summaryrefslogtreecommitdiff
path: root/gcc/fortran/class.c
blob: 2e347cb86701facc3c0ee2d648f5df0ba44bbc66 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
/* Implementation of Fortran 2003 Polymorphism.
   Copyright (C) 2009, 2010
   Free Software Foundation, Inc.
   Contributed by Paul Richard Thomas <pault@gcc.gnu.org>
   and Janus Weil <janus@gcc.gnu.org>

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.

GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3.  If not see
<http://www.gnu.org/licenses/>.  */


/* class.c -- This file contains the front end functions needed to service
              the implementation of Fortran 2003 polymorphism and other
              object-oriented features.  */


/* Outline of the internal representation:

   Each CLASS variable is encapsulated by a class container, which is a
   structure with two fields:
    * _data: A pointer to the actual data of the variable. This field has the
             declared type of the class variable and its attributes
             (pointer/allocatable/dimension/...).
    * _vptr: A pointer to the vtable entry (see below) of the dynamic type.

   For each derived type we set up a "vtable" entry, i.e. a structure with the
   following fields:
    * _hash:     A hash value serving as a unique identifier for this type.
    * _size:     The size in bytes of the derived type.
    * _extends:  A pointer to the vtable entry of the parent derived type.
    * _def_init: A pointer to a default initialized variable of this type.
    * _copy:     A procedure pointer to a copying procedure.
    * _final:    A procedure pointer to a wrapper function, which frees
		 allocatable components and calls FINAL subroutines.

   After these follow procedure pointer components for the specific
   type-bound procedures.  */


#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "gfortran.h"
#include "constructor.h"


/* Inserts a derived type component reference in a data reference chain.
    TS: base type of the ref chain so far, in which we will pick the component
    REF: the address of the GFC_REF pointer to update
    NAME: name of the component to insert
   Note that component insertion makes sense only if we are at the end of
   the chain (*REF == NULL) or if we are adding a missing "_data" component
   to access the actual contents of a class object.  */

static void
insert_component_ref (gfc_typespec *ts, gfc_ref **ref, const char * const name)
{
  gfc_symbol *type_sym;
  gfc_ref *new_ref;

  gcc_assert (ts->type == BT_DERIVED || ts->type == BT_CLASS);
  type_sym = ts->u.derived;

  new_ref = gfc_get_ref ();
  new_ref->type = REF_COMPONENT;
  new_ref->next = *ref;
  new_ref->u.c.sym = type_sym;
  new_ref->u.c.component = gfc_find_component (type_sym, name, true, true);
  gcc_assert (new_ref->u.c.component);

  if (new_ref->next)
    {
      gfc_ref *next = NULL;

      /* We need to update the base type in the trailing reference chain to
	 that of the new component.  */

      gcc_assert (strcmp (name, "_data") == 0);

      if (new_ref->next->type == REF_COMPONENT)
	next = new_ref->next;
      else if (new_ref->next->type == REF_ARRAY
	       && new_ref->next->next
	       && new_ref->next->next->type == REF_COMPONENT)
	next = new_ref->next->next;

      if (next != NULL)
	{
	  gcc_assert (new_ref->u.c.component->ts.type == BT_CLASS
		      || new_ref->u.c.component->ts.type == BT_DERIVED);
	  next->u.c.sym = new_ref->u.c.component->ts.u.derived;
	}
    }

  *ref = new_ref;
}


/* Tells whether we need to add a "_data" reference to access REF subobject
   from an object of type TS.  If FIRST_REF_IN_CHAIN is set, then the base
   object accessed by REF is a variable; in other words it is a full object,
   not a subobject.  */

static bool
class_data_ref_missing (gfc_typespec *ts, gfc_ref *ref, bool first_ref_in_chain)
{
  /* Only class containers may need the "_data" reference.  */
  if (ts->type != BT_CLASS)
    return false;

  /* Accessing a class container with an array reference is certainly wrong.  */
  if (ref->type != REF_COMPONENT)
    return true;

  /* Accessing the class container's fields is fine.  */
  if (ref->u.c.component->name[0] == '_')
    return false;

  /* At this point we have a class container with a non class container's field
     component reference.  We don't want to add the "_data" component if we are
     at the first reference and the symbol's type is an extended derived type.
     In that case, conv_parent_component_references will do the right thing so
     it is not absolutely necessary.  Omitting it prevents a regression (see
     class_41.f03) in the interface mapping mechanism.  When evaluating string
     lengths depending on dummy arguments, we create a fake symbol with a type
     equal to that of the dummy type.  However, because of type extension,
     the backend type (corresponding to the actual argument) can have a
     different (extended) type.  Adding the "_data" component explicitly, using
     the base type, confuses the gfc_conv_component_ref code which deals with
     the extended type.  */
  if (first_ref_in_chain && ts->u.derived->attr.extension)
    return false;

  /* We have a class container with a non class container's field component
     reference that doesn't fall into the above.  */
  return true;
}


/* Browse through a data reference chain and add the missing "_data" references
   when a subobject of a class object is accessed without it.
   Note that it doesn't add the "_data" reference when the class container
   is the last element in the reference chain.  */

void
gfc_fix_class_refs (gfc_expr *e)
{
  gfc_typespec *ts;
  gfc_ref **ref;

  if ((e->expr_type != EXPR_VARIABLE
       && e->expr_type != EXPR_FUNCTION)
      || (e->expr_type == EXPR_FUNCTION
	  && e->value.function.isym != NULL))
    return;

  ts = &e->symtree->n.sym->ts;

  for (ref = &e->ref; *ref != NULL; ref = &(*ref)->next)
    {
      if (class_data_ref_missing (ts, *ref, ref == &e->ref))
	insert_component_ref (ts, ref, "_data");

      if ((*ref)->type == REF_COMPONENT)
	ts = &(*ref)->u.c.component->ts;
    }
}


/* Insert a reference to the component of the given name.
   Only to be used with CLASS containers and vtables.  */

void
gfc_add_component_ref (gfc_expr *e, const char *name)
{
  gfc_ref **tail = &(e->ref);
  gfc_ref *next = NULL;
  gfc_symbol *derived = e->symtree->n.sym->ts.u.derived;
  while (*tail != NULL)
    {
      if ((*tail)->type == REF_COMPONENT)
	{
	  if (strcmp ((*tail)->u.c.component->name, "_data") == 0
		&& (*tail)->next
		&& (*tail)->next->type == REF_ARRAY
		&& (*tail)->next->next == NULL)
	    return;
	  derived = (*tail)->u.c.component->ts.u.derived;
	}
      if ((*tail)->type == REF_ARRAY && (*tail)->next == NULL)
	break;
      tail = &((*tail)->next);
    }
  if (*tail != NULL && strcmp (name, "_data") == 0)
    next = *tail;
  (*tail) = gfc_get_ref();
  (*tail)->next = next;
  (*tail)->type = REF_COMPONENT;
  (*tail)->u.c.sym = derived;
  (*tail)->u.c.component = gfc_find_component (derived, name, true, true);
  gcc_assert((*tail)->u.c.component);
  if (!next)
    e->ts = (*tail)->u.c.component->ts;
}


/* This is used to add both the _data component reference and an array
   reference to class expressions.  Used in translation of intrinsic
   array inquiry functions.  */

void
gfc_add_class_array_ref (gfc_expr *e)
{
  int rank = CLASS_DATA (e)->as->rank;
  gfc_array_spec *as = CLASS_DATA (e)->as;
  gfc_ref *ref = NULL;
  gfc_add_component_ref (e, "_data");
  e->rank = rank;
  for (ref = e->ref; ref; ref = ref->next)
    if (!ref->next)
      break;
  if (ref->type != REF_ARRAY)
    {
      ref->next = gfc_get_ref ();
      ref = ref->next;
      ref->type = REF_ARRAY;
      ref->u.ar.type = AR_FULL;
      ref->u.ar.as = as;	  
    }
}


/* Unfortunately, class array expressions can appear in various conditions;
   with and without both _data component and an arrayspec.  This function
   deals with that variability.  The previous reference to 'ref' is to a
   class array.  */

static bool
class_array_ref_detected (gfc_ref *ref, bool *full_array)
{
  bool no_data = false;
  bool with_data = false;

  /* An array reference with no _data component.  */
  if (ref && ref->type == REF_ARRAY
	&& !ref->next
	&& ref->u.ar.type != AR_ELEMENT)
    {
      if (full_array)
        *full_array = ref->u.ar.type == AR_FULL;
      no_data = true;
    }

  /* Cover cases where _data appears, with or without an array ref.  */
  if (ref && ref->type == REF_COMPONENT
	&& strcmp (ref->u.c.component->name, "_data") == 0)
    {
      if (!ref->next)
	{
	  with_data = true;
	  if (full_array)
	    *full_array = true;
	}
      else if (ref->next && ref->next->type == REF_ARRAY
	    && !ref->next->next
	    && ref->type == REF_COMPONENT
	    && ref->next->type == REF_ARRAY
	    && ref->next->u.ar.type != AR_ELEMENT)
	{
	  with_data = true;
	  if (full_array)
	    *full_array = ref->next->u.ar.type == AR_FULL;
	}
    }

  return no_data || with_data;
}


/* Returns true if the expression contains a reference to a class
   array.  Notice that class array elements return false.  */

bool
gfc_is_class_array_ref (gfc_expr *e, bool *full_array)
{
  gfc_ref *ref;

  if (!e->rank)
    return false;

  if (full_array)
    *full_array= false;

  /* Is this a class array object? ie. Is the symbol of type class?  */
  if (e->symtree
	&& e->symtree->n.sym->ts.type == BT_CLASS
	&& CLASS_DATA (e->symtree->n.sym)
	&& CLASS_DATA (e->symtree->n.sym)->attr.dimension
	&& class_array_ref_detected (e->ref, full_array))
    return true;

  /* Or is this a class array component reference?  */
  for (ref = e->ref; ref; ref = ref->next)
    {
      if (ref->type == REF_COMPONENT
	    && ref->u.c.component->ts.type == BT_CLASS
	    && CLASS_DATA (ref->u.c.component)->attr.dimension
	    && class_array_ref_detected (ref->next, full_array))
	return true;
    }

  return false;
}


/* Returns true if the expression is a reference to a class
   scalar.  This function is necessary because such expressions
   can be dressed with a reference to the _data component and so
   have a type other than BT_CLASS.  */

bool
gfc_is_class_scalar_expr (gfc_expr *e)
{
  gfc_ref *ref;

  if (e->rank)
    return false;

  /* Is this a class object?  */
  if (e->symtree
	&& e->symtree->n.sym->ts.type == BT_CLASS
	&& CLASS_DATA (e->symtree->n.sym)
	&& !CLASS_DATA (e->symtree->n.sym)->attr.dimension
	&& (e->ref == NULL
	    || (strcmp (e->ref->u.c.component->name, "_data") == 0
		&& e->ref->next == NULL)))
    return true;

  /* Or is the final reference BT_CLASS or _data?  */
  for (ref = e->ref; ref; ref = ref->next)
    {
      if (ref->type == REF_COMPONENT
	    && ref->u.c.component->ts.type == BT_CLASS
	    && CLASS_DATA (ref->u.c.component)
	    && !CLASS_DATA (ref->u.c.component)->attr.dimension
	    && (ref->next == NULL
		|| (strcmp (ref->next->u.c.component->name, "_data") == 0
		    && ref->next->next == NULL)))
	return true;
    }

  return false;
}


/* Tells whether the expression E is a reference to a (scalar) class container.
   Scalar because array class containers usually have an array reference after
   them, and gfc_fix_class_refs will add the missing "_data" component reference
   in that case.  */

bool
gfc_is_class_container_ref (gfc_expr *e)
{
  gfc_ref *ref;
  bool result;

  if (e->expr_type != EXPR_VARIABLE)
    return e->ts.type == BT_CLASS;

  if (e->symtree->n.sym->ts.type == BT_CLASS)
    result = true;
  else
    result = false;

  for (ref = e->ref; ref; ref = ref->next)
    {
      if (ref->type != REF_COMPONENT)
	result = false;
      else if (ref->u.c.component->ts.type == BT_CLASS)
	result = true; 
      else
	result = false;
    }

  return result;
}


/* Build a NULL initializer for CLASS pointers,
   initializing the _data component to NULL and
   the _vptr component to the declared type.  */

gfc_expr *
gfc_class_null_initializer (gfc_typespec *ts)
{
  gfc_expr *init;
  gfc_component *comp;
  
  init = gfc_get_structure_constructor_expr (ts->type, ts->kind,
					     &ts->u.derived->declared_at);
  init->ts = *ts;
  
  for (comp = ts->u.derived->components; comp; comp = comp->next)
    {
      gfc_constructor *ctor = gfc_constructor_get();
      if (strcmp (comp->name, "_vptr") == 0)
	ctor->expr = gfc_lval_expr_from_sym (gfc_find_derived_vtab (ts->u.derived));
      else
	ctor->expr = gfc_get_null_expr (NULL);
      gfc_constructor_append (&init->value.constructor, ctor);
    }

  return init;
}


/* Create a unique string identifier for a derived type, composed of its name
   and module name. This is used to construct unique names for the class
   containers and vtab symbols.  */

static void
get_unique_type_string (char *string, gfc_symbol *derived)
{
  char dt_name[GFC_MAX_SYMBOL_LEN+1];
  sprintf (dt_name, "%s", derived->name);
  dt_name[0] = TOUPPER (dt_name[0]);
  if (derived->module)
    sprintf (string, "%s_%s", derived->module, dt_name);
  else if (derived->ns->proc_name)
    sprintf (string, "%s_%s", derived->ns->proc_name->name, dt_name);
  else
    sprintf (string, "_%s", dt_name);
}


/* A relative of 'get_unique_type_string' which makes sure the generated
   string will not be too long (replacing it by a hash string if needed).  */

static void
get_unique_hashed_string (char *string, gfc_symbol *derived)
{
  char tmp[2*GFC_MAX_SYMBOL_LEN+2];
  get_unique_type_string (&tmp[0], derived);
  /* If string is too long, use hash value in hex representation (allow for
     extra decoration, cf. gfc_build_class_symbol & gfc_find_derived_vtab).
     We need space to for 15 characters "__class_" + symbol name + "_%d_%da",
     where %d is the (co)rank which can be up to n = 15.  */
  if (strlen (tmp) > GFC_MAX_SYMBOL_LEN - 15)
    {
      int h = gfc_hash_value (derived);
      sprintf (string, "%X", h);
    }
  else
    strcpy (string, tmp);
}


/* Assign a hash value for a derived type. The algorithm is that of SDBM.  */

unsigned int
gfc_hash_value (gfc_symbol *sym)
{
  unsigned int hash = 0;
  char c[2*(GFC_MAX_SYMBOL_LEN+1)];
  int i, len;
  
  get_unique_type_string (&c[0], sym);
  len = strlen (c);
  
  for (i = 0; i < len; i++)
    hash = (hash << 6) + (hash << 16) - hash + c[i];

  /* Return the hash but take the modulus for the sake of module read,
     even though this slightly increases the chance of collision.  */
  return (hash % 100000000);
}


/* Build a polymorphic CLASS entity, using the symbol that comes from
   build_sym. A CLASS entity is represented by an encapsulating type,
   which contains the declared type as '_data' component, plus a pointer
   component '_vptr' which determines the dynamic type.  */

gfc_try
gfc_build_class_symbol (gfc_typespec *ts, symbol_attribute *attr,
			gfc_array_spec **as, bool delayed_vtab)
{
  char name[GFC_MAX_SYMBOL_LEN+1], tname[GFC_MAX_SYMBOL_LEN+1];
  gfc_symbol *fclass;
  gfc_symbol *vtab;
  gfc_component *c;
  int rank;

  gcc_assert (as);

  if (*as && (*as)->type == AS_ASSUMED_SIZE)
    {
      gfc_error ("Assumed size polymorphic objects or components, such "
		 "as that at %C, have not yet been implemented");
      return FAILURE;
    }

  if (attr->class_ok)
    /* Class container has already been built.  */
    return SUCCESS;

  attr->class_ok = attr->dummy || attr->pointer || attr->allocatable
		   || attr->select_type_temporary;
  
  if (!attr->class_ok)
    /* We can not build the class container yet.  */
    return SUCCESS;

  /* Determine the name of the encapsulating type.  */
  rank = !(*as) || (*as)->rank == -1 ? GFC_MAX_DIMENSIONS : (*as)->rank;
  get_unique_hashed_string (tname, ts->u.derived);
  if ((*as) && attr->allocatable)
    sprintf (name, "__class_%s_%d_%da", tname, rank, (*as)->corank);
  else if ((*as) && attr->pointer)
    sprintf (name, "__class_%s_%d_%dp", tname, rank, (*as)->corank);
  else if ((*as))
    sprintf (name, "__class_%s_%d_%d", tname, rank, (*as)->corank);
  else if (attr->pointer)
    sprintf (name, "__class_%s_p", tname);
  else if (attr->allocatable)
    sprintf (name, "__class_%s_a", tname);
  else
    sprintf (name, "__class_%s", tname);

  gfc_find_symbol (name, ts->u.derived->ns, 0, &fclass);
  if (fclass == NULL)
    {
      gfc_symtree *st;
      /* If not there, create a new symbol.  */
      fclass = gfc_new_symbol (name, ts->u.derived->ns);
      st = gfc_new_symtree (&ts->u.derived->ns->sym_root, name);
      st->n.sym = fclass;
      gfc_set_sym_referenced (fclass);
      fclass->refs++;
      fclass->ts.type = BT_UNKNOWN;
      fclass->attr.abstract = ts->u.derived->attr.abstract;
      fclass->f2k_derived = gfc_get_namespace (NULL, 0);
      if (gfc_add_flavor (&fclass->attr, FL_DERIVED,
	  NULL, &gfc_current_locus) == FAILURE)
	return FAILURE;

      /* Add component '_data'.  */
      if (gfc_add_component (fclass, "_data", &c) == FAILURE)
	return FAILURE;
      c->ts = *ts;
      c->ts.type = BT_DERIVED;
      c->attr.access = ACCESS_PRIVATE;
      c->ts.u.derived = ts->u.derived;
      c->attr.class_pointer = attr->pointer;
      c->attr.pointer = attr->pointer || (attr->dummy && !attr->allocatable)
			|| attr->select_type_temporary;
      c->attr.allocatable = attr->allocatable;
      c->attr.dimension = attr->dimension;
      c->attr.codimension = attr->codimension;
      c->attr.abstract = ts->u.derived->attr.abstract;
      c->as = (*as);
      c->initializer = NULL;

      /* Add component '_vptr'.  */
      if (gfc_add_component (fclass, "_vptr", &c) == FAILURE)
	return FAILURE;
      c->ts.type = BT_DERIVED;
      if (delayed_vtab
	  || (ts->u.derived->f2k_derived
	      && ts->u.derived->f2k_derived->finalizers))
	c->ts.u.derived = NULL;
      else
	{
	  vtab = gfc_find_derived_vtab (ts->u.derived);
	  gcc_assert (vtab);
	  c->ts.u.derived = vtab->ts.u.derived;
	}
      c->attr.access = ACCESS_PRIVATE;
      c->attr.pointer = 1;
    }

  /* Since the extension field is 8 bit wide, we can only have
     up to 255 extension levels.  */
  if (ts->u.derived->attr.extension == 255)
    {
      gfc_error ("Maximum extension level reached with type '%s' at %L",
		 ts->u.derived->name, &ts->u.derived->declared_at);
      return FAILURE;
    }
    
  fclass->attr.extension = ts->u.derived->attr.extension + 1;
  fclass->attr.alloc_comp = ts->u.derived->attr.alloc_comp;
  fclass->attr.is_class = 1;
  ts->u.derived = fclass;
  attr->allocatable = attr->pointer = attr->dimension = attr->codimension = 0;
  (*as) = NULL;
  return SUCCESS;
}


/* Add a procedure pointer component to the vtype
   to represent a specific type-bound procedure.  */

static void
add_proc_comp (gfc_symbol *vtype, const char *name, gfc_typebound_proc *tb)
{
  gfc_component *c;

  if (tb->non_overridable)
    return;
  
  c = gfc_find_component (vtype, name, true, true);

  if (c == NULL)
    {
      /* Add procedure component.  */
      if (gfc_add_component (vtype, name, &c) == FAILURE)
	return;

      if (!c->tb)
	c->tb = XCNEW (gfc_typebound_proc);
      *c->tb = *tb;
      c->tb->ppc = 1;
      c->attr.procedure = 1;
      c->attr.proc_pointer = 1;
      c->attr.flavor = FL_PROCEDURE;
      c->attr.access = ACCESS_PRIVATE;
      c->attr.external = 1;
      c->attr.untyped = 1;
      c->attr.if_source = IFSRC_IFBODY;
    }
  else if (c->attr.proc_pointer && c->tb)
    {
      *c->tb = *tb;
      c->tb->ppc = 1;
    }

  if (tb->u.specific)
    {
      c->ts.interface = tb->u.specific->n.sym;
      if (!tb->deferred)
	c->initializer = gfc_get_variable_expr (tb->u.specific);
    }
}


/* Add all specific type-bound procedures in the symtree 'st' to a vtype.  */

static void
add_procs_to_declared_vtab1 (gfc_symtree *st, gfc_symbol *vtype)
{
  if (!st)
    return;

  if (st->left)
    add_procs_to_declared_vtab1 (st->left, vtype);

  if (st->right)
    add_procs_to_declared_vtab1 (st->right, vtype);

  if (st->n.tb && !st->n.tb->error 
      && !st->n.tb->is_generic && st->n.tb->u.specific)
    add_proc_comp (vtype, st->name, st->n.tb);
}


/* Copy procedure pointers components from the parent type.  */

static void
copy_vtab_proc_comps (gfc_symbol *declared, gfc_symbol *vtype)
{
  gfc_component *cmp;
  gfc_symbol *vtab;

  vtab = gfc_find_derived_vtab (declared);

  for (cmp = vtab->ts.u.derived->components; cmp; cmp = cmp->next)
    {
      if (gfc_find_component (vtype, cmp->name, true, true))
	continue;

      add_proc_comp (vtype, cmp->name, cmp->tb);
    }
}


/* Returns true if any of its nonpointer nonallocatable components or
   their nonpointer nonallocatable subcomponents has a finalization
   subroutine.  */

static bool
has_finalizer_component (gfc_symbol *derived)
{
   gfc_component *c;

  for (c = derived->components; c; c = c->next)
    {
      if (c->ts.type == BT_DERIVED && c->ts.u.derived->f2k_derived
	  && c->ts.u.derived->f2k_derived->finalizers)
	return true;

      if (c->ts.type == BT_DERIVED
	  && !c->attr.pointer && !c->attr.allocatable
	  && has_finalizer_component (c->ts.u.derived))
	return true;
    }
  return false;
}


/* Call DEALLOCATE for the passed component if it is allocatable, if it is
   neither allocatable nor a pointer but has a finalizer, call it. If it
   is a nonpointer component with allocatable components or has finalizers, walk
   them. Either of them is required; other nonallocatables and pointers aren't
   handled gracefully.
   Note: If the component is allocatable, the DEALLOCATE handling takes care
   of calling the appropriate finalizers, coarray deregistering, and
   deallocation of allocatable subcomponents.  */

static void
finalize_component (gfc_expr *expr, gfc_symbol *derived, gfc_component *comp,
		    gfc_expr *stat, gfc_code **code)
{
  gfc_expr *e;
  gfc_ref *ref;

  if (comp->ts.type != BT_DERIVED && comp->ts.type != BT_CLASS
      && !comp->attr.allocatable)
    return;

  if ((comp->ts.type == BT_DERIVED && comp->attr.pointer)
      || (comp->ts.type == BT_CLASS && CLASS_DATA (comp)
	  && CLASS_DATA (comp)->attr.pointer))
    return;

  if (comp->ts.type == BT_DERIVED && !comp->attr.allocatable
      && (comp->ts.u.derived->f2k_derived == NULL
	  || comp->ts.u.derived->f2k_derived->finalizers == NULL)
      && !has_finalizer_component (comp->ts.u.derived))
    return;

  e = gfc_copy_expr (expr);
  if (!e->ref)
    e->ref = ref = gfc_get_ref ();
  else
    {
      for (ref = e->ref; ref->next; ref = ref->next)
	;
      ref->next = gfc_get_ref ();
      ref = ref->next;
    }
  ref->type = REF_COMPONENT;
  ref->u.c.sym = derived;
  ref->u.c.component = comp;
  e->ts = comp->ts;

  if (comp->attr.dimension
      || (comp->ts.type == BT_CLASS && CLASS_DATA (comp)
	  && CLASS_DATA (comp)->attr.dimension))
    {
      ref->next = gfc_get_ref ();
      ref->next->type = REF_ARRAY;
      ref->next->u.ar.type = AR_FULL;
      ref->next->u.ar.dimen = 0;
      ref->next->u.ar.as = comp->ts.type == BT_CLASS ? CLASS_DATA (comp)->as
							: comp->as;
      e->rank = ref->next->u.ar.as->rank;
    }

  if (comp->attr.allocatable
      || (comp->ts.type == BT_CLASS && CLASS_DATA (comp)
	  && CLASS_DATA (comp)->attr.allocatable))
    {
      /* Call DEALLOCATE (comp, stat=ignore).  */
      gfc_code *dealloc;

      dealloc = XCNEW (gfc_code);
      dealloc->op = EXEC_DEALLOCATE;
      dealloc->loc = gfc_current_locus;

      dealloc->ext.alloc.list = gfc_get_alloc ();
      dealloc->ext.alloc.list->expr = e;

      dealloc->expr1 = stat;
      if (*code)
	{
	  (*code)->next = dealloc;
	  (*code) = (*code)->next;
	}
      else
	(*code) = dealloc;
    }
  else if (comp->ts.type == BT_DERIVED
	    && comp->ts.u.derived->f2k_derived
	    && comp->ts.u.derived->f2k_derived->finalizers)
    {
      /* Call FINAL_WRAPPER (comp);  */
      gfc_code *final_wrap;
      gfc_symbol *vtab;
      gfc_component *c;

      vtab = gfc_find_derived_vtab (comp->ts.u.derived);
      for (c = vtab->ts.u.derived->components; c; c = c->next)
	if (strcmp (c->name, "_final") == 0)
	  break;

      gcc_assert (c);
      final_wrap = XCNEW (gfc_code);
      final_wrap->op = EXEC_CALL;
      final_wrap->loc = gfc_current_locus;
      final_wrap->loc = gfc_current_locus;
      final_wrap->symtree = c->initializer->symtree;
      final_wrap->resolved_sym = c->initializer->symtree->n.sym;
      final_wrap->ext.actual = gfc_get_actual_arglist ();
      final_wrap->ext.actual->expr = e;

      if (*code)
	{
	  (*code)->next = final_wrap;
	  (*code) = (*code)->next;
	}
      else
	(*code) = final_wrap;
    }
  else
    {
      gfc_component *c;

      for (c = comp->ts.u.derived->components; c; c = c->next)
	finalize_component (e, c->ts.u.derived, c, stat, code);
      gfc_free_expr (e);
    }
}


/* Generate code equivalent to
   CALL C_F_POINTER (TRANSFER (TRANSFER (C_LOC (array, cptr), c_intptr)
		     + idx * STORAGE_SIZE (array)/NUMERIC_STORAGE_SIZE., c_ptr),
		     ptr).  */

static gfc_code *
finalization_scalarizer (gfc_symbol *idx, gfc_symbol *array, gfc_symbol *ptr,
			 gfc_namespace *sub_ns)
{
  gfc_code *block;
  gfc_expr *expr, *expr2, *expr3;

  /* C_F_POINTER().  */
  block = XCNEW (gfc_code);
  block->op = EXEC_CALL;
  block->loc = gfc_current_locus;
  gfc_get_sym_tree ("c_f_pointer", sub_ns, &block->symtree, true);
  block->resolved_sym = block->symtree->n.sym;
  block->resolved_sym->attr.flavor = FL_PROCEDURE;
  block->resolved_sym->attr.intrinsic = 1;
  block->resolved_sym->from_intmod = INTMOD_ISO_C_BINDING;
  block->resolved_sym->intmod_sym_id = ISOCBINDING_F_POINTER;
  gfc_commit_symbol (block->resolved_sym);

  /* C_F_POINTER's first argument: TRANSFER ( <addr>, c_intptr_t).  */
  block->ext.actual = gfc_get_actual_arglist ();
  block->ext.actual->next = gfc_get_actual_arglist ();
  block->ext.actual->next->expr = gfc_get_int_expr (gfc_index_integer_kind,
						    NULL, 0);

  /* The <addr> part: TRANSFER (C_LOC (array), c_intptr_t).  */

  /* TRANSFER.  */
  expr2 = gfc_get_expr ();
  expr2->expr_type = EXPR_FUNCTION;
  expr2->value.function.name = "__transfer0";
  expr2->value.function.isym
	    = gfc_intrinsic_function_by_id (GFC_ISYM_TRANSFER);
  /* Set symtree for -fdump-parse-tree.  */
  gfc_get_sym_tree ("transfer", sub_ns, &expr2->symtree, false);
  expr2->symtree->n.sym->attr.flavor = FL_PROCEDURE;
  expr2->symtree->n.sym->attr.intrinsic = 1;
  gfc_commit_symbol (expr2->symtree->n.sym);
  expr2->value.function.actual = gfc_get_actual_arglist ();
  expr2->value.function.actual->expr
	    = gfc_lval_expr_from_sym (array);
  expr2->ts.type = BT_INTEGER;
  expr2->ts.kind = gfc_index_integer_kind;

  /* TRANSFER's second argument: 0_c_intptr_t.  */
  expr2->value.function.actual = gfc_get_actual_arglist ();
  expr2->value.function.actual->next = gfc_get_actual_arglist ();
  expr2->value.function.actual->next->expr
		= gfc_get_int_expr (gfc_index_integer_kind, NULL, 0);
  expr2->value.function.actual->next->next = gfc_get_actual_arglist ();

  /* TRANSFER's first argument: C_LOC (array).  */
  expr = gfc_get_expr ();
  expr->expr_type = EXPR_FUNCTION;
  gfc_get_sym_tree ("c_loc", sub_ns, &expr->symtree, false);
  expr->symtree->n.sym->attr.flavor = FL_PROCEDURE;
  expr->symtree->n.sym->intmod_sym_id = ISOCBINDING_LOC;
  expr->symtree->n.sym->attr.intrinsic = 1;
  expr->symtree->n.sym->from_intmod = INTMOD_ISO_C_BINDING;
  expr->value.function.esym = expr->symtree->n.sym;
  expr->value.function.actual = gfc_get_actual_arglist ();
  expr->value.function.actual->expr
	    = gfc_lval_expr_from_sym (array);
  expr->symtree->n.sym->result = expr->symtree->n.sym;
  gfc_commit_symbol (expr->symtree->n.sym);
  expr->ts.type = BT_INTEGER;
  expr->ts.kind = gfc_index_integer_kind;
  expr2->value.function.actual->expr = expr;

  /* STORAGE_SIZE (...) / NUMERIC_STORAGE_SIZE.  */
  block->ext.actual->expr = gfc_get_expr ();
  expr = block->ext.actual->expr;
  expr->expr_type = EXPR_OP;
  expr->value.op.op = INTRINSIC_DIVIDE;

  /* STORAGE_SIZE (array,kind=c_intptr_t).  */
  expr->value.op.op1 = gfc_get_expr ();
  expr->value.op.op1->expr_type = EXPR_FUNCTION;
  expr->value.op.op1->value.function.isym
		= gfc_intrinsic_function_by_id (GFC_ISYM_STORAGE_SIZE);
  gfc_get_sym_tree ("storage_size", sub_ns, &expr->value.op.op1->symtree,
		    false);
  expr->value.op.op1->symtree->n.sym->attr.flavor = FL_PROCEDURE;
  expr->value.op.op1->symtree->n.sym->attr.intrinsic = 1;
  gfc_commit_symbol (expr->value.op.op1->symtree->n.sym);
  expr->value.op.op1->value.function.actual = gfc_get_actual_arglist ();
  expr->value.op.op1->value.function.actual->expr
		= gfc_lval_expr_from_sym (array);
  expr->value.op.op1->value.function.actual->next = gfc_get_actual_arglist ();
  expr->value.op.op1->value.function.actual->next->expr
		= gfc_get_int_expr (gfc_index_integer_kind, NULL, 0);
  expr->value.op.op2 = gfc_get_int_expr (gfc_index_integer_kind, NULL,
					 gfc_character_storage_size);
  expr->value.op.op1->ts = expr->value.op.op2->ts;
  expr->ts = expr->value.op.op1->ts;

  /* Offset calculation: idx * (STORAGE_SIZE (...) / NUMERIC_STORAGE_SIZE).  */
  block->ext.actual->expr = gfc_get_expr ();
  expr3 = block->ext.actual->expr;
  expr3->expr_type = EXPR_OP;
  expr3->value.op.op = INTRINSIC_TIMES;
  expr3->value.op.op1 = gfc_lval_expr_from_sym (idx);
  expr3->value.op.op2 = expr;
  expr3->ts = expr->ts;

  /* <array addr> + <offset>.  */
  block->ext.actual->expr = gfc_get_expr ();
  block->ext.actual->expr->expr_type = EXPR_OP;
  block->ext.actual->expr->value.op.op = INTRINSIC_PLUS;
  block->ext.actual->expr->value.op.op1 = expr2;
  block->ext.actual->expr->value.op.op2 = expr3;
  block->ext.actual->expr->ts = expr->ts;

  /* C_F_POINTER's 2nd arg: ptr -- and its absent shape=.  */
  block->ext.actual->next = gfc_get_actual_arglist ();
  block->ext.actual->next->expr = gfc_lval_expr_from_sym (ptr);
  block->ext.actual->next->next = gfc_get_actual_arglist ();

  return block;
}


/* Generate the finalization/polymorphic freeing wrapper subroutine for the
   derived type "derived". The function first calls the approriate FINAL
   subroutine, then it DEALLOCATEs (finalizes/frees) the allocatable
   components (but not the inherited ones). Last, it calls the wrapper
   subroutine of the parent. The generated wrapper procedure takes as argument
   an assumed-rank array.
   If neither allocatable components nor FINAL subroutines exists, the vtab
   will contain a NULL pointer.  */

static void
generate_finalization_wrapper (gfc_symbol *derived, gfc_namespace *ns,
			       const char *tname, gfc_component *vtab_final)
{
  gfc_symbol *final, *array, *nelem;
  gfc_symbol *ptr = NULL, *idx = NULL;
  gfc_component *comp;
  gfc_namespace *sub_ns;
  gfc_code *last_code;
  char name[GFC_MAX_SYMBOL_LEN+1];
  bool finalizable_comp = false;
  gfc_expr *ancestor_wrapper = NULL;

  /* Search for the ancestor's finalizers. */
  if (derived->attr.extension && derived->components
      && (!derived->components->ts.u.derived->attr.abstract
	  || has_finalizer_component (derived)))
    {
      gfc_symbol *vtab;
      gfc_component *comp;

      vtab = gfc_find_derived_vtab (derived->components->ts.u.derived);
      for (comp = vtab->ts.u.derived->components; comp; comp = comp->next)
	if (comp->name[0] == '_' && comp->name[1] == 'f')
	  {
	    ancestor_wrapper = comp->initializer;
	    break;
	  }
    }

  /* No wrapper of the ancestor and no own FINAL subroutines and
     allocatable components: Return a NULL() expression.  */
  if ((!ancestor_wrapper || ancestor_wrapper->expr_type == EXPR_NULL)
      && !derived->attr.alloc_comp
      && (!derived->f2k_derived || !derived->f2k_derived->finalizers)
      && !has_finalizer_component (derived))
    {
      vtab_final->initializer = gfc_get_null_expr (NULL);
      return;
    }

  /* Check whether there are new allocatable components.  */
  for (comp = derived->components; comp; comp = comp->next)
    {
      if (comp == derived->components && derived->attr.extension
	  && ancestor_wrapper && ancestor_wrapper->expr_type != EXPR_NULL)
	continue;

      if (comp->ts.type != BT_CLASS && !comp->attr.pointer
	  && (comp->attr.alloc_comp || comp->attr.allocatable
	      || (comp->ts.type == BT_DERIVED
		  && has_finalizer_component (comp->ts.u.derived))))
	finalizable_comp = true;
      else if (comp->ts.type == BT_CLASS && CLASS_DATA (comp)
	       && CLASS_DATA (comp)->attr.allocatable)
	finalizable_comp = true;
    }

  /* If there is no new finalizer and no new allocatable, return with
     an expr to the ancestor's one.  */
  if ((!derived->f2k_derived || !derived->f2k_derived->finalizers)
      && !finalizable_comp)
    {
      vtab_final->initializer = gfc_copy_expr (ancestor_wrapper);
      return;
    }

  /* We now create a wrapper, which does the following:
     1. Call the suitable finalization subroutine for this type
     2. Loop over all noninherited allocatable components and noninherited
	components with allocatable components and DEALLOCATE those; this will
	take care of finalizers, coarray deregistering and allocatable
	nested components.
     3. Call the ancestor's finalizer.  */

  /* Declare the wrapper function; it takes an assumed-rank array
     as argument. */

  /* Set up the namespace.  */
  sub_ns = gfc_get_namespace (ns, 0);
  sub_ns->sibling = ns->contained;
  ns->contained = sub_ns;
  sub_ns->resolved = 1;

  /* Set up the procedure symbol.  */
  sprintf (name, "__final_%s", tname);
  gfc_get_symbol (name, sub_ns, &final);
  sub_ns->proc_name = final;
  final->attr.flavor = FL_PROCEDURE;
  final->attr.subroutine = 1;
  final->attr.pure = 1;
  final->attr.artificial = 1;
  final->attr.if_source = IFSRC_DECL;
  if (ns->proc_name->attr.flavor == FL_MODULE)
    final->module = ns->proc_name->name;
  gfc_set_sym_referenced (final);

  /* Set up formal argument.  */
  gfc_get_symbol ("array", sub_ns, &array);
  array->ts.type = BT_DERIVED;
  array->ts.u.derived = derived;
  array->attr.flavor = FL_VARIABLE;
  array->attr.dummy = 1;
  array->attr.contiguous = 1;
  array->attr.dimension = 1;
  array->attr.artificial = 1;
  array->as = gfc_get_array_spec();
  array->as->type = AS_ASSUMED_RANK;
  array->as->rank = -1;
  array->attr.intent = INTENT_INOUT;
  gfc_set_sym_referenced (array);
  final->formal = gfc_get_formal_arglist ();
  final->formal->sym = array;
  gfc_commit_symbol (array);

  /* Obtain the size (number of elements) of "array" MINUS ONE,
     which is used in the scalarization.  */
  gfc_get_symbol ("nelem", sub_ns, &nelem);
  nelem->ts.type = BT_INTEGER;
  nelem->ts.kind = gfc_index_integer_kind;
  nelem->attr.flavor = FL_VARIABLE;
  nelem->attr.artificial = 1;
  gfc_set_sym_referenced (nelem);
  gfc_commit_symbol (nelem);

  /* Generate: nelem = SIZE (array) - 1.  */
  last_code = XCNEW (gfc_code);
  last_code->op = EXEC_ASSIGN;
  last_code->loc = gfc_current_locus;

  last_code->expr1 = gfc_lval_expr_from_sym (nelem);

  last_code->expr2 = gfc_get_expr ();
  last_code->expr2->expr_type = EXPR_OP;
  last_code->expr2->value.op.op = INTRINSIC_MINUS;
  last_code->expr2->value.op.op2
	= gfc_get_int_expr (gfc_index_integer_kind, NULL, 1);
  last_code->expr2->ts = last_code->expr2->value.op.op2->ts;

  last_code->expr2->value.op.op1 = gfc_get_expr ();
  last_code->expr2->value.op.op1->expr_type = EXPR_FUNCTION;
  last_code->expr2->value.op.op1->value.function.isym
	= gfc_intrinsic_function_by_id (GFC_ISYM_SIZE);
  gfc_get_sym_tree ("size", sub_ns, &last_code->expr2->value.op.op1->symtree,
		    false);
  last_code->expr2->value.op.op1->symtree->n.sym->attr.flavor = FL_PROCEDURE;
  last_code->expr2->value.op.op1->symtree->n.sym->attr.intrinsic = 1;
  gfc_commit_symbol (last_code->expr2->value.op.op1->symtree->n.sym);
  last_code->expr2->value.op.op1->value.function.actual
	= gfc_get_actual_arglist ();
  last_code->expr2->value.op.op1->value.function.actual->expr
	= gfc_lval_expr_from_sym (array);
  /* dim=NULL. */
  last_code->expr2->value.op.op1->value.function.actual->next
	= gfc_get_actual_arglist ();
  /* kind=c_intptr_t. */
  last_code->expr2->value.op.op1->value.function.actual->next->next
	= gfc_get_actual_arglist ();
  last_code->expr2->value.op.op1->value.function.actual->next->next->expr
	= gfc_get_int_expr (gfc_index_integer_kind, NULL, 0);
  last_code->expr2->value.op.op1->ts
	= last_code->expr2->value.op.op1->value.function.isym->ts;

  sub_ns->code = last_code;

  /* Call final subroutines. We now generate code like:
     use iso_c_binding
     integer, pointer :: ptr
     type(c_ptr) :: cptr
     integer(c_intptr_t) :: i, addr

     select case (rank (array))
       case (3)
	 call final_rank3 (array)
       case default:
	 do i = 0, size (array)-1
	   addr = transfer (c_loc (array), addr) + i * STORAGE_SIZE (array)
	   call c_f_pointer (transfer (addr, cptr), ptr)
	   call elemental_final (ptr)
	 end do
     end select */

  if (derived->f2k_derived && derived->f2k_derived->finalizers)
    {
      gfc_finalizer *fini, *fini_elem = NULL;
      gfc_code *block = NULL;

      /* SELECT CASE (RANK (array)).  */
      last_code->next = XCNEW (gfc_code);
      last_code = last_code->next;
      last_code->op = EXEC_SELECT;
      last_code->loc = gfc_current_locus;

      last_code->expr1 = gfc_get_expr ();
      last_code->expr1->expr_type = EXPR_FUNCTION;
      last_code->expr1->value.function.isym
	    = gfc_intrinsic_function_by_id (GFC_ISYM_RANK);
      gfc_get_sym_tree ("rank", sub_ns, &last_code->expr1->symtree,
			false);
      last_code->expr1->symtree->n.sym->attr.flavor = FL_PROCEDURE;
      last_code->expr1->symtree->n.sym->attr.intrinsic = 1;
      gfc_commit_symbol (last_code->expr1->symtree->n.sym);
      last_code->expr1->value.function.actual = gfc_get_actual_arglist ();
      last_code->expr1->value.function.actual->expr
	    = gfc_lval_expr_from_sym (array);
      last_code->expr1->ts = last_code->expr1->value.function.isym->ts;

      for (fini = derived->f2k_derived->finalizers; fini; fini = fini->next)
	{
	  if (fini->proc_tree->n.sym->attr.elemental)
	    {
	      fini_elem = fini;
	      continue;
	    }

	  /* CASE (fini_rank).  */
	  if (block)
	    {
	      block->block = XCNEW (gfc_code);
	      block = block->block;
	    }
	  else
	    {
	      block = XCNEW (gfc_code);
	      last_code->block = block;
	    }
	  block->loc = gfc_current_locus;
	  block->op = EXEC_SELECT;
	  block->ext.block.case_list = gfc_get_case ();
	  block->ext.block.case_list->where = gfc_current_locus;
	  if (fini->proc_tree->n.sym->formal->sym->attr.dimension)
	    block->ext.block.case_list->low
	     = gfc_get_int_expr (gfc_default_integer_kind, NULL,
				 fini->proc_tree->n.sym->formal->sym->as->rank);
	  else
	    block->ext.block.case_list->low
		= gfc_get_int_expr (gfc_default_integer_kind, NULL, 0);
	  block->ext.block.case_list->high
		= block->ext.block.case_list->low;

	  /* CALL fini_rank (array).  */
	  block->next = XCNEW (gfc_code);
	  block->next->op = EXEC_CALL;
	  block->next->loc = gfc_current_locus;
	  block->next->symtree = fini->proc_tree;
	  block->next->resolved_sym = fini->proc_tree->n.sym;
	  block->next->ext.actual = gfc_get_actual_arglist ();
	  block->next->ext.actual->expr = gfc_lval_expr_from_sym (array);
	}

      /* Elemental call - scalarized.  */
      if (fini_elem)
	{
	  gfc_iterator *iter;

	  /* CASE DEFAULT.  */
	  if (block)
	    {
	      block->block = XCNEW (gfc_code);
	      block = block->block;
	    }
	  else
	    {
	      block = XCNEW (gfc_code);
	      last_code->block = block;
	    }
	  block->loc = gfc_current_locus;
	  block->op = EXEC_SELECT;
	  block->ext.block.case_list = gfc_get_case ();

	  gfc_get_symbol ("idx", sub_ns, &idx);
	  idx->ts.type = BT_INTEGER;
	  idx->ts.kind = gfc_index_integer_kind;
	  idx->attr.flavor = FL_VARIABLE;
	  idx->attr.artificial = 1;
	  gfc_set_sym_referenced (idx);
	  gfc_commit_symbol (idx);

	  gfc_get_symbol ("ptr", sub_ns, &ptr);
	  ptr->ts.type = BT_DERIVED;
	  ptr->ts.u.derived = derived;
	  ptr->attr.flavor = FL_VARIABLE;
	  ptr->attr.pointer = 1;
	  ptr->attr.artificial = 1;
	  gfc_set_sym_referenced (ptr);
	  gfc_commit_symbol (ptr);

	  /* Create loop.  */
	  iter = gfc_get_iterator ();
	  iter->var = gfc_lval_expr_from_sym (idx);
	  iter->start = gfc_get_int_expr (gfc_index_integer_kind, NULL, 0);
	  iter->end = gfc_lval_expr_from_sym (nelem);
	  iter->step = gfc_get_int_expr (gfc_index_integer_kind, NULL, 1);
	  block->next = XCNEW (gfc_code);
	  block = block->next;
	  block->op = EXEC_DO;
	  block->loc = gfc_current_locus;
	  block->ext.iterator = iter;
	  block->block = gfc_get_code ();
	  block->block->op = EXEC_DO;

	  /* Create code for
	     CALL C_F_POINTER (TRANSFER (TRANSFER (C_LOC (array, cptr), c_intptr)
			       + idx * STORAGE_SIZE (array), c_ptr), ptr).  */
	  block->block->next = finalization_scalarizer (idx, array, ptr, sub_ns);
	  block = block->block->next;

	  /* CALL final_elemental (array).  */
	  block->next = XCNEW (gfc_code);
	  block = block->next;
	  block->op = EXEC_CALL;
	  block->loc = gfc_current_locus;
	  block->symtree = fini_elem->proc_tree;
	  block->resolved_sym = fini_elem->proc_sym;
	  block->ext.actual = gfc_get_actual_arglist ();
	  block->ext.actual->expr = gfc_lval_expr_from_sym (ptr);
	}
    }

  /* Finalize and deallocate allocatable components. The same manual
     scalarization is used as above.  */

  if (finalizable_comp)
    {
      gfc_symbol *stat;
      gfc_code *block = NULL;
      gfc_iterator *iter;

      if (!idx)
	{
	  gfc_get_symbol ("idx", sub_ns, &idx);
	  idx->ts.type = BT_INTEGER;
	  idx->ts.kind = gfc_index_integer_kind;
	  idx->attr.flavor = FL_VARIABLE;
	  idx->attr.artificial = 1;
	  gfc_set_sym_referenced (idx);
	  gfc_commit_symbol (idx);
	}

      if (!ptr)
	{
	  gfc_get_symbol ("ptr", sub_ns, &ptr);
	  ptr->ts.type = BT_DERIVED;
	  ptr->ts.u.derived = derived;
	  ptr->attr.flavor = FL_VARIABLE;
	  ptr->attr.pointer = 1;
	  ptr->attr.artificial = 1;
	  gfc_set_sym_referenced (ptr);
	  gfc_commit_symbol (ptr);
	}

      gfc_get_symbol ("ignore", sub_ns, &stat);
      stat->attr.flavor = FL_VARIABLE;
      stat->attr.artificial = 1;
      stat->ts.type = BT_INTEGER;
      stat->ts.kind = gfc_default_integer_kind;
      gfc_set_sym_referenced (stat);
      gfc_commit_symbol (stat);

      /* Create loop.  */
      iter = gfc_get_iterator ();
      iter->var = gfc_lval_expr_from_sym (idx);
      iter->start = gfc_get_int_expr (gfc_index_integer_kind, NULL, 0);
      iter->end = gfc_lval_expr_from_sym (nelem);
      iter->step = gfc_get_int_expr (gfc_index_integer_kind, NULL, 1);
      last_code->next = XCNEW (gfc_code);
      last_code = last_code->next;
      last_code->op = EXEC_DO;
      last_code->loc = gfc_current_locus;
      last_code->ext.iterator = iter;
      last_code->block = gfc_get_code ();
      last_code->block->op = EXEC_DO;

      /* Create code for
	 CALL C_F_POINTER (TRANSFER (TRANSFER (C_LOC (array, cptr), c_intptr)
			   + idx * STORAGE_SIZE (array), c_ptr), ptr).  */
      last_code->block->next = finalization_scalarizer (idx, array, ptr, sub_ns);
      block = last_code->block->next;

      for (comp = derived->components; comp; comp = comp->next)
	{
	  if (comp == derived->components && derived->attr.extension
	      && ancestor_wrapper && ancestor_wrapper->expr_type != EXPR_NULL)
	    continue;

	  finalize_component (gfc_lval_expr_from_sym (ptr), derived, comp,
			      gfc_lval_expr_from_sym (stat), &block);
	  if (!last_code->block->next)
	    last_code->block->next = block;
	}

    }

  /* Call the finalizer of the ancestor.  */
  if (ancestor_wrapper && ancestor_wrapper->expr_type != EXPR_NULL)
    {
      last_code->next = XCNEW (gfc_code);
      last_code = last_code->next;
      last_code->op = EXEC_CALL;
      last_code->loc = gfc_current_locus;
      last_code->symtree = ancestor_wrapper->symtree;
      last_code->resolved_sym = ancestor_wrapper->symtree->n.sym;

      last_code->ext.actual = gfc_get_actual_arglist ();
      last_code->ext.actual->expr = gfc_lval_expr_from_sym (array);
    }

  gfc_commit_symbol (final);
  vtab_final->initializer = gfc_lval_expr_from_sym (final);
  vtab_final->ts.interface = final;
}


/* Add procedure pointers for all type-bound procedures to a vtab.  */

static void
add_procs_to_declared_vtab (gfc_symbol *derived, gfc_symbol *vtype)
{
  gfc_symbol* super_type;

  super_type = gfc_get_derived_super_type (derived);

  if (super_type && (super_type != derived))
    {
      /* Make sure that the PPCs appear in the same order as in the parent.  */
      copy_vtab_proc_comps (super_type, vtype);
      /* Only needed to get the PPC initializers right.  */
      add_procs_to_declared_vtab (super_type, vtype);
    }

  if (derived->f2k_derived && derived->f2k_derived->tb_sym_root)
    add_procs_to_declared_vtab1 (derived->f2k_derived->tb_sym_root, vtype);

  if (derived->f2k_derived && derived->f2k_derived->tb_uop_root)
    add_procs_to_declared_vtab1 (derived->f2k_derived->tb_uop_root, vtype);
}


/* Find (or generate) the symbol for a derived type's vtab.  */

gfc_symbol *
gfc_find_derived_vtab (gfc_symbol *derived)
{
  gfc_namespace *ns;
  gfc_symbol *vtab = NULL, *vtype = NULL, *found_sym = NULL, *def_init = NULL;
  gfc_symbol *copy = NULL, *src = NULL, *dst = NULL;

  /* Find the top-level namespace (MODULE or PROGRAM).  */
  for (ns = gfc_current_ns; ns; ns = ns->parent)
    if (!ns->parent)
      break;

  /* If the type is a class container, use the underlying derived type.  */
  if (derived->attr.is_class)
    derived = gfc_get_derived_super_type (derived);
 
  if (ns)
    {
      char name[GFC_MAX_SYMBOL_LEN+1], tname[GFC_MAX_SYMBOL_LEN+1];
      
      get_unique_hashed_string (tname, derived);
      sprintf (name, "__vtab_%s", tname);

      /* Look for the vtab symbol in various namespaces.  */
      gfc_find_symbol (name, gfc_current_ns, 0, &vtab);
      if (vtab == NULL)
	gfc_find_symbol (name, ns, 0, &vtab);
      if (vtab == NULL)
	gfc_find_symbol (name, derived->ns, 0, &vtab);

      if (vtab == NULL)
	{
	  gfc_get_symbol (name, ns, &vtab);
	  vtab->ts.type = BT_DERIVED;
	  if (gfc_add_flavor (&vtab->attr, FL_VARIABLE, NULL,
	                      &gfc_current_locus) == FAILURE)
	    goto cleanup;
	  vtab->attr.target = 1;
	  vtab->attr.save = SAVE_IMPLICIT;
	  vtab->attr.vtab = 1;
	  vtab->attr.access = ACCESS_PUBLIC;
	  gfc_set_sym_referenced (vtab);
	  sprintf (name, "__vtype_%s", tname);
	  
	  gfc_find_symbol (name, ns, 0, &vtype);
	  if (vtype == NULL)
	    {
	      gfc_component *c;
	      gfc_symbol *parent = NULL, *parent_vtab = NULL;

	      gfc_get_symbol (name, ns, &vtype);
	      if (gfc_add_flavor (&vtype->attr, FL_DERIVED,
				  NULL, &gfc_current_locus) == FAILURE)
		goto cleanup;
	      vtype->attr.access = ACCESS_PUBLIC;
	      vtype->attr.vtype = 1;
	      gfc_set_sym_referenced (vtype);

	      /* Add component '_hash'.  */
	      if (gfc_add_component (vtype, "_hash", &c) == FAILURE)
		goto cleanup;
	      c->ts.type = BT_INTEGER;
	      c->ts.kind = 4;
	      c->attr.access = ACCESS_PRIVATE;
	      c->initializer = gfc_get_int_expr (gfc_default_integer_kind,
						 NULL, derived->hash_value);

	      /* Add component '_size'.  */
	      if (gfc_add_component (vtype, "_size", &c) == FAILURE)
		goto cleanup;
	      c->ts.type = BT_INTEGER;
	      c->ts.kind = 4;
	      c->attr.access = ACCESS_PRIVATE;
	      /* Remember the derived type in ts.u.derived,
		 so that the correct initializer can be set later on
		 (in gfc_conv_structure).  */
	      c->ts.u.derived = derived;
	      c->initializer = gfc_get_int_expr (gfc_default_integer_kind,
						 NULL, 0);

	      /* Add component _extends.  */
	      if (gfc_add_component (vtype, "_extends", &c) == FAILURE)
		goto cleanup;
	      c->attr.pointer = 1;
	      c->attr.access = ACCESS_PRIVATE;
	      parent = gfc_get_derived_super_type (derived);
	      if (parent)
		{
		  parent_vtab = gfc_find_derived_vtab (parent);
		  c->ts.type = BT_DERIVED;
		  c->ts.u.derived = parent_vtab->ts.u.derived;
		  c->initializer = gfc_get_expr ();
		  c->initializer->expr_type = EXPR_VARIABLE;
		  gfc_find_sym_tree (parent_vtab->name, parent_vtab->ns,
				     0, &c->initializer->symtree);
		}
	      else
		{
		  c->ts.type = BT_DERIVED;
		  c->ts.u.derived = vtype;
		  c->initializer = gfc_get_null_expr (NULL);
		}

	      if (derived->components == NULL && !derived->attr.zero_comp)
		{
		  /* At this point an error must have occurred.
		     Prevent further errors on the vtype components.  */
		  found_sym = vtab;
		  goto have_vtype;
		}

	      /* Add component _def_init.  */
	      if (gfc_add_component (vtype, "_def_init", &c) == FAILURE)
		goto cleanup;
	      c->attr.pointer = 1;
	      c->attr.artificial = 1;
	      c->attr.access = ACCESS_PRIVATE;
	      c->ts.type = BT_DERIVED;
	      c->ts.u.derived = derived;
	      if (derived->attr.abstract)
		c->initializer = gfc_get_null_expr (NULL);
	      else
		{
		  /* Construct default initialization variable.  */
		  sprintf (name, "__def_init_%s", tname);
		  gfc_get_symbol (name, ns, &def_init);
		  def_init->attr.target = 1;
		  def_init->attr.artificial = 1;
		  def_init->attr.save = SAVE_IMPLICIT;
		  def_init->attr.access = ACCESS_PUBLIC;
		  def_init->attr.flavor = FL_VARIABLE;
		  gfc_set_sym_referenced (def_init);
		  def_init->ts.type = BT_DERIVED;
		  def_init->ts.u.derived = derived;
		  def_init->value = gfc_default_initializer (&def_init->ts);

		  c->initializer = gfc_lval_expr_from_sym (def_init);
		}

	      /* Add component _copy.  */
	      if (gfc_add_component (vtype, "_copy", &c) == FAILURE)
		goto cleanup;
	      c->attr.proc_pointer = 1;
	      c->attr.access = ACCESS_PRIVATE;
	      c->tb = XCNEW (gfc_typebound_proc);
	      c->tb->ppc = 1;
	      if (derived->attr.abstract)
		c->initializer = gfc_get_null_expr (NULL);
	      else
		{
		  /* Set up namespace.  */
		  gfc_namespace *sub_ns = gfc_get_namespace (ns, 0);
		  sub_ns->sibling = ns->contained;
		  ns->contained = sub_ns;
		  sub_ns->resolved = 1;
		  /* Set up procedure symbol.  */
		  sprintf (name, "__copy_%s", tname);
		  gfc_get_symbol (name, sub_ns, &copy);
		  sub_ns->proc_name = copy;
		  copy->attr.flavor = FL_PROCEDURE;
		  copy->attr.subroutine = 1;
		  copy->attr.pure = 1;
		  copy->attr.artificial = 1;
		  copy->attr.if_source = IFSRC_DECL;
		  /* This is elemental so that arrays are automatically
		     treated correctly by the scalarizer.  */
		  copy->attr.elemental = 1;
		  if (ns->proc_name->attr.flavor == FL_MODULE)
		    copy->module = ns->proc_name->name;
		  gfc_set_sym_referenced (copy);
		  /* Set up formal arguments.  */
		  gfc_get_symbol ("src", sub_ns, &src);
		  src->ts.type = BT_DERIVED;
		  src->ts.u.derived = derived;
		  src->attr.flavor = FL_VARIABLE;
		  src->attr.dummy = 1;
		  src->attr.artificial = 1;
     		  src->attr.intent = INTENT_IN;
		  gfc_set_sym_referenced (src);
		  copy->formal = gfc_get_formal_arglist ();
		  copy->formal->sym = src;
		  gfc_get_symbol ("dst", sub_ns, &dst);
		  dst->ts.type = BT_DERIVED;
		  dst->ts.u.derived = derived;
		  dst->attr.flavor = FL_VARIABLE;
		  dst->attr.dummy = 1;
		  dst->attr.artificial = 1;
		  dst->attr.intent = INTENT_OUT;
		  gfc_set_sym_referenced (dst);
		  copy->formal->next = gfc_get_formal_arglist ();
		  copy->formal->next->sym = dst;
		  /* Set up code.  */
		  sub_ns->code = gfc_get_code ();
		  sub_ns->code->op = EXEC_INIT_ASSIGN;
		  sub_ns->code->expr1 = gfc_lval_expr_from_sym (dst);
		  sub_ns->code->expr2 = gfc_lval_expr_from_sym (src);
		  /* Set initializer.  */
		  c->initializer = gfc_lval_expr_from_sym (copy);
		  c->ts.interface = copy;
		}

	      /* Add component _final, which contains a procedure pointer to
		 a wrapper which handles both the freeing of allocatable
		 components and the calls to finalization subroutines.
		 Note: The actual wrapper function can only be generated
		 at resolution time.  */
	    /* FIXME: Enable ABI-breaking "_final" generation.  */
	    if (0) 
	    {
	      if (gfc_add_component (vtype, "_final", &c) == FAILURE)
		goto cleanup;
	      c->attr.proc_pointer = 1;
	      c->attr.access = ACCESS_PRIVATE;
	      c->tb = XCNEW (gfc_typebound_proc);
	      c->tb->ppc = 1;
	      generate_finalization_wrapper (derived, ns, tname, c);
	    }

	      /* Add procedure pointers for type-bound procedures.  */
	      add_procs_to_declared_vtab (derived, vtype);
	  }

have_vtype:
	  vtab->ts.u.derived = vtype;
	  vtab->value = gfc_default_initializer (&vtab->ts);
	}
    }

  found_sym = vtab;

cleanup:
  /* It is unexpected to have some symbols added at resolution or code
     generation time. We commit the changes in order to keep a clean state.  */
  if (found_sym)
    {
      gfc_commit_symbol (vtab);
      if (vtype)
	gfc_commit_symbol (vtype);
      if (def_init)
	gfc_commit_symbol (def_init);
      if (copy)
	gfc_commit_symbol (copy);
      if (src)
	gfc_commit_symbol (src);
      if (dst)
	gfc_commit_symbol (dst);
    }
  else
    gfc_undo_symbols ();

  return found_sym;
}


/* General worker function to find either a type-bound procedure or a
   type-bound user operator.  */

static gfc_symtree*
find_typebound_proc_uop (gfc_symbol* derived, gfc_try* t,
			 const char* name, bool noaccess, bool uop,
			 locus* where)
{
  gfc_symtree* res;
  gfc_symtree* root;

  /* Set correct symbol-root.  */
  gcc_assert (derived->f2k_derived);
  root = (uop ? derived->f2k_derived->tb_uop_root
	      : derived->f2k_derived->tb_sym_root);

  /* Set default to failure.  */
  if (t)
    *t = FAILURE;

  /* Try to find it in the current type's namespace.  */
  res = gfc_find_symtree (root, name);
  if (res && res->n.tb && !res->n.tb->error)
    {
      /* We found one.  */
      if (t)
	*t = SUCCESS;

      if (!noaccess && derived->attr.use_assoc
	  && res->n.tb->access == ACCESS_PRIVATE)
	{
	  if (where)
	    gfc_error ("'%s' of '%s' is PRIVATE at %L",
		       name, derived->name, where);
	  if (t)
	    *t = FAILURE;
	}

      return res;
    }

  /* Otherwise, recurse on parent type if derived is an extension.  */
  if (derived->attr.extension)
    {
      gfc_symbol* super_type;
      super_type = gfc_get_derived_super_type (derived);
      gcc_assert (super_type);

      return find_typebound_proc_uop (super_type, t, name,
				      noaccess, uop, where);
    }

  /* Nothing found.  */
  return NULL;
}


/* Find a type-bound procedure or user operator by name for a derived-type
   (looking recursively through the super-types).  */

gfc_symtree*
gfc_find_typebound_proc (gfc_symbol* derived, gfc_try* t,
			 const char* name, bool noaccess, locus* where)
{
  return find_typebound_proc_uop (derived, t, name, noaccess, false, where);
}

gfc_symtree*
gfc_find_typebound_user_op (gfc_symbol* derived, gfc_try* t,
			    const char* name, bool noaccess, locus* where)
{
  return find_typebound_proc_uop (derived, t, name, noaccess, true, where);
}


/* Find a type-bound intrinsic operator looking recursively through the
   super-type hierarchy.  */

gfc_typebound_proc*
gfc_find_typebound_intrinsic_op (gfc_symbol* derived, gfc_try* t,
				 gfc_intrinsic_op op, bool noaccess,
				 locus* where)
{
  gfc_typebound_proc* res;

  /* Set default to failure.  */
  if (t)
    *t = FAILURE;

  /* Try to find it in the current type's namespace.  */
  if (derived->f2k_derived)
    res = derived->f2k_derived->tb_op[op];
  else  
    res = NULL;

  /* Check access.  */
  if (res && !res->error)
    {
      /* We found one.  */
      if (t)
	*t = SUCCESS;

      if (!noaccess && derived->attr.use_assoc
	  && res->access == ACCESS_PRIVATE)
	{
	  if (where)
	    gfc_error ("'%s' of '%s' is PRIVATE at %L",
		       gfc_op2string (op), derived->name, where);
	  if (t)
	    *t = FAILURE;
	}

      return res;
    }

  /* Otherwise, recurse on parent type if derived is an extension.  */
  if (derived->attr.extension)
    {
      gfc_symbol* super_type;
      super_type = gfc_get_derived_super_type (derived);
      gcc_assert (super_type);

      return gfc_find_typebound_intrinsic_op (super_type, t, op,
					      noaccess, where);
    }

  /* Nothing found.  */
  return NULL;
}


/* Get a typebound-procedure symtree or create and insert it if not yet
   present.  This is like a very simplified version of gfc_get_sym_tree for
   tbp-symtrees rather than regular ones.  */

gfc_symtree*
gfc_get_tbp_symtree (gfc_symtree **root, const char *name)
{
  gfc_symtree *result;

  result = gfc_find_symtree (*root, name);
  if (!result)
    {
      result = gfc_new_symtree (root, name);
      gcc_assert (result);
      result->n.tb = NULL;
    }

  return result;
}