FUNCTION_TYPE))
{
rtx new_op0 = gen_reg_rtx (mode);
emit_insn (gen_canonicalize_funcptr_for_compare (new_op0, op0));
op0 = new_op0;
}
if (HAVE_canonicalize_funcptr_for_compare
&& TREE_CODE (TREE_TYPE (TREE_OPERAND (exp, 1))) == POINTER_TYPE
&& (TREE_CODE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 1))))
== FUNCTION_TYPE))
{
rtx new_op1 = gen_reg_rtx (mode);
emit_insn (gen_canonicalize_funcptr_for_compare (new_op1, op1));
op1 = new_op1;
}
#endif
/* Do any postincrements in the expression that was tested. */
emit_queue ();
do_compare_rtx_and_jump (op0, op1, code, unsignedp, mode,
((mode == BLKmode)
? expr_size (TREE_OPERAND (exp, 0)) : NULL_RTX),
MIN (align0, align1),
if_false_label, if_true_label);
}
/* Generate code to calculate EXP using a store-flag instruction
and return an rtx for the result. EXP is either a comparison
or a TRUTH_NOT_EXPR whose operand is a comparison.
If TARGET is nonzero, store the result there if convenient.
If ONLY_CHEAP is non-zero, only do this if it is likely to be very
cheap.
Return zero if there is no suitable set-flag instruction
available on this machine.
Once expand_expr has been called on the arguments of the comparison,
we are committed to doing the store flag, since it is not safe to
re-evaluate the expression. We emit the store-flag insn by calling
emit_store_flag, but only expand the arguments if we have a reason
to believe that emit_store_flag will be successful. If we think that
it will, but it isn't, we have to simulate the store-flag with a
set/jump/set sequence. */
static rtx
do_store_flag (exp, target, mode, only_cheap)
tree exp;
rtx target;
enum machine_mode mode;
int only_cheap;
{
enum rtx_code code;
tree arg0, arg1, type;
tree tem;
enum machine_mode operand_mode;
int invert = 0;
int unsignedp;
rtx op0, op1;
enum insn_code icode;
rtx subtarget = target;
rtx result, label;
/* If this is a TRUTH_NOT_EXPR, set a flag indicating we must invert the
result at the end. We can't simply invert the test since it would
have already been inverted if it were valid. This case occurs for
some floating-point comparisons. */
if (TREE_CODE (exp) == TRUTH_NOT_EXPR)
invert = 1, exp = TREE_OPERAND (exp, 0);
arg0 = TREE_OPERAND (exp, 0);
arg1 = TREE_OPERAND (exp, 1);
/* Don't crash if the comparison was erroneous. */
if (arg0 == error_mark_node || arg1 == error_mark_node)
return const0_rtx;
type = TREE_TYPE (arg0);
operand_mode = TYPE_MODE (type);
unsignedp = TREE_UNSIGNED (type);
/* We won't bother with BLKmode store-flag operations because it would mean
passing a lot of information to emit_store_flag. */
if (operand_mode == BLKmode)
return 0;
/* We won't bother with store-flag operations involving function pointers
when function pointers must be canonicalized before comparisons. */
#ifdef HAVE_canonicalize_funcptr_for_compare
if (HAVE_canonicalize_funcptr_for_compare
&& ((TREE_CODE (TREE_TYPE (TREE_OPERAND (exp, 0))) == POINTER_TYPE
&& (TREE_CODE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 0))))
== FUNCTION_TYPE))
|| (TREE_CODE (TREE_TYPE (TREE_OPERAND (exp, 1))) == POINTER_TYPE
&& (TREE_CODE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 1))))
== FUNCTION_TYPE))))
return 0;
#endif
STRIP_NOPS (arg0);
STRIP_NOPS (arg1);
/* Get the rtx comparison code to use. We know that EXP is a comparison
operation of some type. Some comparisons against 1 and -1 can be
converted to comparisons with zero. Do so here so that the tests
below will be aware that we have a comparison with zero. These
tests will not catch constants in the first operand, but constants
are rarely passed as the first operand. */
switch (TREE_CODE (exp))
{
case EQ_EXPR:
code = EQ;
break;
case NE_EXPR:
code = NE;
break;
case LT_EXPR:
if (integer_onep (arg1))
arg1 = integer_zero_node, code = unsignedp ? LEU : LE;
else
code = unsignedp ? LTU : LT;
break;
case LE_EXPR:
if (! unsignedp && integer_all_onesp (arg1))
arg1 = integer_zero_node, code = LT;
else
code = unsignedp ? LEU : LE;
break;
case GT_EXPR:
if (! unsignedp && integer_all_onesp (arg1))
arg1 = integer_zero_node, code = GE;
else
code = unsignedp ? GTU : GT;
break;
case GE_EXPR:
if (integer_onep (arg1))
arg1 = integer_zero_node, code = unsignedp ? GTU : GT;
else
code = unsignedp ? GEU : GE;
break;
case UNORDERED_EXPR:
code = UNORDERED;
break;
case ORDERED_EXPR:
code = ORDERED;
break;
case UNLT_EXPR:
code = UNLT;
break;
case UNLE_EXPR:
code = UNLE;
break;
case UNGT_EXPR:
code = UNGT;
break;
case UNGE_EXPR:
code = UNGE;
break;
case UNEQ_EXPR:
code = UNEQ;
break;
default:
abort ();
}
/* Put a constant second. */
if (TREE_CODE (arg0) == REAL_CST || TREE_CODE (arg0) == INTEGER_CST)
{
tem = arg0; arg0 = arg1; arg1 = tem;
code = swap_condition (code);
}
/* If this is an equality or inequality test of a single bit, we can
do this by shifting the bit being tested to the low-order bit and
masking the result with the constant 1. If the condition was EQ,
we xor it with 1. This does not require an scc insn and is faster
than an scc insn even if we have it. */
if ((code == NE || code == EQ)
&& TREE_CODE (arg0) == BIT_AND_EXPR && integer_zerop (arg1)
&& integer_pow2p (TREE_OPERAND (arg0, 1)))
{
tree inner = TREE_OPERAND (arg0, 0);
int bitnum = tree_log2 (TREE_OPERAND (arg0, 1));
int ops_unsignedp;
/* If INNER is a right shift of a constant and it plus BITNUM does
not overflow, adjust BITNUM and INNER. */
if (TREE_CODE (inner) == RSHIFT_EXPR
&& TREE_CODE (TREE_OPERAND (inner, 1)) == INTEGER_CST
&& TREE_INT_CST_HIGH (TREE_OPERAND (inner, 1)) == 0
&& bitnum < TYPE_PRECISION (type)
&& 0 > compare_tree_int (TREE_OPERAND (inner, 1),
bitnum - TYPE_PRECISION (type)))
{
bitnum += TREE_INT_CST_LOW (TREE_OPERAND (inner, 1));
inner = TREE_OPERAND (inner, 0);
}
/* If we are going to be able to omit the AND below, we must do our
operations as unsigned. If we must use the AND, we have a choice.
Normally unsigned is faster, but for some machines signed is. */
ops_unsignedp = (bitnum == TYPE_PRECISION (type) - 1 ? 1
#ifdef LOAD_EXTEND_OP
: (LOAD_EXTEND_OP (operand_mode) == SIGN_EXTEND ? 0 : 1)
#else
: 1
#endif
);
if (! get_subtarget (subtarget)
|| GET_MODE (subtarget) != operand_mode
|| ! safe_from_p (subtarget, inner, 1))
subtarget = 0;
op0 = expand_expr (inner, subtarget, VOIDmode, 0);
if (bitnum != 0)
op0 = expand_shift (RSHIFT_EXPR, operand_mode, op0,
size_int (bitnum), subtarget, ops_unsignedp);
if (GET_MODE (op0) != mode)
op0 = convert_to_mode (mode, op0, ops_unsignedp);
if ((code == EQ && ! invert) || (code == NE && invert))
op0 = expand_binop (mode, xor_optab, op0, const1_rtx, subtarget,
ops_unsignedp, OPTAB_LIB_WIDEN);
/* Put the AND last so it can combine with more things. */
if (bitnum != TYPE_PRECISION (type) - 1)
op0 = expand_and (op0, const1_rtx, subtarget);
return op0;
}
/* Now see if we are likely to be able to do this. Return if not. */
if (! can_compare_p (code, operand_mode, ccp_store_flag))
return 0;
icode = setcc_gen_code[(int) code];
if (icode == CODE_FOR_nothing
|| (only_cheap && insn_data[(int) icode].operand[0].mode != mode))
{
/* We can only do this if it is one of the special cases that
can be handled without an scc insn. */
if ((code == LT && integer_zerop (arg1))
|| (! only_cheap && code == GE && integer_zerop (arg1)))
;
else if (BRANCH_COST >= 0
&& ! only_cheap && (code == NE || code == EQ)
&& TREE_CODE (type) != REAL_TYPE
&& ((abs_optab->handlers[(int) operand_mode].insn_code
!= CODE_FOR_nothing)
|| (ffs_optab->handlers[(int) operand_mode].insn_code
!= CODE_FOR_nothing)))
;
else
return 0;
}
if (! get_subtarget (target)
|| GET_MODE (subtarget) != operand_mode
|| ! safe_from_p (subtarget, arg1, 1))
subtarget = 0;
op0 = expand_expr (arg0, subtarget, VOIDmode, 0);
op1 = expand_expr (arg1, NULL_RTX, VOIDmode, 0);
if (target == 0)
target = gen_reg_rtx (mode);
/* Pass copies of OP0 and OP1 in case they contain a QUEUED. This is safe
because, if the emit_store_flag does anything it will succeed and
OP0 and OP1 will not be used subsequently. */
result = emit_store_flag (target, code,
queued_subexp_p (op0) ? copy_rtx (op0) : op0,
queued_subexp_p (op1) ? copy_rtx (op1) : op1,
operand_mode, unsignedp, 1);
if (result)
{
if (invert)
result = expand_binop (mode, xor_optab, result, const1_rtx,
result, 0, OPTAB_LIB_WIDEN);
return result;
}
/* If this failed, we have to do this with set/compare/jump/set code. */
if (GET_CODE (target) != REG
|| reg_mentioned_p (target, op0) || reg_mentioned_p (target, op1))
target = gen_reg_rtx (GET_MODE (target));
emit_move_insn (target, invert ? const0_rtx : const1_rtx);
result = compare_from_rtx (op0, op1, code, unsignedp,
operand_mode, NULL_RTX, 0);
if (GET_CODE (result) == CONST_INT)
return (((result == const0_rtx && ! invert)
|| (result != const0_rtx && invert))
? const0_rtx : const1_rtx);
label = gen_label_rtx ();
if (bcc_gen_fctn[(int) code] == 0)
abort ();
emit_jump_insn ((*bcc_gen_fctn[(int) code]) (label));
emit_move_insn (target, invert ? const1_rtx : const0_rtx);
emit_label (label);
return target;
}
/* Stubs in case we haven't got a casesi insn. */
#ifndef HAVE_casesi
# define HAVE_casesi 0
# define gen_casesi(a, b, c, d, e) (0)
# define CODE_FOR_casesi CODE_FOR_nothing
#endif
/* If the machine does not have a case insn that compares the bounds,
this means extra overhead for dispatch tables, which raises the
threshold for using them. */
#ifndef CASE_VALUES_THRESHOLD
#define CASE_VALUES_THRESHOLD (HAVE_casesi ? 4 : 5)
#endif /* CASE_VALUES_THRESHOLD */
unsigned int
case_values_threshold ()
{
return CASE_VALUES_THRESHOLD;
}
/* Attempt to generate a casesi instruction. Returns 1 if successful,
0 otherwise (i.e. if there is no casesi instruction). */
int
try_casesi (index_type, index_expr, minval, range,
table_label, default_label)
tree index_type, index_expr, minval, range;
rtx table_label ATTRIBUTE_UNUSED;
rtx default_label;
{
enum machine_mode index_mode = SImode;
int index_bits = GET_MODE_BITSIZE (index_mode);
rtx op1, op2, index;
enum machine_mode op_mode;
if (! HAVE_casesi)
return 0;
/* Convert the index to SImode. */
if (GET_MODE_BITSIZE (TYPE_MODE (index_type)) > GET_MODE_BITSIZE (index_mode))
{
enum machine_mode omode = TYPE_MODE (index_type);
rtx rangertx = expand_expr (range, NULL_RTX, VOIDmode, 0);
/* We must handle the endpoints in the original mode. */
index_expr = build (MINUS_EXPR, index_type,
index_expr, minval);
minval = integer_zero_node;
index = expand_expr (index_expr, NULL_RTX, VOIDmode, 0);
emit_cmp_and_jump_insns (rangertx, index, LTU, NULL_RTX,
omode, 1, 0, default_label);
/* Now we can safely truncate. */
index = convert_to_mode (index_mode, index, 0);
}
else
{
if (TYPE_MODE (index_type) != index_mode)
{
index_expr = convert (type_for_size (index_bits, 0),
index_expr);
index_type = TREE_TYPE (index_expr);
}
index = expand_expr (index_expr, NULL_RTX, VOIDmode, 0);
}
emit_queue ();
index = protect_from_queue (index, 0);
do_pending_stack_adjust ();
op_mode = insn_data[(int) CODE_FOR_casesi].operand[0].mode;
if (! (*insn_data[(int) CODE_FOR_casesi].operand[0].predicate)
(index, op_mode))
index = copy_to_mode_reg (op_mode, index);
op1 = expand_expr (minval, NULL_RTX, VOIDmode, 0);
op_mode = insn_data[(int) CODE_FOR_casesi].operand[1].mode;
op1 = convert_modes (op_mode, TYPE_MODE (TREE_TYPE (minval)),
op1, TREE_UNSIGNED (TREE_TYPE (minval)));
if (! (*insn_data[(int) CODE_FOR_casesi].operand[1].predicate)
(op1, op_mode))
op1 = copy_to_mode_reg (op_mode, op1);
op2 = expand_expr (range, NULL_RTX, VOIDmode, 0);
op_mode = insn_data[(int) CODE_FOR_casesi].operand[2].mode;
op2 = convert_modes (op_mode, TYPE_MODE (TREE_TYPE (range)),
op2, TREE_UNSIGNED (TREE_TYPE (range)));
if (! (*insn_data[(int) CODE_FOR_casesi].operand[2].predicate)
(op2, op_mode))
op2 = copy_to_mode_reg (op_mode, op2);
emit_jump_insn (gen_casesi (index, op1, op2,
table_label, default_label));
return 1;
}
/* Attempt to generate a tablejump instruction; same concept. */
#ifndef HAVE_tablejump
#define HAVE_tablejump 0
#define gen_tablejump(x, y) (0)
#endif
/* Subroutine of the next function.
INDEX is the value being switched on, with the lowest value
in the table already subtracted.
MODE is its expected mode (needed if INDEX is constant).
RANGE is the length of the jump table.
TABLE_LABEL is a CODE_LABEL rtx for the table itself.
DEFAULT_LABEL is a CODE_LABEL rtx to jump to if the
index value is out of range. */
static void
do_tablejump (index, mode, range, table_label, default_label)
rtx index, range, table_label, default_label;
enum machine_mode mode;
{
rtx temp, vector;
/* Do an unsigned comparison (in the proper mode) between the index
expression and the value which represents the length of the range.
Since we just finished subtracting the lower bound of the range
from the index expression, this comparison allows us to simultaneously
check that the original index expression value is both greater than
or equal to the minimum value of the range and less than or equal to
the maximum value of the range. */
emit_cmp_and_jump_insns (index, range, GTU, NULL_RTX, mode, 1,
0, default_label);
/* If index is in range, it must fit in Pmode.
Convert to Pmode so we can index with it. */
if (mode != Pmode)
index = convert_to_mode (Pmode, index, 1);
/* Don't let a MEM slip thru, because then INDEX that comes
out of PIC_CASE_VECTOR_ADDRESS won't be a valid address,
and break_out_memory_refs will go to work on it and mess it up. */
#ifdef PIC_CASE_VECTOR_ADDRESS
if (flag_pic && GET_CODE (index) != REG)
index = copy_to_mode_reg (Pmode, index);
#endif
/* If flag_force_addr were to affect this address
it could interfere with the tricky assumptions made
about addresses that contain label-refs,
which may be valid only very near the tablejump itself. */
/* ??? The only correct use of CASE_VECTOR_MODE is the one inside the
GET_MODE_SIZE, because this indicates how large insns are. The other
uses should all be Pmode, because they are addresses. This code
could fail if addresses and insns are not the same size. */
index = gen_rtx_PLUS (Pmode,
gen_rtx_MULT (Pmode, index,
GEN_INT (GET_MODE_SIZE (CASE_VECTOR_MODE))),
gen_rtx_LABEL_REF (Pmode, table_label));
#ifdef PIC_CASE_VECTOR_ADDRESS
if (flag_pic)
index = PIC_CASE_VECTOR_ADDRESS (index);
else
#endif
index = memory_address_noforce (CASE_VECTOR_MODE, index);
temp = gen_reg_rtx (CASE_VECTOR_MODE);
vector = gen_rtx_MEM (CASE_VECTOR_MODE, index);
RTX_UNCHANGING_P (vector) = 1;
convert_move (temp, vector, 0);
emit_jump_insn (gen_tablejump (temp, table_label));
/* If we are generating PIC code or if the table is PC-relative, the
table and JUMP_INSN must be adjacent, so don't output a BARRIER. */
if (! CASE_VECTOR_PC_RELATIVE && ! flag_pic)
emit_barrier ();
}
int
try_tablejump (index_type, index_expr, minval, range,
table_label, default_label)
tree index_type, index_expr, minval, range;
rtx table_label, default_label;
{
rtx index;
if (! HAVE_tablejump)
return 0;
index_expr = fold (build (MINUS_EXPR, index_type,
convert (index_type, index_expr),
convert (index_type, minval)));
index = expand_expr (index_expr, NULL_RTX, VOIDmode, 0);
emit_queue ();
index = protect_from_queue (index, 0);
do_pending_stack_adjust ();
do_tablejump (index, TYPE_MODE (index_type),
convert_modes (TYPE_MODE (index_type),
TYPE_MODE (TREE_TYPE (range)),
expand_expr (range, NULL_RTX,
VOIDmode, 0),
TREE_UNSIGNED (TREE_TYPE (range))),
table_label, default_label);
return 1;
}
|