1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
7288
7289
7290
7291
7292
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
7347
7348
7349
7350
7351
7352
7353
7354
7355
7356
7357
7358
7359
7360
7361
7362
7363
7364
7365
7366
7367
7368
7369
7370
7371
7372
7373
7374
7375
7376
7377
7378
7379
7380
7381
7382
7383
7384
7385
7386
7387
7388
7389
7390
7391
7392
7393
7394
7395
7396
7397
7398
7399
7400
7401
7402
7403
7404
7405
7406
7407
7408
7409
7410
7411
7412
7413
7414
7415
7416
7417
7418
7419
7420
7421
7422
7423
7424
7425
7426
7427
7428
7429
7430
7431
7432
7433
7434
7435
7436
7437
7438
7439
7440
7441
7442
7443
7444
7445
7446
7447
7448
7449
7450
7451
7452
7453
7454
7455
7456
7457
7458
7459
7460
7461
7462
7463
7464
7465
7466
7467
7468
7469
7470
7471
7472
7473
7474
7475
7476
7477
7478
7479
7480
7481
7482
7483
7484
7485
7486
7487
7488
7489
7490
7491
7492
7493
7494
7495
7496
7497
7498
7499
7500
7501
7502
7503
7504
7505
7506
7507
7508
7509
7510
7511
7512
7513
7514
7515
7516
7517
7518
7519
7520
7521
7522
7523
7524
7525
7526
7527
7528
7529
7530
7531
7532
7533
7534
7535
7536
7537
7538
7539
7540
7541
7542
7543
7544
7545
7546
7547
7548
7549
7550
7551
7552
7553
7554
7555
7556
7557
7558
7559
7560
7561
7562
7563
7564
7565
7566
7567
7568
7569
7570
7571
7572
7573
7574
7575
7576
7577
7578
7579
7580
7581
7582
7583
7584
7585
7586
7587
7588
7589
7590
7591
7592
7593
7594
7595
7596
7597
7598
7599
7600
7601
7602
7603
7604
7605
7606
7607
7608
7609
7610
7611
7612
7613
7614
7615
7616
7617
7618
7619
7620
7621
7622
7623
7624
7625
7626
7627
7628
7629
7630
7631
7632
7633
7634
7635
7636
7637
7638
7639
7640
7641
7642
7643
7644
7645
7646
7647
7648
7649
7650
7651
7652
7653
7654
7655
7656
7657
7658
7659
7660
7661
7662
7663
7664
7665
7666
7667
7668
7669
7670
7671
7672
7673
7674
7675
7676
7677
7678
7679
7680
7681
7682
7683
7684
7685
7686
7687
7688
7689
7690
7691
7692
7693
7694
7695
7696
7697
7698
7699
7700
7701
7702
7703
7704
7705
7706
7707
7708
7709
7710
7711
7712
7713
7714
7715
7716
7717
7718
7719
7720
7721
7722
7723
7724
7725
7726
7727
7728
7729
7730
7731
7732
7733
7734
7735
7736
7737
7738
7739
7740
7741
7742
7743
7744
7745
7746
7747
7748
7749
7750
7751
7752
7753
7754
7755
7756
7757
7758
7759
7760
7761
7762
7763
7764
7765
7766
7767
7768
7769
7770
7771
7772
7773
7774
7775
7776
7777
7778
7779
7780
7781
7782
7783
7784
7785
7786
7787
7788
7789
7790
7791
7792
7793
7794
7795
7796
7797
7798
7799
7800
7801
7802
7803
7804
7805
7806
7807
7808
7809
7810
7811
7812
7813
7814
7815
7816
7817
7818
7819
7820
7821
7822
7823
7824
7825
7826
7827
7828
7829
7830
7831
7832
7833
7834
7835
7836
7837
7838
7839
7840
7841
7842
7843
7844
7845
7846
7847
7848
7849
7850
7851
7852
7853
7854
7855
7856
7857
7858
7859
7860
7861
7862
7863
7864
7865
7866
7867
7868
7869
7870
7871
7872
7873
7874
7875
7876
7877
7878
7879
7880
7881
7882
7883
7884
7885
7886
7887
7888
7889
7890
7891
7892
7893
7894
7895
7896
7897
7898
7899
7900
7901
7902
7903
7904
7905
7906
7907
7908
7909
7910
7911
7912
7913
7914
7915
7916
7917
7918
7919
7920
7921
7922
7923
7924
7925
7926
7927
7928
7929
7930
7931
7932
7933
7934
7935
7936
7937
7938
7939
7940
7941
7942
7943
7944
7945
7946
7947
7948
7949
7950
7951
7952
7953
7954
7955
7956
7957
7958
7959
7960
7961
7962
7963
7964
7965
7966
7967
7968
7969
7970
7971
7972
7973
7974
7975
7976
7977
7978
7979
7980
7981
7982
7983
7984
7985
7986
7987
7988
7989
7990
7991
7992
7993
7994
7995
7996
7997
7998
7999
8000
8001
8002
8003
8004
8005
8006
8007
8008
8009
8010
8011
8012
8013
8014
8015
8016
8017
8018
8019
8020
8021
8022
8023
8024
8025
8026
8027
8028
8029
8030
8031
8032
8033
8034
8035
8036
8037
8038
8039
8040
8041
8042
8043
8044
8045
8046
8047
8048
8049
8050
8051
8052
8053
8054
8055
8056
8057
8058
8059
8060
8061
8062
8063
8064
8065
8066
8067
8068
8069
8070
8071
8072
8073
8074
8075
8076
8077
8078
8079
8080
8081
8082
8083
8084
8085
8086
8087
8088
8089
8090
8091
8092
8093
8094
8095
8096
8097
8098
8099
8100
8101
8102
8103
8104
8105
8106
8107
8108
8109
8110
8111
8112
8113
8114
8115
8116
8117
8118
8119
8120
8121
8122
8123
8124
8125
8126
8127
8128
8129
8130
8131
8132
8133
8134
8135
8136
8137
8138
8139
8140
8141
8142
8143
8144
8145
8146
8147
8148
8149
8150
8151
8152
8153
8154
8155
8156
8157
8158
8159
8160
8161
8162
8163
8164
8165
8166
8167
8168
8169
8170
8171
8172
8173
8174
8175
8176
8177
8178
8179
8180
8181
8182
8183
8184
8185
8186
8187
8188
8189
8190
8191
8192
8193
8194
8195
8196
8197
8198
8199
8200
8201
8202
8203
8204
8205
8206
8207
8208
8209
8210
8211
8212
8213
8214
8215
8216
8217
8218
8219
8220
8221
8222
8223
8224
8225
8226
8227
8228
8229
8230
8231
8232
8233
8234
8235
8236
8237
8238
8239
8240
8241
8242
8243
8244
8245
8246
8247
8248
8249
8250
8251
8252
8253
8254
8255
8256
8257
8258
8259
8260
8261
8262
8263
8264
8265
8266
8267
8268
8269
8270
8271
8272
8273
8274
8275
8276
8277
8278
8279
8280
8281
8282
8283
8284
8285
8286
8287
8288
8289
8290
8291
8292
8293
8294
8295
8296
8297
8298
8299
8300
8301
8302
8303
8304
8305
8306
8307
8308
8309
8310
8311
8312
8313
8314
8315
8316
8317
8318
8319
8320
8321
8322
8323
8324
8325
8326
8327
8328
8329
8330
8331
8332
8333
8334
8335
8336
8337
8338
8339
8340
8341
8342
8343
8344
8345
8346
8347
8348
8349
8350
8351
8352
8353
8354
8355
8356
8357
8358
8359
8360
8361
8362
8363
8364
8365
8366
8367
8368
8369
8370
8371
8372
8373
8374
8375
8376
8377
8378
8379
8380
8381
8382
8383
8384
8385
8386
8387
8388
8389
8390
8391
8392
8393
8394
8395
8396
8397
8398
8399
8400
8401
8402
8403
8404
8405
8406
8407
8408
8409
8410
8411
8412
8413
8414
8415
8416
8417
8418
8419
8420
8421
8422
8423
8424
8425
8426
8427
8428
8429
8430
8431
8432
8433
8434
8435
8436
8437
8438
8439
8440
8441
8442
8443
8444
8445
8446
8447
8448
8449
8450
8451
8452
8453
8454
8455
8456
8457
8458
8459
8460
8461
8462
8463
8464
8465
8466
8467
8468
8469
8470
8471
8472
8473
8474
8475
8476
8477
8478
8479
8480
8481
8482
8483
8484
8485
8486
8487
8488
8489
8490
8491
8492
8493
8494
8495
8496
8497
8498
8499
8500
8501
8502
8503
8504
8505
8506
8507
8508
8509
8510
8511
8512
8513
8514
8515
8516
8517
8518
8519
8520
8521
8522
8523
8524
8525
8526
8527
8528
8529
8530
8531
8532
8533
8534
8535
8536
8537
8538
8539
8540
8541
8542
8543
8544
8545
8546
8547
8548
8549
8550
8551
8552
8553
8554
8555
8556
8557
8558
8559
8560
8561
8562
8563
8564
8565
8566
8567
8568
8569
8570
8571
8572
8573
8574
8575
8576
8577
8578
8579
8580
8581
8582
8583
8584
8585
8586
8587
8588
8589
8590
8591
8592
8593
8594
8595
8596
8597
8598
8599
8600
8601
8602
8603
8604
8605
8606
8607
8608
8609
8610
8611
8612
8613
8614
8615
8616
8617
8618
8619
8620
8621
8622
8623
8624
8625
8626
8627
8628
8629
8630
8631
8632
8633
8634
8635
8636
8637
8638
8639
8640
8641
8642
8643
8644
8645
8646
8647
8648
8649
8650
8651
8652
8653
8654
8655
8656
8657
8658
8659
8660
8661
8662
8663
8664
8665
8666
8667
8668
8669
8670
8671
8672
8673
8674
8675
8676
8677
8678
8679
8680
8681
8682
8683
8684
8685
8686
8687
8688
8689
8690
8691
8692
8693
8694
8695
8696
8697
8698
8699
8700
8701
8702
8703
8704
8705
8706
8707
8708
8709
8710
8711
8712
8713
8714
8715
8716
8717
8718
8719
8720
8721
8722
8723
8724
8725
8726
8727
8728
8729
8730
8731
8732
8733
8734
8735
8736
8737
8738
8739
8740
8741
8742
8743
8744
8745
8746
8747
8748
8749
8750
8751
8752
8753
8754
8755
8756
8757
8758
8759
8760
8761
8762
8763
8764
8765
8766
8767
8768
8769
8770
8771
8772
8773
8774
8775
8776
8777
8778
8779
8780
8781
8782
8783
8784
8785
8786
8787
8788
8789
8790
8791
8792
8793
8794
8795
8796
8797
8798
8799
8800
8801
8802
8803
8804
8805
8806
8807
8808
8809
8810
8811
8812
8813
8814
8815
8816
8817
8818
8819
8820
8821
8822
8823
8824
8825
8826
8827
8828
8829
8830
8831
8832
8833
8834
8835
8836
8837
8838
8839
8840
8841
8842
8843
8844
8845
8846
8847
8848
8849
8850
8851
8852
8853
8854
8855
8856
8857
8858
8859
8860
8861
8862
8863
8864
8865
8866
8867
8868
8869
8870
8871
8872
8873
8874
8875
8876
8877
8878
8879
8880
8881
8882
8883
8884
8885
8886
8887
8888
8889
8890
8891
8892
8893
8894
8895
8896
8897
8898
8899
8900
8901
8902
8903
8904
8905
8906
8907
8908
8909
8910
8911
8912
8913
8914
8915
8916
8917
8918
8919
8920
8921
8922
8923
8924
8925
8926
8927
8928
8929
8930
8931
8932
8933
8934
8935
8936
8937
8938
8939
8940
8941
8942
8943
8944
8945
8946
8947
8948
8949
8950
8951
8952
8953
8954
8955
8956
8957
8958
8959
8960
8961
8962
8963
8964
8965
8966
8967
8968
8969
8970
8971
8972
8973
8974
8975
8976
8977
8978
8979
8980
8981
8982
8983
8984
8985
8986
8987
8988
8989
8990
8991
8992
8993
8994
8995
8996
8997
8998
8999
9000
9001
9002
9003
9004
9005
9006
9007
9008
9009
9010
9011
9012
9013
9014
9015
9016
9017
9018
9019
9020
9021
9022
9023
9024
9025
9026
9027
9028
9029
9030
9031
9032
9033
9034
9035
9036
9037
9038
9039
9040
9041
9042
9043
9044
9045
9046
9047
9048
9049
9050
9051
9052
9053
9054
9055
9056
9057
9058
9059
9060
9061
9062
9063
9064
9065
9066
9067
9068
9069
9070
9071
9072
9073
9074
9075
9076
9077
9078
9079
9080
9081
9082
9083
9084
9085
9086
9087
9088
9089
9090
9091
9092
9093
9094
9095
9096
9097
9098
9099
9100
9101
9102
9103
9104
9105
9106
9107
9108
9109
9110
9111
9112
9113
9114
9115
9116
9117
9118
9119
9120
9121
9122
9123
9124
9125
9126
9127
9128
9129
9130
9131
9132
9133
9134
9135
9136
9137
9138
9139
9140
9141
9142
9143
9144
9145
9146
9147
9148
9149
9150
9151
9152
9153
9154
9155
9156
9157
9158
9159
9160
9161
9162
9163
9164
9165
9166
9167
9168
9169
9170
9171
9172
9173
9174
9175
9176
9177
9178
9179
9180
9181
9182
9183
9184
9185
9186
9187
9188
9189
9190
9191
9192
9193
9194
9195
9196
9197
9198
9199
9200
9201
9202
9203
9204
9205
9206
9207
9208
9209
9210
9211
9212
9213
9214
9215
9216
9217
9218
9219
9220
9221
9222
9223
9224
9225
9226
9227
9228
9229
9230
9231
9232
9233
9234
9235
9236
9237
9238
9239
9240
9241
9242
9243
9244
9245
9246
9247
9248
9249
9250
9251
9252
9253
9254
9255
9256
9257
9258
9259
9260
9261
9262
9263
9264
9265
9266
9267
9268
9269
9270
9271
9272
9273
9274
9275
9276
9277
9278
9279
9280
9281
9282
9283
9284
9285
9286
9287
9288
9289
9290
9291
9292
9293
9294
9295
9296
9297
9298
9299
9300
9301
9302
9303
9304
9305
9306
9307
9308
9309
9310
9311
9312
9313
9314
9315
9316
9317
9318
9319
9320
9321
9322
9323
9324
9325
9326
9327
9328
9329
9330
9331
9332
9333
9334
9335
9336
9337
9338
9339
9340
9341
9342
9343
9344
9345
9346
9347
9348
9349
9350
9351
9352
9353
9354
9355
9356
9357
9358
9359
9360
9361
9362
9363
9364
9365
9366
9367
9368
9369
9370
9371
9372
9373
9374
9375
9376
9377
9378
9379
9380
9381
9382
9383
9384
9385
9386
9387
9388
9389
9390
9391
9392
9393
9394
9395
9396
9397
9398
9399
9400
9401
9402
9403
9404
9405
9406
9407
9408
9409
9410
9411
9412
9413
9414
9415
9416
9417
9418
9419
9420
9421
9422
9423
9424
9425
9426
9427
9428
9429
9430
9431
9432
9433
9434
9435
9436
9437
9438
9439
9440
9441
9442
9443
9444
9445
9446
9447
9448
9449
9450
9451
9452
9453
9454
9455
9456
9457
9458
9459
9460
9461
9462
9463
9464
9465
9466
9467
9468
9469
9470
9471
9472
9473
9474
9475
9476
9477
9478
9479
9480
9481
9482
9483
9484
9485
9486
9487
9488
9489
9490
9491
9492
9493
9494
9495
9496
9497
9498
9499
9500
9501
9502
9503
9504
9505
9506
9507
9508
9509
9510
9511
9512
9513
9514
9515
9516
9517
9518
9519
9520
9521
9522
9523
9524
9525
9526
9527
9528
9529
9530
9531
9532
9533
9534
9535
9536
9537
9538
9539
9540
9541
9542
9543
9544
9545
9546
9547
9548
9549
9550
9551
9552
9553
9554
9555
9556
9557
9558
9559
9560
9561
9562
9563
9564
9565
9566
9567
9568
9569
9570
9571
9572
9573
9574
9575
9576
9577
9578
9579
9580
9581
9582
9583
9584
9585
9586
9587
9588
9589
9590
9591
9592
9593
9594
9595
9596
9597
9598
9599
9600
9601
9602
9603
9604
9605
9606
9607
9608
9609
9610
9611
9612
9613
9614
9615
9616
9617
9618
9619
9620
9621
9622
9623
9624
9625
9626
9627
9628
9629
9630
9631
9632
9633
9634
9635
9636
9637
9638
9639
9640
9641
9642
9643
9644
9645
9646
9647
9648
9649
9650
9651
9652
9653
9654
9655
9656
9657
9658
9659
9660
9661
9662
9663
9664
9665
9666
9667
9668
9669
9670
9671
9672
9673
9674
9675
9676
9677
9678
9679
9680
9681
9682
9683
9684
9685
9686
9687
9688
9689
9690
9691
9692
9693
9694
9695
9696
9697
9698
9699
9700
9701
9702
9703
9704
9705
9706
9707
9708
9709
9710
9711
9712
9713
9714
9715
9716
9717
9718
9719
9720
9721
9722
9723
9724
9725
9726
9727
9728
9729
9730
9731
9732
9733
9734
9735
9736
9737
9738
9739
9740
9741
9742
9743
9744
9745
9746
9747
9748
9749
9750
9751
9752
9753
9754
9755
9756
9757
9758
9759
9760
9761
9762
9763
9764
9765
9766
9767
9768
9769
9770
9771
9772
9773
9774
9775
9776
9777
9778
9779
9780
9781
9782
9783
9784
9785
9786
9787
9788
9789
9790
9791
9792
9793
9794
9795
9796
9797
9798
9799
9800
9801
9802
9803
9804
9805
9806
9807
9808
9809
9810
9811
9812
9813
9814
9815
9816
9817
9818
9819
9820
9821
9822
9823
9824
9825
9826
9827
9828
9829
9830
9831
9832
9833
9834
9835
9836
9837
9838
9839
9840
9841
9842
9843
9844
9845
9846
9847
9848
9849
9850
9851
9852
9853
9854
9855
9856
9857
9858
9859
9860
9861
9862
9863
9864
9865
9866
9867
9868
9869
9870
9871
9872
9873
9874
9875
9876
9877
9878
9879
9880
9881
9882
9883
9884
9885
9886
9887
9888
9889
9890
9891
9892
9893
9894
9895
9896
9897
9898
9899
9900
9901
9902
9903
9904
9905
9906
9907
9908
9909
9910
9911
9912
9913
9914
9915
9916
9917
9918
9919
9920
9921
9922
9923
9924
9925
9926
9927
9928
9929
9930
9931
9932
9933
9934
9935
9936
9937
9938
9939
9940
9941
9942
9943
9944
9945
9946
9947
9948
9949
9950
9951
9952
9953
9954
9955
9956
9957
9958
9959
9960
9961
9962
9963
9964
9965
9966
9967
9968
9969
9970
9971
9972
9973
9974
9975
9976
9977
9978
9979
9980
9981
9982
9983
9984
9985
9986
9987
9988
9989
9990
9991
9992
9993
9994
9995
9996
9997
9998
9999
10000
10001
10002
10003
10004
10005
10006
10007
10008
10009
10010
10011
10012
10013
10014
10015
10016
10017
10018
10019
10020
10021
10022
10023
10024
10025
10026
10027
10028
10029
10030
10031
10032
10033
10034
10035
10036
10037
10038
10039
10040
10041
10042
10043
10044
10045
10046
10047
10048
10049
10050
10051
10052
10053
10054
10055
10056
10057
10058
10059
10060
10061
10062
10063
10064
10065
10066
10067
10068
10069
10070
10071
10072
10073
10074
10075
10076
10077
10078
10079
10080
10081
10082
10083
10084
10085
10086
10087
10088
10089
10090
10091
10092
10093
10094
10095
10096
10097
10098
10099
10100
10101
10102
10103
10104
10105
10106
10107
10108
10109
10110
10111
10112
10113
10114
10115
10116
10117
10118
10119
10120
10121
10122
10123
10124
10125
10126
10127
10128
10129
10130
10131
10132
10133
10134
10135
10136
10137
10138
10139
10140
10141
10142
10143
10144
10145
10146
10147
10148
10149
10150
10151
10152
10153
10154
10155
10156
10157
10158
10159
10160
10161
10162
10163
10164
10165
10166
10167
10168
10169
10170
10171
10172
10173
10174
10175
10176
10177
10178
10179
10180
10181
10182
10183
10184
10185
10186
10187
10188
10189
10190
10191
10192
10193
10194
10195
10196
10197
10198
10199
10200
10201
10202
10203
10204
10205
10206
10207
10208
10209
10210
10211
10212
10213
10214
10215
10216
10217
10218
10219
10220
10221
10222
10223
10224
10225
10226
10227
10228
10229
10230
10231
10232
10233
10234
10235
10236
10237
10238
10239
10240
10241
10242
10243
10244
10245
10246
10247
10248
10249
10250
10251
10252
10253
10254
10255
10256
10257
10258
10259
10260
10261
10262
10263
10264
10265
10266
10267
10268
10269
10270
10271
10272
10273
10274
10275
10276
10277
10278
10279
10280
10281
10282
10283
10284
10285
10286
10287
10288
10289
10290
10291
10292
10293
10294
10295
10296
10297
10298
10299
10300
10301
10302
10303
10304
10305
10306
10307
10308
10309
10310
10311
10312
10313
10314
10315
|
/* Data flow analysis for GNU compiler.
Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
1999, 2000, 2001 Free Software Foundation, Inc.
This file is part of GNU CC.
GNU CC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
GNU CC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GNU CC; see the file COPYING. If not, write to
the Free Software Foundation, 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA. */
/* This file contains the data flow analysis pass of the compiler. It
computes data flow information which tells combine_instructions
which insns to consider combining and controls register allocation.
Additional data flow information that is too bulky to record is
generated during the analysis, and is used at that time to create
autoincrement and autodecrement addressing.
The first step is dividing the function into basic blocks.
find_basic_blocks does this. Then life_analysis determines
where each register is live and where it is dead.
** find_basic_blocks **
find_basic_blocks divides the current function's rtl into basic
blocks and constructs the CFG. The blocks are recorded in the
basic_block_info array; the CFG exists in the edge structures
referenced by the blocks.
find_basic_blocks also finds any unreachable loops and deletes them.
** life_analysis **
life_analysis is called immediately after find_basic_blocks.
It uses the basic block information to determine where each
hard or pseudo register is live.
** live-register info **
The information about where each register is live is in two parts:
the REG_NOTES of insns, and the vector basic_block->global_live_at_start.
basic_block->global_live_at_start has an element for each basic
block, and the element is a bit-vector with a bit for each hard or
pseudo register. The bit is 1 if the register is live at the
beginning of the basic block.
Two types of elements can be added to an insn's REG_NOTES.
A REG_DEAD note is added to an insn's REG_NOTES for any register
that meets both of two conditions: The value in the register is not
needed in subsequent insns and the insn does not replace the value in
the register (in the case of multi-word hard registers, the value in
each register must be replaced by the insn to avoid a REG_DEAD note).
In the vast majority of cases, an object in a REG_DEAD note will be
used somewhere in the insn. The (rare) exception to this is if an
insn uses a multi-word hard register and only some of the registers are
needed in subsequent insns. In that case, REG_DEAD notes will be
provided for those hard registers that are not subsequently needed.
Partial REG_DEAD notes of this type do not occur when an insn sets
only some of the hard registers used in such a multi-word operand;
omitting REG_DEAD notes for objects stored in an insn is optional and
the desire to do so does not justify the complexity of the partial
REG_DEAD notes.
REG_UNUSED notes are added for each register that is set by the insn
but is unused subsequently (if every register set by the insn is unused
and the insn does not reference memory or have some other side-effect,
the insn is deleted instead). If only part of a multi-word hard
register is used in a subsequent insn, REG_UNUSED notes are made for
the parts that will not be used.
To determine which registers are live after any insn, one can
start from the beginning of the basic block and scan insns, noting
which registers are set by each insn and which die there.
** Other actions of life_analysis **
life_analysis sets up the LOG_LINKS fields of insns because the
information needed to do so is readily available.
life_analysis deletes insns whose only effect is to store a value
that is never used.
life_analysis notices cases where a reference to a register as
a memory address can be combined with a preceding or following
incrementation or decrementation of the register. The separate
instruction to increment or decrement is deleted and the address
is changed to a POST_INC or similar rtx.
Each time an incrementing or decrementing address is created,
a REG_INC element is added to the insn's REG_NOTES list.
life_analysis fills in certain vectors containing information about
register usage: REG_N_REFS, REG_N_DEATHS, REG_N_SETS, REG_LIVE_LENGTH,
REG_N_CALLS_CROSSED and REG_BASIC_BLOCK.
life_analysis sets current_function_sp_is_unchanging if the function
doesn't modify the stack pointer. */
/* TODO:
Split out from life_analysis:
- local property discovery (bb->local_live, bb->local_set)
- global property computation
- log links creation
- pre/post modify transformation
*/
#include "config.h"
#include "system.h"
#include "tree.h"
#include "rtl.h"
#include "tm_p.h"
#include "hard-reg-set.h"
#include "basic-block.h"
#include "insn-config.h"
#include "regs.h"
#include "flags.h"
#include "output.h"
#include "function.h"
#include "except.h"
#include "toplev.h"
#include "recog.h"
#include "expr.h"
#include "ssa.h"
#include "timevar.h"
#include "obstack.h"
#include "splay-tree.h"
#define obstack_chunk_alloc xmalloc
#define obstack_chunk_free free
/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
the stack pointer does not matter. The value is tested only in
functions that have frame pointers.
No definition is equivalent to always zero. */
#ifndef EXIT_IGNORE_STACK
#define EXIT_IGNORE_STACK 0
#endif
#ifndef HAVE_epilogue
#define HAVE_epilogue 0
#endif
#ifndef HAVE_prologue
#define HAVE_prologue 0
#endif
#ifndef HAVE_sibcall_epilogue
#define HAVE_sibcall_epilogue 0
#endif
#ifndef LOCAL_REGNO
#define LOCAL_REGNO(REGNO) 0
#endif
#ifndef EPILOGUE_USES
#define EPILOGUE_USES(REGNO) 0
#endif
#ifdef HAVE_conditional_execution
#ifndef REVERSE_CONDEXEC_PREDICATES_P
#define REVERSE_CONDEXEC_PREDICATES_P(x, y) ((x) == reverse_condition (y))
#endif
#endif
/* The obstack on which the flow graph components are allocated. */
struct obstack flow_obstack;
static char *flow_firstobj;
/* Number of basic blocks in the current function. */
int n_basic_blocks;
/* Number of edges in the current function. */
int n_edges;
/* The basic block array. */
varray_type basic_block_info;
/* The special entry and exit blocks. */
struct basic_block_def entry_exit_blocks[2]
= {{NULL, /* head */
NULL, /* end */
NULL, /* head_tree */
NULL, /* end_tree */
NULL, /* pred */
NULL, /* succ */
NULL, /* local_set */
NULL, /* cond_local_set */
NULL, /* global_live_at_start */
NULL, /* global_live_at_end */
NULL, /* aux */
ENTRY_BLOCK, /* index */
0, /* loop_depth */
0, /* count */
0 /* frequency */
},
{
NULL, /* head */
NULL, /* end */
NULL, /* head_tree */
NULL, /* end_tree */
NULL, /* pred */
NULL, /* succ */
NULL, /* local_set */
NULL, /* cond_local_set */
NULL, /* global_live_at_start */
NULL, /* global_live_at_end */
NULL, /* aux */
EXIT_BLOCK, /* index */
0, /* loop_depth */
0, /* count */
0 /* frequency */
}
};
/* Nonzero if the second flow pass has completed. */
int flow2_completed;
/* Maximum register number used in this function, plus one. */
int max_regno;
/* Indexed by n, giving various register information */
varray_type reg_n_info;
/* Size of a regset for the current function,
in (1) bytes and (2) elements. */
int regset_bytes;
int regset_size;
/* Regset of regs live when calls to `setjmp'-like functions happen. */
/* ??? Does this exist only for the setjmp-clobbered warning message? */
regset regs_live_at_setjmp;
/* List made of EXPR_LIST rtx's which gives pairs of pseudo registers
that have to go in the same hard reg.
The first two regs in the list are a pair, and the next two
are another pair, etc. */
rtx regs_may_share;
/* Callback that determines if it's ok for a function to have no
noreturn attribute. */
int (*lang_missing_noreturn_ok_p) PARAMS ((tree));
/* Set of registers that may be eliminable. These are handled specially
in updating regs_ever_live. */
static HARD_REG_SET elim_reg_set;
/* The basic block structure for every insn, indexed by uid. */
varray_type basic_block_for_insn;
/* The labels mentioned in non-jump rtl. Valid during find_basic_blocks. */
/* ??? Should probably be using LABEL_NUSES instead. It would take a
bit of surgery to be able to use or co-opt the routines in jump. */
static rtx label_value_list;
static rtx tail_recursion_label_list;
/* Holds information for tracking conditional register life information. */
struct reg_cond_life_info
{
/* A boolean expression of conditions under which a register is dead. */
rtx condition;
/* Conditions under which a register is dead at the basic block end. */
rtx orig_condition;
/* A boolean expression of conditions under which a register has been
stored into. */
rtx stores;
/* ??? Could store mask of bytes that are dead, so that we could finally
track lifetimes of multi-word registers accessed via subregs. */
};
/* For use in communicating between propagate_block and its subroutines.
Holds all information needed to compute life and def-use information. */
struct propagate_block_info
{
/* The basic block we're considering. */
basic_block bb;
/* Bit N is set if register N is conditionally or unconditionally live. */
regset reg_live;
/* Bit N is set if register N is set this insn. */
regset new_set;
/* Element N is the next insn that uses (hard or pseudo) register N
within the current basic block; or zero, if there is no such insn. */
rtx *reg_next_use;
/* Contains a list of all the MEMs we are tracking for dead store
elimination. */
rtx mem_set_list;
/* If non-null, record the set of registers set unconditionally in the
basic block. */
regset local_set;
/* If non-null, record the set of registers set conditionally in the
basic block. */
regset cond_local_set;
#ifdef HAVE_conditional_execution
/* Indexed by register number, holds a reg_cond_life_info for each
register that is not unconditionally live or dead. */
splay_tree reg_cond_dead;
/* Bit N is set if register N is in an expression in reg_cond_dead. */
regset reg_cond_reg;
#endif
/* The length of mem_set_list. */
int mem_set_list_len;
/* Non-zero if the value of CC0 is live. */
int cc0_live;
/* Flags controling the set of information propagate_block collects. */
int flags;
};
/* Maximum length of pbi->mem_set_list before we start dropping
new elements on the floor. */
#define MAX_MEM_SET_LIST_LEN 100
/* Store the data structures necessary for depth-first search. */
struct depth_first_search_dsS {
/* stack for backtracking during the algorithm */
basic_block *stack;
/* number of edges in the stack. That is, positions 0, ..., sp-1
have edges. */
unsigned int sp;
/* record of basic blocks already seen by depth-first search */
sbitmap visited_blocks;
};
typedef struct depth_first_search_dsS *depth_first_search_ds;
/* Have print_rtl_and_abort give the same information that fancy_abort
does. */
#define print_rtl_and_abort() \
print_rtl_and_abort_fcn (__FILE__, __LINE__, __FUNCTION__)
/* Forward declarations */
static bool try_crossjump_to_edge PARAMS ((int, edge, edge));
static bool try_crossjump_bb PARAMS ((int, basic_block));
static bool outgoing_edges_match PARAMS ((basic_block, basic_block));
static int flow_find_cross_jump PARAMS ((int, basic_block, basic_block,
rtx *, rtx *));
static int count_basic_blocks PARAMS ((rtx));
static void find_basic_blocks_1 PARAMS ((rtx));
static rtx find_label_refs PARAMS ((rtx, rtx));
static void make_edges PARAMS ((rtx, int, int, int));
static void make_label_edge PARAMS ((sbitmap *, basic_block,
rtx, int));
static void make_eh_edge PARAMS ((sbitmap *, basic_block, rtx));
static void commit_one_edge_insertion PARAMS ((edge));
static void delete_unreachable_blocks PARAMS ((void));
static int can_delete_note_p PARAMS ((rtx));
static void expunge_block PARAMS ((basic_block));
static int can_delete_label_p PARAMS ((rtx));
static int tail_recursion_label_p PARAMS ((rtx));
static int merge_blocks_move_predecessor_nojumps PARAMS ((basic_block,
basic_block));
static int merge_blocks_move_successor_nojumps PARAMS ((basic_block,
basic_block));
static int merge_blocks PARAMS ((edge,basic_block,basic_block,
int));
static bool try_optimize_cfg PARAMS ((int));
static bool can_fallthru PARAMS ((basic_block, basic_block));
static bool try_redirect_by_replacing_jump PARAMS ((edge, basic_block));
static bool try_simplify_condjump PARAMS ((basic_block));
static bool try_forward_edges PARAMS ((int, basic_block));
static void tidy_fallthru_edges PARAMS ((void));
static int verify_wide_reg_1 PARAMS ((rtx *, void *));
static void verify_wide_reg PARAMS ((int, rtx, rtx));
static void verify_local_live_at_start PARAMS ((regset, basic_block));
static void notice_stack_pointer_modification_1 PARAMS ((rtx, rtx, void *));
static void notice_stack_pointer_modification PARAMS ((rtx));
static void mark_reg PARAMS ((rtx, void *));
static void mark_regs_live_at_end PARAMS ((regset));
static int set_phi_alternative_reg PARAMS ((rtx, int, int, void *));
static void calculate_global_regs_live PARAMS ((sbitmap, sbitmap, int));
static void propagate_block_delete_insn PARAMS ((basic_block, rtx));
static rtx propagate_block_delete_libcall PARAMS ((basic_block, rtx, rtx));
static int insn_dead_p PARAMS ((struct propagate_block_info *,
rtx, int, rtx));
static int libcall_dead_p PARAMS ((struct propagate_block_info *,
rtx, rtx));
static void mark_set_regs PARAMS ((struct propagate_block_info *,
rtx, rtx));
static void mark_set_1 PARAMS ((struct propagate_block_info *,
enum rtx_code, rtx, rtx,
rtx, int));
#ifdef HAVE_conditional_execution
static int mark_regno_cond_dead PARAMS ((struct propagate_block_info *,
int, rtx));
static void free_reg_cond_life_info PARAMS ((splay_tree_value));
static int flush_reg_cond_reg_1 PARAMS ((splay_tree_node, void *));
static void flush_reg_cond_reg PARAMS ((struct propagate_block_info *,
int));
static rtx elim_reg_cond PARAMS ((rtx, unsigned int));
static rtx ior_reg_cond PARAMS ((rtx, rtx, int));
static rtx not_reg_cond PARAMS ((rtx));
static rtx and_reg_cond PARAMS ((rtx, rtx, int));
#endif
#ifdef AUTO_INC_DEC
static void attempt_auto_inc PARAMS ((struct propagate_block_info *,
rtx, rtx, rtx, rtx, rtx));
static void find_auto_inc PARAMS ((struct propagate_block_info *,
rtx, rtx));
static int try_pre_increment_1 PARAMS ((struct propagate_block_info *,
rtx));
static int try_pre_increment PARAMS ((rtx, rtx, HOST_WIDE_INT));
#endif
static void mark_used_reg PARAMS ((struct propagate_block_info *,
rtx, rtx, rtx));
static void mark_used_regs PARAMS ((struct propagate_block_info *,
rtx, rtx, rtx));
void dump_flow_info PARAMS ((FILE *));
void debug_flow_info PARAMS ((void));
static void print_rtl_and_abort_fcn PARAMS ((const char *, int,
const char *))
ATTRIBUTE_NORETURN;
static void add_to_mem_set_list PARAMS ((struct propagate_block_info *,
rtx));
static void invalidate_mems_from_autoinc PARAMS ((struct propagate_block_info *,
rtx));
static void invalidate_mems_from_set PARAMS ((struct propagate_block_info *,
rtx));
static void remove_fake_successors PARAMS ((basic_block));
static void flow_nodes_print PARAMS ((const char *, const sbitmap,
FILE *));
static void flow_edge_list_print PARAMS ((const char *, const edge *,
int, FILE *));
static void flow_loops_cfg_dump PARAMS ((const struct loops *,
FILE *));
static int flow_loop_nested_p PARAMS ((struct loop *,
struct loop *));
static int flow_loop_entry_edges_find PARAMS ((basic_block, const sbitmap,
edge **));
static int flow_loop_exit_edges_find PARAMS ((const sbitmap, edge **));
static int flow_loop_nodes_find PARAMS ((basic_block, basic_block, sbitmap));
static void flow_dfs_compute_reverse_init
PARAMS ((depth_first_search_ds));
static void flow_dfs_compute_reverse_add_bb
PARAMS ((depth_first_search_ds, basic_block));
static basic_block flow_dfs_compute_reverse_execute
PARAMS ((depth_first_search_ds));
static void flow_dfs_compute_reverse_finish
PARAMS ((depth_first_search_ds));
static void flow_loop_pre_header_scan PARAMS ((struct loop *));
static basic_block flow_loop_pre_header_find PARAMS ((basic_block,
const sbitmap *));
static void flow_loop_tree_node_add PARAMS ((struct loop *, struct loop *));
static void flow_loops_tree_build PARAMS ((struct loops *));
static int flow_loop_level_compute PARAMS ((struct loop *, int));
static int flow_loops_level_compute PARAMS ((struct loops *));
static void delete_dead_jumptables PARAMS ((void));
static bool back_edge_of_syntactic_loop_p PARAMS ((basic_block, basic_block));
static bool need_fake_edge_p PARAMS ((rtx));
/* Find basic blocks of the current function.
F is the first insn of the function and NREGS the number of register
numbers in use. */
void
find_basic_blocks (f, nregs, file)
rtx f;
int nregs ATTRIBUTE_UNUSED;
FILE *file ATTRIBUTE_UNUSED;
{
int max_uid;
timevar_push (TV_CFG);
/* Flush out existing data. */
if (basic_block_info != NULL)
{
int i;
clear_edges ();
/* Clear bb->aux on all extant basic blocks. We'll use this as a
tag for reuse during create_basic_block, just in case some pass
copies around basic block notes improperly. */
for (i = 0; i < n_basic_blocks; ++i)
BASIC_BLOCK (i)->aux = NULL;
VARRAY_FREE (basic_block_info);
}
n_basic_blocks = count_basic_blocks (f);
/* Size the basic block table. The actual structures will be allocated
by find_basic_blocks_1, since we want to keep the structure pointers
stable across calls to find_basic_blocks. */
/* ??? This whole issue would be much simpler if we called find_basic_blocks
exactly once, and thereafter we don't have a single long chain of
instructions at all until close to the end of compilation when we
actually lay them out. */
VARRAY_BB_INIT (basic_block_info, n_basic_blocks, "basic_block_info");
find_basic_blocks_1 (f);
/* Record the block to which an insn belongs. */
/* ??? This should be done another way, by which (perhaps) a label is
tagged directly with the basic block that it starts. It is used for
more than that currently, but IMO that is the only valid use. */
max_uid = get_max_uid ();
#ifdef AUTO_INC_DEC
/* Leave space for insns life_analysis makes in some cases for auto-inc.
These cases are rare, so we don't need too much space. */
max_uid += max_uid / 10;
#endif
compute_bb_for_insn (max_uid);
/* Discover the edges of our cfg. */
make_edges (label_value_list, 0, n_basic_blocks - 1, 0);
/* Do very simple cleanup now, for the benefit of code that runs between
here and cleanup_cfg, e.g. thread_prologue_and_epilogue_insns. */
tidy_fallthru_edges ();
mark_critical_edges ();
#ifdef ENABLE_CHECKING
verify_flow_info ();
#endif
timevar_pop (TV_CFG);
}
void
check_function_return_warnings ()
{
if (warn_missing_noreturn
&& !TREE_THIS_VOLATILE (cfun->decl)
&& EXIT_BLOCK_PTR->pred == NULL
&& (lang_missing_noreturn_ok_p
&& !lang_missing_noreturn_ok_p (cfun->decl)))
warning ("function might be possible candidate for attribute `noreturn'");
/* If we have a path to EXIT, then we do return. */
if (TREE_THIS_VOLATILE (cfun->decl)
&& EXIT_BLOCK_PTR->pred != NULL)
warning ("`noreturn' function does return");
/* If the clobber_return_insn appears in some basic block, then we
do reach the end without returning a value. */
else if (warn_return_type
&& cfun->x_clobber_return_insn != NULL
&& EXIT_BLOCK_PTR->pred != NULL)
{
int max_uid = get_max_uid ();
/* If clobber_return_insn was excised by jump1, then renumber_insns
can make max_uid smaller than the number still recorded in our rtx.
That's fine, since this is a quick way of verifying that the insn
is no longer in the chain. */
if (INSN_UID (cfun->x_clobber_return_insn) < max_uid)
{
/* Recompute insn->block mapping, since the initial mapping is
set before we delete unreachable blocks. */
compute_bb_for_insn (max_uid);
if (BLOCK_FOR_INSN (cfun->x_clobber_return_insn) != NULL)
warning ("control reaches end of non-void function");
}
}
}
/* Count the basic blocks of the function. */
static int
count_basic_blocks (f)
rtx f;
{
register rtx insn;
register RTX_CODE prev_code;
register int count = 0;
int saw_abnormal_edge = 0;
prev_code = JUMP_INSN;
for (insn = f; insn; insn = NEXT_INSN (insn))
{
enum rtx_code code = GET_CODE (insn);
if (code == CODE_LABEL
|| (GET_RTX_CLASS (code) == 'i'
&& (prev_code == JUMP_INSN
|| prev_code == BARRIER
|| saw_abnormal_edge)))
{
saw_abnormal_edge = 0;
count++;
}
/* Record whether this insn created an edge. */
if (code == CALL_INSN)
{
rtx note;
/* If there is a nonlocal goto label and the specified
region number isn't -1, we have an edge. */
if (nonlocal_goto_handler_labels
&& ((note = find_reg_note (insn, REG_EH_REGION, NULL_RTX)) == 0
|| INTVAL (XEXP (note, 0)) >= 0))
saw_abnormal_edge = 1;
else if (can_throw_internal (insn))
saw_abnormal_edge = 1;
}
else if (flag_non_call_exceptions
&& code == INSN
&& can_throw_internal (insn))
saw_abnormal_edge = 1;
if (code != NOTE)
prev_code = code;
}
/* The rest of the compiler works a bit smoother when we don't have to
check for the edge case of do-nothing functions with no basic blocks. */
if (count == 0)
{
emit_insn (gen_rtx_USE (VOIDmode, const0_rtx));
count = 1;
}
return count;
}
/* Scan a list of insns for labels referred to other than by jumps.
This is used to scan the alternatives of a call placeholder. */
static rtx
find_label_refs (f, lvl)
rtx f;
rtx lvl;
{
rtx insn;
for (insn = f; insn; insn = NEXT_INSN (insn))
if (INSN_P (insn) && GET_CODE (insn) != JUMP_INSN)
{
rtx note;
/* Make a list of all labels referred to other than by jumps
(which just don't have the REG_LABEL notes).
Make a special exception for labels followed by an ADDR*VEC,
as this would be a part of the tablejump setup code.
Make a special exception to registers loaded with label
values just before jump insns that use them. */
for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
if (REG_NOTE_KIND (note) == REG_LABEL)
{
rtx lab = XEXP (note, 0), next;
if ((next = next_nonnote_insn (lab)) != NULL
&& GET_CODE (next) == JUMP_INSN
&& (GET_CODE (PATTERN (next)) == ADDR_VEC
|| GET_CODE (PATTERN (next)) == ADDR_DIFF_VEC))
;
else if (GET_CODE (lab) == NOTE)
;
else if (GET_CODE (NEXT_INSN (insn)) == JUMP_INSN
&& find_reg_note (NEXT_INSN (insn), REG_LABEL, lab))
;
else
lvl = alloc_EXPR_LIST (0, XEXP (note, 0), lvl);
}
}
return lvl;
}
/* Assume that someone emitted code with control flow instructions to the
basic block. Update the data structure. */
void
find_sub_basic_blocks (bb)
basic_block bb;
{
rtx insn = bb->head;
rtx end = bb->end;
rtx jump_insn = NULL_RTX;
edge falltru = 0;
basic_block first_bb = bb;
int i;
if (insn == bb->end)
return;
if (GET_CODE (insn) == CODE_LABEL)
insn = NEXT_INSN (insn);
/* Scan insn chain and try to find new basic block boundaries. */
while (1)
{
enum rtx_code code = GET_CODE (insn);
switch (code)
{
case BARRIER:
if (!jump_insn)
abort ();
break;
/* On code label, split current basic block. */
case CODE_LABEL:
falltru = split_block (bb, PREV_INSN (insn));
if (jump_insn)
bb->end = jump_insn;
bb = falltru->dest;
remove_edge (falltru);
jump_insn = 0;
if (LABEL_ALTERNATE_NAME (insn))
make_edge (NULL, ENTRY_BLOCK_PTR, bb, 0);
break;
case INSN:
case JUMP_INSN:
/* In case we've previously split insn on the JUMP_INSN, move the
block header to proper place. */
if (jump_insn)
{
falltru = split_block (bb, PREV_INSN (insn));
bb->end = jump_insn;
bb = falltru->dest;
remove_edge (falltru);
jump_insn = 0;
}
/* We need some special care for those expressions. */
if (GET_CODE (insn) == JUMP_INSN)
{
if (GET_CODE (PATTERN (insn)) == ADDR_VEC
|| GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC)
abort();
jump_insn = insn;
}
break;
default:
break;
}
if (insn == end)
break;
insn = NEXT_INSN (insn);
}
/* In case expander replaced normal insn by sequence terminating by
return and barrier, or possibly other sequence not behaving like
ordinary jump, we need to take care and move basic block boundary. */
if (jump_insn && GET_CODE (bb->end) != JUMP_INSN)
bb->end = jump_insn;
/* We've possibly replaced the conditional jump by conditional jump
followed by cleanup at fallthru edge, so the outgoing edges may
be dead. */
purge_dead_edges (bb);
/* Now re-scan and wire in all edges. This expect simple (conditional)
jumps at the end of each new basic blocks. */
make_edges (NULL, first_bb->index, bb->index, 1);
/* Update branch probabilities. Expect only (un)conditional jumps
to be created with only the forward edges. */
for (i = first_bb->index; i <= bb->index; i++)
{
edge e,f;
basic_block b = BASIC_BLOCK (i);
if (b != first_bb)
{
b->count = 0;
b->frequency = 0;
for (e = b->pred; e; e=e->pred_next)
{
b->count += e->count;
b->frequency += EDGE_FREQUENCY (e);
}
}
if (b->succ && b->succ->succ_next && !b->succ->succ_next->succ_next)
{
rtx note = find_reg_note (b->end, REG_BR_PROB, NULL);
int probability;
if (!note)
continue;
probability = INTVAL (XEXP (find_reg_note (b->end,
REG_BR_PROB,
NULL), 0));
e = BRANCH_EDGE (b);
e->probability = probability;
e->count = ((b->count * probability + REG_BR_PROB_BASE / 2)
/ REG_BR_PROB_BASE);
f = FALLTHRU_EDGE (b);
f->probability = REG_BR_PROB_BASE - probability;
f->count = b->count - e->count;
}
if (b->succ && !b->succ->succ_next)
{
e = b->succ;
e->probability = REG_BR_PROB_BASE;
e->count = b->count;
}
}
}
/* Find all basic blocks of the function whose first insn is F.
Collect and return a list of labels whose addresses are taken. This
will be used in make_edges for use with computed gotos. */
static void
find_basic_blocks_1 (f)
rtx f;
{
register rtx insn, next;
int i = 0;
rtx bb_note = NULL_RTX;
rtx lvl = NULL_RTX;
rtx trll = NULL_RTX;
rtx head = NULL_RTX;
rtx end = NULL_RTX;
/* We process the instructions in a slightly different way than we did
previously. This is so that we see a NOTE_BASIC_BLOCK after we have
closed out the previous block, so that it gets attached at the proper
place. Since this form should be equivalent to the previous,
count_basic_blocks continues to use the old form as a check. */
for (insn = f; insn; insn = next)
{
enum rtx_code code = GET_CODE (insn);
next = NEXT_INSN (insn);
switch (code)
{
case NOTE:
{
int kind = NOTE_LINE_NUMBER (insn);
/* Look for basic block notes with which to keep the
basic_block_info pointers stable. Unthread the note now;
we'll put it back at the right place in create_basic_block.
Or not at all if we've already found a note in this block. */
if (kind == NOTE_INSN_BASIC_BLOCK)
{
if (bb_note == NULL_RTX)
bb_note = insn;
else
next = flow_delete_insn (insn);
}
break;
}
case CODE_LABEL:
/* A basic block starts at a label. If we've closed one off due
to a barrier or some such, no need to do it again. */
if (head != NULL_RTX)
{
create_basic_block (i++, head, end, bb_note);
bb_note = NULL_RTX;
}
head = end = insn;
break;
case JUMP_INSN:
/* A basic block ends at a jump. */
if (head == NULL_RTX)
head = insn;
else
{
/* ??? Make a special check for table jumps. The way this
happens is truly and amazingly gross. We are about to
create a basic block that contains just a code label and
an addr*vec jump insn. Worse, an addr_diff_vec creates
its own natural loop.
Prevent this bit of brain damage, pasting things together
correctly in make_edges.
The correct solution involves emitting the table directly
on the tablejump instruction as a note, or JUMP_LABEL. */
if (GET_CODE (PATTERN (insn)) == ADDR_VEC
|| GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC)
{
head = end = NULL;
n_basic_blocks--;
break;
}
}
end = insn;
goto new_bb_inclusive;
case BARRIER:
/* A basic block ends at a barrier. It may be that an unconditional
jump already closed the basic block -- no need to do it again. */
if (head == NULL_RTX)
break;
goto new_bb_exclusive;
case CALL_INSN:
{
/* Record whether this call created an edge. */
rtx note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
int region = (note ? INTVAL (XEXP (note, 0)) : 0);
if (GET_CODE (PATTERN (insn)) == CALL_PLACEHOLDER)
{
/* Scan each of the alternatives for label refs. */
lvl = find_label_refs (XEXP (PATTERN (insn), 0), lvl);
lvl = find_label_refs (XEXP (PATTERN (insn), 1), lvl);
lvl = find_label_refs (XEXP (PATTERN (insn), 2), lvl);
/* Record its tail recursion label, if any. */
if (XEXP (PATTERN (insn), 3) != NULL_RTX)
trll = alloc_EXPR_LIST (0, XEXP (PATTERN (insn), 3), trll);
}
/* A basic block ends at a call that can either throw or
do a non-local goto. */
if ((nonlocal_goto_handler_labels && region >= 0)
|| can_throw_internal (insn))
{
new_bb_inclusive:
if (head == NULL_RTX)
head = insn;
end = insn;
new_bb_exclusive:
create_basic_block (i++, head, end, bb_note);
head = end = NULL_RTX;
bb_note = NULL_RTX;
break;
}
}
/* Fall through. */
case INSN:
/* Non-call exceptions generate new blocks just like calls. */
if (flag_non_call_exceptions && can_throw_internal (insn))
goto new_bb_inclusive;
if (head == NULL_RTX)
head = insn;
end = insn;
break;
default:
abort ();
}
if (GET_CODE (insn) == INSN || GET_CODE (insn) == CALL_INSN)
{
rtx note;
/* Make a list of all labels referred to other than by jumps.
Make a special exception for labels followed by an ADDR*VEC,
as this would be a part of the tablejump setup code.
Make a special exception to registers loaded with label
values just before jump insns that use them. */
for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
if (REG_NOTE_KIND (note) == REG_LABEL)
{
rtx lab = XEXP (note, 0), next;
if ((next = next_nonnote_insn (lab)) != NULL
&& GET_CODE (next) == JUMP_INSN
&& (GET_CODE (PATTERN (next)) == ADDR_VEC
|| GET_CODE (PATTERN (next)) == ADDR_DIFF_VEC))
;
else if (GET_CODE (lab) == NOTE)
;
else if (GET_CODE (NEXT_INSN (insn)) == JUMP_INSN
&& find_reg_note (NEXT_INSN (insn), REG_LABEL, lab))
;
else
lvl = alloc_EXPR_LIST (0, XEXP (note, 0), lvl);
}
}
}
if (head != NULL_RTX)
create_basic_block (i++, head, end, bb_note);
else if (bb_note)
flow_delete_insn (bb_note);
if (i != n_basic_blocks)
abort ();
label_value_list = lvl;
tail_recursion_label_list = trll;
}
/* Tidy the CFG by deleting unreachable code and whatnot. */
void
cleanup_cfg (mode)
int mode;
{
timevar_push (TV_CLEANUP_CFG);
delete_unreachable_blocks ();
if (try_optimize_cfg (mode))
delete_unreachable_blocks ();
mark_critical_edges ();
/* Kill the data we won't maintain. */
free_EXPR_LIST_list (&label_value_list);
free_EXPR_LIST_list (&tail_recursion_label_list);
timevar_pop (TV_CLEANUP_CFG);
}
/* Create a new basic block consisting of the instructions between
HEAD and END inclusive. Reuses the note and basic block struct
in BB_NOTE, if any. */
void
create_basic_block (index, head, end, bb_note)
int index;
rtx head, end, bb_note;
{
basic_block bb;
if (bb_note
&& ! RTX_INTEGRATED_P (bb_note)
&& (bb = NOTE_BASIC_BLOCK (bb_note)) != NULL
&& bb->aux == NULL)
{
/* If we found an existing note, thread it back onto the chain. */
rtx after;
if (GET_CODE (head) == CODE_LABEL)
after = head;
else
{
after = PREV_INSN (head);
head = bb_note;
}
if (after != bb_note && NEXT_INSN (after) != bb_note)
reorder_insns (bb_note, bb_note, after);
}
else
{
/* Otherwise we must create a note and a basic block structure.
Since we allow basic block structs in rtl, give the struct
the same lifetime by allocating it off the function obstack
rather than using malloc. */
bb = (basic_block) obstack_alloc (&flow_obstack, sizeof (*bb));
memset (bb, 0, sizeof (*bb));
if (GET_CODE (head) == CODE_LABEL)
bb_note = emit_note_after (NOTE_INSN_BASIC_BLOCK, head);
else
{
bb_note = emit_note_before (NOTE_INSN_BASIC_BLOCK, head);
head = bb_note;
}
NOTE_BASIC_BLOCK (bb_note) = bb;
}
/* Always include the bb note in the block. */
if (NEXT_INSN (end) == bb_note)
end = bb_note;
bb->head = head;
bb->end = end;
bb->index = index;
BASIC_BLOCK (index) = bb;
/* Tag the block so that we know it has been used when considering
other basic block notes. */
bb->aux = bb;
}
/* Return the INSN immediately following the NOTE_INSN_BASIC_BLOCK
note associated with the BLOCK. */
rtx
first_insn_after_basic_block_note (block)
basic_block block;
{
rtx insn;
/* Get the first instruction in the block. */
insn = block->head;
if (insn == NULL_RTX)
return NULL_RTX;
if (GET_CODE (insn) == CODE_LABEL)
insn = NEXT_INSN (insn);
if (!NOTE_INSN_BASIC_BLOCK_P (insn))
abort ();
return NEXT_INSN (insn);
}
/* Records the basic block struct in BB_FOR_INSN, for every instruction
indexed by INSN_UID. MAX is the size of the array. */
void
compute_bb_for_insn (max)
int max;
{
int i;
if (basic_block_for_insn)
VARRAY_FREE (basic_block_for_insn);
VARRAY_BB_INIT (basic_block_for_insn, max, "basic_block_for_insn");
for (i = 0; i < n_basic_blocks; ++i)
{
basic_block bb = BASIC_BLOCK (i);
rtx insn, end;
end = bb->end;
insn = bb->head;
while (1)
{
int uid = INSN_UID (insn);
if (uid < max)
VARRAY_BB (basic_block_for_insn, uid) = bb;
if (insn == end)
break;
insn = NEXT_INSN (insn);
}
}
}
/* Free the memory associated with the edge structures. */
void
clear_edges ()
{
int i;
edge n, e;
for (i = 0; i < n_basic_blocks; ++i)
{
basic_block bb = BASIC_BLOCK (i);
for (e = bb->succ; e; e = n)
{
n = e->succ_next;
free (e);
}
bb->succ = 0;
bb->pred = 0;
}
for (e = ENTRY_BLOCK_PTR->succ; e; e = n)
{
n = e->succ_next;
free (e);
}
ENTRY_BLOCK_PTR->succ = 0;
EXIT_BLOCK_PTR->pred = 0;
n_edges = 0;
}
/* Identify the edges between basic blocks MIN to MAX.
NONLOCAL_LABEL_LIST is a list of non-local labels in the function. Blocks
that are otherwise unreachable may be reachable with a non-local goto.
BB_EH_END is an array indexed by basic block number in which we record
the list of exception regions active at the end of the basic block. */
static void
make_edges (label_value_list, min, max, update_p)
rtx label_value_list;
int min, max, update_p;
{
int i;
sbitmap *edge_cache = NULL;
/* Assume no computed jump; revise as we create edges. */
current_function_has_computed_jump = 0;
/* Heavy use of computed goto in machine-generated code can lead to
nearly fully-connected CFGs. In that case we spend a significant
amount of time searching the edge lists for duplicates. */
if (forced_labels || label_value_list)
{
edge_cache = sbitmap_vector_alloc (n_basic_blocks, n_basic_blocks);
sbitmap_vector_zero (edge_cache, n_basic_blocks);
if (update_p)
for (i = min; i <= max; ++i)
{
edge e;
for (e = BASIC_BLOCK (i)->succ; e ; e = e->succ_next)
if (e->dest != EXIT_BLOCK_PTR)
SET_BIT (edge_cache[i], e->dest->index);
}
}
/* By nature of the way these get numbered, block 0 is always the entry. */
make_edge (edge_cache, ENTRY_BLOCK_PTR, BASIC_BLOCK (0), EDGE_FALLTHRU);
for (i = min; i <= max; ++i)
{
basic_block bb = BASIC_BLOCK (i);
rtx insn, x;
enum rtx_code code;
int force_fallthru = 0;
if (GET_CODE (bb->head) == CODE_LABEL
&& LABEL_ALTERNATE_NAME (bb->head))
make_edge (NULL, ENTRY_BLOCK_PTR, bb, 0);
/* Examine the last instruction of the block, and discover the
ways we can leave the block. */
insn = bb->end;
code = GET_CODE (insn);
/* A branch. */
if (code == JUMP_INSN)
{
rtx tmp;
/* Recognize exception handling placeholders. */
if (GET_CODE (PATTERN (insn)) == RESX)
make_eh_edge (edge_cache, bb, insn);
/* Recognize a non-local goto as a branch outside the
current function. */
else if (find_reg_note (insn, REG_NON_LOCAL_GOTO, NULL_RTX))
;
/* ??? Recognize a tablejump and do the right thing. */
else if ((tmp = JUMP_LABEL (insn)) != NULL_RTX
&& (tmp = NEXT_INSN (tmp)) != NULL_RTX
&& GET_CODE (tmp) == JUMP_INSN
&& (GET_CODE (PATTERN (tmp)) == ADDR_VEC
|| GET_CODE (PATTERN (tmp)) == ADDR_DIFF_VEC))
{
rtvec vec;
int j;
if (GET_CODE (PATTERN (tmp)) == ADDR_VEC)
vec = XVEC (PATTERN (tmp), 0);
else
vec = XVEC (PATTERN (tmp), 1);
for (j = GET_NUM_ELEM (vec) - 1; j >= 0; --j)
make_label_edge (edge_cache, bb,
XEXP (RTVEC_ELT (vec, j), 0), 0);
/* Some targets (eg, ARM) emit a conditional jump that also
contains the out-of-range target. Scan for these and
add an edge if necessary. */
if ((tmp = single_set (insn)) != NULL
&& SET_DEST (tmp) == pc_rtx
&& GET_CODE (SET_SRC (tmp)) == IF_THEN_ELSE
&& GET_CODE (XEXP (SET_SRC (tmp), 2)) == LABEL_REF)
make_label_edge (edge_cache, bb,
XEXP (XEXP (SET_SRC (tmp), 2), 0), 0);
#ifdef CASE_DROPS_THROUGH
/* Silly VAXen. The ADDR_VEC is going to be in the way of
us naturally detecting fallthru into the next block. */
force_fallthru = 1;
#endif
}
/* If this is a computed jump, then mark it as reaching
everything on the label_value_list and forced_labels list. */
else if (computed_jump_p (insn))
{
current_function_has_computed_jump = 1;
for (x = label_value_list; x; x = XEXP (x, 1))
make_label_edge (edge_cache, bb, XEXP (x, 0), EDGE_ABNORMAL);
for (x = forced_labels; x; x = XEXP (x, 1))
make_label_edge (edge_cache, bb, XEXP (x, 0), EDGE_ABNORMAL);
}
/* Returns create an exit out. */
else if (returnjump_p (insn))
make_edge (edge_cache, bb, EXIT_BLOCK_PTR, 0);
/* Otherwise, we have a plain conditional or unconditional jump. */
else
{
if (! JUMP_LABEL (insn))
abort ();
make_label_edge (edge_cache, bb, JUMP_LABEL (insn), 0);
}
}
/* If this is a sibling call insn, then this is in effect a
combined call and return, and so we need an edge to the
exit block. No need to worry about EH edges, since we
wouldn't have created the sibling call in the first place. */
if (code == CALL_INSN && SIBLING_CALL_P (insn))
make_edge (edge_cache, bb, EXIT_BLOCK_PTR,
EDGE_ABNORMAL | EDGE_ABNORMAL_CALL);
/* If this is a CALL_INSN, then mark it as reaching the active EH
handler for this CALL_INSN. If we're handling non-call
exceptions then any insn can reach any of the active handlers.
Also mark the CALL_INSN as reaching any nonlocal goto handler. */
else if (code == CALL_INSN || flag_non_call_exceptions)
{
/* Add any appropriate EH edges. */
make_eh_edge (edge_cache, bb, insn);
if (code == CALL_INSN && nonlocal_goto_handler_labels)
{
/* ??? This could be made smarter: in some cases it's possible
to tell that certain calls will not do a nonlocal goto.
For example, if the nested functions that do the nonlocal
gotos do not have their addresses taken, then only calls to
those functions or to other nested functions that use them
could possibly do nonlocal gotos. */
/* We do know that a REG_EH_REGION note with a value less
than 0 is guaranteed not to perform a non-local goto. */
rtx note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
if (!note || INTVAL (XEXP (note, 0)) >= 0)
for (x = nonlocal_goto_handler_labels; x; x = XEXP (x, 1))
make_label_edge (edge_cache, bb, XEXP (x, 0),
EDGE_ABNORMAL | EDGE_ABNORMAL_CALL);
}
}
/* Find out if we can drop through to the next block. */
insn = next_nonnote_insn (insn);
if (!insn || (i + 1 == n_basic_blocks && force_fallthru))
make_edge (edge_cache, bb, EXIT_BLOCK_PTR, EDGE_FALLTHRU);
else if (i + 1 < n_basic_blocks)
{
rtx tmp = BLOCK_HEAD (i + 1);
if (GET_CODE (tmp) == NOTE)
tmp = next_nonnote_insn (tmp);
if (force_fallthru || insn == tmp)
make_edge (edge_cache, bb, BASIC_BLOCK (i + 1), EDGE_FALLTHRU);
}
}
if (edge_cache)
sbitmap_vector_free (edge_cache);
}
/* Create an edge between two basic blocks. FLAGS are auxiliary information
about the edge that is accumulated between calls. */
void
make_edge (edge_cache, src, dst, flags)
sbitmap *edge_cache;
basic_block src, dst;
int flags;
{
int use_edge_cache;
edge e;
/* Don't bother with edge cache for ENTRY or EXIT; there aren't that
many edges to them, and we didn't allocate memory for it. */
use_edge_cache = (edge_cache
&& src != ENTRY_BLOCK_PTR
&& dst != EXIT_BLOCK_PTR);
/* Make sure we don't add duplicate edges. */
switch (use_edge_cache)
{
default:
/* Quick test for non-existance of the edge. */
if (! TEST_BIT (edge_cache[src->index], dst->index))
break;
/* The edge exists; early exit if no work to do. */
if (flags == 0)
return;
/* FALLTHRU */
case 0:
for (e = src->succ; e; e = e->succ_next)
if (e->dest == dst)
{
e->flags |= flags;
return;
}
break;
}
e = (edge) xcalloc (1, sizeof (*e));
n_edges++;
e->succ_next = src->succ;
e->pred_next = dst->pred;
e->src = src;
e->dest = dst;
e->flags = flags;
src->succ = e;
dst->pred = e;
if (use_edge_cache)
SET_BIT (edge_cache[src->index], dst->index);
}
/* Create an edge from a basic block to a label. */
static void
make_label_edge (edge_cache, src, label, flags)
sbitmap *edge_cache;
basic_block src;
rtx label;
int flags;
{
if (GET_CODE (label) != CODE_LABEL)
abort ();
/* If the label was never emitted, this insn is junk, but avoid a
crash trying to refer to BLOCK_FOR_INSN (label). This can happen
as a result of a syntax error and a diagnostic has already been
printed. */
if (INSN_UID (label) == 0)
return;
make_edge (edge_cache, src, BLOCK_FOR_INSN (label), flags);
}
/* Create the edges generated by INSN in REGION. */
static void
make_eh_edge (edge_cache, src, insn)
sbitmap *edge_cache;
basic_block src;
rtx insn;
{
int is_call = (GET_CODE (insn) == CALL_INSN ? EDGE_ABNORMAL_CALL : 0);
rtx handlers, i;
handlers = reachable_handlers (insn);
for (i = handlers; i; i = XEXP (i, 1))
make_label_edge (edge_cache, src, XEXP (i, 0),
EDGE_ABNORMAL | EDGE_EH | is_call);
free_INSN_LIST_list (&handlers);
}
/* Identify critical edges and set the bits appropriately. */
void
mark_critical_edges ()
{
int i, n = n_basic_blocks;
basic_block bb;
/* We begin with the entry block. This is not terribly important now,
but could be if a front end (Fortran) implemented alternate entry
points. */
bb = ENTRY_BLOCK_PTR;
i = -1;
while (1)
{
edge e;
/* (1) Critical edges must have a source with multiple successors. */
if (bb->succ && bb->succ->succ_next)
{
for (e = bb->succ; e; e = e->succ_next)
{
/* (2) Critical edges must have a destination with multiple
predecessors. Note that we know there is at least one
predecessor -- the edge we followed to get here. */
if (e->dest->pred->pred_next)
e->flags |= EDGE_CRITICAL;
else
e->flags &= ~EDGE_CRITICAL;
}
}
else
{
for (e = bb->succ; e; e = e->succ_next)
e->flags &= ~EDGE_CRITICAL;
}
if (++i >= n)
break;
bb = BASIC_BLOCK (i);
}
}
/* Mark the back edges in DFS traversal.
Return non-zero if a loop (natural or otherwise) is present.
Inspired by Depth_First_Search_PP described in:
Advanced Compiler Design and Implementation
Steven Muchnick
Morgan Kaufmann, 1997
and heavily borrowed from flow_depth_first_order_compute. */
bool
mark_dfs_back_edges ()
{
edge *stack;
int *pre;
int *post;
int sp;
int prenum = 1;
int postnum = 1;
sbitmap visited;
bool found = false;
/* Allocate the preorder and postorder number arrays. */
pre = (int *) xcalloc (n_basic_blocks, sizeof (int));
post = (int *) xcalloc (n_basic_blocks, sizeof (int));
/* Allocate stack for back-tracking up CFG. */
stack = (edge *) xmalloc ((n_basic_blocks + 1) * sizeof (edge));
sp = 0;
/* Allocate bitmap to track nodes that have been visited. */
visited = sbitmap_alloc (n_basic_blocks);
/* None of the nodes in the CFG have been visited yet. */
sbitmap_zero (visited);
/* Push the first edge on to the stack. */
stack[sp++] = ENTRY_BLOCK_PTR->succ;
while (sp)
{
edge e;
basic_block src;
basic_block dest;
/* Look at the edge on the top of the stack. */
e = stack[sp - 1];
src = e->src;
dest = e->dest;
e->flags &= ~EDGE_DFS_BACK;
/* Check if the edge destination has been visited yet. */
if (dest != EXIT_BLOCK_PTR && ! TEST_BIT (visited, dest->index))
{
/* Mark that we have visited the destination. */
SET_BIT (visited, dest->index);
pre[dest->index] = prenum++;
if (dest->succ)
{
/* Since the DEST node has been visited for the first
time, check its successors. */
stack[sp++] = dest->succ;
}
else
post[dest->index] = postnum++;
}
else
{
if (dest != EXIT_BLOCK_PTR && src != ENTRY_BLOCK_PTR
&& pre[src->index] >= pre[dest->index]
&& post[dest->index] == 0)
e->flags |= EDGE_DFS_BACK, found = true;
if (! e->succ_next && src != ENTRY_BLOCK_PTR)
post[src->index] = postnum++;
if (e->succ_next)
stack[sp - 1] = e->succ_next;
else
sp--;
}
}
free (pre);
free (post);
free (stack);
sbitmap_free (visited);
return found;
}
/* Split a block BB after insn INSN creating a new fallthru edge.
Return the new edge. Note that to keep other parts of the compiler happy,
this function renumbers all the basic blocks so that the new
one has a number one greater than the block split. */
edge
split_block (bb, insn)
basic_block bb;
rtx insn;
{
basic_block new_bb;
edge new_edge;
edge e;
rtx bb_note;
int i, j;
/* There is no point splitting the block after its end. */
if (bb->end == insn)
return 0;
/* Create the new structures. */
new_bb = (basic_block) obstack_alloc (&flow_obstack, sizeof (*new_bb));
new_edge = (edge) xcalloc (1, sizeof (*new_edge));
n_edges++;
memset (new_bb, 0, sizeof (*new_bb));
new_bb->head = NEXT_INSN (insn);
new_bb->end = bb->end;
bb->end = insn;
new_bb->succ = bb->succ;
bb->succ = new_edge;
new_bb->pred = new_edge;
new_bb->count = bb->count;
new_bb->frequency = bb->frequency;
new_bb->loop_depth = bb->loop_depth;
new_edge->src = bb;
new_edge->dest = new_bb;
new_edge->flags = EDGE_FALLTHRU;
new_edge->probability = REG_BR_PROB_BASE;
new_edge->count = bb->count;
/* Redirect the src of the successor edges of bb to point to new_bb. */
for (e = new_bb->succ; e; e = e->succ_next)
e->src = new_bb;
/* Place the new block just after the block being split. */
VARRAY_GROW (basic_block_info, ++n_basic_blocks);
/* Some parts of the compiler expect blocks to be number in
sequential order so insert the new block immediately after the
block being split.. */
j = bb->index;
for (i = n_basic_blocks - 1; i > j + 1; --i)
{
basic_block tmp = BASIC_BLOCK (i - 1);
BASIC_BLOCK (i) = tmp;
tmp->index = i;
}
BASIC_BLOCK (i) = new_bb;
new_bb->index = i;
if (GET_CODE (new_bb->head) == CODE_LABEL)
{
/* Create the basic block note. */
bb_note = emit_note_after (NOTE_INSN_BASIC_BLOCK,
new_bb->head);
NOTE_BASIC_BLOCK (bb_note) = new_bb;
/* If the only thing in this new block was the label, make sure
the block note gets included. */
if (new_bb->head == new_bb->end)
new_bb->end = bb_note;
}
else
{
/* Create the basic block note. */
bb_note = emit_note_before (NOTE_INSN_BASIC_BLOCK,
new_bb->head);
NOTE_BASIC_BLOCK (bb_note) = new_bb;
new_bb->head = bb_note;
}
update_bb_for_insn (new_bb);
if (bb->global_live_at_start)
{
new_bb->global_live_at_start = OBSTACK_ALLOC_REG_SET (&flow_obstack);
new_bb->global_live_at_end = OBSTACK_ALLOC_REG_SET (&flow_obstack);
COPY_REG_SET (new_bb->global_live_at_end, bb->global_live_at_end);
/* We now have to calculate which registers are live at the end
of the split basic block and at the start of the new basic
block. Start with those registers that are known to be live
at the end of the original basic block and get
propagate_block to determine which registers are live. */
COPY_REG_SET (new_bb->global_live_at_start, bb->global_live_at_end);
propagate_block (new_bb, new_bb->global_live_at_start, NULL, NULL, 0);
COPY_REG_SET (bb->global_live_at_end,
new_bb->global_live_at_start);
}
return new_edge;
}
/* Return label in the head of basic block. Create one if it doesn't exist. */
rtx
block_label (block)
basic_block block;
{
if (block == EXIT_BLOCK_PTR)
return NULL_RTX;
if (GET_CODE (block->head) != CODE_LABEL)
{
block->head = emit_label_before (gen_label_rtx (), block->head);
if (basic_block_for_insn)
set_block_for_insn (block->head, block);
}
return block->head;
}
/* Return true if the block has no effect and only forwards control flow to
its single destination. */
bool
forwarder_block_p (bb)
basic_block bb;
{
rtx insn = bb->head;
if (bb == EXIT_BLOCK_PTR || bb == ENTRY_BLOCK_PTR
|| !bb->succ || bb->succ->succ_next)
return false;
while (insn != bb->end)
{
if (active_insn_p (insn))
return false;
insn = NEXT_INSN (insn);
}
return (!active_insn_p (insn)
|| (GET_CODE (insn) == JUMP_INSN && onlyjump_p (insn)));
}
/* Return nonzero if we can reach target from src by falling trought. */
static bool
can_fallthru (src, target)
basic_block src, target;
{
rtx insn = src->end;
rtx insn2 = target->head;
if (src->index + 1 == target->index && !active_insn_p (insn2))
insn2 = next_active_insn (insn2);
/* ??? Later we may add code to move jump tables offline. */
return next_active_insn (insn) == insn2;
}
/* Attempt to perform edge redirection by replacing possibly complex jump
instruction by unconditional jump or removing jump completely.
This can apply only if all edges now point to the same block.
The parameters and return values are equivalent to redirect_edge_and_branch.
*/
static bool
try_redirect_by_replacing_jump (e, target)
edge e;
basic_block target;
{
basic_block src = e->src;
rtx insn = src->end, kill_from;
edge tmp;
rtx set;
int fallthru = 0;
/* Verify that all targets will be TARGET. */
for (tmp = src->succ; tmp; tmp = tmp->succ_next)
if (tmp->dest != target && tmp != e)
break;
if (tmp || !onlyjump_p (insn))
return false;
/* Avoid removing branch with side effects. */
set = single_set (insn);
if (!set || side_effects_p (set))
return false;
/* In case we zap a conditional jump, we'll need to kill
the cc0 setter too. */
kill_from = insn;
#ifdef HAVE_cc0
if (reg_mentioned_p (cc0_rtx, PATTERN (insn)))
kill_from = PREV_INSN (insn);
#endif
/* See if we can create the fallthru edge. */
if (can_fallthru (src, target))
{
src->end = PREV_INSN (kill_from);
if (rtl_dump_file)
fprintf (rtl_dump_file, "Removing jump %i.\n", INSN_UID (insn));
fallthru = 1;
/* Selectivly unlink whole insn chain. */
flow_delete_insn_chain (kill_from, PREV_INSN (target->head));
}
/* If this already is simplejump, redirect it. */
else if (simplejump_p (insn))
{
if (e->dest == target)
return false;
if (rtl_dump_file)
fprintf (rtl_dump_file, "Redirecting jump %i from %i to %i.\n",
INSN_UID (insn), e->dest->index, target->index);
redirect_jump (insn, block_label (target), 0);
}
/* Or replace possibly complicated jump insn by simple jump insn. */
else
{
rtx target_label = block_label (target);
rtx barrier;
src->end = emit_jump_insn_before (gen_jump (target_label), kill_from);
JUMP_LABEL (src->end) = target_label;
LABEL_NUSES (target_label)++;
if (basic_block_for_insn)
set_block_for_new_insns (src->end, src);
if (rtl_dump_file)
fprintf (rtl_dump_file, "Replacing insn %i by jump %i\n",
INSN_UID (insn), INSN_UID (src->end));
flow_delete_insn_chain (kill_from, insn);
barrier = next_nonnote_insn (src->end);
if (!barrier || GET_CODE (barrier) != BARRIER)
emit_barrier_after (src->end);
}
/* Keep only one edge out and set proper flags. */
while (src->succ->succ_next)
remove_edge (src->succ);
e = src->succ;
if (fallthru)
e->flags = EDGE_FALLTHRU;
else
e->flags = 0;
e->probability = REG_BR_PROB_BASE;
e->count = src->count;
/* We don't want a block to end on a line-number note since that has
the potential of changing the code between -g and not -g. */
while (GET_CODE (e->src->end) == NOTE
&& NOTE_LINE_NUMBER (e->src->end) >= 0)
{
rtx prev = PREV_INSN (e->src->end);
flow_delete_insn (e->src->end);
e->src->end = prev;
}
if (e->dest != target)
redirect_edge_succ (e, target);
return true;
}
/* Return last loop_beg note appearing after INSN, before start of next
basic block. Return INSN if there are no such notes.
When emmiting jump to redirect an fallthru edge, it should always
appear after the LOOP_BEG notes, as loop optimizer expect loop to
eighter start by fallthru edge or jump following the LOOP_BEG note
jumping to the loop exit test. */
rtx
last_loop_beg_note (insn)
rtx insn;
{
rtx last = insn;
insn = NEXT_INSN (insn);
while (GET_CODE (insn) == NOTE
&& NOTE_LINE_NUMBER (insn) != NOTE_INSN_BASIC_BLOCK)
{
if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG)
last = insn;
insn = NEXT_INSN (insn);
}
return last;
}
/* Attempt to change code to redirect edge E to TARGET.
Don't do that on expense of adding new instructions or reordering
basic blocks.
Function can be also called with edge destionation equivalent to the
TARGET. Then it should try the simplifications and do nothing if
none is possible.
Return true if transformation suceeded. We still return flase in case
E already destinated TARGET and we didn't managed to simplify instruction
stream. */
bool
redirect_edge_and_branch (e, target)
edge e;
basic_block target;
{
rtx tmp;
rtx old_label = e->dest->head;
basic_block src = e->src;
rtx insn = src->end;
if (e->flags & EDGE_COMPLEX)
return false;
if (try_redirect_by_replacing_jump (e, target))
return true;
/* Do this fast path late, as we want above code to simplify for cases
where called on single edge leaving basic block containing nontrivial
jump insn. */
else if (e->dest == target)
return false;
/* We can only redirect non-fallthru edges of jump insn. */
if (e->flags & EDGE_FALLTHRU)
return false;
if (GET_CODE (insn) != JUMP_INSN)
return false;
/* Recognize a tablejump and adjust all matching cases. */
if ((tmp = JUMP_LABEL (insn)) != NULL_RTX
&& (tmp = NEXT_INSN (tmp)) != NULL_RTX
&& GET_CODE (tmp) == JUMP_INSN
&& (GET_CODE (PATTERN (tmp)) == ADDR_VEC
|| GET_CODE (PATTERN (tmp)) == ADDR_DIFF_VEC))
{
rtvec vec;
int j;
rtx new_label = block_label (target);
if (GET_CODE (PATTERN (tmp)) == ADDR_VEC)
vec = XVEC (PATTERN (tmp), 0);
else
vec = XVEC (PATTERN (tmp), 1);
for (j = GET_NUM_ELEM (vec) - 1; j >= 0; --j)
if (XEXP (RTVEC_ELT (vec, j), 0) == old_label)
{
RTVEC_ELT (vec, j) = gen_rtx_LABEL_REF (Pmode, new_label);
--LABEL_NUSES (old_label);
++LABEL_NUSES (new_label);
}
/* Handle casesi dispatch insns */
if ((tmp = single_set (insn)) != NULL
&& SET_DEST (tmp) == pc_rtx
&& GET_CODE (SET_SRC (tmp)) == IF_THEN_ELSE
&& GET_CODE (XEXP (SET_SRC (tmp), 2)) == LABEL_REF
&& XEXP (XEXP (SET_SRC (tmp), 2), 0) == old_label)
{
XEXP (SET_SRC (tmp), 2) = gen_rtx_LABEL_REF (VOIDmode,
new_label);
--LABEL_NUSES (old_label);
++LABEL_NUSES (new_label);
}
}
else
{
/* ?? We may play the games with moving the named labels from
one basic block to the other in case only one computed_jump is
available. */
if (computed_jump_p (insn))
return false;
/* A return instruction can't be redirected. */
if (returnjump_p (insn))
return false;
/* If the insn doesn't go where we think, we're confused. */
if (JUMP_LABEL (insn) != old_label)
abort ();
redirect_jump (insn, block_label (target), 0);
}
if (rtl_dump_file)
fprintf (rtl_dump_file, "Edge %i->%i redirected to %i\n",
e->src->index, e->dest->index, target->index);
if (e->dest != target)
redirect_edge_succ_nodup (e, target);
return true;
}
/* Redirect edge even at the expense of creating new jump insn or
basic block. Return new basic block if created, NULL otherwise.
Abort if converison is impossible. */
basic_block
redirect_edge_and_branch_force (e, target)
edge e;
basic_block target;
{
basic_block new_bb;
edge new_edge;
rtx label;
rtx bb_note;
int i, j;
if (redirect_edge_and_branch (e, target))
return NULL;
if (e->dest == target)
return NULL;
if (e->flags & EDGE_ABNORMAL)
abort ();
if (!(e->flags & EDGE_FALLTHRU))
abort ();
e->flags &= ~EDGE_FALLTHRU;
label = block_label (target);
/* Case of the fallthru block. */
if (!e->src->succ->succ_next)
{
e->src->end = emit_jump_insn_after (gen_jump (label),
last_loop_beg_note (e->src->end));
JUMP_LABEL (e->src->end) = label;
LABEL_NUSES (label)++;
if (basic_block_for_insn)
set_block_for_new_insns (e->src->end, e->src);
emit_barrier_after (e->src->end);
if (rtl_dump_file)
fprintf (rtl_dump_file,
"Emitting jump insn %i to redirect edge %i->%i to %i\n",
INSN_UID (e->src->end), e->src->index, e->dest->index,
target->index);
redirect_edge_succ (e, target);
return NULL;
}
/* Redirecting fallthru edge of the conditional needs extra work. */
if (rtl_dump_file)
fprintf (rtl_dump_file,
"Emitting jump insn %i in new BB to redirect edge %i->%i to %i\n",
INSN_UID (e->src->end), e->src->index, e->dest->index,
target->index);
/* Create the new structures. */
new_bb = (basic_block) obstack_alloc (&flow_obstack, sizeof (*new_bb));
new_edge = (edge) xcalloc (1, sizeof (*new_edge));
n_edges++;
memset (new_bb, 0, sizeof (*new_bb));
new_bb->end = new_bb->head = last_loop_beg_note (e->src->end);
new_bb->succ = NULL;
new_bb->pred = new_edge;
new_bb->count = e->count;
new_bb->frequency = EDGE_FREQUENCY (e);
new_bb->loop_depth = e->dest->loop_depth;
new_edge->flags = EDGE_FALLTHRU;
new_edge->probability = e->probability;
new_edge->count = e->count;
if (target->global_live_at_start)
{
new_bb->global_live_at_start = OBSTACK_ALLOC_REG_SET (&flow_obstack);
new_bb->global_live_at_end = OBSTACK_ALLOC_REG_SET (&flow_obstack);
COPY_REG_SET (new_bb->global_live_at_start,
target->global_live_at_start);
COPY_REG_SET (new_bb->global_live_at_end, new_bb->global_live_at_start);
}
/* Wire edge in. */
new_edge->src = e->src;
new_edge->dest = new_bb;
new_edge->succ_next = e->src->succ;
e->src->succ = new_edge;
new_edge->pred_next = NULL;
/* Redirect old edge. */
redirect_edge_succ (e, target);
redirect_edge_pred (e, new_bb);
e->probability = REG_BR_PROB_BASE;
/* Place the new block just after the block being split. */
VARRAY_GROW (basic_block_info, ++n_basic_blocks);
/* Some parts of the compiler expect blocks to be number in
sequential order so insert the new block immediately after the
block being split.. */
j = new_edge->src->index;
for (i = n_basic_blocks - 1; i > j + 1; --i)
{
basic_block tmp = BASIC_BLOCK (i - 1);
BASIC_BLOCK (i) = tmp;
tmp->index = i;
}
BASIC_BLOCK (i) = new_bb;
new_bb->index = i;
/* Create the basic block note. */
bb_note = emit_note_after (NOTE_INSN_BASIC_BLOCK, new_bb->head);
NOTE_BASIC_BLOCK (bb_note) = new_bb;
new_bb->head = bb_note;
new_bb->end = emit_jump_insn_after (gen_jump (label), new_bb->head);
JUMP_LABEL (new_bb->end) = label;
LABEL_NUSES (label)++;
if (basic_block_for_insn)
set_block_for_new_insns (new_bb->end, new_bb);
emit_barrier_after (new_bb->end);
return new_bb;
}
/* Helper function for split_edge. Return true in case edge BB2 to BB1
is back edge of syntactic loop. */
static bool
back_edge_of_syntactic_loop_p (bb1, bb2)
basic_block bb1, bb2;
{
rtx insn;
int count = 0;
if (bb1->index > bb2->index)
return false;
if (bb1->index == bb2->index)
return true;
for (insn = bb1->end; insn != bb2->head && count >= 0;
insn = NEXT_INSN (insn))
if (GET_CODE (insn) == NOTE)
{
if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG)
count++;
if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_END)
count--;
}
return count >= 0;
}
/* Split a (typically critical) edge. Return the new block.
Abort on abnormal edges.
??? The code generally expects to be called on critical edges.
The case of a block ending in an unconditional jump to a
block with multiple predecessors is not handled optimally. */
basic_block
split_edge (edge_in)
edge edge_in;
{
basic_block old_pred, bb, old_succ;
edge edge_out;
rtx bb_note;
int i, j;
/* Abnormal edges cannot be split. */
if ((edge_in->flags & EDGE_ABNORMAL) != 0)
abort ();
old_pred = edge_in->src;
old_succ = edge_in->dest;
/* Create the new structures. */
bb = (basic_block) obstack_alloc (&flow_obstack, sizeof (*bb));
edge_out = (edge) xcalloc (1, sizeof (*edge_out));
n_edges++;
memset (bb, 0, sizeof (*bb));
/* ??? This info is likely going to be out of date very soon. */
if (old_succ->global_live_at_start)
{
bb->global_live_at_start = OBSTACK_ALLOC_REG_SET (&flow_obstack);
bb->global_live_at_end = OBSTACK_ALLOC_REG_SET (&flow_obstack);
COPY_REG_SET (bb->global_live_at_start, old_succ->global_live_at_start);
COPY_REG_SET (bb->global_live_at_end, old_succ->global_live_at_start);
}
/* Wire them up. */
bb->succ = edge_out;
bb->count = edge_in->count;
bb->frequency = EDGE_FREQUENCY (edge_in);
edge_in->flags &= ~EDGE_CRITICAL;
edge_out->pred_next = old_succ->pred;
edge_out->succ_next = NULL;
edge_out->src = bb;
edge_out->dest = old_succ;
edge_out->flags = EDGE_FALLTHRU;
edge_out->probability = REG_BR_PROB_BASE;
edge_out->count = edge_in->count;
old_succ->pred = edge_out;
/* Tricky case -- if there existed a fallthru into the successor
(and we're not it) we must add a new unconditional jump around
the new block we're actually interested in.
Further, if that edge is critical, this means a second new basic
block must be created to hold it. In order to simplify correct
insn placement, do this before we touch the existing basic block
ordering for the block we were really wanting. */
if ((edge_in->flags & EDGE_FALLTHRU) == 0)
{
edge e;
for (e = edge_out->pred_next; e; e = e->pred_next)
if (e->flags & EDGE_FALLTHRU)
break;
if (e)
{
basic_block jump_block;
rtx pos;
if ((e->flags & EDGE_CRITICAL) == 0
&& e->src != ENTRY_BLOCK_PTR)
{
/* Non critical -- we can simply add a jump to the end
of the existing predecessor. */
jump_block = e->src;
}
else
{
/* We need a new block to hold the jump. The simplest
way to do the bulk of the work here is to recursively
call ourselves. */
jump_block = split_edge (e);
e = jump_block->succ;
}
/* Now add the jump insn ... */
pos = emit_jump_insn_after (gen_jump (old_succ->head),
last_loop_beg_note (jump_block->end));
jump_block->end = pos;
if (basic_block_for_insn)
set_block_for_new_insns (pos, jump_block);
emit_barrier_after (pos);
/* ... let jump know that label is in use, ... */
JUMP_LABEL (pos) = old_succ->head;
++LABEL_NUSES (old_succ->head);
/* ... and clear fallthru on the outgoing edge. */
e->flags &= ~EDGE_FALLTHRU;
/* Continue splitting the interesting edge. */
}
}
/* Place the new block just in front of the successor. */
VARRAY_GROW (basic_block_info, ++n_basic_blocks);
if (old_succ == EXIT_BLOCK_PTR)
j = n_basic_blocks - 1;
else
j = old_succ->index;
for (i = n_basic_blocks - 1; i > j; --i)
{
basic_block tmp = BASIC_BLOCK (i - 1);
BASIC_BLOCK (i) = tmp;
tmp->index = i;
}
BASIC_BLOCK (i) = bb;
bb->index = i;
/* Create the basic block note.
Where we place the note can have a noticable impact on the generated
code. Consider this cfg:
E
|
0
/ \
+->1-->2--->E
| |
+--+
If we need to insert an insn on the edge from block 0 to block 1,
we want to ensure the instructions we insert are outside of any
loop notes that physically sit between block 0 and block 1. Otherwise
we confuse the loop optimizer into thinking the loop is a phony. */
if (old_succ != EXIT_BLOCK_PTR
&& PREV_INSN (old_succ->head)
&& GET_CODE (PREV_INSN (old_succ->head)) == NOTE
&& NOTE_LINE_NUMBER (PREV_INSN (old_succ->head)) == NOTE_INSN_LOOP_BEG
&& !back_edge_of_syntactic_loop_p (old_succ, old_pred))
bb_note = emit_note_before (NOTE_INSN_BASIC_BLOCK,
PREV_INSN (old_succ->head));
else if (old_succ != EXIT_BLOCK_PTR)
bb_note = emit_note_before (NOTE_INSN_BASIC_BLOCK, old_succ->head);
else
bb_note = emit_note_after (NOTE_INSN_BASIC_BLOCK, get_last_insn ());
NOTE_BASIC_BLOCK (bb_note) = bb;
bb->head = bb->end = bb_note;
/* For non-fallthry edges, we must adjust the predecessor's
jump instruction to target our new block. */
if ((edge_in->flags & EDGE_FALLTHRU) == 0)
{
if (!redirect_edge_and_branch (edge_in, bb))
abort ();
}
else
redirect_edge_succ (edge_in, bb);
return bb;
}
/* Queue instructions for insertion on an edge between two basic blocks.
The new instructions and basic blocks (if any) will not appear in the
CFG until commit_edge_insertions is called. */
void
insert_insn_on_edge (pattern, e)
rtx pattern;
edge e;
{
/* We cannot insert instructions on an abnormal critical edge.
It will be easier to find the culprit if we die now. */
if ((e->flags & (EDGE_ABNORMAL|EDGE_CRITICAL))
== (EDGE_ABNORMAL|EDGE_CRITICAL))
abort ();
if (e->insns == NULL_RTX)
start_sequence ();
else
push_to_sequence (e->insns);
emit_insn (pattern);
e->insns = get_insns ();
end_sequence ();
}
/* Update the CFG for the instructions queued on edge E. */
static void
commit_one_edge_insertion (e)
edge e;
{
rtx before = NULL_RTX, after = NULL_RTX, insns, tmp, last;
basic_block bb;
/* Pull the insns off the edge now since the edge might go away. */
insns = e->insns;
e->insns = NULL_RTX;
/* Figure out where to put these things. If the destination has
one predecessor, insert there. Except for the exit block. */
if (e->dest->pred->pred_next == NULL
&& e->dest != EXIT_BLOCK_PTR)
{
bb = e->dest;
/* Get the location correct wrt a code label, and "nice" wrt
a basic block note, and before everything else. */
tmp = bb->head;
if (GET_CODE (tmp) == CODE_LABEL)
tmp = NEXT_INSN (tmp);
if (NOTE_INSN_BASIC_BLOCK_P (tmp))
tmp = NEXT_INSN (tmp);
if (tmp == bb->head)
before = tmp;
else
after = PREV_INSN (tmp);
}
/* If the source has one successor and the edge is not abnormal,
insert there. Except for the entry block. */
else if ((e->flags & EDGE_ABNORMAL) == 0
&& e->src->succ->succ_next == NULL
&& e->src != ENTRY_BLOCK_PTR)
{
bb = e->src;
/* It is possible to have a non-simple jump here. Consider a target
where some forms of unconditional jumps clobber a register. This
happens on the fr30 for example.
We know this block has a single successor, so we can just emit
the queued insns before the jump. */
if (GET_CODE (bb->end) == JUMP_INSN)
{
before = bb->end;
}
else
{
/* We'd better be fallthru, or we've lost track of what's what. */
if ((e->flags & EDGE_FALLTHRU) == 0)
abort ();
after = bb->end;
}
}
/* Otherwise we must split the edge. */
else
{
bb = split_edge (e);
after = bb->end;
}
/* Now that we've found the spot, do the insertion. */
/* Set the new block number for these insns, if structure is allocated. */
if (basic_block_for_insn)
{
rtx i;
for (i = insns; i != NULL_RTX; i = NEXT_INSN (i))
set_block_for_insn (i, bb);
}
if (before)
{
emit_insns_before (insns, before);
if (before == bb->head)
bb->head = insns;
last = prev_nonnote_insn (before);
}
else
{
last = emit_insns_after (insns, after);
if (after == bb->end)
bb->end = last;
}
if (returnjump_p (last))
{
/* ??? Remove all outgoing edges from BB and add one for EXIT.
This is not currently a problem because this only happens
for the (single) epilogue, which already has a fallthru edge
to EXIT. */
e = bb->succ;
if (e->dest != EXIT_BLOCK_PTR
|| e->succ_next != NULL
|| (e->flags & EDGE_FALLTHRU) == 0)
abort ();
e->flags &= ~EDGE_FALLTHRU;
emit_barrier_after (last);
bb->end = last;
if (before)
flow_delete_insn (before);
}
else if (GET_CODE (last) == JUMP_INSN)
abort ();
find_sub_basic_blocks (bb);
}
/* Update the CFG for all queued instructions. */
void
commit_edge_insertions ()
{
int i;
basic_block bb;
compute_bb_for_insn (get_max_uid ());
#ifdef ENABLE_CHECKING
verify_flow_info ();
#endif
i = -1;
bb = ENTRY_BLOCK_PTR;
while (1)
{
edge e, next;
for (e = bb->succ; e; e = next)
{
next = e->succ_next;
if (e->insns)
commit_one_edge_insertion (e);
}
if (++i >= n_basic_blocks)
break;
bb = BASIC_BLOCK (i);
}
}
/* Return true if we need to add fake edge to exit.
Helper function for the flow_call_edges_add. */
static bool
need_fake_edge_p (insn)
rtx insn;
{
if (!INSN_P (insn))
return false;
if ((GET_CODE (insn) == CALL_INSN
&& !SIBLING_CALL_P (insn)
&& !find_reg_note (insn, REG_NORETURN, NULL)
&& !find_reg_note (insn, REG_ALWAYS_RETURN, NULL)
&& !CONST_OR_PURE_CALL_P (insn)))
return true;
return ((GET_CODE (PATTERN (insn)) == ASM_OPERANDS
&& MEM_VOLATILE_P (PATTERN (insn)))
|| (GET_CODE (PATTERN (insn)) == PARALLEL
&& asm_noperands (insn) != -1
&& MEM_VOLATILE_P (XVECEXP (PATTERN (insn), 0, 0)))
|| GET_CODE (PATTERN (insn)) == ASM_INPUT);
}
/* Add fake edges to the function exit for any non constant and non noreturn
calls, volatile inline assembly in the bitmap of blocks specified by
BLOCKS or to the whole CFG if BLOCKS is zero. Return the nuber of blocks
that were split.
The goal is to expose cases in which entering a basic block does not imply
that all subsequent instructions must be executed. */
int
flow_call_edges_add (blocks)
sbitmap blocks;
{
int i;
int blocks_split = 0;
int bb_num = 0;
basic_block *bbs;
bool check_last_block = false;
/* Map bb indicies into basic block pointers since split_block
will renumber the basic blocks. */
bbs = xmalloc (n_basic_blocks * sizeof (*bbs));
if (! blocks)
{
for (i = 0; i < n_basic_blocks; i++)
bbs[bb_num++] = BASIC_BLOCK (i);
check_last_block = true;
}
else
{
EXECUTE_IF_SET_IN_SBITMAP (blocks, 0, i,
{
bbs[bb_num++] = BASIC_BLOCK (i);
if (i == n_basic_blocks - 1)
check_last_block = true;
});
}
/* In the last basic block, before epilogue generation, there will be
a fallthru edge to EXIT. Special care is required if the last insn
of the last basic block is a call because make_edge folds duplicate
edges, which would result in the fallthru edge also being marked
fake, which would result in the fallthru edge being removed by
remove_fake_edges, which would result in an invalid CFG.
Moreover, we can't elide the outgoing fake edge, since the block
profiler needs to take this into account in order to solve the minimal
spanning tree in the case that the call doesn't return.
Handle this by adding a dummy instruction in a new last basic block. */
if (check_last_block
&& need_fake_edge_p (BASIC_BLOCK (n_basic_blocks - 1)->end))
{
edge e;
for (e = BASIC_BLOCK (n_basic_blocks - 1)->succ; e; e = e->succ_next)
if (e->dest == EXIT_BLOCK_PTR)
break;
insert_insn_on_edge (gen_rtx_USE (VOIDmode, const0_rtx), e);
commit_edge_insertions ();
}
/* Now add fake edges to the function exit for any non constant
calls since there is no way that we can determine if they will
return or not... */
for (i = 0; i < bb_num; i++)
{
basic_block bb = bbs[i];
rtx insn;
rtx prev_insn;
for (insn = bb->end; ; insn = prev_insn)
{
prev_insn = PREV_INSN (insn);
if (need_fake_edge_p (insn))
{
edge e;
/* The above condition should be enought to verify that there is
no edge to the exit block in CFG already. Calling make_edge in
such case would make us to mark that edge as fake and remove it
later. */
#ifdef ENABLE_CHECKING
if (insn == bb->end)
for (e = bb->succ; e; e = e->succ_next)
if (e->dest == EXIT_BLOCK_PTR)
abort ();
#endif
/* Note that the following may create a new basic block
and renumber the existing basic blocks. */
e = split_block (bb, insn);
if (e)
blocks_split++;
make_edge (NULL, bb, EXIT_BLOCK_PTR, EDGE_FAKE);
}
if (insn == bb->head)
break;
}
}
if (blocks_split)
verify_flow_info ();
free (bbs);
return blocks_split;
}
/* Find unreachable blocks. An unreachable block will have NULL in
block->aux, a non-NULL value indicates the block is reachable. */
void
find_unreachable_blocks ()
{
edge e;
int i, n;
basic_block *tos, *worklist;
n = n_basic_blocks;
tos = worklist = (basic_block *) xmalloc (sizeof (basic_block) * n);
/* Use basic_block->aux as a marker. Clear them all. */
for (i = 0; i < n; ++i)
BASIC_BLOCK (i)->aux = NULL;
/* Add our starting points to the worklist. Almost always there will
be only one. It isn't inconcievable that we might one day directly
support Fortran alternate entry points. */
for (e = ENTRY_BLOCK_PTR->succ; e; e = e->succ_next)
{
*tos++ = e->dest;
/* Mark the block with a handy non-null value. */
e->dest->aux = e;
}
/* Iterate: find everything reachable from what we've already seen. */
while (tos != worklist)
{
basic_block b = *--tos;
for (e = b->succ; e; e = e->succ_next)
if (!e->dest->aux)
{
*tos++ = e->dest;
e->dest->aux = e;
}
}
free (worklist);
}
/* Delete all unreachable basic blocks. */
static void
delete_unreachable_blocks ()
{
int i;
find_unreachable_blocks ();
/* Delete all unreachable basic blocks. Count down so that we
don't interfere with the block renumbering that happens in
flow_delete_block. */
for (i = n_basic_blocks - 1; i >= 0; --i)
{
basic_block b = BASIC_BLOCK (i);
if (b->aux != NULL)
/* This block was found. Tidy up the mark. */
b->aux = NULL;
else
flow_delete_block (b);
}
tidy_fallthru_edges ();
}
/* Return true if NOTE is not one of the ones that must be kept paired,
so that we may simply delete them. */
static int
can_delete_note_p (note)
rtx note;
{
return (NOTE_LINE_NUMBER (note) == NOTE_INSN_DELETED
|| NOTE_LINE_NUMBER (note) == NOTE_INSN_BASIC_BLOCK);
}
/* Unlink a chain of insns between START and FINISH, leaving notes
that must be paired. */
void
flow_delete_insn_chain (start, finish)
rtx start, finish;
{
/* Unchain the insns one by one. It would be quicker to delete all
of these with a single unchaining, rather than one at a time, but
we need to keep the NOTE's. */
rtx next;
while (1)
{
next = NEXT_INSN (start);
if (GET_CODE (start) == NOTE && !can_delete_note_p (start))
;
else if (GET_CODE (start) == CODE_LABEL
&& ! can_delete_label_p (start))
{
const char *name = LABEL_NAME (start);
PUT_CODE (start, NOTE);
NOTE_LINE_NUMBER (start) = NOTE_INSN_DELETED_LABEL;
NOTE_SOURCE_FILE (start) = name;
}
else
next = flow_delete_insn (start);
if (start == finish)
break;
start = next;
}
}
/* Delete the insns in a (non-live) block. We physically delete every
non-deleted-note insn, and update the flow graph appropriately.
Return nonzero if we deleted an exception handler. */
/* ??? Preserving all such notes strikes me as wrong. It would be nice
to post-process the stream to remove empty blocks, loops, ranges, etc. */
int
flow_delete_block (b)
basic_block b;
{
int deleted_handler = 0;
rtx insn, end, tmp;
/* If the head of this block is a CODE_LABEL, then it might be the
label for an exception handler which can't be reached.
We need to remove the label from the exception_handler_label list
and remove the associated NOTE_INSN_EH_REGION_BEG and
NOTE_INSN_EH_REGION_END notes. */
insn = b->head;
never_reached_warning (insn);
if (GET_CODE (insn) == CODE_LABEL)
maybe_remove_eh_handler (insn);
/* Include any jump table following the basic block. */
end = b->end;
if (GET_CODE (end) == JUMP_INSN
&& (tmp = JUMP_LABEL (end)) != NULL_RTX
&& (tmp = NEXT_INSN (tmp)) != NULL_RTX
&& GET_CODE (tmp) == JUMP_INSN
&& (GET_CODE (PATTERN (tmp)) == ADDR_VEC
|| GET_CODE (PATTERN (tmp)) == ADDR_DIFF_VEC))
end = tmp;
/* Include any barrier that may follow the basic block. */
tmp = next_nonnote_insn (end);
if (tmp && GET_CODE (tmp) == BARRIER)
end = tmp;
/* Selectively delete the entire chain. */
flow_delete_insn_chain (insn, end);
/* Remove the edges into and out of this block. Note that there may
indeed be edges in, if we are removing an unreachable loop. */
{
edge e, next, *q;
for (e = b->pred; e; e = next)
{
for (q = &e->src->succ; *q != e; q = &(*q)->succ_next)
continue;
*q = e->succ_next;
next = e->pred_next;
n_edges--;
free (e);
}
for (e = b->succ; e; e = next)
{
for (q = &e->dest->pred; *q != e; q = &(*q)->pred_next)
continue;
*q = e->pred_next;
next = e->succ_next;
n_edges--;
free (e);
}
b->pred = NULL;
b->succ = NULL;
}
/* Remove the basic block from the array, and compact behind it. */
expunge_block (b);
return deleted_handler;
}
/* Remove block B from the basic block array and compact behind it. */
static void
expunge_block (b)
basic_block b;
{
int i, n = n_basic_blocks;
for (i = b->index; i + 1 < n; ++i)
{
basic_block x = BASIC_BLOCK (i + 1);
BASIC_BLOCK (i) = x;
x->index = i;
}
basic_block_info->num_elements--;
n_basic_blocks--;
}
/* Delete INSN by patching it out. Return the next insn. */
rtx
flow_delete_insn (insn)
rtx insn;
{
rtx prev = PREV_INSN (insn);
rtx next = NEXT_INSN (insn);
rtx note;
PREV_INSN (insn) = NULL_RTX;
NEXT_INSN (insn) = NULL_RTX;
INSN_DELETED_P (insn) = 1;
if (prev)
NEXT_INSN (prev) = next;
if (next)
PREV_INSN (next) = prev;
else
set_last_insn (prev);
if (GET_CODE (insn) == CODE_LABEL)
remove_node_from_expr_list (insn, &nonlocal_goto_handler_labels);
/* If deleting a jump, decrement the use count of the label. Deleting
the label itself should happen in the normal course of block merging. */
if (GET_CODE (insn) == JUMP_INSN
&& JUMP_LABEL (insn)
&& GET_CODE (JUMP_LABEL (insn)) == CODE_LABEL)
LABEL_NUSES (JUMP_LABEL (insn))--;
/* Also if deleting an insn that references a label. */
else if ((note = find_reg_note (insn, REG_LABEL, NULL_RTX)) != NULL_RTX
&& GET_CODE (XEXP (note, 0)) == CODE_LABEL)
LABEL_NUSES (XEXP (note, 0))--;
if (GET_CODE (insn) == JUMP_INSN
&& (GET_CODE (PATTERN (insn)) == ADDR_VEC
|| GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC))
{
rtx pat = PATTERN (insn);
int diff_vec_p = GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC;
int len = XVECLEN (pat, diff_vec_p);
int i;
for (i = 0; i < len; i++)
LABEL_NUSES (XEXP (XVECEXP (pat, diff_vec_p, i), 0))--;
}
return next;
}
/* True if a given label can be deleted. */
static int
can_delete_label_p (label)
rtx label;
{
rtx x;
if (LABEL_PRESERVE_P (label))
return 0;
for (x = forced_labels; x; x = XEXP (x, 1))
if (label == XEXP (x, 0))
return 0;
for (x = label_value_list; x; x = XEXP (x, 1))
if (label == XEXP (x, 0))
return 0;
for (x = exception_handler_labels; x; x = XEXP (x, 1))
if (label == XEXP (x, 0))
return 0;
/* User declared labels must be preserved. */
if (LABEL_NAME (label) != 0)
return 0;
return 1;
}
static int
tail_recursion_label_p (label)
rtx label;
{
rtx x;
for (x = tail_recursion_label_list; x; x = XEXP (x, 1))
if (label == XEXP (x, 0))
return 1;
return 0;
}
/* Blocks A and B are to be merged into a single block A. The insns
are already contiguous, hence `nomove'. */
void
merge_blocks_nomove (a, b)
basic_block a, b;
{
edge e;
rtx b_head, b_end, a_end;
rtx del_first = NULL_RTX, del_last = NULL_RTX;
int b_empty = 0;
/* If there was a CODE_LABEL beginning B, delete it. */
b_head = b->head;
b_end = b->end;
if (GET_CODE (b_head) == CODE_LABEL)
{
/* Detect basic blocks with nothing but a label. This can happen
in particular at the end of a function. */
if (b_head == b_end)
b_empty = 1;
del_first = del_last = b_head;
b_head = NEXT_INSN (b_head);
}
/* Delete the basic block note. */
if (NOTE_INSN_BASIC_BLOCK_P (b_head))
{
if (b_head == b_end)
b_empty = 1;
if (! del_last)
del_first = b_head;
del_last = b_head;
b_head = NEXT_INSN (b_head);
}
/* If there was a jump out of A, delete it. */
a_end = a->end;
if (GET_CODE (a_end) == JUMP_INSN)
{
rtx prev;
for (prev = PREV_INSN (a_end); ; prev = PREV_INSN (prev))
if (GET_CODE (prev) != NOTE
|| NOTE_LINE_NUMBER (prev) == NOTE_INSN_BASIC_BLOCK
|| prev == a->head)
break;
del_first = a_end;
#ifdef HAVE_cc0
/* If this was a conditional jump, we need to also delete
the insn that set cc0. */
if (prev && sets_cc0_p (prev))
{
rtx tmp = prev;
prev = prev_nonnote_insn (prev);
if (!prev)
prev = a->head;
del_first = tmp;
}
#endif
a_end = prev;
}
else if (GET_CODE (NEXT_INSN (a_end)) == BARRIER)
del_first = NEXT_INSN (a_end);
/* Delete everything marked above as well as crap that might be
hanging out between the two blocks. */
flow_delete_insn_chain (del_first, del_last);
/* Normally there should only be one successor of A and that is B, but
partway though the merge of blocks for conditional_execution we'll
be merging a TEST block with THEN and ELSE successors. Free the
whole lot of them and hope the caller knows what they're doing. */
while (a->succ)
remove_edge (a->succ);
/* Adjust the edges out of B for the new owner. */
for (e = b->succ; e; e = e->succ_next)
e->src = a;
a->succ = b->succ;
/* B hasn't quite yet ceased to exist. Attempt to prevent mishap. */
b->pred = b->succ = NULL;
/* Reassociate the insns of B with A. */
if (!b_empty)
{
if (basic_block_for_insn)
{
BLOCK_FOR_INSN (b_head) = a;
while (b_head != b_end)
{
b_head = NEXT_INSN (b_head);
BLOCK_FOR_INSN (b_head) = a;
}
}
a_end = b_end;
}
a->end = a_end;
expunge_block (b);
}
/* Blocks A and B are to be merged into a single block. A has no incoming
fallthru edge, so it can be moved before B without adding or modifying
any jumps (aside from the jump from A to B). */
static int
merge_blocks_move_predecessor_nojumps (a, b)
basic_block a, b;
{
rtx start, end, barrier;
int index;
start = a->head;
end = a->end;
barrier = next_nonnote_insn (end);
if (GET_CODE (barrier) != BARRIER)
abort ();
flow_delete_insn (barrier);
/* Move block and loop notes out of the chain so that we do not
disturb their order.
??? A better solution would be to squeeze out all the non-nested notes
and adjust the block trees appropriately. Even better would be to have
a tighter connection between block trees and rtl so that this is not
necessary. */
start = squeeze_notes (start, end);
/* Scramble the insn chain. */
if (end != PREV_INSN (b->head))
reorder_insns (start, end, PREV_INSN (b->head));
if (rtl_dump_file)
{
fprintf (rtl_dump_file, "Moved block %d before %d and merged.\n",
a->index, b->index);
}
/* Swap the records for the two blocks around. Although we are deleting B,
A is now where B was and we want to compact the BB array from where
A used to be. */
BASIC_BLOCK (a->index) = b;
BASIC_BLOCK (b->index) = a;
index = a->index;
a->index = b->index;
b->index = index;
/* Now blocks A and B are contiguous. Merge them. */
merge_blocks_nomove (a, b);
return 1;
}
/* Blocks A and B are to be merged into a single block. B has no outgoing
fallthru edge, so it can be moved after A without adding or modifying
any jumps (aside from the jump from A to B). */
static int
merge_blocks_move_successor_nojumps (a, b)
basic_block a, b;
{
rtx start, end, barrier;
start = b->head;
end = b->end;
barrier = NEXT_INSN (end);
/* Recognize a jump table following block B. */
if (barrier
&& GET_CODE (barrier) == CODE_LABEL
&& NEXT_INSN (barrier)
&& GET_CODE (NEXT_INSN (barrier)) == JUMP_INSN
&& (GET_CODE (PATTERN (NEXT_INSN (barrier))) == ADDR_VEC
|| GET_CODE (PATTERN (NEXT_INSN (barrier))) == ADDR_DIFF_VEC))
{
end = NEXT_INSN (barrier);
barrier = NEXT_INSN (end);
}
/* There had better have been a barrier there. Delete it. */
if (barrier && GET_CODE (barrier) == BARRIER)
flow_delete_insn (barrier);
/* Move block and loop notes out of the chain so that we do not
disturb their order.
??? A better solution would be to squeeze out all the non-nested notes
and adjust the block trees appropriately. Even better would be to have
a tighter connection between block trees and rtl so that this is not
necessary. */
start = squeeze_notes (start, end);
/* Scramble the insn chain. */
reorder_insns (start, end, a->end);
/* Now blocks A and B are contiguous. Merge them. */
merge_blocks_nomove (a, b);
if (rtl_dump_file)
{
fprintf (rtl_dump_file, "Moved block %d after %d and merged.\n",
b->index, a->index);
}
return 1;
}
/* Attempt to merge basic blocks that are potentially non-adjacent.
Return true iff the attempt succeeded. */
static int
merge_blocks (e, b, c, mode)
edge e;
basic_block b, c;
int mode;
{
/* If C has a tail recursion label, do not merge. There is no
edge recorded from the call_placeholder back to this label, as
that would make optimize_sibling_and_tail_recursive_calls more
complex for no gain. */
if (GET_CODE (c->head) == CODE_LABEL
&& tail_recursion_label_p (c->head))
return 0;
/* If B has a fallthru edge to C, no need to move anything. */
if (e->flags & EDGE_FALLTHRU)
{
merge_blocks_nomove (b, c);
if (rtl_dump_file)
{
fprintf (rtl_dump_file, "Merged %d and %d without moving.\n",
b->index, c->index);
}
return 1;
}
/* Otherwise we will need to move code around. Do that only if expensive
transformations are allowed. */
else if (mode & CLEANUP_EXPENSIVE)
{
edge tmp_edge, c_fallthru_edge;
int c_has_outgoing_fallthru;
int b_has_incoming_fallthru;
/* Avoid overactive code motion, as the forwarder blocks should be
eliminated by edge redirection instead. One exception might have
been if B is a forwarder block and C has no fallthru edge, but
that should be cleaned up by bb-reorder instead. */
if (forwarder_block_p (b) || forwarder_block_p (c))
return 0;
/* We must make sure to not munge nesting of lexical blocks,
and loop notes. This is done by squeezing out all the notes
and leaving them there to lie. Not ideal, but functional. */
for (tmp_edge = c->succ; tmp_edge; tmp_edge = tmp_edge->succ_next)
if (tmp_edge->flags & EDGE_FALLTHRU)
break;
c_has_outgoing_fallthru = (tmp_edge != NULL);
c_fallthru_edge = tmp_edge;
for (tmp_edge = b->pred; tmp_edge; tmp_edge = tmp_edge->pred_next)
if (tmp_edge->flags & EDGE_FALLTHRU)
break;
b_has_incoming_fallthru = (tmp_edge != NULL);
/* If B does not have an incoming fallthru, then it can be moved
immediately before C without introducing or modifying jumps.
C cannot be the first block, so we do not have to worry about
accessing a non-existent block. */
if (! b_has_incoming_fallthru)
return merge_blocks_move_predecessor_nojumps (b, c);
/* Otherwise, we're going to try to move C after B. If C does
not have an outgoing fallthru, then it can be moved
immediately after B without introducing or modifying jumps. */
if (! c_has_outgoing_fallthru)
return merge_blocks_move_successor_nojumps (b, c);
/* Otherwise, we'll need to insert an extra jump, and possibly
a new block to contain it. We can't redirect to EXIT_BLOCK_PTR,
as we don't have explicit return instructions before epilogues
are generated, so give up on that case. */
if (c_fallthru_edge->dest != EXIT_BLOCK_PTR
&& merge_blocks_move_successor_nojumps (b, c))
{
basic_block target = c_fallthru_edge->dest;
rtx barrier;
basic_block new;
/* This is a dirty hack to avoid code duplication.
Set edge to point to wrong basic block, so
redirect_edge_and_branch_force will do the trick
and rewire edge back to the original location. */
redirect_edge_succ (c_fallthru_edge, ENTRY_BLOCK_PTR);
new = redirect_edge_and_branch_force (c_fallthru_edge, target);
/* We've just created barrier, but another barrier is
already present in the stream. Avoid the duplicate. */
barrier = next_nonnote_insn (new ? new->end : b->end);
if (GET_CODE (barrier) != BARRIER)
abort ();
flow_delete_insn (barrier);
return 1;
}
return 0;
}
return 0;
}
/* Simplify a conditional jump around an unconditional jump.
Return true if something changed. */
static bool
try_simplify_condjump (cbranch_block)
basic_block cbranch_block;
{
basic_block jump_block, jump_dest_block, cbranch_dest_block;
edge cbranch_jump_edge, cbranch_fallthru_edge;
rtx cbranch_insn;
/* Verify that there are exactly two successors. */
if (!cbranch_block->succ
|| !cbranch_block->succ->succ_next
|| cbranch_block->succ->succ_next->succ_next)
return false;
/* Verify that we've got a normal conditional branch at the end
of the block. */
cbranch_insn = cbranch_block->end;
if (!any_condjump_p (cbranch_insn))
return false;
cbranch_fallthru_edge = FALLTHRU_EDGE (cbranch_block);
cbranch_jump_edge = BRANCH_EDGE (cbranch_block);
/* The next block must not have multiple predecessors, must not
be the last block in the function, and must contain just the
unconditional jump. */
jump_block = cbranch_fallthru_edge->dest;
if (jump_block->pred->pred_next
|| jump_block->index == n_basic_blocks - 1
|| !forwarder_block_p (jump_block))
return false;
jump_dest_block = jump_block->succ->dest;
/* The conditional branch must target the block after the
unconditional branch. */
cbranch_dest_block = cbranch_jump_edge->dest;
if (!can_fallthru (jump_block, cbranch_dest_block))
return false;
/* Invert the conditional branch. Prevent jump.c from deleting
"unreachable" instructions. */
LABEL_NUSES (JUMP_LABEL (cbranch_insn))++;
if (!invert_jump (cbranch_insn, block_label (jump_dest_block), 1))
{
LABEL_NUSES (JUMP_LABEL (cbranch_insn))--;
return false;
}
if (rtl_dump_file)
fprintf (rtl_dump_file, "Simplifying condjump %i around jump %i\n",
INSN_UID (cbranch_insn), INSN_UID (jump_block->end));
/* Success. Update the CFG to match. Note that after this point
the edge variable names appear backwards; the redirection is done
this way to preserve edge profile data. */
redirect_edge_succ_nodup (cbranch_jump_edge, cbranch_dest_block);
redirect_edge_succ_nodup (cbranch_fallthru_edge, jump_dest_block);
cbranch_jump_edge->flags |= EDGE_FALLTHRU;
cbranch_fallthru_edge->flags &= ~EDGE_FALLTHRU;
/* Delete the block with the unconditional jump, and clean up the mess. */
flow_delete_block (jump_block);
tidy_fallthru_edge (cbranch_jump_edge, cbranch_block, cbranch_dest_block);
return true;
}
/* Attempt to forward edges leaving basic block B.
Return true if sucessful. */
static bool
try_forward_edges (mode, b)
basic_block b;
int mode;
{
bool changed = false;
edge e, next;
for (e = b->succ; e ; e = next)
{
basic_block target, first;
int counter;
next = e->succ_next;
/* Skip complex edges because we don't know how to update them.
Still handle fallthru edges, as we can suceed to forward fallthru
edge to the same place as the branch edge of conditional branch
and turn conditional branch to an unconditonal branch. */
if (e->flags & EDGE_COMPLEX)
continue;
target = first = e->dest;
counter = 0;
/* Look for the real destination of the jump.
Avoid inifinite loop in the infinite empty loop by counting
up to n_basic_blocks. */
while (forwarder_block_p (target)
&& target->succ->dest != EXIT_BLOCK_PTR
&& counter < n_basic_blocks)
{
/* Bypass trivial infinite loops. */
if (target == target->succ->dest)
counter = n_basic_blocks;
/* Avoid killing of loop pre-headers, as it is the place loop
optimizer wants to hoist code to.
For fallthru forwarders, the LOOP_BEG note must appear between
the header of block and CODE_LABEL of the loop, for non forwarders
it must appear before the JUMP_INSN. */
if (mode & CLEANUP_PRE_LOOP)
{
rtx insn = (target->succ->flags & EDGE_FALLTHRU
? target->head : prev_nonnote_insn (target->end));
if (GET_CODE (insn) != NOTE)
insn = NEXT_INSN (insn);
for (;insn && GET_CODE (insn) != CODE_LABEL && !INSN_P (insn);
insn = NEXT_INSN (insn))
if (GET_CODE (insn) == NOTE
&& NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG)
break;
if (GET_CODE (insn) == NOTE)
break;
}
target = target->succ->dest, counter++;
}
if (counter >= n_basic_blocks)
{
if (rtl_dump_file)
fprintf (rtl_dump_file, "Infinite loop in BB %i.\n",
target->index);
}
else if (target == first)
; /* We didn't do anything. */
else
{
/* Save the values now, as the edge may get removed. */
gcov_type edge_count = e->count;
int edge_probability = e->probability;
if (redirect_edge_and_branch (e, target))
{
/* We successfully forwarded the edge. Now update profile
data: for each edge we traversed in the chain, remove
the original edge's execution count. */
int edge_frequency = ((edge_probability * b->frequency
+ REG_BR_PROB_BASE / 2)
/ REG_BR_PROB_BASE);
do
{
first->count -= edge_count;
first->succ->count -= edge_count;
first->frequency -= edge_frequency;
first = first->succ->dest;
}
while (first != target);
changed = true;
}
else
{
if (rtl_dump_file)
fprintf (rtl_dump_file, "Forwarding edge %i->%i to %i failed.\n",
b->index, e->dest->index, target->index);
}
}
}
return changed;
}
/* Look through the insns at the end of BB1 and BB2 and find the longest
sequence that are equivalent. Store the first insns for that sequence
in *F1 and *F2 and return the sequence length.
To simplify callers of this function, if the blocks match exactly,
store the head of the blocks in *F1 and *F2. */
static int
flow_find_cross_jump (mode, bb1, bb2, f1, f2)
int mode ATTRIBUTE_UNUSED;
basic_block bb1, bb2;
rtx *f1, *f2;
{
rtx i1, i2, p1, p2, last1, last2, afterlast1, afterlast2;
int ninsns = 0;
/* Skip simple jumps at the end of the blocks. Complex jumps still
need to be compared for equivalence, which we'll do below. */
i1 = bb1->end;
if (onlyjump_p (i1))
i1 = PREV_INSN (i1);
i2 = bb2->end;
if (onlyjump_p (i2))
i2 = PREV_INSN (i2);
last1 = afterlast1 = last2 = afterlast2 = NULL_RTX;
while (true)
{
/* Ignore notes. */
while ((GET_CODE (i1) == NOTE && i1 != bb1->head))
i1 = PREV_INSN (i1);
while ((GET_CODE (i2) == NOTE && i2 != bb2->head))
i2 = PREV_INSN (i2);
if (i1 == bb1->head || i2 == bb2->head)
break;
/* Verify that I1 and I2 are equivalent. */
if (GET_CODE (i1) != GET_CODE (i2))
break;
p1 = PATTERN (i1);
p2 = PATTERN (i2);
/* If this is a CALL_INSN, compare register usage information.
If we don't check this on stack register machines, the two
CALL_INSNs might be merged leaving reg-stack.c with mismatching
numbers of stack registers in the same basic block.
If we don't check this on machines with delay slots, a delay slot may
be filled that clobbers a parameter expected by the subroutine.
??? We take the simple route for now and assume that if they're
equal, they were constructed identically. */
if (GET_CODE (i1) == CALL_INSN
&& ! rtx_equal_p (CALL_INSN_FUNCTION_USAGE (i1),
CALL_INSN_FUNCTION_USAGE (i2)))
break;
#ifdef STACK_REGS
/* If cross_jump_death_matters is not 0, the insn's mode
indicates whether or not the insn contains any stack-like
regs. */
if ((mode & CLEANUP_POST_REGSTACK) && stack_regs_mentioned (i1))
{
/* If register stack conversion has already been done, then
death notes must also be compared before it is certain that
the two instruction streams match. */
rtx note;
HARD_REG_SET i1_regset, i2_regset;
CLEAR_HARD_REG_SET (i1_regset);
CLEAR_HARD_REG_SET (i2_regset);
for (note = REG_NOTES (i1); note; note = XEXP (note, 1))
if (REG_NOTE_KIND (note) == REG_DEAD
&& STACK_REG_P (XEXP (note, 0)))
SET_HARD_REG_BIT (i1_regset, REGNO (XEXP (note, 0)));
for (note = REG_NOTES (i2); note; note = XEXP (note, 1))
if (REG_NOTE_KIND (note) == REG_DEAD
&& STACK_REG_P (XEXP (note, 0)))
SET_HARD_REG_BIT (i2_regset, REGNO (XEXP (note, 0)));
GO_IF_HARD_REG_EQUAL (i1_regset, i2_regset, done);
break;
done:
;
}
#endif
if (GET_CODE (p1) != GET_CODE (p2))
break;
if (! rtx_renumbered_equal_p (p1, p2))
{
/* The following code helps take care of G++ cleanups. */
rtx equiv1 = find_reg_equal_equiv_note (i1);
rtx equiv2 = find_reg_equal_equiv_note (i2);
if (equiv1 && equiv2
/* If the equivalences are not to a constant, they may
reference pseudos that no longer exist, so we can't
use them. */
&& CONSTANT_P (XEXP (equiv1, 0))
&& rtx_equal_p (XEXP (equiv1, 0), XEXP (equiv2, 0)))
{
rtx s1 = single_set (i1);
rtx s2 = single_set (i2);
if (s1 != 0 && s2 != 0
&& rtx_renumbered_equal_p (SET_DEST (s1), SET_DEST (s2)))
{
validate_change (i1, &SET_SRC (s1), XEXP (equiv1, 0), 1);
validate_change (i2, &SET_SRC (s2), XEXP (equiv2, 0), 1);
if (! rtx_renumbered_equal_p (p1, p2))
cancel_changes (0);
else if (apply_change_group ())
goto win;
}
}
break;
}
win:
/* Don't begin a cross-jump with a USE or CLOBBER insn. */
if (GET_CODE (p1) != USE && GET_CODE (p1) != CLOBBER)
{
afterlast1 = last1, afterlast2 = last2;
last1 = i1, last2 = i2;
ninsns++;
}
i1 = PREV_INSN (i1);
i2 = PREV_INSN (i2);
}
#ifdef HAVE_cc0
if (ninsns)
{
/* Don't allow the insn after a compare to be shared by
cross-jumping unless the compare is also shared. */
if (reg_mentioned_p (cc0_rtx, last1) && ! sets_cc0_p (last1))
last1 = afterlast1, last2 = afterlast2, ninsns--;
}
#endif
/* Include preceeding notes and labels in the cross-jump. One,
this may bring us to the head of the blocks as requested above.
Two, it keeps line number notes as matched as may be. */
if (ninsns)
{
while (last1 != bb1->head && GET_CODE (PREV_INSN (last1)) == NOTE)
last1 = PREV_INSN (last1);
if (last1 != bb1->head && GET_CODE (PREV_INSN (last1)) == CODE_LABEL)
last1 = PREV_INSN (last1);
while (last2 != bb2->head && GET_CODE (PREV_INSN (last2)) == NOTE)
last2 = PREV_INSN (last2);
if (last2 != bb2->head && GET_CODE (PREV_INSN (last2)) == CODE_LABEL)
last2 = PREV_INSN (last2);
*f1 = last1;
*f2 = last2;
}
return ninsns;
}
/* Return true iff outgoing edges of BB1 and BB2 match, together with
the branch instruction. This means that if we commonize the control
flow before end of the basic block, the semantic remains unchanged.
We may assume that there exists one edge with a common destination. */
static bool
outgoing_edges_match (bb1, bb2)
basic_block bb1;
basic_block bb2;
{
/* If BB1 has only one successor, we must be looking at an unconditional
jump. Which, by the assumption above, means that we only need to check
that BB2 has one successor. */
if (bb1->succ && !bb1->succ->succ_next)
return (bb2->succ && !bb2->succ->succ_next);
/* Match conditional jumps - this may get tricky when fallthru and branch
edges are crossed. */
if (bb1->succ
&& bb1->succ->succ_next
&& !bb1->succ->succ_next->succ_next
&& any_condjump_p (bb1->end))
{
edge b1, f1, b2, f2;
bool reverse, match;
rtx set1, set2, cond1, cond2;
enum rtx_code code1, code2;
if (!bb2->succ
|| !bb2->succ->succ_next
|| bb1->succ->succ_next->succ_next
|| !any_condjump_p (bb2->end))
return false;
b1 = BRANCH_EDGE (bb1);
b2 = BRANCH_EDGE (bb2);
f1 = FALLTHRU_EDGE (bb1);
f2 = FALLTHRU_EDGE (bb2);
/* Get around possible forwarders on fallthru edges. Other cases
should be optimized out already. */
if (forwarder_block_p (f1->dest))
f1 = f1->dest->succ;
if (forwarder_block_p (f2->dest))
f2 = f2->dest->succ;
/* To simplify use of this function, return false if there are
unneeded forwarder blocks. These will get eliminated later
during cleanup_cfg. */
if (forwarder_block_p (f1->dest)
|| forwarder_block_p (f2->dest)
|| forwarder_block_p (b1->dest)
|| forwarder_block_p (b2->dest))
return false;
if (f1->dest == f2->dest && b1->dest == b2->dest)
reverse = false;
else if (f1->dest == b2->dest && b1->dest == f2->dest)
reverse = true;
else
return false;
set1 = pc_set (bb1->end);
set2 = pc_set (bb2->end);
if ((XEXP (SET_SRC (set1), 1) == pc_rtx)
!= (XEXP (SET_SRC (set2), 1) == pc_rtx))
reverse = !reverse;
cond1 = XEXP (SET_SRC (set1), 0);
cond2 = XEXP (SET_SRC (set2), 0);
code1 = GET_CODE (cond1);
if (reverse)
code2 = reversed_comparison_code (cond2, bb2->end);
else
code2 = GET_CODE (cond2);
if (code2 == UNKNOWN)
return false;
/* Verify codes and operands match. */
match = ((code1 == code2
&& rtx_renumbered_equal_p (XEXP (cond1, 0), XEXP (cond2, 0))
&& rtx_renumbered_equal_p (XEXP (cond1, 1), XEXP (cond2, 1)))
|| (code1 == swap_condition (code2)
&& rtx_renumbered_equal_p (XEXP (cond1, 1),
XEXP (cond2, 0))
&& rtx_renumbered_equal_p (XEXP (cond1, 0),
XEXP (cond2, 1))));
/* If we return true, we will join the blocks. Which means that
we will only have one branch prediction bit to work with. Thus
we require the existing branches to have probabilities that are
roughly similar. */
/* ??? We should use bb->frequency to allow merging in infrequently
executed blocks, but at the moment it is not available when
cleanup_cfg is run. */
if (match && !optimize_size)
{
rtx note1, note2;
int prob1, prob2;
note1 = find_reg_note (bb1->end, REG_BR_PROB, 0);
note2 = find_reg_note (bb2->end, REG_BR_PROB, 0);
if (note1 && note2)
{
prob1 = INTVAL (XEXP (note1, 0));
prob2 = INTVAL (XEXP (note2, 0));
if (reverse)
prob2 = REG_BR_PROB_BASE - prob2;
/* Fail if the difference in probabilities is
greater than 5%. */
if (abs (prob1 - prob2) > REG_BR_PROB_BASE / 20)
return false;
}
else if (note1 || note2)
return false;
}
if (rtl_dump_file && match)
fprintf (rtl_dump_file, "Conditionals in bb %i and %i match.\n",
bb1->index, bb2->index);
return match;
}
/* ??? We can handle computed jumps too. This may be important for
inlined functions containing switch statements. Also jumps w/o
fallthru edges can be handled by simply matching whole insn. */
return false;
}
/* E1 and E2 are edges with the same destination block. Search their
predecessors for common code. If found, redirect control flow from
(maybe the middle of) E1->SRC to (maybe the middle of) E2->SRC. */
static bool
try_crossjump_to_edge (mode, e1, e2)
int mode;
edge e1, e2;
{
int nmatch;
basic_block src1 = e1->src, src2 = e2->src;
basic_block redirect_to;
rtx newpos1, newpos2;
edge s;
rtx last;
rtx label;
rtx note;
/* Search backward through forwarder blocks. We don't need to worry
about multiple entry or chained forwarders, as they will be optimized
away. We do this to look past the unconditional jump following a
conditional jump that is required due to the current CFG shape. */
if (src1->pred
&& !src1->pred->pred_next
&& forwarder_block_p (src1))
{
e1 = src1->pred;
src1 = e1->src;
}
if (src2->pred
&& !src2->pred->pred_next
&& forwarder_block_p (src2))
{
e2 = src2->pred;
src2 = e2->src;
}
/* Nothing to do if we reach ENTRY, or a common source block. */
if (src1 == ENTRY_BLOCK_PTR || src2 == ENTRY_BLOCK_PTR)
return false;
if (src1 == src2)
return false;
/* Seeing more than 1 forwarder blocks would confuse us later... */
if (forwarder_block_p (e1->dest)
&& forwarder_block_p (e1->dest->succ->dest))
return false;
if (forwarder_block_p (e2->dest)
&& forwarder_block_p (e2->dest->succ->dest))
return false;
/* Likewise with dead code (possibly newly created by the other optimizations
of cfg_cleanup). */
if (!src1->pred || !src2->pred)
return false;
/* Likewise with complex edges.
??? We should be able to handle most complex edges later with some
care. */
if (e1->flags & EDGE_COMPLEX)
return false;
/* Look for the common insn sequence, part the first ... */
if (!outgoing_edges_match (src1, src2))
return false;
/* ... and part the second. */
nmatch = flow_find_cross_jump (mode, src1, src2, &newpos1, &newpos2);
if (!nmatch)
return false;
/* Avoid splitting if possible. */
if (newpos2 == src2->head)
redirect_to = src2;
else
{
if (rtl_dump_file)
fprintf (rtl_dump_file, "Splitting bb %i before %i insns\n",
src2->index, nmatch);
redirect_to = split_block (src2, PREV_INSN (newpos2))->dest;
}
if (rtl_dump_file)
fprintf (rtl_dump_file,
"Cross jumping from bb %i to bb %i; %i common insns\n",
src1->index, src2->index, nmatch);
redirect_to->count += src1->count;
redirect_to->frequency += src1->frequency;
/* Recompute the frequencies and counts of outgoing edges. */
for (s = redirect_to->succ; s; s = s->succ_next)
{
edge s2;
basic_block d = s->dest;
if (forwarder_block_p (d))
d = d->succ->dest;
for (s2 = src1->succ; ; s2 = s2->succ_next)
{
basic_block d2 = s2->dest;
if (forwarder_block_p (d2))
d2 = d2->succ->dest;
if (d == d2)
break;
}
s->count += s2->count;
/* Take care to update possible forwarder blocks. We verified
that there is no more than one in the chain, so we can't run
into infinite loop. */
if (forwarder_block_p (s->dest))
{
s->dest->succ->count += s2->count;
s->dest->count += s2->count;
s->dest->frequency += EDGE_FREQUENCY (s);
}
if (forwarder_block_p (s2->dest))
{
s2->dest->succ->count -= s2->count;
s2->dest->count -= s2->count;
s2->dest->frequency -= EDGE_FREQUENCY (s);
}
if (!redirect_to->frequency && !src1->frequency)
s->probability = (s->probability + s2->probability) / 2;
else
s->probability =
((s->probability * redirect_to->frequency +
s2->probability * src1->frequency)
/ (redirect_to->frequency + src1->frequency));
}
note = find_reg_note (redirect_to->end, REG_BR_PROB, 0);
if (note)
XEXP (note, 0) = GEN_INT (BRANCH_EDGE (redirect_to)->probability);
/* Edit SRC1 to go to REDIRECT_TO at NEWPOS1. */
/* Skip possible basic block header. */
if (GET_CODE (newpos1) == CODE_LABEL)
newpos1 = NEXT_INSN (newpos1);
if (GET_CODE (newpos1) == NOTE)
newpos1 = NEXT_INSN (newpos1);
last = src1->end;
/* Emit the jump insn. */
label = block_label (redirect_to);
src1->end = emit_jump_insn_before (gen_jump (label), newpos1);
JUMP_LABEL (src1->end) = label;
LABEL_NUSES (label)++;
if (basic_block_for_insn)
set_block_for_new_insns (src1->end, src1);
/* Delete the now unreachable instructions. */
flow_delete_insn_chain (newpos1, last);
/* Make sure there is a barrier after the new jump. */
last = next_nonnote_insn (src1->end);
if (!last || GET_CODE (last) != BARRIER)
emit_barrier_after (src1->end);
/* Update CFG. */
while (src1->succ)
remove_edge (src1->succ);
make_edge (NULL, src1, redirect_to, 0);
src1->succ->probability = REG_BR_PROB_BASE;
src1->succ->count = src1->count;
return true;
}
/* Search the predecessors of BB for common insn sequences. When found,
share code between them by redirecting control flow. Return true if
any changes made. */
static bool
try_crossjump_bb (mode, bb)
int mode;
basic_block bb;
{
edge e, e2, nexte2, nexte, fallthru;
bool changed;
/* Nothing to do if there is not at least two incomming edges. */
if (!bb->pred || !bb->pred->pred_next)
return false;
/* It is always cheapest to redirect a block that ends in a branch to
a block that falls through into BB, as that adds no branches to the
program. We'll try that combination first. */
for (fallthru = bb->pred; fallthru; fallthru = fallthru->pred_next)
if (fallthru->flags & EDGE_FALLTHRU)
break;
changed = false;
for (e = bb->pred; e; e = nexte)
{
nexte = e->pred_next;
/* Elide complex edges now, as neither try_crossjump_to_edge
nor outgoing_edges_match can handle them. */
if (e->flags & EDGE_COMPLEX)
continue;
/* As noted above, first try with the fallthru predecessor. */
if (fallthru)
{
/* Don't combine the fallthru edge into anything else.
If there is a match, we'll do it the other way around. */
if (e == fallthru)
continue;
if (try_crossjump_to_edge (mode, e, fallthru))
{
changed = true;
nexte = bb->pred;
continue;
}
}
/* Non-obvious work limiting check: Recognize that we're going
to call try_crossjump_bb on every basic block. So if we have
two blocks with lots of outgoing edges (a switch) and they
share lots of common destinations, then we would do the
cross-jump check once for each common destination.
Now, if the blocks actually are cross-jump candidates, then
all of their destinations will be shared. Which means that
we only need check them for cross-jump candidacy once. We
can eliminate redundant checks of crossjump(A,B) by arbitrarily
choosing to do the check from the block for which the edge
in question is the first successor of A. */
if (e->src->succ != e)
continue;
for (e2 = bb->pred; e2; e2 = nexte2)
{
nexte2 = e2->pred_next;
if (e2 == e)
continue;
/* We've already checked the fallthru edge above. */
if (e2 == fallthru)
continue;
/* Again, neither try_crossjump_to_edge nor outgoing_edges_match
can handle complex edges. */
if (e2->flags & EDGE_COMPLEX)
continue;
/* The "first successor" check above only prevents multiple
checks of crossjump(A,B). In order to prevent redundant
checks of crossjump(B,A), require that A be the block
with the lowest index. */
if (e->src->index > e2->src->index)
continue;
if (try_crossjump_to_edge (mode, e, e2))
{
changed = true;
nexte = bb->pred;
break;
}
}
}
return changed;
}
/* Do simple CFG optimizations - basic block merging, simplifying of jump
instructions etc. Return nonzero if changes were made. */
static bool
try_optimize_cfg (mode)
int mode;
{
int i;
bool changed_overall = false;
bool changed;
int iterations = 0;
/* Attempt to merge blocks as made possible by edge removal. If a block
has only one successor, and the successor has only one predecessor,
they may be combined. */
do
{
changed = false;
iterations++;
if (rtl_dump_file)
fprintf (rtl_dump_file, "\n\ntry_optimize_cfg iteration %i\n\n",
iterations);
for (i = 0; i < n_basic_blocks;)
{
basic_block c, b = BASIC_BLOCK (i);
edge s;
bool changed_here = false;
/* Delete trivially dead basic blocks. */
while (b->pred == NULL)
{
c = BASIC_BLOCK (b->index - 1);
if (rtl_dump_file)
fprintf (rtl_dump_file, "Deleting block %i.\n", b->index);
flow_delete_block (b);
changed = true;
b = c;
}
/* Remove code labels no longer used. Don't do this before
CALL_PLACEHOLDER is removed, as some branches may be hidden
within. */
if (b->pred->pred_next == NULL
&& (b->pred->flags & EDGE_FALLTHRU)
&& !(b->pred->flags & EDGE_COMPLEX)
&& GET_CODE (b->head) == CODE_LABEL
&& (!(mode & CLEANUP_PRE_SIBCALL)
|| !tail_recursion_label_p (b->head))
/* If previous block ends with condjump jumping to next BB,
we can't delete the label. */
&& (b->pred->src == ENTRY_BLOCK_PTR
|| !reg_mentioned_p (b->head, b->pred->src->end)))
{
rtx label = b->head;
b->head = NEXT_INSN (b->head);
flow_delete_insn_chain (label, label);
if (rtl_dump_file)
fprintf (rtl_dump_file, "Deleted label in block %i.\n",
b->index);
}
/* If we fall through an empty block, we can remove it. */
if (b->pred->pred_next == NULL
&& (b->pred->flags & EDGE_FALLTHRU)
&& GET_CODE (b->head) != CODE_LABEL
&& forwarder_block_p (b)
/* Note that forwarder_block_p true ensures that there
is a successor for this block. */
&& (b->succ->flags & EDGE_FALLTHRU)
&& n_basic_blocks > 1)
{
if (rtl_dump_file)
fprintf (rtl_dump_file, "Deleting fallthru block %i.\n",
b->index);
c = BASIC_BLOCK (b->index ? b->index - 1 : 1);
redirect_edge_succ_nodup (b->pred, b->succ->dest);
flow_delete_block (b);
changed = true;
b = c;
}
/* Merge blocks. Loop because chains of blocks might be
combineable. */
while ((s = b->succ) != NULL
&& s->succ_next == NULL
&& !(s->flags & EDGE_COMPLEX)
&& (c = s->dest) != EXIT_BLOCK_PTR
&& c->pred->pred_next == NULL
/* If the jump insn has side effects,
we can't kill the edge. */
&& (GET_CODE (b->end) != JUMP_INSN
|| onlyjump_p (b->end))
&& merge_blocks (s, b, c, mode))
changed_here = true;
/* Simplify branch over branch. */
if ((mode & CLEANUP_EXPENSIVE) && try_simplify_condjump (b))
changed_here = true;
/* If B has a single outgoing edge, but uses a non-trivial jump
instruction without side-effects, we can either delete the
jump entirely, or replace it with a simple unconditional jump.
Use redirect_edge_and_branch to do the dirty work. */
if (b->succ
&& ! b->succ->succ_next
&& b->succ->dest != EXIT_BLOCK_PTR
&& onlyjump_p (b->end)
&& redirect_edge_and_branch (b->succ, b->succ->dest))
changed_here = true;
/* Simplify branch to branch. */
if (try_forward_edges (mode, b))
changed_here = true;
/* Look for shared code between blocks. */
if ((mode & CLEANUP_CROSSJUMP)
&& try_crossjump_bb (mode, b))
changed_here = true;
/* Don't get confused by the index shift caused by deleting
blocks. */
if (!changed_here)
i = b->index + 1;
else
changed = true;
}
if ((mode & CLEANUP_CROSSJUMP)
&& try_crossjump_bb (mode, EXIT_BLOCK_PTR))
changed = true;
#ifdef ENABLE_CHECKING
if (changed)
verify_flow_info ();
#endif
changed_overall |= changed;
}
while (changed);
return changed_overall;
}
/* The given edge should potentially be a fallthru edge. If that is in
fact true, delete the jump and barriers that are in the way. */
void
tidy_fallthru_edge (e, b, c)
edge e;
basic_block b, c;
{
rtx q;
/* ??? In a late-running flow pass, other folks may have deleted basic
blocks by nopping out blocks, leaving multiple BARRIERs between here
and the target label. They ought to be chastized and fixed.
We can also wind up with a sequence of undeletable labels between
one block and the next.
So search through a sequence of barriers, labels, and notes for
the head of block C and assert that we really do fall through. */
if (next_real_insn (b->end) != next_real_insn (PREV_INSN (c->head)))
return;
/* Remove what will soon cease being the jump insn from the source block.
If block B consisted only of this single jump, turn it into a deleted
note. */
q = b->end;
if (GET_CODE (q) == JUMP_INSN
&& onlyjump_p (q)
&& (any_uncondjump_p (q)
|| (b->succ == e && e->succ_next == NULL)))
{
#ifdef HAVE_cc0
/* If this was a conditional jump, we need to also delete
the insn that set cc0. */
if (any_condjump_p (q) && sets_cc0_p (PREV_INSN (q)))
q = PREV_INSN (q);
#endif
if (b->head == q)
{
PUT_CODE (q, NOTE);
NOTE_LINE_NUMBER (q) = NOTE_INSN_DELETED;
NOTE_SOURCE_FILE (q) = 0;
}
else
{
q = PREV_INSN (q);
/* We don't want a block to end on a line-number note since that has
the potential of changing the code between -g and not -g. */
while (GET_CODE (q) == NOTE && NOTE_LINE_NUMBER (q) >= 0)
q = PREV_INSN (q);
}
b->end = q;
}
/* Selectively unlink the sequence. */
if (q != PREV_INSN (c->head))
flow_delete_insn_chain (NEXT_INSN (q), PREV_INSN (c->head));
e->flags |= EDGE_FALLTHRU;
}
/* Fix up edges that now fall through, or rather should now fall through
but previously required a jump around now deleted blocks. Simplify
the search by only examining blocks numerically adjacent, since this
is how find_basic_blocks created them. */
static void
tidy_fallthru_edges ()
{
int i;
for (i = 1; i < n_basic_blocks; ++i)
{
basic_block b = BASIC_BLOCK (i - 1);
basic_block c = BASIC_BLOCK (i);
edge s;
/* We care about simple conditional or unconditional jumps with
a single successor.
If we had a conditional branch to the next instruction when
find_basic_blocks was called, then there will only be one
out edge for the block which ended with the conditional
branch (since we do not create duplicate edges).
Furthermore, the edge will be marked as a fallthru because we
merge the flags for the duplicate edges. So we do not want to
check that the edge is not a FALLTHRU edge. */
if ((s = b->succ) != NULL
&& ! (s->flags & EDGE_COMPLEX)
&& s->succ_next == NULL
&& s->dest == c
/* If the jump insn has side effects, we can't tidy the edge. */
&& (GET_CODE (b->end) != JUMP_INSN
|| onlyjump_p (b->end)))
tidy_fallthru_edge (s, b, c);
}
}
/* Perform data flow analysis.
F is the first insn of the function; FLAGS is a set of PROP_* flags
to be used in accumulating flow info. */
void
life_analysis (f, file, flags)
rtx f;
FILE *file;
int flags;
{
#ifdef ELIMINABLE_REGS
register int i;
static struct {int from, to; } eliminables[] = ELIMINABLE_REGS;
#endif
/* Record which registers will be eliminated. We use this in
mark_used_regs. */
CLEAR_HARD_REG_SET (elim_reg_set);
#ifdef ELIMINABLE_REGS
for (i = 0; i < (int) ARRAY_SIZE (eliminables); i++)
SET_HARD_REG_BIT (elim_reg_set, eliminables[i].from);
#else
SET_HARD_REG_BIT (elim_reg_set, FRAME_POINTER_REGNUM);
#endif
if (! optimize)
flags &= ~(PROP_LOG_LINKS | PROP_AUTOINC | PROP_ALLOW_CFG_CHANGES);
/* The post-reload life analysis have (on a global basis) the same
registers live as was computed by reload itself. elimination
Otherwise offsets and such may be incorrect.
Reload will make some registers as live even though they do not
appear in the rtl.
We don't want to create new auto-incs after reload, since they
are unlikely to be useful and can cause problems with shared
stack slots. */
if (reload_completed)
flags &= ~(PROP_REG_INFO | PROP_AUTOINC);
/* We want alias analysis information for local dead store elimination. */
if (optimize && (flags & PROP_SCAN_DEAD_CODE))
init_alias_analysis ();
/* Always remove no-op moves. Do this before other processing so
that we don't have to keep re-scanning them. */
delete_noop_moves (f);
/* Some targets can emit simpler epilogues if they know that sp was
not ever modified during the function. After reload, of course,
we've already emitted the epilogue so there's no sense searching. */
if (! reload_completed)
notice_stack_pointer_modification (f);
/* Allocate and zero out data structures that will record the
data from lifetime analysis. */
allocate_reg_life_data ();
allocate_bb_life_data ();
/* Find the set of registers live on function exit. */
mark_regs_live_at_end (EXIT_BLOCK_PTR->global_live_at_start);
/* "Update" life info from zero. It'd be nice to begin the
relaxation with just the exit and noreturn blocks, but that set
is not immediately handy. */
if (flags & PROP_REG_INFO)
memset (regs_ever_live, 0, sizeof (regs_ever_live));
update_life_info (NULL, UPDATE_LIFE_GLOBAL, flags);
/* Clean up. */
if (optimize && (flags & PROP_SCAN_DEAD_CODE))
end_alias_analysis ();
if (file)
dump_flow_info (file);
free_basic_block_vars (1);
#ifdef ENABLE_CHECKING
{
rtx insn;
/* Search for any REG_LABEL notes which reference deleted labels. */
for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
{
rtx inote = find_reg_note (insn, REG_LABEL, NULL_RTX);
if (inote && GET_CODE (inote) == NOTE_INSN_DELETED_LABEL)
abort ();
}
}
#endif
/* Removing dead insns should've made jumptables really dead. */
delete_dead_jumptables ();
}
/* A subroutine of verify_wide_reg, called through for_each_rtx.
Search for REGNO. If found, abort if it is not wider than word_mode. */
static int
verify_wide_reg_1 (px, pregno)
rtx *px;
void *pregno;
{
rtx x = *px;
unsigned int regno = *(int *) pregno;
if (GET_CODE (x) == REG && REGNO (x) == regno)
{
if (GET_MODE_BITSIZE (GET_MODE (x)) <= BITS_PER_WORD)
abort ();
return 1;
}
return 0;
}
/* A subroutine of verify_local_live_at_start. Search through insns
between HEAD and END looking for register REGNO. */
static void
verify_wide_reg (regno, head, end)
int regno;
rtx head, end;
{
while (1)
{
if (INSN_P (head)
&& for_each_rtx (&PATTERN (head), verify_wide_reg_1, ®no))
return;
if (head == end)
break;
head = NEXT_INSN (head);
}
/* We didn't find the register at all. Something's way screwy. */
if (rtl_dump_file)
fprintf (rtl_dump_file, "Aborting in verify_wide_reg; reg %d\n", regno);
print_rtl_and_abort ();
}
/* A subroutine of update_life_info. Verify that there are no untoward
changes in live_at_start during a local update. */
static void
verify_local_live_at_start (new_live_at_start, bb)
regset new_live_at_start;
basic_block bb;
{
if (reload_completed)
{
/* After reload, there are no pseudos, nor subregs of multi-word
registers. The regsets should exactly match. */
if (! REG_SET_EQUAL_P (new_live_at_start, bb->global_live_at_start))
{
if (rtl_dump_file)
{
fprintf (rtl_dump_file,
"live_at_start mismatch in bb %d, aborting\n",
bb->index);
debug_bitmap_file (rtl_dump_file, bb->global_live_at_start);
debug_bitmap_file (rtl_dump_file, new_live_at_start);
}
print_rtl_and_abort ();
}
}
else
{
int i;
/* Find the set of changed registers. */
XOR_REG_SET (new_live_at_start, bb->global_live_at_start);
EXECUTE_IF_SET_IN_REG_SET (new_live_at_start, 0, i,
{
/* No registers should die. */
if (REGNO_REG_SET_P (bb->global_live_at_start, i))
{
if (rtl_dump_file)
fprintf (rtl_dump_file,
"Register %d died unexpectedly in block %d\n", i,
bb->index);
print_rtl_and_abort ();
}
/* Verify that the now-live register is wider than word_mode. */
verify_wide_reg (i, bb->head, bb->end);
});
}
}
/* Updates life information starting with the basic blocks set in BLOCKS.
If BLOCKS is null, consider it to be the universal set.
If EXTENT is UPDATE_LIFE_LOCAL, such as after splitting or peepholeing,
we are only expecting local modifications to basic blocks. If we find
extra registers live at the beginning of a block, then we either killed
useful data, or we have a broken split that wants data not provided.
If we find registers removed from live_at_start, that means we have
a broken peephole that is killing a register it shouldn't.
??? This is not true in one situation -- when a pre-reload splitter
generates subregs of a multi-word pseudo, current life analysis will
lose the kill. So we _can_ have a pseudo go live. How irritating.
Including PROP_REG_INFO does not properly refresh regs_ever_live
unless the caller resets it to zero. */
void
update_life_info (blocks, extent, prop_flags)
sbitmap blocks;
enum update_life_extent extent;
int prop_flags;
{
regset tmp;
regset_head tmp_head;
int i;
tmp = INITIALIZE_REG_SET (tmp_head);
/* Changes to the CFG are only allowed when
doing a global update for the entire CFG. */
if ((prop_flags & PROP_ALLOW_CFG_CHANGES)
&& (extent == UPDATE_LIFE_LOCAL || blocks))
abort ();
/* For a global update, we go through the relaxation process again. */
if (extent != UPDATE_LIFE_LOCAL)
{
for ( ; ; )
{
int changed = 0;
calculate_global_regs_live (blocks, blocks,
prop_flags & (PROP_SCAN_DEAD_CODE
| PROP_ALLOW_CFG_CHANGES));
if ((prop_flags & (PROP_KILL_DEAD_CODE | PROP_ALLOW_CFG_CHANGES))
!= (PROP_KILL_DEAD_CODE | PROP_ALLOW_CFG_CHANGES))
break;
/* Removing dead code may allow the CFG to be simplified which
in turn may allow for further dead code detection / removal. */
for (i = n_basic_blocks - 1; i >= 0; --i)
{
basic_block bb = BASIC_BLOCK (i);
COPY_REG_SET (tmp, bb->global_live_at_end);
changed |= propagate_block (bb, tmp, NULL, NULL,
prop_flags & (PROP_SCAN_DEAD_CODE
| PROP_KILL_DEAD_CODE));
}
if (! changed || ! try_optimize_cfg (CLEANUP_EXPENSIVE))
break;
delete_unreachable_blocks ();
mark_critical_edges ();
}
/* If asked, remove notes from the blocks we'll update. */
if (extent == UPDATE_LIFE_GLOBAL_RM_NOTES)
count_or_remove_death_notes (blocks, 1);
}
if (blocks)
{
EXECUTE_IF_SET_IN_SBITMAP (blocks, 0, i,
{
basic_block bb = BASIC_BLOCK (i);
COPY_REG_SET (tmp, bb->global_live_at_end);
propagate_block (bb, tmp, NULL, NULL, prop_flags);
if (extent == UPDATE_LIFE_LOCAL)
verify_local_live_at_start (tmp, bb);
});
}
else
{
for (i = n_basic_blocks - 1; i >= 0; --i)
{
basic_block bb = BASIC_BLOCK (i);
COPY_REG_SET (tmp, bb->global_live_at_end);
propagate_block (bb, tmp, NULL, NULL, prop_flags);
if (extent == UPDATE_LIFE_LOCAL)
verify_local_live_at_start (tmp, bb);
}
}
FREE_REG_SET (tmp);
if (prop_flags & PROP_REG_INFO)
{
/* The only pseudos that are live at the beginning of the function
are those that were not set anywhere in the function. local-alloc
doesn't know how to handle these correctly, so mark them as not
local to any one basic block. */
EXECUTE_IF_SET_IN_REG_SET (ENTRY_BLOCK_PTR->global_live_at_end,
FIRST_PSEUDO_REGISTER, i,
{ REG_BASIC_BLOCK (i) = REG_BLOCK_GLOBAL; });
/* We have a problem with any pseudoreg that lives across the setjmp.
ANSI says that if a user variable does not change in value between
the setjmp and the longjmp, then the longjmp preserves it. This
includes longjmp from a place where the pseudo appears dead.
(In principle, the value still exists if it is in scope.)
If the pseudo goes in a hard reg, some other value may occupy
that hard reg where this pseudo is dead, thus clobbering the pseudo.
Conclusion: such a pseudo must not go in a hard reg. */
EXECUTE_IF_SET_IN_REG_SET (regs_live_at_setjmp,
FIRST_PSEUDO_REGISTER, i,
{
if (regno_reg_rtx[i] != 0)
{
REG_LIVE_LENGTH (i) = -1;
REG_BASIC_BLOCK (i) = REG_BLOCK_UNKNOWN;
}
});
}
}
/* Free the variables allocated by find_basic_blocks.
KEEP_HEAD_END_P is non-zero if basic_block_info is not to be freed. */
void
free_basic_block_vars (keep_head_end_p)
int keep_head_end_p;
{
if (basic_block_for_insn)
{
VARRAY_FREE (basic_block_for_insn);
basic_block_for_insn = NULL;
}
if (! keep_head_end_p)
{
if (basic_block_info)
{
clear_edges ();
VARRAY_FREE (basic_block_info);
}
n_basic_blocks = 0;
ENTRY_BLOCK_PTR->aux = NULL;
ENTRY_BLOCK_PTR->global_live_at_end = NULL;
EXIT_BLOCK_PTR->aux = NULL;
EXIT_BLOCK_PTR->global_live_at_start = NULL;
}
}
/* Delete any insns that copy a register to itself. */
void
delete_noop_moves (f)
rtx f ATTRIBUTE_UNUSED;
{
int i;
rtx insn, next;
basic_block bb;
for (i = 0; i < n_basic_blocks; i++)
{
bb = BASIC_BLOCK (i);
for (insn = bb->head; insn != NEXT_INSN (bb->end); insn = next)
{
next = NEXT_INSN (insn);
if (INSN_P (insn) && noop_move_p (insn))
{
/* Do not call flow_delete_insn here to not confuse backward
pointers of LIBCALL block. */
PUT_CODE (insn, NOTE);
NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
NOTE_SOURCE_FILE (insn) = 0;
}
}
}
}
/* Delete any jump tables never referenced. We can't delete them at the
time of removing tablejump insn as they are referenced by the preceeding
insns computing the destination, so we delay deleting and garbagecollect
them once life information is computed. */
static void
delete_dead_jumptables ()
{
rtx insn, next;
for (insn = get_insns (); insn; insn = next)
{
next = NEXT_INSN (insn);
if (GET_CODE (insn) == CODE_LABEL
&& LABEL_NUSES (insn) == 0
&& GET_CODE (next) == JUMP_INSN
&& (GET_CODE (PATTERN (next)) == ADDR_VEC
|| GET_CODE (PATTERN (next)) == ADDR_DIFF_VEC))
{
if (rtl_dump_file)
fprintf (rtl_dump_file, "Dead jumptable %i removed\n", INSN_UID (insn));
flow_delete_insn (NEXT_INSN (insn));
flow_delete_insn (insn);
next = NEXT_INSN (next);
}
}
}
/* Determine if the stack pointer is constant over the life of the function.
Only useful before prologues have been emitted. */
static void
notice_stack_pointer_modification_1 (x, pat, data)
rtx x;
rtx pat ATTRIBUTE_UNUSED;
void *data ATTRIBUTE_UNUSED;
{
if (x == stack_pointer_rtx
/* The stack pointer is only modified indirectly as the result
of a push until later in flow. See the comments in rtl.texi
regarding Embedded Side-Effects on Addresses. */
|| (GET_CODE (x) == MEM
&& GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) == 'a'
&& XEXP (XEXP (x, 0), 0) == stack_pointer_rtx))
current_function_sp_is_unchanging = 0;
}
static void
notice_stack_pointer_modification (f)
rtx f;
{
rtx insn;
/* Assume that the stack pointer is unchanging if alloca hasn't
been used. */
current_function_sp_is_unchanging = !current_function_calls_alloca;
if (! current_function_sp_is_unchanging)
return;
for (insn = f; insn; insn = NEXT_INSN (insn))
{
if (INSN_P (insn))
{
/* Check if insn modifies the stack pointer. */
note_stores (PATTERN (insn), notice_stack_pointer_modification_1,
NULL);
if (! current_function_sp_is_unchanging)
return;
}
}
}
/* Mark a register in SET. Hard registers in large modes get all
of their component registers set as well. */
static void
mark_reg (reg, xset)
rtx reg;
void *xset;
{
regset set = (regset) xset;
int regno = REGNO (reg);
if (GET_MODE (reg) == BLKmode)
abort ();
SET_REGNO_REG_SET (set, regno);
if (regno < FIRST_PSEUDO_REGISTER)
{
int n = HARD_REGNO_NREGS (regno, GET_MODE (reg));
while (--n > 0)
SET_REGNO_REG_SET (set, regno + n);
}
}
/* Mark those regs which are needed at the end of the function as live
at the end of the last basic block. */
static void
mark_regs_live_at_end (set)
regset set;
{
unsigned int i;
/* If exiting needs the right stack value, consider the stack pointer
live at the end of the function. */
if ((HAVE_epilogue && reload_completed)
|| ! EXIT_IGNORE_STACK
|| (! FRAME_POINTER_REQUIRED
&& ! current_function_calls_alloca
&& flag_omit_frame_pointer)
|| current_function_sp_is_unchanging)
{
SET_REGNO_REG_SET (set, STACK_POINTER_REGNUM);
}
/* Mark the frame pointer if needed at the end of the function. If
we end up eliminating it, it will be removed from the live list
of each basic block by reload. */
if (! reload_completed || frame_pointer_needed)
{
SET_REGNO_REG_SET (set, FRAME_POINTER_REGNUM);
#if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
/* If they are different, also mark the hard frame pointer as live. */
if (! LOCAL_REGNO (HARD_FRAME_POINTER_REGNUM))
SET_REGNO_REG_SET (set, HARD_FRAME_POINTER_REGNUM);
#endif
}
#ifndef PIC_OFFSET_TABLE_REG_CALL_CLOBBERED
/* Many architectures have a GP register even without flag_pic.
Assume the pic register is not in use, or will be handled by
other means, if it is not fixed. */
if (PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM
&& fixed_regs[PIC_OFFSET_TABLE_REGNUM])
SET_REGNO_REG_SET (set, PIC_OFFSET_TABLE_REGNUM);
#endif
/* Mark all global registers, and all registers used by the epilogue
as being live at the end of the function since they may be
referenced by our caller. */
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
if (global_regs[i] || EPILOGUE_USES (i))
SET_REGNO_REG_SET (set, i);
if (HAVE_epilogue && reload_completed)
{
/* Mark all call-saved registers that we actually used. */
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
if (regs_ever_live[i] && ! call_used_regs[i] && ! LOCAL_REGNO (i))
SET_REGNO_REG_SET (set, i);
}
#ifdef EH_RETURN_DATA_REGNO
/* Mark the registers that will contain data for the handler. */
if (reload_completed && current_function_calls_eh_return)
for (i = 0; ; ++i)
{
unsigned regno = EH_RETURN_DATA_REGNO(i);
if (regno == INVALID_REGNUM)
break;
SET_REGNO_REG_SET (set, regno);
}
#endif
#ifdef EH_RETURN_STACKADJ_RTX
if ((! HAVE_epilogue || ! reload_completed)
&& current_function_calls_eh_return)
{
rtx tmp = EH_RETURN_STACKADJ_RTX;
if (tmp && REG_P (tmp))
mark_reg (tmp, set);
}
#endif
#ifdef EH_RETURN_HANDLER_RTX
if ((! HAVE_epilogue || ! reload_completed)
&& current_function_calls_eh_return)
{
rtx tmp = EH_RETURN_HANDLER_RTX;
if (tmp && REG_P (tmp))
mark_reg (tmp, set);
}
#endif
/* Mark function return value. */
diddle_return_value (mark_reg, set);
}
/* Callback function for for_each_successor_phi. DATA is a regset.
Sets the SRC_REGNO, the regno of the phi alternative for phi node
INSN, in the regset. */
static int
set_phi_alternative_reg (insn, dest_regno, src_regno, data)
rtx insn ATTRIBUTE_UNUSED;
int dest_regno ATTRIBUTE_UNUSED;
int src_regno;
void *data;
{
regset live = (regset) data;
SET_REGNO_REG_SET (live, src_regno);
return 0;
}
/* Propagate global life info around the graph of basic blocks. Begin
considering blocks with their corresponding bit set in BLOCKS_IN.
If BLOCKS_IN is null, consider it the universal set.
BLOCKS_OUT is set for every block that was changed. */
static void
calculate_global_regs_live (blocks_in, blocks_out, flags)
sbitmap blocks_in, blocks_out;
int flags;
{
basic_block *queue, *qhead, *qtail, *qend;
regset tmp, new_live_at_end, call_used;
regset_head tmp_head, call_used_head;
regset_head new_live_at_end_head;
int i;
tmp = INITIALIZE_REG_SET (tmp_head);
new_live_at_end = INITIALIZE_REG_SET (new_live_at_end_head);
call_used = INITIALIZE_REG_SET (call_used_head);
/* Inconveniently, this is only redily available in hard reg set form. */
for (i = 0; i < FIRST_PSEUDO_REGISTER; ++i)
if (call_used_regs[i])
SET_REGNO_REG_SET (call_used, i);
/* Create a worklist. Allocate an extra slot for ENTRY_BLOCK, and one
because the `head == tail' style test for an empty queue doesn't
work with a full queue. */
queue = (basic_block *) xmalloc ((n_basic_blocks + 2) * sizeof (*queue));
qtail = queue;
qhead = qend = queue + n_basic_blocks + 2;
/* Queue the blocks set in the initial mask. Do this in reverse block
number order so that we are more likely for the first round to do
useful work. We use AUX non-null to flag that the block is queued. */
if (blocks_in)
{
/* Clear out the garbage that might be hanging out in bb->aux. */
for (i = n_basic_blocks - 1; i >= 0; --i)
BASIC_BLOCK (i)->aux = NULL;
EXECUTE_IF_SET_IN_SBITMAP (blocks_in, 0, i,
{
basic_block bb = BASIC_BLOCK (i);
*--qhead = bb;
bb->aux = bb;
});
}
else
{
for (i = 0; i < n_basic_blocks; ++i)
{
basic_block bb = BASIC_BLOCK (i);
*--qhead = bb;
bb->aux = bb;
}
}
if (blocks_out)
sbitmap_zero (blocks_out);
/* We work through the queue until there are no more blocks. What
is live at the end of this block is precisely the union of what
is live at the beginning of all its successors. So, we set its
GLOBAL_LIVE_AT_END field based on the GLOBAL_LIVE_AT_START field
for its successors. Then, we compute GLOBAL_LIVE_AT_START for
this block by walking through the instructions in this block in
reverse order and updating as we go. If that changed
GLOBAL_LIVE_AT_START, we add the predecessors of the block to the
queue; they will now need to recalculate GLOBAL_LIVE_AT_END.
We are guaranteed to terminate, because GLOBAL_LIVE_AT_START
never shrinks. If a register appears in GLOBAL_LIVE_AT_START, it
must either be live at the end of the block, or used within the
block. In the latter case, it will certainly never disappear
from GLOBAL_LIVE_AT_START. In the former case, the register
could go away only if it disappeared from GLOBAL_LIVE_AT_START
for one of the successor blocks. By induction, that cannot
occur. */
while (qhead != qtail)
{
int rescan, changed;
basic_block bb;
edge e;
bb = *qhead++;
if (qhead == qend)
qhead = queue;
bb->aux = NULL;
/* Begin by propagating live_at_start from the successor blocks. */
CLEAR_REG_SET (new_live_at_end);
for (e = bb->succ; e; e = e->succ_next)
{
basic_block sb = e->dest;
/* Call-clobbered registers die across exception and call edges. */
/* ??? Abnormal call edges ignored for the moment, as this gets
confused by sibling call edges, which crashes reg-stack. */
if (e->flags & EDGE_EH)
{
bitmap_operation (tmp, sb->global_live_at_start,
call_used, BITMAP_AND_COMPL);
IOR_REG_SET (new_live_at_end, tmp);
}
else
IOR_REG_SET (new_live_at_end, sb->global_live_at_start);
}
/* The all-important stack pointer must always be live. */
SET_REGNO_REG_SET (new_live_at_end, STACK_POINTER_REGNUM);
/* Before reload, there are a few registers that must be forced
live everywhere -- which might not already be the case for
blocks within infinite loops. */
if (! reload_completed)
{
/* Any reference to any pseudo before reload is a potential
reference of the frame pointer. */
SET_REGNO_REG_SET (new_live_at_end, FRAME_POINTER_REGNUM);
#if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
/* Pseudos with argument area equivalences may require
reloading via the argument pointer. */
if (fixed_regs[ARG_POINTER_REGNUM])
SET_REGNO_REG_SET (new_live_at_end, ARG_POINTER_REGNUM);
#endif
/* Any constant, or pseudo with constant equivalences, may
require reloading from memory using the pic register. */
if (PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM
&& fixed_regs[PIC_OFFSET_TABLE_REGNUM])
SET_REGNO_REG_SET (new_live_at_end, PIC_OFFSET_TABLE_REGNUM);
}
/* Regs used in phi nodes are not included in
global_live_at_start, since they are live only along a
particular edge. Set those regs that are live because of a
phi node alternative corresponding to this particular block. */
if (in_ssa_form)
for_each_successor_phi (bb, &set_phi_alternative_reg,
new_live_at_end);
if (bb == ENTRY_BLOCK_PTR)
{
COPY_REG_SET (bb->global_live_at_end, new_live_at_end);
continue;
}
/* On our first pass through this block, we'll go ahead and continue.
Recognize first pass by local_set NULL. On subsequent passes, we
get to skip out early if live_at_end wouldn't have changed. */
if (bb->local_set == NULL)
{
bb->local_set = OBSTACK_ALLOC_REG_SET (&flow_obstack);
bb->cond_local_set = OBSTACK_ALLOC_REG_SET (&flow_obstack);
rescan = 1;
}
else
{
/* If any bits were removed from live_at_end, we'll have to
rescan the block. This wouldn't be necessary if we had
precalculated local_live, however with PROP_SCAN_DEAD_CODE
local_live is really dependent on live_at_end. */
CLEAR_REG_SET (tmp);
rescan = bitmap_operation (tmp, bb->global_live_at_end,
new_live_at_end, BITMAP_AND_COMPL);
if (! rescan)
{
/* If any of the registers in the new live_at_end set are
conditionally set in this basic block, we must rescan.
This is because conditional lifetimes at the end of the
block do not just take the live_at_end set into account,
but also the liveness at the start of each successor
block. We can miss changes in those sets if we only
compare the new live_at_end against the previous one. */
CLEAR_REG_SET (tmp);
rescan = bitmap_operation (tmp, new_live_at_end,
bb->cond_local_set, BITMAP_AND);
}
if (! rescan)
{
/* Find the set of changed bits. Take this opportunity
to notice that this set is empty and early out. */
CLEAR_REG_SET (tmp);
changed = bitmap_operation (tmp, bb->global_live_at_end,
new_live_at_end, BITMAP_XOR);
if (! changed)
continue;
/* If any of the changed bits overlap with local_set,
we'll have to rescan the block. Detect overlap by
the AND with ~local_set turning off bits. */
rescan = bitmap_operation (tmp, tmp, bb->local_set,
BITMAP_AND_COMPL);
}
}
/* Let our caller know that BB changed enough to require its
death notes updated. */
if (blocks_out)
SET_BIT (blocks_out, bb->index);
if (! rescan)
{
/* Add to live_at_start the set of all registers in
new_live_at_end that aren't in the old live_at_end. */
bitmap_operation (tmp, new_live_at_end, bb->global_live_at_end,
BITMAP_AND_COMPL);
COPY_REG_SET (bb->global_live_at_end, new_live_at_end);
changed = bitmap_operation (bb->global_live_at_start,
bb->global_live_at_start,
tmp, BITMAP_IOR);
if (! changed)
continue;
}
else
{
COPY_REG_SET (bb->global_live_at_end, new_live_at_end);
/* Rescan the block insn by insn to turn (a copy of) live_at_end
into live_at_start. */
propagate_block (bb, new_live_at_end, bb->local_set,
bb->cond_local_set, flags);
/* If live_at start didn't change, no need to go farther. */
if (REG_SET_EQUAL_P (bb->global_live_at_start, new_live_at_end))
continue;
COPY_REG_SET (bb->global_live_at_start, new_live_at_end);
}
/* Queue all predecessors of BB so that we may re-examine
their live_at_end. */
for (e = bb->pred; e; e = e->pred_next)
{
basic_block pb = e->src;
if (pb->aux == NULL)
{
*qtail++ = pb;
if (qtail == qend)
qtail = queue;
pb->aux = pb;
}
}
}
FREE_REG_SET (tmp);
FREE_REG_SET (new_live_at_end);
FREE_REG_SET (call_used);
if (blocks_out)
{
EXECUTE_IF_SET_IN_SBITMAP (blocks_out, 0, i,
{
basic_block bb = BASIC_BLOCK (i);
FREE_REG_SET (bb->local_set);
FREE_REG_SET (bb->cond_local_set);
});
}
else
{
for (i = n_basic_blocks - 1; i >= 0; --i)
{
basic_block bb = BASIC_BLOCK (i);
FREE_REG_SET (bb->local_set);
FREE_REG_SET (bb->cond_local_set);
}
}
free (queue);
}
/* Subroutines of life analysis. */
/* Allocate the permanent data structures that represent the results
of life analysis. Not static since used also for stupid life analysis. */
void
allocate_bb_life_data ()
{
register int i;
for (i = 0; i < n_basic_blocks; i++)
{
basic_block bb = BASIC_BLOCK (i);
bb->global_live_at_start = OBSTACK_ALLOC_REG_SET (&flow_obstack);
bb->global_live_at_end = OBSTACK_ALLOC_REG_SET (&flow_obstack);
}
ENTRY_BLOCK_PTR->global_live_at_end
= OBSTACK_ALLOC_REG_SET (&flow_obstack);
EXIT_BLOCK_PTR->global_live_at_start
= OBSTACK_ALLOC_REG_SET (&flow_obstack);
regs_live_at_setjmp = OBSTACK_ALLOC_REG_SET (&flow_obstack);
}
void
allocate_reg_life_data ()
{
int i;
max_regno = max_reg_num ();
/* Recalculate the register space, in case it has grown. Old style
vector oriented regsets would set regset_{size,bytes} here also. */
allocate_reg_info (max_regno, FALSE, FALSE);
/* Reset all the data we'll collect in propagate_block and its
subroutines. */
for (i = 0; i < max_regno; i++)
{
REG_N_SETS (i) = 0;
REG_N_REFS (i) = 0;
REG_N_DEATHS (i) = 0;
REG_N_CALLS_CROSSED (i) = 0;
REG_LIVE_LENGTH (i) = 0;
REG_BASIC_BLOCK (i) = REG_BLOCK_UNKNOWN;
}
}
/* Delete dead instructions for propagate_block. */
static void
propagate_block_delete_insn (bb, insn)
basic_block bb;
rtx insn;
{
rtx inote = find_reg_note (insn, REG_LABEL, NULL_RTX);
/* If the insn referred to a label, and that label was attached to
an ADDR_VEC, it's safe to delete the ADDR_VEC. In fact, it's
pretty much mandatory to delete it, because the ADDR_VEC may be
referencing labels that no longer exist.
INSN may reference a deleted label, particularly when a jump
table has been optimized into a direct jump. There's no
real good way to fix up the reference to the deleted label
when the label is deleted, so we just allow it here.
After dead code elimination is complete, we do search for
any REG_LABEL notes which reference deleted labels as a
sanity check. */
if (inote && GET_CODE (inote) == CODE_LABEL)
{
rtx label = XEXP (inote, 0);
rtx next;
/* The label may be forced if it has been put in the constant
pool. If that is the only use we must discard the table
jump following it, but not the label itself. */
if (LABEL_NUSES (label) == 1 + LABEL_PRESERVE_P (label)
&& (next = next_nonnote_insn (label)) != NULL
&& GET_CODE (next) == JUMP_INSN
&& (GET_CODE (PATTERN (next)) == ADDR_VEC
|| GET_CODE (PATTERN (next)) == ADDR_DIFF_VEC))
{
rtx pat = PATTERN (next);
int diff_vec_p = GET_CODE (pat) == ADDR_DIFF_VEC;
int len = XVECLEN (pat, diff_vec_p);
int i;
for (i = 0; i < len; i++)
LABEL_NUSES (XEXP (XVECEXP (pat, diff_vec_p, i), 0))--;
flow_delete_insn (next);
}
}
if (bb->end == insn)
bb->end = PREV_INSN (insn);
flow_delete_insn (insn);
}
/* Delete dead libcalls for propagate_block. Return the insn
before the libcall. */
static rtx
propagate_block_delete_libcall (bb, insn, note)
basic_block bb;
rtx insn, note;
{
rtx first = XEXP (note, 0);
rtx before = PREV_INSN (first);
if (insn == bb->end)
bb->end = before;
flow_delete_insn_chain (first, insn);
return before;
}
/* Update the life-status of regs for one insn. Return the previous insn. */
rtx
propagate_one_insn (pbi, insn)
struct propagate_block_info *pbi;
rtx insn;
{
rtx prev = PREV_INSN (insn);
int flags = pbi->flags;
int insn_is_dead = 0;
int libcall_is_dead = 0;
rtx note;
int i;
if (! INSN_P (insn))
return prev;
note = find_reg_note (insn, REG_RETVAL, NULL_RTX);
if (flags & PROP_SCAN_DEAD_CODE)
{
insn_is_dead = insn_dead_p (pbi, PATTERN (insn), 0, REG_NOTES (insn));
libcall_is_dead = (insn_is_dead && note != 0
&& libcall_dead_p (pbi, note, insn));
}
/* If an instruction consists of just dead store(s) on final pass,
delete it. */
if ((flags & PROP_KILL_DEAD_CODE) && insn_is_dead)
{
/* If we're trying to delete a prologue or epilogue instruction
that isn't flagged as possibly being dead, something is wrong.
But if we are keeping the stack pointer depressed, we might well
be deleting insns that are used to compute the amount to update
it by, so they are fine. */
if (reload_completed
&& !(TREE_CODE (TREE_TYPE (current_function_decl)) == FUNCTION_TYPE
&& (TYPE_RETURNS_STACK_DEPRESSED
(TREE_TYPE (current_function_decl))))
&& (((HAVE_epilogue || HAVE_prologue)
&& prologue_epilogue_contains (insn))
|| (HAVE_sibcall_epilogue
&& sibcall_epilogue_contains (insn)))
&& find_reg_note (insn, REG_MAYBE_DEAD, NULL_RTX) == 0)
abort ();
/* Record sets. Do this even for dead instructions, since they
would have killed the values if they hadn't been deleted. */
mark_set_regs (pbi, PATTERN (insn), insn);
/* CC0 is now known to be dead. Either this insn used it,
in which case it doesn't anymore, or clobbered it,
so the next insn can't use it. */
pbi->cc0_live = 0;
if (libcall_is_dead)
prev = propagate_block_delete_libcall (pbi->bb, insn, note);
else
propagate_block_delete_insn (pbi->bb, insn);
return prev;
}
/* See if this is an increment or decrement that can be merged into
a following memory address. */
#ifdef AUTO_INC_DEC
{
register rtx x = single_set (insn);
/* Does this instruction increment or decrement a register? */
if ((flags & PROP_AUTOINC)
&& x != 0
&& GET_CODE (SET_DEST (x)) == REG
&& (GET_CODE (SET_SRC (x)) == PLUS
|| GET_CODE (SET_SRC (x)) == MINUS)
&& XEXP (SET_SRC (x), 0) == SET_DEST (x)
&& GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
/* Ok, look for a following memory ref we can combine with.
If one is found, change the memory ref to a PRE_INC
or PRE_DEC, cancel this insn, and return 1.
Return 0 if nothing has been done. */
&& try_pre_increment_1 (pbi, insn))
return prev;
}
#endif /* AUTO_INC_DEC */
CLEAR_REG_SET (pbi->new_set);
/* If this is not the final pass, and this insn is copying the value of
a library call and it's dead, don't scan the insns that perform the
library call, so that the call's arguments are not marked live. */
if (libcall_is_dead)
{
/* Record the death of the dest reg. */
mark_set_regs (pbi, PATTERN (insn), insn);
insn = XEXP (note, 0);
return PREV_INSN (insn);
}
else if (GET_CODE (PATTERN (insn)) == SET
&& SET_DEST (PATTERN (insn)) == stack_pointer_rtx
&& GET_CODE (SET_SRC (PATTERN (insn))) == PLUS
&& XEXP (SET_SRC (PATTERN (insn)), 0) == stack_pointer_rtx
&& GET_CODE (XEXP (SET_SRC (PATTERN (insn)), 1)) == CONST_INT)
/* We have an insn to pop a constant amount off the stack.
(Such insns use PLUS regardless of the direction of the stack,
and any insn to adjust the stack by a constant is always a pop.)
These insns, if not dead stores, have no effect on life. */
;
else
{
/* Any regs live at the time of a call instruction must not go
in a register clobbered by calls. Find all regs now live and
record this for them. */
if (GET_CODE (insn) == CALL_INSN && (flags & PROP_REG_INFO))
EXECUTE_IF_SET_IN_REG_SET (pbi->reg_live, 0, i,
{ REG_N_CALLS_CROSSED (i)++; });
/* Record sets. Do this even for dead instructions, since they
would have killed the values if they hadn't been deleted. */
mark_set_regs (pbi, PATTERN (insn), insn);
if (GET_CODE (insn) == CALL_INSN)
{
register int i;
rtx note, cond;
cond = NULL_RTX;
if (GET_CODE (PATTERN (insn)) == COND_EXEC)
cond = COND_EXEC_TEST (PATTERN (insn));
/* Non-constant calls clobber memory. */
if (! CONST_OR_PURE_CALL_P (insn))
{
free_EXPR_LIST_list (&pbi->mem_set_list);
pbi->mem_set_list_len = 0;
}
/* There may be extra registers to be clobbered. */
for (note = CALL_INSN_FUNCTION_USAGE (insn);
note;
note = XEXP (note, 1))
if (GET_CODE (XEXP (note, 0)) == CLOBBER)
mark_set_1 (pbi, CLOBBER, XEXP (XEXP (note, 0), 0),
cond, insn, pbi->flags);
/* Calls change all call-used and global registers. */
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
{
/* We do not want REG_UNUSED notes for these registers. */
mark_set_1 (pbi, CLOBBER, gen_rtx_REG (reg_raw_mode[i], i),
cond, insn,
pbi->flags & ~(PROP_DEATH_NOTES | PROP_REG_INFO));
}
}
/* If an insn doesn't use CC0, it becomes dead since we assume
that every insn clobbers it. So show it dead here;
mark_used_regs will set it live if it is referenced. */
pbi->cc0_live = 0;
/* Record uses. */
if (! insn_is_dead)
mark_used_regs (pbi, PATTERN (insn), NULL_RTX, insn);
/* Sometimes we may have inserted something before INSN (such as a move)
when we make an auto-inc. So ensure we will scan those insns. */
#ifdef AUTO_INC_DEC
prev = PREV_INSN (insn);
#endif
if (! insn_is_dead && GET_CODE (insn) == CALL_INSN)
{
register int i;
rtx note, cond;
cond = NULL_RTX;
if (GET_CODE (PATTERN (insn)) == COND_EXEC)
cond = COND_EXEC_TEST (PATTERN (insn));
/* Calls use their arguments. */
for (note = CALL_INSN_FUNCTION_USAGE (insn);
note;
note = XEXP (note, 1))
if (GET_CODE (XEXP (note, 0)) == USE)
mark_used_regs (pbi, XEXP (XEXP (note, 0), 0),
cond, insn);
/* The stack ptr is used (honorarily) by a CALL insn. */
SET_REGNO_REG_SET (pbi->reg_live, STACK_POINTER_REGNUM);
/* Calls may also reference any of the global registers,
so they are made live. */
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
if (global_regs[i])
mark_used_reg (pbi, gen_rtx_REG (reg_raw_mode[i], i),
cond, insn);
}
}
/* On final pass, update counts of how many insns in which each reg
is live. */
if (flags & PROP_REG_INFO)
EXECUTE_IF_SET_IN_REG_SET (pbi->reg_live, 0, i,
{ REG_LIVE_LENGTH (i)++; });
return prev;
}
/* Initialize a propagate_block_info struct for public consumption.
Note that the structure itself is opaque to this file, but that
the user can use the regsets provided here. */
struct propagate_block_info *
init_propagate_block_info (bb, live, local_set, cond_local_set, flags)
basic_block bb;
regset live, local_set, cond_local_set;
int flags;
{
struct propagate_block_info *pbi = xmalloc (sizeof (*pbi));
pbi->bb = bb;
pbi->reg_live = live;
pbi->mem_set_list = NULL_RTX;
pbi->mem_set_list_len = 0;
pbi->local_set = local_set;
pbi->cond_local_set = cond_local_set;
pbi->cc0_live = 0;
pbi->flags = flags;
if (flags & (PROP_LOG_LINKS | PROP_AUTOINC))
pbi->reg_next_use = (rtx *) xcalloc (max_reg_num (), sizeof (rtx));
else
pbi->reg_next_use = NULL;
pbi->new_set = BITMAP_XMALLOC ();
#ifdef HAVE_conditional_execution
pbi->reg_cond_dead = splay_tree_new (splay_tree_compare_ints, NULL,
free_reg_cond_life_info);
pbi->reg_cond_reg = BITMAP_XMALLOC ();
/* If this block ends in a conditional branch, for each register live
from one side of the branch and not the other, record the register
as conditionally dead. */
if (GET_CODE (bb->end) == JUMP_INSN
&& any_condjump_p (bb->end))
{
regset_head diff_head;
regset diff = INITIALIZE_REG_SET (diff_head);
basic_block bb_true, bb_false;
rtx cond_true, cond_false, set_src;
int i;
/* Identify the successor blocks. */
bb_true = bb->succ->dest;
if (bb->succ->succ_next != NULL)
{
bb_false = bb->succ->succ_next->dest;
if (bb->succ->flags & EDGE_FALLTHRU)
{
basic_block t = bb_false;
bb_false = bb_true;
bb_true = t;
}
else if (! (bb->succ->succ_next->flags & EDGE_FALLTHRU))
abort ();
}
else
{
/* This can happen with a conditional jump to the next insn. */
if (JUMP_LABEL (bb->end) != bb_true->head)
abort ();
/* Simplest way to do nothing. */
bb_false = bb_true;
}
/* Extract the condition from the branch. */
set_src = SET_SRC (pc_set (bb->end));
cond_true = XEXP (set_src, 0);
cond_false = gen_rtx_fmt_ee (reverse_condition (GET_CODE (cond_true)),
GET_MODE (cond_true), XEXP (cond_true, 0),
XEXP (cond_true, 1));
if (GET_CODE (XEXP (set_src, 1)) == PC)
{
rtx t = cond_false;
cond_false = cond_true;
cond_true = t;
}
/* Compute which register lead different lives in the successors. */
if (bitmap_operation (diff, bb_true->global_live_at_start,
bb_false->global_live_at_start, BITMAP_XOR))
{
rtx reg = XEXP (cond_true, 0);
if (GET_CODE (reg) == SUBREG)
reg = SUBREG_REG (reg);
if (GET_CODE (reg) != REG)
abort ();
SET_REGNO_REG_SET (pbi->reg_cond_reg, REGNO (reg));
/* For each such register, mark it conditionally dead. */
EXECUTE_IF_SET_IN_REG_SET
(diff, 0, i,
{
struct reg_cond_life_info *rcli;
rtx cond;
rcli = (struct reg_cond_life_info *) xmalloc (sizeof (*rcli));
if (REGNO_REG_SET_P (bb_true->global_live_at_start, i))
cond = cond_false;
else
cond = cond_true;
rcli->condition = cond;
rcli->stores = const0_rtx;
rcli->orig_condition = cond;
splay_tree_insert (pbi->reg_cond_dead, i,
(splay_tree_value) rcli);
});
}
FREE_REG_SET (diff);
}
#endif
/* If this block has no successors, any stores to the frame that aren't
used later in the block are dead. So make a pass over the block
recording any such that are made and show them dead at the end. We do
a very conservative and simple job here. */
if (optimize
&& ! (TREE_CODE (TREE_TYPE (current_function_decl)) == FUNCTION_TYPE
&& (TYPE_RETURNS_STACK_DEPRESSED
(TREE_TYPE (current_function_decl))))
&& (flags & PROP_SCAN_DEAD_CODE)
&& (bb->succ == NULL
|| (bb->succ->succ_next == NULL
&& bb->succ->dest == EXIT_BLOCK_PTR
&& ! current_function_calls_eh_return)))
{
rtx insn, set;
for (insn = bb->end; insn != bb->head; insn = PREV_INSN (insn))
if (GET_CODE (insn) == INSN
&& (set = single_set (insn))
&& GET_CODE (SET_DEST (set)) == MEM)
{
rtx mem = SET_DEST (set);
rtx canon_mem = canon_rtx (mem);
/* This optimization is performed by faking a store to the
memory at the end of the block. This doesn't work for
unchanging memories because multiple stores to unchanging
memory is illegal and alias analysis doesn't consider it. */
if (RTX_UNCHANGING_P (canon_mem))
continue;
if (XEXP (canon_mem, 0) == frame_pointer_rtx
|| (GET_CODE (XEXP (canon_mem, 0)) == PLUS
&& XEXP (XEXP (canon_mem, 0), 0) == frame_pointer_rtx
&& GET_CODE (XEXP (XEXP (canon_mem, 0), 1)) == CONST_INT))
add_to_mem_set_list (pbi, canon_mem);
}
}
return pbi;
}
/* Release a propagate_block_info struct. */
void
free_propagate_block_info (pbi)
struct propagate_block_info *pbi;
{
free_EXPR_LIST_list (&pbi->mem_set_list);
BITMAP_XFREE (pbi->new_set);
#ifdef HAVE_conditional_execution
splay_tree_delete (pbi->reg_cond_dead);
BITMAP_XFREE (pbi->reg_cond_reg);
#endif
if (pbi->reg_next_use)
free (pbi->reg_next_use);
free (pbi);
}
/* Compute the registers live at the beginning of a basic block BB from
those live at the end.
When called, REG_LIVE contains those live at the end. On return, it
contains those live at the beginning.
LOCAL_SET, if non-null, will be set with all registers killed
unconditionally by this basic block.
Likewise, COND_LOCAL_SET, if non-null, will be set with all registers
killed conditionally by this basic block. If there is any unconditional
set of a register, then the corresponding bit will be set in LOCAL_SET
and cleared in COND_LOCAL_SET.
It is valid for LOCAL_SET and COND_LOCAL_SET to be the same set. In this
case, the resulting set will be equal to the union of the two sets that
would otherwise be computed.
Return non-zero if an INSN is deleted (i.e. by dead code removal). */
int
propagate_block (bb, live, local_set, cond_local_set, flags)
basic_block bb;
regset live;
regset local_set;
regset cond_local_set;
int flags;
{
struct propagate_block_info *pbi;
rtx insn, prev;
int changed;
pbi = init_propagate_block_info (bb, live, local_set, cond_local_set, flags);
if (flags & PROP_REG_INFO)
{
register int i;
/* Process the regs live at the end of the block.
Mark them as not local to any one basic block. */
EXECUTE_IF_SET_IN_REG_SET (live, 0, i,
{ REG_BASIC_BLOCK (i) = REG_BLOCK_GLOBAL; });
}
/* Scan the block an insn at a time from end to beginning. */
changed = 0;
for (insn = bb->end;; insn = prev)
{
/* If this is a call to `setjmp' et al, warn if any
non-volatile datum is live. */
if ((flags & PROP_REG_INFO)
&& GET_CODE (insn) == CALL
&& find_reg_note (insn, REG_SETJMP, NULL))
IOR_REG_SET (regs_live_at_setjmp, pbi->reg_live);
prev = propagate_one_insn (pbi, insn);
changed |= NEXT_INSN (prev) != insn;
if (insn == bb->head)
break;
}
free_propagate_block_info (pbi);
return changed;
}
/* Return 1 if X (the body of an insn, or part of it) is just dead stores
(SET expressions whose destinations are registers dead after the insn).
NEEDED is the regset that says which regs are alive after the insn.
Unless CALL_OK is non-zero, an insn is needed if it contains a CALL.
If X is the entire body of an insn, NOTES contains the reg notes
pertaining to the insn. */
static int
insn_dead_p (pbi, x, call_ok, notes)
struct propagate_block_info *pbi;
rtx x;
int call_ok;
rtx notes ATTRIBUTE_UNUSED;
{
enum rtx_code code = GET_CODE (x);
#ifdef AUTO_INC_DEC
/* If flow is invoked after reload, we must take existing AUTO_INC
expresions into account. */
if (reload_completed)
{
for (; notes; notes = XEXP (notes, 1))
{
if (REG_NOTE_KIND (notes) == REG_INC)
{
int regno = REGNO (XEXP (notes, 0));
/* Don't delete insns to set global regs. */
if ((regno < FIRST_PSEUDO_REGISTER && global_regs[regno])
|| REGNO_REG_SET_P (pbi->reg_live, regno))
return 0;
}
}
}
#endif
/* If setting something that's a reg or part of one,
see if that register's altered value will be live. */
if (code == SET)
{
rtx r = SET_DEST (x);
#ifdef HAVE_cc0
if (GET_CODE (r) == CC0)
return ! pbi->cc0_live;
#endif
/* A SET that is a subroutine call cannot be dead. */
if (GET_CODE (SET_SRC (x)) == CALL)
{
if (! call_ok)
return 0;
}
/* Don't eliminate loads from volatile memory or volatile asms. */
else if (volatile_refs_p (SET_SRC (x)))
return 0;
if (GET_CODE (r) == MEM)
{
rtx temp, canon_r;
if (MEM_VOLATILE_P (r) || GET_MODE (r) == BLKmode)
return 0;
canon_r = canon_rtx (r);
/* Walk the set of memory locations we are currently tracking
and see if one is an identical match to this memory location.
If so, this memory write is dead (remember, we're walking
backwards from the end of the block to the start). Since
rtx_equal_p does not check the alias set or flags, we also
must have the potential for them to conflict (anti_dependence). */
for (temp = pbi->mem_set_list; temp != 0; temp = XEXP (temp, 1))
if (anti_dependence (r, XEXP (temp, 0)))
{
rtx mem = XEXP (temp, 0);
if (rtx_equal_p (XEXP (canon_r, 0), XEXP (mem, 0))
&& (GET_MODE_SIZE (GET_MODE (canon_r))
<= GET_MODE_SIZE (GET_MODE (mem))))
return 1;
#ifdef AUTO_INC_DEC
/* Check if memory reference matches an auto increment. Only
post increment/decrement or modify are valid. */
if (GET_MODE (mem) == GET_MODE (r)
&& (GET_CODE (XEXP (mem, 0)) == POST_DEC
|| GET_CODE (XEXP (mem, 0)) == POST_INC
|| GET_CODE (XEXP (mem, 0)) == POST_MODIFY)
&& GET_MODE (XEXP (mem, 0)) == GET_MODE (r)
&& rtx_equal_p (XEXP (XEXP (mem, 0), 0), XEXP (r, 0)))
return 1;
#endif
}
}
else
{
while (GET_CODE (r) == SUBREG
|| GET_CODE (r) == STRICT_LOW_PART
|| GET_CODE (r) == ZERO_EXTRACT)
r = XEXP (r, 0);
if (GET_CODE (r) == REG)
{
int regno = REGNO (r);
/* Obvious. */
if (REGNO_REG_SET_P (pbi->reg_live, regno))
return 0;
/* If this is a hard register, verify that subsequent
words are not needed. */
if (regno < FIRST_PSEUDO_REGISTER)
{
int n = HARD_REGNO_NREGS (regno, GET_MODE (r));
while (--n > 0)
if (REGNO_REG_SET_P (pbi->reg_live, regno+n))
return 0;
}
/* Don't delete insns to set global regs. */
if (regno < FIRST_PSEUDO_REGISTER && global_regs[regno])
return 0;
/* Make sure insns to set the stack pointer aren't deleted. */
if (regno == STACK_POINTER_REGNUM)
return 0;
/* ??? These bits might be redundant with the force live bits
in calculate_global_regs_live. We would delete from
sequential sets; whether this actually affects real code
for anything but the stack pointer I don't know. */
/* Make sure insns to set the frame pointer aren't deleted. */
if (regno == FRAME_POINTER_REGNUM
&& (! reload_completed || frame_pointer_needed))
return 0;
#if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
if (regno == HARD_FRAME_POINTER_REGNUM
&& (! reload_completed || frame_pointer_needed))
return 0;
#endif
#if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
/* Make sure insns to set arg pointer are never deleted
(if the arg pointer isn't fixed, there will be a USE
for it, so we can treat it normally). */
if (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
return 0;
#endif
/* Otherwise, the set is dead. */
return 1;
}
}
}
/* If performing several activities, insn is dead if each activity
is individually dead. Also, CLOBBERs and USEs can be ignored; a
CLOBBER or USE that's inside a PARALLEL doesn't make the insn
worth keeping. */
else if (code == PARALLEL)
{
int i = XVECLEN (x, 0);
for (i--; i >= 0; i--)
if (GET_CODE (XVECEXP (x, 0, i)) != CLOBBER
&& GET_CODE (XVECEXP (x, 0, i)) != USE
&& ! insn_dead_p (pbi, XVECEXP (x, 0, i), call_ok, NULL_RTX))
return 0;
return 1;
}
/* A CLOBBER of a pseudo-register that is dead serves no purpose. That
is not necessarily true for hard registers. */
else if (code == CLOBBER && GET_CODE (XEXP (x, 0)) == REG
&& REGNO (XEXP (x, 0)) >= FIRST_PSEUDO_REGISTER
&& ! REGNO_REG_SET_P (pbi->reg_live, REGNO (XEXP (x, 0))))
return 1;
/* We do not check other CLOBBER or USE here. An insn consisting of just
a CLOBBER or just a USE should not be deleted. */
return 0;
}
/* If INSN is the last insn in a libcall, and assuming INSN is dead,
return 1 if the entire library call is dead.
This is true if INSN copies a register (hard or pseudo)
and if the hard return reg of the call insn is dead.
(The caller should have tested the destination of the SET inside
INSN already for death.)
If this insn doesn't just copy a register, then we don't
have an ordinary libcall. In that case, cse could not have
managed to substitute the source for the dest later on,
so we can assume the libcall is dead.
PBI is the block info giving pseudoregs live before this insn.
NOTE is the REG_RETVAL note of the insn. */
static int
libcall_dead_p (pbi, note, insn)
struct propagate_block_info *pbi;
rtx note;
rtx insn;
{
rtx x = single_set (insn);
if (x)
{
register rtx r = SET_SRC (x);
if (GET_CODE (r) == REG)
{
rtx call = XEXP (note, 0);
rtx call_pat;
register int i;
/* Find the call insn. */
while (call != insn && GET_CODE (call) != CALL_INSN)
call = NEXT_INSN (call);
/* If there is none, do nothing special,
since ordinary death handling can understand these insns. */
if (call == insn)
return 0;
/* See if the hard reg holding the value is dead.
If this is a PARALLEL, find the call within it. */
call_pat = PATTERN (call);
if (GET_CODE (call_pat) == PARALLEL)
{
for (i = XVECLEN (call_pat, 0) - 1; i >= 0; i--)
if (GET_CODE (XVECEXP (call_pat, 0, i)) == SET
&& GET_CODE (SET_SRC (XVECEXP (call_pat, 0, i))) == CALL)
break;
/* This may be a library call that is returning a value
via invisible pointer. Do nothing special, since
ordinary death handling can understand these insns. */
if (i < 0)
return 0;
call_pat = XVECEXP (call_pat, 0, i);
}
return insn_dead_p (pbi, call_pat, 1, REG_NOTES (call));
}
}
return 1;
}
/* Return 1 if register REGNO was used before it was set, i.e. if it is
live at function entry. Don't count global register variables, variables
in registers that can be used for function arg passing, or variables in
fixed hard registers. */
int
regno_uninitialized (regno)
int regno;
{
if (n_basic_blocks == 0
|| (regno < FIRST_PSEUDO_REGISTER
&& (global_regs[regno]
|| fixed_regs[regno]
|| FUNCTION_ARG_REGNO_P (regno))))
return 0;
return REGNO_REG_SET_P (BASIC_BLOCK (0)->global_live_at_start, regno);
}
/* 1 if register REGNO was alive at a place where `setjmp' was called
and was set more than once or is an argument.
Such regs may be clobbered by `longjmp'. */
int
regno_clobbered_at_setjmp (regno)
int regno;
{
if (n_basic_blocks == 0)
return 0;
return ((REG_N_SETS (regno) > 1
|| REGNO_REG_SET_P (BASIC_BLOCK (0)->global_live_at_start, regno))
&& REGNO_REG_SET_P (regs_live_at_setjmp, regno));
}
/* Add MEM to PBI->MEM_SET_LIST. MEM should be canonical. Respect the
maximal list size; look for overlaps in mode and select the largest. */
static void
add_to_mem_set_list (pbi, mem)
struct propagate_block_info *pbi;
rtx mem;
{
rtx i;
/* We don't know how large a BLKmode store is, so we must not
take them into consideration. */
if (GET_MODE (mem) == BLKmode)
return;
for (i = pbi->mem_set_list; i ; i = XEXP (i, 1))
{
rtx e = XEXP (i, 0);
if (rtx_equal_p (XEXP (mem, 0), XEXP (e, 0)))
{
if (GET_MODE_SIZE (GET_MODE (mem)) > GET_MODE_SIZE (GET_MODE (e)))
{
#ifdef AUTO_INC_DEC
/* If we must store a copy of the mem, we can just modify
the mode of the stored copy. */
if (pbi->flags & PROP_AUTOINC)
PUT_MODE (e, GET_MODE (mem));
else
#endif
XEXP (i, 0) = mem;
}
return;
}
}
if (pbi->mem_set_list_len < MAX_MEM_SET_LIST_LEN)
{
#ifdef AUTO_INC_DEC
/* Store a copy of mem, otherwise the address may be
scrogged by find_auto_inc. */
if (pbi->flags & PROP_AUTOINC)
mem = shallow_copy_rtx (mem);
#endif
pbi->mem_set_list = alloc_EXPR_LIST (0, mem, pbi->mem_set_list);
pbi->mem_set_list_len++;
}
}
/* INSN references memory, possibly using autoincrement addressing modes.
Find any entries on the mem_set_list that need to be invalidated due
to an address change. */
static void
invalidate_mems_from_autoinc (pbi, insn)
struct propagate_block_info *pbi;
rtx insn;
{
rtx note = REG_NOTES (insn);
for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
if (REG_NOTE_KIND (note) == REG_INC)
invalidate_mems_from_set (pbi, XEXP (note, 0));
}
/* EXP is a REG. Remove any dependant entries from pbi->mem_set_list. */
static void
invalidate_mems_from_set (pbi, exp)
struct propagate_block_info *pbi;
rtx exp;
{
rtx temp = pbi->mem_set_list;
rtx prev = NULL_RTX;
rtx next;
while (temp)
{
next = XEXP (temp, 1);
if (reg_overlap_mentioned_p (exp, XEXP (temp, 0)))
{
/* Splice this entry out of the list. */
if (prev)
XEXP (prev, 1) = next;
else
pbi->mem_set_list = next;
free_EXPR_LIST_node (temp);
pbi->mem_set_list_len--;
}
else
prev = temp;
temp = next;
}
}
/* Process the registers that are set within X. Their bits are set to
1 in the regset DEAD, because they are dead prior to this insn.
If INSN is nonzero, it is the insn being processed.
FLAGS is the set of operations to perform. */
static void
mark_set_regs (pbi, x, insn)
struct propagate_block_info *pbi;
rtx x, insn;
{
rtx cond = NULL_RTX;
rtx link;
enum rtx_code code;
if (insn)
for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
{
if (REG_NOTE_KIND (link) == REG_INC)
mark_set_1 (pbi, SET, XEXP (link, 0),
(GET_CODE (x) == COND_EXEC
? COND_EXEC_TEST (x) : NULL_RTX),
insn, pbi->flags);
}
retry:
switch (code = GET_CODE (x))
{
case SET:
case CLOBBER:
mark_set_1 (pbi, code, SET_DEST (x), cond, insn, pbi->flags);
return;
case COND_EXEC:
cond = COND_EXEC_TEST (x);
x = COND_EXEC_CODE (x);
goto retry;
case PARALLEL:
{
register int i;
for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
{
rtx sub = XVECEXP (x, 0, i);
switch (code = GET_CODE (sub))
{
case COND_EXEC:
if (cond != NULL_RTX)
abort ();
cond = COND_EXEC_TEST (sub);
sub = COND_EXEC_CODE (sub);
if (GET_CODE (sub) != SET && GET_CODE (sub) != CLOBBER)
break;
/* Fall through. */
case SET:
case CLOBBER:
mark_set_1 (pbi, code, SET_DEST (sub), cond, insn, pbi->flags);
break;
default:
break;
}
}
break;
}
default:
break;
}
}
/* Process a single set, which appears in INSN. REG (which may not
actually be a REG, it may also be a SUBREG, PARALLEL, etc.) is
being set using the CODE (which may be SET, CLOBBER, or COND_EXEC).
If the set is conditional (because it appear in a COND_EXEC), COND
will be the condition. */
static void
mark_set_1 (pbi, code, reg, cond, insn, flags)
struct propagate_block_info *pbi;
enum rtx_code code;
rtx reg, cond, insn;
int flags;
{
int regno_first = -1, regno_last = -1;
unsigned long not_dead = 0;
int i;
/* Modifying just one hardware register of a multi-reg value or just a
byte field of a register does not mean the value from before this insn
is now dead. Of course, if it was dead after it's unused now. */
switch (GET_CODE (reg))
{
case PARALLEL:
/* Some targets place small structures in registers for return values of
functions. We have to detect this case specially here to get correct
flow information. */
for (i = XVECLEN (reg, 0) - 1; i >= 0; i--)
if (XEXP (XVECEXP (reg, 0, i), 0) != 0)
mark_set_1 (pbi, code, XEXP (XVECEXP (reg, 0, i), 0), cond, insn,
flags);
return;
case ZERO_EXTRACT:
case SIGN_EXTRACT:
case STRICT_LOW_PART:
/* ??? Assumes STRICT_LOW_PART not used on multi-word registers. */
do
reg = XEXP (reg, 0);
while (GET_CODE (reg) == SUBREG
|| GET_CODE (reg) == ZERO_EXTRACT
|| GET_CODE (reg) == SIGN_EXTRACT
|| GET_CODE (reg) == STRICT_LOW_PART);
if (GET_CODE (reg) == MEM)
break;
not_dead = (unsigned long) REGNO_REG_SET_P (pbi->reg_live, REGNO (reg));
/* Fall through. */
case REG:
regno_last = regno_first = REGNO (reg);
if (regno_first < FIRST_PSEUDO_REGISTER)
regno_last += HARD_REGNO_NREGS (regno_first, GET_MODE (reg)) - 1;
break;
case SUBREG:
if (GET_CODE (SUBREG_REG (reg)) == REG)
{
enum machine_mode outer_mode = GET_MODE (reg);
enum machine_mode inner_mode = GET_MODE (SUBREG_REG (reg));
/* Identify the range of registers affected. This is moderately
tricky for hard registers. See alter_subreg. */
regno_last = regno_first = REGNO (SUBREG_REG (reg));
if (regno_first < FIRST_PSEUDO_REGISTER)
{
regno_first += subreg_regno_offset (regno_first, inner_mode,
SUBREG_BYTE (reg),
outer_mode);
regno_last = (regno_first
+ HARD_REGNO_NREGS (regno_first, outer_mode) - 1);
/* Since we've just adjusted the register number ranges, make
sure REG matches. Otherwise some_was_live will be clear
when it shouldn't have been, and we'll create incorrect
REG_UNUSED notes. */
reg = gen_rtx_REG (outer_mode, regno_first);
}
else
{
/* If the number of words in the subreg is less than the number
of words in the full register, we have a well-defined partial
set. Otherwise the high bits are undefined.
This is only really applicable to pseudos, since we just took
care of multi-word hard registers. */
if (((GET_MODE_SIZE (outer_mode)
+ UNITS_PER_WORD - 1) / UNITS_PER_WORD)
< ((GET_MODE_SIZE (inner_mode)
+ UNITS_PER_WORD - 1) / UNITS_PER_WORD))
not_dead = (unsigned long) REGNO_REG_SET_P (pbi->reg_live,
regno_first);
reg = SUBREG_REG (reg);
}
}
else
reg = SUBREG_REG (reg);
break;
default:
break;
}
/* If this set is a MEM, then it kills any aliased writes.
If this set is a REG, then it kills any MEMs which use the reg. */
if (optimize && (flags & PROP_SCAN_DEAD_CODE))
{
if (GET_CODE (reg) == REG)
invalidate_mems_from_set (pbi, reg);
/* If the memory reference had embedded side effects (autoincrement
address modes. Then we may need to kill some entries on the
memory set list. */
if (insn && GET_CODE (reg) == MEM)
invalidate_mems_from_autoinc (pbi, insn);
if (GET_CODE (reg) == MEM && ! side_effects_p (reg)
/* ??? With more effort we could track conditional memory life. */
&& ! cond
/* There are no REG_INC notes for SP, so we can't assume we'll see
everything that invalidates it. To be safe, don't eliminate any
stores though SP; none of them should be redundant anyway. */
&& ! reg_mentioned_p (stack_pointer_rtx, reg))
add_to_mem_set_list (pbi, canon_rtx (reg));
}
if (GET_CODE (reg) == REG
&& ! (regno_first == FRAME_POINTER_REGNUM
&& (! reload_completed || frame_pointer_needed))
#if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
&& ! (regno_first == HARD_FRAME_POINTER_REGNUM
&& (! reload_completed || frame_pointer_needed))
#endif
#if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
&& ! (regno_first == ARG_POINTER_REGNUM && fixed_regs[regno_first])
#endif
)
{
int some_was_live = 0, some_was_dead = 0;
for (i = regno_first; i <= regno_last; ++i)
{
int needed_regno = REGNO_REG_SET_P (pbi->reg_live, i);
if (pbi->local_set)
{
/* Order of the set operation matters here since both
sets may be the same. */
CLEAR_REGNO_REG_SET (pbi->cond_local_set, i);
if (cond != NULL_RTX
&& ! REGNO_REG_SET_P (pbi->local_set, i))
SET_REGNO_REG_SET (pbi->cond_local_set, i);
else
SET_REGNO_REG_SET (pbi->local_set, i);
}
if (code != CLOBBER)
SET_REGNO_REG_SET (pbi->new_set, i);
some_was_live |= needed_regno;
some_was_dead |= ! needed_regno;
}
#ifdef HAVE_conditional_execution
/* Consider conditional death in deciding that the register needs
a death note. */
if (some_was_live && ! not_dead
/* The stack pointer is never dead. Well, not strictly true,
but it's very difficult to tell from here. Hopefully
combine_stack_adjustments will fix up the most egregious
errors. */
&& regno_first != STACK_POINTER_REGNUM)
{
for (i = regno_first; i <= regno_last; ++i)
if (! mark_regno_cond_dead (pbi, i, cond))
not_dead |= ((unsigned long) 1) << (i - regno_first);
}
#endif
/* Additional data to record if this is the final pass. */
if (flags & (PROP_LOG_LINKS | PROP_REG_INFO
| PROP_DEATH_NOTES | PROP_AUTOINC))
{
register rtx y;
register int blocknum = pbi->bb->index;
y = NULL_RTX;
if (flags & (PROP_LOG_LINKS | PROP_AUTOINC))
{
y = pbi->reg_next_use[regno_first];
/* The next use is no longer next, since a store intervenes. */
for (i = regno_first; i <= regno_last; ++i)
pbi->reg_next_use[i] = 0;
}
if (flags & PROP_REG_INFO)
{
for (i = regno_first; i <= regno_last; ++i)
{
/* Count (weighted) references, stores, etc. This counts a
register twice if it is modified, but that is correct. */
REG_N_SETS (i) += 1;
REG_N_REFS (i) += 1;
REG_FREQ (i) += REG_FREQ_FROM_BB (pbi->bb);
/* The insns where a reg is live are normally counted
elsewhere, but we want the count to include the insn
where the reg is set, and the normal counting mechanism
would not count it. */
REG_LIVE_LENGTH (i) += 1;
}
/* If this is a hard reg, record this function uses the reg. */
if (regno_first < FIRST_PSEUDO_REGISTER)
{
for (i = regno_first; i <= regno_last; i++)
regs_ever_live[i] = 1;
}
else
{
/* Keep track of which basic blocks each reg appears in. */
if (REG_BASIC_BLOCK (regno_first) == REG_BLOCK_UNKNOWN)
REG_BASIC_BLOCK (regno_first) = blocknum;
else if (REG_BASIC_BLOCK (regno_first) != blocknum)
REG_BASIC_BLOCK (regno_first) = REG_BLOCK_GLOBAL;
}
}
if (! some_was_dead)
{
if (flags & PROP_LOG_LINKS)
{
/* Make a logical link from the next following insn
that uses this register, back to this insn.
The following insns have already been processed.
We don't build a LOG_LINK for hard registers containing
in ASM_OPERANDs. If these registers get replaced,
we might wind up changing the semantics of the insn,
even if reload can make what appear to be valid
assignments later. */
if (y && (BLOCK_NUM (y) == blocknum)
&& (regno_first >= FIRST_PSEUDO_REGISTER
|| asm_noperands (PATTERN (y)) < 0))
LOG_LINKS (y) = alloc_INSN_LIST (insn, LOG_LINKS (y));
}
}
else if (not_dead)
;
else if (! some_was_live)
{
if (flags & PROP_REG_INFO)
REG_N_DEATHS (regno_first) += 1;
if (flags & PROP_DEATH_NOTES)
{
/* Note that dead stores have already been deleted
when possible. If we get here, we have found a
dead store that cannot be eliminated (because the
same insn does something useful). Indicate this
by marking the reg being set as dying here. */
REG_NOTES (insn)
= alloc_EXPR_LIST (REG_UNUSED, reg, REG_NOTES (insn));
}
}
else
{
if (flags & PROP_DEATH_NOTES)
{
/* This is a case where we have a multi-word hard register
and some, but not all, of the words of the register are
needed in subsequent insns. Write REG_UNUSED notes
for those parts that were not needed. This case should
be rare. */
for (i = regno_first; i <= regno_last; ++i)
if (! REGNO_REG_SET_P (pbi->reg_live, i))
REG_NOTES (insn)
= alloc_EXPR_LIST (REG_UNUSED,
gen_rtx_REG (reg_raw_mode[i], i),
REG_NOTES (insn));
}
}
}
/* Mark the register as being dead. */
if (some_was_live
/* The stack pointer is never dead. Well, not strictly true,
but it's very difficult to tell from here. Hopefully
combine_stack_adjustments will fix up the most egregious
errors. */
&& regno_first != STACK_POINTER_REGNUM)
{
for (i = regno_first; i <= regno_last; ++i)
if (!(not_dead & (((unsigned long) 1) << (i - regno_first))))
CLEAR_REGNO_REG_SET (pbi->reg_live, i);
}
}
else if (GET_CODE (reg) == REG)
{
if (flags & (PROP_LOG_LINKS | PROP_AUTOINC))
pbi->reg_next_use[regno_first] = 0;
}
/* If this is the last pass and this is a SCRATCH, show it will be dying
here and count it. */
else if (GET_CODE (reg) == SCRATCH)
{
if (flags & PROP_DEATH_NOTES)
REG_NOTES (insn)
= alloc_EXPR_LIST (REG_UNUSED, reg, REG_NOTES (insn));
}
}
#ifdef HAVE_conditional_execution
/* Mark REGNO conditionally dead.
Return true if the register is now unconditionally dead. */
static int
mark_regno_cond_dead (pbi, regno, cond)
struct propagate_block_info *pbi;
int regno;
rtx cond;
{
/* If this is a store to a predicate register, the value of the
predicate is changing, we don't know that the predicate as seen
before is the same as that seen after. Flush all dependent
conditions from reg_cond_dead. This will make all such
conditionally live registers unconditionally live. */
if (REGNO_REG_SET_P (pbi->reg_cond_reg, regno))
flush_reg_cond_reg (pbi, regno);
/* If this is an unconditional store, remove any conditional
life that may have existed. */
if (cond == NULL_RTX)
splay_tree_remove (pbi->reg_cond_dead, regno);
else
{
splay_tree_node node;
struct reg_cond_life_info *rcli;
rtx ncond;
/* Otherwise this is a conditional set. Record that fact.
It may have been conditionally used, or there may be a
subsequent set with a complimentary condition. */
node = splay_tree_lookup (pbi->reg_cond_dead, regno);
if (node == NULL)
{
/* The register was unconditionally live previously.
Record the current condition as the condition under
which it is dead. */
rcli = (struct reg_cond_life_info *) xmalloc (sizeof (*rcli));
rcli->condition = cond;
rcli->stores = cond;
rcli->orig_condition = const0_rtx;
splay_tree_insert (pbi->reg_cond_dead, regno,
(splay_tree_value) rcli);
SET_REGNO_REG_SET (pbi->reg_cond_reg, REGNO (XEXP (cond, 0)));
/* Not unconditionaly dead. */
return 0;
}
else
{
/* The register was conditionally live previously.
Add the new condition to the old. */
rcli = (struct reg_cond_life_info *) node->value;
ncond = rcli->condition;
ncond = ior_reg_cond (ncond, cond, 1);
if (rcli->stores == const0_rtx)
rcli->stores = cond;
else if (rcli->stores != const1_rtx)
rcli->stores = ior_reg_cond (rcli->stores, cond, 1);
/* If the register is now unconditionally dead, remove the entry
in the splay_tree. A register is unconditionally dead if the
dead condition ncond is true. A register is also unconditionally
dead if the sum of all conditional stores is an unconditional
store (stores is true), and the dead condition is identically the
same as the original dead condition initialized at the end of
the block. This is a pointer compare, not an rtx_equal_p
compare. */
if (ncond == const1_rtx
|| (ncond == rcli->orig_condition && rcli->stores == const1_rtx))
splay_tree_remove (pbi->reg_cond_dead, regno);
else
{
rcli->condition = ncond;
SET_REGNO_REG_SET (pbi->reg_cond_reg, REGNO (XEXP (cond, 0)));
/* Not unconditionaly dead. */
return 0;
}
}
}
return 1;
}
/* Called from splay_tree_delete for pbi->reg_cond_life. */
static void
free_reg_cond_life_info (value)
splay_tree_value value;
{
struct reg_cond_life_info *rcli = (struct reg_cond_life_info *) value;
free (rcli);
}
/* Helper function for flush_reg_cond_reg. */
static int
flush_reg_cond_reg_1 (node, data)
splay_tree_node node;
void *data;
{
struct reg_cond_life_info *rcli;
int *xdata = (int *) data;
unsigned int regno = xdata[0];
/* Don't need to search if last flushed value was farther on in
the in-order traversal. */
if (xdata[1] >= (int) node->key)
return 0;
/* Splice out portions of the expression that refer to regno. */
rcli = (struct reg_cond_life_info *) node->value;
rcli->condition = elim_reg_cond (rcli->condition, regno);
if (rcli->stores != const0_rtx && rcli->stores != const1_rtx)
rcli->stores = elim_reg_cond (rcli->stores, regno);
/* If the entire condition is now false, signal the node to be removed. */
if (rcli->condition == const0_rtx)
{
xdata[1] = node->key;
return -1;
}
else if (rcli->condition == const1_rtx)
abort ();
return 0;
}
/* Flush all (sub) expressions referring to REGNO from REG_COND_LIVE. */
static void
flush_reg_cond_reg (pbi, regno)
struct propagate_block_info *pbi;
int regno;
{
int pair[2];
pair[0] = regno;
pair[1] = -1;
while (splay_tree_foreach (pbi->reg_cond_dead,
flush_reg_cond_reg_1, pair) == -1)
splay_tree_remove (pbi->reg_cond_dead, pair[1]);
CLEAR_REGNO_REG_SET (pbi->reg_cond_reg, regno);
}
/* Logical arithmetic on predicate conditions. IOR, NOT and AND.
For ior/and, the ADD flag determines whether we want to add the new
condition X to the old one unconditionally. If it is zero, we will
only return a new expression if X allows us to simplify part of
OLD, otherwise we return OLD unchanged to the caller.
If ADD is nonzero, we will return a new condition in all cases. The
toplevel caller of one of these functions should always pass 1 for
ADD. */
static rtx
ior_reg_cond (old, x, add)
rtx old, x;
int add;
{
rtx op0, op1;
if (GET_RTX_CLASS (GET_CODE (old)) == '<')
{
if (GET_RTX_CLASS (GET_CODE (x)) == '<'
&& REVERSE_CONDEXEC_PREDICATES_P (GET_CODE (x), GET_CODE (old))
&& REGNO (XEXP (x, 0)) == REGNO (XEXP (old, 0)))
return const1_rtx;
if (GET_CODE (x) == GET_CODE (old)
&& REGNO (XEXP (x, 0)) == REGNO (XEXP (old, 0)))
return old;
if (! add)
return old;
return gen_rtx_IOR (0, old, x);
}
switch (GET_CODE (old))
{
case IOR:
op0 = ior_reg_cond (XEXP (old, 0), x, 0);
op1 = ior_reg_cond (XEXP (old, 1), x, 0);
if (op0 != XEXP (old, 0) || op1 != XEXP (old, 1))
{
if (op0 == const0_rtx)
return op1;
if (op1 == const0_rtx)
return op0;
if (op0 == const1_rtx || op1 == const1_rtx)
return const1_rtx;
if (op0 == XEXP (old, 0))
op0 = gen_rtx_IOR (0, op0, x);
else
op1 = gen_rtx_IOR (0, op1, x);
return gen_rtx_IOR (0, op0, op1);
}
if (! add)
return old;
return gen_rtx_IOR (0, old, x);
case AND:
op0 = ior_reg_cond (XEXP (old, 0), x, 0);
op1 = ior_reg_cond (XEXP (old, 1), x, 0);
if (op0 != XEXP (old, 0) || op1 != XEXP (old, 1))
{
if (op0 == const1_rtx)
return op1;
if (op1 == const1_rtx)
return op0;
if (op0 == const0_rtx || op1 == const0_rtx)
return const0_rtx;
if (op0 == XEXP (old, 0))
op0 = gen_rtx_IOR (0, op0, x);
else
op1 = gen_rtx_IOR (0, op1, x);
return gen_rtx_AND (0, op0, op1);
}
if (! add)
return old;
return gen_rtx_IOR (0, old, x);
case NOT:
op0 = and_reg_cond (XEXP (old, 0), not_reg_cond (x), 0);
if (op0 != XEXP (old, 0))
return not_reg_cond (op0);
if (! add)
return old;
return gen_rtx_IOR (0, old, x);
default:
abort ();
}
}
static rtx
not_reg_cond (x)
rtx x;
{
enum rtx_code x_code;
if (x == const0_rtx)
return const1_rtx;
else if (x == const1_rtx)
return const0_rtx;
x_code = GET_CODE (x);
if (x_code == NOT)
return XEXP (x, 0);
if (GET_RTX_CLASS (x_code) == '<'
&& GET_CODE (XEXP (x, 0)) == REG)
{
if (XEXP (x, 1) != const0_rtx)
abort ();
return gen_rtx_fmt_ee (reverse_condition (x_code),
VOIDmode, XEXP (x, 0), const0_rtx);
}
return gen_rtx_NOT (0, x);
}
static rtx
and_reg_cond (old, x, add)
rtx old, x;
int add;
{
rtx op0, op1;
if (GET_RTX_CLASS (GET_CODE (old)) == '<')
{
if (GET_RTX_CLASS (GET_CODE (x)) == '<'
&& GET_CODE (x) == reverse_condition (GET_CODE (old))
&& REGNO (XEXP (x, 0)) == REGNO (XEXP (old, 0)))
return const0_rtx;
if (GET_CODE (x) == GET_CODE (old)
&& REGNO (XEXP (x, 0)) == REGNO (XEXP (old, 0)))
return old;
if (! add)
return old;
return gen_rtx_AND (0, old, x);
}
switch (GET_CODE (old))
{
case IOR:
op0 = and_reg_cond (XEXP (old, 0), x, 0);
op1 = and_reg_cond (XEXP (old, 1), x, 0);
if (op0 != XEXP (old, 0) || op1 != XEXP (old, 1))
{
if (op0 == const0_rtx)
return op1;
if (op1 == const0_rtx)
return op0;
if (op0 == const1_rtx || op1 == const1_rtx)
return const1_rtx;
if (op0 == XEXP (old, 0))
op0 = gen_rtx_AND (0, op0, x);
else
op1 = gen_rtx_AND (0, op1, x);
return gen_rtx_IOR (0, op0, op1);
}
if (! add)
return old;
return gen_rtx_AND (0, old, x);
case AND:
op0 = and_reg_cond (XEXP (old, 0), x, 0);
op1 = and_reg_cond (XEXP (old, 1), x, 0);
if (op0 != XEXP (old, 0) || op1 != XEXP (old, 1))
{
if (op0 == const1_rtx)
return op1;
if (op1 == const1_rtx)
return op0;
if (op0 == const0_rtx || op1 == const0_rtx)
return const0_rtx;
if (op0 == XEXP (old, 0))
op0 = gen_rtx_AND (0, op0, x);
else
op1 = gen_rtx_AND (0, op1, x);
return gen_rtx_AND (0, op0, op1);
}
if (! add)
return old;
/* If X is identical to one of the existing terms of the AND,
then just return what we already have. */
/* ??? There really should be some sort of recursive check here in
case there are nested ANDs. */
if ((GET_CODE (XEXP (old, 0)) == GET_CODE (x)
&& REGNO (XEXP (XEXP (old, 0), 0)) == REGNO (XEXP (x, 0)))
|| (GET_CODE (XEXP (old, 1)) == GET_CODE (x)
&& REGNO (XEXP (XEXP (old, 1), 0)) == REGNO (XEXP (x, 0))))
return old;
return gen_rtx_AND (0, old, x);
case NOT:
op0 = ior_reg_cond (XEXP (old, 0), not_reg_cond (x), 0);
if (op0 != XEXP (old, 0))
return not_reg_cond (op0);
if (! add)
return old;
return gen_rtx_AND (0, old, x);
default:
abort ();
}
}
/* Given a condition X, remove references to reg REGNO and return the
new condition. The removal will be done so that all conditions
involving REGNO are considered to evaluate to false. This function
is used when the value of REGNO changes. */
static rtx
elim_reg_cond (x, regno)
rtx x;
unsigned int regno;
{
rtx op0, op1;
if (GET_RTX_CLASS (GET_CODE (x)) == '<')
{
if (REGNO (XEXP (x, 0)) == regno)
return const0_rtx;
return x;
}
switch (GET_CODE (x))
{
case AND:
op0 = elim_reg_cond (XEXP (x, 0), regno);
op1 = elim_reg_cond (XEXP (x, 1), regno);
if (op0 == const0_rtx || op1 == const0_rtx)
return const0_rtx;
if (op0 == const1_rtx)
return op1;
if (op1 == const1_rtx)
return op0;
if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1))
return x;
return gen_rtx_AND (0, op0, op1);
case IOR:
op0 = elim_reg_cond (XEXP (x, 0), regno);
op1 = elim_reg_cond (XEXP (x, 1), regno);
if (op0 == const1_rtx || op1 == const1_rtx)
return const1_rtx;
if (op0 == const0_rtx)
return op1;
if (op1 == const0_rtx)
return op0;
if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1))
return x;
return gen_rtx_IOR (0, op0, op1);
case NOT:
op0 = elim_reg_cond (XEXP (x, 0), regno);
if (op0 == const0_rtx)
return const1_rtx;
if (op0 == const1_rtx)
return const0_rtx;
if (op0 != XEXP (x, 0))
return not_reg_cond (op0);
return x;
default:
abort ();
}
}
#endif /* HAVE_conditional_execution */
#ifdef AUTO_INC_DEC
/* Try to substitute the auto-inc expression INC as the address inside
MEM which occurs in INSN. Currently, the address of MEM is an expression
involving INCR_REG, and INCR is the next use of INCR_REG; it is an insn
that has a single set whose source is a PLUS of INCR_REG and something
else. */
static void
attempt_auto_inc (pbi, inc, insn, mem, incr, incr_reg)
struct propagate_block_info *pbi;
rtx inc, insn, mem, incr, incr_reg;
{
int regno = REGNO (incr_reg);
rtx set = single_set (incr);
rtx q = SET_DEST (set);
rtx y = SET_SRC (set);
int opnum = XEXP (y, 0) == incr_reg ? 0 : 1;
/* Make sure this reg appears only once in this insn. */
if (count_occurrences (PATTERN (insn), incr_reg, 1) != 1)
return;
if (dead_or_set_p (incr, incr_reg)
/* Mustn't autoinc an eliminable register. */
&& (regno >= FIRST_PSEUDO_REGISTER
|| ! TEST_HARD_REG_BIT (elim_reg_set, regno)))
{
/* This is the simple case. Try to make the auto-inc. If
we can't, we are done. Otherwise, we will do any
needed updates below. */
if (! validate_change (insn, &XEXP (mem, 0), inc, 0))
return;
}
else if (GET_CODE (q) == REG
/* PREV_INSN used here to check the semi-open interval
[insn,incr). */
&& ! reg_used_between_p (q, PREV_INSN (insn), incr)
/* We must also check for sets of q as q may be
a call clobbered hard register and there may
be a call between PREV_INSN (insn) and incr. */
&& ! reg_set_between_p (q, PREV_INSN (insn), incr))
{
/* We have *p followed sometime later by q = p+size.
Both p and q must be live afterward,
and q is not used between INSN and its assignment.
Change it to q = p, ...*q..., q = q+size.
Then fall into the usual case. */
rtx insns, temp;
start_sequence ();
emit_move_insn (q, incr_reg);
insns = get_insns ();
end_sequence ();
if (basic_block_for_insn)
for (temp = insns; temp; temp = NEXT_INSN (temp))
set_block_for_insn (temp, pbi->bb);
/* If we can't make the auto-inc, or can't make the
replacement into Y, exit. There's no point in making
the change below if we can't do the auto-inc and doing
so is not correct in the pre-inc case. */
XEXP (inc, 0) = q;
validate_change (insn, &XEXP (mem, 0), inc, 1);
validate_change (incr, &XEXP (y, opnum), q, 1);
if (! apply_change_group ())
return;
/* We now know we'll be doing this change, so emit the
new insn(s) and do the updates. */
emit_insns_before (insns, insn);
if (pbi->bb->head == insn)
pbi->bb->head = insns;
/* INCR will become a NOTE and INSN won't contain a
use of INCR_REG. If a use of INCR_REG was just placed in
the insn before INSN, make that the next use.
Otherwise, invalidate it. */
if (GET_CODE (PREV_INSN (insn)) == INSN
&& GET_CODE (PATTERN (PREV_INSN (insn))) == SET
&& SET_SRC (PATTERN (PREV_INSN (insn))) == incr_reg)
pbi->reg_next_use[regno] = PREV_INSN (insn);
else
pbi->reg_next_use[regno] = 0;
incr_reg = q;
regno = REGNO (q);
/* REGNO is now used in INCR which is below INSN, but
it previously wasn't live here. If we don't mark
it as live, we'll put a REG_DEAD note for it
on this insn, which is incorrect. */
SET_REGNO_REG_SET (pbi->reg_live, regno);
/* If there are any calls between INSN and INCR, show
that REGNO now crosses them. */
for (temp = insn; temp != incr; temp = NEXT_INSN (temp))
if (GET_CODE (temp) == CALL_INSN)
REG_N_CALLS_CROSSED (regno)++;
}
else
return;
/* If we haven't returned, it means we were able to make the
auto-inc, so update the status. First, record that this insn
has an implicit side effect. */
REG_NOTES (insn) = alloc_EXPR_LIST (REG_INC, incr_reg, REG_NOTES (insn));
/* Modify the old increment-insn to simply copy
the already-incremented value of our register. */
if (! validate_change (incr, &SET_SRC (set), incr_reg, 0))
abort ();
/* If that makes it a no-op (copying the register into itself) delete
it so it won't appear to be a "use" and a "set" of this
register. */
if (REGNO (SET_DEST (set)) == REGNO (incr_reg))
{
/* If the original source was dead, it's dead now. */
rtx note;
while ((note = find_reg_note (incr, REG_DEAD, NULL_RTX)) != NULL_RTX)
{
remove_note (incr, note);
if (XEXP (note, 0) != incr_reg)
CLEAR_REGNO_REG_SET (pbi->reg_live, REGNO (XEXP (note, 0)));
}
PUT_CODE (incr, NOTE);
NOTE_LINE_NUMBER (incr) = NOTE_INSN_DELETED;
NOTE_SOURCE_FILE (incr) = 0;
}
if (regno >= FIRST_PSEUDO_REGISTER)
{
/* Count an extra reference to the reg. When a reg is
incremented, spilling it is worse, so we want to make
that less likely. */
REG_FREQ (regno) += REG_FREQ_FROM_BB (pbi->bb);
/* Count the increment as a setting of the register,
even though it isn't a SET in rtl. */
REG_N_SETS (regno)++;
}
}
/* X is a MEM found in INSN. See if we can convert it into an auto-increment
reference. */
static void
find_auto_inc (pbi, x, insn)
struct propagate_block_info *pbi;
rtx x;
rtx insn;
{
rtx addr = XEXP (x, 0);
HOST_WIDE_INT offset = 0;
rtx set, y, incr, inc_val;
int regno;
int size = GET_MODE_SIZE (GET_MODE (x));
if (GET_CODE (insn) == JUMP_INSN)
return;
/* Here we detect use of an index register which might be good for
postincrement, postdecrement, preincrement, or predecrement. */
if (GET_CODE (addr) == PLUS && GET_CODE (XEXP (addr, 1)) == CONST_INT)
offset = INTVAL (XEXP (addr, 1)), addr = XEXP (addr, 0);
if (GET_CODE (addr) != REG)
return;
regno = REGNO (addr);
/* Is the next use an increment that might make auto-increment? */
incr = pbi->reg_next_use[regno];
if (incr == 0 || BLOCK_NUM (incr) != BLOCK_NUM (insn))
return;
set = single_set (incr);
if (set == 0 || GET_CODE (set) != SET)
return;
y = SET_SRC (set);
if (GET_CODE (y) != PLUS)
return;
if (REG_P (XEXP (y, 0)) && REGNO (XEXP (y, 0)) == REGNO (addr))
inc_val = XEXP (y, 1);
else if (REG_P (XEXP (y, 1)) && REGNO (XEXP (y, 1)) == REGNO (addr))
inc_val = XEXP (y, 0);
else
return;
if (GET_CODE (inc_val) == CONST_INT)
{
if (HAVE_POST_INCREMENT
&& (INTVAL (inc_val) == size && offset == 0))
attempt_auto_inc (pbi, gen_rtx_POST_INC (Pmode, addr), insn, x,
incr, addr);
else if (HAVE_POST_DECREMENT
&& (INTVAL (inc_val) == -size && offset == 0))
attempt_auto_inc (pbi, gen_rtx_POST_DEC (Pmode, addr), insn, x,
incr, addr);
else if (HAVE_PRE_INCREMENT
&& (INTVAL (inc_val) == size && offset == size))
attempt_auto_inc (pbi, gen_rtx_PRE_INC (Pmode, addr), insn, x,
incr, addr);
else if (HAVE_PRE_DECREMENT
&& (INTVAL (inc_val) == -size && offset == -size))
attempt_auto_inc (pbi, gen_rtx_PRE_DEC (Pmode, addr), insn, x,
incr, addr);
else if (HAVE_POST_MODIFY_DISP && offset == 0)
attempt_auto_inc (pbi, gen_rtx_POST_MODIFY (Pmode, addr,
gen_rtx_PLUS (Pmode,
addr,
inc_val)),
insn, x, incr, addr);
}
else if (GET_CODE (inc_val) == REG
&& ! reg_set_between_p (inc_val, PREV_INSN (insn),
NEXT_INSN (incr)))
{
if (HAVE_POST_MODIFY_REG && offset == 0)
attempt_auto_inc (pbi, gen_rtx_POST_MODIFY (Pmode, addr,
gen_rtx_PLUS (Pmode,
addr,
inc_val)),
insn, x, incr, addr);
}
}
#endif /* AUTO_INC_DEC */
static void
mark_used_reg (pbi, reg, cond, insn)
struct propagate_block_info *pbi;
rtx reg;
rtx cond ATTRIBUTE_UNUSED;
rtx insn;
{
unsigned int regno_first, regno_last, i;
int some_was_live, some_was_dead, some_not_set;
regno_last = regno_first = REGNO (reg);
if (regno_first < FIRST_PSEUDO_REGISTER)
regno_last += HARD_REGNO_NREGS (regno_first, GET_MODE (reg)) - 1;
/* Find out if any of this register is live after this instruction. */
some_was_live = some_was_dead = 0;
for (i = regno_first; i <= regno_last; ++i)
{
int needed_regno = REGNO_REG_SET_P (pbi->reg_live, i);
some_was_live |= needed_regno;
some_was_dead |= ! needed_regno;
}
/* Find out if any of the register was set this insn. */
some_not_set = 0;
for (i = regno_first; i <= regno_last; ++i)
some_not_set |= ! REGNO_REG_SET_P (pbi->new_set, i);
if (pbi->flags & (PROP_LOG_LINKS | PROP_AUTOINC))
{
/* Record where each reg is used, so when the reg is set we know
the next insn that uses it. */
pbi->reg_next_use[regno_first] = insn;
}
if (pbi->flags & PROP_REG_INFO)
{
if (regno_first < FIRST_PSEUDO_REGISTER)
{
/* If this is a register we are going to try to eliminate,
don't mark it live here. If we are successful in
eliminating it, it need not be live unless it is used for
pseudos, in which case it will have been set live when it
was allocated to the pseudos. If the register will not
be eliminated, reload will set it live at that point.
Otherwise, record that this function uses this register. */
/* ??? The PPC backend tries to "eliminate" on the pic
register to itself. This should be fixed. In the mean
time, hack around it. */
if (! (TEST_HARD_REG_BIT (elim_reg_set, regno_first)
&& (regno_first == FRAME_POINTER_REGNUM
|| regno_first == ARG_POINTER_REGNUM)))
for (i = regno_first; i <= regno_last; ++i)
regs_ever_live[i] = 1;
}
else
{
/* Keep track of which basic block each reg appears in. */
register int blocknum = pbi->bb->index;
if (REG_BASIC_BLOCK (regno_first) == REG_BLOCK_UNKNOWN)
REG_BASIC_BLOCK (regno_first) = blocknum;
else if (REG_BASIC_BLOCK (regno_first) != blocknum)
REG_BASIC_BLOCK (regno_first) = REG_BLOCK_GLOBAL;
/* Count (weighted) number of uses of each reg. */
REG_FREQ (regno_first) += REG_FREQ_FROM_BB (pbi->bb);
REG_N_REFS (regno_first)++;
}
}
/* Record and count the insns in which a reg dies. If it is used in
this insn and was dead below the insn then it dies in this insn.
If it was set in this insn, we do not make a REG_DEAD note;
likewise if we already made such a note. */
if ((pbi->flags & (PROP_DEATH_NOTES | PROP_REG_INFO))
&& some_was_dead
&& some_not_set)
{
/* Check for the case where the register dying partially
overlaps the register set by this insn. */
if (regno_first != regno_last)
for (i = regno_first; i <= regno_last; ++i)
some_was_live |= REGNO_REG_SET_P (pbi->new_set, i);
/* If none of the words in X is needed, make a REG_DEAD note.
Otherwise, we must make partial REG_DEAD notes. */
if (! some_was_live)
{
if ((pbi->flags & PROP_DEATH_NOTES)
&& ! find_regno_note (insn, REG_DEAD, regno_first))
REG_NOTES (insn)
= alloc_EXPR_LIST (REG_DEAD, reg, REG_NOTES (insn));
if (pbi->flags & PROP_REG_INFO)
REG_N_DEATHS (regno_first)++;
}
else
{
/* Don't make a REG_DEAD note for a part of a register
that is set in the insn. */
for (i = regno_first; i <= regno_last; ++i)
if (! REGNO_REG_SET_P (pbi->reg_live, i)
&& ! dead_or_set_regno_p (insn, i))
REG_NOTES (insn)
= alloc_EXPR_LIST (REG_DEAD,
gen_rtx_REG (reg_raw_mode[i], i),
REG_NOTES (insn));
}
}
/* Mark the register as being live. */
for (i = regno_first; i <= regno_last; ++i)
{
SET_REGNO_REG_SET (pbi->reg_live, i);
#ifdef HAVE_conditional_execution
/* If this is a conditional use, record that fact. If it is later
conditionally set, we'll know to kill the register. */
if (cond != NULL_RTX)
{
splay_tree_node node;
struct reg_cond_life_info *rcli;
rtx ncond;
if (some_was_live)
{
node = splay_tree_lookup (pbi->reg_cond_dead, i);
if (node == NULL)
{
/* The register was unconditionally live previously.
No need to do anything. */
}
else
{
/* The register was conditionally live previously.
Subtract the new life cond from the old death cond. */
rcli = (struct reg_cond_life_info *) node->value;
ncond = rcli->condition;
ncond = and_reg_cond (ncond, not_reg_cond (cond), 1);
/* If the register is now unconditionally live,
remove the entry in the splay_tree. */
if (ncond == const0_rtx)
splay_tree_remove (pbi->reg_cond_dead, i);
else
{
rcli->condition = ncond;
SET_REGNO_REG_SET (pbi->reg_cond_reg,
REGNO (XEXP (cond, 0)));
}
}
}
else
{
/* The register was not previously live at all. Record
the condition under which it is still dead. */
rcli = (struct reg_cond_life_info *) xmalloc (sizeof (*rcli));
rcli->condition = not_reg_cond (cond);
rcli->stores = const0_rtx;
rcli->orig_condition = const0_rtx;
splay_tree_insert (pbi->reg_cond_dead, i,
(splay_tree_value) rcli);
SET_REGNO_REG_SET (pbi->reg_cond_reg, REGNO (XEXP (cond, 0)));
}
}
else if (some_was_live)
{
/* The register may have been conditionally live previously, but
is now unconditionally live. Remove it from the conditionally
dead list, so that a conditional set won't cause us to think
it dead. */
splay_tree_remove (pbi->reg_cond_dead, i);
}
#endif
}
}
/* Scan expression X and store a 1-bit in NEW_LIVE for each reg it uses.
This is done assuming the registers needed from X are those that
have 1-bits in PBI->REG_LIVE.
INSN is the containing instruction. If INSN is dead, this function
is not called. */
static void
mark_used_regs (pbi, x, cond, insn)
struct propagate_block_info *pbi;
rtx x, cond, insn;
{
register RTX_CODE code;
register int regno;
int flags = pbi->flags;
retry:
code = GET_CODE (x);
switch (code)
{
case LABEL_REF:
case SYMBOL_REF:
case CONST_INT:
case CONST:
case CONST_DOUBLE:
case PC:
case ADDR_VEC:
case ADDR_DIFF_VEC:
return;
#ifdef HAVE_cc0
case CC0:
pbi->cc0_live = 1;
return;
#endif
case CLOBBER:
/* If we are clobbering a MEM, mark any registers inside the address
as being used. */
if (GET_CODE (XEXP (x, 0)) == MEM)
mark_used_regs (pbi, XEXP (XEXP (x, 0), 0), cond, insn);
return;
case MEM:
/* Don't bother watching stores to mems if this is not the
final pass. We'll not be deleting dead stores this round. */
if (optimize && (flags & PROP_SCAN_DEAD_CODE))
{
/* Invalidate the data for the last MEM stored, but only if MEM is
something that can be stored into. */
if (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
&& CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)))
/* Needn't clear the memory set list. */
;
else
{
rtx temp = pbi->mem_set_list;
rtx prev = NULL_RTX;
rtx next;
while (temp)
{
next = XEXP (temp, 1);
if (anti_dependence (XEXP (temp, 0), x))
{
/* Splice temp out of the list. */
if (prev)
XEXP (prev, 1) = next;
else
pbi->mem_set_list = next;
free_EXPR_LIST_node (temp);
pbi->mem_set_list_len--;
}
else
prev = temp;
temp = next;
}
}
/* If the memory reference had embedded side effects (autoincrement
address modes. Then we may need to kill some entries on the
memory set list. */
if (insn)
invalidate_mems_from_autoinc (pbi, insn);
}
#ifdef AUTO_INC_DEC
if (flags & PROP_AUTOINC)
find_auto_inc (pbi, x, insn);
#endif
break;
case SUBREG:
#ifdef CLASS_CANNOT_CHANGE_MODE
if (GET_CODE (SUBREG_REG (x)) == REG
&& REGNO (SUBREG_REG (x)) >= FIRST_PSEUDO_REGISTER
&& CLASS_CANNOT_CHANGE_MODE_P (GET_MODE (x),
GET_MODE (SUBREG_REG (x))))
REG_CHANGES_MODE (REGNO (SUBREG_REG (x))) = 1;
#endif
/* While we're here, optimize this case. */
x = SUBREG_REG (x);
if (GET_CODE (x) != REG)
goto retry;
/* Fall through. */
case REG:
/* See a register other than being set => mark it as needed. */
mark_used_reg (pbi, x, cond, insn);
return;
case SET:
{
register rtx testreg = SET_DEST (x);
int mark_dest = 0;
/* If storing into MEM, don't show it as being used. But do
show the address as being used. */
if (GET_CODE (testreg) == MEM)
{
#ifdef AUTO_INC_DEC
if (flags & PROP_AUTOINC)
find_auto_inc (pbi, testreg, insn);
#endif
mark_used_regs (pbi, XEXP (testreg, 0), cond, insn);
mark_used_regs (pbi, SET_SRC (x), cond, insn);
return;
}
/* Storing in STRICT_LOW_PART is like storing in a reg
in that this SET might be dead, so ignore it in TESTREG.
but in some other ways it is like using the reg.
Storing in a SUBREG or a bit field is like storing the entire
register in that if the register's value is not used
then this SET is not needed. */
while (GET_CODE (testreg) == STRICT_LOW_PART
|| GET_CODE (testreg) == ZERO_EXTRACT
|| GET_CODE (testreg) == SIGN_EXTRACT
|| GET_CODE (testreg) == SUBREG)
{
#ifdef CLASS_CANNOT_CHANGE_MODE
if (GET_CODE (testreg) == SUBREG
&& GET_CODE (SUBREG_REG (testreg)) == REG
&& REGNO (SUBREG_REG (testreg)) >= FIRST_PSEUDO_REGISTER
&& CLASS_CANNOT_CHANGE_MODE_P (GET_MODE (SUBREG_REG (testreg)),
GET_MODE (testreg)))
REG_CHANGES_MODE (REGNO (SUBREG_REG (testreg))) = 1;
#endif
/* Modifying a single register in an alternate mode
does not use any of the old value. But these other
ways of storing in a register do use the old value. */
if (GET_CODE (testreg) == SUBREG
&& !(REG_SIZE (SUBREG_REG (testreg)) > REG_SIZE (testreg)))
;
else
mark_dest = 1;
testreg = XEXP (testreg, 0);
}
/* If this is a store into a register or group of registers,
recursively scan the value being stored. */
if ((GET_CODE (testreg) == PARALLEL
&& GET_MODE (testreg) == BLKmode)
|| (GET_CODE (testreg) == REG
&& (regno = REGNO (testreg),
! (regno == FRAME_POINTER_REGNUM
&& (! reload_completed || frame_pointer_needed)))
#if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
&& ! (regno == HARD_FRAME_POINTER_REGNUM
&& (! reload_completed || frame_pointer_needed))
#endif
#if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
&& ! (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
#endif
))
{
if (mark_dest)
mark_used_regs (pbi, SET_DEST (x), cond, insn);
mark_used_regs (pbi, SET_SRC (x), cond, insn);
return;
}
}
break;
case ASM_OPERANDS:
case UNSPEC_VOLATILE:
case TRAP_IF:
case ASM_INPUT:
{
/* Traditional and volatile asm instructions must be considered to use
and clobber all hard registers, all pseudo-registers and all of
memory. So must TRAP_IF and UNSPEC_VOLATILE operations.
Consider for instance a volatile asm that changes the fpu rounding
mode. An insn should not be moved across this even if it only uses
pseudo-regs because it might give an incorrectly rounded result.
?!? Unfortunately, marking all hard registers as live causes massive
problems for the register allocator and marking all pseudos as live
creates mountains of uninitialized variable warnings.
So for now, just clear the memory set list and mark any regs
we can find in ASM_OPERANDS as used. */
if (code != ASM_OPERANDS || MEM_VOLATILE_P (x))
{
free_EXPR_LIST_list (&pbi->mem_set_list);
pbi->mem_set_list_len = 0;
}
/* For all ASM_OPERANDS, we must traverse the vector of input operands.
We can not just fall through here since then we would be confused
by the ASM_INPUT rtx inside ASM_OPERANDS, which do not indicate
traditional asms unlike their normal usage. */
if (code == ASM_OPERANDS)
{
int j;
for (j = 0; j < ASM_OPERANDS_INPUT_LENGTH (x); j++)
mark_used_regs (pbi, ASM_OPERANDS_INPUT (x, j), cond, insn);
}
break;
}
case COND_EXEC:
if (cond != NULL_RTX)
abort ();
mark_used_regs (pbi, COND_EXEC_TEST (x), NULL_RTX, insn);
cond = COND_EXEC_TEST (x);
x = COND_EXEC_CODE (x);
goto retry;
case PHI:
/* We _do_not_ want to scan operands of phi nodes. Operands of
a phi function are evaluated only when control reaches this
block along a particular edge. Therefore, regs that appear
as arguments to phi should not be added to the global live at
start. */
return;
default:
break;
}
/* Recursively scan the operands of this expression. */
{
register const char * const fmt = GET_RTX_FORMAT (code);
register int i;
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
{
if (fmt[i] == 'e')
{
/* Tail recursive case: save a function call level. */
if (i == 0)
{
x = XEXP (x, 0);
goto retry;
}
mark_used_regs (pbi, XEXP (x, i), cond, insn);
}
else if (fmt[i] == 'E')
{
register int j;
for (j = 0; j < XVECLEN (x, i); j++)
mark_used_regs (pbi, XVECEXP (x, i, j), cond, insn);
}
}
}
}
#ifdef AUTO_INC_DEC
static int
try_pre_increment_1 (pbi, insn)
struct propagate_block_info *pbi;
rtx insn;
{
/* Find the next use of this reg. If in same basic block,
make it do pre-increment or pre-decrement if appropriate. */
rtx x = single_set (insn);
HOST_WIDE_INT amount = ((GET_CODE (SET_SRC (x)) == PLUS ? 1 : -1)
* INTVAL (XEXP (SET_SRC (x), 1)));
int regno = REGNO (SET_DEST (x));
rtx y = pbi->reg_next_use[regno];
if (y != 0
&& SET_DEST (x) != stack_pointer_rtx
&& BLOCK_NUM (y) == BLOCK_NUM (insn)
/* Don't do this if the reg dies, or gets set in y; a standard addressing
mode would be better. */
&& ! dead_or_set_p (y, SET_DEST (x))
&& try_pre_increment (y, SET_DEST (x), amount))
{
/* We have found a suitable auto-increment and already changed
insn Y to do it. So flush this increment instruction. */
propagate_block_delete_insn (pbi->bb, insn);
/* Count a reference to this reg for the increment insn we are
deleting. When a reg is incremented, spilling it is worse,
so we want to make that less likely. */
if (regno >= FIRST_PSEUDO_REGISTER)
{
REG_FREQ (regno) += REG_FREQ_FROM_BB (pbi->bb);
REG_N_SETS (regno)++;
}
/* Flush any remembered memories depending on the value of
the incremented register. */
invalidate_mems_from_set (pbi, SET_DEST (x));
return 1;
}
return 0;
}
/* Try to change INSN so that it does pre-increment or pre-decrement
addressing on register REG in order to add AMOUNT to REG.
AMOUNT is negative for pre-decrement.
Returns 1 if the change could be made.
This checks all about the validity of the result of modifying INSN. */
static int
try_pre_increment (insn, reg, amount)
rtx insn, reg;
HOST_WIDE_INT amount;
{
register rtx use;
/* Nonzero if we can try to make a pre-increment or pre-decrement.
For example, addl $4,r1; movl (r1),... can become movl +(r1),... */
int pre_ok = 0;
/* Nonzero if we can try to make a post-increment or post-decrement.
For example, addl $4,r1; movl -4(r1),... can become movl (r1)+,...
It is possible for both PRE_OK and POST_OK to be nonzero if the machine
supports both pre-inc and post-inc, or both pre-dec and post-dec. */
int post_ok = 0;
/* Nonzero if the opportunity actually requires post-inc or post-dec. */
int do_post = 0;
/* From the sign of increment, see which possibilities are conceivable
on this target machine. */
if (HAVE_PRE_INCREMENT && amount > 0)
pre_ok = 1;
if (HAVE_POST_INCREMENT && amount > 0)
post_ok = 1;
if (HAVE_PRE_DECREMENT && amount < 0)
pre_ok = 1;
if (HAVE_POST_DECREMENT && amount < 0)
post_ok = 1;
if (! (pre_ok || post_ok))
return 0;
/* It is not safe to add a side effect to a jump insn
because if the incremented register is spilled and must be reloaded
there would be no way to store the incremented value back in memory. */
if (GET_CODE (insn) == JUMP_INSN)
return 0;
use = 0;
if (pre_ok)
use = find_use_as_address (PATTERN (insn), reg, 0);
if (post_ok && (use == 0 || use == (rtx) 1))
{
use = find_use_as_address (PATTERN (insn), reg, -amount);
do_post = 1;
}
if (use == 0 || use == (rtx) 1)
return 0;
if (GET_MODE_SIZE (GET_MODE (use)) != (amount > 0 ? amount : - amount))
return 0;
/* See if this combination of instruction and addressing mode exists. */
if (! validate_change (insn, &XEXP (use, 0),
gen_rtx_fmt_e (amount > 0
? (do_post ? POST_INC : PRE_INC)
: (do_post ? POST_DEC : PRE_DEC),
Pmode, reg), 0))
return 0;
/* Record that this insn now has an implicit side effect on X. */
REG_NOTES (insn) = alloc_EXPR_LIST (REG_INC, reg, REG_NOTES (insn));
return 1;
}
#endif /* AUTO_INC_DEC */
/* Find the place in the rtx X where REG is used as a memory address.
Return the MEM rtx that so uses it.
If PLUSCONST is nonzero, search instead for a memory address equivalent to
(plus REG (const_int PLUSCONST)).
If such an address does not appear, return 0.
If REG appears more than once, or is used other than in such an address,
return (rtx)1. */
rtx
find_use_as_address (x, reg, plusconst)
register rtx x;
rtx reg;
HOST_WIDE_INT plusconst;
{
enum rtx_code code = GET_CODE (x);
const char * const fmt = GET_RTX_FORMAT (code);
register int i;
register rtx value = 0;
register rtx tem;
if (code == MEM && XEXP (x, 0) == reg && plusconst == 0)
return x;
if (code == MEM && GET_CODE (XEXP (x, 0)) == PLUS
&& XEXP (XEXP (x, 0), 0) == reg
&& GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
&& INTVAL (XEXP (XEXP (x, 0), 1)) == plusconst)
return x;
if (code == SIGN_EXTRACT || code == ZERO_EXTRACT)
{
/* If REG occurs inside a MEM used in a bit-field reference,
that is unacceptable. */
if (find_use_as_address (XEXP (x, 0), reg, 0) != 0)
return (rtx) (HOST_WIDE_INT) 1;
}
if (x == reg)
return (rtx) (HOST_WIDE_INT) 1;
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
{
if (fmt[i] == 'e')
{
tem = find_use_as_address (XEXP (x, i), reg, plusconst);
if (value == 0)
value = tem;
else if (tem != 0)
return (rtx) (HOST_WIDE_INT) 1;
}
else if (fmt[i] == 'E')
{
register int j;
for (j = XVECLEN (x, i) - 1; j >= 0; j--)
{
tem = find_use_as_address (XVECEXP (x, i, j), reg, plusconst);
if (value == 0)
value = tem;
else if (tem != 0)
return (rtx) (HOST_WIDE_INT) 1;
}
}
}
return value;
}
/* Write information about registers and basic blocks into FILE.
This is part of making a debugging dump. */
void
dump_regset (r, outf)
regset r;
FILE *outf;
{
int i;
if (r == NULL)
{
fputs (" (nil)", outf);
return;
}
EXECUTE_IF_SET_IN_REG_SET (r, 0, i,
{
fprintf (outf, " %d", i);
if (i < FIRST_PSEUDO_REGISTER)
fprintf (outf, " [%s]",
reg_names[i]);
});
}
/* Print a human-reaable representation of R on the standard error
stream. This function is designed to be used from within the
debugger. */
void
debug_regset (r)
regset r;
{
dump_regset (r, stderr);
putc ('\n', stderr);
}
void
dump_flow_info (file)
FILE *file;
{
register int i;
static const char * const reg_class_names[] = REG_CLASS_NAMES;
fprintf (file, "%d registers.\n", max_regno);
for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
if (REG_N_REFS (i))
{
enum reg_class class, altclass;
fprintf (file, "\nRegister %d used %d times across %d insns",
i, REG_N_REFS (i), REG_LIVE_LENGTH (i));
if (REG_BASIC_BLOCK (i) >= 0)
fprintf (file, " in block %d", REG_BASIC_BLOCK (i));
if (REG_N_SETS (i))
fprintf (file, "; set %d time%s", REG_N_SETS (i),
(REG_N_SETS (i) == 1) ? "" : "s");
if (REG_USERVAR_P (regno_reg_rtx[i]))
fprintf (file, "; user var");
if (REG_N_DEATHS (i) != 1)
fprintf (file, "; dies in %d places", REG_N_DEATHS (i));
if (REG_N_CALLS_CROSSED (i) == 1)
fprintf (file, "; crosses 1 call");
else if (REG_N_CALLS_CROSSED (i))
fprintf (file, "; crosses %d calls", REG_N_CALLS_CROSSED (i));
if (PSEUDO_REGNO_BYTES (i) != UNITS_PER_WORD)
fprintf (file, "; %d bytes", PSEUDO_REGNO_BYTES (i));
class = reg_preferred_class (i);
altclass = reg_alternate_class (i);
if (class != GENERAL_REGS || altclass != ALL_REGS)
{
if (altclass == ALL_REGS || class == ALL_REGS)
fprintf (file, "; pref %s", reg_class_names[(int) class]);
else if (altclass == NO_REGS)
fprintf (file, "; %s or none", reg_class_names[(int) class]);
else
fprintf (file, "; pref %s, else %s",
reg_class_names[(int) class],
reg_class_names[(int) altclass]);
}
if (REG_POINTER (regno_reg_rtx[i]))
fprintf (file, "; pointer");
fprintf (file, ".\n");
}
fprintf (file, "\n%d basic blocks, %d edges.\n", n_basic_blocks, n_edges);
for (i = 0; i < n_basic_blocks; i++)
{
register basic_block bb = BASIC_BLOCK (i);
register edge e;
fprintf (file, "\nBasic block %d: first insn %d, last %d, loop_depth %d, count ",
i, INSN_UID (bb->head), INSN_UID (bb->end), bb->loop_depth);
fprintf (file, HOST_WIDEST_INT_PRINT_DEC, (HOST_WIDEST_INT) bb->count);
fprintf (file, ", freq %i.\n", bb->frequency);
fprintf (file, "Predecessors: ");
for (e = bb->pred; e; e = e->pred_next)
dump_edge_info (file, e, 0);
fprintf (file, "\nSuccessors: ");
for (e = bb->succ; e; e = e->succ_next)
dump_edge_info (file, e, 1);
fprintf (file, "\nRegisters live at start:");
dump_regset (bb->global_live_at_start, file);
fprintf (file, "\nRegisters live at end:");
dump_regset (bb->global_live_at_end, file);
putc ('\n', file);
}
putc ('\n', file);
}
void
debug_flow_info ()
{
dump_flow_info (stderr);
}
void
dump_edge_info (file, e, do_succ)
FILE *file;
edge e;
int do_succ;
{
basic_block side = (do_succ ? e->dest : e->src);
if (side == ENTRY_BLOCK_PTR)
fputs (" ENTRY", file);
else if (side == EXIT_BLOCK_PTR)
fputs (" EXIT", file);
else
fprintf (file, " %d", side->index);
if (e->probability)
fprintf (file, " [%.1f%%] ", e->probability * 100.0 / REG_BR_PROB_BASE);
if (e->count)
{
fprintf (file, " count:");
fprintf (file, HOST_WIDEST_INT_PRINT_DEC, (HOST_WIDEST_INT) e->count);
}
if (e->flags)
{
static const char * const bitnames[] = {
"fallthru", "crit", "ab", "abcall", "eh", "fake", "dfs_back"
};
int comma = 0;
int i, flags = e->flags;
fputc (' ', file);
fputc ('(', file);
for (i = 0; flags; i++)
if (flags & (1 << i))
{
flags &= ~(1 << i);
if (comma)
fputc (',', file);
if (i < (int) ARRAY_SIZE (bitnames))
fputs (bitnames[i], file);
else
fprintf (file, "%d", i);
comma = 1;
}
fputc (')', file);
}
}
/* Print out one basic block with live information at start and end. */
void
dump_bb (bb, outf)
basic_block bb;
FILE *outf;
{
rtx insn;
rtx last;
edge e;
fprintf (outf, ";; Basic block %d, loop depth %d, count ",
bb->index, bb->loop_depth);
fprintf (outf, HOST_WIDEST_INT_PRINT_DEC, (HOST_WIDEST_INT) bb->count);
putc ('\n', outf);
fputs (";; Predecessors: ", outf);
for (e = bb->pred; e; e = e->pred_next)
dump_edge_info (outf, e, 0);
putc ('\n', outf);
fputs (";; Registers live at start:", outf);
dump_regset (bb->global_live_at_start, outf);
putc ('\n', outf);
for (insn = bb->head, last = NEXT_INSN (bb->end);
insn != last;
insn = NEXT_INSN (insn))
print_rtl_single (outf, insn);
fputs (";; Registers live at end:", outf);
dump_regset (bb->global_live_at_end, outf);
putc ('\n', outf);
fputs (";; Successors: ", outf);
for (e = bb->succ; e; e = e->succ_next)
dump_edge_info (outf, e, 1);
putc ('\n', outf);
}
void
debug_bb (bb)
basic_block bb;
{
dump_bb (bb, stderr);
}
void
debug_bb_n (n)
int n;
{
dump_bb (BASIC_BLOCK (n), stderr);
}
/* Like print_rtl, but also print out live information for the start of each
basic block. */
void
print_rtl_with_bb (outf, rtx_first)
FILE *outf;
rtx rtx_first;
{
register rtx tmp_rtx;
if (rtx_first == 0)
fprintf (outf, "(nil)\n");
else
{
int i;
enum bb_state { NOT_IN_BB, IN_ONE_BB, IN_MULTIPLE_BB };
int max_uid = get_max_uid ();
basic_block *start = (basic_block *)
xcalloc (max_uid, sizeof (basic_block));
basic_block *end = (basic_block *)
xcalloc (max_uid, sizeof (basic_block));
enum bb_state *in_bb_p = (enum bb_state *)
xcalloc (max_uid, sizeof (enum bb_state));
for (i = n_basic_blocks - 1; i >= 0; i--)
{
basic_block bb = BASIC_BLOCK (i);
rtx x;
start[INSN_UID (bb->head)] = bb;
end[INSN_UID (bb->end)] = bb;
for (x = bb->head; x != NULL_RTX; x = NEXT_INSN (x))
{
enum bb_state state = IN_MULTIPLE_BB;
if (in_bb_p[INSN_UID (x)] == NOT_IN_BB)
state = IN_ONE_BB;
in_bb_p[INSN_UID (x)] = state;
if (x == bb->end)
break;
}
}
for (tmp_rtx = rtx_first; NULL != tmp_rtx; tmp_rtx = NEXT_INSN (tmp_rtx))
{
int did_output;
basic_block bb;
if ((bb = start[INSN_UID (tmp_rtx)]) != NULL)
{
fprintf (outf, ";; Start of basic block %d, registers live:",
bb->index);
dump_regset (bb->global_live_at_start, outf);
putc ('\n', outf);
}
if (in_bb_p[INSN_UID (tmp_rtx)] == NOT_IN_BB
&& GET_CODE (tmp_rtx) != NOTE
&& GET_CODE (tmp_rtx) != BARRIER)
fprintf (outf, ";; Insn is not within a basic block\n");
else if (in_bb_p[INSN_UID (tmp_rtx)] == IN_MULTIPLE_BB)
fprintf (outf, ";; Insn is in multiple basic blocks\n");
did_output = print_rtl_single (outf, tmp_rtx);
if ((bb = end[INSN_UID (tmp_rtx)]) != NULL)
{
fprintf (outf, ";; End of basic block %d, registers live:\n",
bb->index);
dump_regset (bb->global_live_at_end, outf);
putc ('\n', outf);
}
if (did_output)
putc ('\n', outf);
}
free (start);
free (end);
free (in_bb_p);
}
if (current_function_epilogue_delay_list != 0)
{
fprintf (outf, "\n;; Insns in epilogue delay list:\n\n");
for (tmp_rtx = current_function_epilogue_delay_list; tmp_rtx != 0;
tmp_rtx = XEXP (tmp_rtx, 1))
print_rtl_single (outf, XEXP (tmp_rtx, 0));
}
}
/* Dump the rtl into the current debugging dump file, then abort. */
static void
print_rtl_and_abort_fcn (file, line, function)
const char *file;
int line;
const char *function;
{
if (rtl_dump_file)
{
print_rtl_with_bb (rtl_dump_file, get_insns ());
fclose (rtl_dump_file);
}
fancy_abort (file, line, function);
}
/* Recompute register set/reference counts immediately prior to register
allocation.
This avoids problems with set/reference counts changing to/from values
which have special meanings to the register allocators.
Additionally, the reference counts are the primary component used by the
register allocators to prioritize pseudos for allocation to hard regs.
More accurate reference counts generally lead to better register allocation.
F is the first insn to be scanned.
LOOP_STEP denotes how much loop_depth should be incremented per
loop nesting level in order to increase the ref count more for
references in a loop.
It might be worthwhile to update REG_LIVE_LENGTH, REG_BASIC_BLOCK and
possibly other information which is used by the register allocators. */
void
recompute_reg_usage (f, loop_step)
rtx f ATTRIBUTE_UNUSED;
int loop_step ATTRIBUTE_UNUSED;
{
allocate_reg_life_data ();
update_life_info (NULL, UPDATE_LIFE_LOCAL, PROP_REG_INFO);
}
/* Optionally removes all the REG_DEAD and REG_UNUSED notes from a set of
blocks. If BLOCKS is NULL, assume the universal set. Returns a count
of the number of registers that died. */
int
count_or_remove_death_notes (blocks, kill)
sbitmap blocks;
int kill;
{
int i, count = 0;
for (i = n_basic_blocks - 1; i >= 0; --i)
{
basic_block bb;
rtx insn;
if (blocks && ! TEST_BIT (blocks, i))
continue;
bb = BASIC_BLOCK (i);
for (insn = bb->head;; insn = NEXT_INSN (insn))
{
if (INSN_P (insn))
{
rtx *pprev = ®_NOTES (insn);
rtx link = *pprev;
while (link)
{
switch (REG_NOTE_KIND (link))
{
case REG_DEAD:
if (GET_CODE (XEXP (link, 0)) == REG)
{
rtx reg = XEXP (link, 0);
int n;
if (REGNO (reg) >= FIRST_PSEUDO_REGISTER)
n = 1;
else
n = HARD_REGNO_NREGS (REGNO (reg), GET_MODE (reg));
count += n;
}
/* Fall through. */
case REG_UNUSED:
if (kill)
{
rtx next = XEXP (link, 1);
free_EXPR_LIST_node (link);
*pprev = link = next;
break;
}
/* Fall through. */
default:
pprev = &XEXP (link, 1);
link = *pprev;
break;
}
}
}
if (insn == bb->end)
break;
}
}
return count;
}
/* Update insns block within BB. */
void
update_bb_for_insn (bb)
basic_block bb;
{
rtx insn;
if (! basic_block_for_insn)
return;
for (insn = bb->head; ; insn = NEXT_INSN (insn))
{
set_block_for_insn (insn, bb);
if (insn == bb->end)
break;
}
}
/* Record INSN's block as BB. */
void
set_block_for_insn (insn, bb)
rtx insn;
basic_block bb;
{
size_t uid = INSN_UID (insn);
if (uid >= basic_block_for_insn->num_elements)
{
int new_size;
/* Add one-eighth the size so we don't keep calling xrealloc. */
new_size = uid + (uid + 7) / 8;
VARRAY_GROW (basic_block_for_insn, new_size);
}
VARRAY_BB (basic_block_for_insn, uid) = bb;
}
/* When a new insn has been inserted into an existing block, it will
sometimes emit more than a single insn. This routine will set the
block number for the specified insn, and look backwards in the insn
chain to see if there are any other uninitialized insns immediately
previous to this one, and set the block number for them too. */
void
set_block_for_new_insns (insn, bb)
rtx insn;
basic_block bb;
{
set_block_for_insn (insn, bb);
/* Scan the previous instructions setting the block number until we find
an instruction that has the block number set, or we find a note
of any kind. */
for (insn = PREV_INSN (insn); insn != NULL_RTX; insn = PREV_INSN (insn))
{
if (GET_CODE (insn) == NOTE)
break;
if ((unsigned) INSN_UID (insn) >= basic_block_for_insn->num_elements
|| BLOCK_FOR_INSN (insn) == 0)
set_block_for_insn (insn, bb);
else
break;
}
}
/* Verify the CFG consistency. This function check some CFG invariants and
aborts when something is wrong. Hope that this function will help to
convert many optimization passes to preserve CFG consistent.
Currently it does following checks:
- test head/end pointers
- overlapping of basic blocks
- edge list correctness
- headers of basic blocks (the NOTE_INSN_BASIC_BLOCK note)
- tails of basic blocks (ensure that boundary is necesary)
- scans body of the basic block for JUMP_INSN, CODE_LABEL
and NOTE_INSN_BASIC_BLOCK
- check that all insns are in the basic blocks
(except the switch handling code, barriers and notes)
- check that all returns are followed by barriers
In future it can be extended check a lot of other stuff as well
(reachability of basic blocks, life information, etc. etc.). */
void
verify_flow_info ()
{
const int max_uid = get_max_uid ();
const rtx rtx_first = get_insns ();
rtx last_head = get_last_insn ();
basic_block *bb_info, *last_visited;
rtx x;
int i, last_bb_num_seen, num_bb_notes, err = 0;
bb_info = (basic_block *) xcalloc (max_uid, sizeof (basic_block));
last_visited = (basic_block *) xcalloc (n_basic_blocks + 2,
sizeof (basic_block));
for (i = n_basic_blocks - 1; i >= 0; i--)
{
basic_block bb = BASIC_BLOCK (i);
rtx head = bb->head;
rtx end = bb->end;
/* Verify the end of the basic block is in the INSN chain. */
for (x = last_head; x != NULL_RTX; x = PREV_INSN (x))
if (x == end)
break;
if (!x)
{
error ("End insn %d for block %d not found in the insn stream.",
INSN_UID (end), bb->index);
err = 1;
}
/* Work backwards from the end to the head of the basic block
to verify the head is in the RTL chain. */
for (; x != NULL_RTX; x = PREV_INSN (x))
{
/* While walking over the insn chain, verify insns appear
in only one basic block and initialize the BB_INFO array
used by other passes. */
if (bb_info[INSN_UID (x)] != NULL)
{
error ("Insn %d is in multiple basic blocks (%d and %d)",
INSN_UID (x), bb->index, bb_info[INSN_UID (x)]->index);
err = 1;
}
bb_info[INSN_UID (x)] = bb;
if (x == head)
break;
}
if (!x)
{
error ("Head insn %d for block %d not found in the insn stream.",
INSN_UID (head), bb->index);
err = 1;
}
last_head = x;
}
/* Now check the basic blocks (boundaries etc.) */
for (i = n_basic_blocks - 1; i >= 0; i--)
{
basic_block bb = BASIC_BLOCK (i);
/* Check correctness of edge lists. */
edge e;
int has_fallthru = 0;
e = bb->succ;
while (e)
{
if (last_visited [e->dest->index + 2] == bb)
{
error ("verify_flow_info: Duplicate edge %i->%i",
e->src->index, e->dest->index);
err = 1;
}
last_visited [e->dest->index + 2] = bb;
if (e->flags & EDGE_FALLTHRU)
has_fallthru = 1;
if ((e->flags & EDGE_FALLTHRU)
&& e->src != ENTRY_BLOCK_PTR
&& e->dest != EXIT_BLOCK_PTR)
{
rtx insn;
if (e->src->index + 1 != e->dest->index)
{
error ("verify_flow_info: Incorrect blocks for fallthru %i->%i",
e->src->index, e->dest->index);
err = 1;
}
else
for (insn = NEXT_INSN (e->src->end); insn != e->dest->head;
insn = NEXT_INSN (insn))
if (GET_CODE (insn) == BARRIER || INSN_P (insn))
{
error ("verify_flow_info: Incorrect fallthru %i->%i",
e->src->index, e->dest->index);
fatal_insn ("Wrong insn in the fallthru edge", insn);
err = 1;
}
}
if (e->src != bb)
{
error ("verify_flow_info: Basic block %d succ edge is corrupted",
bb->index);
fprintf (stderr, "Predecessor: ");
dump_edge_info (stderr, e, 0);
fprintf (stderr, "\nSuccessor: ");
dump_edge_info (stderr, e, 1);
fprintf (stderr, "\n");
err = 1;
}
if (e->dest != EXIT_BLOCK_PTR)
{
edge e2 = e->dest->pred;
while (e2 && e2 != e)
e2 = e2->pred_next;
if (!e2)
{
error ("Basic block %i edge lists are corrupted", bb->index);
err = 1;
}
}
e = e->succ_next;
}
if (!has_fallthru)
{
rtx insn = bb->end;
/* Ensure existence of barrier in BB with no fallthru edges. */
for (insn = bb->end; GET_CODE (insn) != BARRIER;
insn = NEXT_INSN (insn))
if (!insn
|| (GET_CODE (insn) == NOTE
&& NOTE_LINE_NUMBER (insn) == NOTE_INSN_BASIC_BLOCK))
{
error ("Missing barrier after block %i", bb->index);
err = 1;
}
}
e = bb->pred;
while (e)
{
if (e->dest != bb)
{
error ("Basic block %d pred edge is corrupted", bb->index);
fputs ("Predecessor: ", stderr);
dump_edge_info (stderr, e, 0);
fputs ("\nSuccessor: ", stderr);
dump_edge_info (stderr, e, 1);
fputc ('\n', stderr);
err = 1;
}
if (e->src != ENTRY_BLOCK_PTR)
{
edge e2 = e->src->succ;
while (e2 && e2 != e)
e2 = e2->succ_next;
if (!e2)
{
error ("Basic block %i edge lists are corrupted", bb->index);
err = 1;
}
}
e = e->pred_next;
}
/* OK pointers are correct. Now check the header of basic
block. It ought to contain optional CODE_LABEL followed
by NOTE_BASIC_BLOCK. */
x = bb->head;
if (GET_CODE (x) == CODE_LABEL)
{
if (bb->end == x)
{
error ("NOTE_INSN_BASIC_BLOCK is missing for block %d",
bb->index);
err = 1;
}
x = NEXT_INSN (x);
}
if (!NOTE_INSN_BASIC_BLOCK_P (x) || NOTE_BASIC_BLOCK (x) != bb)
{
error ("NOTE_INSN_BASIC_BLOCK is missing for block %d\n",
bb->index);
err = 1;
}
if (bb->end == x)
{
/* Do checks for empty blocks here */
}
else
{
x = NEXT_INSN (x);
while (x)
{
if (NOTE_INSN_BASIC_BLOCK_P (x))
{
error ("NOTE_INSN_BASIC_BLOCK %d in the middle of basic block %d",
INSN_UID (x), bb->index);
err = 1;
}
if (x == bb->end)
break;
if (GET_CODE (x) == JUMP_INSN
|| GET_CODE (x) == CODE_LABEL
|| GET_CODE (x) == BARRIER)
{
error ("In basic block %d:", bb->index);
fatal_insn ("Flow control insn inside a basic block", x);
}
x = NEXT_INSN (x);
}
}
}
last_bb_num_seen = -1;
num_bb_notes = 0;
x = rtx_first;
while (x)
{
if (NOTE_INSN_BASIC_BLOCK_P (x))
{
basic_block bb = NOTE_BASIC_BLOCK (x);
num_bb_notes++;
if (bb->index != last_bb_num_seen + 1)
internal_error ("Basic blocks not numbered consecutively.");
last_bb_num_seen = bb->index;
}
if (!bb_info[INSN_UID (x)])
{
switch (GET_CODE (x))
{
case BARRIER:
case NOTE:
break;
case CODE_LABEL:
/* An addr_vec is placed outside any block block. */
if (NEXT_INSN (x)
&& GET_CODE (NEXT_INSN (x)) == JUMP_INSN
&& (GET_CODE (PATTERN (NEXT_INSN (x))) == ADDR_DIFF_VEC
|| GET_CODE (PATTERN (NEXT_INSN (x))) == ADDR_VEC))
{
x = NEXT_INSN (x);
}
/* But in any case, non-deletable labels can appear anywhere. */
break;
default:
fatal_insn ("Insn outside basic block", x);
}
}
if (INSN_P (x)
&& GET_CODE (x) == JUMP_INSN
&& returnjump_p (x) && ! condjump_p (x)
&& ! (NEXT_INSN (x) && GET_CODE (NEXT_INSN (x)) == BARRIER))
fatal_insn ("Return not followed by barrier", x);
x = NEXT_INSN (x);
}
if (num_bb_notes != n_basic_blocks)
internal_error
("number of bb notes in insn chain (%d) != n_basic_blocks (%d)",
num_bb_notes, n_basic_blocks);
if (err)
internal_error ("verify_flow_info failed.");
/* Clean up. */
free (bb_info);
free (last_visited);
}
/* Functions to access an edge list with a vector representation.
Enough data is kept such that given an index number, the
pred and succ that edge represents can be determined, or
given a pred and a succ, its index number can be returned.
This allows algorithms which consume a lot of memory to
represent the normally full matrix of edge (pred,succ) with a
single indexed vector, edge (EDGE_INDEX (pred, succ)), with no
wasted space in the client code due to sparse flow graphs. */
/* This functions initializes the edge list. Basically the entire
flowgraph is processed, and all edges are assigned a number,
and the data structure is filled in. */
struct edge_list *
create_edge_list ()
{
struct edge_list *elist;
edge e;
int num_edges;
int x;
int block_count;
block_count = n_basic_blocks + 2; /* Include the entry and exit blocks. */
num_edges = 0;
/* Determine the number of edges in the flow graph by counting successor
edges on each basic block. */
for (x = 0; x < n_basic_blocks; x++)
{
basic_block bb = BASIC_BLOCK (x);
for (e = bb->succ; e; e = e->succ_next)
num_edges++;
}
/* Don't forget successors of the entry block. */
for (e = ENTRY_BLOCK_PTR->succ; e; e = e->succ_next)
num_edges++;
elist = (struct edge_list *) xmalloc (sizeof (struct edge_list));
elist->num_blocks = block_count;
elist->num_edges = num_edges;
elist->index_to_edge = (edge *) xmalloc (sizeof (edge) * num_edges);
num_edges = 0;
/* Follow successors of the entry block, and register these edges. */
for (e = ENTRY_BLOCK_PTR->succ; e; e = e->succ_next)
{
elist->index_to_edge[num_edges] = e;
num_edges++;
}
for (x = 0; x < n_basic_blocks; x++)
{
basic_block bb = BASIC_BLOCK (x);
/* Follow all successors of blocks, and register these edges. */
for (e = bb->succ; e; e = e->succ_next)
{
elist->index_to_edge[num_edges] = e;
num_edges++;
}
}
return elist;
}
/* This function free's memory associated with an edge list. */
void
free_edge_list (elist)
struct edge_list *elist;
{
if (elist)
{
free (elist->index_to_edge);
free (elist);
}
}
/* This function provides debug output showing an edge list. */
void
print_edge_list (f, elist)
FILE *f;
struct edge_list *elist;
{
int x;
fprintf (f, "Compressed edge list, %d BBs + entry & exit, and %d edges\n",
elist->num_blocks - 2, elist->num_edges);
for (x = 0; x < elist->num_edges; x++)
{
fprintf (f, " %-4d - edge(", x);
if (INDEX_EDGE_PRED_BB (elist, x) == ENTRY_BLOCK_PTR)
fprintf (f, "entry,");
else
fprintf (f, "%d,", INDEX_EDGE_PRED_BB (elist, x)->index);
if (INDEX_EDGE_SUCC_BB (elist, x) == EXIT_BLOCK_PTR)
fprintf (f, "exit)\n");
else
fprintf (f, "%d)\n", INDEX_EDGE_SUCC_BB (elist, x)->index);
}
}
/* This function provides an internal consistency check of an edge list,
verifying that all edges are present, and that there are no
extra edges. */
void
verify_edge_list (f, elist)
FILE *f;
struct edge_list *elist;
{
int x, pred, succ, index;
edge e;
for (x = 0; x < n_basic_blocks; x++)
{
basic_block bb = BASIC_BLOCK (x);
for (e = bb->succ; e; e = e->succ_next)
{
pred = e->src->index;
succ = e->dest->index;
index = EDGE_INDEX (elist, e->src, e->dest);
if (index == EDGE_INDEX_NO_EDGE)
{
fprintf (f, "*p* No index for edge from %d to %d\n", pred, succ);
continue;
}
if (INDEX_EDGE_PRED_BB (elist, index)->index != pred)
fprintf (f, "*p* Pred for index %d should be %d not %d\n",
index, pred, INDEX_EDGE_PRED_BB (elist, index)->index);
if (INDEX_EDGE_SUCC_BB (elist, index)->index != succ)
fprintf (f, "*p* Succ for index %d should be %d not %d\n",
index, succ, INDEX_EDGE_SUCC_BB (elist, index)->index);
}
}
for (e = ENTRY_BLOCK_PTR->succ; e; e = e->succ_next)
{
pred = e->src->index;
succ = e->dest->index;
index = EDGE_INDEX (elist, e->src, e->dest);
if (index == EDGE_INDEX_NO_EDGE)
{
fprintf (f, "*p* No index for edge from %d to %d\n", pred, succ);
continue;
}
if (INDEX_EDGE_PRED_BB (elist, index)->index != pred)
fprintf (f, "*p* Pred for index %d should be %d not %d\n",
index, pred, INDEX_EDGE_PRED_BB (elist, index)->index);
if (INDEX_EDGE_SUCC_BB (elist, index)->index != succ)
fprintf (f, "*p* Succ for index %d should be %d not %d\n",
index, succ, INDEX_EDGE_SUCC_BB (elist, index)->index);
}
/* We've verified that all the edges are in the list, no lets make sure
there are no spurious edges in the list. */
for (pred = 0; pred < n_basic_blocks; pred++)
for (succ = 0; succ < n_basic_blocks; succ++)
{
basic_block p = BASIC_BLOCK (pred);
basic_block s = BASIC_BLOCK (succ);
int found_edge = 0;
for (e = p->succ; e; e = e->succ_next)
if (e->dest == s)
{
found_edge = 1;
break;
}
for (e = s->pred; e; e = e->pred_next)
if (e->src == p)
{
found_edge = 1;
break;
}
if (EDGE_INDEX (elist, BASIC_BLOCK (pred), BASIC_BLOCK (succ))
== EDGE_INDEX_NO_EDGE && found_edge != 0)
fprintf (f, "*** Edge (%d, %d) appears to not have an index\n",
pred, succ);
if (EDGE_INDEX (elist, BASIC_BLOCK (pred), BASIC_BLOCK (succ))
!= EDGE_INDEX_NO_EDGE && found_edge == 0)
fprintf (f, "*** Edge (%d, %d) has index %d, but there is no edge\n",
pred, succ, EDGE_INDEX (elist, BASIC_BLOCK (pred),
BASIC_BLOCK (succ)));
}
for (succ = 0; succ < n_basic_blocks; succ++)
{
basic_block p = ENTRY_BLOCK_PTR;
basic_block s = BASIC_BLOCK (succ);
int found_edge = 0;
for (e = p->succ; e; e = e->succ_next)
if (e->dest == s)
{
found_edge = 1;
break;
}
for (e = s->pred; e; e = e->pred_next)
if (e->src == p)
{
found_edge = 1;
break;
}
if (EDGE_INDEX (elist, ENTRY_BLOCK_PTR, BASIC_BLOCK (succ))
== EDGE_INDEX_NO_EDGE && found_edge != 0)
fprintf (f, "*** Edge (entry, %d) appears to not have an index\n",
succ);
if (EDGE_INDEX (elist, ENTRY_BLOCK_PTR, BASIC_BLOCK (succ))
!= EDGE_INDEX_NO_EDGE && found_edge == 0)
fprintf (f, "*** Edge (entry, %d) has index %d, but no edge exists\n",
succ, EDGE_INDEX (elist, ENTRY_BLOCK_PTR,
BASIC_BLOCK (succ)));
}
for (pred = 0; pred < n_basic_blocks; pred++)
{
basic_block p = BASIC_BLOCK (pred);
basic_block s = EXIT_BLOCK_PTR;
int found_edge = 0;
for (e = p->succ; e; e = e->succ_next)
if (e->dest == s)
{
found_edge = 1;
break;
}
for (e = s->pred; e; e = e->pred_next)
if (e->src == p)
{
found_edge = 1;
break;
}
if (EDGE_INDEX (elist, BASIC_BLOCK (pred), EXIT_BLOCK_PTR)
== EDGE_INDEX_NO_EDGE && found_edge != 0)
fprintf (f, "*** Edge (%d, exit) appears to not have an index\n",
pred);
if (EDGE_INDEX (elist, BASIC_BLOCK (pred), EXIT_BLOCK_PTR)
!= EDGE_INDEX_NO_EDGE && found_edge == 0)
fprintf (f, "*** Edge (%d, exit) has index %d, but no edge exists\n",
pred, EDGE_INDEX (elist, BASIC_BLOCK (pred),
EXIT_BLOCK_PTR));
}
}
/* This routine will determine what, if any, edge there is between
a specified predecessor and successor. */
int
find_edge_index (edge_list, pred, succ)
struct edge_list *edge_list;
basic_block pred, succ;
{
int x;
for (x = 0; x < NUM_EDGES (edge_list); x++)
{
if (INDEX_EDGE_PRED_BB (edge_list, x) == pred
&& INDEX_EDGE_SUCC_BB (edge_list, x) == succ)
return x;
}
return (EDGE_INDEX_NO_EDGE);
}
/* This function will remove an edge from the flow graph. */
void
remove_edge (e)
edge e;
{
edge last_pred = NULL;
edge last_succ = NULL;
edge tmp;
basic_block src, dest;
src = e->src;
dest = e->dest;
for (tmp = src->succ; tmp && tmp != e; tmp = tmp->succ_next)
last_succ = tmp;
if (!tmp)
abort ();
if (last_succ)
last_succ->succ_next = e->succ_next;
else
src->succ = e->succ_next;
for (tmp = dest->pred; tmp && tmp != e; tmp = tmp->pred_next)
last_pred = tmp;
if (!tmp)
abort ();
if (last_pred)
last_pred->pred_next = e->pred_next;
else
dest->pred = e->pred_next;
n_edges--;
free (e);
}
/* This routine will remove any fake successor edges for a basic block.
When the edge is removed, it is also removed from whatever predecessor
list it is in. */
static void
remove_fake_successors (bb)
basic_block bb;
{
edge e;
for (e = bb->succ; e;)
{
edge tmp = e;
e = e->succ_next;
if ((tmp->flags & EDGE_FAKE) == EDGE_FAKE)
remove_edge (tmp);
}
}
/* This routine will remove all fake edges from the flow graph. If
we remove all fake successors, it will automatically remove all
fake predecessors. */
void
remove_fake_edges ()
{
int x;
for (x = 0; x < n_basic_blocks; x++)
remove_fake_successors (BASIC_BLOCK (x));
/* We've handled all successors except the entry block's. */
remove_fake_successors (ENTRY_BLOCK_PTR);
}
/* This function will add a fake edge between any block which has no
successors, and the exit block. Some data flow equations require these
edges to exist. */
void
add_noreturn_fake_exit_edges ()
{
int x;
for (x = 0; x < n_basic_blocks; x++)
if (BASIC_BLOCK (x)->succ == NULL)
make_edge (NULL, BASIC_BLOCK (x), EXIT_BLOCK_PTR, EDGE_FAKE);
}
/* This function adds a fake edge between any infinite loops to the
exit block. Some optimizations require a path from each node to
the exit node.
See also Morgan, Figure 3.10, pp. 82-83.
The current implementation is ugly, not attempting to minimize the
number of inserted fake edges. To reduce the number of fake edges
to insert, add fake edges from _innermost_ loops containing only
nodes not reachable from the exit block. */
void
connect_infinite_loops_to_exit ()
{
basic_block unvisited_block;
/* Perform depth-first search in the reverse graph to find nodes
reachable from the exit block. */
struct depth_first_search_dsS dfs_ds;
flow_dfs_compute_reverse_init (&dfs_ds);
flow_dfs_compute_reverse_add_bb (&dfs_ds, EXIT_BLOCK_PTR);
/* Repeatedly add fake edges, updating the unreachable nodes. */
while (1)
{
unvisited_block = flow_dfs_compute_reverse_execute (&dfs_ds);
if (!unvisited_block)
break;
make_edge (NULL, unvisited_block, EXIT_BLOCK_PTR, EDGE_FAKE);
flow_dfs_compute_reverse_add_bb (&dfs_ds, unvisited_block);
}
flow_dfs_compute_reverse_finish (&dfs_ds);
return;
}
/* Redirect an edge's successor from one block to another. */
void
redirect_edge_succ (e, new_succ)
edge e;
basic_block new_succ;
{
edge *pe;
/* Disconnect the edge from the old successor block. */
for (pe = &e->dest->pred; *pe != e; pe = &(*pe)->pred_next)
continue;
*pe = (*pe)->pred_next;
/* Reconnect the edge to the new successor block. */
e->pred_next = new_succ->pred;
new_succ->pred = e;
e->dest = new_succ;
}
/* Like previous but avoid possible dupplicate edge. */
void
redirect_edge_succ_nodup (e, new_succ)
edge e;
basic_block new_succ;
{
edge s;
/* Check whether the edge is already present. */
for (s = e->src->succ; s; s = s->succ_next)
if (s->dest == new_succ && s != e)
break;
if (s)
{
s->flags |= e->flags;
s->probability += e->probability;
s->count += e->count;
remove_edge (e);
}
else
redirect_edge_succ (e, new_succ);
}
/* Redirect an edge's predecessor from one block to another. */
void
redirect_edge_pred (e, new_pred)
edge e;
basic_block new_pred;
{
edge *pe;
/* Disconnect the edge from the old predecessor block. */
for (pe = &e->src->succ; *pe != e; pe = &(*pe)->succ_next)
continue;
*pe = (*pe)->succ_next;
/* Reconnect the edge to the new predecessor block. */
e->succ_next = new_pred->succ;
new_pred->succ = e;
e->src = new_pred;
}
/* Dump the list of basic blocks in the bitmap NODES. */
static void
flow_nodes_print (str, nodes, file)
const char *str;
const sbitmap nodes;
FILE *file;
{
int node;
if (! nodes)
return;
fprintf (file, "%s { ", str);
EXECUTE_IF_SET_IN_SBITMAP (nodes, 0, node, {fprintf (file, "%d ", node);});
fputs ("}\n", file);
}
/* Dump the list of edges in the array EDGE_LIST. */
static void
flow_edge_list_print (str, edge_list, num_edges, file)
const char *str;
const edge *edge_list;
int num_edges;
FILE *file;
{
int i;
if (! edge_list)
return;
fprintf (file, "%s { ", str);
for (i = 0; i < num_edges; i++)
fprintf (file, "%d->%d ", edge_list[i]->src->index,
edge_list[i]->dest->index);
fputs ("}\n", file);
}
/* Dump loop related CFG information. */
static void
flow_loops_cfg_dump (loops, file)
const struct loops *loops;
FILE *file;
{
int i;
if (! loops->num || ! file || ! loops->cfg.dom)
return;
for (i = 0; i < n_basic_blocks; i++)
{
edge succ;
fprintf (file, ";; %d succs { ", i);
for (succ = BASIC_BLOCK (i)->succ; succ; succ = succ->succ_next)
fprintf (file, "%d ", succ->dest->index);
flow_nodes_print ("} dom", loops->cfg.dom[i], file);
}
/* Dump the DFS node order. */
if (loops->cfg.dfs_order)
{
fputs (";; DFS order: ", file);
for (i = 0; i < n_basic_blocks; i++)
fprintf (file, "%d ", loops->cfg.dfs_order[i]);
fputs ("\n", file);
}
/* Dump the reverse completion node order. */
if (loops->cfg.rc_order)
{
fputs (";; RC order: ", file);
for (i = 0; i < n_basic_blocks; i++)
fprintf (file, "%d ", loops->cfg.rc_order[i]);
fputs ("\n", file);
}
}
/* Return non-zero if the nodes of LOOP are a subset of OUTER. */
static int
flow_loop_nested_p (outer, loop)
struct loop *outer;
struct loop *loop;
{
return sbitmap_a_subset_b_p (loop->nodes, outer->nodes);
}
/* Dump the loop information specified by LOOP to the stream FILE
using auxiliary dump callback function LOOP_DUMP_AUX if non null. */
void
flow_loop_dump (loop, file, loop_dump_aux, verbose)
const struct loop *loop;
FILE *file;
void (*loop_dump_aux) PARAMS((const struct loop *, FILE *, int));
int verbose;
{
if (! loop || ! loop->header)
return;
fprintf (file, ";;\n;; Loop %d (%d to %d):%s%s\n",
loop->num, INSN_UID (loop->first->head),
INSN_UID (loop->last->end),
loop->shared ? " shared" : "",
loop->invalid ? " invalid" : "");
fprintf (file, ";; header %d, latch %d, pre-header %d, first %d, last %d\n",
loop->header->index, loop->latch->index,
loop->pre_header ? loop->pre_header->index : -1,
loop->first->index, loop->last->index);
fprintf (file, ";; depth %d, level %d, outer %ld\n",
loop->depth, loop->level,
(long) (loop->outer ? loop->outer->num : -1));
if (loop->pre_header_edges)
flow_edge_list_print (";; pre-header edges", loop->pre_header_edges,
loop->num_pre_header_edges, file);
flow_edge_list_print (";; entry edges", loop->entry_edges,
loop->num_entries, file);
fprintf (file, ";; %d", loop->num_nodes);
flow_nodes_print (" nodes", loop->nodes, file);
flow_edge_list_print (";; exit edges", loop->exit_edges,
loop->num_exits, file);
if (loop->exits_doms)
flow_nodes_print (";; exit doms", loop->exits_doms, file);
if (loop_dump_aux)
loop_dump_aux (loop, file, verbose);
}
/* Dump the loop information specified by LOOPS to the stream FILE,
using auxiliary dump callback function LOOP_DUMP_AUX if non null. */
void
flow_loops_dump (loops, file, loop_dump_aux, verbose)
const struct loops *loops;
FILE *file;
void (*loop_dump_aux) PARAMS((const struct loop *, FILE *, int));
int verbose;
{
int i;
int num_loops;
num_loops = loops->num;
if (! num_loops || ! file)
return;
fprintf (file, ";; %d loops found, %d levels\n",
num_loops, loops->levels);
for (i = 0; i < num_loops; i++)
{
struct loop *loop = &loops->array[i];
flow_loop_dump (loop, file, loop_dump_aux, verbose);
if (loop->shared)
{
int j;
for (j = 0; j < i; j++)
{
struct loop *oloop = &loops->array[j];
if (loop->header == oloop->header)
{
int disjoint;
int smaller;
smaller = loop->num_nodes < oloop->num_nodes;
/* If the union of LOOP and OLOOP is different than
the larger of LOOP and OLOOP then LOOP and OLOOP
must be disjoint. */
disjoint = ! flow_loop_nested_p (smaller ? loop : oloop,
smaller ? oloop : loop);
fprintf (file,
";; loop header %d shared by loops %d, %d %s\n",
loop->header->index, i, j,
disjoint ? "disjoint" : "nested");
}
}
}
}
if (verbose)
flow_loops_cfg_dump (loops, file);
}
/* Free all the memory allocated for LOOPS. */
void
flow_loops_free (loops)
struct loops *loops;
{
if (loops->array)
{
int i;
if (! loops->num)
abort ();
/* Free the loop descriptors. */
for (i = 0; i < loops->num; i++)
{
struct loop *loop = &loops->array[i];
if (loop->pre_header_edges)
free (loop->pre_header_edges);
if (loop->nodes)
sbitmap_free (loop->nodes);
if (loop->entry_edges)
free (loop->entry_edges);
if (loop->exit_edges)
free (loop->exit_edges);
if (loop->exits_doms)
sbitmap_free (loop->exits_doms);
}
free (loops->array);
loops->array = NULL;
if (loops->cfg.dom)
sbitmap_vector_free (loops->cfg.dom);
if (loops->cfg.dfs_order)
free (loops->cfg.dfs_order);
if (loops->shared_headers)
sbitmap_free (loops->shared_headers);
}
}
/* Find the entry edges into the loop with header HEADER and nodes
NODES and store in ENTRY_EDGES array. Return the number of entry
edges from the loop. */
static int
flow_loop_entry_edges_find (header, nodes, entry_edges)
basic_block header;
const sbitmap nodes;
edge **entry_edges;
{
edge e;
int num_entries;
*entry_edges = NULL;
num_entries = 0;
for (e = header->pred; e; e = e->pred_next)
{
basic_block src = e->src;
if (src == ENTRY_BLOCK_PTR || ! TEST_BIT (nodes, src->index))
num_entries++;
}
if (! num_entries)
abort ();
*entry_edges = (edge *) xmalloc (num_entries * sizeof (edge *));
num_entries = 0;
for (e = header->pred; e; e = e->pred_next)
{
basic_block src = e->src;
if (src == ENTRY_BLOCK_PTR || ! TEST_BIT (nodes, src->index))
(*entry_edges)[num_entries++] = e;
}
return num_entries;
}
/* Find the exit edges from the loop using the bitmap of loop nodes
NODES and store in EXIT_EDGES array. Return the number of
exit edges from the loop. */
static int
flow_loop_exit_edges_find (nodes, exit_edges)
const sbitmap nodes;
edge **exit_edges;
{
edge e;
int node;
int num_exits;
*exit_edges = NULL;
/* Check all nodes within the loop to see if there are any
successors not in the loop. Note that a node may have multiple
exiting edges ????? A node can have one jumping edge and one fallthru
edge so only one of these can exit the loop. */
num_exits = 0;
EXECUTE_IF_SET_IN_SBITMAP (nodes, 0, node, {
for (e = BASIC_BLOCK (node)->succ; e; e = e->succ_next)
{
basic_block dest = e->dest;
if (dest == EXIT_BLOCK_PTR || ! TEST_BIT (nodes, dest->index))
num_exits++;
}
});
if (! num_exits)
return 0;
*exit_edges = (edge *) xmalloc (num_exits * sizeof (edge *));
/* Store all exiting edges into an array. */
num_exits = 0;
EXECUTE_IF_SET_IN_SBITMAP (nodes, 0, node, {
for (e = BASIC_BLOCK (node)->succ; e; e = e->succ_next)
{
basic_block dest = e->dest;
if (dest == EXIT_BLOCK_PTR || ! TEST_BIT (nodes, dest->index))
(*exit_edges)[num_exits++] = e;
}
});
return num_exits;
}
/* Find the nodes contained within the loop with header HEADER and
latch LATCH and store in NODES. Return the number of nodes within
the loop. */
static int
flow_loop_nodes_find (header, latch, nodes)
basic_block header;
basic_block latch;
sbitmap nodes;
{
basic_block *stack;
int sp;
int num_nodes = 0;
stack = (basic_block *) xmalloc (n_basic_blocks * sizeof (basic_block));
sp = 0;
/* Start with only the loop header in the set of loop nodes. */
sbitmap_zero (nodes);
SET_BIT (nodes, header->index);
num_nodes++;
header->loop_depth++;
/* Push the loop latch on to the stack. */
if (! TEST_BIT (nodes, latch->index))
{
SET_BIT (nodes, latch->index);
latch->loop_depth++;
num_nodes++;
stack[sp++] = latch;
}
while (sp)
{
basic_block node;
edge e;
node = stack[--sp];
for (e = node->pred; e; e = e->pred_next)
{
basic_block ancestor = e->src;
/* If each ancestor not marked as part of loop, add to set of
loop nodes and push on to stack. */
if (ancestor != ENTRY_BLOCK_PTR
&& ! TEST_BIT (nodes, ancestor->index))
{
SET_BIT (nodes, ancestor->index);
ancestor->loop_depth++;
num_nodes++;
stack[sp++] = ancestor;
}
}
}
free (stack);
return num_nodes;
}
/* Compute the depth first search order and store in the array
DFS_ORDER if non-zero, marking the nodes visited in VISITED. If
RC_ORDER is non-zero, return the reverse completion number for each
node. Returns the number of nodes visited. A depth first search
tries to get as far away from the starting point as quickly as
possible. */
int
flow_depth_first_order_compute (dfs_order, rc_order)
int *dfs_order;
int *rc_order;
{
edge *stack;
int sp;
int dfsnum = 0;
int rcnum = n_basic_blocks - 1;
sbitmap visited;
/* Allocate stack for back-tracking up CFG. */
stack = (edge *) xmalloc ((n_basic_blocks + 1) * sizeof (edge));
sp = 0;
/* Allocate bitmap to track nodes that have been visited. */
visited = sbitmap_alloc (n_basic_blocks);
/* None of the nodes in the CFG have been visited yet. */
sbitmap_zero (visited);
/* Push the first edge on to the stack. */
stack[sp++] = ENTRY_BLOCK_PTR->succ;
while (sp)
{
edge e;
basic_block src;
basic_block dest;
/* Look at the edge on the top of the stack. */
e = stack[sp - 1];
src = e->src;
dest = e->dest;
/* Check if the edge destination has been visited yet. */
if (dest != EXIT_BLOCK_PTR && ! TEST_BIT (visited, dest->index))
{
/* Mark that we have visited the destination. */
SET_BIT (visited, dest->index);
if (dfs_order)
dfs_order[dfsnum++] = dest->index;
if (dest->succ)
{
/* Since the DEST node has been visited for the first
time, check its successors. */
stack[sp++] = dest->succ;
}
else
{
/* There are no successors for the DEST node so assign
its reverse completion number. */
if (rc_order)
rc_order[rcnum--] = dest->index;
}
}
else
{
if (! e->succ_next && src != ENTRY_BLOCK_PTR)
{
/* There are no more successors for the SRC node
so assign its reverse completion number. */
if (rc_order)
rc_order[rcnum--] = src->index;
}
if (e->succ_next)
stack[sp - 1] = e->succ_next;
else
sp--;
}
}
free (stack);
sbitmap_free (visited);
/* The number of nodes visited should not be greater than
n_basic_blocks. */
if (dfsnum > n_basic_blocks)
abort ();
/* There are some nodes left in the CFG that are unreachable. */
if (dfsnum < n_basic_blocks)
abort ();
return dfsnum;
}
/* Compute the depth first search order on the _reverse_ graph and
store in the array DFS_ORDER, marking the nodes visited in VISITED.
Returns the number of nodes visited.
The computation is split into three pieces:
flow_dfs_compute_reverse_init () creates the necessary data
structures.
flow_dfs_compute_reverse_add_bb () adds a basic block to the data
structures. The block will start the search.
flow_dfs_compute_reverse_execute () continues (or starts) the
search using the block on the top of the stack, stopping when the
stack is empty.
flow_dfs_compute_reverse_finish () destroys the necessary data
structures.
Thus, the user will probably call ..._init(), call ..._add_bb() to
add a beginning basic block to the stack, call ..._execute(),
possibly add another bb to the stack and again call ..._execute(),
..., and finally call _finish(). */
/* Initialize the data structures used for depth-first search on the
reverse graph. If INITIALIZE_STACK is nonzero, the exit block is
added to the basic block stack. DATA is the current depth-first
search context. If INITIALIZE_STACK is non-zero, there is an
element on the stack. */
static void
flow_dfs_compute_reverse_init (data)
depth_first_search_ds data;
{
/* Allocate stack for back-tracking up CFG. */
data->stack =
(basic_block *) xmalloc ((n_basic_blocks - (INVALID_BLOCK + 1))
* sizeof (basic_block));
data->sp = 0;
/* Allocate bitmap to track nodes that have been visited. */
data->visited_blocks = sbitmap_alloc (n_basic_blocks - (INVALID_BLOCK + 1));
/* None of the nodes in the CFG have been visited yet. */
sbitmap_zero (data->visited_blocks);
return;
}
/* Add the specified basic block to the top of the dfs data
structures. When the search continues, it will start at the
block. */
static void
flow_dfs_compute_reverse_add_bb (data, bb)
depth_first_search_ds data;
basic_block bb;
{
data->stack[data->sp++] = bb;
return;
}
/* Continue the depth-first search through the reverse graph starting
with the block at the stack's top and ending when the stack is
empty. Visited nodes are marked. Returns an unvisited basic
block, or NULL if there is none available. */
static basic_block
flow_dfs_compute_reverse_execute (data)
depth_first_search_ds data;
{
basic_block bb;
edge e;
int i;
while (data->sp > 0)
{
bb = data->stack[--data->sp];
/* Mark that we have visited this node. */
if (!TEST_BIT (data->visited_blocks, bb->index - (INVALID_BLOCK + 1)))
{
SET_BIT (data->visited_blocks, bb->index - (INVALID_BLOCK + 1));
/* Perform depth-first search on adjacent vertices. */
for (e = bb->pred; e; e = e->pred_next)
flow_dfs_compute_reverse_add_bb (data, e->src);
}
}
/* Determine if there are unvisited basic blocks. */
for (i = n_basic_blocks - (INVALID_BLOCK + 1); --i >= 0;)
if (!TEST_BIT (data->visited_blocks, i))
return BASIC_BLOCK (i + (INVALID_BLOCK + 1));
return NULL;
}
/* Destroy the data structures needed for depth-first search on the
reverse graph. */
static void
flow_dfs_compute_reverse_finish (data)
depth_first_search_ds data;
{
free (data->stack);
sbitmap_free (data->visited_blocks);
return;
}
/* Find the root node of the loop pre-header extended basic block and
the edges along the trace from the root node to the loop header. */
static void
flow_loop_pre_header_scan (loop)
struct loop *loop;
{
int num = 0;
basic_block ebb;
loop->num_pre_header_edges = 0;
if (loop->num_entries != 1)
return;
ebb = loop->entry_edges[0]->src;
if (ebb != ENTRY_BLOCK_PTR)
{
edge e;
/* Count number of edges along trace from loop header to
root of pre-header extended basic block. Usually this is
only one or two edges. */
num++;
while (ebb->pred->src != ENTRY_BLOCK_PTR && ! ebb->pred->pred_next)
{
ebb = ebb->pred->src;
num++;
}
loop->pre_header_edges = (edge *) xmalloc (num * sizeof (edge *));
loop->num_pre_header_edges = num;
/* Store edges in order that they are followed. The source
of the first edge is the root node of the pre-header extended
basic block and the destination of the last last edge is
the loop header. */
for (e = loop->entry_edges[0]; num; e = e->src->pred)
{
loop->pre_header_edges[--num] = e;
}
}
}
/* Return the block for the pre-header of the loop with header
HEADER where DOM specifies the dominator information. Return NULL if
there is no pre-header. */
static basic_block
flow_loop_pre_header_find (header, dom)
basic_block header;
const sbitmap *dom;
{
basic_block pre_header;
edge e;
/* If block p is a predecessor of the header and is the only block
that the header does not dominate, then it is the pre-header. */
pre_header = NULL;
for (e = header->pred; e; e = e->pred_next)
{
basic_block node = e->src;
if (node != ENTRY_BLOCK_PTR
&& ! TEST_BIT (dom[node->index], header->index))
{
if (pre_header == NULL)
pre_header = node;
else
{
/* There are multiple edges into the header from outside
the loop so there is no pre-header block. */
pre_header = NULL;
break;
}
}
}
return pre_header;
}
/* Add LOOP to the loop hierarchy tree where PREVLOOP was the loop
previously added. The insertion algorithm assumes that the loops
are added in the order found by a depth first search of the CFG. */
static void
flow_loop_tree_node_add (prevloop, loop)
struct loop *prevloop;
struct loop *loop;
{
if (flow_loop_nested_p (prevloop, loop))
{
prevloop->inner = loop;
loop->outer = prevloop;
return;
}
while (prevloop->outer)
{
if (flow_loop_nested_p (prevloop->outer, loop))
{
prevloop->next = loop;
loop->outer = prevloop->outer;
return;
}
prevloop = prevloop->outer;
}
prevloop->next = loop;
loop->outer = NULL;
}
/* Build the loop hierarchy tree for LOOPS. */
static void
flow_loops_tree_build (loops)
struct loops *loops;
{
int i;
int num_loops;
num_loops = loops->num;
if (! num_loops)
return;
/* Root the loop hierarchy tree with the first loop found.
Since we used a depth first search this should be the
outermost loop. */
loops->tree_root = &loops->array[0];
loops->tree_root->outer = loops->tree_root->inner = loops->tree_root->next = NULL;
/* Add the remaining loops to the tree. */
for (i = 1; i < num_loops; i++)
flow_loop_tree_node_add (&loops->array[i - 1], &loops->array[i]);
}
/* Helper function to compute loop nesting depth and enclosed loop level
for the natural loop specified by LOOP at the loop depth DEPTH.
Returns the loop level. */
static int
flow_loop_level_compute (loop, depth)
struct loop *loop;
int depth;
{
struct loop *inner;
int level = 1;
if (! loop)
return 0;
/* Traverse loop tree assigning depth and computing level as the
maximum level of all the inner loops of this loop. The loop
level is equivalent to the height of the loop in the loop tree
and corresponds to the number of enclosed loop levels (including
itself). */
for (inner = loop->inner; inner; inner = inner->next)
{
int ilevel;
ilevel = flow_loop_level_compute (inner, depth + 1) + 1;
if (ilevel > level)
level = ilevel;
}
loop->level = level;
loop->depth = depth;
return level;
}
/* Compute the loop nesting depth and enclosed loop level for the loop
hierarchy tree specfied by LOOPS. Return the maximum enclosed loop
level. */
static int
flow_loops_level_compute (loops)
struct loops *loops;
{
struct loop *loop;
int level;
int levels = 0;
/* Traverse all the outer level loops. */
for (loop = loops->tree_root; loop; loop = loop->next)
{
level = flow_loop_level_compute (loop, 1);
if (level > levels)
levels = level;
}
return levels;
}
/* Scan a single natural loop specified by LOOP collecting information
about it specified by FLAGS. */
int
flow_loop_scan (loops, loop, flags)
struct loops *loops;
struct loop *loop;
int flags;
{
/* Determine prerequisites. */
if ((flags & LOOP_EXITS_DOMS) && ! loop->exit_edges)
flags |= LOOP_EXIT_EDGES;
if (flags & LOOP_ENTRY_EDGES)
{
/* Find edges which enter the loop header.
Note that the entry edges should only
enter the header of a natural loop. */
loop->num_entries
= flow_loop_entry_edges_find (loop->header,
loop->nodes,
&loop->entry_edges);
}
if (flags & LOOP_EXIT_EDGES)
{
/* Find edges which exit the loop. */
loop->num_exits
= flow_loop_exit_edges_find (loop->nodes,
&loop->exit_edges);
}
if (flags & LOOP_EXITS_DOMS)
{
int j;
/* Determine which loop nodes dominate all the exits
of the loop. */
loop->exits_doms = sbitmap_alloc (n_basic_blocks);
sbitmap_copy (loop->exits_doms, loop->nodes);
for (j = 0; j < loop->num_exits; j++)
sbitmap_a_and_b (loop->exits_doms, loop->exits_doms,
loops->cfg.dom[loop->exit_edges[j]->src->index]);
/* The header of a natural loop must dominate
all exits. */
if (! TEST_BIT (loop->exits_doms, loop->header->index))
abort ();
}
if (flags & LOOP_PRE_HEADER)
{
/* Look to see if the loop has a pre-header node. */
loop->pre_header
= flow_loop_pre_header_find (loop->header, loops->cfg.dom);
/* Find the blocks within the extended basic block of
the loop pre-header. */
flow_loop_pre_header_scan (loop);
}
return 1;
}
/* Find all the natural loops in the function and save in LOOPS structure
and recalculate loop_depth information in basic block structures.
FLAGS controls which loop information is collected.
Return the number of natural loops found. */
int
flow_loops_find (loops, flags)
struct loops *loops;
int flags;
{
int i;
int b;
int num_loops;
edge e;
sbitmap headers;
sbitmap *dom;
int *dfs_order;
int *rc_order;
/* This function cannot be repeatedly called with different
flags to build up the loop information. The loop tree
must always be built if this function is called. */
if (! (flags & LOOP_TREE))
abort ();
memset (loops, 0, sizeof (*loops));
/* Taking care of this degenerate case makes the rest of
this code simpler. */
if (n_basic_blocks == 0)
return 0;
dfs_order = NULL;
rc_order = NULL;
/* Compute the dominators. */
dom = sbitmap_vector_alloc (n_basic_blocks, n_basic_blocks);
calculate_dominance_info (NULL, dom, CDI_DOMINATORS);
/* Count the number of loop edges (back edges). This should be the
same as the number of natural loops. */
num_loops = 0;
for (b = 0; b < n_basic_blocks; b++)
{
basic_block header;
header = BASIC_BLOCK (b);
header->loop_depth = 0;
for (e = header->pred; e; e = e->pred_next)
{
basic_block latch = e->src;
/* Look for back edges where a predecessor is dominated
by this block. A natural loop has a single entry
node (header) that dominates all the nodes in the
loop. It also has single back edge to the header
from a latch node. Note that multiple natural loops
may share the same header. */
if (b != header->index)
abort ();
if (latch != ENTRY_BLOCK_PTR && TEST_BIT (dom[latch->index], b))
num_loops++;
}
}
if (num_loops)
{
/* Compute depth first search order of the CFG so that outer
natural loops will be found before inner natural loops. */
dfs_order = (int *) xmalloc (n_basic_blocks * sizeof (int));
rc_order = (int *) xmalloc (n_basic_blocks * sizeof (int));
flow_depth_first_order_compute (dfs_order, rc_order);
/* Save CFG derived information to avoid recomputing it. */
loops->cfg.dom = dom;
loops->cfg.dfs_order = dfs_order;
loops->cfg.rc_order = rc_order;
/* Allocate loop structures. */
loops->array
= (struct loop *) xcalloc (num_loops, sizeof (struct loop));
headers = sbitmap_alloc (n_basic_blocks);
sbitmap_zero (headers);
loops->shared_headers = sbitmap_alloc (n_basic_blocks);
sbitmap_zero (loops->shared_headers);
/* Find and record information about all the natural loops
in the CFG. */
num_loops = 0;
for (b = 0; b < n_basic_blocks; b++)
{
basic_block header;
/* Search the nodes of the CFG in reverse completion order
so that we can find outer loops first. */
header = BASIC_BLOCK (rc_order[b]);
/* Look for all the possible latch blocks for this header. */
for (e = header->pred; e; e = e->pred_next)
{
basic_block latch = e->src;
/* Look for back edges where a predecessor is dominated
by this block. A natural loop has a single entry
node (header) that dominates all the nodes in the
loop. It also has single back edge to the header
from a latch node. Note that multiple natural loops
may share the same header. */
if (latch != ENTRY_BLOCK_PTR
&& TEST_BIT (dom[latch->index], header->index))
{
struct loop *loop;
loop = loops->array + num_loops;
loop->header = header;
loop->latch = latch;
loop->num = num_loops;
num_loops++;
}
}
}
for (i = 0; i < num_loops; i++)
{
struct loop *loop = &loops->array[i];
/* Keep track of blocks that are loop headers so
that we can tell which loops should be merged. */
if (TEST_BIT (headers, loop->header->index))
SET_BIT (loops->shared_headers, loop->header->index);
SET_BIT (headers, loop->header->index);
/* Find nodes contained within the loop. */
loop->nodes = sbitmap_alloc (n_basic_blocks);
loop->num_nodes
= flow_loop_nodes_find (loop->header, loop->latch, loop->nodes);
/* Compute first and last blocks within the loop.
These are often the same as the loop header and
loop latch respectively, but this is not always
the case. */
loop->first
= BASIC_BLOCK (sbitmap_first_set_bit (loop->nodes));
loop->last
= BASIC_BLOCK (sbitmap_last_set_bit (loop->nodes));
flow_loop_scan (loops, loop, flags);
}
/* Natural loops with shared headers may either be disjoint or
nested. Disjoint loops with shared headers cannot be inner
loops and should be merged. For now just mark loops that share
headers. */
for (i = 0; i < num_loops; i++)
if (TEST_BIT (loops->shared_headers, loops->array[i].header->index))
loops->array[i].shared = 1;
sbitmap_free (headers);
}
else
{
sbitmap_vector_free (dom);
}
loops->num = num_loops;
/* Build the loop hierarchy tree. */
flow_loops_tree_build (loops);
/* Assign the loop nesting depth and enclosed loop level for each
loop. */
loops->levels = flow_loops_level_compute (loops);
return num_loops;
}
/* Update the information regarding the loops in the CFG
specified by LOOPS. */
int
flow_loops_update (loops, flags)
struct loops *loops;
int flags;
{
/* One day we may want to update the current loop data. For now
throw away the old stuff and rebuild what we need. */
if (loops->array)
flow_loops_free (loops);
return flow_loops_find (loops, flags);
}
/* Return non-zero if edge E enters header of LOOP from outside of LOOP. */
int
flow_loop_outside_edge_p (loop, e)
const struct loop *loop;
edge e;
{
if (e->dest != loop->header)
abort ();
return (e->src == ENTRY_BLOCK_PTR)
|| ! TEST_BIT (loop->nodes, e->src->index);
}
/* Clear LOG_LINKS fields of insns in a chain.
Also clear the global_live_at_{start,end} fields of the basic block
structures. */
void
clear_log_links (insns)
rtx insns;
{
rtx i;
int b;
for (i = insns; i; i = NEXT_INSN (i))
if (INSN_P (i))
LOG_LINKS (i) = 0;
for (b = 0; b < n_basic_blocks; b++)
{
basic_block bb = BASIC_BLOCK (b);
bb->global_live_at_start = NULL;
bb->global_live_at_end = NULL;
}
ENTRY_BLOCK_PTR->global_live_at_end = NULL;
EXIT_BLOCK_PTR->global_live_at_start = NULL;
}
/* Given a register bitmap, turn on the bits in a HARD_REG_SET that
correspond to the hard registers, if any, set in that map. This
could be done far more efficiently by having all sorts of special-cases
with moving single words, but probably isn't worth the trouble. */
void
reg_set_to_hard_reg_set (to, from)
HARD_REG_SET *to;
bitmap from;
{
int i;
EXECUTE_IF_SET_IN_BITMAP
(from, 0, i,
{
if (i >= FIRST_PSEUDO_REGISTER)
return;
SET_HARD_REG_BIT (*to, i);
});
}
/* Called once at intialization time. */
void
init_flow ()
{
static int initialized;
if (!initialized)
{
gcc_obstack_init (&flow_obstack);
flow_firstobj = (char *) obstack_alloc (&flow_obstack, 0);
initialized = 1;
}
else
{
obstack_free (&flow_obstack, flow_firstobj);
flow_firstobj = (char *) obstack_alloc (&flow_obstack, 0);
}
}
/* Assume that the preceeding pass has possibly eliminated jump instructions
or converted the unconditional jumps. Eliminate the edges from CFG.
Return true if any edges are eliminated. */
bool
purge_dead_edges (bb)
basic_block bb;
{
edge e, next;
rtx insn = bb->end;
bool purged = false;
if (GET_CODE (insn) == JUMP_INSN && !simplejump_p (insn))
return false;
if (GET_CODE (insn) == JUMP_INSN)
{
rtx note;
edge b,f;
/* We do care only about conditional jumps and simplejumps. */
if (!any_condjump_p (insn)
&& !returnjump_p (insn)
&& !simplejump_p (insn))
return false;
for (e = bb->succ; e; e = next)
{
next = e->succ_next;
/* Check purposes we can have edge. */
if ((e->flags & EDGE_FALLTHRU)
&& any_condjump_p (insn))
continue;
if (e->dest != EXIT_BLOCK_PTR
&& e->dest->head == JUMP_LABEL (insn))
continue;
if (e->dest == EXIT_BLOCK_PTR
&& returnjump_p (insn))
continue;
purged = true;
remove_edge (e);
}
if (!bb->succ || !purged)
return false;
if (rtl_dump_file)
fprintf (rtl_dump_file, "Purged edges from bb %i\n", bb->index);
if (!optimize)
return purged;
/* Redistribute probabilities. */
if (!bb->succ->succ_next)
{
bb->succ->probability = REG_BR_PROB_BASE;
bb->succ->count = bb->count;
}
else
{
note = find_reg_note (insn, REG_BR_PROB, NULL);
if (!note)
return purged;
b = BRANCH_EDGE (bb);
f = FALLTHRU_EDGE (bb);
b->probability = INTVAL (XEXP (note, 0));
f->probability = REG_BR_PROB_BASE - b->probability;
b->count = bb->count * b->probability / REG_BR_PROB_BASE;
f->count = bb->count * f->probability / REG_BR_PROB_BASE;
}
return purged;
}
/* Cleanup abnormal edges caused by throwing insns that have been
eliminated. */
if (! can_throw_internal (bb->end))
for (e = bb->succ; e; e = next)
{
next = e->succ_next;
if (e->flags & EDGE_EH)
{
remove_edge (e);
purged = true;
}
}
/* If we don't see a jump insn, we don't know exactly why the block would
have been broken at this point. Look for a simple, non-fallthru edge,
as these are only created by conditional branches. If we find such an
edge we know that there used to be a jump here and can then safely
remove all non-fallthru edges. */
for (e = bb->succ; e && (e->flags & (EDGE_COMPLEX | EDGE_FALLTHRU));
e = e->succ_next);
if (!e)
return purged;
for (e = bb->succ; e; e = next)
{
next = e->succ_next;
if (!(e->flags & EDGE_FALLTHRU))
remove_edge (e), purged = true;
}
if (!bb->succ || bb->succ->succ_next)
abort ();
bb->succ->probability = REG_BR_PROB_BASE;
bb->succ->count = bb->count;
if (rtl_dump_file)
fprintf (rtl_dump_file, "Purged non-fallthru edges from bb %i\n",
bb->index);
return purged;
}
/* Search all basic blocks for potentionally dead edges and purge them.
Return true ifif some edge has been elliminated.
*/
bool
purge_all_dead_edges ()
{
int i, purged = false;
for (i = 0; i < n_basic_blocks; i++)
purged |= purge_dead_edges (BASIC_BLOCK (i));
return purged;
}
|