1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
7288
7289
7290
7291
7292
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
7347
7348
7349
7350
7351
7352
7353
7354
7355
7356
7357
7358
7359
7360
7361
7362
7363
7364
7365
7366
7367
7368
7369
7370
7371
7372
7373
7374
7375
7376
7377
7378
7379
7380
7381
7382
7383
7384
7385
7386
7387
7388
7389
7390
7391
7392
7393
7394
7395
7396
7397
7398
7399
7400
7401
7402
7403
7404
7405
7406
7407
7408
7409
7410
7411
7412
7413
7414
7415
7416
7417
7418
7419
7420
7421
7422
7423
7424
7425
7426
7427
7428
7429
7430
7431
7432
7433
7434
7435
7436
7437
7438
7439
7440
7441
7442
7443
7444
7445
7446
7447
7448
7449
7450
7451
7452
7453
7454
7455
7456
7457
7458
7459
7460
7461
7462
7463
7464
7465
7466
7467
7468
7469
7470
7471
7472
7473
7474
7475
7476
7477
7478
7479
7480
7481
7482
7483
7484
7485
7486
7487
7488
7489
7490
7491
7492
7493
7494
7495
7496
7497
7498
7499
7500
7501
7502
7503
7504
7505
7506
7507
7508
7509
7510
7511
7512
7513
7514
7515
7516
7517
7518
7519
7520
7521
7522
7523
7524
7525
7526
7527
7528
7529
7530
7531
7532
7533
7534
7535
7536
7537
7538
7539
7540
7541
7542
7543
7544
7545
7546
7547
7548
7549
7550
7551
7552
7553
7554
7555
7556
7557
7558
7559
7560
7561
7562
7563
7564
7565
7566
7567
7568
7569
7570
7571
7572
7573
7574
7575
7576
7577
7578
7579
7580
7581
7582
7583
7584
7585
7586
7587
7588
7589
7590
7591
7592
7593
7594
7595
7596
7597
7598
7599
7600
7601
7602
7603
7604
7605
7606
7607
7608
7609
7610
7611
7612
7613
7614
7615
7616
7617
7618
7619
7620
7621
7622
7623
7624
7625
7626
7627
7628
7629
7630
7631
7632
7633
7634
7635
7636
7637
7638
7639
7640
7641
7642
7643
7644
7645
7646
7647
7648
7649
7650
7651
7652
7653
7654
7655
7656
7657
7658
7659
7660
7661
7662
7663
7664
7665
7666
7667
7668
7669
7670
7671
7672
7673
7674
7675
7676
7677
7678
7679
7680
7681
7682
7683
7684
7685
7686
7687
7688
7689
7690
7691
7692
7693
7694
7695
7696
7697
7698
7699
7700
7701
7702
7703
7704
7705
7706
7707
7708
7709
7710
7711
7712
7713
7714
7715
7716
7717
7718
7719
7720
7721
7722
7723
7724
7725
7726
7727
7728
7729
7730
7731
7732
7733
7734
7735
7736
7737
7738
7739
7740
7741
7742
7743
7744
7745
7746
7747
7748
7749
7750
7751
7752
7753
7754
7755
7756
7757
7758
7759
7760
7761
7762
7763
7764
7765
7766
7767
7768
7769
7770
7771
7772
7773
7774
7775
7776
7777
7778
7779
7780
7781
7782
7783
7784
7785
7786
7787
7788
7789
7790
7791
7792
7793
7794
7795
7796
7797
7798
7799
7800
7801
7802
7803
7804
7805
7806
7807
7808
7809
7810
7811
7812
7813
7814
7815
7816
7817
7818
7819
7820
7821
7822
7823
7824
7825
7826
7827
7828
7829
7830
7831
7832
7833
7834
7835
7836
7837
7838
7839
7840
7841
7842
7843
7844
7845
7846
7847
7848
7849
7850
7851
7852
7853
7854
7855
7856
7857
7858
7859
7860
7861
7862
7863
7864
7865
7866
7867
7868
7869
7870
7871
7872
7873
7874
7875
7876
7877
7878
7879
7880
7881
7882
7883
7884
7885
7886
7887
7888
7889
7890
7891
7892
7893
7894
7895
7896
7897
7898
7899
7900
7901
7902
7903
7904
7905
7906
7907
7908
7909
7910
7911
7912
7913
7914
7915
7916
7917
7918
7919
7920
7921
7922
7923
7924
7925
7926
7927
7928
7929
7930
7931
7932
7933
7934
7935
7936
7937
7938
7939
7940
7941
7942
7943
7944
7945
7946
7947
7948
7949
7950
7951
7952
7953
7954
7955
7956
7957
7958
7959
7960
7961
7962
7963
7964
7965
7966
7967
7968
7969
7970
7971
7972
7973
7974
7975
7976
7977
7978
7979
7980
7981
7982
7983
7984
7985
7986
7987
7988
7989
7990
7991
7992
7993
7994
7995
7996
7997
7998
7999
8000
8001
8002
8003
8004
8005
8006
8007
8008
8009
8010
8011
8012
8013
8014
8015
8016
8017
8018
8019
8020
8021
8022
8023
8024
8025
8026
8027
8028
8029
8030
8031
8032
8033
8034
8035
8036
8037
8038
8039
8040
8041
8042
8043
8044
8045
8046
8047
8048
8049
8050
8051
8052
8053
8054
8055
8056
8057
8058
8059
8060
8061
8062
8063
8064
8065
8066
8067
8068
8069
8070
8071
8072
8073
8074
8075
8076
8077
8078
8079
8080
8081
8082
8083
8084
8085
8086
8087
8088
8089
8090
8091
8092
8093
8094
8095
8096
8097
8098
8099
8100
8101
8102
8103
8104
8105
8106
8107
8108
8109
8110
8111
8112
8113
8114
8115
8116
8117
8118
8119
8120
8121
8122
8123
8124
8125
8126
8127
8128
8129
8130
8131
8132
8133
8134
8135
8136
8137
8138
8139
8140
8141
8142
8143
8144
8145
8146
8147
8148
8149
8150
8151
8152
8153
8154
8155
8156
8157
8158
8159
8160
8161
8162
8163
8164
8165
8166
8167
8168
8169
8170
8171
8172
8173
8174
8175
8176
8177
8178
8179
8180
8181
8182
8183
8184
8185
8186
8187
8188
8189
8190
8191
8192
8193
8194
8195
8196
8197
8198
8199
8200
8201
8202
8203
8204
8205
8206
8207
8208
8209
8210
8211
8212
8213
8214
8215
8216
8217
8218
8219
8220
8221
8222
8223
8224
8225
8226
8227
8228
8229
8230
8231
8232
8233
8234
8235
8236
8237
8238
8239
8240
8241
8242
8243
8244
8245
8246
8247
8248
8249
8250
8251
8252
8253
8254
8255
8256
8257
8258
8259
8260
8261
8262
8263
8264
8265
8266
8267
8268
8269
8270
8271
8272
8273
8274
8275
8276
8277
8278
8279
8280
8281
8282
8283
8284
8285
8286
8287
8288
8289
8290
8291
8292
8293
8294
8295
8296
8297
8298
8299
8300
8301
8302
8303
8304
8305
8306
8307
8308
8309
8310
8311
8312
8313
8314
8315
8316
8317
8318
8319
8320
8321
8322
8323
8324
8325
8326
8327
8328
8329
8330
8331
8332
8333
8334
8335
8336
8337
8338
8339
8340
8341
8342
8343
8344
8345
8346
8347
8348
8349
8350
8351
8352
8353
8354
8355
8356
8357
8358
8359
8360
8361
8362
8363
8364
8365
8366
8367
8368
8369
8370
8371
8372
8373
8374
8375
8376
8377
8378
8379
8380
8381
8382
8383
8384
8385
8386
8387
8388
8389
8390
8391
8392
8393
8394
8395
8396
8397
8398
8399
8400
8401
8402
8403
8404
8405
8406
8407
8408
8409
8410
8411
8412
8413
8414
8415
8416
8417
8418
8419
8420
8421
8422
8423
8424
8425
8426
8427
8428
8429
8430
8431
8432
8433
8434
8435
8436
8437
8438
8439
8440
8441
8442
8443
8444
8445
8446
8447
8448
8449
8450
8451
8452
8453
8454
8455
8456
8457
8458
8459
8460
8461
8462
8463
8464
8465
8466
8467
8468
8469
8470
8471
8472
8473
8474
8475
8476
8477
8478
8479
8480
8481
8482
8483
8484
8485
8486
8487
8488
8489
8490
8491
8492
8493
8494
8495
8496
8497
8498
8499
8500
8501
8502
8503
8504
8505
8506
8507
8508
8509
8510
8511
8512
8513
8514
8515
8516
8517
8518
8519
8520
8521
8522
8523
8524
8525
8526
8527
8528
8529
8530
8531
8532
8533
8534
8535
8536
8537
8538
8539
8540
8541
8542
8543
8544
8545
8546
8547
8548
8549
8550
8551
8552
8553
8554
8555
8556
8557
8558
8559
8560
8561
8562
8563
8564
8565
8566
8567
8568
8569
8570
8571
8572
8573
8574
8575
8576
8577
8578
8579
8580
8581
8582
8583
8584
8585
8586
8587
8588
8589
8590
8591
8592
8593
8594
8595
8596
8597
8598
8599
8600
8601
8602
8603
8604
8605
8606
8607
8608
8609
8610
8611
8612
8613
8614
8615
8616
8617
8618
8619
8620
8621
8622
8623
8624
8625
8626
8627
8628
8629
8630
8631
8632
8633
8634
8635
8636
8637
8638
8639
8640
8641
8642
8643
8644
8645
8646
8647
8648
8649
8650
8651
8652
8653
8654
8655
8656
8657
8658
8659
8660
8661
8662
8663
8664
8665
8666
8667
8668
8669
8670
8671
8672
8673
8674
8675
8676
8677
8678
8679
8680
8681
8682
8683
8684
8685
8686
8687
8688
8689
8690
8691
8692
8693
8694
8695
8696
8697
8698
8699
8700
8701
8702
8703
8704
8705
8706
8707
8708
8709
8710
8711
8712
8713
8714
8715
8716
8717
8718
8719
8720
8721
8722
8723
8724
8725
8726
8727
8728
8729
8730
8731
8732
8733
8734
8735
8736
8737
8738
8739
8740
8741
8742
8743
8744
8745
8746
8747
8748
8749
8750
8751
8752
8753
8754
8755
8756
8757
8758
8759
8760
8761
8762
8763
8764
8765
8766
8767
8768
8769
8770
8771
8772
8773
8774
8775
8776
8777
8778
8779
8780
8781
8782
8783
8784
8785
8786
8787
8788
8789
8790
8791
8792
8793
8794
8795
8796
8797
8798
8799
8800
8801
8802
8803
8804
8805
8806
8807
8808
8809
8810
8811
8812
8813
8814
8815
8816
8817
8818
8819
8820
8821
8822
8823
8824
8825
8826
8827
8828
8829
8830
8831
8832
8833
8834
8835
8836
8837
8838
8839
8840
8841
8842
8843
8844
8845
8846
8847
8848
8849
8850
8851
8852
8853
8854
8855
8856
8857
8858
8859
8860
8861
8862
8863
8864
8865
8866
8867
8868
8869
8870
8871
8872
8873
8874
8875
8876
8877
8878
8879
8880
8881
8882
8883
8884
8885
8886
8887
8888
8889
8890
8891
8892
8893
8894
8895
8896
8897
8898
8899
8900
8901
8902
8903
8904
8905
8906
8907
8908
8909
8910
8911
8912
8913
8914
8915
8916
8917
8918
8919
8920
8921
8922
8923
8924
8925
8926
8927
8928
8929
8930
8931
8932
8933
8934
8935
8936
8937
8938
8939
8940
8941
8942
8943
8944
8945
8946
8947
8948
8949
8950
8951
8952
8953
8954
8955
8956
8957
8958
8959
8960
8961
8962
8963
8964
8965
8966
8967
8968
8969
8970
8971
8972
8973
8974
8975
8976
8977
8978
8979
8980
8981
8982
8983
8984
8985
8986
8987
8988
8989
8990
8991
8992
8993
8994
8995
8996
8997
8998
8999
9000
9001
9002
9003
9004
9005
9006
9007
9008
9009
9010
9011
9012
9013
9014
9015
9016
9017
9018
9019
9020
9021
9022
9023
9024
9025
9026
9027
9028
9029
9030
9031
9032
9033
9034
9035
9036
9037
9038
9039
9040
9041
9042
9043
9044
9045
9046
9047
9048
9049
9050
9051
9052
9053
9054
9055
9056
9057
9058
9059
9060
9061
9062
9063
9064
9065
9066
9067
9068
9069
9070
9071
9072
9073
9074
9075
9076
9077
9078
9079
9080
9081
9082
9083
9084
9085
9086
9087
9088
9089
9090
9091
9092
9093
9094
9095
9096
9097
9098
9099
9100
9101
9102
9103
9104
9105
9106
9107
9108
9109
9110
9111
9112
9113
9114
9115
9116
9117
9118
9119
9120
9121
9122
9123
9124
9125
9126
9127
9128
9129
9130
9131
9132
9133
9134
9135
9136
9137
9138
9139
9140
9141
9142
9143
9144
9145
9146
9147
9148
9149
9150
9151
9152
9153
9154
9155
9156
9157
9158
9159
9160
9161
9162
9163
9164
9165
9166
9167
9168
9169
9170
9171
9172
9173
9174
9175
9176
9177
9178
9179
9180
9181
9182
9183
9184
9185
9186
9187
9188
9189
9190
9191
9192
9193
9194
9195
9196
9197
9198
9199
9200
9201
9202
9203
9204
9205
9206
9207
9208
9209
9210
9211
9212
9213
9214
9215
9216
9217
9218
9219
9220
9221
9222
9223
9224
9225
9226
9227
9228
9229
9230
9231
9232
9233
9234
9235
9236
9237
9238
9239
9240
9241
9242
9243
9244
9245
9246
9247
9248
9249
9250
9251
9252
9253
9254
9255
9256
9257
9258
9259
9260
9261
9262
9263
9264
9265
9266
9267
9268
9269
9270
9271
9272
9273
9274
9275
9276
9277
9278
9279
9280
9281
9282
9283
9284
9285
9286
9287
9288
9289
9290
9291
9292
9293
9294
9295
9296
9297
9298
9299
9300
9301
9302
9303
9304
9305
9306
9307
9308
9309
9310
9311
9312
9313
9314
9315
9316
9317
9318
9319
9320
9321
9322
9323
9324
9325
9326
9327
9328
9329
9330
9331
9332
9333
9334
9335
9336
9337
9338
9339
9340
9341
9342
9343
9344
9345
9346
9347
9348
9349
9350
9351
9352
9353
9354
9355
9356
9357
9358
9359
9360
9361
9362
9363
9364
9365
9366
9367
9368
9369
9370
9371
9372
9373
9374
9375
9376
9377
9378
9379
9380
9381
9382
9383
9384
9385
9386
9387
9388
9389
9390
9391
9392
9393
9394
9395
9396
9397
9398
9399
9400
9401
9402
9403
9404
9405
9406
9407
9408
9409
9410
9411
9412
9413
9414
9415
9416
9417
9418
9419
9420
9421
9422
9423
9424
9425
9426
9427
9428
9429
9430
9431
9432
9433
9434
9435
9436
9437
9438
9439
9440
9441
9442
9443
9444
9445
9446
9447
9448
9449
9450
9451
9452
9453
9454
9455
9456
9457
9458
9459
9460
9461
9462
9463
9464
9465
9466
9467
9468
9469
9470
9471
9472
9473
9474
9475
9476
9477
9478
9479
9480
9481
9482
9483
9484
9485
9486
9487
9488
9489
9490
9491
9492
9493
9494
9495
9496
9497
9498
9499
9500
9501
9502
9503
9504
9505
9506
9507
9508
9509
9510
9511
9512
9513
9514
9515
9516
9517
9518
9519
9520
9521
9522
9523
9524
9525
9526
9527
9528
9529
9530
9531
9532
9533
9534
9535
9536
9537
9538
9539
9540
9541
9542
9543
9544
9545
9546
9547
9548
9549
9550
9551
9552
9553
9554
9555
9556
9557
9558
9559
9560
9561
9562
9563
9564
9565
9566
9567
9568
9569
9570
9571
9572
9573
9574
9575
9576
9577
9578
9579
9580
9581
9582
9583
9584
9585
9586
9587
9588
9589
9590
9591
9592
9593
9594
9595
9596
9597
9598
9599
9600
9601
9602
9603
9604
9605
9606
9607
9608
9609
9610
9611
9612
9613
9614
9615
9616
9617
9618
9619
9620
9621
9622
9623
9624
9625
9626
9627
9628
9629
9630
9631
9632
9633
9634
9635
9636
9637
9638
9639
9640
9641
9642
9643
9644
9645
9646
9647
9648
9649
9650
9651
9652
9653
9654
9655
9656
9657
9658
9659
9660
9661
9662
9663
9664
9665
9666
9667
9668
9669
9670
9671
9672
9673
9674
9675
9676
9677
9678
9679
9680
9681
9682
9683
9684
9685
9686
9687
9688
9689
9690
9691
9692
9693
9694
9695
9696
9697
9698
9699
9700
9701
9702
9703
9704
9705
9706
9707
9708
9709
9710
9711
9712
9713
9714
9715
9716
9717
9718
9719
9720
9721
9722
9723
9724
9725
9726
9727
9728
9729
9730
9731
9732
9733
9734
9735
9736
9737
9738
9739
9740
9741
9742
9743
9744
9745
9746
9747
9748
9749
9750
9751
9752
9753
9754
9755
9756
9757
9758
9759
9760
9761
9762
9763
9764
9765
9766
9767
9768
9769
9770
9771
9772
9773
9774
9775
9776
9777
9778
9779
9780
9781
9782
9783
9784
9785
9786
9787
9788
9789
9790
9791
9792
9793
9794
9795
9796
9797
9798
9799
9800
9801
9802
9803
9804
9805
9806
9807
9808
9809
9810
9811
9812
9813
9814
9815
9816
9817
9818
9819
9820
9821
9822
9823
9824
9825
9826
9827
9828
9829
9830
9831
9832
9833
9834
9835
9836
9837
9838
9839
9840
9841
9842
9843
9844
9845
9846
9847
9848
9849
9850
9851
9852
9853
9854
9855
9856
9857
9858
9859
9860
9861
9862
9863
9864
9865
9866
9867
9868
9869
9870
9871
9872
9873
9874
9875
9876
9877
9878
9879
9880
9881
9882
9883
9884
9885
9886
9887
9888
9889
9890
9891
9892
9893
9894
9895
9896
9897
9898
9899
9900
9901
9902
9903
9904
9905
9906
9907
9908
9909
9910
9911
9912
9913
9914
9915
9916
9917
9918
9919
9920
9921
9922
9923
9924
9925
9926
9927
9928
9929
9930
9931
9932
9933
9934
9935
9936
9937
9938
9939
9940
9941
9942
9943
9944
9945
9946
9947
9948
9949
9950
9951
9952
9953
9954
9955
9956
9957
9958
9959
9960
9961
9962
9963
9964
9965
9966
9967
9968
9969
9970
9971
9972
9973
9974
9975
9976
9977
9978
9979
9980
9981
9982
9983
9984
9985
9986
9987
9988
9989
9990
9991
9992
9993
9994
9995
9996
9997
9998
9999
10000
10001
10002
10003
10004
10005
10006
10007
10008
10009
10010
10011
10012
10013
10014
10015
10016
10017
10018
10019
10020
10021
10022
10023
10024
10025
10026
10027
10028
10029
10030
10031
10032
10033
10034
10035
10036
10037
10038
10039
10040
10041
10042
10043
10044
10045
10046
10047
10048
10049
10050
10051
10052
10053
10054
10055
10056
10057
10058
10059
10060
10061
10062
10063
10064
10065
10066
10067
10068
10069
10070
10071
10072
10073
10074
10075
10076
10077
10078
10079
10080
10081
10082
10083
10084
10085
10086
10087
10088
10089
10090
10091
10092
10093
10094
10095
10096
10097
10098
10099
10100
10101
10102
10103
10104
10105
10106
10107
10108
10109
10110
10111
10112
10113
10114
10115
10116
10117
10118
10119
10120
10121
10122
10123
10124
10125
10126
10127
10128
10129
10130
10131
10132
10133
10134
10135
10136
10137
10138
10139
10140
10141
10142
10143
10144
10145
10146
10147
10148
10149
10150
10151
10152
10153
10154
10155
10156
10157
10158
10159
10160
10161
10162
10163
10164
10165
10166
10167
10168
10169
10170
10171
10172
10173
10174
10175
10176
10177
10178
10179
10180
10181
10182
10183
10184
10185
10186
10187
10188
10189
10190
10191
10192
10193
10194
10195
10196
10197
10198
10199
10200
10201
10202
10203
10204
10205
10206
10207
10208
10209
10210
10211
10212
10213
10214
10215
10216
10217
10218
10219
10220
10221
10222
10223
10224
10225
10226
10227
10228
10229
10230
10231
10232
10233
10234
10235
10236
10237
10238
10239
10240
10241
10242
10243
10244
10245
10246
10247
10248
10249
10250
10251
10252
10253
10254
10255
10256
10257
10258
10259
10260
10261
10262
10263
10264
10265
10266
10267
10268
10269
10270
10271
10272
10273
10274
10275
10276
10277
10278
10279
10280
10281
10282
10283
10284
10285
10286
10287
10288
10289
10290
10291
10292
10293
10294
10295
10296
10297
10298
10299
10300
10301
10302
10303
10304
10305
10306
10307
10308
10309
10310
10311
10312
10313
10314
10315
10316
10317
10318
10319
10320
10321
10322
10323
10324
10325
10326
10327
10328
10329
10330
10331
10332
10333
10334
10335
10336
10337
10338
10339
10340
10341
10342
10343
10344
10345
10346
10347
10348
10349
10350
10351
10352
10353
10354
10355
10356
10357
10358
10359
10360
10361
10362
10363
10364
10365
10366
10367
10368
10369
10370
10371
10372
10373
10374
10375
10376
10377
10378
10379
10380
10381
10382
10383
10384
10385
10386
10387
10388
10389
10390
10391
10392
10393
10394
10395
10396
10397
10398
10399
10400
10401
10402
10403
10404
10405
10406
10407
10408
10409
10410
10411
10412
10413
10414
10415
10416
10417
10418
10419
10420
10421
10422
10423
10424
10425
10426
10427
10428
10429
10430
10431
10432
10433
10434
10435
10436
10437
10438
10439
10440
10441
10442
10443
10444
10445
10446
10447
10448
10449
10450
10451
10452
10453
10454
10455
10456
10457
10458
10459
10460
10461
10462
10463
10464
10465
10466
10467
10468
10469
10470
10471
10472
10473
10474
10475
10476
10477
10478
10479
10480
10481
10482
10483
10484
10485
10486
10487
10488
10489
10490
10491
10492
10493
10494
10495
10496
10497
10498
10499
10500
10501
10502
10503
10504
10505
10506
10507
10508
10509
10510
10511
10512
10513
10514
10515
10516
10517
10518
10519
10520
10521
10522
10523
10524
10525
10526
10527
10528
10529
10530
10531
10532
10533
10534
10535
10536
10537
10538
10539
10540
10541
10542
10543
10544
10545
10546
10547
10548
10549
10550
10551
10552
10553
10554
10555
10556
10557
10558
10559
10560
10561
10562
10563
10564
10565
10566
10567
10568
10569
10570
10571
10572
10573
10574
10575
10576
10577
10578
10579
10580
10581
10582
10583
10584
10585
10586
10587
10588
10589
10590
10591
10592
10593
10594
10595
10596
10597
10598
10599
10600
10601
10602
10603
10604
10605
10606
10607
10608
10609
10610
10611
10612
10613
10614
10615
10616
10617
10618
10619
10620
10621
10622
10623
10624
10625
10626
10627
10628
10629
10630
10631
10632
10633
10634
10635
10636
10637
10638
10639
10640
10641
10642
10643
10644
10645
10646
10647
10648
10649
10650
10651
10652
10653
10654
10655
10656
10657
10658
10659
10660
10661
10662
10663
10664
10665
10666
10667
10668
10669
10670
10671
10672
10673
10674
10675
10676
10677
10678
10679
10680
10681
10682
10683
10684
10685
10686
10687
10688
10689
10690
10691
10692
10693
10694
10695
10696
10697
10698
10699
10700
10701
10702
10703
10704
10705
10706
10707
10708
10709
10710
10711
10712
10713
10714
10715
10716
10717
10718
10719
10720
10721
10722
10723
10724
10725
10726
10727
10728
10729
10730
10731
10732
10733
10734
10735
10736
10737
10738
10739
10740
10741
10742
10743
10744
10745
10746
10747
10748
10749
10750
10751
10752
10753
10754
10755
10756
10757
10758
10759
10760
10761
10762
10763
10764
10765
10766
10767
10768
10769
10770
10771
10772
10773
10774
10775
10776
10777
10778
10779
10780
10781
10782
10783
10784
10785
10786
10787
10788
10789
10790
10791
10792
10793
10794
10795
10796
10797
10798
10799
10800
10801
10802
10803
10804
10805
10806
10807
10808
10809
10810
10811
10812
10813
10814
10815
10816
10817
10818
10819
10820
10821
10822
10823
10824
10825
10826
10827
10828
10829
10830
10831
10832
10833
10834
10835
10836
10837
10838
10839
10840
10841
10842
10843
10844
10845
10846
10847
10848
10849
10850
10851
10852
10853
10854
10855
10856
10857
10858
10859
10860
10861
10862
10863
10864
10865
10866
10867
10868
10869
10870
10871
10872
10873
10874
10875
10876
10877
10878
10879
10880
10881
10882
10883
10884
10885
10886
10887
10888
10889
10890
10891
10892
10893
10894
10895
10896
10897
10898
10899
10900
10901
10902
10903
10904
10905
10906
10907
10908
10909
10910
10911
10912
10913
10914
10915
10916
10917
10918
10919
10920
10921
10922
10923
10924
10925
10926
10927
10928
10929
10930
10931
10932
10933
10934
10935
10936
10937
10938
10939
10940
10941
10942
10943
10944
10945
10946
10947
10948
10949
10950
10951
10952
10953
10954
10955
10956
10957
10958
10959
10960
10961
10962
10963
10964
10965
10966
10967
10968
10969
10970
10971
10972
10973
10974
10975
10976
10977
10978
10979
10980
10981
10982
10983
10984
10985
10986
10987
10988
10989
10990
10991
10992
10993
10994
10995
10996
10997
10998
10999
11000
11001
11002
11003
11004
11005
11006
11007
11008
11009
11010
11011
11012
11013
11014
11015
11016
11017
11018
11019
11020
11021
11022
11023
11024
11025
11026
11027
11028
11029
11030
11031
11032
11033
11034
11035
11036
11037
11038
11039
11040
11041
11042
11043
11044
11045
11046
11047
11048
11049
11050
11051
11052
11053
11054
11055
11056
11057
11058
11059
11060
11061
11062
11063
11064
11065
11066
11067
11068
11069
11070
11071
11072
11073
11074
11075
11076
11077
11078
11079
11080
11081
11082
11083
11084
11085
11086
11087
11088
11089
11090
11091
11092
11093
11094
11095
11096
11097
11098
11099
11100
11101
11102
11103
11104
11105
11106
11107
11108
11109
11110
11111
11112
11113
11114
11115
11116
11117
11118
11119
11120
11121
11122
11123
11124
11125
11126
11127
11128
11129
11130
11131
11132
11133
11134
11135
11136
11137
11138
11139
11140
11141
11142
11143
11144
11145
11146
11147
11148
11149
11150
11151
11152
11153
11154
11155
11156
11157
11158
11159
11160
11161
11162
11163
11164
11165
11166
11167
11168
11169
11170
11171
11172
11173
11174
11175
11176
11177
11178
11179
11180
11181
11182
11183
11184
11185
11186
11187
11188
11189
11190
11191
11192
11193
11194
11195
11196
11197
11198
11199
11200
11201
11202
11203
11204
11205
11206
11207
11208
11209
11210
11211
11212
11213
11214
11215
11216
11217
11218
11219
11220
11221
11222
11223
11224
11225
11226
11227
11228
11229
11230
11231
11232
11233
11234
11235
11236
11237
11238
11239
11240
11241
11242
11243
11244
11245
11246
11247
11248
11249
11250
11251
11252
11253
11254
11255
11256
11257
11258
11259
11260
11261
11262
11263
11264
11265
11266
11267
11268
11269
11270
11271
11272
11273
11274
11275
11276
11277
11278
11279
11280
11281
11282
11283
11284
11285
11286
11287
11288
11289
11290
11291
11292
11293
11294
11295
11296
11297
11298
11299
11300
11301
11302
11303
11304
11305
11306
11307
11308
11309
11310
11311
11312
11313
11314
11315
11316
11317
11318
11319
11320
11321
11322
11323
11324
11325
11326
11327
11328
11329
11330
11331
11332
11333
11334
11335
11336
11337
11338
11339
11340
11341
11342
11343
11344
11345
11346
11347
11348
11349
11350
11351
11352
11353
11354
11355
11356
11357
11358
11359
11360
11361
11362
11363
11364
11365
11366
11367
11368
11369
11370
11371
11372
11373
11374
11375
11376
11377
11378
11379
11380
11381
11382
11383
11384
11385
11386
11387
11388
11389
11390
11391
11392
11393
11394
11395
11396
11397
11398
11399
11400
11401
11402
11403
11404
11405
11406
11407
11408
11409
11410
11411
11412
11413
11414
11415
11416
11417
11418
11419
11420
11421
11422
11423
11424
11425
11426
11427
11428
11429
11430
11431
11432
11433
11434
11435
11436
11437
11438
11439
11440
11441
11442
11443
11444
11445
11446
11447
11448
11449
11450
11451
11452
11453
11454
11455
11456
11457
11458
11459
11460
11461
11462
11463
11464
11465
11466
11467
11468
11469
11470
11471
11472
11473
11474
11475
11476
11477
11478
11479
11480
11481
11482
11483
11484
11485
11486
11487
11488
11489
11490
11491
11492
11493
11494
11495
11496
11497
11498
11499
11500
11501
11502
11503
11504
11505
11506
11507
11508
11509
11510
11511
11512
11513
11514
11515
11516
11517
11518
11519
11520
11521
11522
11523
11524
11525
11526
11527
11528
11529
11530
11531
11532
11533
11534
11535
11536
11537
11538
11539
11540
11541
11542
11543
11544
11545
11546
11547
11548
11549
11550
11551
11552
11553
11554
11555
11556
11557
11558
11559
11560
11561
11562
11563
11564
11565
11566
11567
11568
11569
11570
11571
11572
11573
11574
11575
11576
11577
11578
11579
11580
11581
11582
11583
11584
11585
11586
11587
11588
11589
11590
11591
11592
11593
11594
11595
11596
11597
11598
11599
11600
11601
11602
11603
11604
11605
11606
11607
11608
11609
11610
11611
11612
11613
11614
11615
11616
11617
11618
11619
11620
11621
11622
11623
11624
11625
11626
11627
11628
11629
11630
11631
11632
11633
11634
11635
11636
11637
11638
11639
11640
11641
11642
11643
11644
11645
11646
11647
11648
11649
11650
11651
11652
11653
11654
11655
11656
11657
11658
11659
11660
11661
11662
11663
11664
11665
11666
11667
11668
11669
11670
11671
11672
11673
11674
11675
11676
11677
11678
11679
11680
11681
11682
11683
11684
11685
11686
11687
11688
11689
11690
11691
11692
11693
11694
11695
11696
11697
11698
11699
11700
11701
11702
11703
11704
11705
11706
11707
11708
11709
11710
11711
11712
11713
11714
11715
11716
11717
11718
11719
11720
11721
11722
11723
11724
11725
11726
11727
11728
11729
11730
11731
11732
11733
11734
11735
11736
11737
11738
11739
11740
11741
11742
11743
11744
11745
11746
11747
11748
11749
11750
11751
11752
11753
11754
11755
11756
11757
11758
11759
11760
11761
11762
11763
11764
11765
11766
11767
11768
11769
11770
11771
11772
11773
11774
11775
11776
11777
11778
11779
11780
11781
11782
11783
11784
11785
11786
11787
11788
11789
11790
11791
11792
11793
11794
11795
11796
11797
11798
11799
11800
11801
11802
11803
11804
11805
11806
11807
11808
11809
11810
11811
11812
11813
11814
11815
11816
11817
11818
11819
11820
11821
11822
11823
11824
11825
11826
11827
11828
11829
11830
11831
11832
11833
11834
11835
11836
11837
11838
11839
11840
11841
11842
11843
11844
11845
11846
11847
11848
11849
11850
11851
11852
11853
11854
11855
11856
11857
11858
11859
11860
11861
11862
11863
11864
11865
11866
11867
11868
11869
11870
11871
11872
11873
11874
11875
11876
11877
11878
11879
11880
11881
11882
11883
11884
11885
11886
11887
11888
11889
11890
11891
11892
11893
11894
11895
11896
11897
11898
11899
11900
11901
11902
11903
11904
11905
11906
11907
11908
11909
11910
11911
11912
11913
11914
11915
11916
11917
11918
11919
11920
11921
11922
11923
11924
11925
11926
11927
11928
11929
11930
11931
11932
11933
11934
11935
11936
11937
11938
11939
11940
11941
11942
11943
11944
11945
11946
11947
11948
11949
11950
11951
11952
11953
11954
11955
11956
11957
11958
11959
11960
11961
11962
11963
11964
11965
11966
11967
11968
11969
11970
11971
11972
11973
11974
11975
11976
11977
11978
11979
11980
11981
11982
11983
11984
11985
11986
11987
11988
11989
11990
11991
11992
11993
11994
11995
11996
11997
11998
11999
12000
12001
12002
12003
12004
12005
12006
12007
12008
12009
12010
12011
12012
12013
12014
12015
12016
12017
12018
12019
12020
12021
12022
12023
12024
12025
12026
12027
12028
12029
12030
12031
12032
12033
12034
12035
12036
12037
12038
12039
12040
12041
12042
12043
12044
12045
12046
12047
12048
12049
12050
12051
12052
12053
12054
12055
12056
12057
12058
12059
12060
12061
12062
12063
12064
12065
12066
12067
12068
12069
12070
12071
12072
12073
12074
12075
12076
12077
12078
12079
12080
12081
12082
12083
12084
12085
12086
12087
12088
12089
12090
12091
12092
12093
12094
12095
12096
12097
12098
12099
12100
12101
12102
12103
12104
12105
12106
12107
12108
12109
12110
12111
12112
12113
12114
12115
12116
12117
12118
12119
12120
12121
12122
12123
12124
12125
12126
12127
12128
12129
12130
12131
12132
12133
12134
12135
12136
12137
12138
12139
12140
12141
12142
12143
12144
12145
12146
12147
12148
12149
12150
12151
12152
12153
12154
12155
12156
12157
12158
12159
12160
12161
12162
12163
12164
12165
12166
12167
12168
12169
12170
12171
12172
12173
12174
12175
12176
12177
12178
12179
12180
12181
12182
12183
12184
12185
12186
12187
12188
12189
12190
12191
12192
12193
12194
12195
12196
12197
12198
12199
12200
12201
12202
12203
12204
12205
12206
12207
12208
12209
12210
12211
12212
12213
12214
12215
12216
12217
12218
12219
12220
12221
12222
12223
12224
12225
12226
12227
12228
12229
12230
12231
12232
12233
12234
12235
12236
12237
12238
12239
12240
12241
12242
12243
12244
12245
12246
12247
12248
12249
12250
12251
12252
12253
12254
12255
12256
12257
12258
12259
12260
12261
12262
12263
12264
12265
12266
12267
12268
12269
12270
12271
12272
12273
12274
12275
12276
12277
12278
12279
12280
12281
12282
12283
12284
12285
12286
12287
12288
12289
12290
12291
12292
12293
12294
12295
12296
12297
12298
12299
12300
12301
12302
12303
12304
12305
12306
12307
12308
12309
12310
12311
12312
12313
12314
12315
12316
12317
12318
12319
12320
12321
12322
12323
12324
12325
12326
12327
12328
12329
12330
12331
12332
12333
12334
12335
12336
12337
12338
12339
12340
12341
12342
12343
12344
12345
12346
12347
12348
12349
12350
12351
12352
12353
12354
12355
12356
12357
12358
12359
12360
12361
12362
12363
12364
12365
12366
12367
12368
12369
12370
12371
12372
12373
12374
12375
12376
12377
12378
12379
12380
12381
12382
12383
12384
12385
12386
12387
12388
12389
12390
12391
12392
12393
12394
12395
12396
12397
12398
12399
12400
12401
12402
12403
12404
12405
12406
12407
12408
12409
12410
12411
12412
12413
12414
12415
12416
12417
12418
12419
12420
12421
12422
12423
12424
12425
12426
12427
12428
12429
12430
12431
12432
12433
12434
12435
12436
12437
12438
12439
12440
12441
12442
12443
12444
12445
12446
12447
12448
12449
12450
12451
12452
12453
12454
12455
12456
12457
12458
12459
12460
12461
12462
12463
12464
12465
12466
12467
12468
12469
12470
12471
12472
12473
12474
12475
12476
12477
12478
12479
12480
12481
12482
12483
12484
12485
12486
12487
12488
12489
12490
12491
12492
12493
12494
12495
12496
12497
12498
12499
12500
12501
12502
12503
12504
12505
12506
12507
12508
12509
12510
12511
12512
12513
12514
12515
12516
12517
12518
12519
12520
12521
12522
12523
12524
12525
12526
12527
12528
12529
12530
12531
12532
12533
12534
12535
12536
12537
12538
12539
12540
12541
12542
12543
12544
12545
12546
12547
12548
12549
12550
12551
12552
12553
12554
12555
12556
12557
12558
12559
12560
12561
12562
12563
12564
12565
12566
12567
12568
12569
12570
12571
12572
12573
12574
12575
12576
12577
12578
12579
12580
12581
12582
12583
12584
12585
12586
12587
12588
12589
12590
12591
12592
12593
12594
12595
12596
12597
12598
12599
12600
12601
12602
12603
12604
12605
12606
12607
12608
12609
12610
12611
12612
12613
12614
12615
12616
12617
12618
12619
12620
12621
12622
12623
12624
12625
12626
12627
12628
12629
12630
12631
12632
12633
12634
12635
12636
12637
12638
12639
12640
12641
12642
12643
12644
12645
12646
12647
12648
12649
12650
12651
12652
12653
12654
12655
12656
12657
12658
12659
12660
12661
12662
12663
12664
12665
12666
12667
12668
12669
12670
12671
12672
12673
12674
12675
12676
12677
12678
12679
12680
12681
12682
12683
12684
12685
12686
12687
12688
12689
12690
12691
12692
12693
12694
12695
12696
12697
12698
12699
12700
12701
12702
12703
12704
12705
12706
12707
12708
12709
12710
12711
12712
12713
12714
12715
12716
12717
12718
12719
12720
12721
12722
12723
12724
12725
12726
12727
12728
12729
12730
12731
12732
12733
12734
12735
12736
12737
12738
12739
12740
12741
12742
12743
12744
12745
12746
12747
12748
12749
12750
12751
12752
12753
12754
12755
12756
12757
12758
12759
12760
12761
12762
12763
12764
12765
12766
12767
12768
12769
12770
12771
12772
12773
12774
12775
12776
12777
12778
12779
12780
12781
12782
12783
12784
12785
12786
12787
12788
12789
12790
12791
12792
12793
12794
12795
12796
12797
12798
12799
12800
12801
12802
12803
12804
12805
12806
12807
12808
12809
12810
12811
12812
12813
12814
12815
12816
12817
12818
12819
12820
12821
12822
12823
12824
12825
12826
12827
12828
12829
12830
12831
12832
12833
12834
12835
12836
12837
12838
12839
12840
12841
12842
12843
12844
12845
12846
12847
12848
12849
12850
12851
12852
12853
12854
12855
12856
12857
12858
12859
12860
12861
12862
12863
12864
12865
12866
12867
12868
12869
12870
12871
12872
12873
12874
12875
12876
12877
12878
12879
12880
12881
12882
12883
12884
12885
12886
12887
12888
12889
12890
12891
12892
12893
12894
12895
12896
12897
12898
12899
12900
12901
12902
12903
12904
12905
12906
12907
12908
12909
12910
12911
12912
12913
12914
12915
12916
12917
12918
12919
12920
12921
12922
12923
12924
12925
12926
12927
12928
12929
12930
12931
12932
12933
12934
12935
12936
12937
12938
12939
12940
12941
12942
12943
12944
12945
12946
12947
12948
12949
12950
12951
12952
12953
12954
12955
12956
12957
12958
12959
12960
12961
12962
12963
12964
12965
12966
12967
12968
12969
12970
12971
12972
12973
12974
12975
12976
12977
12978
12979
12980
12981
12982
12983
12984
12985
12986
12987
12988
12989
12990
12991
12992
12993
12994
12995
12996
12997
12998
12999
13000
13001
13002
13003
13004
13005
13006
13007
13008
13009
13010
13011
13012
13013
13014
13015
13016
13017
13018
13019
13020
13021
13022
13023
13024
13025
13026
13027
13028
13029
13030
13031
13032
13033
13034
13035
13036
13037
13038
13039
13040
13041
13042
13043
13044
13045
13046
13047
13048
13049
13050
13051
13052
13053
13054
13055
13056
13057
13058
13059
13060
13061
13062
13063
13064
13065
13066
13067
13068
13069
13070
13071
13072
13073
13074
13075
13076
13077
13078
13079
13080
13081
13082
13083
13084
13085
13086
13087
13088
13089
13090
13091
13092
13093
13094
13095
13096
13097
13098
13099
13100
13101
13102
13103
13104
13105
13106
13107
13108
13109
13110
13111
13112
13113
13114
13115
13116
13117
13118
13119
13120
13121
13122
13123
13124
13125
13126
13127
13128
13129
13130
13131
13132
13133
13134
13135
13136
13137
13138
13139
13140
13141
13142
13143
13144
13145
13146
13147
13148
13149
13150
13151
13152
13153
13154
13155
13156
13157
13158
13159
13160
13161
13162
13163
13164
13165
13166
13167
13168
13169
13170
13171
13172
13173
13174
13175
13176
13177
13178
13179
13180
13181
13182
13183
13184
13185
13186
13187
13188
13189
13190
13191
13192
13193
13194
13195
13196
13197
13198
13199
13200
13201
13202
13203
13204
13205
13206
13207
13208
13209
13210
13211
13212
13213
13214
13215
13216
13217
13218
13219
13220
13221
13222
13223
13224
13225
13226
13227
13228
13229
13230
13231
13232
13233
13234
13235
|
@ignore
Copyright (C) 2005-2014 Free Software Foundation, Inc.
This is part of the GNU Fortran manual.
For copying conditions, see the file gfortran.texi.
Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.3 or
any later version published by the Free Software Foundation; with the
Invariant Sections being ``Funding Free Software'', the Front-Cover
Texts being (a) (see below), and with the Back-Cover Texts being (b)
(see below). A copy of the license is included in the gfdl(7) man page.
Some basic guidelines for editing this document:
(1) The intrinsic procedures are to be listed in alphabetical order.
(2) The generic name is to be used.
(3) The specific names are included in the function index and in a
table at the end of the node (See ABS entry).
(4) Try to maintain the same style for each entry.
@end ignore
@tex
\gdef\acos{\mathop{\rm acos}\nolimits}
\gdef\asin{\mathop{\rm asin}\nolimits}
\gdef\atan{\mathop{\rm atan}\nolimits}
\gdef\acosh{\mathop{\rm acosh}\nolimits}
\gdef\asinh{\mathop{\rm asinh}\nolimits}
\gdef\atanh{\mathop{\rm atanh}\nolimits}
@end tex
@node Intrinsic Procedures
@chapter Intrinsic Procedures
@cindex intrinsic procedures
@menu
* Introduction: Introduction to Intrinsics
* @code{ABORT}: ABORT, Abort the program
* @code{ABS}: ABS, Absolute value
* @code{ACCESS}: ACCESS, Checks file access modes
* @code{ACHAR}: ACHAR, Character in @acronym{ASCII} collating sequence
* @code{ACOS}: ACOS, Arccosine function
* @code{ACOSH}: ACOSH, Inverse hyperbolic cosine function
* @code{ADJUSTL}: ADJUSTL, Left adjust a string
* @code{ADJUSTR}: ADJUSTR, Right adjust a string
* @code{AIMAG}: AIMAG, Imaginary part of complex number
* @code{AINT}: AINT, Truncate to a whole number
* @code{ALARM}: ALARM, Set an alarm clock
* @code{ALL}: ALL, Determine if all values are true
* @code{ALLOCATED}: ALLOCATED, Status of allocatable entity
* @code{AND}: AND, Bitwise logical AND
* @code{ANINT}: ANINT, Nearest whole number
* @code{ANY}: ANY, Determine if any values are true
* @code{ASIN}: ASIN, Arcsine function
* @code{ASINH}: ASINH, Inverse hyperbolic sine function
* @code{ASSOCIATED}: ASSOCIATED, Status of a pointer or pointer/target pair
* @code{ATAN}: ATAN, Arctangent function
* @code{ATAN2}: ATAN2, Arctangent function
* @code{ATANH}: ATANH, Inverse hyperbolic tangent function
* @code{ATOMIC_DEFINE}: ATOMIC_DEFINE, Setting a variable atomically
* @code{ATOMIC_REF}: ATOMIC_REF, Obtaining the value of a variable atomically
* @code{BACKTRACE}: BACKTRACE, Show a backtrace
* @code{BESSEL_J0}: BESSEL_J0, Bessel function of the first kind of order 0
* @code{BESSEL_J1}: BESSEL_J1, Bessel function of the first kind of order 1
* @code{BESSEL_JN}: BESSEL_JN, Bessel function of the first kind
* @code{BESSEL_Y0}: BESSEL_Y0, Bessel function of the second kind of order 0
* @code{BESSEL_Y1}: BESSEL_Y1, Bessel function of the second kind of order 1
* @code{BESSEL_YN}: BESSEL_YN, Bessel function of the second kind
* @code{BGE}: BGE, Bitwise greater than or equal to
* @code{BGT}: BGT, Bitwise greater than
* @code{BIT_SIZE}: BIT_SIZE, Bit size inquiry function
* @code{BLE}: BLE, Bitwise less than or equal to
* @code{BLT}: BLT, Bitwise less than
* @code{BTEST}: BTEST, Bit test function
* @code{C_ASSOCIATED}: C_ASSOCIATED, Status of a C pointer
* @code{C_F_POINTER}: C_F_POINTER, Convert C into Fortran pointer
* @code{C_F_PROCPOINTER}: C_F_PROCPOINTER, Convert C into Fortran procedure pointer
* @code{C_FUNLOC}: C_FUNLOC, Obtain the C address of a procedure
* @code{C_LOC}: C_LOC, Obtain the C address of an object
* @code{C_SIZEOF}: C_SIZEOF, Size in bytes of an expression
* @code{CEILING}: CEILING, Integer ceiling function
* @code{CHAR}: CHAR, Integer-to-character conversion function
* @code{CHDIR}: CHDIR, Change working directory
* @code{CHMOD}: CHMOD, Change access permissions of files
* @code{CMPLX}: CMPLX, Complex conversion function
* @code{COMMAND_ARGUMENT_COUNT}: COMMAND_ARGUMENT_COUNT, Get number of command line arguments
* @code{COMPILER_OPTIONS}: COMPILER_OPTIONS, Options passed to the compiler
* @code{COMPILER_VERSION}: COMPILER_VERSION, Compiler version string
* @code{COMPLEX}: COMPLEX, Complex conversion function
* @code{CONJG}: CONJG, Complex conjugate function
* @code{COS}: COS, Cosine function
* @code{COSH}: COSH, Hyperbolic cosine function
* @code{COUNT}: COUNT, Count occurrences of TRUE in an array
* @code{CPU_TIME}: CPU_TIME, CPU time subroutine
* @code{CSHIFT}: CSHIFT, Circular shift elements of an array
* @code{CTIME}: CTIME, Subroutine (or function) to convert a time into a string
* @code{DATE_AND_TIME}: DATE_AND_TIME, Date and time subroutine
* @code{DBLE}: DBLE, Double precision conversion function
* @code{DCMPLX}: DCMPLX, Double complex conversion function
* @code{DIGITS}: DIGITS, Significant digits function
* @code{DIM}: DIM, Positive difference
* @code{DOT_PRODUCT}: DOT_PRODUCT, Dot product function
* @code{DPROD}: DPROD, Double product function
* @code{DREAL}: DREAL, Double real part function
* @code{DSHIFTL}: DSHIFTL, Combined left shift
* @code{DSHIFTR}: DSHIFTR, Combined right shift
* @code{DTIME}: DTIME, Execution time subroutine (or function)
* @code{EOSHIFT}: EOSHIFT, End-off shift elements of an array
* @code{EPSILON}: EPSILON, Epsilon function
* @code{ERF}: ERF, Error function
* @code{ERFC}: ERFC, Complementary error function
* @code{ERFC_SCALED}: ERFC_SCALED, Exponentially-scaled complementary error function
* @code{ETIME}: ETIME, Execution time subroutine (or function)
* @code{EXECUTE_COMMAND_LINE}: EXECUTE_COMMAND_LINE, Execute a shell command
* @code{EXIT}: EXIT, Exit the program with status.
* @code{EXP}: EXP, Exponential function
* @code{EXPONENT}: EXPONENT, Exponent function
* @code{EXTENDS_TYPE_OF}: EXTENDS_TYPE_OF, Query dynamic type for extension
* @code{FDATE}: FDATE, Subroutine (or function) to get the current time as a string
* @code{FGET}: FGET, Read a single character in stream mode from stdin
* @code{FGETC}: FGETC, Read a single character in stream mode
* @code{FLOOR}: FLOOR, Integer floor function
* @code{FLUSH}: FLUSH, Flush I/O unit(s)
* @code{FNUM}: FNUM, File number function
* @code{FPUT}: FPUT, Write a single character in stream mode to stdout
* @code{FPUTC}: FPUTC, Write a single character in stream mode
* @code{FRACTION}: FRACTION, Fractional part of the model representation
* @code{FREE}: FREE, Memory de-allocation subroutine
* @code{FSEEK}: FSEEK, Low level file positioning subroutine
* @code{FSTAT}: FSTAT, Get file status
* @code{FTELL}: FTELL, Current stream position
* @code{GAMMA}: GAMMA, Gamma function
* @code{GERROR}: GERROR, Get last system error message
* @code{GETARG}: GETARG, Get command line arguments
* @code{GET_COMMAND}: GET_COMMAND, Get the entire command line
* @code{GET_COMMAND_ARGUMENT}: GET_COMMAND_ARGUMENT, Get command line arguments
* @code{GETCWD}: GETCWD, Get current working directory
* @code{GETENV}: GETENV, Get an environmental variable
* @code{GET_ENVIRONMENT_VARIABLE}: GET_ENVIRONMENT_VARIABLE, Get an environmental variable
* @code{GETGID}: GETGID, Group ID function
* @code{GETLOG}: GETLOG, Get login name
* @code{GETPID}: GETPID, Process ID function
* @code{GETUID}: GETUID, User ID function
* @code{GMTIME}: GMTIME, Convert time to GMT info
* @code{HOSTNM}: HOSTNM, Get system host name
* @code{HUGE}: HUGE, Largest number of a kind
* @code{HYPOT}: HYPOT, Euclidean distance function
* @code{IACHAR}: IACHAR, Code in @acronym{ASCII} collating sequence
* @code{IALL}: IALL, Bitwise AND of array elements
* @code{IAND}: IAND, Bitwise logical and
* @code{IANY}: IANY, Bitwise OR of array elements
* @code{IARGC}: IARGC, Get the number of command line arguments
* @code{IBCLR}: IBCLR, Clear bit
* @code{IBITS}: IBITS, Bit extraction
* @code{IBSET}: IBSET, Set bit
* @code{ICHAR}: ICHAR, Character-to-integer conversion function
* @code{IDATE}: IDATE, Current local time (day/month/year)
* @code{IEOR}: IEOR, Bitwise logical exclusive or
* @code{IERRNO}: IERRNO, Function to get the last system error number
* @code{IMAGE_INDEX}: IMAGE_INDEX, Cosubscript to image index conversion
* @code{INDEX}: INDEX intrinsic, Position of a substring within a string
* @code{INT}: INT, Convert to integer type
* @code{INT2}: INT2, Convert to 16-bit integer type
* @code{INT8}: INT8, Convert to 64-bit integer type
* @code{IOR}: IOR, Bitwise logical or
* @code{IPARITY}: IPARITY, Bitwise XOR of array elements
* @code{IRAND}: IRAND, Integer pseudo-random number
* @code{IS_IOSTAT_END}: IS_IOSTAT_END, Test for end-of-file value
* @code{IS_IOSTAT_EOR}: IS_IOSTAT_EOR, Test for end-of-record value
* @code{ISATTY}: ISATTY, Whether a unit is a terminal device
* @code{ISHFT}: ISHFT, Shift bits
* @code{ISHFTC}: ISHFTC, Shift bits circularly
* @code{ISNAN}: ISNAN, Tests for a NaN
* @code{ITIME}: ITIME, Current local time (hour/minutes/seconds)
* @code{KILL}: KILL, Send a signal to a process
* @code{KIND}: KIND, Kind of an entity
* @code{LBOUND}: LBOUND, Lower dimension bounds of an array
* @code{LCOBOUND}: LCOBOUND, Lower codimension bounds of an array
* @code{LEADZ}: LEADZ, Number of leading zero bits of an integer
* @code{LEN}: LEN, Length of a character entity
* @code{LEN_TRIM}: LEN_TRIM, Length of a character entity without trailing blank characters
* @code{LGE}: LGE, Lexical greater than or equal
* @code{LGT}: LGT, Lexical greater than
* @code{LINK}: LINK, Create a hard link
* @code{LLE}: LLE, Lexical less than or equal
* @code{LLT}: LLT, Lexical less than
* @code{LNBLNK}: LNBLNK, Index of the last non-blank character in a string
* @code{LOC}: LOC, Returns the address of a variable
* @code{LOG}: LOG, Logarithm function
* @code{LOG10}: LOG10, Base 10 logarithm function
* @code{LOG_GAMMA}: LOG_GAMMA, Logarithm of the Gamma function
* @code{LOGICAL}: LOGICAL, Convert to logical type
* @code{LONG}: LONG, Convert to integer type
* @code{LSHIFT}: LSHIFT, Left shift bits
* @code{LSTAT}: LSTAT, Get file status
* @code{LTIME}: LTIME, Convert time to local time info
* @code{MALLOC}: MALLOC, Dynamic memory allocation function
* @code{MASKL}: MASKL, Left justified mask
* @code{MASKR}: MASKR, Right justified mask
* @code{MATMUL}: MATMUL, matrix multiplication
* @code{MAX}: MAX, Maximum value of an argument list
* @code{MAXEXPONENT}: MAXEXPONENT, Maximum exponent of a real kind
* @code{MAXLOC}: MAXLOC, Location of the maximum value within an array
* @code{MAXVAL}: MAXVAL, Maximum value of an array
* @code{MCLOCK}: MCLOCK, Time function
* @code{MCLOCK8}: MCLOCK8, Time function (64-bit)
* @code{MERGE}: MERGE, Merge arrays
* @code{MERGE_BITS}: MERGE_BITS, Merge of bits under mask
* @code{MIN}: MIN, Minimum value of an argument list
* @code{MINEXPONENT}: MINEXPONENT, Minimum exponent of a real kind
* @code{MINLOC}: MINLOC, Location of the minimum value within an array
* @code{MINVAL}: MINVAL, Minimum value of an array
* @code{MOD}: MOD, Remainder function
* @code{MODULO}: MODULO, Modulo function
* @code{MOVE_ALLOC}: MOVE_ALLOC, Move allocation from one object to another
* @code{MVBITS}: MVBITS, Move bits from one integer to another
* @code{NEAREST}: NEAREST, Nearest representable number
* @code{NEW_LINE}: NEW_LINE, New line character
* @code{NINT}: NINT, Nearest whole number
* @code{NORM2}: NORM2, Euclidean vector norm
* @code{NOT}: NOT, Logical negation
* @code{NULL}: NULL, Function that returns an disassociated pointer
* @code{NUM_IMAGES}: NUM_IMAGES, Number of images
* @code{OR}: OR, Bitwise logical OR
* @code{PACK}: PACK, Pack an array into an array of rank one
* @code{PARITY}: PARITY, Reduction with exclusive OR
* @code{PERROR}: PERROR, Print system error message
* @code{POPCNT}: POPCNT, Number of bits set
* @code{POPPAR}: POPPAR, Parity of the number of bits set
* @code{PRECISION}: PRECISION, Decimal precision of a real kind
* @code{PRESENT}: PRESENT, Determine whether an optional dummy argument is specified
* @code{PRODUCT}: PRODUCT, Product of array elements
* @code{RADIX}: RADIX, Base of a data model
* @code{RAN}: RAN, Real pseudo-random number
* @code{RAND}: RAND, Real pseudo-random number
* @code{RANDOM_NUMBER}: RANDOM_NUMBER, Pseudo-random number
* @code{RANDOM_SEED}: RANDOM_SEED, Initialize a pseudo-random number sequence
* @code{RANGE}: RANGE, Decimal exponent range
* @code{RANK} : RANK, Rank of a data object
* @code{REAL}: REAL, Convert to real type
* @code{RENAME}: RENAME, Rename a file
* @code{REPEAT}: REPEAT, Repeated string concatenation
* @code{RESHAPE}: RESHAPE, Function to reshape an array
* @code{RRSPACING}: RRSPACING, Reciprocal of the relative spacing
* @code{RSHIFT}: RSHIFT, Right shift bits
* @code{SAME_TYPE_AS}: SAME_TYPE_AS, Query dynamic types for equality
* @code{SCALE}: SCALE, Scale a real value
* @code{SCAN}: SCAN, Scan a string for the presence of a set of characters
* @code{SECNDS}: SECNDS, Time function
* @code{SECOND}: SECOND, CPU time function
* @code{SELECTED_CHAR_KIND}: SELECTED_CHAR_KIND, Choose character kind
* @code{SELECTED_INT_KIND}: SELECTED_INT_KIND, Choose integer kind
* @code{SELECTED_REAL_KIND}: SELECTED_REAL_KIND, Choose real kind
* @code{SET_EXPONENT}: SET_EXPONENT, Set the exponent of the model
* @code{SHAPE}: SHAPE, Determine the shape of an array
* @code{SHIFTA}: SHIFTA, Right shift with fill
* @code{SHIFTL}: SHIFTL, Left shift
* @code{SHIFTR}: SHIFTR, Right shift
* @code{SIGN}: SIGN, Sign copying function
* @code{SIGNAL}: SIGNAL, Signal handling subroutine (or function)
* @code{SIN}: SIN, Sine function
* @code{SINH}: SINH, Hyperbolic sine function
* @code{SIZE}: SIZE, Function to determine the size of an array
* @code{SIZEOF}: SIZEOF, Determine the size in bytes of an expression
* @code{SLEEP}: SLEEP, Sleep for the specified number of seconds
* @code{SPACING}: SPACING, Smallest distance between two numbers of a given type
* @code{SPREAD}: SPREAD, Add a dimension to an array
* @code{SQRT}: SQRT, Square-root function
* @code{SRAND}: SRAND, Reinitialize the random number generator
* @code{STAT}: STAT, Get file status
* @code{STORAGE_SIZE}: STORAGE_SIZE, Storage size in bits
* @code{SUM}: SUM, Sum of array elements
* @code{SYMLNK}: SYMLNK, Create a symbolic link
* @code{SYSTEM}: SYSTEM, Execute a shell command
* @code{SYSTEM_CLOCK}: SYSTEM_CLOCK, Time function
* @code{TAN}: TAN, Tangent function
* @code{TANH}: TANH, Hyperbolic tangent function
* @code{THIS_IMAGE}: THIS_IMAGE, Cosubscript index of this image
* @code{TIME}: TIME, Time function
* @code{TIME8}: TIME8, Time function (64-bit)
* @code{TINY}: TINY, Smallest positive number of a real kind
* @code{TRAILZ}: TRAILZ, Number of trailing zero bits of an integer
* @code{TRANSFER}: TRANSFER, Transfer bit patterns
* @code{TRANSPOSE}: TRANSPOSE, Transpose an array of rank two
* @code{TRIM}: TRIM, Remove trailing blank characters of a string
* @code{TTYNAM}: TTYNAM, Get the name of a terminal device.
* @code{UBOUND}: UBOUND, Upper dimension bounds of an array
* @code{UCOBOUND}: UCOBOUND, Upper codimension bounds of an array
* @code{UMASK}: UMASK, Set the file creation mask
* @code{UNLINK}: UNLINK, Remove a file from the file system
* @code{UNPACK}: UNPACK, Unpack an array of rank one into an array
* @code{VERIFY}: VERIFY, Scan a string for the absence of a set of characters
* @code{XOR}: XOR, Bitwise logical exclusive or
@end menu
@node Introduction to Intrinsics
@section Introduction to intrinsic procedures
The intrinsic procedures provided by GNU Fortran include all of the
intrinsic procedures required by the Fortran 95 standard, a set of
intrinsic procedures for backwards compatibility with G77, and a
selection of intrinsic procedures from the Fortran 2003 and Fortran 2008
standards. Any conflict between a description here and a description in
either the Fortran 95 standard, the Fortran 2003 standard or the Fortran
2008 standard is unintentional, and the standard(s) should be considered
authoritative.
The enumeration of the @code{KIND} type parameter is processor defined in
the Fortran 95 standard. GNU Fortran defines the default integer type and
default real type by @code{INTEGER(KIND=4)} and @code{REAL(KIND=4)},
respectively. The standard mandates that both data types shall have
another kind, which have more precision. On typical target architectures
supported by @command{gfortran}, this kind type parameter is @code{KIND=8}.
Hence, @code{REAL(KIND=8)} and @code{DOUBLE PRECISION} are equivalent.
In the description of generic intrinsic procedures, the kind type parameter
will be specified by @code{KIND=*}, and in the description of specific
names for an intrinsic procedure the kind type parameter will be explicitly
given (e.g., @code{REAL(KIND=4)} or @code{REAL(KIND=8)}). Finally, for
brevity the optional @code{KIND=} syntax will be omitted.
Many of the intrinsic procedures take one or more optional arguments.
This document follows the convention used in the Fortran 95 standard,
and denotes such arguments by square brackets.
GNU Fortran offers the @option{-std=f95} and @option{-std=gnu} options,
which can be used to restrict the set of intrinsic procedures to a
given standard. By default, @command{gfortran} sets the @option{-std=gnu}
option, and so all intrinsic procedures described here are accepted. There
is one caveat. For a select group of intrinsic procedures, @command{g77}
implemented both a function and a subroutine. Both classes
have been implemented in @command{gfortran} for backwards compatibility
with @command{g77}. It is noted here that these functions and subroutines
cannot be intermixed in a given subprogram. In the descriptions that follow,
the applicable standard for each intrinsic procedure is noted.
@node ABORT
@section @code{ABORT} --- Abort the program
@fnindex ABORT
@cindex program termination, with core dump
@cindex terminate program, with core dump
@cindex core, dump
@table @asis
@item @emph{Description}:
@code{ABORT} causes immediate termination of the program. On operating
systems that support a core dump, @code{ABORT} will produce a core dump.
It will also print a backtrace, unless @code{-fno-backtrace} is given.
@item @emph{Standard}:
GNU extension
@item @emph{Class}:
Subroutine
@item @emph{Syntax}:
@code{CALL ABORT}
@item @emph{Return value}:
Does not return.
@item @emph{Example}:
@smallexample
program test_abort
integer :: i = 1, j = 2
if (i /= j) call abort
end program test_abort
@end smallexample
@item @emph{See also}:
@ref{EXIT}, @ref{KILL}, @ref{BACKTRACE}
@end table
@node ABS
@section @code{ABS} --- Absolute value
@fnindex ABS
@fnindex CABS
@fnindex DABS
@fnindex IABS
@fnindex ZABS
@fnindex CDABS
@cindex absolute value
@table @asis
@item @emph{Description}:
@code{ABS(A)} computes the absolute value of @code{A}.
@item @emph{Standard}:
Fortran 77 and later, has overloads that are GNU extensions
@item @emph{Class}:
Elemental function
@item @emph{Syntax}:
@code{RESULT = ABS(A)}
@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{A} @tab The type of the argument shall be an @code{INTEGER},
@code{REAL}, or @code{COMPLEX}.
@end multitable
@item @emph{Return value}:
The return value is of the same type and
kind as the argument except the return value is @code{REAL} for a
@code{COMPLEX} argument.
@item @emph{Example}:
@smallexample
program test_abs
integer :: i = -1
real :: x = -1.e0
complex :: z = (-1.e0,0.e0)
i = abs(i)
x = abs(x)
x = abs(z)
end program test_abs
@end smallexample
@item @emph{Specific names}:
@multitable @columnfractions .20 .20 .20 .25
@item Name @tab Argument @tab Return type @tab Standard
@item @code{ABS(A)} @tab @code{REAL(4) A} @tab @code{REAL(4)} @tab Fortran 77 and later
@item @code{CABS(A)} @tab @code{COMPLEX(4) A} @tab @code{REAL(4)} @tab Fortran 77 and later
@item @code{DABS(A)} @tab @code{REAL(8) A} @tab @code{REAL(8)} @tab Fortran 77 and later
@item @code{IABS(A)} @tab @code{INTEGER(4) A} @tab @code{INTEGER(4)} @tab Fortran 77 and later
@item @code{ZABS(A)} @tab @code{COMPLEX(8) A} @tab @code{COMPLEX(8)} @tab GNU extension
@item @code{CDABS(A)} @tab @code{COMPLEX(8) A} @tab @code{COMPLEX(8)} @tab GNU extension
@end multitable
@end table
@node ACCESS
@section @code{ACCESS} --- Checks file access modes
@fnindex ACCESS
@cindex file system, access mode
@table @asis
@item @emph{Description}:
@code{ACCESS(NAME, MODE)} checks whether the file @var{NAME}
exists, is readable, writable or executable. Except for the
executable check, @code{ACCESS} can be replaced by
Fortran 95's @code{INQUIRE}.
@item @emph{Standard}:
GNU extension
@item @emph{Class}:
Inquiry function
@item @emph{Syntax}:
@code{RESULT = ACCESS(NAME, MODE)}
@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{NAME} @tab Scalar @code{CHARACTER} of default kind with the
file name. Tailing blank are ignored unless the character @code{achar(0)}
is present, then all characters up to and excluding @code{achar(0)} are
used as file name.
@item @var{MODE} @tab Scalar @code{CHARACTER} of default kind with the
file access mode, may be any concatenation of @code{"r"} (readable),
@code{"w"} (writable) and @code{"x"} (executable), or @code{" "} to check
for existence.
@end multitable
@item @emph{Return value}:
Returns a scalar @code{INTEGER}, which is @code{0} if the file is
accessible in the given mode; otherwise or if an invalid argument
has been given for @code{MODE} the value @code{1} is returned.
@item @emph{Example}:
@smallexample
program access_test
implicit none
character(len=*), parameter :: file = 'test.dat'
character(len=*), parameter :: file2 = 'test.dat '//achar(0)
if(access(file,' ') == 0) print *, trim(file),' is exists'
if(access(file,'r') == 0) print *, trim(file),' is readable'
if(access(file,'w') == 0) print *, trim(file),' is writable'
if(access(file,'x') == 0) print *, trim(file),' is executable'
if(access(file2,'rwx') == 0) &
print *, trim(file2),' is readable, writable and executable'
end program access_test
@end smallexample
@item @emph{Specific names}:
@item @emph{See also}:
@end table
@node ACHAR
@section @code{ACHAR} --- Character in @acronym{ASCII} collating sequence
@fnindex ACHAR
@cindex @acronym{ASCII} collating sequence
@cindex collating sequence, @acronym{ASCII}
@table @asis
@item @emph{Description}:
@code{ACHAR(I)} returns the character located at position @code{I}
in the @acronym{ASCII} collating sequence.
@item @emph{Standard}:
Fortran 77 and later, with @var{KIND} argument Fortran 2003 and later
@item @emph{Class}:
Elemental function
@item @emph{Syntax}:
@code{RESULT = ACHAR(I [, KIND])}
@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{I} @tab The type shall be @code{INTEGER}.
@item @var{KIND} @tab (Optional) An @code{INTEGER} initialization
expression indicating the kind parameter of the result.
@end multitable
@item @emph{Return value}:
The return value is of type @code{CHARACTER} with a length of one.
If the @var{KIND} argument is present, the return value is of the
specified kind and of the default kind otherwise.
@item @emph{Example}:
@smallexample
program test_achar
character c
c = achar(32)
end program test_achar
@end smallexample
@item @emph{Note}:
See @ref{ICHAR} for a discussion of converting between numerical values
and formatted string representations.
@item @emph{See also}:
@ref{CHAR}, @ref{IACHAR}, @ref{ICHAR}
@end table
@node ACOS
@section @code{ACOS} --- Arccosine function
@fnindex ACOS
@fnindex DACOS
@cindex trigonometric function, cosine, inverse
@cindex cosine, inverse
@table @asis
@item @emph{Description}:
@code{ACOS(X)} computes the arccosine of @var{X} (inverse of @code{COS(X)}).
@item @emph{Standard}:
Fortran 77 and later, for a complex argument Fortran 2008 or later
@item @emph{Class}:
Elemental function
@item @emph{Syntax}:
@code{RESULT = ACOS(X)}
@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{X} @tab The type shall either be @code{REAL} with a magnitude that is
less than or equal to one - or the type shall be @code{COMPLEX}.
@end multitable
@item @emph{Return value}:
The return value is of the same type and kind as @var{X}.
The real part of the result is in radians and lies in the range
@math{0 \leq \Re \acos(x) \leq \pi}.
@item @emph{Example}:
@smallexample
program test_acos
real(8) :: x = 0.866_8
x = acos(x)
end program test_acos
@end smallexample
@item @emph{Specific names}:
@multitable @columnfractions .20 .20 .20 .25
@item Name @tab Argument @tab Return type @tab Standard
@item @code{ACOS(X)} @tab @code{REAL(4) X} @tab @code{REAL(4)} @tab Fortran 77 and later
@item @code{DACOS(X)} @tab @code{REAL(8) X} @tab @code{REAL(8)} @tab Fortran 77 and later
@end multitable
@item @emph{See also}:
Inverse function: @ref{COS}
@end table
@node ACOSH
@section @code{ACOSH} --- Inverse hyperbolic cosine function
@fnindex ACOSH
@fnindex DACOSH
@cindex area hyperbolic cosine
@cindex inverse hyperbolic cosine
@cindex hyperbolic function, cosine, inverse
@cindex cosine, hyperbolic, inverse
@table @asis
@item @emph{Description}:
@code{ACOSH(X)} computes the inverse hyperbolic cosine of @var{X}.
@item @emph{Standard}:
Fortran 2008 and later
@item @emph{Class}:
Elemental function
@item @emph{Syntax}:
@code{RESULT = ACOSH(X)}
@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{X} @tab The type shall be @code{REAL} or @code{COMPLEX}.
@end multitable
@item @emph{Return value}:
The return value has the same type and kind as @var{X}. If @var{X} is
complex, the imaginary part of the result is in radians and lies between
@math{ 0 \leq \Im \acosh(x) \leq \pi}.
@item @emph{Example}:
@smallexample
PROGRAM test_acosh
REAL(8), DIMENSION(3) :: x = (/ 1.0, 2.0, 3.0 /)
WRITE (*,*) ACOSH(x)
END PROGRAM
@end smallexample
@item @emph{Specific names}:
@multitable @columnfractions .20 .20 .20 .25
@item Name @tab Argument @tab Return type @tab Standard
@item @code{DACOSH(X)} @tab @code{REAL(8) X} @tab @code{REAL(8)} @tab GNU extension
@end multitable
@item @emph{See also}:
Inverse function: @ref{COSH}
@end table
@node ADJUSTL
@section @code{ADJUSTL} --- Left adjust a string
@fnindex ADJUSTL
@cindex string, adjust left
@cindex adjust string
@table @asis
@item @emph{Description}:
@code{ADJUSTL(STRING)} will left adjust a string by removing leading spaces.
Spaces are inserted at the end of the string as needed.
@item @emph{Standard}:
Fortran 90 and later
@item @emph{Class}:
Elemental function
@item @emph{Syntax}:
@code{RESULT = ADJUSTL(STRING)}
@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{STRING} @tab The type shall be @code{CHARACTER}.
@end multitable
@item @emph{Return value}:
The return value is of type @code{CHARACTER} and of the same kind as
@var{STRING} where leading spaces are removed and the same number of
spaces are inserted on the end of @var{STRING}.
@item @emph{Example}:
@smallexample
program test_adjustl
character(len=20) :: str = ' gfortran'
str = adjustl(str)
print *, str
end program test_adjustl
@end smallexample
@item @emph{See also}:
@ref{ADJUSTR}, @ref{TRIM}
@end table
@node ADJUSTR
@section @code{ADJUSTR} --- Right adjust a string
@fnindex ADJUSTR
@cindex string, adjust right
@cindex adjust string
@table @asis
@item @emph{Description}:
@code{ADJUSTR(STRING)} will right adjust a string by removing trailing spaces.
Spaces are inserted at the start of the string as needed.
@item @emph{Standard}:
Fortran 95 and later
@item @emph{Class}:
Elemental function
@item @emph{Syntax}:
@code{RESULT = ADJUSTR(STRING)}
@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{STR} @tab The type shall be @code{CHARACTER}.
@end multitable
@item @emph{Return value}:
The return value is of type @code{CHARACTER} and of the same kind as
@var{STRING} where trailing spaces are removed and the same number of
spaces are inserted at the start of @var{STRING}.
@item @emph{Example}:
@smallexample
program test_adjustr
character(len=20) :: str = 'gfortran'
str = adjustr(str)
print *, str
end program test_adjustr
@end smallexample
@item @emph{See also}:
@ref{ADJUSTL}, @ref{TRIM}
@end table
@node AIMAG
@section @code{AIMAG} --- Imaginary part of complex number
@fnindex AIMAG
@fnindex DIMAG
@fnindex IMAG
@fnindex IMAGPART
@cindex complex numbers, imaginary part
@table @asis
@item @emph{Description}:
@code{AIMAG(Z)} yields the imaginary part of complex argument @code{Z}.
The @code{IMAG(Z)} and @code{IMAGPART(Z)} intrinsic functions are provided
for compatibility with @command{g77}, and their use in new code is
strongly discouraged.
@item @emph{Standard}:
Fortran 77 and later, has overloads that are GNU extensions
@item @emph{Class}:
Elemental function
@item @emph{Syntax}:
@code{RESULT = AIMAG(Z)}
@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{Z} @tab The type of the argument shall be @code{COMPLEX}.
@end multitable
@item @emph{Return value}:
The return value is of type @code{REAL} with the
kind type parameter of the argument.
@item @emph{Example}:
@smallexample
program test_aimag
complex(4) z4
complex(8) z8
z4 = cmplx(1.e0_4, 0.e0_4)
z8 = cmplx(0.e0_8, 1.e0_8)
print *, aimag(z4), dimag(z8)
end program test_aimag
@end smallexample
@item @emph{Specific names}:
@multitable @columnfractions .20 .20 .20 .25
@item Name @tab Argument @tab Return type @tab Standard
@item @code{AIMAG(Z)} @tab @code{COMPLEX Z} @tab @code{REAL} @tab GNU extension
@item @code{DIMAG(Z)} @tab @code{COMPLEX(8) Z} @tab @code{REAL(8)} @tab GNU extension
@item @code{IMAG(Z)} @tab @code{COMPLEX Z} @tab @code{REAL} @tab GNU extension
@item @code{IMAGPART(Z)} @tab @code{COMPLEX Z} @tab @code{REAL} @tab GNU extension
@end multitable
@end table
@node AINT
@section @code{AINT} --- Truncate to a whole number
@fnindex AINT
@fnindex DINT
@cindex floor
@cindex rounding, floor
@table @asis
@item @emph{Description}:
@code{AINT(A [, KIND])} truncates its argument to a whole number.
@item @emph{Standard}:
Fortran 77 and later
@item @emph{Class}:
Elemental function
@item @emph{Syntax}:
@code{RESULT = AINT(A [, KIND])}
@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{A} @tab The type of the argument shall be @code{REAL}.
@item @var{KIND} @tab (Optional) An @code{INTEGER} initialization
expression indicating the kind parameter of the result.
@end multitable
@item @emph{Return value}:
The return value is of type @code{REAL} with the kind type parameter of the
argument if the optional @var{KIND} is absent; otherwise, the kind
type parameter will be given by @var{KIND}. If the magnitude of
@var{X} is less than one, @code{AINT(X)} returns zero. If the
magnitude is equal to or greater than one then it returns the largest
whole number that does not exceed its magnitude. The sign is the same
as the sign of @var{X}.
@item @emph{Example}:
@smallexample
program test_aint
real(4) x4
real(8) x8
x4 = 1.234E0_4
x8 = 4.321_8
print *, aint(x4), dint(x8)
x8 = aint(x4,8)
end program test_aint
@end smallexample
@item @emph{Specific names}:
@multitable @columnfractions .20 .20 .20 .25
@item Name @tab Argument @tab Return type @tab Standard
@item @code{AINT(A)} @tab @code{REAL(4) A} @tab @code{REAL(4)} @tab Fortran 77 and later
@item @code{DINT(A)} @tab @code{REAL(8) A} @tab @code{REAL(8)} @tab Fortran 77 and later
@end multitable
@end table
@node ALARM
@section @code{ALARM} --- Execute a routine after a given delay
@fnindex ALARM
@cindex delayed execution
@table @asis
@item @emph{Description}:
@code{ALARM(SECONDS, HANDLER [, STATUS])} causes external subroutine @var{HANDLER}
to be executed after a delay of @var{SECONDS} by using @code{alarm(2)} to
set up a signal and @code{signal(2)} to catch it. If @var{STATUS} is
supplied, it will be returned with the number of seconds remaining until
any previously scheduled alarm was due to be delivered, or zero if there
was no previously scheduled alarm.
@item @emph{Standard}:
GNU extension
@item @emph{Class}:
Subroutine
@item @emph{Syntax}:
@code{CALL ALARM(SECONDS, HANDLER [, STATUS])}
@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{SECONDS} @tab The type of the argument shall be a scalar
@code{INTEGER}. It is @code{INTENT(IN)}.
@item @var{HANDLER} @tab Signal handler (@code{INTEGER FUNCTION} or
@code{SUBROUTINE}) or dummy/global @code{INTEGER} scalar. The scalar
values may be either @code{SIG_IGN=1} to ignore the alarm generated
or @code{SIG_DFL=0} to set the default action. It is @code{INTENT(IN)}.
@item @var{STATUS} @tab (Optional) @var{STATUS} shall be a scalar
variable of the default @code{INTEGER} kind. It is @code{INTENT(OUT)}.
@end multitable
@item @emph{Example}:
@smallexample
program test_alarm
external handler_print
integer i
call alarm (3, handler_print, i)
print *, i
call sleep(10)
end program test_alarm
@end smallexample
This will cause the external routine @var{handler_print} to be called
after 3 seconds.
@end table
@node ALL
@section @code{ALL} --- All values in @var{MASK} along @var{DIM} are true
@fnindex ALL
@cindex array, apply condition
@cindex array, condition testing
@table @asis
@item @emph{Description}:
@code{ALL(MASK [, DIM])} determines if all the values are true in @var{MASK}
in the array along dimension @var{DIM}.
@item @emph{Standard}:
Fortran 95 and later
@item @emph{Class}:
Transformational function
@item @emph{Syntax}:
@code{RESULT = ALL(MASK [, DIM])}
@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{MASK} @tab The type of the argument shall be @code{LOGICAL} and
it shall not be scalar.
@item @var{DIM} @tab (Optional) @var{DIM} shall be a scalar integer
with a value that lies between one and the rank of @var{MASK}.
@end multitable
@item @emph{Return value}:
@code{ALL(MASK)} returns a scalar value of type @code{LOGICAL} where
the kind type parameter is the same as the kind type parameter of
@var{MASK}. If @var{DIM} is present, then @code{ALL(MASK, DIM)} returns
an array with the rank of @var{MASK} minus 1. The shape is determined from
the shape of @var{MASK} where the @var{DIM} dimension is elided.
@table @asis
@item (A)
@code{ALL(MASK)} is true if all elements of @var{MASK} are true.
It also is true if @var{MASK} has zero size; otherwise, it is false.
@item (B)
If the rank of @var{MASK} is one, then @code{ALL(MASK,DIM)} is equivalent
to @code{ALL(MASK)}. If the rank is greater than one, then @code{ALL(MASK,DIM)}
is determined by applying @code{ALL} to the array sections.
@end table
@item @emph{Example}:
@smallexample
program test_all
logical l
l = all((/.true., .true., .true./))
print *, l
call section
contains
subroutine section
integer a(2,3), b(2,3)
a = 1
b = 1
b(2,2) = 2
print *, all(a .eq. b, 1)
print *, all(a .eq. b, 2)
end subroutine section
end program test_all
@end smallexample
@end table
@node ALLOCATED
@section @code{ALLOCATED} --- Status of an allocatable entity
@fnindex ALLOCATED
@cindex allocation, status
@table @asis
@item @emph{Description}:
@code{ALLOCATED(ARRAY)} and @code{ALLOCATED(SCALAR)} check the allocation
status of @var{ARRAY} and @var{SCALAR}, respectively.
@item @emph{Standard}:
Fortran 95 and later. Note, the @code{SCALAR=} keyword and allocatable
scalar entities are available in Fortran 2003 and later.
@item @emph{Class}:
Inquiry function
@item @emph{Syntax}:
@multitable @columnfractions .80
@item @code{RESULT = ALLOCATED(ARRAY)}
@item @code{RESULT = ALLOCATED(SCALAR)}
@end multitable
@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{ARRAY} @tab The argument shall be an @code{ALLOCATABLE} array.
@item @var{SCALAR} @tab The argument shall be an @code{ALLOCATABLE} scalar.
@end multitable
@item @emph{Return value}:
The return value is a scalar @code{LOGICAL} with the default logical
kind type parameter. If the argument is allocated, then the result is
@code{.TRUE.}; otherwise, it returns @code{.FALSE.}
@item @emph{Example}:
@smallexample
program test_allocated
integer :: i = 4
real(4), allocatable :: x(:)
if (.not. allocated(x)) allocate(x(i))
end program test_allocated
@end smallexample
@end table
@node AND
@section @code{AND} --- Bitwise logical AND
@fnindex AND
@cindex bitwise logical and
@cindex logical and, bitwise
@table @asis
@item @emph{Description}:
Bitwise logical @code{AND}.
This intrinsic routine is provided for backwards compatibility with
GNU Fortran 77. For integer arguments, programmers should consider
the use of the @ref{IAND} intrinsic defined by the Fortran standard.
@item @emph{Standard}:
GNU extension
@item @emph{Class}:
Function
@item @emph{Syntax}:
@code{RESULT = AND(I, J)}
@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{I} @tab The type shall be either a scalar @code{INTEGER}
type or a scalar @code{LOGICAL} type.
@item @var{J} @tab The type shall be the same as the type of @var{I}.
@end multitable
@item @emph{Return value}:
The return type is either a scalar @code{INTEGER} or a scalar
@code{LOGICAL}. If the kind type parameters differ, then the
smaller kind type is implicitly converted to larger kind, and the
return has the larger kind.
@item @emph{Example}:
@smallexample
PROGRAM test_and
LOGICAL :: T = .TRUE., F = .FALSE.
INTEGER :: a, b
DATA a / Z'F' /, b / Z'3' /
WRITE (*,*) AND(T, T), AND(T, F), AND(F, T), AND(F, F)
WRITE (*,*) AND(a, b)
END PROGRAM
@end smallexample
@item @emph{See also}:
Fortran 95 elemental function: @ref{IAND}
@end table
@node ANINT
@section @code{ANINT} --- Nearest whole number
@fnindex ANINT
@fnindex DNINT
@cindex ceiling
@cindex rounding, ceiling
@table @asis
@item @emph{Description}:
@code{ANINT(A [, KIND])} rounds its argument to the nearest whole number.
@item @emph{Standard}:
Fortran 77 and later
@item @emph{Class}:
Elemental function
@item @emph{Syntax}:
@code{RESULT = ANINT(A [, KIND])}
@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{A} @tab The type of the argument shall be @code{REAL}.
@item @var{KIND} @tab (Optional) An @code{INTEGER} initialization
expression indicating the kind parameter of the result.
@end multitable
@item @emph{Return value}:
The return value is of type real with the kind type parameter of the
argument if the optional @var{KIND} is absent; otherwise, the kind
type parameter will be given by @var{KIND}. If @var{A} is greater than
zero, @code{ANINT(A)} returns @code{AINT(X+0.5)}. If @var{A} is
less than or equal to zero then it returns @code{AINT(X-0.5)}.
@item @emph{Example}:
@smallexample
program test_anint
real(4) x4
real(8) x8
x4 = 1.234E0_4
x8 = 4.321_8
print *, anint(x4), dnint(x8)
x8 = anint(x4,8)
end program test_anint
@end smallexample
@item @emph{Specific names}:
@multitable @columnfractions .20 .20 .20 .25
@item Name @tab Argument @tab Return type @tab Standard
@item @code{AINT(A)} @tab @code{REAL(4) A} @tab @code{REAL(4)} @tab Fortran 77 and later
@item @code{DNINT(A)} @tab @code{REAL(8) A} @tab @code{REAL(8)} @tab Fortran 77 and later
@end multitable
@end table
@node ANY
@section @code{ANY} --- Any value in @var{MASK} along @var{DIM} is true
@fnindex ANY
@cindex array, apply condition
@cindex array, condition testing
@table @asis
@item @emph{Description}:
@code{ANY(MASK [, DIM])} determines if any of the values in the logical array
@var{MASK} along dimension @var{DIM} are @code{.TRUE.}.
@item @emph{Standard}:
Fortran 95 and later
@item @emph{Class}:
Transformational function
@item @emph{Syntax}:
@code{RESULT = ANY(MASK [, DIM])}
@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{MASK} @tab The type of the argument shall be @code{LOGICAL} and
it shall not be scalar.
@item @var{DIM} @tab (Optional) @var{DIM} shall be a scalar integer
with a value that lies between one and the rank of @var{MASK}.
@end multitable
@item @emph{Return value}:
@code{ANY(MASK)} returns a scalar value of type @code{LOGICAL} where
the kind type parameter is the same as the kind type parameter of
@var{MASK}. If @var{DIM} is present, then @code{ANY(MASK, DIM)} returns
an array with the rank of @var{MASK} minus 1. The shape is determined from
the shape of @var{MASK} where the @var{DIM} dimension is elided.
@table @asis
@item (A)
@code{ANY(MASK)} is true if any element of @var{MASK} is true;
otherwise, it is false. It also is false if @var{MASK} has zero size.
@item (B)
If the rank of @var{MASK} is one, then @code{ANY(MASK,DIM)} is equivalent
to @code{ANY(MASK)}. If the rank is greater than one, then @code{ANY(MASK,DIM)}
is determined by applying @code{ANY} to the array sections.
@end table
@item @emph{Example}:
@smallexample
program test_any
logical l
l = any((/.true., .true., .true./))
print *, l
call section
contains
subroutine section
integer a(2,3), b(2,3)
a = 1
b = 1
b(2,2) = 2
print *, any(a .eq. b, 1)
print *, any(a .eq. b, 2)
end subroutine section
end program test_any
@end smallexample
@end table
@node ASIN
@section @code{ASIN} --- Arcsine function
@fnindex ASIN
@fnindex DASIN
@cindex trigonometric function, sine, inverse
@cindex sine, inverse
@table @asis
@item @emph{Description}:
@code{ASIN(X)} computes the arcsine of its @var{X} (inverse of @code{SIN(X)}).
@item @emph{Standard}:
Fortran 77 and later, for a complex argument Fortran 2008 or later
@item @emph{Class}:
Elemental function
@item @emph{Syntax}:
@code{RESULT = ASIN(X)}
@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{X} @tab The type shall be either @code{REAL} and a magnitude that is
less than or equal to one - or be @code{COMPLEX}.
@end multitable
@item @emph{Return value}:
The return value is of the same type and kind as @var{X}.
The real part of the result is in radians and lies in the range
@math{-\pi/2 \leq \Re \asin(x) \leq \pi/2}.
@item @emph{Example}:
@smallexample
program test_asin
real(8) :: x = 0.866_8
x = asin(x)
end program test_asin
@end smallexample
@item @emph{Specific names}:
@multitable @columnfractions .20 .20 .20 .25
@item Name @tab Argument @tab Return type @tab Standard
@item @code{ASIN(X)} @tab @code{REAL(4) X} @tab @code{REAL(4)} @tab Fortran 77 and later
@item @code{DASIN(X)} @tab @code{REAL(8) X} @tab @code{REAL(8)} @tab Fortran 77 and later
@end multitable
@item @emph{See also}:
Inverse function: @ref{SIN}
@end table
@node ASINH
@section @code{ASINH} --- Inverse hyperbolic sine function
@fnindex ASINH
@fnindex DASINH
@cindex area hyperbolic sine
@cindex inverse hyperbolic sine
@cindex hyperbolic function, sine, inverse
@cindex sine, hyperbolic, inverse
@table @asis
@item @emph{Description}:
@code{ASINH(X)} computes the inverse hyperbolic sine of @var{X}.
@item @emph{Standard}:
Fortran 2008 and later
@item @emph{Class}:
Elemental function
@item @emph{Syntax}:
@code{RESULT = ASINH(X)}
@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{X} @tab The type shall be @code{REAL} or @code{COMPLEX}.
@end multitable
@item @emph{Return value}:
The return value is of the same type and kind as @var{X}. If @var{X} is
complex, the imaginary part of the result is in radians and lies between
@math{-\pi/2 \leq \Im \asinh(x) \leq \pi/2}.
@item @emph{Example}:
@smallexample
PROGRAM test_asinh
REAL(8), DIMENSION(3) :: x = (/ -1.0, 0.0, 1.0 /)
WRITE (*,*) ASINH(x)
END PROGRAM
@end smallexample
@item @emph{Specific names}:
@multitable @columnfractions .20 .20 .20 .25
@item Name @tab Argument @tab Return type @tab Standard
@item @code{DASINH(X)} @tab @code{REAL(8) X} @tab @code{REAL(8)} @tab GNU extension.
@end multitable
@item @emph{See also}:
Inverse function: @ref{SINH}
@end table
@node ASSOCIATED
@section @code{ASSOCIATED} --- Status of a pointer or pointer/target pair
@fnindex ASSOCIATED
@cindex pointer, status
@cindex association status
@table @asis
@item @emph{Description}:
@code{ASSOCIATED(POINTER [, TARGET])} determines the status of the pointer
@var{POINTER} or if @var{POINTER} is associated with the target @var{TARGET}.
@item @emph{Standard}:
Fortran 95 and later
@item @emph{Class}:
Inquiry function
@item @emph{Syntax}:
@code{RESULT = ASSOCIATED(POINTER [, TARGET])}
@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{POINTER} @tab @var{POINTER} shall have the @code{POINTER} attribute
and it can be of any type.
@item @var{TARGET} @tab (Optional) @var{TARGET} shall be a pointer or
a target. It must have the same type, kind type parameter, and
array rank as @var{POINTER}.
@end multitable
The association status of neither @var{POINTER} nor @var{TARGET} shall be
undefined.
@item @emph{Return value}:
@code{ASSOCIATED(POINTER)} returns a scalar value of type @code{LOGICAL(4)}.
There are several cases:
@table @asis
@item (A) When the optional @var{TARGET} is not present then
@code{ASSOCIATED(POINTER)} is true if @var{POINTER} is associated with a target; otherwise, it returns false.
@item (B) If @var{TARGET} is present and a scalar target, the result is true if
@var{TARGET} is not a zero-sized storage sequence and the target associated with @var{POINTER} occupies the same storage units. If @var{POINTER} is
disassociated, the result is false.
@item (C) If @var{TARGET} is present and an array target, the result is true if
@var{TARGET} and @var{POINTER} have the same shape, are not zero-sized arrays,
are arrays whose elements are not zero-sized storage sequences, and
@var{TARGET} and @var{POINTER} occupy the same storage units in array element
order.
As in case(B), the result is false, if @var{POINTER} is disassociated.
@item (D) If @var{TARGET} is present and an scalar pointer, the result is true
if @var{TARGET} is associated with @var{POINTER}, the target associated with
@var{TARGET} are not zero-sized storage sequences and occupy the same storage
units.
The result is false, if either @var{TARGET} or @var{POINTER} is disassociated.
@item (E) If @var{TARGET} is present and an array pointer, the result is true if
target associated with @var{POINTER} and the target associated with @var{TARGET}
have the same shape, are not zero-sized arrays, are arrays whose elements are
not zero-sized storage sequences, and @var{TARGET} and @var{POINTER} occupy
the same storage units in array element order.
The result is false, if either @var{TARGET} or @var{POINTER} is disassociated.
@end table
@item @emph{Example}:
@smallexample
program test_associated
implicit none
real, target :: tgt(2) = (/1., 2./)
real, pointer :: ptr(:)
ptr => tgt
if (associated(ptr) .eqv. .false.) call abort
if (associated(ptr,tgt) .eqv. .false.) call abort
end program test_associated
@end smallexample
@item @emph{See also}:
@ref{NULL}
@end table
@node ATAN
@section @code{ATAN} --- Arctangent function
@fnindex ATAN
@fnindex DATAN
@cindex trigonometric function, tangent, inverse
@cindex tangent, inverse
@table @asis
@item @emph{Description}:
@code{ATAN(X)} computes the arctangent of @var{X}.
@item @emph{Standard}:
Fortran 77 and later, for a complex argument and for two arguments
Fortran 2008 or later
@item @emph{Class}:
Elemental function
@item @emph{Syntax}:
@multitable @columnfractions .80
@item @code{RESULT = ATAN(X)}
@item @code{RESULT = ATAN(Y, X)}
@end multitable
@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{X} @tab The type shall be @code{REAL} or @code{COMPLEX};
if @var{Y} is present, @var{X} shall be REAL.
@item @var{Y} shall be of the same type and kind as @var{X}.
@end multitable
@item @emph{Return value}:
The return value is of the same type and kind as @var{X}.
If @var{Y} is present, the result is identical to @code{ATAN2(Y,X)}.
Otherwise, it the arcus tangent of @var{X}, where the real part of
the result is in radians and lies in the range
@math{-\pi/2 \leq \Re \atan(x) \leq \pi/2}.
@item @emph{Example}:
@smallexample
program test_atan
real(8) :: x = 2.866_8
x = atan(x)
end program test_atan
@end smallexample
@item @emph{Specific names}:
@multitable @columnfractions .20 .20 .20 .25
@item Name @tab Argument @tab Return type @tab Standard
@item @code{ATAN(X)} @tab @code{REAL(4) X} @tab @code{REAL(4)} @tab Fortran 77 and later
@item @code{DATAN(X)} @tab @code{REAL(8) X} @tab @code{REAL(8)} @tab Fortran 77 and later
@end multitable
@item @emph{See also}:
Inverse function: @ref{TAN}
@end table
@node ATAN2
@section @code{ATAN2} --- Arctangent function
@fnindex ATAN2
@fnindex DATAN2
@cindex trigonometric function, tangent, inverse
@cindex tangent, inverse
@table @asis
@item @emph{Description}:
@code{ATAN2(Y, X)} computes the principal value of the argument
function of the complex number @math{X + i Y}. This function can
be used to transform from Cartesian into polar coordinates and
allows to determine the angle in the correct quadrant.
@item @emph{Standard}:
Fortran 77 and later
@item @emph{Class}:
Elemental function
@item @emph{Syntax}:
@code{RESULT = ATAN2(Y, X)}
@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{Y} @tab The type shall be @code{REAL}.
@item @var{X} @tab The type and kind type parameter shall be the same as @var{Y}.
If @var{Y} is zero, then @var{X} must be nonzero.
@end multitable
@item @emph{Return value}:
The return value has the same type and kind type parameter as @var{Y}. It
is the principal value of the complex number @math{X + i Y}. If @var{X}
is nonzero, then it lies in the range @math{-\pi \le \atan (x) \leq \pi}.
The sign is positive if @var{Y} is positive. If @var{Y} is zero, then
the return value is zero if @var{X} is strictly positive, @math{\pi} if
@var{X} is negative and @var{Y} is positive zero (or the processor does
not handle signed zeros), and @math{-\pi} if @var{X} is negative and
@var{Y} is negative zero. Finally, if @var{X} is zero, then the
magnitude of the result is @math{\pi/2}.
@item @emph{Example}:
@smallexample
program test_atan2
real(4) :: x = 1.e0_4, y = 0.5e0_4
x = atan2(y,x)
end program test_atan2
@end smallexample
@item @emph{Specific names}:
@multitable @columnfractions .20 .20 .20 .25
@item Name @tab Argument @tab Return type @tab Standard
@item @code{ATAN2(X, Y)} @tab @code{REAL(4) X, Y} @tab @code{REAL(4)} @tab Fortran 77 and later
@item @code{DATAN2(X, Y)} @tab @code{REAL(8) X, Y} @tab @code{REAL(8)} @tab Fortran 77 and later
@end multitable
@end table
@node ATANH
@section @code{ATANH} --- Inverse hyperbolic tangent function
@fnindex ATANH
@fnindex DATANH
@cindex area hyperbolic tangent
@cindex inverse hyperbolic tangent
@cindex hyperbolic function, tangent, inverse
@cindex tangent, hyperbolic, inverse
@table @asis
@item @emph{Description}:
@code{ATANH(X)} computes the inverse hyperbolic tangent of @var{X}.
@item @emph{Standard}:
Fortran 2008 and later
@item @emph{Class}:
Elemental function
@item @emph{Syntax}:
@code{RESULT = ATANH(X)}
@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{X} @tab The type shall be @code{REAL} or @code{COMPLEX}.
@end multitable
@item @emph{Return value}:
The return value has same type and kind as @var{X}. If @var{X} is
complex, the imaginary part of the result is in radians and lies between
@math{-\pi/2 \leq \Im \atanh(x) \leq \pi/2}.
@item @emph{Example}:
@smallexample
PROGRAM test_atanh
REAL, DIMENSION(3) :: x = (/ -1.0, 0.0, 1.0 /)
WRITE (*,*) ATANH(x)
END PROGRAM
@end smallexample
@item @emph{Specific names}:
@multitable @columnfractions .20 .20 .20 .25
@item Name @tab Argument @tab Return type @tab Standard
@item @code{DATANH(X)} @tab @code{REAL(8) X} @tab @code{REAL(8)} @tab GNU extension
@end multitable
@item @emph{See also}:
Inverse function: @ref{TANH}
@end table
@node ATOMIC_DEFINE
@section @code{ATOMIC_DEFINE} --- Setting a variable atomically
@fnindex ATOMIC_DEFINE
@cindex Atomic subroutine, define
@table @asis
@item @emph{Description}:
@code{ATOMIC_DEFINE(ATOM, VALUE)} defines the variable @var{ATOM} with the value
@var{VALUE} atomically.
@item @emph{Standard}:
Fortran 2008 and later
@item @emph{Class}:
Atomic subroutine
@item @emph{Syntax}:
@code{CALL ATOMIC_DEFINE(ATOM, VALUE)}
@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{ATOM} @tab Scalar coarray or coindexed variable of either integer
type with @code{ATOMIC_INT_KIND} kind or logical type
with @code{ATOMIC_LOGICAL_KIND} kind.
@item @var{VALURE} @tab Scalar and of the same type as @var{ATOM}. If the kind
is different, the value is converted to the kind of
@var{ATOM}.
@end multitable
@item @emph{Example}:
@smallexample
program atomic
use iso_fortran_env
integer(atomic_int_kind) :: atom[*]
call atomic_define (atom[1], this_image())
end program atomic
@end smallexample
@item @emph{See also}:
@ref{ATOMIC_REF}, @ref{ISO_FORTRAN_ENV}
@end table
@node ATOMIC_REF
@section @code{ATOMIC_REF} --- Obtaining the value of a variable atomically
@fnindex ATOMIC_REF
@cindex Atomic subroutine, reference
@table @asis
@item @emph{Description}:
@code{ATOMIC_DEFINE(ATOM, VALUE)} atomically assigns the value of the
variable @var{ATOM} to @var{VALUE}.
@item @emph{Standard}:
Fortran 2008 and later
@item @emph{Class}:
Atomic subroutine
@item @emph{Syntax}:
@code{CALL ATOMIC_REF(VALUE, ATOM)}
@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{VALURE} @tab Scalar and of the same type as @var{ATOM}. If the kind
is different, the value is converted to the kind of
@var{ATOM}.
@item @var{ATOM} @tab Scalar coarray or coindexed variable of either integer
type with @code{ATOMIC_INT_KIND} kind or logical type
with @code{ATOMIC_LOGICAL_KIND} kind.
@end multitable
@item @emph{Example}:
@smallexample
program atomic
use iso_fortran_env
logical(atomic_logical_kind) :: atom[*]
logical :: val
call atomic_ref (atom, .false.)
! ...
call atomic_ref (atom, val)
if (val) then
print *, "Obtained"
end if
end program atomic
@end smallexample
@item @emph{See also}:
@ref{ATOMIC_DEFINE}, @ref{ISO_FORTRAN_ENV}
@end table
@node BACKTRACE
@section @code{BACKTRACE} --- Show a backtrace
@fnindex BACKTRACE
@cindex backtrace
@table @asis
@item @emph{Description}:
@code{BACKTRACE} shows a backtrace at an arbitrary place in user code. Program
execution continues normally afterwards. The backtrace information is printed
to the unit corresponding to @code{ERROR_UNIT} in @code{ISO_FORTRAN_ENV}.
@item @emph{Standard}:
GNU Extension
@item @emph{Class}:
Subroutine
@item @emph{Syntax}:
@code{CALL BACKTRACE}
@item @emph{Arguments}:
None
@item @emph{See also}:
@ref{ABORT}
@end table
@node BESSEL_J0
@section @code{BESSEL_J0} --- Bessel function of the first kind of order 0
@fnindex BESSEL_J0
@fnindex BESJ0
@fnindex DBESJ0
@cindex Bessel function, first kind
@table @asis
@item @emph{Description}:
@code{BESSEL_J0(X)} computes the Bessel function of the first kind of
order 0 of @var{X}. This function is available under the name
@code{BESJ0} as a GNU extension.
@item @emph{Standard}:
Fortran 2008 and later
@item @emph{Class}:
Elemental function
@item @emph{Syntax}:
@code{RESULT = BESSEL_J0(X)}
@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{X} @tab The type shall be @code{REAL}, and it shall be scalar.
@end multitable
@item @emph{Return value}:
The return value is of type @code{REAL} and lies in the
range @math{ - 0.4027... \leq Bessel (0,x) \leq 1}. It has the same
kind as @var{X}.
@item @emph{Example}:
@smallexample
program test_besj0
real(8) :: x = 0.0_8
x = bessel_j0(x)
end program test_besj0
@end smallexample
@item @emph{Specific names}:
@multitable @columnfractions .20 .20 .20 .25
@item Name @tab Argument @tab Return type @tab Standard
@item @code{DBESJ0(X)} @tab @code{REAL(8) X} @tab @code{REAL(8)} @tab GNU extension
@end multitable
@end table
@node BESSEL_J1
@section @code{BESSEL_J1} --- Bessel function of the first kind of order 1
@fnindex BESSEL_J1
@fnindex BESJ1
@fnindex DBESJ1
@cindex Bessel function, first kind
@table @asis
@item @emph{Description}:
@code{BESSEL_J1(X)} computes the Bessel function of the first kind of
order 1 of @var{X}. This function is available under the name
@code{BESJ1} as a GNU extension.
@item @emph{Standard}:
Fortran 2008
@item @emph{Class}:
Elemental function
@item @emph{Syntax}:
@code{RESULT = BESSEL_J1(X)}
@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{X} @tab The type shall be @code{REAL}, and it shall be scalar.
@end multitable
@item @emph{Return value}:
The return value is of type @code{REAL} and it lies in the
range @math{ - 0.5818... \leq Bessel (0,x) \leq 0.5818 }. It has the same
kind as @var{X}.
@item @emph{Example}:
@smallexample
program test_besj1
real(8) :: x = 1.0_8
x = bessel_j1(x)
end program test_besj1
@end smallexample
@item @emph{Specific names}:
@multitable @columnfractions .20 .20 .20 .25
@item Name @tab Argument @tab Return type @tab Standard
@item @code{DBESJ1(X)} @tab @code{REAL(8) X} @tab @code{REAL(8)} @tab GNU extension
@end multitable
@end table
@node BESSEL_JN
@section @code{BESSEL_JN} --- Bessel function of the first kind
@fnindex BESSEL_JN
@fnindex BESJN
@fnindex DBESJN
@cindex Bessel function, first kind
@table @asis
@item @emph{Description}:
@code{BESSEL_JN(N, X)} computes the Bessel function of the first kind of
order @var{N} of @var{X}. This function is available under the name
@code{BESJN} as a GNU extension. If @var{N} and @var{X} are arrays,
their ranks and shapes shall conform.
@code{BESSEL_JN(N1, N2, X)} returns an array with the Bessel functions
of the first kind of the orders @var{N1} to @var{N2}.
@item @emph{Standard}:
Fortran 2008 and later, negative @var{N} is allowed as GNU extension
@item @emph{Class}:
Elemental function, except for the transformational function
@code{BESSEL_JN(N1, N2, X)}
@item @emph{Syntax}:
@multitable @columnfractions .80
@item @code{RESULT = BESSEL_JN(N, X)}
@item @code{RESULT = BESSEL_JN(N1, N2, X)}
@end multitable
@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{N} @tab Shall be a scalar or an array of type @code{INTEGER}.
@item @var{N1} @tab Shall be a non-negative scalar of type @code{INTEGER}.
@item @var{N2} @tab Shall be a non-negative scalar of type @code{INTEGER}.
@item @var{X} @tab Shall be a scalar or an array of type @code{REAL};
for @code{BESSEL_JN(N1, N2, X)} it shall be scalar.
@end multitable
@item @emph{Return value}:
The return value is a scalar of type @code{REAL}. It has the same
kind as @var{X}.
@item @emph{Note}:
The transformational function uses a recurrence algorithm which might,
for some values of @var{X}, lead to different results than calls to
the elemental function.
@item @emph{Example}:
@smallexample
program test_besjn
real(8) :: x = 1.0_8
x = bessel_jn(5,x)
end program test_besjn
@end smallexample
@item @emph{Specific names}:
@multitable @columnfractions .20 .20 .20 .25
@item Name @tab Argument @tab Return type @tab Standard
@item @code{DBESJN(N, X)} @tab @code{INTEGER N} @tab @code{REAL(8)} @tab GNU extension
@item @tab @code{REAL(8) X} @tab @tab
@end multitable
@end table
@node BESSEL_Y0
@section @code{BESSEL_Y0} --- Bessel function of the second kind of order 0
@fnindex BESSEL_Y0
@fnindex BESY0
@fnindex DBESY0
@cindex Bessel function, second kind
@table @asis
@item @emph{Description}:
@code{BESSEL_Y0(X)} computes the Bessel function of the second kind of
order 0 of @var{X}. This function is available under the name
@code{BESY0} as a GNU extension.
@item @emph{Standard}:
Fortran 2008 and later
@item @emph{Class}:
Elemental function
@item @emph{Syntax}:
@code{RESULT = BESSEL_Y0(X)}
@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{X} @tab The type shall be @code{REAL}, and it shall be scalar.
@end multitable
@item @emph{Return value}:
The return value is a scalar of type @code{REAL}. It has the same
kind as @var{X}.
@item @emph{Example}:
@smallexample
program test_besy0
real(8) :: x = 0.0_8
x = bessel_y0(x)
end program test_besy0
@end smallexample
@item @emph{Specific names}:
@multitable @columnfractions .20 .20 .20 .25
@item Name @tab Argument @tab Return type @tab Standard
@item @code{DBESY0(X)}@tab @code{REAL(8) X} @tab @code{REAL(8)} @tab GNU extension
@end multitable
@end table
@node BESSEL_Y1
@section @code{BESSEL_Y1} --- Bessel function of the second kind of order 1
@fnindex BESSEL_Y1
@fnindex BESY1
@fnindex DBESY1
@cindex Bessel function, second kind
@table @asis
@item @emph{Description}:
@code{BESSEL_Y1(X)} computes the Bessel function of the second kind of
order 1 of @var{X}. This function is available under the name
@code{BESY1} as a GNU extension.
@item @emph{Standard}:
Fortran 2008 and later
@item @emph{Class}:
Elemental function
@item @emph{Syntax}:
@code{RESULT = BESSEL_Y1(X)}
@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{X} @tab The type shall be @code{REAL}, and it shall be scalar.
@end multitable
@item @emph{Return value}:
The return value is a scalar of type @code{REAL}. It has the same
kind as @var{X}.
@item @emph{Example}:
@smallexample
program test_besy1
real(8) :: x = 1.0_8
x = bessel_y1(x)
end program test_besy1
@end smallexample
@item @emph{Specific names}:
@multitable @columnfractions .20 .20 .20 .25
@item Name @tab Argument @tab Return type @tab Standard
@item @code{DBESY1(X)}@tab @code{REAL(8) X} @tab @code{REAL(8)} @tab GNU extension
@end multitable
@end table
@node BESSEL_YN
@section @code{BESSEL_YN} --- Bessel function of the second kind
@fnindex BESSEL_YN
@fnindex BESYN
@fnindex DBESYN
@cindex Bessel function, second kind
@table @asis
@item @emph{Description}:
@code{BESSEL_YN(N, X)} computes the Bessel function of the second kind of
order @var{N} of @var{X}. This function is available under the name
@code{BESYN} as a GNU extension. If @var{N} and @var{X} are arrays,
their ranks and shapes shall conform.
@code{BESSEL_YN(N1, N2, X)} returns an array with the Bessel functions
of the first kind of the orders @var{N1} to @var{N2}.
@item @emph{Standard}:
Fortran 2008 and later, negative @var{N} is allowed as GNU extension
@item @emph{Class}:
Elemental function, except for the transformational function
@code{BESSEL_YN(N1, N2, X)}
@item @emph{Syntax}:
@multitable @columnfractions .80
@item @code{RESULT = BESSEL_YN(N, X)}
@item @code{RESULT = BESSEL_YN(N1, N2, X)}
@end multitable
@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{N} @tab Shall be a scalar or an array of type @code{INTEGER} .
@item @var{N1} @tab Shall be a non-negative scalar of type @code{INTEGER}.
@item @var{N2} @tab Shall be a non-negative scalar of type @code{INTEGER}.
@item @var{X} @tab Shall be a scalar or an array of type @code{REAL};
for @code{BESSEL_YN(N1, N2, X)} it shall be scalar.
@end multitable
@item @emph{Return value}:
The return value is a scalar of type @code{REAL}. It has the same
kind as @var{X}.
@item @emph{Note}:
The transformational function uses a recurrence algorithm which might,
for some values of @var{X}, lead to different results than calls to
the elemental function.
@item @emph{Example}:
@smallexample
program test_besyn
real(8) :: x = 1.0_8
x = bessel_yn(5,x)
end program test_besyn
@end smallexample
@item @emph{Specific names}:
@multitable @columnfractions .20 .20 .20 .25
@item Name @tab Argument @tab Return type @tab Standard
@item @code{DBESYN(N,X)} @tab @code{INTEGER N} @tab @code{REAL(8)} @tab GNU extension
@item @tab @code{REAL(8) X} @tab @tab
@end multitable
@end table
@node BGE
@section @code{BGE} --- Bitwise greater than or equal to
@fnindex BGE
@cindex bitwise comparison
@table @asis
@item @emph{Description}:
Determines whether an integral is a bitwise greater than or equal to
another.
@item @emph{Standard}:
Fortran 2008 and later
@item @emph{Class}:
Elemental function
@item @emph{Syntax}:
@code{RESULT = BGE(I, J)}
@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{I} @tab Shall be of @code{INTEGER} type.
@item @var{J} @tab Shall be of @code{INTEGER} type, and of the same kind
as @var{I}.
@end multitable
@item @emph{Return value}:
The return value is of type @code{LOGICAL} and of the default kind.
@item @emph{See also}:
@ref{BGT}, @ref{BLE}, @ref{BLT}
@end table
@node BGT
@section @code{BGT} --- Bitwise greater than
@fnindex BGT
@cindex bitwise comparison
@table @asis
@item @emph{Description}:
Determines whether an integral is a bitwise greater than another.
@item @emph{Standard}:
Fortran 2008 and later
@item @emph{Class}:
Elemental function
@item @emph{Syntax}:
@code{RESULT = BGT(I, J)}
@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{I} @tab Shall be of @code{INTEGER} type.
@item @var{J} @tab Shall be of @code{INTEGER} type, and of the same kind
as @var{I}.
@end multitable
@item @emph{Return value}:
The return value is of type @code{LOGICAL} and of the default kind.
@item @emph{See also}:
@ref{BGE}, @ref{BLE}, @ref{BLT}
@end table
@node BIT_SIZE
@section @code{BIT_SIZE} --- Bit size inquiry function
@fnindex BIT_SIZE
@cindex bits, number of
@cindex size of a variable, in bits
@table @asis
@item @emph{Description}:
@code{BIT_SIZE(I)} returns the number of bits (integer precision plus sign bit)
represented by the type of @var{I}. The result of @code{BIT_SIZE(I)} is
independent of the actual value of @var{I}.
@item @emph{Standard}:
Fortran 95 and later
@item @emph{Class}:
Inquiry function
@item @emph{Syntax}:
@code{RESULT = BIT_SIZE(I)}
@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{I} @tab The type shall be @code{INTEGER}.
@end multitable
@item @emph{Return value}:
The return value is of type @code{INTEGER}
@item @emph{Example}:
@smallexample
program test_bit_size
integer :: i = 123
integer :: size
size = bit_size(i)
print *, size
end program test_bit_size
@end smallexample
@end table
@node BLE
@section @code{BLE} --- Bitwise less than or equal to
@fnindex BLE
@cindex bitwise comparison
@table @asis
@item @emph{Description}:
Determines whether an integral is a bitwise less than or equal to
another.
@item @emph{Standard}:
Fortran 2008 and later
@item @emph{Class}:
Elemental function
@item @emph{Syntax}:
@code{RESULT = BLE(I, J)}
@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{I} @tab Shall be of @code{INTEGER} type.
@item @var{J} @tab Shall be of @code{INTEGER} type, and of the same kind
as @var{I}.
@end multitable
@item @emph{Return value}:
The return value is of type @code{LOGICAL} and of the default kind.
@item @emph{See also}:
@ref{BGT}, @ref{BGE}, @ref{BLT}
@end table
@node BLT
@section @code{BLT} --- Bitwise less than
@fnindex BLT
@cindex bitwise comparison
@table @asis
@item @emph{Description}:
Determines whether an integral is a bitwise less than another.
@item @emph{Standard}:
Fortran 2008 and later
@item @emph{Class}:
Elemental function
@item @emph{Syntax}:
@code{RESULT = BLT(I, J)}
@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{I} @tab Shall be of @code{INTEGER} type.
@item @var{J} @tab Shall be of @code{INTEGER} type, and of the same kind
as @var{I}.
@end multitable
@item @emph{Return value}:
The return value is of type @code{LOGICAL} and of the default kind.
@item @emph{See also}:
@ref{BGE}, @ref{BGT}, @ref{BLE}
@end table
@node BTEST
@section @code{BTEST} --- Bit test function
@fnindex BTEST
@cindex bits, testing
@table @asis
@item @emph{Description}:
@code{BTEST(I,POS)} returns logical @code{.TRUE.} if the bit at @var{POS}
in @var{I} is set. The counting of the bits starts at 0.
@item @emph{Standard}:
Fortran 95 and later
@item @emph{Class}:
Elemental function
@item @emph{Syntax}:
@code{RESULT = BTEST(I, POS)}
@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{I} @tab The type shall be @code{INTEGER}.
@item @var{POS} @tab The type shall be @code{INTEGER}.
@end multitable
@item @emph{Return value}:
The return value is of type @code{LOGICAL}
@item @emph{Example}:
@smallexample
program test_btest
integer :: i = 32768 + 1024 + 64
integer :: pos
logical :: bool
do pos=0,16
bool = btest(i, pos)
print *, pos, bool
end do
end program test_btest
@end smallexample
@end table
@node C_ASSOCIATED
@section @code{C_ASSOCIATED} --- Status of a C pointer
@fnindex C_ASSOCIATED
@cindex association status, C pointer
@cindex pointer, C association status
@table @asis
@item @emph{Description}:
@code{C_ASSOCIATED(c_prt_1[, c_ptr_2])} determines the status of the C pointer
@var{c_ptr_1} or if @var{c_ptr_1} is associated with the target @var{c_ptr_2}.
@item @emph{Standard}:
Fortran 2003 and later
@item @emph{Class}:
Inquiry function
@item @emph{Syntax}:
@code{RESULT = C_ASSOCIATED(c_prt_1[, c_ptr_2])}
@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{c_ptr_1} @tab Scalar of the type @code{C_PTR} or @code{C_FUNPTR}.
@item @var{c_ptr_2} @tab (Optional) Scalar of the same type as @var{c_ptr_1}.
@end multitable
@item @emph{Return value}:
The return value is of type @code{LOGICAL}; it is @code{.false.} if either
@var{c_ptr_1} is a C NULL pointer or if @var{c_ptr1} and @var{c_ptr_2}
point to different addresses.
@item @emph{Example}:
@smallexample
subroutine association_test(a,b)
use iso_c_binding, only: c_associated, c_loc, c_ptr
implicit none
real, pointer :: a
type(c_ptr) :: b
if(c_associated(b, c_loc(a))) &
stop 'b and a do not point to same target'
end subroutine association_test
@end smallexample
@item @emph{See also}:
@ref{C_LOC}, @ref{C_FUNLOC}
@end table
@node C_F_POINTER
@section @code{C_F_POINTER} --- Convert C into Fortran pointer
@fnindex C_F_POINTER
@cindex pointer, convert C to Fortran
@table @asis
@item @emph{Description}:
@code{C_F_POINTER(CPTR, FPTR[, SHAPE])} assigns the target of the C pointer
@var{CPTR} to the Fortran pointer @var{FPTR} and specifies its shape.
@item @emph{Standard}:
Fortran 2003 and later
@item @emph{Class}:
Subroutine
@item @emph{Syntax}:
@code{CALL C_F_POINTER(CPTR, FPTR[, SHAPE])}
@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{CPTR} @tab scalar of the type @code{C_PTR}. It is
@code{INTENT(IN)}.
@item @var{FPTR} @tab pointer interoperable with @var{cptr}. It is
@code{INTENT(OUT)}.
@item @var{SHAPE} @tab (Optional) Rank-one array of type @code{INTEGER}
with @code{INTENT(IN)}. It shall be present
if and only if @var{fptr} is an array. The size
must be equal to the rank of @var{fptr}.
@end multitable
@item @emph{Example}:
@smallexample
program main
use iso_c_binding
implicit none
interface
subroutine my_routine(p) bind(c,name='myC_func')
import :: c_ptr
type(c_ptr), intent(out) :: p
end subroutine
end interface
type(c_ptr) :: cptr
real,pointer :: a(:)
call my_routine(cptr)
call c_f_pointer(cptr, a, [12])
end program main
@end smallexample
@item @emph{See also}:
@ref{C_LOC}, @ref{C_F_PROCPOINTER}
@end table
@node C_F_PROCPOINTER
@section @code{C_F_PROCPOINTER} --- Convert C into Fortran procedure pointer
@fnindex C_F_PROCPOINTER
@cindex pointer, C address of pointers
@table @asis
@item @emph{Description}:
@code{C_F_PROCPOINTER(CPTR, FPTR)} Assign the target of the C function pointer
@var{CPTR} to the Fortran procedure pointer @var{FPTR}.
@item @emph{Standard}:
Fortran 2003 and later
@item @emph{Class}:
Subroutine
@item @emph{Syntax}:
@code{CALL C_F_PROCPOINTER(cptr, fptr)}
@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{CPTR} @tab scalar of the type @code{C_FUNPTR}. It is
@code{INTENT(IN)}.
@item @var{FPTR} @tab procedure pointer interoperable with @var{cptr}. It is
@code{INTENT(OUT)}.
@end multitable
@item @emph{Example}:
@smallexample
program main
use iso_c_binding
implicit none
abstract interface
function func(a)
import :: c_float
real(c_float), intent(in) :: a
real(c_float) :: func
end function
end interface
interface
function getIterFunc() bind(c,name="getIterFunc")
import :: c_funptr
type(c_funptr) :: getIterFunc
end function
end interface
type(c_funptr) :: cfunptr
procedure(func), pointer :: myFunc
cfunptr = getIterFunc()
call c_f_procpointer(cfunptr, myFunc)
end program main
@end smallexample
@item @emph{See also}:
@ref{C_LOC}, @ref{C_F_POINTER}
@end table
@node C_FUNLOC
@section @code{C_FUNLOC} --- Obtain the C address of a procedure
@fnindex C_FUNLOC
@cindex pointer, C address of procedures
@table @asis
@item @emph{Description}:
@code{C_FUNLOC(x)} determines the C address of the argument.
@item @emph{Standard}:
Fortran 2003 and later
@item @emph{Class}:
Inquiry function
@item @emph{Syntax}:
@code{RESULT = C_FUNLOC(x)}
@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{x} @tab Interoperable function or pointer to such function.
@end multitable
@item @emph{Return value}:
The return value is of type @code{C_FUNPTR} and contains the C address
of the argument.
@item @emph{Example}:
@smallexample
module x
use iso_c_binding
implicit none
contains
subroutine sub(a) bind(c)
real(c_float) :: a
a = sqrt(a)+5.0
end subroutine sub
end module x
program main
use iso_c_binding
use x
implicit none
interface
subroutine my_routine(p) bind(c,name='myC_func')
import :: c_funptr
type(c_funptr), intent(in) :: p
end subroutine
end interface
call my_routine(c_funloc(sub))
end program main
@end smallexample
@item @emph{See also}:
@ref{C_ASSOCIATED}, @ref{C_LOC}, @ref{C_F_POINTER}, @ref{C_F_PROCPOINTER}
@end table
@node C_LOC
@section @code{C_LOC} --- Obtain the C address of an object
@fnindex C_LOC
@cindex procedure pointer, convert C to Fortran
@table @asis
@item @emph{Description}:
@code{C_LOC(X)} determines the C address of the argument.
@item @emph{Standard}:
Fortran 2003 and later
@item @emph{Class}:
Inquiry function
@item @emph{Syntax}:
@code{RESULT = C_LOC(X)}
@item @emph{Arguments}:
@multitable @columnfractions .10 .75
@item @var{X} @tab Shall have either the POINTER or TARGET attribute. It shall not be a coindexed object. It shall either be a variable with interoperable type and kind type parameters, or be a scalar, nonpolymorphic variable with no length type parameters.
@end multitable
@item @emph{Return value}:
The return value is of type @code{C_PTR} and contains the C address
of the argument.
@item @emph{Example}:
@smallexample
subroutine association_test(a,b)
use iso_c_binding, only: c_associated, c_loc, c_ptr
implicit none
real, pointer :: a
type(c_ptr) :: b
if(c_associated(b, c_loc(a))) &
stop 'b and a do not point to same target'
end subroutine association_test
@end smallexample
@item @emph{See also}:
@ref{C_ASSOCIATED}, @ref{C_FUNLOC}, @ref{C_F_POINTER}, @ref{C_F_PROCPOINTER}
@end table
@node C_SIZEOF
@section @code{C_SIZEOF} --- Size in bytes of an expression
@fnindex C_SIZEOF
@cindex expression size
@cindex size of an expression
@table @asis
@item @emph{Description}:
@code{C_SIZEOF(X)} calculates the number of bytes of storage the
expression @code{X} occupies.
@item @emph{Standard}:
Fortran 2008
@item @emph{Class}:
Inquiry function of the module @code{ISO_C_BINDING}
@item @emph{Syntax}:
@code{N = C_SIZEOF(X)}
@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{X} @tab The argument shall be an interoperable data entity.
@end multitable
@item @emph{Return value}:
The return value is of type integer and of the system-dependent kind
@code{C_SIZE_T} (from the @code{ISO_C_BINDING} module). Its value is the
number of bytes occupied by the argument. If the argument has the
@code{POINTER} attribute, the number of bytes of the storage area pointed
to is returned. If the argument is of a derived type with @code{POINTER}
or @code{ALLOCATABLE} components, the return value does not account for
the sizes of the data pointed to by these components.
@item @emph{Example}:
@smallexample
use iso_c_binding
integer(c_int) :: i
real(c_float) :: r, s(5)
print *, (c_sizeof(s)/c_sizeof(r) == 5)
end
@end smallexample
The example will print @code{.TRUE.} unless you are using a platform
where default @code{REAL} variables are unusually padded.
@item @emph{See also}:
@ref{SIZEOF}, @ref{STORAGE_SIZE}
@end table
@node CEILING
@section @code{CEILING} --- Integer ceiling function
@fnindex CEILING
@cindex ceiling
@cindex rounding, ceiling
@table @asis
@item @emph{Description}:
@code{CEILING(A)} returns the least integer greater than or equal to @var{A}.
@item @emph{Standard}:
Fortran 95 and later
@item @emph{Class}:
Elemental function
@item @emph{Syntax}:
@code{RESULT = CEILING(A [, KIND])}
@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{A} @tab The type shall be @code{REAL}.
@item @var{KIND} @tab (Optional) An @code{INTEGER} initialization
expression indicating the kind parameter of the result.
@end multitable
@item @emph{Return value}:
The return value is of type @code{INTEGER(KIND)} if @var{KIND} is present
and a default-kind @code{INTEGER} otherwise.
@item @emph{Example}:
@smallexample
program test_ceiling
real :: x = 63.29
real :: y = -63.59
print *, ceiling(x) ! returns 64
print *, ceiling(y) ! returns -63
end program test_ceiling
@end smallexample
@item @emph{See also}:
@ref{FLOOR}, @ref{NINT}
@end table
@node CHAR
@section @code{CHAR} --- Character conversion function
@fnindex CHAR
@cindex conversion, to character
@table @asis
@item @emph{Description}:
@code{CHAR(I [, KIND])} returns the character represented by the integer @var{I}.
@item @emph{Standard}:
Fortran 77 and later
@item @emph{Class}:
Elemental function
@item @emph{Syntax}:
@code{RESULT = CHAR(I [, KIND])}
@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{I} @tab The type shall be @code{INTEGER}.
@item @var{KIND} @tab (Optional) An @code{INTEGER} initialization
expression indicating the kind parameter of the result.
@end multitable
@item @emph{Return value}:
The return value is of type @code{CHARACTER(1)}
@item @emph{Example}:
@smallexample
program test_char
integer :: i = 74
character(1) :: c
c = char(i)
print *, i, c ! returns 'J'
end program test_char
@end smallexample
@item @emph{Specific names}:
@multitable @columnfractions .20 .20 .20 .25
@item Name @tab Argument @tab Return type @tab Standard
@item @code{CHAR(I)} @tab @code{INTEGER I} @tab @code{CHARACTER(LEN=1)} @tab F77 and later
@end multitable
@item @emph{Note}:
See @ref{ICHAR} for a discussion of converting between numerical values
and formatted string representations.
@item @emph{See also}:
@ref{ACHAR}, @ref{IACHAR}, @ref{ICHAR}
@end table
@node CHDIR
@section @code{CHDIR} --- Change working directory
@fnindex CHDIR
@cindex system, working directory
@table @asis
@item @emph{Description}:
Change current working directory to a specified path.
This intrinsic is provided in both subroutine and function forms; however,
only one form can be used in any given program unit.
@item @emph{Standard}:
GNU extension
@item @emph{Class}:
Subroutine, function
@item @emph{Syntax}:
@multitable @columnfractions .80
@item @code{CALL CHDIR(NAME [, STATUS])}
@item @code{STATUS = CHDIR(NAME)}
@end multitable
@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{NAME} @tab The type shall be @code{CHARACTER} of default
kind and shall specify a valid path within the file system.
@item @var{STATUS} @tab (Optional) @code{INTEGER} status flag of the default
kind. Returns 0 on success, and a system specific and nonzero error code
otherwise.
@end multitable
@item @emph{Example}:
@smallexample
PROGRAM test_chdir
CHARACTER(len=255) :: path
CALL getcwd(path)
WRITE(*,*) TRIM(path)
CALL chdir("/tmp")
CALL getcwd(path)
WRITE(*,*) TRIM(path)
END PROGRAM
@end smallexample
@item @emph{See also}:
@ref{GETCWD}
@end table
@node CHMOD
@section @code{CHMOD} --- Change access permissions of files
@fnindex CHMOD
@cindex file system, change access mode
@table @asis
@item @emph{Description}:
@code{CHMOD} changes the permissions of a file.
This intrinsic is provided in both subroutine and function forms; however,
only one form can be used in any given program unit.
@item @emph{Standard}:
GNU extension
@item @emph{Class}:
Subroutine, function
@item @emph{Syntax}:
@multitable @columnfractions .80
@item @code{CALL CHMOD(NAME, MODE[, STATUS])}
@item @code{STATUS = CHMOD(NAME, MODE)}
@end multitable
@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{NAME} @tab Scalar @code{CHARACTER} of default kind with the
file name. Trailing blanks are ignored unless the character
@code{achar(0)} is present, then all characters up to and excluding
@code{achar(0)} are used as the file name.
@item @var{MODE} @tab Scalar @code{CHARACTER} of default kind giving the
file permission. @var{MODE} uses the same syntax as the @code{chmod} utility
as defined by the POSIX standard. The argument shall either be a string of
a nonnegative octal number or a symbolic mode.
@item @var{STATUS} @tab (optional) scalar @code{INTEGER}, which is
@code{0} on success and nonzero otherwise.
@end multitable
@item @emph{Return value}:
In either syntax, @var{STATUS} is set to @code{0} on success and nonzero
otherwise.
@item @emph{Example}:
@code{CHMOD} as subroutine
@smallexample
program chmod_test
implicit none
integer :: status
call chmod('test.dat','u+x',status)
print *, 'Status: ', status
end program chmod_test
@end smallexample
@code{CHMOD} as function:
@smallexample
program chmod_test
implicit none
integer :: status
status = chmod('test.dat','u+x')
print *, 'Status: ', status
end program chmod_test
@end smallexample
@end table
@node CMPLX
@section @code{CMPLX} --- Complex conversion function
@fnindex CMPLX
@cindex complex numbers, conversion to
@cindex conversion, to complex
@table @asis
@item @emph{Description}:
@code{CMPLX(X [, Y [, KIND]])} returns a complex number where @var{X} is converted to
the real component. If @var{Y} is present it is converted to the imaginary
component. If @var{Y} is not present then the imaginary component is set to
0.0. If @var{X} is complex then @var{Y} must not be present.
@item @emph{Standard}:
Fortran 77 and later
@item @emph{Class}:
Elemental function
@item @emph{Syntax}:
@code{RESULT = CMPLX(X [, Y [, KIND]])}
@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{X} @tab The type may be @code{INTEGER}, @code{REAL},
or @code{COMPLEX}.
@item @var{Y} @tab (Optional; only allowed if @var{X} is not
@code{COMPLEX}.) May be @code{INTEGER} or @code{REAL}.
@item @var{KIND} @tab (Optional) An @code{INTEGER} initialization
expression indicating the kind parameter of the result.
@end multitable
@item @emph{Return value}:
The return value is of @code{COMPLEX} type, with a kind equal to
@var{KIND} if it is specified. If @var{KIND} is not specified, the
result is of the default @code{COMPLEX} kind, regardless of the kinds of
@var{X} and @var{Y}.
@item @emph{Example}:
@smallexample
program test_cmplx
integer :: i = 42
real :: x = 3.14
complex :: z
z = cmplx(i, x)
print *, z, cmplx(x)
end program test_cmplx
@end smallexample
@item @emph{See also}:
@ref{COMPLEX}
@end table
@node COMMAND_ARGUMENT_COUNT
@section @code{COMMAND_ARGUMENT_COUNT} --- Get number of command line arguments
@fnindex COMMAND_ARGUMENT_COUNT
@cindex command-line arguments
@cindex command-line arguments, number of
@cindex arguments, to program
@table @asis
@item @emph{Description}:
@code{COMMAND_ARGUMENT_COUNT} returns the number of arguments passed on the
command line when the containing program was invoked.
@item @emph{Standard}:
Fortran 2003 and later
@item @emph{Class}:
Inquiry function
@item @emph{Syntax}:
@code{RESULT = COMMAND_ARGUMENT_COUNT()}
@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item None
@end multitable
@item @emph{Return value}:
The return value is an @code{INTEGER} of default kind.
@item @emph{Example}:
@smallexample
program test_command_argument_count
integer :: count
count = command_argument_count()
print *, count
end program test_command_argument_count
@end smallexample
@item @emph{See also}:
@ref{GET_COMMAND}, @ref{GET_COMMAND_ARGUMENT}
@end table
@node COMPILER_OPTIONS
@section @code{COMPILER_OPTIONS} --- Options passed to the compiler
@fnindex COMPILER_OPTIONS
@cindex flags inquiry function
@cindex options inquiry function
@cindex compiler flags inquiry function
@table @asis
@item @emph{Description}:
@code{COMPILER_OPTIONS} returns a string with the options used for
compiling.
@item @emph{Standard}:
Fortran 2008
@item @emph{Class}:
Inquiry function of the module @code{ISO_FORTRAN_ENV}
@item @emph{Syntax}:
@code{STR = COMPILER_OPTIONS()}
@item @emph{Arguments}:
None.
@item @emph{Return value}:
The return value is a default-kind string with system-dependent length.
It contains the compiler flags used to compile the file, which called
the @code{COMPILER_OPTIONS} intrinsic.
@item @emph{Example}:
@smallexample
use iso_fortran_env
print '(4a)', 'This file was compiled by ', &
compiler_version(), ' using the options ', &
compiler_options()
end
@end smallexample
@item @emph{See also}:
@ref{COMPILER_VERSION}, @ref{ISO_FORTRAN_ENV}
@end table
@node COMPILER_VERSION
@section @code{COMPILER_VERSION} --- Compiler version string
@fnindex COMPILER_VERSION
@cindex compiler, name and version
@cindex version of the compiler
@table @asis
@item @emph{Description}:
@code{COMPILER_VERSION} returns a string with the name and the
version of the compiler.
@item @emph{Standard}:
Fortran 2008
@item @emph{Class}:
Inquiry function of the module @code{ISO_FORTRAN_ENV}
@item @emph{Syntax}:
@code{STR = COMPILER_VERSION()}
@item @emph{Arguments}:
None.
@item @emph{Return value}:
The return value is a default-kind string with system-dependent length.
It contains the name of the compiler and its version number.
@item @emph{Example}:
@smallexample
use iso_fortran_env
print '(4a)', 'This file was compiled by ', &
compiler_version(), ' using the options ', &
compiler_options()
end
@end smallexample
@item @emph{See also}:
@ref{COMPILER_OPTIONS}, @ref{ISO_FORTRAN_ENV}
@end table
@node COMPLEX
@section @code{COMPLEX} --- Complex conversion function
@fnindex COMPLEX
@cindex complex numbers, conversion to
@cindex conversion, to complex
@table @asis
@item @emph{Description}:
@code{COMPLEX(X, Y)} returns a complex number where @var{X} is converted
to the real component and @var{Y} is converted to the imaginary
component.
@item @emph{Standard}:
GNU extension
@item @emph{Class}:
Elemental function
@item @emph{Syntax}:
@code{RESULT = COMPLEX(X, Y)}
@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{X} @tab The type may be @code{INTEGER} or @code{REAL}.
@item @var{Y} @tab The type may be @code{INTEGER} or @code{REAL}.
@end multitable
@item @emph{Return value}:
If @var{X} and @var{Y} are both of @code{INTEGER} type, then the return
value is of default @code{COMPLEX} type.
If @var{X} and @var{Y} are of @code{REAL} type, or one is of @code{REAL}
type and one is of @code{INTEGER} type, then the return value is of
@code{COMPLEX} type with a kind equal to that of the @code{REAL}
argument with the highest precision.
@item @emph{Example}:
@smallexample
program test_complex
integer :: i = 42
real :: x = 3.14
print *, complex(i, x)
end program test_complex
@end smallexample
@item @emph{See also}:
@ref{CMPLX}
@end table
@node CONJG
@section @code{CONJG} --- Complex conjugate function
@fnindex CONJG
@fnindex DCONJG
@cindex complex conjugate
@table @asis
@item @emph{Description}:
@code{CONJG(Z)} returns the conjugate of @var{Z}. If @var{Z} is @code{(x, y)}
then the result is @code{(x, -y)}
@item @emph{Standard}:
Fortran 77 and later, has overloads that are GNU extensions
@item @emph{Class}:
Elemental function
@item @emph{Syntax}:
@code{Z = CONJG(Z)}
@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{Z} @tab The type shall be @code{COMPLEX}.
@end multitable
@item @emph{Return value}:
The return value is of type @code{COMPLEX}.
@item @emph{Example}:
@smallexample
program test_conjg
complex :: z = (2.0, 3.0)
complex(8) :: dz = (2.71_8, -3.14_8)
z= conjg(z)
print *, z
dz = dconjg(dz)
print *, dz
end program test_conjg
@end smallexample
@item @emph{Specific names}:
@multitable @columnfractions .20 .20 .20 .25
@item Name @tab Argument @tab Return type @tab Standard
@item @code{CONJG(Z)} @tab @code{COMPLEX Z} @tab @code{COMPLEX} @tab GNU extension
@item @code{DCONJG(Z)} @tab @code{COMPLEX(8) Z} @tab @code{COMPLEX(8)} @tab GNU extension
@end multitable
@end table
@node COS
@section @code{COS} --- Cosine function
@fnindex COS
@fnindex DCOS
@fnindex CCOS
@fnindex ZCOS
@fnindex CDCOS
@cindex trigonometric function, cosine
@cindex cosine
@table @asis
@item @emph{Description}:
@code{COS(X)} computes the cosine of @var{X}.
@item @emph{Standard}:
Fortran 77 and later, has overloads that are GNU extensions
@item @emph{Class}:
Elemental function
@item @emph{Syntax}:
@code{RESULT = COS(X)}
@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{X} @tab The type shall be @code{REAL} or
@code{COMPLEX}.
@end multitable
@item @emph{Return value}:
The return value is of the same type and kind as @var{X}. The real part
of the result is in radians. If @var{X} is of the type @code{REAL},
the return value lies in the range @math{ -1 \leq \cos (x) \leq 1}.
@item @emph{Example}:
@smallexample
program test_cos
real :: x = 0.0
x = cos(x)
end program test_cos
@end smallexample
@item @emph{Specific names}:
@multitable @columnfractions .20 .20 .20 .25
@item Name @tab Argument @tab Return type @tab Standard
@item @code{COS(X)} @tab @code{REAL(4) X} @tab @code{REAL(4)} @tab Fortran 77 and later
@item @code{DCOS(X)} @tab @code{REAL(8) X} @tab @code{REAL(8)} @tab Fortran 77 and later
@item @code{CCOS(X)} @tab @code{COMPLEX(4) X} @tab @code{COMPLEX(4)} @tab Fortran 77 and later
@item @code{ZCOS(X)} @tab @code{COMPLEX(8) X} @tab @code{COMPLEX(8)} @tab GNU extension
@item @code{CDCOS(X)} @tab @code{COMPLEX(8) X} @tab @code{COMPLEX(8)} @tab GNU extension
@end multitable
@item @emph{See also}:
Inverse function: @ref{ACOS}
@end table
@node COSH
@section @code{COSH} --- Hyperbolic cosine function
@fnindex COSH
@fnindex DCOSH
@cindex hyperbolic cosine
@cindex hyperbolic function, cosine
@cindex cosine, hyperbolic
@table @asis
@item @emph{Description}:
@code{COSH(X)} computes the hyperbolic cosine of @var{X}.
@item @emph{Standard}:
Fortran 77 and later, for a complex argument Fortran 2008 or later
@item @emph{Class}:
Elemental function
@item @emph{Syntax}:
@code{X = COSH(X)}
@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{X} @tab The type shall be @code{REAL} or @code{COMPLEX}.
@end multitable
@item @emph{Return value}:
The return value has same type and kind as @var{X}. If @var{X} is
complex, the imaginary part of the result is in radians. If @var{X}
is @code{REAL}, the return value has a lower bound of one,
@math{\cosh (x) \geq 1}.
@item @emph{Example}:
@smallexample
program test_cosh
real(8) :: x = 1.0_8
x = cosh(x)
end program test_cosh
@end smallexample
@item @emph{Specific names}:
@multitable @columnfractions .20 .20 .20 .25
@item Name @tab Argument @tab Return type @tab Standard
@item @code{COSH(X)} @tab @code{REAL(4) X} @tab @code{REAL(4)} @tab Fortran 77 and later
@item @code{DCOSH(X)} @tab @code{REAL(8) X} @tab @code{REAL(8)} @tab Fortran 77 and later
@end multitable
@item @emph{See also}:
Inverse function: @ref{ACOSH}
@end table
@node COUNT
@section @code{COUNT} --- Count function
@fnindex COUNT
@cindex array, conditionally count elements
@cindex array, element counting
@cindex array, number of elements
@table @asis
@item @emph{Description}:
Counts the number of @code{.TRUE.} elements in a logical @var{MASK},
or, if the @var{DIM} argument is supplied, counts the number of
elements along each row of the array in the @var{DIM} direction.
If the array has zero size, or all of the elements of @var{MASK} are
@code{.FALSE.}, then the result is @code{0}.
@item @emph{Standard}:
Fortran 95 and later, with @var{KIND} argument Fortran 2003 and later
@item @emph{Class}:
Transformational function
@item @emph{Syntax}:
@code{RESULT = COUNT(MASK [, DIM, KIND])}
@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{MASK} @tab The type shall be @code{LOGICAL}.
@item @var{DIM} @tab (Optional) The type shall be @code{INTEGER}.
@item @var{KIND} @tab (Optional) An @code{INTEGER} initialization
expression indicating the kind parameter of the result.
@end multitable
@item @emph{Return value}:
The return value is of type @code{INTEGER} and of kind @var{KIND}. If
@var{KIND} is absent, the return value is of default integer kind.
If @var{DIM} is present, the result is an array with a rank one less
than the rank of @var{ARRAY}, and a size corresponding to the shape
of @var{ARRAY} with the @var{DIM} dimension removed.
@item @emph{Example}:
@smallexample
program test_count
integer, dimension(2,3) :: a, b
logical, dimension(2,3) :: mask
a = reshape( (/ 1, 2, 3, 4, 5, 6 /), (/ 2, 3 /))
b = reshape( (/ 0, 7, 3, 4, 5, 8 /), (/ 2, 3 /))
print '(3i3)', a(1,:)
print '(3i3)', a(2,:)
print *
print '(3i3)', b(1,:)
print '(3i3)', b(2,:)
print *
mask = a.ne.b
print '(3l3)', mask(1,:)
print '(3l3)', mask(2,:)
print *
print '(3i3)', count(mask)
print *
print '(3i3)', count(mask, 1)
print *
print '(3i3)', count(mask, 2)
end program test_count
@end smallexample
@end table
@node CPU_TIME
@section @code{CPU_TIME} --- CPU elapsed time in seconds
@fnindex CPU_TIME
@cindex time, elapsed
@table @asis
@item @emph{Description}:
Returns a @code{REAL} value representing the elapsed CPU time in
seconds. This is useful for testing segments of code to determine
execution time.
If a time source is available, time will be reported with microsecond
resolution. If no time source is available, @var{TIME} is set to
@code{-1.0}.
Note that @var{TIME} may contain a, system dependent, arbitrary offset
and may not start with @code{0.0}. For @code{CPU_TIME}, the absolute
value is meaningless, only differences between subsequent calls to
this subroutine, as shown in the example below, should be used.
@item @emph{Standard}:
Fortran 95 and later
@item @emph{Class}:
Subroutine
@item @emph{Syntax}:
@code{CALL CPU_TIME(TIME)}
@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{TIME} @tab The type shall be @code{REAL} with @code{INTENT(OUT)}.
@end multitable
@item @emph{Return value}:
None
@item @emph{Example}:
@smallexample
program test_cpu_time
real :: start, finish
call cpu_time(start)
! put code to test here
call cpu_time(finish)
print '("Time = ",f6.3," seconds.")',finish-start
end program test_cpu_time
@end smallexample
@item @emph{See also}:
@ref{SYSTEM_CLOCK}, @ref{DATE_AND_TIME}
@end table
@node CSHIFT
@section @code{CSHIFT} --- Circular shift elements of an array
@fnindex CSHIFT
@cindex array, shift circularly
@cindex array, permutation
@cindex array, rotate
@table @asis
@item @emph{Description}:
@code{CSHIFT(ARRAY, SHIFT [, DIM])} performs a circular shift on elements of
@var{ARRAY} along the dimension of @var{DIM}. If @var{DIM} is omitted it is
taken to be @code{1}. @var{DIM} is a scalar of type @code{INTEGER} in the
range of @math{1 \leq DIM \leq n)} where @math{n} is the rank of @var{ARRAY}.
If the rank of @var{ARRAY} is one, then all elements of @var{ARRAY} are shifted
by @var{SHIFT} places. If rank is greater than one, then all complete rank one
sections of @var{ARRAY} along the given dimension are shifted. Elements
shifted out one end of each rank one section are shifted back in the other end.
@item @emph{Standard}:
Fortran 95 and later
@item @emph{Class}:
Transformational function
@item @emph{Syntax}:
@code{RESULT = CSHIFT(ARRAY, SHIFT [, DIM])}
@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{ARRAY} @tab Shall be an array of any type.
@item @var{SHIFT} @tab The type shall be @code{INTEGER}.
@item @var{DIM} @tab The type shall be @code{INTEGER}.
@end multitable
@item @emph{Return value}:
Returns an array of same type and rank as the @var{ARRAY} argument.
@item @emph{Example}:
@smallexample
program test_cshift
integer, dimension(3,3) :: a
a = reshape( (/ 1, 2, 3, 4, 5, 6, 7, 8, 9 /), (/ 3, 3 /))
print '(3i3)', a(1,:)
print '(3i3)', a(2,:)
print '(3i3)', a(3,:)
a = cshift(a, SHIFT=(/1, 2, -1/), DIM=2)
print *
print '(3i3)', a(1,:)
print '(3i3)', a(2,:)
print '(3i3)', a(3,:)
end program test_cshift
@end smallexample
@end table
@node CTIME
@section @code{CTIME} --- Convert a time into a string
@fnindex CTIME
@cindex time, conversion to string
@cindex conversion, to string
@table @asis
@item @emph{Description}:
@code{CTIME} converts a system time value, such as returned by
@code{TIME8}, to a string. Unless the application has called
@code{setlocale}, the output will be in the default locale, of length
24 and of the form @samp{Sat Aug 19 18:13:14 1995}. In other locales,
a longer string may result.
This intrinsic is provided in both subroutine and function forms; however,
only one form can be used in any given program unit.
@item @emph{Standard}:
GNU extension
@item @emph{Class}:
Subroutine, function
@item @emph{Syntax}:
@multitable @columnfractions .80
@item @code{CALL CTIME(TIME, RESULT)}.
@item @code{RESULT = CTIME(TIME)}.
@end multitable
@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{TIME} @tab The type shall be of type @code{INTEGER}.
@item @var{RESULT} @tab The type shall be of type @code{CHARACTER} and
of default kind. It is an @code{INTENT(OUT)} argument. If the length
of this variable is too short for the time and date string to fit
completely, it will be blank on procedure return.
@end multitable
@item @emph{Return value}:
The converted date and time as a string.
@item @emph{Example}:
@smallexample
program test_ctime
integer(8) :: i
character(len=30) :: date
i = time8()
! Do something, main part of the program
call ctime(i,date)
print *, 'Program was started on ', date
end program test_ctime
@end smallexample
@item @emph{See Also}:
@ref{DATE_AND_TIME}, @ref{GMTIME}, @ref{LTIME}, @ref{TIME}, @ref{TIME8}
@end table
@node DATE_AND_TIME
@section @code{DATE_AND_TIME} --- Date and time subroutine
@fnindex DATE_AND_TIME
@cindex date, current
@cindex current date
@cindex time, current
@cindex current time
@table @asis
@item @emph{Description}:
@code{DATE_AND_TIME(DATE, TIME, ZONE, VALUES)} gets the corresponding date and
time information from the real-time system clock. @var{DATE} is
@code{INTENT(OUT)} and has form ccyymmdd. @var{TIME} is @code{INTENT(OUT)} and
has form hhmmss.sss. @var{ZONE} is @code{INTENT(OUT)} and has form (+-)hhmm,
representing the difference with respect to Coordinated Universal Time (UTC).
Unavailable time and date parameters return blanks.
@var{VALUES} is @code{INTENT(OUT)} and provides the following:
@multitable @columnfractions .15 .30 .40
@item @tab @code{VALUE(1)}: @tab The year
@item @tab @code{VALUE(2)}: @tab The month
@item @tab @code{VALUE(3)}: @tab The day of the month
@item @tab @code{VALUE(4)}: @tab Time difference with UTC in minutes
@item @tab @code{VALUE(5)}: @tab The hour of the day
@item @tab @code{VALUE(6)}: @tab The minutes of the hour
@item @tab @code{VALUE(7)}: @tab The seconds of the minute
@item @tab @code{VALUE(8)}: @tab The milliseconds of the second
@end multitable
@item @emph{Standard}:
Fortran 95 and later
@item @emph{Class}:
Subroutine
@item @emph{Syntax}:
@code{CALL DATE_AND_TIME([DATE, TIME, ZONE, VALUES])}
@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{DATE} @tab (Optional) The type shall be @code{CHARACTER(LEN=8)}
or larger, and of default kind.
@item @var{TIME} @tab (Optional) The type shall be @code{CHARACTER(LEN=10)}
or larger, and of default kind.
@item @var{ZONE} @tab (Optional) The type shall be @code{CHARACTER(LEN=5)}
or larger, and of default kind.
@item @var{VALUES}@tab (Optional) The type shall be @code{INTEGER(8)}.
@end multitable
@item @emph{Return value}:
None
@item @emph{Example}:
@smallexample
program test_time_and_date
character(8) :: date
character(10) :: time
character(5) :: zone
integer,dimension(8) :: values
! using keyword arguments
call date_and_time(date,time,zone,values)
call date_and_time(DATE=date,ZONE=zone)
call date_and_time(TIME=time)
call date_and_time(VALUES=values)
print '(a,2x,a,2x,a)', date, time, zone
print '(8i5)', values
end program test_time_and_date
@end smallexample
@item @emph{See also}:
@ref{CPU_TIME}, @ref{SYSTEM_CLOCK}
@end table
@node DBLE
@section @code{DBLE} --- Double conversion function
@fnindex DBLE
@cindex conversion, to real
@table @asis
@item @emph{Description}:
@code{DBLE(A)} Converts @var{A} to double precision real type.
@item @emph{Standard}:
Fortran 77 and later
@item @emph{Class}:
Elemental function
@item @emph{Syntax}:
@code{RESULT = DBLE(A)}
@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{A} @tab The type shall be @code{INTEGER}, @code{REAL},
or @code{COMPLEX}.
@end multitable
@item @emph{Return value}:
The return value is of type double precision real.
@item @emph{Example}:
@smallexample
program test_dble
real :: x = 2.18
integer :: i = 5
complex :: z = (2.3,1.14)
print *, dble(x), dble(i), dble(z)
end program test_dble
@end smallexample
@item @emph{See also}:
@ref{REAL}
@end table
@node DCMPLX
@section @code{DCMPLX} --- Double complex conversion function
@fnindex DCMPLX
@cindex complex numbers, conversion to
@cindex conversion, to complex
@table @asis
@item @emph{Description}:
@code{DCMPLX(X [,Y])} returns a double complex number where @var{X} is
converted to the real component. If @var{Y} is present it is converted to the
imaginary component. If @var{Y} is not present then the imaginary component is
set to 0.0. If @var{X} is complex then @var{Y} must not be present.
@item @emph{Standard}:
GNU extension
@item @emph{Class}:
Elemental function
@item @emph{Syntax}:
@code{RESULT = DCMPLX(X [, Y])}
@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{X} @tab The type may be @code{INTEGER}, @code{REAL},
or @code{COMPLEX}.
@item @var{Y} @tab (Optional if @var{X} is not @code{COMPLEX}.) May be
@code{INTEGER} or @code{REAL}.
@end multitable
@item @emph{Return value}:
The return value is of type @code{COMPLEX(8)}
@item @emph{Example}:
@smallexample
program test_dcmplx
integer :: i = 42
real :: x = 3.14
complex :: z
z = cmplx(i, x)
print *, dcmplx(i)
print *, dcmplx(x)
print *, dcmplx(z)
print *, dcmplx(x,i)
end program test_dcmplx
@end smallexample
@end table
@node DIGITS
@section @code{DIGITS} --- Significant binary digits function
@fnindex DIGITS
@cindex model representation, significant digits
@table @asis
@item @emph{Description}:
@code{DIGITS(X)} returns the number of significant binary digits of the internal
model representation of @var{X}. For example, on a system using a 32-bit
floating point representation, a default real number would likely return 24.
@item @emph{Standard}:
Fortran 95 and later
@item @emph{Class}:
Inquiry function
@item @emph{Syntax}:
@code{RESULT = DIGITS(X)}
@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{X} @tab The type may be @code{INTEGER} or @code{REAL}.
@end multitable
@item @emph{Return value}:
The return value is of type @code{INTEGER}.
@item @emph{Example}:
@smallexample
program test_digits
integer :: i = 12345
real :: x = 3.143
real(8) :: y = 2.33
print *, digits(i)
print *, digits(x)
print *, digits(y)
end program test_digits
@end smallexample
@end table
@node DIM
@section @code{DIM} --- Positive difference
@fnindex DIM
@fnindex IDIM
@fnindex DDIM
@cindex positive difference
@table @asis
@item @emph{Description}:
@code{DIM(X,Y)} returns the difference @code{X-Y} if the result is positive;
otherwise returns zero.
@item @emph{Standard}:
Fortran 77 and later
@item @emph{Class}:
Elemental function
@item @emph{Syntax}:
@code{RESULT = DIM(X, Y)}
@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{X} @tab The type shall be @code{INTEGER} or @code{REAL}
@item @var{Y} @tab The type shall be the same type and kind as @var{X}.
@end multitable
@item @emph{Return value}:
The return value is of type @code{INTEGER} or @code{REAL}.
@item @emph{Example}:
@smallexample
program test_dim
integer :: i
real(8) :: x
i = dim(4, 15)
x = dim(4.345_8, 2.111_8)
print *, i
print *, x
end program test_dim
@end smallexample
@item @emph{Specific names}:
@multitable @columnfractions .20 .20 .20 .25
@item Name @tab Argument @tab Return type @tab Standard
@item @code{DIM(X,Y)} @tab @code{REAL(4) X, Y} @tab @code{REAL(4)} @tab Fortran 77 and later
@item @code{IDIM(X,Y)} @tab @code{INTEGER(4) X, Y} @tab @code{INTEGER(4)} @tab Fortran 77 and later
@item @code{DDIM(X,Y)} @tab @code{REAL(8) X, Y} @tab @code{REAL(8)} @tab Fortran 77 and later
@end multitable
@end table
@node DOT_PRODUCT
@section @code{DOT_PRODUCT} --- Dot product function
@fnindex DOT_PRODUCT
@cindex dot product
@cindex vector product
@cindex product, vector
@table @asis
@item @emph{Description}:
@code{DOT_PRODUCT(VECTOR_A, VECTOR_B)} computes the dot product multiplication
of two vectors @var{VECTOR_A} and @var{VECTOR_B}. The two vectors may be
either numeric or logical and must be arrays of rank one and of equal size. If
the vectors are @code{INTEGER} or @code{REAL}, the result is
@code{SUM(VECTOR_A*VECTOR_B)}. If the vectors are @code{COMPLEX}, the result
is @code{SUM(CONJG(VECTOR_A)*VECTOR_B)}. If the vectors are @code{LOGICAL},
the result is @code{ANY(VECTOR_A .AND. VECTOR_B)}.
@item @emph{Standard}:
Fortran 95 and later
@item @emph{Class}:
Transformational function
@item @emph{Syntax}:
@code{RESULT = DOT_PRODUCT(VECTOR_A, VECTOR_B)}
@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{VECTOR_A} @tab The type shall be numeric or @code{LOGICAL}, rank 1.
@item @var{VECTOR_B} @tab The type shall be numeric if @var{VECTOR_A} is of numeric type or @code{LOGICAL} if @var{VECTOR_A} is of type @code{LOGICAL}. @var{VECTOR_B} shall be a rank-one array.
@end multitable
@item @emph{Return value}:
If the arguments are numeric, the return value is a scalar of numeric type,
@code{INTEGER}, @code{REAL}, or @code{COMPLEX}. If the arguments are
@code{LOGICAL}, the return value is @code{.TRUE.} or @code{.FALSE.}.
@item @emph{Example}:
@smallexample
program test_dot_prod
integer, dimension(3) :: a, b
a = (/ 1, 2, 3 /)
b = (/ 4, 5, 6 /)
print '(3i3)', a
print *
print '(3i3)', b
print *
print *, dot_product(a,b)
end program test_dot_prod
@end smallexample
@end table
@node DPROD
@section @code{DPROD} --- Double product function
@fnindex DPROD
@cindex product, double-precision
@table @asis
@item @emph{Description}:
@code{DPROD(X,Y)} returns the product @code{X*Y}.
@item @emph{Standard}:
Fortran 77 and later
@item @emph{Class}:
Elemental function
@item @emph{Syntax}:
@code{RESULT = DPROD(X, Y)}
@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{X} @tab The type shall be @code{REAL}.
@item @var{Y} @tab The type shall be @code{REAL}.
@end multitable
@item @emph{Return value}:
The return value is of type @code{REAL(8)}.
@item @emph{Example}:
@smallexample
program test_dprod
real :: x = 5.2
real :: y = 2.3
real(8) :: d
d = dprod(x,y)
print *, d
end program test_dprod
@end smallexample
@item @emph{Specific names}:
@multitable @columnfractions .20 .20 .20 .25
@item Name @tab Argument @tab Return type @tab Standard
@item @code{DPROD(X,Y)} @tab @code{REAL(4) X, Y} @tab @code{REAL(4)} @tab Fortran 77 and later
@end multitable
@end table
@node DREAL
@section @code{DREAL} --- Double real part function
@fnindex DREAL
@cindex complex numbers, real part
@table @asis
@item @emph{Description}:
@code{DREAL(Z)} returns the real part of complex variable @var{Z}.
@item @emph{Standard}:
GNU extension
@item @emph{Class}:
Elemental function
@item @emph{Syntax}:
@code{RESULT = DREAL(A)}
@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{A} @tab The type shall be @code{COMPLEX(8)}.
@end multitable
@item @emph{Return value}:
The return value is of type @code{REAL(8)}.
@item @emph{Example}:
@smallexample
program test_dreal
complex(8) :: z = (1.3_8,7.2_8)
print *, dreal(z)
end program test_dreal
@end smallexample
@item @emph{See also}:
@ref{AIMAG}
@end table
@node DSHIFTL
@section @code{DSHIFTL} --- Combined left shift
@fnindex DSHIFTL
@cindex left shift, combined
@cindex shift, left
@table @asis
@item @emph{Description}:
@code{DSHIFTL(I, J, SHIFT)} combines bits of @var{I} and @var{J}. The
rightmost @var{SHIFT} bits of the result are the leftmost @var{SHIFT}
bits of @var{J}, and the remaining bits are the rightmost bits of
@var{I}.
@item @emph{Standard}:
Fortran 2008 and later
@item @emph{Class}:
Elemental function
@item @emph{Syntax}:
@code{RESULT = DSHIFTL(I, J, SHIFT)}
@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{I} @tab Shall be of type @code{INTEGER} or a BOZ constant.
@item @var{J} @tab Shall be of type @code{INTEGER} or a BOZ constant.
If both @var{I} and @var{J} have integer type, then they shall have
the same kind type parameter. @var{I} and @var{J} shall not both be
BOZ constants.
@item @var{SHIFT} @tab Shall be of type @code{INTEGER}. It shall
be nonnegative. If @var{I} is not a BOZ constant, then @var{SHIFT}
shall be less than or equal to @code{BIT_SIZE(I)}; otherwise,
@var{SHIFT} shall be less than or equal to @code{BIT_SIZE(J)}.
@end multitable
@item @emph{Return value}:
If either @var{I} or @var{J} is a BOZ constant, it is first converted
as if by the intrinsic function @code{INT} to an integer type with the
kind type parameter of the other.
@item @emph{See also}:
@ref{DSHIFTR}
@end table
@node DSHIFTR
@section @code{DSHIFTR} --- Combined right shift
@fnindex DSHIFTR
@cindex right shift, combined
@cindex shift, right
@table @asis
@item @emph{Description}:
@code{DSHIFTR(I, J, SHIFT)} combines bits of @var{I} and @var{J}. The
leftmost @var{SHIFT} bits of the result are the rightmost @var{SHIFT}
bits of @var{I}, and the remaining bits are the leftmost bits of
@var{J}.
@item @emph{Standard}:
Fortran 2008 and later
@item @emph{Class}:
Elemental function
@item @emph{Syntax}:
@code{RESULT = DSHIFTR(I, J, SHIFT)}
@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{I} @tab Shall be of type @code{INTEGER} or a BOZ constant.
@item @var{J} @tab Shall be of type @code{INTEGER} or a BOZ constant.
If both @var{I} and @var{J} have integer type, then they shall have
the same kind type parameter. @var{I} and @var{J} shall not both be
BOZ constants.
@item @var{SHIFT} @tab Shall be of type @code{INTEGER}. It shall
be nonnegative. If @var{I} is not a BOZ constant, then @var{SHIFT}
shall be less than or equal to @code{BIT_SIZE(I)}; otherwise,
@var{SHIFT} shall be less than or equal to @code{BIT_SIZE(J)}.
@end multitable
@item @emph{Return value}:
If either @var{I} or @var{J} is a BOZ constant, it is first converted
as if by the intrinsic function @code{INT} to an integer type with the
kind type parameter of the other.
@item @emph{See also}:
@ref{DSHIFTL}
@end table
@node DTIME
@section @code{DTIME} --- Execution time subroutine (or function)
@fnindex DTIME
@cindex time, elapsed
@cindex elapsed time
@table @asis
@item @emph{Description}:
@code{DTIME(VALUES, TIME)} initially returns the number of seconds of runtime
since the start of the process's execution in @var{TIME}. @var{VALUES}
returns the user and system components of this time in @code{VALUES(1)} and
@code{VALUES(2)} respectively. @var{TIME} is equal to @code{VALUES(1) +
VALUES(2)}.
Subsequent invocations of @code{DTIME} return values accumulated since the
previous invocation.
On some systems, the underlying timings are represented using types with
sufficiently small limits that overflows (wrap around) are possible, such as
32-bit types. Therefore, the values returned by this intrinsic might be, or
become, negative, or numerically less than previous values, during a single
run of the compiled program.
Please note, that this implementation is thread safe if used within OpenMP
directives, i.e., its state will be consistent while called from multiple
threads. However, if @code{DTIME} is called from multiple threads, the result
is still the time since the last invocation. This may not give the intended
results. If possible, use @code{CPU_TIME} instead.
This intrinsic is provided in both subroutine and function forms; however,
only one form can be used in any given program unit.
@var{VALUES} and @var{TIME} are @code{INTENT(OUT)} and provide the following:
@multitable @columnfractions .15 .30 .40
@item @tab @code{VALUES(1)}: @tab User time in seconds.
@item @tab @code{VALUES(2)}: @tab System time in seconds.
@item @tab @code{TIME}: @tab Run time since start in seconds.
@end multitable
@item @emph{Standard}:
GNU extension
@item @emph{Class}:
Subroutine, function
@item @emph{Syntax}:
@multitable @columnfractions .80
@item @code{CALL DTIME(VALUES, TIME)}.
@item @code{TIME = DTIME(VALUES)}, (not recommended).
@end multitable
@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{VALUES}@tab The type shall be @code{REAL(4), DIMENSION(2)}.
@item @var{TIME}@tab The type shall be @code{REAL(4)}.
@end multitable
@item @emph{Return value}:
Elapsed time in seconds since the last invocation or since the start of program
execution if not called before.
@item @emph{Example}:
@smallexample
program test_dtime
integer(8) :: i, j
real, dimension(2) :: tarray
real :: result
call dtime(tarray, result)
print *, result
print *, tarray(1)
print *, tarray(2)
do i=1,100000000 ! Just a delay
j = i * i - i
end do
call dtime(tarray, result)
print *, result
print *, tarray(1)
print *, tarray(2)
end program test_dtime
@end smallexample
@item @emph{See also}:
@ref{CPU_TIME}
@end table
@node EOSHIFT
@section @code{EOSHIFT} --- End-off shift elements of an array
@fnindex EOSHIFT
@cindex array, shift
@table @asis
@item @emph{Description}:
@code{EOSHIFT(ARRAY, SHIFT[, BOUNDARY, DIM])} performs an end-off shift on
elements of @var{ARRAY} along the dimension of @var{DIM}. If @var{DIM} is
omitted it is taken to be @code{1}. @var{DIM} is a scalar of type
@code{INTEGER} in the range of @math{1 \leq DIM \leq n)} where @math{n} is the
rank of @var{ARRAY}. If the rank of @var{ARRAY} is one, then all elements of
@var{ARRAY} are shifted by @var{SHIFT} places. If rank is greater than one,
then all complete rank one sections of @var{ARRAY} along the given dimension are
shifted. Elements shifted out one end of each rank one section are dropped. If
@var{BOUNDARY} is present then the corresponding value of from @var{BOUNDARY}
is copied back in the other end. If @var{BOUNDARY} is not present then the
following are copied in depending on the type of @var{ARRAY}.
@multitable @columnfractions .15 .80
@item @emph{Array Type} @tab @emph{Boundary Value}
@item Numeric @tab 0 of the type and kind of @var{ARRAY}.
@item Logical @tab @code{.FALSE.}.
@item Character(@var{len}) @tab @var{len} blanks.
@end multitable
@item @emph{Standard}:
Fortran 95 and later
@item @emph{Class}:
Transformational function
@item @emph{Syntax}:
@code{RESULT = EOSHIFT(ARRAY, SHIFT [, BOUNDARY, DIM])}
@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{ARRAY} @tab May be any type, not scalar.
@item @var{SHIFT} @tab The type shall be @code{INTEGER}.
@item @var{BOUNDARY} @tab Same type as @var{ARRAY}.
@item @var{DIM} @tab The type shall be @code{INTEGER}.
@end multitable
@item @emph{Return value}:
Returns an array of same type and rank as the @var{ARRAY} argument.
@item @emph{Example}:
@smallexample
program test_eoshift
integer, dimension(3,3) :: a
a = reshape( (/ 1, 2, 3, 4, 5, 6, 7, 8, 9 /), (/ 3, 3 /))
print '(3i3)', a(1,:)
print '(3i3)', a(2,:)
print '(3i3)', a(3,:)
a = EOSHIFT(a, SHIFT=(/1, 2, 1/), BOUNDARY=-5, DIM=2)
print *
print '(3i3)', a(1,:)
print '(3i3)', a(2,:)
print '(3i3)', a(3,:)
end program test_eoshift
@end smallexample
@end table
@node EPSILON
@section @code{EPSILON} --- Epsilon function
@fnindex EPSILON
@cindex model representation, epsilon
@table @asis
@item @emph{Description}:
@code{EPSILON(X)} returns the smallest number @var{E} of the same kind
as @var{X} such that @math{1 + E > 1}.
@item @emph{Standard}:
Fortran 95 and later
@item @emph{Class}:
Inquiry function
@item @emph{Syntax}:
@code{RESULT = EPSILON(X)}
@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{X} @tab The type shall be @code{REAL}.
@end multitable
@item @emph{Return value}:
The return value is of same type as the argument.
@item @emph{Example}:
@smallexample
program test_epsilon
real :: x = 3.143
real(8) :: y = 2.33
print *, EPSILON(x)
print *, EPSILON(y)
end program test_epsilon
@end smallexample
@end table
@node ERF
@section @code{ERF} --- Error function
@fnindex ERF
@cindex error function
@table @asis
@item @emph{Description}:
@code{ERF(X)} computes the error function of @var{X}.
@item @emph{Standard}:
Fortran 2008 and later
@item @emph{Class}:
Elemental function
@item @emph{Syntax}:
@code{RESULT = ERF(X)}
@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{X} @tab The type shall be @code{REAL}.
@end multitable
@item @emph{Return value}:
The return value is of type @code{REAL}, of the same kind as
@var{X} and lies in the range @math{-1 \leq erf (x) \leq 1 }.
@item @emph{Example}:
@smallexample
program test_erf
real(8) :: x = 0.17_8
x = erf(x)
end program test_erf
@end smallexample
@item @emph{Specific names}:
@multitable @columnfractions .20 .20 .20 .25
@item Name @tab Argument @tab Return type @tab Standard
@item @code{DERF(X)} @tab @code{REAL(8) X} @tab @code{REAL(8)} @tab GNU extension
@end multitable
@end table
@node ERFC
@section @code{ERFC} --- Error function
@fnindex ERFC
@cindex error function, complementary
@table @asis
@item @emph{Description}:
@code{ERFC(X)} computes the complementary error function of @var{X}.
@item @emph{Standard}:
Fortran 2008 and later
@item @emph{Class}:
Elemental function
@item @emph{Syntax}:
@code{RESULT = ERFC(X)}
@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{X} @tab The type shall be @code{REAL}.
@end multitable
@item @emph{Return value}:
The return value is of type @code{REAL} and of the same kind as @var{X}.
It lies in the range @math{ 0 \leq erfc (x) \leq 2 }.
@item @emph{Example}:
@smallexample
program test_erfc
real(8) :: x = 0.17_8
x = erfc(x)
end program test_erfc
@end smallexample
@item @emph{Specific names}:
@multitable @columnfractions .20 .20 .20 .25
@item Name @tab Argument @tab Return type @tab Standard
@item @code{DERFC(X)} @tab @code{REAL(8) X} @tab @code{REAL(8)} @tab GNU extension
@end multitable
@end table
@node ERFC_SCALED
@section @code{ERFC_SCALED} --- Error function
@fnindex ERFC_SCALED
@cindex error function, complementary, exponentially-scaled
@table @asis
@item @emph{Description}:
@code{ERFC_SCALED(X)} computes the exponentially-scaled complementary
error function of @var{X}.
@item @emph{Standard}:
Fortran 2008 and later
@item @emph{Class}:
Elemental function
@item @emph{Syntax}:
@code{RESULT = ERFC_SCALED(X)}
@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{X} @tab The type shall be @code{REAL}.
@end multitable
@item @emph{Return value}:
The return value is of type @code{REAL} and of the same kind as @var{X}.
@item @emph{Example}:
@smallexample
program test_erfc_scaled
real(8) :: x = 0.17_8
x = erfc_scaled(x)
end program test_erfc_scaled
@end smallexample
@end table
@node ETIME
@section @code{ETIME} --- Execution time subroutine (or function)
@fnindex ETIME
@cindex time, elapsed
@table @asis
@item @emph{Description}:
@code{ETIME(VALUES, TIME)} returns the number of seconds of runtime
since the start of the process's execution in @var{TIME}. @var{VALUES}
returns the user and system components of this time in @code{VALUES(1)} and
@code{VALUES(2)} respectively. @var{TIME} is equal to @code{VALUES(1) + VALUES(2)}.
On some systems, the underlying timings are represented using types with
sufficiently small limits that overflows (wrap around) are possible, such as
32-bit types. Therefore, the values returned by this intrinsic might be, or
become, negative, or numerically less than previous values, during a single
run of the compiled program.
This intrinsic is provided in both subroutine and function forms; however,
only one form can be used in any given program unit.
@var{VALUES} and @var{TIME} are @code{INTENT(OUT)} and provide the following:
@multitable @columnfractions .15 .30 .60
@item @tab @code{VALUES(1)}: @tab User time in seconds.
@item @tab @code{VALUES(2)}: @tab System time in seconds.
@item @tab @code{TIME}: @tab Run time since start in seconds.
@end multitable
@item @emph{Standard}:
GNU extension
@item @emph{Class}:
Subroutine, function
@item @emph{Syntax}:
@multitable @columnfractions .80
@item @code{CALL ETIME(VALUES, TIME)}.
@item @code{TIME = ETIME(VALUES)}, (not recommended).
@end multitable
@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{VALUES}@tab The type shall be @code{REAL(4), DIMENSION(2)}.
@item @var{TIME}@tab The type shall be @code{REAL(4)}.
@end multitable
@item @emph{Return value}:
Elapsed time in seconds since the start of program execution.
@item @emph{Example}:
@smallexample
program test_etime
integer(8) :: i, j
real, dimension(2) :: tarray
real :: result
call ETIME(tarray, result)
print *, result
print *, tarray(1)
print *, tarray(2)
do i=1,100000000 ! Just a delay
j = i * i - i
end do
call ETIME(tarray, result)
print *, result
print *, tarray(1)
print *, tarray(2)
end program test_etime
@end smallexample
@item @emph{See also}:
@ref{CPU_TIME}
@end table
@node EXECUTE_COMMAND_LINE
@section @code{EXECUTE_COMMAND_LINE} --- Execute a shell command
@fnindex EXECUTE_COMMAND_LINE
@cindex system, system call
@cindex command line
@table @asis
@item @emph{Description}:
@code{EXECUTE_COMMAND_LINE} runs a shell command, synchronously or
asynchronously.
The @code{COMMAND} argument is passed to the shell and executed, using
the C library's @code{system} call. (The shell is @code{sh} on Unix
systems, and @code{cmd.exe} on Windows.) If @code{WAIT} is present
and has the value false, the execution of the command is asynchronous
if the system supports it; otherwise, the command is executed
synchronously.
The three last arguments allow the user to get status information. After
synchronous execution, @code{EXITSTAT} contains the integer exit code of
the command, as returned by @code{system}. @code{CMDSTAT} is set to zero
if the command line was executed (whatever its exit status was).
@code{CMDMSG} is assigned an error message if an error has occurred.
Note that the @code{system} function need not be thread-safe. It is
the responsibility of the user to ensure that @code{system} is not
called concurrently.
@item @emph{Standard}:
Fortran 2008 and later
@item @emph{Class}:
Subroutine
@item @emph{Syntax}:
@code{CALL EXECUTE_COMMAND_LINE(COMMAND [, WAIT, EXITSTAT, CMDSTAT, CMDMSG ])}
@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{COMMAND} @tab Shall be a default @code{CHARACTER} scalar.
@item @var{WAIT} @tab (Optional) Shall be a default @code{LOGICAL} scalar.
@item @var{EXITSTAT} @tab (Optional) Shall be an @code{INTEGER} of the
default kind.
@item @var{CMDSTAT} @tab (Optional) Shall be an @code{INTEGER} of the
default kind.
@item @var{CMDMSG} @tab (Optional) Shall be an @code{CHARACTER} scalar of the
default kind.
@end multitable
@item @emph{Example}:
@smallexample
program test_exec
integer :: i
call execute_command_line ("external_prog.exe", exitstat=i)
print *, "Exit status of external_prog.exe was ", i
call execute_command_line ("reindex_files.exe", wait=.false.)
print *, "Now reindexing files in the background"
end program test_exec
@end smallexample
@item @emph{Note}:
Because this intrinsic is implemented in terms of the @code{system}
function call, its behavior with respect to signaling is processor
dependent. In particular, on POSIX-compliant systems, the SIGINT and
SIGQUIT signals will be ignored, and the SIGCHLD will be blocked. As
such, if the parent process is terminated, the child process might not be
terminated alongside.
@item @emph{See also}:
@ref{SYSTEM}
@end table
@node EXIT
@section @code{EXIT} --- Exit the program with status.
@fnindex EXIT
@cindex program termination
@cindex terminate program
@table @asis
@item @emph{Description}:
@code{EXIT} causes immediate termination of the program with status. If status
is omitted it returns the canonical @emph{success} for the system. All Fortran
I/O units are closed.
@item @emph{Standard}:
GNU extension
@item @emph{Class}:
Subroutine
@item @emph{Syntax}:
@code{CALL EXIT([STATUS])}
@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{STATUS} @tab Shall be an @code{INTEGER} of the default kind.
@end multitable
@item @emph{Return value}:
@code{STATUS} is passed to the parent process on exit.
@item @emph{Example}:
@smallexample
program test_exit
integer :: STATUS = 0
print *, 'This program is going to exit.'
call EXIT(STATUS)
end program test_exit
@end smallexample
@item @emph{See also}:
@ref{ABORT}, @ref{KILL}
@end table
@node EXP
@section @code{EXP} --- Exponential function
@fnindex EXP
@fnindex DEXP
@fnindex CEXP
@fnindex ZEXP
@fnindex CDEXP
@cindex exponential function
@cindex logarithm function, inverse
@table @asis
@item @emph{Description}:
@code{EXP(X)} computes the base @math{e} exponential of @var{X}.
@item @emph{Standard}:
Fortran 77 and later, has overloads that are GNU extensions
@item @emph{Class}:
Elemental function
@item @emph{Syntax}:
@code{RESULT = EXP(X)}
@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{X} @tab The type shall be @code{REAL} or
@code{COMPLEX}.
@end multitable
@item @emph{Return value}:
The return value has same type and kind as @var{X}.
@item @emph{Example}:
@smallexample
program test_exp
real :: x = 1.0
x = exp(x)
end program test_exp
@end smallexample
@item @emph{Specific names}:
@multitable @columnfractions .20 .20 .20 .25
@item Name @tab Argument @tab Return type @tab Standard
@item @code{EXP(X)} @tab @code{REAL(4) X} @tab @code{REAL(4)} @tab Fortran 77 and later
@item @code{DEXP(X)} @tab @code{REAL(8) X} @tab @code{REAL(8)} @tab Fortran 77 and later
@item @code{CEXP(X)} @tab @code{COMPLEX(4) X} @tab @code{COMPLEX(4)} @tab Fortran 77 and later
@item @code{ZEXP(X)} @tab @code{COMPLEX(8) X} @tab @code{COMPLEX(8)} @tab GNU extension
@item @code{CDEXP(X)} @tab @code{COMPLEX(8) X} @tab @code{COMPLEX(8)} @tab GNU extension
@end multitable
@end table
@node EXPONENT
@section @code{EXPONENT} --- Exponent function
@fnindex EXPONENT
@cindex real number, exponent
@cindex floating point, exponent
@table @asis
@item @emph{Description}:
@code{EXPONENT(X)} returns the value of the exponent part of @var{X}. If @var{X}
is zero the value returned is zero.
@item @emph{Standard}:
Fortran 95 and later
@item @emph{Class}:
Elemental function
@item @emph{Syntax}:
@code{RESULT = EXPONENT(X)}
@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{X} @tab The type shall be @code{REAL}.
@end multitable
@item @emph{Return value}:
The return value is of type default @code{INTEGER}.
@item @emph{Example}:
@smallexample
program test_exponent
real :: x = 1.0
integer :: i
i = exponent(x)
print *, i
print *, exponent(0.0)
end program test_exponent
@end smallexample
@end table
@node EXTENDS_TYPE_OF
@section @code{EXTENDS_TYPE_OF} --- Query dynamic type for extension
@fnindex EXTENDS_TYPE_OF
@table @asis
@item @emph{Description}:
Query dynamic type for extension.
@item @emph{Standard}:
Fortran 2003 and later
@item @emph{Class}:
Inquiry function
@item @emph{Syntax}:
@code{RESULT = EXTENDS_TYPE_OF(A, MOLD)}
@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{A} @tab Shall be an object of extensible declared type or
unlimited polymorphic.
@item @var{MOLD} @tab Shall be an object of extensible declared type or
unlimited polymorphic.
@end multitable
@item @emph{Return value}:
The return value is a scalar of type default logical. It is true if and only if
the dynamic type of A is an extension type of the dynamic type of MOLD.
@item @emph{See also}:
@ref{SAME_TYPE_AS}
@end table
@node FDATE
@section @code{FDATE} --- Get the current time as a string
@fnindex FDATE
@cindex time, current
@cindex current time
@cindex date, current
@cindex current date
@table @asis
@item @emph{Description}:
@code{FDATE(DATE)} returns the current date (using the same format as
@code{CTIME}) in @var{DATE}. It is equivalent to @code{CALL CTIME(DATE,
TIME())}.
This intrinsic is provided in both subroutine and function forms; however,
only one form can be used in any given program unit.
@item @emph{Standard}:
GNU extension
@item @emph{Class}:
Subroutine, function
@item @emph{Syntax}:
@multitable @columnfractions .80
@item @code{CALL FDATE(DATE)}.
@item @code{DATE = FDATE()}.
@end multitable
@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{DATE}@tab The type shall be of type @code{CHARACTER} of the
default kind. It is an @code{INTENT(OUT)} argument. If the length of
this variable is too short for the date and time string to fit
completely, it will be blank on procedure return.
@end multitable
@item @emph{Return value}:
The current date and time as a string.
@item @emph{Example}:
@smallexample
program test_fdate
integer(8) :: i, j
character(len=30) :: date
call fdate(date)
print *, 'Program started on ', date
do i = 1, 100000000 ! Just a delay
j = i * i - i
end do
call fdate(date)
print *, 'Program ended on ', date
end program test_fdate
@end smallexample
@item @emph{See also}:
@ref{DATE_AND_TIME}, @ref{CTIME}
@end table
@node FGET
@section @code{FGET} --- Read a single character in stream mode from stdin
@fnindex FGET
@cindex read character, stream mode
@cindex stream mode, read character
@cindex file operation, read character
@table @asis
@item @emph{Description}:
Read a single character in stream mode from stdin by bypassing normal
formatted output. Stream I/O should not be mixed with normal record-oriented
(formatted or unformatted) I/O on the same unit; the results are unpredictable.
This intrinsic is provided in both subroutine and function forms; however,
only one form can be used in any given program unit.
Note that the @code{FGET} intrinsic is provided for backwards compatibility with
@command{g77}. GNU Fortran provides the Fortran 2003 Stream facility.
Programmers should consider the use of new stream IO feature in new code
for future portability. See also @ref{Fortran 2003 status}.
@item @emph{Standard}:
GNU extension
@item @emph{Class}:
Subroutine, function
@item @emph{Syntax}:
@multitable @columnfractions .80
@item @code{CALL FGET(C [, STATUS])}
@item @code{STATUS = FGET(C)}
@end multitable
@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{C} @tab The type shall be @code{CHARACTER} and of default
kind.
@item @var{STATUS} @tab (Optional) status flag of type @code{INTEGER}.
Returns 0 on success, -1 on end-of-file, and a system specific positive
error code otherwise.
@end multitable
@item @emph{Example}:
@smallexample
PROGRAM test_fget
INTEGER, PARAMETER :: strlen = 100
INTEGER :: status, i = 1
CHARACTER(len=strlen) :: str = ""
WRITE (*,*) 'Enter text:'
DO
CALL fget(str(i:i), status)
if (status /= 0 .OR. i > strlen) exit
i = i + 1
END DO
WRITE (*,*) TRIM(str)
END PROGRAM
@end smallexample
@item @emph{See also}:
@ref{FGETC}, @ref{FPUT}, @ref{FPUTC}
@end table
@node FGETC
@section @code{FGETC} --- Read a single character in stream mode
@fnindex FGETC
@cindex read character, stream mode
@cindex stream mode, read character
@cindex file operation, read character
@table @asis
@item @emph{Description}:
Read a single character in stream mode by bypassing normal formatted output.
Stream I/O should not be mixed with normal record-oriented (formatted or
unformatted) I/O on the same unit; the results are unpredictable.
This intrinsic is provided in both subroutine and function forms; however,
only one form can be used in any given program unit.
Note that the @code{FGET} intrinsic is provided for backwards compatibility
with @command{g77}. GNU Fortran provides the Fortran 2003 Stream facility.
Programmers should consider the use of new stream IO feature in new code
for future portability. See also @ref{Fortran 2003 status}.
@item @emph{Standard}:
GNU extension
@item @emph{Class}:
Subroutine, function
@item @emph{Syntax}:
@multitable @columnfractions .80
@item @code{CALL FGETC(UNIT, C [, STATUS])}
@item @code{STATUS = FGETC(UNIT, C)}
@end multitable
@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{UNIT} @tab The type shall be @code{INTEGER}.
@item @var{C} @tab The type shall be @code{CHARACTER} and of default
kind.
@item @var{STATUS} @tab (Optional) status flag of type @code{INTEGER}.
Returns 0 on success, -1 on end-of-file and a system specific positive
error code otherwise.
@end multitable
@item @emph{Example}:
@smallexample
PROGRAM test_fgetc
INTEGER :: fd = 42, status
CHARACTER :: c
OPEN(UNIT=fd, FILE="/etc/passwd", ACTION="READ", STATUS = "OLD")
DO
CALL fgetc(fd, c, status)
IF (status /= 0) EXIT
call fput(c)
END DO
CLOSE(UNIT=fd)
END PROGRAM
@end smallexample
@item @emph{See also}:
@ref{FGET}, @ref{FPUT}, @ref{FPUTC}
@end table
@node FLOOR
@section @code{FLOOR} --- Integer floor function
@fnindex FLOOR
@cindex floor
@cindex rounding, floor
@table @asis
@item @emph{Description}:
@code{FLOOR(A)} returns the greatest integer less than or equal to @var{X}.
@item @emph{Standard}:
Fortran 95 and later
@item @emph{Class}:
Elemental function
@item @emph{Syntax}:
@code{RESULT = FLOOR(A [, KIND])}
@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{A} @tab The type shall be @code{REAL}.
@item @var{KIND} @tab (Optional) An @code{INTEGER} initialization
expression indicating the kind parameter of the result.
@end multitable
@item @emph{Return value}:
The return value is of type @code{INTEGER(KIND)} if @var{KIND} is present
and of default-kind @code{INTEGER} otherwise.
@item @emph{Example}:
@smallexample
program test_floor
real :: x = 63.29
real :: y = -63.59
print *, floor(x) ! returns 63
print *, floor(y) ! returns -64
end program test_floor
@end smallexample
@item @emph{See also}:
@ref{CEILING}, @ref{NINT}
@end table
@node FLUSH
@section @code{FLUSH} --- Flush I/O unit(s)
@fnindex FLUSH
@cindex file operation, flush
@table @asis
@item @emph{Description}:
Flushes Fortran unit(s) currently open for output. Without the optional
argument, all units are flushed, otherwise just the unit specified.
@item @emph{Standard}:
GNU extension
@item @emph{Class}:
Subroutine
@item @emph{Syntax}:
@code{CALL FLUSH(UNIT)}
@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{UNIT} @tab (Optional) The type shall be @code{INTEGER}.
@end multitable
@item @emph{Note}:
Beginning with the Fortran 2003 standard, there is a @code{FLUSH}
statement that should be preferred over the @code{FLUSH} intrinsic.
The @code{FLUSH} intrinsic and the Fortran 2003 @code{FLUSH} statement
have identical effect: they flush the runtime library's I/O buffer so
that the data becomes visible to other processes. This does not guarantee
that the data is committed to disk.
On POSIX systems, you can request that all data is transferred to the
storage device by calling the @code{fsync} function, with the POSIX file
descriptor of the I/O unit as argument (retrieved with GNU intrinsic
@code{FNUM}). The following example shows how:
@smallexample
! Declare the interface for POSIX fsync function
interface
function fsync (fd) bind(c,name="fsync")
use iso_c_binding, only: c_int
integer(c_int), value :: fd
integer(c_int) :: fsync
end function fsync
end interface
! Variable declaration
integer :: ret
! Opening unit 10
open (10,file="foo")
! ...
! Perform I/O on unit 10
! ...
! Flush and sync
flush(10)
ret = fsync(fnum(10))
! Handle possible error
if (ret /= 0) stop "Error calling FSYNC"
@end smallexample
@end table
@node FNUM
@section @code{FNUM} --- File number function
@fnindex FNUM
@cindex file operation, file number
@table @asis
@item @emph{Description}:
@code{FNUM(UNIT)} returns the POSIX file descriptor number corresponding to the
open Fortran I/O unit @code{UNIT}.
@item @emph{Standard}:
GNU extension
@item @emph{Class}:
Function
@item @emph{Syntax}:
@code{RESULT = FNUM(UNIT)}
@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{UNIT} @tab The type shall be @code{INTEGER}.
@end multitable
@item @emph{Return value}:
The return value is of type @code{INTEGER}
@item @emph{Example}:
@smallexample
program test_fnum
integer :: i
open (unit=10, status = "scratch")
i = fnum(10)
print *, i
close (10)
end program test_fnum
@end smallexample
@end table
@node FPUT
@section @code{FPUT} --- Write a single character in stream mode to stdout
@fnindex FPUT
@cindex write character, stream mode
@cindex stream mode, write character
@cindex file operation, write character
@table @asis
@item @emph{Description}:
Write a single character in stream mode to stdout by bypassing normal
formatted output. Stream I/O should not be mixed with normal record-oriented
(formatted or unformatted) I/O on the same unit; the results are unpredictable.
This intrinsic is provided in both subroutine and function forms; however,
only one form can be used in any given program unit.
Note that the @code{FGET} intrinsic is provided for backwards compatibility with
@command{g77}. GNU Fortran provides the Fortran 2003 Stream facility.
Programmers should consider the use of new stream IO feature in new code
for future portability. See also @ref{Fortran 2003 status}.
@item @emph{Standard}:
GNU extension
@item @emph{Class}:
Subroutine, function
@item @emph{Syntax}:
@multitable @columnfractions .80
@item @code{CALL FPUT(C [, STATUS])}
@item @code{STATUS = FPUT(C)}
@end multitable
@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{C} @tab The type shall be @code{CHARACTER} and of default
kind.
@item @var{STATUS} @tab (Optional) status flag of type @code{INTEGER}.
Returns 0 on success, -1 on end-of-file and a system specific positive
error code otherwise.
@end multitable
@item @emph{Example}:
@smallexample
PROGRAM test_fput
CHARACTER(len=10) :: str = "gfortran"
INTEGER :: i
DO i = 1, len_trim(str)
CALL fput(str(i:i))
END DO
END PROGRAM
@end smallexample
@item @emph{See also}:
@ref{FPUTC}, @ref{FGET}, @ref{FGETC}
@end table
@node FPUTC
@section @code{FPUTC} --- Write a single character in stream mode
@fnindex FPUTC
@cindex write character, stream mode
@cindex stream mode, write character
@cindex file operation, write character
@table @asis
@item @emph{Description}:
Write a single character in stream mode by bypassing normal formatted
output. Stream I/O should not be mixed with normal record-oriented
(formatted or unformatted) I/O on the same unit; the results are unpredictable.
This intrinsic is provided in both subroutine and function forms; however,
only one form can be used in any given program unit.
Note that the @code{FGET} intrinsic is provided for backwards compatibility with
@command{g77}. GNU Fortran provides the Fortran 2003 Stream facility.
Programmers should consider the use of new stream IO feature in new code
for future portability. See also @ref{Fortran 2003 status}.
@item @emph{Standard}:
GNU extension
@item @emph{Class}:
Subroutine, function
@item @emph{Syntax}:
@multitable @columnfractions .80
@item @code{CALL FPUTC(UNIT, C [, STATUS])}
@item @code{STATUS = FPUTC(UNIT, C)}
@end multitable
@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{UNIT} @tab The type shall be @code{INTEGER}.
@item @var{C} @tab The type shall be @code{CHARACTER} and of default
kind.
@item @var{STATUS} @tab (Optional) status flag of type @code{INTEGER}.
Returns 0 on success, -1 on end-of-file and a system specific positive
error code otherwise.
@end multitable
@item @emph{Example}:
@smallexample
PROGRAM test_fputc
CHARACTER(len=10) :: str = "gfortran"
INTEGER :: fd = 42, i
OPEN(UNIT = fd, FILE = "out", ACTION = "WRITE", STATUS="NEW")
DO i = 1, len_trim(str)
CALL fputc(fd, str(i:i))
END DO
CLOSE(fd)
END PROGRAM
@end smallexample
@item @emph{See also}:
@ref{FPUT}, @ref{FGET}, @ref{FGETC}
@end table
@node FRACTION
@section @code{FRACTION} --- Fractional part of the model representation
@fnindex FRACTION
@cindex real number, fraction
@cindex floating point, fraction
@table @asis
@item @emph{Description}:
@code{FRACTION(X)} returns the fractional part of the model
representation of @code{X}.
@item @emph{Standard}:
Fortran 95 and later
@item @emph{Class}:
Elemental function
@item @emph{Syntax}:
@code{Y = FRACTION(X)}
@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{X} @tab The type of the argument shall be a @code{REAL}.
@end multitable
@item @emph{Return value}:
The return value is of the same type and kind as the argument.
The fractional part of the model representation of @code{X} is returned;
it is @code{X * RADIX(X)**(-EXPONENT(X))}.
@item @emph{Example}:
@smallexample
program test_fraction
real :: x
x = 178.1387e-4
print *, fraction(x), x * radix(x)**(-exponent(x))
end program test_fraction
@end smallexample
@end table
@node FREE
@section @code{FREE} --- Frees memory
@fnindex FREE
@cindex pointer, cray
@table @asis
@item @emph{Description}:
Frees memory previously allocated by @code{MALLOC}. The @code{FREE}
intrinsic is an extension intended to be used with Cray pointers, and is
provided in GNU Fortran to allow user to compile legacy code. For
new code using Fortran 95 pointers, the memory de-allocation intrinsic is
@code{DEALLOCATE}.
@item @emph{Standard}:
GNU extension
@item @emph{Class}:
Subroutine
@item @emph{Syntax}:
@code{CALL FREE(PTR)}
@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{PTR} @tab The type shall be @code{INTEGER}. It represents the
location of the memory that should be de-allocated.
@end multitable
@item @emph{Return value}:
None
@item @emph{Example}:
See @code{MALLOC} for an example.
@item @emph{See also}:
@ref{MALLOC}
@end table
@node FSEEK
@section @code{FSEEK} --- Low level file positioning subroutine
@fnindex FSEEK
@cindex file operation, seek
@cindex file operation, position
@table @asis
@item @emph{Description}:
Moves @var{UNIT} to the specified @var{OFFSET}. If @var{WHENCE}
is set to 0, the @var{OFFSET} is taken as an absolute value @code{SEEK_SET},
if set to 1, @var{OFFSET} is taken to be relative to the current position
@code{SEEK_CUR}, and if set to 2 relative to the end of the file @code{SEEK_END}.
On error, @var{STATUS} is set to a nonzero value. If @var{STATUS} the seek
fails silently.
This intrinsic routine is not fully backwards compatible with @command{g77}.
In @command{g77}, the @code{FSEEK} takes a statement label instead of a
@var{STATUS} variable. If FSEEK is used in old code, change
@smallexample
CALL FSEEK(UNIT, OFFSET, WHENCE, *label)
@end smallexample
to
@smallexample
INTEGER :: status
CALL FSEEK(UNIT, OFFSET, WHENCE, status)
IF (status /= 0) GOTO label
@end smallexample
Please note that GNU Fortran provides the Fortran 2003 Stream facility.
Programmers should consider the use of new stream IO feature in new code
for future portability. See also @ref{Fortran 2003 status}.
@item @emph{Standard}:
GNU extension
@item @emph{Class}:
Subroutine
@item @emph{Syntax}:
@code{CALL FSEEK(UNIT, OFFSET, WHENCE[, STATUS])}
@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{UNIT} @tab Shall be a scalar of type @code{INTEGER}.
@item @var{OFFSET} @tab Shall be a scalar of type @code{INTEGER}.
@item @var{WHENCE} @tab Shall be a scalar of type @code{INTEGER}.
Its value shall be either 0, 1 or 2.
@item @var{STATUS} @tab (Optional) shall be a scalar of type
@code{INTEGER(4)}.
@end multitable
@item @emph{Example}:
@smallexample
PROGRAM test_fseek
INTEGER, PARAMETER :: SEEK_SET = 0, SEEK_CUR = 1, SEEK_END = 2
INTEGER :: fd, offset, ierr
ierr = 0
offset = 5
fd = 10
OPEN(UNIT=fd, FILE="fseek.test")
CALL FSEEK(fd, offset, SEEK_SET, ierr) ! move to OFFSET
print *, FTELL(fd), ierr
CALL FSEEK(fd, 0, SEEK_END, ierr) ! move to end
print *, FTELL(fd), ierr
CALL FSEEK(fd, 0, SEEK_SET, ierr) ! move to beginning
print *, FTELL(fd), ierr
CLOSE(UNIT=fd)
END PROGRAM
@end smallexample
@item @emph{See also}:
@ref{FTELL}
@end table
@node FSTAT
@section @code{FSTAT} --- Get file status
@fnindex FSTAT
@cindex file system, file status
@table @asis
@item @emph{Description}:
@code{FSTAT} is identical to @ref{STAT}, except that information about an
already opened file is obtained.
The elements in @code{VALUES} are the same as described by @ref{STAT}.
This intrinsic is provided in both subroutine and function forms; however,
only one form can be used in any given program unit.
@item @emph{Standard}:
GNU extension
@item @emph{Class}:
Subroutine, function
@item @emph{Syntax}:
@multitable @columnfractions .80
@item @code{CALL FSTAT(UNIT, VALUES [, STATUS])}
@item @code{STATUS = FSTAT(UNIT, VALUES)}
@end multitable
@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{UNIT} @tab An open I/O unit number of type @code{INTEGER}.
@item @var{VALUES} @tab The type shall be @code{INTEGER(4), DIMENSION(13)}.
@item @var{STATUS} @tab (Optional) status flag of type @code{INTEGER(4)}. Returns 0
on success and a system specific error code otherwise.
@end multitable
@item @emph{Example}:
See @ref{STAT} for an example.
@item @emph{See also}:
To stat a link: @ref{LSTAT}, to stat a file: @ref{STAT}
@end table
@node FTELL
@section @code{FTELL} --- Current stream position
@fnindex FTELL
@cindex file operation, position
@table @asis
@item @emph{Description}:
Retrieves the current position within an open file.
This intrinsic is provided in both subroutine and function forms; however,
only one form can be used in any given program unit.
@item @emph{Standard}:
GNU extension
@item @emph{Class}:
Subroutine, function
@item @emph{Syntax}:
@multitable @columnfractions .80
@item @code{CALL FTELL(UNIT, OFFSET)}
@item @code{OFFSET = FTELL(UNIT)}
@end multitable
@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{OFFSET} @tab Shall of type @code{INTEGER}.
@item @var{UNIT} @tab Shall of type @code{INTEGER}.
@end multitable
@item @emph{Return value}:
In either syntax, @var{OFFSET} is set to the current offset of unit
number @var{UNIT}, or to @math{-1} if the unit is not currently open.
@item @emph{Example}:
@smallexample
PROGRAM test_ftell
INTEGER :: i
OPEN(10, FILE="temp.dat")
CALL ftell(10,i)
WRITE(*,*) i
END PROGRAM
@end smallexample
@item @emph{See also}:
@ref{FSEEK}
@end table
@node GAMMA
@section @code{GAMMA} --- Gamma function
@fnindex GAMMA
@fnindex DGAMMA
@cindex Gamma function
@cindex Factorial function
@table @asis
@item @emph{Description}:
@code{GAMMA(X)} computes Gamma (@math{\Gamma}) of @var{X}. For positive,
integer values of @var{X} the Gamma function simplifies to the factorial
function @math{\Gamma(x)=(x-1)!}.
@tex
$$
\Gamma(x) = \int_0^\infty t^{x-1}{\rm e}^{-t}\,{\rm d}t
$$
@end tex
@item @emph{Standard}:
Fortran 2008 and later
@item @emph{Class}:
Elemental function
@item @emph{Syntax}:
@code{X = GAMMA(X)}
@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{X} @tab Shall be of type @code{REAL} and neither zero
nor a negative integer.
@end multitable
@item @emph{Return value}:
The return value is of type @code{REAL} of the same kind as @var{X}.
@item @emph{Example}:
@smallexample
program test_gamma
real :: x = 1.0
x = gamma(x) ! returns 1.0
end program test_gamma
@end smallexample
@item @emph{Specific names}:
@multitable @columnfractions .20 .20 .20 .25
@item Name @tab Argument @tab Return type @tab Standard
@item @code{GAMMA(X)} @tab @code{REAL(4) X} @tab @code{REAL(4)} @tab GNU Extension
@item @code{DGAMMA(X)} @tab @code{REAL(8) X} @tab @code{REAL(8)} @tab GNU Extension
@end multitable
@item @emph{See also}:
Logarithm of the Gamma function: @ref{LOG_GAMMA}
@end table
@node GERROR
@section @code{GERROR} --- Get last system error message
@fnindex GERROR
@cindex system, error handling
@table @asis
@item @emph{Description}:
Returns the system error message corresponding to the last system error.
This resembles the functionality of @code{strerror(3)} in C.
@item @emph{Standard}:
GNU extension
@item @emph{Class}:
Subroutine
@item @emph{Syntax}:
@code{CALL GERROR(RESULT)}
@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{RESULT} @tab Shall of type @code{CHARACTER} and of default
@end multitable
@item @emph{Example}:
@smallexample
PROGRAM test_gerror
CHARACTER(len=100) :: msg
CALL gerror(msg)
WRITE(*,*) msg
END PROGRAM
@end smallexample
@item @emph{See also}:
@ref{IERRNO}, @ref{PERROR}
@end table
@node GETARG
@section @code{GETARG} --- Get command line arguments
@fnindex GETARG
@cindex command-line arguments
@cindex arguments, to program
@table @asis
@item @emph{Description}:
Retrieve the @var{POS}-th argument that was passed on the
command line when the containing program was invoked.
This intrinsic routine is provided for backwards compatibility with
GNU Fortran 77. In new code, programmers should consider the use of
the @ref{GET_COMMAND_ARGUMENT} intrinsic defined by the Fortran 2003
standard.
@item @emph{Standard}:
GNU extension
@item @emph{Class}:
Subroutine
@item @emph{Syntax}:
@code{CALL GETARG(POS, VALUE)}
@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{POS} @tab Shall be of type @code{INTEGER} and not wider than
the default integer kind; @math{@var{POS} \geq 0}
@item @var{VALUE} @tab Shall be of type @code{CHARACTER} and of default
kind.
@item @var{VALUE} @tab Shall be of type @code{CHARACTER}.
@end multitable
@item @emph{Return value}:
After @code{GETARG} returns, the @var{VALUE} argument holds the
@var{POS}th command line argument. If @var{VALUE} can not hold the
argument, it is truncated to fit the length of @var{VALUE}. If there are
less than @var{POS} arguments specified at the command line, @var{VALUE}
will be filled with blanks. If @math{@var{POS} = 0}, @var{VALUE} is set
to the name of the program (on systems that support this feature).
@item @emph{Example}:
@smallexample
PROGRAM test_getarg
INTEGER :: i
CHARACTER(len=32) :: arg
DO i = 1, iargc()
CALL getarg(i, arg)
WRITE (*,*) arg
END DO
END PROGRAM
@end smallexample
@item @emph{See also}:
GNU Fortran 77 compatibility function: @ref{IARGC}
Fortran 2003 functions and subroutines: @ref{GET_COMMAND},
@ref{GET_COMMAND_ARGUMENT}, @ref{COMMAND_ARGUMENT_COUNT}
@end table
@node GET_COMMAND
@section @code{GET_COMMAND} --- Get the entire command line
@fnindex GET_COMMAND
@cindex command-line arguments
@cindex arguments, to program
@table @asis
@item @emph{Description}:
Retrieve the entire command line that was used to invoke the program.
@item @emph{Standard}:
Fortran 2003 and later
@item @emph{Class}:
Subroutine
@item @emph{Syntax}:
@code{CALL GET_COMMAND([COMMAND, LENGTH, STATUS])}
@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{COMMAND} @tab (Optional) shall be of type @code{CHARACTER} and
of default kind.
@item @var{LENGTH} @tab (Optional) Shall be of type @code{INTEGER} and of
default kind.
@item @var{STATUS} @tab (Optional) Shall be of type @code{INTEGER} and of
default kind.
@end multitable
@item @emph{Return value}:
If @var{COMMAND} is present, stores the entire command line that was used
to invoke the program in @var{COMMAND}. If @var{LENGTH} is present, it is
assigned the length of the command line. If @var{STATUS} is present, it
is assigned 0 upon success of the command, -1 if @var{COMMAND} is too
short to store the command line, or a positive value in case of an error.
@item @emph{Example}:
@smallexample
PROGRAM test_get_command
CHARACTER(len=255) :: cmd
CALL get_command(cmd)
WRITE (*,*) TRIM(cmd)
END PROGRAM
@end smallexample
@item @emph{See also}:
@ref{GET_COMMAND_ARGUMENT}, @ref{COMMAND_ARGUMENT_COUNT}
@end table
@node GET_COMMAND_ARGUMENT
@section @code{GET_COMMAND_ARGUMENT} --- Get command line arguments
@fnindex GET_COMMAND_ARGUMENT
@cindex command-line arguments
@cindex arguments, to program
@table @asis
@item @emph{Description}:
Retrieve the @var{NUMBER}-th argument that was passed on the
command line when the containing program was invoked.
@item @emph{Standard}:
Fortran 2003 and later
@item @emph{Class}:
Subroutine
@item @emph{Syntax}:
@code{CALL GET_COMMAND_ARGUMENT(NUMBER [, VALUE, LENGTH, STATUS])}
@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{NUMBER} @tab Shall be a scalar of type @code{INTEGER} and of
default kind, @math{@var{NUMBER} \geq 0}
@item @var{VALUE} @tab (Optional) Shall be a scalar of type @code{CHARACTER}
and of default kind.
@item @var{LENGTH} @tab (Optional) Shall be a scalar of type @code{INTEGER}
and of default kind.
@item @var{STATUS} @tab (Optional) Shall be a scalar of type @code{INTEGER}
and of default kind.
@end multitable
@item @emph{Return value}:
After @code{GET_COMMAND_ARGUMENT} returns, the @var{VALUE} argument holds the
@var{NUMBER}-th command line argument. If @var{VALUE} can not hold the argument, it is
truncated to fit the length of @var{VALUE}. If there are less than @var{NUMBER}
arguments specified at the command line, @var{VALUE} will be filled with blanks.
If @math{@var{NUMBER} = 0}, @var{VALUE} is set to the name of the program (on
systems that support this feature). The @var{LENGTH} argument contains the
length of the @var{NUMBER}-th command line argument. If the argument retrieval
fails, @var{STATUS} is a positive number; if @var{VALUE} contains a truncated
command line argument, @var{STATUS} is -1; and otherwise the @var{STATUS} is
zero.
@item @emph{Example}:
@smallexample
PROGRAM test_get_command_argument
INTEGER :: i
CHARACTER(len=32) :: arg
i = 0
DO
CALL get_command_argument(i, arg)
IF (LEN_TRIM(arg) == 0) EXIT
WRITE (*,*) TRIM(arg)
i = i+1
END DO
END PROGRAM
@end smallexample
@item @emph{See also}:
@ref{GET_COMMAND}, @ref{COMMAND_ARGUMENT_COUNT}
@end table
@node GETCWD
@section @code{GETCWD} --- Get current working directory
@fnindex GETCWD
@cindex system, working directory
@table @asis
@item @emph{Description}:
Get current working directory.
This intrinsic is provided in both subroutine and function forms; however,
only one form can be used in any given program unit.
@item @emph{Standard}:
GNU extension
@item @emph{Class}:
Subroutine, function
@item @emph{Syntax}:
@multitable @columnfractions .80
@item @code{CALL GETCWD(C [, STATUS])}
@item @code{STATUS = GETCWD(C)}
@end multitable
@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{C} @tab The type shall be @code{CHARACTER} and of default kind.
@item @var{STATUS} @tab (Optional) status flag. Returns 0 on success,
a system specific and nonzero error code otherwise.
@end multitable
@item @emph{Example}:
@smallexample
PROGRAM test_getcwd
CHARACTER(len=255) :: cwd
CALL getcwd(cwd)
WRITE(*,*) TRIM(cwd)
END PROGRAM
@end smallexample
@item @emph{See also}:
@ref{CHDIR}
@end table
@node GETENV
@section @code{GETENV} --- Get an environmental variable
@fnindex GETENV
@cindex environment variable
@table @asis
@item @emph{Description}:
Get the @var{VALUE} of the environmental variable @var{NAME}.
This intrinsic routine is provided for backwards compatibility with
GNU Fortran 77. In new code, programmers should consider the use of
the @ref{GET_ENVIRONMENT_VARIABLE} intrinsic defined by the Fortran
2003 standard.
Note that @code{GETENV} need not be thread-safe. It is the
responsibility of the user to ensure that the environment is not being
updated concurrently with a call to the @code{GETENV} intrinsic.
@item @emph{Standard}:
GNU extension
@item @emph{Class}:
Subroutine
@item @emph{Syntax}:
@code{CALL GETENV(NAME, VALUE)}
@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{NAME} @tab Shall be of type @code{CHARACTER} and of default kind.
@item @var{VALUE} @tab Shall be of type @code{CHARACTER} and of default kind.
@end multitable
@item @emph{Return value}:
Stores the value of @var{NAME} in @var{VALUE}. If @var{VALUE} is
not large enough to hold the data, it is truncated. If @var{NAME}
is not set, @var{VALUE} will be filled with blanks.
@item @emph{Example}:
@smallexample
PROGRAM test_getenv
CHARACTER(len=255) :: homedir
CALL getenv("HOME", homedir)
WRITE (*,*) TRIM(homedir)
END PROGRAM
@end smallexample
@item @emph{See also}:
@ref{GET_ENVIRONMENT_VARIABLE}
@end table
@node GET_ENVIRONMENT_VARIABLE
@section @code{GET_ENVIRONMENT_VARIABLE} --- Get an environmental variable
@fnindex GET_ENVIRONMENT_VARIABLE
@cindex environment variable
@table @asis
@item @emph{Description}:
Get the @var{VALUE} of the environmental variable @var{NAME}.
Note that @code{GET_ENVIRONMENT_VARIABLE} need not be thread-safe. It
is the responsibility of the user to ensure that the environment is
not being updated concurrently with a call to the
@code{GET_ENVIRONMENT_VARIABLE} intrinsic.
@item @emph{Standard}:
Fortran 2003 and later
@item @emph{Class}:
Subroutine
@item @emph{Syntax}:
@code{CALL GET_ENVIRONMENT_VARIABLE(NAME[, VALUE, LENGTH, STATUS, TRIM_NAME)}
@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{NAME} @tab Shall be a scalar of type @code{CHARACTER}
and of default kind.
@item @var{VALUE} @tab (Optional) Shall be a scalar of type @code{CHARACTER}
and of default kind.
@item @var{LENGTH} @tab (Optional) Shall be a scalar of type @code{INTEGER}
and of default kind.
@item @var{STATUS} @tab (Optional) Shall be a scalar of type @code{INTEGER}
and of default kind.
@item @var{TRIM_NAME} @tab (Optional) Shall be a scalar of type @code{LOGICAL}
and of default kind.
@end multitable
@item @emph{Return value}:
Stores the value of @var{NAME} in @var{VALUE}. If @var{VALUE} is
not large enough to hold the data, it is truncated. If @var{NAME}
is not set, @var{VALUE} will be filled with blanks. Argument @var{LENGTH}
contains the length needed for storing the environment variable @var{NAME}
or zero if it is not present. @var{STATUS} is -1 if @var{VALUE} is present
but too short for the environment variable; it is 1 if the environment
variable does not exist and 2 if the processor does not support environment
variables; in all other cases @var{STATUS} is zero. If @var{TRIM_NAME} is
present with the value @code{.FALSE.}, the trailing blanks in @var{NAME}
are significant; otherwise they are not part of the environment variable
name.
@item @emph{Example}:
@smallexample
PROGRAM test_getenv
CHARACTER(len=255) :: homedir
CALL get_environment_variable("HOME", homedir)
WRITE (*,*) TRIM(homedir)
END PROGRAM
@end smallexample
@end table
@node GETGID
@section @code{GETGID} --- Group ID function
@fnindex GETGID
@cindex system, group ID
@table @asis
@item @emph{Description}:
Returns the numerical group ID of the current process.
@item @emph{Standard}:
GNU extension
@item @emph{Class}:
Function
@item @emph{Syntax}:
@code{RESULT = GETGID()}
@item @emph{Return value}:
The return value of @code{GETGID} is an @code{INTEGER} of the default
kind.
@item @emph{Example}:
See @code{GETPID} for an example.
@item @emph{See also}:
@ref{GETPID}, @ref{GETUID}
@end table
@node GETLOG
@section @code{GETLOG} --- Get login name
@fnindex GETLOG
@cindex system, login name
@cindex login name
@table @asis
@item @emph{Description}:
Gets the username under which the program is running.
@item @emph{Standard}:
GNU extension
@item @emph{Class}:
Subroutine
@item @emph{Syntax}:
@code{CALL GETLOG(C)}
@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{C} @tab Shall be of type @code{CHARACTER} and of default kind.
@end multitable
@item @emph{Return value}:
Stores the current user name in @var{LOGIN}. (On systems where POSIX
functions @code{geteuid} and @code{getpwuid} are not available, and
the @code{getlogin} function is not implemented either, this will
return a blank string.)
@item @emph{Example}:
@smallexample
PROGRAM TEST_GETLOG
CHARACTER(32) :: login
CALL GETLOG(login)
WRITE(*,*) login
END PROGRAM
@end smallexample
@item @emph{See also}:
@ref{GETUID}
@end table
@node GETPID
@section @code{GETPID} --- Process ID function
@fnindex GETPID
@cindex system, process ID
@cindex process ID
@table @asis
@item @emph{Description}:
Returns the numerical process identifier of the current process.
@item @emph{Standard}:
GNU extension
@item @emph{Class}:
Function
@item @emph{Syntax}:
@code{RESULT = GETPID()}
@item @emph{Return value}:
The return value of @code{GETPID} is an @code{INTEGER} of the default
kind.
@item @emph{Example}:
@smallexample
program info
print *, "The current process ID is ", getpid()
print *, "Your numerical user ID is ", getuid()
print *, "Your numerical group ID is ", getgid()
end program info
@end smallexample
@item @emph{See also}:
@ref{GETGID}, @ref{GETUID}
@end table
@node GETUID
@section @code{GETUID} --- User ID function
@fnindex GETUID
@cindex system, user ID
@cindex user id
@table @asis
@item @emph{Description}:
Returns the numerical user ID of the current process.
@item @emph{Standard}:
GNU extension
@item @emph{Class}:
Function
@item @emph{Syntax}:
@code{RESULT = GETUID()}
@item @emph{Return value}:
The return value of @code{GETUID} is an @code{INTEGER} of the default
kind.
@item @emph{Example}:
See @code{GETPID} for an example.
@item @emph{See also}:
@ref{GETPID}, @ref{GETLOG}
@end table
@node GMTIME
@section @code{GMTIME} --- Convert time to GMT info
@fnindex GMTIME
@cindex time, conversion to GMT info
@table @asis
@item @emph{Description}:
Given a system time value @var{TIME} (as provided by the @code{TIME8}
intrinsic), fills @var{VALUES} with values extracted from it appropriate
to the UTC time zone (Universal Coordinated Time, also known in some
countries as GMT, Greenwich Mean Time), using @code{gmtime(3)}.
@item @emph{Standard}:
GNU extension
@item @emph{Class}:
Subroutine
@item @emph{Syntax}:
@code{CALL GMTIME(TIME, VALUES)}
@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{TIME} @tab An @code{INTEGER} scalar expression
corresponding to a system time, with @code{INTENT(IN)}.
@item @var{VALUES} @tab A default @code{INTEGER} array with 9 elements,
with @code{INTENT(OUT)}.
@end multitable
@item @emph{Return value}:
The elements of @var{VALUES} are assigned as follows:
@enumerate
@item Seconds after the minute, range 0--59 or 0--61 to allow for leap
seconds
@item Minutes after the hour, range 0--59
@item Hours past midnight, range 0--23
@item Day of month, range 0--31
@item Number of months since January, range 0--12
@item Years since 1900
@item Number of days since Sunday, range 0--6
@item Days since January 1
@item Daylight savings indicator: positive if daylight savings is in
effect, zero if not, and negative if the information is not available.
@end enumerate
@item @emph{See also}:
@ref{CTIME}, @ref{LTIME}, @ref{TIME}, @ref{TIME8}
@end table
@node HOSTNM
@section @code{HOSTNM} --- Get system host name
@fnindex HOSTNM
@cindex system, host name
@table @asis
@item @emph{Description}:
Retrieves the host name of the system on which the program is running.
This intrinsic is provided in both subroutine and function forms; however,
only one form can be used in any given program unit.
@item @emph{Standard}:
GNU extension
@item @emph{Class}:
Subroutine, function
@item @emph{Syntax}:
@multitable @columnfractions .80
@item @code{CALL HOSTNM(C [, STATUS])}
@item @code{STATUS = HOSTNM(NAME)}
@end multitable
@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{C} @tab Shall of type @code{CHARACTER} and of default kind.
@item @var{STATUS} @tab (Optional) status flag of type @code{INTEGER}.
Returns 0 on success, or a system specific error code otherwise.
@end multitable
@item @emph{Return value}:
In either syntax, @var{NAME} is set to the current hostname if it can
be obtained, or to a blank string otherwise.
@end table
@node HUGE
@section @code{HUGE} --- Largest number of a kind
@fnindex HUGE
@cindex limits, largest number
@cindex model representation, largest number
@table @asis
@item @emph{Description}:
@code{HUGE(X)} returns the largest number that is not an infinity in
the model of the type of @code{X}.
@item @emph{Standard}:
Fortran 95 and later
@item @emph{Class}:
Inquiry function
@item @emph{Syntax}:
@code{RESULT = HUGE(X)}
@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{X} @tab Shall be of type @code{REAL} or @code{INTEGER}.
@end multitable
@item @emph{Return value}:
The return value is of the same type and kind as @var{X}
@item @emph{Example}:
@smallexample
program test_huge_tiny
print *, huge(0), huge(0.0), huge(0.0d0)
print *, tiny(0.0), tiny(0.0d0)
end program test_huge_tiny
@end smallexample
@end table
@node HYPOT
@section @code{HYPOT} --- Euclidean distance function
@fnindex HYPOT
@cindex Euclidean distance
@table @asis
@item @emph{Description}:
@code{HYPOT(X,Y)} is the Euclidean distance function. It is equal to
@math{\sqrt{X^2 + Y^2}}, without undue underflow or overflow.
@item @emph{Standard}:
Fortran 2008 and later
@item @emph{Class}:
Elemental function
@item @emph{Syntax}:
@code{RESULT = HYPOT(X, Y)}
@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{X} @tab The type shall be @code{REAL}.
@item @var{Y} @tab The type and kind type parameter shall be the same as
@var{X}.
@end multitable
@item @emph{Return value}:
The return value has the same type and kind type parameter as @var{X}.
@item @emph{Example}:
@smallexample
program test_hypot
real(4) :: x = 1.e0_4, y = 0.5e0_4
x = hypot(x,y)
end program test_hypot
@end smallexample
@end table
@node IACHAR
@section @code{IACHAR} --- Code in @acronym{ASCII} collating sequence
@fnindex IACHAR
@cindex @acronym{ASCII} collating sequence
@cindex collating sequence, @acronym{ASCII}
@cindex conversion, to integer
@table @asis
@item @emph{Description}:
@code{IACHAR(C)} returns the code for the @acronym{ASCII} character
in the first character position of @code{C}.
@item @emph{Standard}:
Fortran 95 and later, with @var{KIND} argument Fortran 2003 and later
@item @emph{Class}:
Elemental function
@item @emph{Syntax}:
@code{RESULT = IACHAR(C [, KIND])}
@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{C} @tab Shall be a scalar @code{CHARACTER}, with @code{INTENT(IN)}
@item @var{KIND} @tab (Optional) An @code{INTEGER} initialization
expression indicating the kind parameter of the result.
@end multitable
@item @emph{Return value}:
The return value is of type @code{INTEGER} and of kind @var{KIND}. If
@var{KIND} is absent, the return value is of default integer kind.
@item @emph{Example}:
@smallexample
program test_iachar
integer i
i = iachar(' ')
end program test_iachar
@end smallexample
@item @emph{Note}:
See @ref{ICHAR} for a discussion of converting between numerical values
and formatted string representations.
@item @emph{See also}:
@ref{ACHAR}, @ref{CHAR}, @ref{ICHAR}
@end table
@node IALL
@section @code{IALL} --- Bitwise AND of array elements
@fnindex IALL
@cindex array, AND
@cindex bits, AND of array elements
@table @asis
@item @emph{Description}:
Reduces with bitwise AND the elements of @var{ARRAY} along dimension @var{DIM}
if the corresponding element in @var{MASK} is @code{TRUE}.
@item @emph{Standard}:
Fortran 2008 and later
@item @emph{Class}:
Transformational function
@item @emph{Syntax}:
@multitable @columnfractions .80
@item @code{RESULT = IALL(ARRAY[, MASK])}
@item @code{RESULT = IALL(ARRAY, DIM[, MASK])}
@end multitable
@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{ARRAY} @tab Shall be an array of type @code{INTEGER}
@item @var{DIM} @tab (Optional) shall be a scalar of type
@code{INTEGER} with a value in the range from 1 to n, where n
equals the rank of @var{ARRAY}.
@item @var{MASK} @tab (Optional) shall be of type @code{LOGICAL}
and either be a scalar or an array of the same shape as @var{ARRAY}.
@end multitable
@item @emph{Return value}:
The result is of the same type as @var{ARRAY}.
If @var{DIM} is absent, a scalar with the bitwise ALL of all elements in
@var{ARRAY} is returned. Otherwise, an array of rank n-1, where n equals
the rank of @var{ARRAY}, and a shape similar to that of @var{ARRAY} with
dimension @var{DIM} dropped is returned.
@item @emph{Example}:
@smallexample
PROGRAM test_iall
INTEGER(1) :: a(2)
a(1) = b'00100100'
a(2) = b'01101010'
! prints 00100000
PRINT '(b8.8)', IALL(a)
END PROGRAM
@end smallexample
@item @emph{See also}:
@ref{IANY}, @ref{IPARITY}, @ref{IAND}
@end table
@node IAND
@section @code{IAND} --- Bitwise logical and
@fnindex IAND
@cindex bitwise logical and
@cindex logical and, bitwise
@table @asis
@item @emph{Description}:
Bitwise logical @code{AND}.
@item @emph{Standard}:
Fortran 95 and later
@item @emph{Class}:
Elemental function
@item @emph{Syntax}:
@code{RESULT = IAND(I, J)}
@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{I} @tab The type shall be @code{INTEGER}.
@item @var{J} @tab The type shall be @code{INTEGER}, of the same
kind as @var{I}. (As a GNU extension, different kinds are also
permitted.)
@end multitable
@item @emph{Return value}:
The return type is @code{INTEGER}, of the same kind as the
arguments. (If the argument kinds differ, it is of the same kind as
the larger argument.)
@item @emph{Example}:
@smallexample
PROGRAM test_iand
INTEGER :: a, b
DATA a / Z'F' /, b / Z'3' /
WRITE (*,*) IAND(a, b)
END PROGRAM
@end smallexample
@item @emph{See also}:
@ref{IOR}, @ref{IEOR}, @ref{IBITS}, @ref{IBSET}, @ref{IBCLR}, @ref{NOT}
@end table
@node IANY
@section @code{IANY} --- Bitwise OR of array elements
@fnindex IANY
@cindex array, OR
@cindex bits, OR of array elements
@table @asis
@item @emph{Description}:
Reduces with bitwise OR (inclusive or) the elements of @var{ARRAY} along
dimension @var{DIM} if the corresponding element in @var{MASK} is @code{TRUE}.
@item @emph{Standard}:
Fortran 2008 and later
@item @emph{Class}:
Transformational function
@item @emph{Syntax}:
@multitable @columnfractions .80
@item @code{RESULT = IANY(ARRAY[, MASK])}
@item @code{RESULT = IANY(ARRAY, DIM[, MASK])}
@end multitable
@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{ARRAY} @tab Shall be an array of type @code{INTEGER}
@item @var{DIM} @tab (Optional) shall be a scalar of type
@code{INTEGER} with a value in the range from 1 to n, where n
equals the rank of @var{ARRAY}.
@item @var{MASK} @tab (Optional) shall be of type @code{LOGICAL}
and either be a scalar or an array of the same shape as @var{ARRAY}.
@end multitable
@item @emph{Return value}:
The result is of the same type as @var{ARRAY}.
If @var{DIM} is absent, a scalar with the bitwise OR of all elements in
@var{ARRAY} is returned. Otherwise, an array of rank n-1, where n equals
the rank of @var{ARRAY}, and a shape similar to that of @var{ARRAY} with
dimension @var{DIM} dropped is returned.
@item @emph{Example}:
@smallexample
PROGRAM test_iany
INTEGER(1) :: a(2)
a(1) = b'00100100'
a(2) = b'01101010'
! prints 01101110
PRINT '(b8.8)', IANY(a)
END PROGRAM
@end smallexample
@item @emph{See also}:
@ref{IPARITY}, @ref{IALL}, @ref{IOR}
@end table
@node IARGC
@section @code{IARGC} --- Get the number of command line arguments
@fnindex IARGC
@cindex command-line arguments
@cindex command-line arguments, number of
@cindex arguments, to program
@table @asis
@item @emph{Description}:
@code{IARGC} returns the number of arguments passed on the
command line when the containing program was invoked.
This intrinsic routine is provided for backwards compatibility with
GNU Fortran 77. In new code, programmers should consider the use of
the @ref{COMMAND_ARGUMENT_COUNT} intrinsic defined by the Fortran 2003
standard.
@item @emph{Standard}:
GNU extension
@item @emph{Class}:
Function
@item @emph{Syntax}:
@code{RESULT = IARGC()}
@item @emph{Arguments}:
None.
@item @emph{Return value}:
The number of command line arguments, type @code{INTEGER(4)}.
@item @emph{Example}:
See @ref{GETARG}
@item @emph{See also}:
GNU Fortran 77 compatibility subroutine: @ref{GETARG}
Fortran 2003 functions and subroutines: @ref{GET_COMMAND},
@ref{GET_COMMAND_ARGUMENT}, @ref{COMMAND_ARGUMENT_COUNT}
@end table
@node IBCLR
@section @code{IBCLR} --- Clear bit
@fnindex IBCLR
@cindex bits, unset
@cindex bits, clear
@table @asis
@item @emph{Description}:
@code{IBCLR} returns the value of @var{I} with the bit at position
@var{POS} set to zero.
@item @emph{Standard}:
Fortran 95 and later
@item @emph{Class}:
Elemental function
@item @emph{Syntax}:
@code{RESULT = IBCLR(I, POS)}
@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{I} @tab The type shall be @code{INTEGER}.
@item @var{POS} @tab The type shall be @code{INTEGER}.
@end multitable
@item @emph{Return value}:
The return value is of type @code{INTEGER} and of the same kind as
@var{I}.
@item @emph{See also}:
@ref{IBITS}, @ref{IBSET}, @ref{IAND}, @ref{IOR}, @ref{IEOR}, @ref{MVBITS}
@end table
@node IBITS
@section @code{IBITS} --- Bit extraction
@fnindex IBITS
@cindex bits, get
@cindex bits, extract
@table @asis
@item @emph{Description}:
@code{IBITS} extracts a field of length @var{LEN} from @var{I},
starting from bit position @var{POS} and extending left for @var{LEN}
bits. The result is right-justified and the remaining bits are
zeroed. The value of @code{POS+LEN} must be less than or equal to the
value @code{BIT_SIZE(I)}.
@item @emph{Standard}:
Fortran 95 and later
@item @emph{Class}:
Elemental function
@item @emph{Syntax}:
@code{RESULT = IBITS(I, POS, LEN)}
@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{I} @tab The type shall be @code{INTEGER}.
@item @var{POS} @tab The type shall be @code{INTEGER}.
@item @var{LEN} @tab The type shall be @code{INTEGER}.
@end multitable
@item @emph{Return value}:
The return value is of type @code{INTEGER} and of the same kind as
@var{I}.
@item @emph{See also}:
@ref{BIT_SIZE}, @ref{IBCLR}, @ref{IBSET}, @ref{IAND}, @ref{IOR}, @ref{IEOR}
@end table
@node IBSET
@section @code{IBSET} --- Set bit
@fnindex IBSET
@cindex bits, set
@table @asis
@item @emph{Description}:
@code{IBSET} returns the value of @var{I} with the bit at position
@var{POS} set to one.
@item @emph{Standard}:
Fortran 95 and later
@item @emph{Class}:
Elemental function
@item @emph{Syntax}:
@code{RESULT = IBSET(I, POS)}
@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{I} @tab The type shall be @code{INTEGER}.
@item @var{POS} @tab The type shall be @code{INTEGER}.
@end multitable
@item @emph{Return value}:
The return value is of type @code{INTEGER} and of the same kind as
@var{I}.
@item @emph{See also}:
@ref{IBCLR}, @ref{IBITS}, @ref{IAND}, @ref{IOR}, @ref{IEOR}, @ref{MVBITS}
@end table
@node ICHAR
@section @code{ICHAR} --- Character-to-integer conversion function
@fnindex ICHAR
@cindex conversion, to integer
@table @asis
@item @emph{Description}:
@code{ICHAR(C)} returns the code for the character in the first character
position of @code{C} in the system's native character set.
The correspondence between characters and their codes is not necessarily
the same across different GNU Fortran implementations.
@item @emph{Standard}:
Fortran 95 and later, with @var{KIND} argument Fortran 2003 and later
@item @emph{Class}:
Elemental function
@item @emph{Syntax}:
@code{RESULT = ICHAR(C [, KIND])}
@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{C} @tab Shall be a scalar @code{CHARACTER}, with @code{INTENT(IN)}
@item @var{KIND} @tab (Optional) An @code{INTEGER} initialization
expression indicating the kind parameter of the result.
@end multitable
@item @emph{Return value}:
The return value is of type @code{INTEGER} and of kind @var{KIND}. If
@var{KIND} is absent, the return value is of default integer kind.
@item @emph{Example}:
@smallexample
program test_ichar
integer i
i = ichar(' ')
end program test_ichar
@end smallexample
@item @emph{Specific names}:
@multitable @columnfractions .20 .20 .20 .25
@item Name @tab Argument @tab Return type @tab Standard
@item @code{ICHAR(C)} @tab @code{CHARACTER C} @tab @code{INTEGER(4)} @tab Fortran 77 and later
@end multitable
@item @emph{Note}:
No intrinsic exists to convert between a numeric value and a formatted
character string representation -- for instance, given the
@code{CHARACTER} value @code{'154'}, obtaining an @code{INTEGER} or
@code{REAL} value with the value 154, or vice versa. Instead, this
functionality is provided by internal-file I/O, as in the following
example:
@smallexample
program read_val
integer value
character(len=10) string, string2
string = '154'
! Convert a string to a numeric value
read (string,'(I10)') value
print *, value
! Convert a value to a formatted string
write (string2,'(I10)') value
print *, string2
end program read_val
@end smallexample
@item @emph{See also}:
@ref{ACHAR}, @ref{CHAR}, @ref{IACHAR}
@end table
@node IDATE
@section @code{IDATE} --- Get current local time subroutine (day/month/year)
@fnindex IDATE
@cindex date, current
@cindex current date
@table @asis
@item @emph{Description}:
@code{IDATE(VALUES)} Fills @var{VALUES} with the numerical values at the
current local time. The day (in the range 1-31), month (in the range 1-12),
and year appear in elements 1, 2, and 3 of @var{VALUES}, respectively.
The year has four significant digits.
@item @emph{Standard}:
GNU extension
@item @emph{Class}:
Subroutine
@item @emph{Syntax}:
@code{CALL IDATE(VALUES)}
@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{VALUES} @tab The type shall be @code{INTEGER, DIMENSION(3)} and
the kind shall be the default integer kind.
@end multitable
@item @emph{Return value}:
Does not return anything.
@item @emph{Example}:
@smallexample
program test_idate
integer, dimension(3) :: tarray
call idate(tarray)
print *, tarray(1)
print *, tarray(2)
print *, tarray(3)
end program test_idate
@end smallexample
@end table
@node IEOR
@section @code{IEOR} --- Bitwise logical exclusive or
@fnindex IEOR
@cindex bitwise logical exclusive or
@cindex logical exclusive or, bitwise
@table @asis
@item @emph{Description}:
@code{IEOR} returns the bitwise Boolean exclusive-OR of @var{I} and
@var{J}.
@item @emph{Standard}:
Fortran 95 and later
@item @emph{Class}:
Elemental function
@item @emph{Syntax}:
@code{RESULT = IEOR(I, J)}
@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{I} @tab The type shall be @code{INTEGER}.
@item @var{J} @tab The type shall be @code{INTEGER}, of the same
kind as @var{I}. (As a GNU extension, different kinds are also
permitted.)
@end multitable
@item @emph{Return value}:
The return type is @code{INTEGER}, of the same kind as the
arguments. (If the argument kinds differ, it is of the same kind as
the larger argument.)
@item @emph{See also}:
@ref{IOR}, @ref{IAND}, @ref{IBITS}, @ref{IBSET}, @ref{IBCLR}, @ref{NOT}
@end table
@node IERRNO
@section @code{IERRNO} --- Get the last system error number
@fnindex IERRNO
@cindex system, error handling
@table @asis
@item @emph{Description}:
Returns the last system error number, as given by the C @code{errno}
variable.
@item @emph{Standard}:
GNU extension
@item @emph{Class}:
Function
@item @emph{Syntax}:
@code{RESULT = IERRNO()}
@item @emph{Arguments}:
None.
@item @emph{Return value}:
The return value is of type @code{INTEGER} and of the default integer
kind.
@item @emph{See also}:
@ref{PERROR}
@end table
@node IMAGE_INDEX
@section @code{IMAGE_INDEX} --- Function that converts a cosubscript to an image index
@fnindex IMAGE_INDEX
@cindex coarray, @code{IMAGE_INDEX}
@cindex images, cosubscript to image index conversion
@table @asis
@item @emph{Description}:
Returns the image index belonging to a cosubscript.
@item @emph{Standard}:
Fortran 2008 and later
@item @emph{Class}:
Inquiry function.
@item @emph{Syntax}:
@code{RESULT = IMAGE_INDEX(COARRAY, SUB)}
@item @emph{Arguments}: None.
@multitable @columnfractions .15 .70
@item @var{COARRAY} @tab Coarray of any type.
@item @var{SUB} @tab default integer rank-1 array of a size equal to
the corank of @var{COARRAY}.
@end multitable
@item @emph{Return value}:
Scalar default integer with the value of the image index which corresponds
to the cosubscripts. For invalid cosubscripts the result is zero.
@item @emph{Example}:
@smallexample
INTEGER :: array[2,-1:4,8,*]
! Writes 28 (or 0 if there are fewer than 28 images)
WRITE (*,*) IMAGE_INDEX (array, [2,0,3,1])
@end smallexample
@item @emph{See also}:
@ref{THIS_IMAGE}, @ref{NUM_IMAGES}
@end table
@node INDEX intrinsic
@section @code{INDEX} --- Position of a substring within a string
@fnindex INDEX
@cindex substring position
@cindex string, find substring
@table @asis
@item @emph{Description}:
Returns the position of the start of the first occurrence of string
@var{SUBSTRING} as a substring in @var{STRING}, counting from one. If
@var{SUBSTRING} is not present in @var{STRING}, zero is returned. If
the @var{BACK} argument is present and true, the return value is the
start of the last occurrence rather than the first.
@item @emph{Standard}:
Fortran 77 and later, with @var{KIND} argument Fortran 2003 and later
@item @emph{Class}:
Elemental function
@item @emph{Syntax}:
@code{RESULT = INDEX(STRING, SUBSTRING [, BACK [, KIND]])}
@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{STRING} @tab Shall be a scalar @code{CHARACTER}, with
@code{INTENT(IN)}
@item @var{SUBSTRING} @tab Shall be a scalar @code{CHARACTER}, with
@code{INTENT(IN)}
@item @var{BACK} @tab (Optional) Shall be a scalar @code{LOGICAL}, with
@code{INTENT(IN)}
@item @var{KIND} @tab (Optional) An @code{INTEGER} initialization
expression indicating the kind parameter of the result.
@end multitable
@item @emph{Return value}:
The return value is of type @code{INTEGER} and of kind @var{KIND}. If
@var{KIND} is absent, the return value is of default integer kind.
@item @emph{Specific names}:
@multitable @columnfractions .20 .20 .20 .25
@item Name @tab Argument @tab Return type @tab Standard
@item @code{INDEX(STRING, SUBSTRING)} @tab @code{CHARACTER} @tab @code{INTEGER(4)} @tab Fortran 77 and later
@end multitable
@item @emph{See also}:
@ref{SCAN}, @ref{VERIFY}
@end table
@node INT
@section @code{INT} --- Convert to integer type
@fnindex INT
@fnindex IFIX
@fnindex IDINT
@cindex conversion, to integer
@table @asis
@item @emph{Description}:
Convert to integer type
@item @emph{Standard}:
Fortran 77 and later
@item @emph{Class}:
Elemental function
@item @emph{Syntax}:
@code{RESULT = INT(A [, KIND))}
@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{A} @tab Shall be of type @code{INTEGER},
@code{REAL}, or @code{COMPLEX}.
@item @var{KIND} @tab (Optional) An @code{INTEGER} initialization
expression indicating the kind parameter of the result.
@end multitable
@item @emph{Return value}:
These functions return a @code{INTEGER} variable or array under
the following rules:
@table @asis
@item (A)
If @var{A} is of type @code{INTEGER}, @code{INT(A) = A}
@item (B)
If @var{A} is of type @code{REAL} and @math{|A| < 1}, @code{INT(A)} equals @code{0}.
If @math{|A| \geq 1}, then @code{INT(A)} equals the largest integer that does not exceed
the range of @var{A} and whose sign is the same as the sign of @var{A}.
@item (C)
If @var{A} is of type @code{COMPLEX}, rule B is applied to the real part of @var{A}.
@end table
@item @emph{Example}:
@smallexample
program test_int
integer :: i = 42
complex :: z = (-3.7, 1.0)
print *, int(i)
print *, int(z), int(z,8)
end program
@end smallexample
@item @emph{Specific names}:
@multitable @columnfractions .20 .20 .20 .25
@item Name @tab Argument @tab Return type @tab Standard
@item @code{INT(A)} @tab @code{REAL(4) A} @tab @code{INTEGER} @tab Fortran 77 and later
@item @code{IFIX(A)} @tab @code{REAL(4) A} @tab @code{INTEGER} @tab Fortran 77 and later
@item @code{IDINT(A)} @tab @code{REAL(8) A} @tab @code{INTEGER} @tab Fortran 77 and later
@end multitable
@end table
@node INT2
@section @code{INT2} --- Convert to 16-bit integer type
@fnindex INT2
@fnindex SHORT
@cindex conversion, to integer
@table @asis
@item @emph{Description}:
Convert to a @code{KIND=2} integer type. This is equivalent to the
standard @code{INT} intrinsic with an optional argument of
@code{KIND=2}, and is only included for backwards compatibility.
The @code{SHORT} intrinsic is equivalent to @code{INT2}.
@item @emph{Standard}:
GNU extension
@item @emph{Class}:
Elemental function
@item @emph{Syntax}:
@code{RESULT = INT2(A)}
@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{A} @tab Shall be of type @code{INTEGER},
@code{REAL}, or @code{COMPLEX}.
@end multitable
@item @emph{Return value}:
The return value is a @code{INTEGER(2)} variable.
@item @emph{See also}:
@ref{INT}, @ref{INT8}, @ref{LONG}
@end table
@node INT8
@section @code{INT8} --- Convert to 64-bit integer type
@fnindex INT8
@cindex conversion, to integer
@table @asis
@item @emph{Description}:
Convert to a @code{KIND=8} integer type. This is equivalent to the
standard @code{INT} intrinsic with an optional argument of
@code{KIND=8}, and is only included for backwards compatibility.
@item @emph{Standard}:
GNU extension
@item @emph{Class}:
Elemental function
@item @emph{Syntax}:
@code{RESULT = INT8(A)}
@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{A} @tab Shall be of type @code{INTEGER},
@code{REAL}, or @code{COMPLEX}.
@end multitable
@item @emph{Return value}:
The return value is a @code{INTEGER(8)} variable.
@item @emph{See also}:
@ref{INT}, @ref{INT2}, @ref{LONG}
@end table
@node IOR
@section @code{IOR} --- Bitwise logical or
@fnindex IOR
@cindex bitwise logical or
@cindex logical or, bitwise
@table @asis
@item @emph{Description}:
@code{IOR} returns the bitwise Boolean inclusive-OR of @var{I} and
@var{J}.
@item @emph{Standard}:
Fortran 95 and later
@item @emph{Class}:
Elemental function
@item @emph{Syntax}:
@code{RESULT = IOR(I, J)}
@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{I} @tab The type shall be @code{INTEGER}.
@item @var{J} @tab The type shall be @code{INTEGER}, of the same
kind as @var{I}. (As a GNU extension, different kinds are also
permitted.)
@end multitable
@item @emph{Return value}:
The return type is @code{INTEGER}, of the same kind as the
arguments. (If the argument kinds differ, it is of the same kind as
the larger argument.)
@item @emph{See also}:
@ref{IEOR}, @ref{IAND}, @ref{IBITS}, @ref{IBSET}, @ref{IBCLR}, @ref{NOT}
@end table
@node IPARITY
@section @code{IPARITY} --- Bitwise XOR of array elements
@fnindex IPARITY
@cindex array, parity
@cindex array, XOR
@cindex bits, XOR of array elements
@table @asis
@item @emph{Description}:
Reduces with bitwise XOR (exclusive or) the elements of @var{ARRAY} along
dimension @var{DIM} if the corresponding element in @var{MASK} is @code{TRUE}.
@item @emph{Standard}:
Fortran 2008 and later
@item @emph{Class}:
Transformational function
@item @emph{Syntax}:
@multitable @columnfractions .80
@item @code{RESULT = IPARITY(ARRAY[, MASK])}
@item @code{RESULT = IPARITY(ARRAY, DIM[, MASK])}
@end multitable
@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{ARRAY} @tab Shall be an array of type @code{INTEGER}
@item @var{DIM} @tab (Optional) shall be a scalar of type
@code{INTEGER} with a value in the range from 1 to n, where n
equals the rank of @var{ARRAY}.
@item @var{MASK} @tab (Optional) shall be of type @code{LOGICAL}
and either be a scalar or an array of the same shape as @var{ARRAY}.
@end multitable
@item @emph{Return value}:
The result is of the same type as @var{ARRAY}.
If @var{DIM} is absent, a scalar with the bitwise XOR of all elements in
@var{ARRAY} is returned. Otherwise, an array of rank n-1, where n equals
the rank of @var{ARRAY}, and a shape similar to that of @var{ARRAY} with
dimension @var{DIM} dropped is returned.
@item @emph{Example}:
@smallexample
PROGRAM test_iparity
INTEGER(1) :: a(2)
a(1) = b'00100100'
a(2) = b'01101010'
! prints 01001110
PRINT '(b8.8)', IPARITY(a)
END PROGRAM
@end smallexample
@item @emph{See also}:
@ref{IANY}, @ref{IALL}, @ref{IEOR}, @ref{PARITY}
@end table
@node IRAND
@section @code{IRAND} --- Integer pseudo-random number
@fnindex IRAND
@cindex random number generation
@table @asis
@item @emph{Description}:
@code{IRAND(FLAG)} returns a pseudo-random number from a uniform
distribution between 0 and a system-dependent limit (which is in most
cases 2147483647). If @var{FLAG} is 0, the next number
in the current sequence is returned; if @var{FLAG} is 1, the generator
is restarted by @code{CALL SRAND(0)}; if @var{FLAG} has any other value,
it is used as a new seed with @code{SRAND}.
This intrinsic routine is provided for backwards compatibility with
GNU Fortran 77. It implements a simple modulo generator as provided
by @command{g77}. For new code, one should consider the use of
@ref{RANDOM_NUMBER} as it implements a superior algorithm.
@item @emph{Standard}:
GNU extension
@item @emph{Class}:
Function
@item @emph{Syntax}:
@code{RESULT = IRAND(I)}
@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{I} @tab Shall be a scalar @code{INTEGER} of kind 4.
@end multitable
@item @emph{Return value}:
The return value is of @code{INTEGER(kind=4)} type.
@item @emph{Example}:
@smallexample
program test_irand
integer,parameter :: seed = 86456
call srand(seed)
print *, irand(), irand(), irand(), irand()
print *, irand(seed), irand(), irand(), irand()
end program test_irand
@end smallexample
@end table
@node IS_IOSTAT_END
@section @code{IS_IOSTAT_END} --- Test for end-of-file value
@fnindex IS_IOSTAT_END
@cindex @code{IOSTAT}, end of file
@table @asis
@item @emph{Description}:
@code{IS_IOSTAT_END} tests whether an variable has the value of the I/O
status ``end of file''. The function is equivalent to comparing the variable
with the @code{IOSTAT_END} parameter of the intrinsic module
@code{ISO_FORTRAN_ENV}.
@item @emph{Standard}:
Fortran 2003 and later
@item @emph{Class}:
Elemental function
@item @emph{Syntax}:
@code{RESULT = IS_IOSTAT_END(I)}
@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{I} @tab Shall be of the type @code{INTEGER}.
@end multitable
@item @emph{Return value}:
Returns a @code{LOGICAL} of the default kind, which @code{.TRUE.} if
@var{I} has the value which indicates an end of file condition for
@code{IOSTAT=} specifiers, and is @code{.FALSE.} otherwise.
@item @emph{Example}:
@smallexample
PROGRAM iostat
IMPLICIT NONE
INTEGER :: stat, i
OPEN(88, FILE='test.dat')
READ(88, *, IOSTAT=stat) i
IF(IS_IOSTAT_END(stat)) STOP 'END OF FILE'
END PROGRAM
@end smallexample
@end table
@node IS_IOSTAT_EOR
@section @code{IS_IOSTAT_EOR} --- Test for end-of-record value
@fnindex IS_IOSTAT_EOR
@cindex @code{IOSTAT}, end of record
@table @asis
@item @emph{Description}:
@code{IS_IOSTAT_EOR} tests whether an variable has the value of the I/O
status ``end of record''. The function is equivalent to comparing the
variable with the @code{IOSTAT_EOR} parameter of the intrinsic module
@code{ISO_FORTRAN_ENV}.
@item @emph{Standard}:
Fortran 2003 and later
@item @emph{Class}:
Elemental function
@item @emph{Syntax}:
@code{RESULT = IS_IOSTAT_EOR(I)}
@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{I} @tab Shall be of the type @code{INTEGER}.
@end multitable
@item @emph{Return value}:
Returns a @code{LOGICAL} of the default kind, which @code{.TRUE.} if
@var{I} has the value which indicates an end of file condition for
@code{IOSTAT=} specifiers, and is @code{.FALSE.} otherwise.
@item @emph{Example}:
@smallexample
PROGRAM iostat
IMPLICIT NONE
INTEGER :: stat, i(50)
OPEN(88, FILE='test.dat', FORM='UNFORMATTED')
READ(88, IOSTAT=stat) i
IF(IS_IOSTAT_EOR(stat)) STOP 'END OF RECORD'
END PROGRAM
@end smallexample
@end table
@node ISATTY
@section @code{ISATTY} --- Whether a unit is a terminal device.
@fnindex ISATTY
@cindex system, terminal
@table @asis
@item @emph{Description}:
Determine whether a unit is connected to a terminal device.
@item @emph{Standard}:
GNU extension
@item @emph{Class}:
Function
@item @emph{Syntax}:
@code{RESULT = ISATTY(UNIT)}
@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{UNIT} @tab Shall be a scalar @code{INTEGER}.
@end multitable
@item @emph{Return value}:
Returns @code{.TRUE.} if the @var{UNIT} is connected to a terminal
device, @code{.FALSE.} otherwise.
@item @emph{Example}:
@smallexample
PROGRAM test_isatty
INTEGER(kind=1) :: unit
DO unit = 1, 10
write(*,*) isatty(unit=unit)
END DO
END PROGRAM
@end smallexample
@item @emph{See also}:
@ref{TTYNAM}
@end table
@node ISHFT
@section @code{ISHFT} --- Shift bits
@fnindex ISHFT
@cindex bits, shift
@table @asis
@item @emph{Description}:
@code{ISHFT} returns a value corresponding to @var{I} with all of the
bits shifted @var{SHIFT} places. A value of @var{SHIFT} greater than
zero corresponds to a left shift, a value of zero corresponds to no
shift, and a value less than zero corresponds to a right shift. If the
absolute value of @var{SHIFT} is greater than @code{BIT_SIZE(I)}, the
value is undefined. Bits shifted out from the left end or right end are
lost; zeros are shifted in from the opposite end.
@item @emph{Standard}:
Fortran 95 and later
@item @emph{Class}:
Elemental function
@item @emph{Syntax}:
@code{RESULT = ISHFT(I, SHIFT)}
@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{I} @tab The type shall be @code{INTEGER}.
@item @var{SHIFT} @tab The type shall be @code{INTEGER}.
@end multitable
@item @emph{Return value}:
The return value is of type @code{INTEGER} and of the same kind as
@var{I}.
@item @emph{See also}:
@ref{ISHFTC}
@end table
@node ISHFTC
@section @code{ISHFTC} --- Shift bits circularly
@fnindex ISHFTC
@cindex bits, shift circular
@table @asis
@item @emph{Description}:
@code{ISHFTC} returns a value corresponding to @var{I} with the
rightmost @var{SIZE} bits shifted circularly @var{SHIFT} places; that
is, bits shifted out one end are shifted into the opposite end. A value
of @var{SHIFT} greater than zero corresponds to a left shift, a value of
zero corresponds to no shift, and a value less than zero corresponds to
a right shift. The absolute value of @var{SHIFT} must be less than
@var{SIZE}. If the @var{SIZE} argument is omitted, it is taken to be
equivalent to @code{BIT_SIZE(I)}.
@item @emph{Standard}:
Fortran 95 and later
@item @emph{Class}:
Elemental function
@item @emph{Syntax}:
@code{RESULT = ISHFTC(I, SHIFT [, SIZE])}
@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{I} @tab The type shall be @code{INTEGER}.
@item @var{SHIFT} @tab The type shall be @code{INTEGER}.
@item @var{SIZE} @tab (Optional) The type shall be @code{INTEGER};
the value must be greater than zero and less than or equal to
@code{BIT_SIZE(I)}.
@end multitable
@item @emph{Return value}:
The return value is of type @code{INTEGER} and of the same kind as
@var{I}.
@item @emph{See also}:
@ref{ISHFT}
@end table
@node ISNAN
@section @code{ISNAN} --- Test for a NaN
@fnindex ISNAN
@cindex IEEE, ISNAN
@table @asis
@item @emph{Description}:
@code{ISNAN} tests whether a floating-point value is an IEEE
Not-a-Number (NaN).
@item @emph{Standard}:
GNU extension
@item @emph{Class}:
Elemental function
@item @emph{Syntax}:
@code{ISNAN(X)}
@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{X} @tab Variable of the type @code{REAL}.
@end multitable
@item @emph{Return value}:
Returns a default-kind @code{LOGICAL}. The returned value is @code{TRUE}
if @var{X} is a NaN and @code{FALSE} otherwise.
@item @emph{Example}:
@smallexample
program test_nan
implicit none
real :: x
x = -1.0
x = sqrt(x)
if (isnan(x)) stop '"x" is a NaN'
end program test_nan
@end smallexample
@end table
@node ITIME
@section @code{ITIME} --- Get current local time subroutine (hour/minutes/seconds)
@fnindex ITIME
@cindex time, current
@cindex current time
@table @asis
@item @emph{Description}:
@code{IDATE(VALUES)} Fills @var{VALUES} with the numerical values at the
current local time. The hour (in the range 1-24), minute (in the range 1-60),
and seconds (in the range 1-60) appear in elements 1, 2, and 3 of @var{VALUES},
respectively.
@item @emph{Standard}:
GNU extension
@item @emph{Class}:
Subroutine
@item @emph{Syntax}:
@code{CALL ITIME(VALUES)}
@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{VALUES} @tab The type shall be @code{INTEGER, DIMENSION(3)}
and the kind shall be the default integer kind.
@end multitable
@item @emph{Return value}:
Does not return anything.
@item @emph{Example}:
@smallexample
program test_itime
integer, dimension(3) :: tarray
call itime(tarray)
print *, tarray(1)
print *, tarray(2)
print *, tarray(3)
end program test_itime
@end smallexample
@end table
@node KILL
@section @code{KILL} --- Send a signal to a process
@fnindex KILL
@table @asis
@item @emph{Description}:
@item @emph{Standard}:
Sends the signal specified by @var{SIGNAL} to the process @var{PID}.
See @code{kill(2)}.
This intrinsic is provided in both subroutine and function forms; however,
only one form can be used in any given program unit.
@item @emph{Class}:
Subroutine, function
@item @emph{Syntax}:
@multitable @columnfractions .80
@item @code{CALL KILL(C, VALUE [, STATUS])}
@item @code{STATUS = KILL(C, VALUE)}
@end multitable
@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{C} @tab Shall be a scalar @code{INTEGER}, with
@code{INTENT(IN)}
@item @var{VALUE} @tab Shall be a scalar @code{INTEGER}, with
@code{INTENT(IN)}
@item @var{STATUS} @tab (Optional) status flag of type @code{INTEGER(4)} or
@code{INTEGER(8)}. Returns 0 on success, or a system-specific error code
otherwise.
@end multitable
@item @emph{See also}:
@ref{ABORT}, @ref{EXIT}
@end table
@node KIND
@section @code{KIND} --- Kind of an entity
@fnindex KIND
@cindex kind
@table @asis
@item @emph{Description}:
@code{KIND(X)} returns the kind value of the entity @var{X}.
@item @emph{Standard}:
Fortran 95 and later
@item @emph{Class}:
Inquiry function
@item @emph{Syntax}:
@code{K = KIND(X)}
@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{X} @tab Shall be of type @code{LOGICAL}, @code{INTEGER},
@code{REAL}, @code{COMPLEX} or @code{CHARACTER}.
@end multitable
@item @emph{Return value}:
The return value is a scalar of type @code{INTEGER} and of the default
integer kind.
@item @emph{Example}:
@smallexample
program test_kind
integer,parameter :: kc = kind(' ')
integer,parameter :: kl = kind(.true.)
print *, "The default character kind is ", kc
print *, "The default logical kind is ", kl
end program test_kind
@end smallexample
@end table
@node LBOUND
@section @code{LBOUND} --- Lower dimension bounds of an array
@fnindex LBOUND
@cindex array, lower bound
@table @asis
@item @emph{Description}:
Returns the lower bounds of an array, or a single lower bound
along the @var{DIM} dimension.
@item @emph{Standard}:
Fortran 95 and later, with @var{KIND} argument Fortran 2003 and later
@item @emph{Class}:
Inquiry function
@item @emph{Syntax}:
@code{RESULT = LBOUND(ARRAY [, DIM [, KIND]])}
@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{ARRAY} @tab Shall be an array, of any type.
@item @var{DIM} @tab (Optional) Shall be a scalar @code{INTEGER}.
@item @var{KIND} @tab (Optional) An @code{INTEGER} initialization
expression indicating the kind parameter of the result.
@end multitable
@item @emph{Return value}:
The return value is of type @code{INTEGER} and of kind @var{KIND}. If
@var{KIND} is absent, the return value is of default integer kind.
If @var{DIM} is absent, the result is an array of the lower bounds of
@var{ARRAY}. If @var{DIM} is present, the result is a scalar
corresponding to the lower bound of the array along that dimension. If
@var{ARRAY} is an expression rather than a whole array or array
structure component, or if it has a zero extent along the relevant
dimension, the lower bound is taken to be 1.
@item @emph{See also}:
@ref{UBOUND}, @ref{LCOBOUND}
@end table
@node LCOBOUND
@section @code{LCOBOUND} --- Lower codimension bounds of an array
@fnindex LCOBOUND
@cindex coarray, lower bound
@table @asis
@item @emph{Description}:
Returns the lower bounds of a coarray, or a single lower cobound
along the @var{DIM} codimension.
@item @emph{Standard}:
Fortran 2008 and later
@item @emph{Class}:
Inquiry function
@item @emph{Syntax}:
@code{RESULT = LCOBOUND(COARRAY [, DIM [, KIND]])}
@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{ARRAY} @tab Shall be an coarray, of any type.
@item @var{DIM} @tab (Optional) Shall be a scalar @code{INTEGER}.
@item @var{KIND} @tab (Optional) An @code{INTEGER} initialization
expression indicating the kind parameter of the result.
@end multitable
@item @emph{Return value}:
The return value is of type @code{INTEGER} and of kind @var{KIND}. If
@var{KIND} is absent, the return value is of default integer kind.
If @var{DIM} is absent, the result is an array of the lower cobounds of
@var{COARRAY}. If @var{DIM} is present, the result is a scalar
corresponding to the lower cobound of the array along that codimension.
@item @emph{See also}:
@ref{UCOBOUND}, @ref{LBOUND}
@end table
@node LEADZ
@section @code{LEADZ} --- Number of leading zero bits of an integer
@fnindex LEADZ
@cindex zero bits
@table @asis
@item @emph{Description}:
@code{LEADZ} returns the number of leading zero bits of an integer.
@item @emph{Standard}:
Fortran 2008 and later
@item @emph{Class}:
Elemental function
@item @emph{Syntax}:
@code{RESULT = LEADZ(I)}
@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{I} @tab Shall be of type @code{INTEGER}.
@end multitable
@item @emph{Return value}:
The type of the return value is the default @code{INTEGER}.
If all the bits of @code{I} are zero, the result value is @code{BIT_SIZE(I)}.
@item @emph{Example}:
@smallexample
PROGRAM test_leadz
WRITE (*,*) BIT_SIZE(1) ! prints 32
WRITE (*,*) LEADZ(1) ! prints 31
END PROGRAM
@end smallexample
@item @emph{See also}:
@ref{BIT_SIZE}, @ref{TRAILZ}, @ref{POPCNT}, @ref{POPPAR}
@end table
@node LEN
@section @code{LEN} --- Length of a character entity
@fnindex LEN
@cindex string, length
@table @asis
@item @emph{Description}:
Returns the length of a character string. If @var{STRING} is an array,
the length of an element of @var{STRING} is returned. Note that
@var{STRING} need not be defined when this intrinsic is invoked, since
only the length, not the content, of @var{STRING} is needed.
@item @emph{Standard}:
Fortran 77 and later, with @var{KIND} argument Fortran 2003 and later
@item @emph{Class}:
Inquiry function
@item @emph{Syntax}:
@code{L = LEN(STRING [, KIND])}
@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{STRING} @tab Shall be a scalar or array of type
@code{CHARACTER}, with @code{INTENT(IN)}
@item @var{KIND} @tab (Optional) An @code{INTEGER} initialization
expression indicating the kind parameter of the result.
@end multitable
@item @emph{Return value}:
The return value is of type @code{INTEGER} and of kind @var{KIND}. If
@var{KIND} is absent, the return value is of default integer kind.
@item @emph{Specific names}:
@multitable @columnfractions .20 .20 .20 .25
@item Name @tab Argument @tab Return type @tab Standard
@item @code{LEN(STRING)} @tab @code{CHARACTER} @tab @code{INTEGER} @tab Fortran 77 and later
@end multitable
@item @emph{See also}:
@ref{LEN_TRIM}, @ref{ADJUSTL}, @ref{ADJUSTR}
@end table
@node LEN_TRIM
@section @code{LEN_TRIM} --- Length of a character entity without trailing blank characters
@fnindex LEN_TRIM
@cindex string, length, without trailing whitespace
@table @asis
@item @emph{Description}:
Returns the length of a character string, ignoring any trailing blanks.
@item @emph{Standard}:
Fortran 95 and later, with @var{KIND} argument Fortran 2003 and later
@item @emph{Class}:
Elemental function
@item @emph{Syntax}:
@code{RESULT = LEN_TRIM(STRING [, KIND])}
@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{STRING} @tab Shall be a scalar of type @code{CHARACTER},
with @code{INTENT(IN)}
@item @var{KIND} @tab (Optional) An @code{INTEGER} initialization
expression indicating the kind parameter of the result.
@end multitable
@item @emph{Return value}:
The return value is of type @code{INTEGER} and of kind @var{KIND}. If
@var{KIND} is absent, the return value is of default integer kind.
@item @emph{See also}:
@ref{LEN}, @ref{ADJUSTL}, @ref{ADJUSTR}
@end table
@node LGE
@section @code{LGE} --- Lexical greater than or equal
@fnindex LGE
@cindex lexical comparison of strings
@cindex string, comparison
@table @asis
@item @emph{Description}:
Determines whether one string is lexically greater than or equal to
another string, where the two strings are interpreted as containing
ASCII character codes. If the String A and String B are not the same
length, the shorter is compared as if spaces were appended to it to form
a value that has the same length as the longer.
In general, the lexical comparison intrinsics @code{LGE}, @code{LGT},
@code{LLE}, and @code{LLT} differ from the corresponding intrinsic
operators @code{.GE.}, @code{.GT.}, @code{.LE.}, and @code{.LT.}, in
that the latter use the processor's character ordering (which is not
ASCII on some targets), whereas the former always use the ASCII
ordering.
@item @emph{Standard}:
Fortran 77 and later
@item @emph{Class}:
Elemental function
@item @emph{Syntax}:
@code{RESULT = LGE(STRING_A, STRING_B)}
@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{STRING_A} @tab Shall be of default @code{CHARACTER} type.
@item @var{STRING_B} @tab Shall be of default @code{CHARACTER} type.
@end multitable
@item @emph{Return value}:
Returns @code{.TRUE.} if @code{STRING_A >= STRING_B}, and @code{.FALSE.}
otherwise, based on the ASCII ordering.
@item @emph{Specific names}:
@multitable @columnfractions .20 .20 .20 .25
@item Name @tab Argument @tab Return type @tab Standard
@item @code{LGE(STRING_A, STRING_B)} @tab @code{CHARACTER} @tab @code{LOGICAL} @tab Fortran 77 and later
@end multitable
@item @emph{See also}:
@ref{LGT}, @ref{LLE}, @ref{LLT}
@end table
@node LGT
@section @code{LGT} --- Lexical greater than
@fnindex LGT
@cindex lexical comparison of strings
@cindex string, comparison
@table @asis
@item @emph{Description}:
Determines whether one string is lexically greater than another string,
where the two strings are interpreted as containing ASCII character
codes. If the String A and String B are not the same length, the
shorter is compared as if spaces were appended to it to form a value
that has the same length as the longer.
In general, the lexical comparison intrinsics @code{LGE}, @code{LGT},
@code{LLE}, and @code{LLT} differ from the corresponding intrinsic
operators @code{.GE.}, @code{.GT.}, @code{.LE.}, and @code{.LT.}, in
that the latter use the processor's character ordering (which is not
ASCII on some targets), whereas the former always use the ASCII
ordering.
@item @emph{Standard}:
Fortran 77 and later
@item @emph{Class}:
Elemental function
@item @emph{Syntax}:
@code{RESULT = LGT(STRING_A, STRING_B)}
@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{STRING_A} @tab Shall be of default @code{CHARACTER} type.
@item @var{STRING_B} @tab Shall be of default @code{CHARACTER} type.
@end multitable
@item @emph{Return value}:
Returns @code{.TRUE.} if @code{STRING_A > STRING_B}, and @code{.FALSE.}
otherwise, based on the ASCII ordering.
@item @emph{Specific names}:
@multitable @columnfractions .20 .20 .20 .25
@item Name @tab Argument @tab Return type @tab Standard
@item @code{LGT(STRING_A, STRING_B)} @tab @code{CHARACTER} @tab @code{LOGICAL} @tab Fortran 77 and later
@end multitable
@item @emph{See also}:
@ref{LGE}, @ref{LLE}, @ref{LLT}
@end table
@node LINK
@section @code{LINK} --- Create a hard link
@fnindex LINK
@cindex file system, create link
@cindex file system, hard link
@table @asis
@item @emph{Description}:
Makes a (hard) link from file @var{PATH1} to @var{PATH2}. A null
character (@code{CHAR(0)}) can be used to mark the end of the names in
@var{PATH1} and @var{PATH2}; otherwise, trailing blanks in the file
names are ignored. If the @var{STATUS} argument is supplied, it
contains 0 on success or a nonzero error code upon return; see
@code{link(2)}.
This intrinsic is provided in both subroutine and function forms;
however, only one form can be used in any given program unit.
@item @emph{Standard}:
GNU extension
@item @emph{Class}:
Subroutine, function
@item @emph{Syntax}:
@multitable @columnfractions .80
@item @code{CALL LINK(PATH1, PATH2 [, STATUS])}
@item @code{STATUS = LINK(PATH1, PATH2)}
@end multitable
@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{PATH1} @tab Shall be of default @code{CHARACTER} type.
@item @var{PATH2} @tab Shall be of default @code{CHARACTER} type.
@item @var{STATUS} @tab (Optional) Shall be of default @code{INTEGER} type.
@end multitable
@item @emph{See also}:
@ref{SYMLNK}, @ref{UNLINK}
@end table
@node LLE
@section @code{LLE} --- Lexical less than or equal
@fnindex LLE
@cindex lexical comparison of strings
@cindex string, comparison
@table @asis
@item @emph{Description}:
Determines whether one string is lexically less than or equal to another
string, where the two strings are interpreted as containing ASCII
character codes. If the String A and String B are not the same length,
the shorter is compared as if spaces were appended to it to form a value
that has the same length as the longer.
In general, the lexical comparison intrinsics @code{LGE}, @code{LGT},
@code{LLE}, and @code{LLT} differ from the corresponding intrinsic
operators @code{.GE.}, @code{.GT.}, @code{.LE.}, and @code{.LT.}, in
that the latter use the processor's character ordering (which is not
ASCII on some targets), whereas the former always use the ASCII
ordering.
@item @emph{Standard}:
Fortran 77 and later
@item @emph{Class}:
Elemental function
@item @emph{Syntax}:
@code{RESULT = LLE(STRING_A, STRING_B)}
@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{STRING_A} @tab Shall be of default @code{CHARACTER} type.
@item @var{STRING_B} @tab Shall be of default @code{CHARACTER} type.
@end multitable
@item @emph{Return value}:
Returns @code{.TRUE.} if @code{STRING_A <= STRING_B}, and @code{.FALSE.}
otherwise, based on the ASCII ordering.
@item @emph{Specific names}:
@multitable @columnfractions .20 .20 .20 .25
@item Name @tab Argument @tab Return type @tab Standard
@item @code{LLE(STRING_A, STRING_B)} @tab @code{CHARACTER} @tab @code{LOGICAL} @tab Fortran 77 and later
@end multitable
@item @emph{See also}:
@ref{LGE}, @ref{LGT}, @ref{LLT}
@end table
@node LLT
@section @code{LLT} --- Lexical less than
@fnindex LLT
@cindex lexical comparison of strings
@cindex string, comparison
@table @asis
@item @emph{Description}:
Determines whether one string is lexically less than another string,
where the two strings are interpreted as containing ASCII character
codes. If the String A and String B are not the same length, the
shorter is compared as if spaces were appended to it to form a value
that has the same length as the longer.
In general, the lexical comparison intrinsics @code{LGE}, @code{LGT},
@code{LLE}, and @code{LLT} differ from the corresponding intrinsic
operators @code{.GE.}, @code{.GT.}, @code{.LE.}, and @code{.LT.}, in
that the latter use the processor's character ordering (which is not
ASCII on some targets), whereas the former always use the ASCII
ordering.
@item @emph{Standard}:
Fortran 77 and later
@item @emph{Class}:
Elemental function
@item @emph{Syntax}:
@code{RESULT = LLT(STRING_A, STRING_B)}
@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{STRING_A} @tab Shall be of default @code{CHARACTER} type.
@item @var{STRING_B} @tab Shall be of default @code{CHARACTER} type.
@end multitable
@item @emph{Return value}:
Returns @code{.TRUE.} if @code{STRING_A < STRING_B}, and @code{.FALSE.}
otherwise, based on the ASCII ordering.
@item @emph{Specific names}:
@multitable @columnfractions .20 .20 .20 .25
@item Name @tab Argument @tab Return type @tab Standard
@item @code{LLT(STRING_A, STRING_B)} @tab @code{CHARACTER} @tab @code{LOGICAL} @tab Fortran 77 and later
@end multitable
@item @emph{See also}:
@ref{LGE}, @ref{LGT}, @ref{LLE}
@end table
@node LNBLNK
@section @code{LNBLNK} --- Index of the last non-blank character in a string
@fnindex LNBLNK
@cindex string, find non-blank character
@table @asis
@item @emph{Description}:
Returns the length of a character string, ignoring any trailing blanks.
This is identical to the standard @code{LEN_TRIM} intrinsic, and is only
included for backwards compatibility.
@item @emph{Standard}:
GNU extension
@item @emph{Class}:
Elemental function
@item @emph{Syntax}:
@code{RESULT = LNBLNK(STRING)}
@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{STRING} @tab Shall be a scalar of type @code{CHARACTER},
with @code{INTENT(IN)}
@end multitable
@item @emph{Return value}:
The return value is of @code{INTEGER(kind=4)} type.
@item @emph{See also}:
@ref{INDEX intrinsic}, @ref{LEN_TRIM}
@end table
@node LOC
@section @code{LOC} --- Returns the address of a variable
@fnindex LOC
@cindex location of a variable in memory
@table @asis
@item @emph{Description}:
@code{LOC(X)} returns the address of @var{X} as an integer.
@item @emph{Standard}:
GNU extension
@item @emph{Class}:
Inquiry function
@item @emph{Syntax}:
@code{RESULT = LOC(X)}
@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{X} @tab Variable of any type.
@end multitable
@item @emph{Return value}:
The return value is of type @code{INTEGER}, with a @code{KIND}
corresponding to the size (in bytes) of a memory address on the target
machine.
@item @emph{Example}:
@smallexample
program test_loc
integer :: i
real :: r
i = loc(r)
print *, i
end program test_loc
@end smallexample
@end table
@node LOG
@section @code{LOG} --- Natural logarithm function
@fnindex LOG
@fnindex ALOG
@fnindex DLOG
@fnindex CLOG
@fnindex ZLOG
@fnindex CDLOG
@cindex exponential function, inverse
@cindex logarithm function
@cindex natural logarithm function
@table @asis
@item @emph{Description}:
@code{LOG(X)} computes the natural logarithm of @var{X}, i.e. the
logarithm to the base @math{e}.
@item @emph{Standard}:
Fortran 77 and later
@item @emph{Class}:
Elemental function
@item @emph{Syntax}:
@code{RESULT = LOG(X)}
@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{X} @tab The type shall be @code{REAL} or
@code{COMPLEX}.
@end multitable
@item @emph{Return value}:
The return value is of type @code{REAL} or @code{COMPLEX}.
The kind type parameter is the same as @var{X}.
If @var{X} is @code{COMPLEX}, the imaginary part @math{\omega} is in the range
@math{-\pi \leq \omega \leq \pi}.
@item @emph{Example}:
@smallexample
program test_log
real(8) :: x = 2.7182818284590451_8
complex :: z = (1.0, 2.0)
x = log(x) ! will yield (approximately) 1
z = log(z)
end program test_log
@end smallexample
@item @emph{Specific names}:
@multitable @columnfractions .20 .20 .20 .25
@item Name @tab Argument @tab Return type @tab Standard
@item @code{ALOG(X)} @tab @code{REAL(4) X} @tab @code{REAL(4)} @tab f95, gnu
@item @code{DLOG(X)} @tab @code{REAL(8) X} @tab @code{REAL(8)} @tab f95, gnu
@item @code{CLOG(X)} @tab @code{COMPLEX(4) X} @tab @code{COMPLEX(4)} @tab f95, gnu
@item @code{ZLOG(X)} @tab @code{COMPLEX(8) X} @tab @code{COMPLEX(8)} @tab f95, gnu
@item @code{CDLOG(X)} @tab @code{COMPLEX(8) X} @tab @code{COMPLEX(8)} @tab f95, gnu
@end multitable
@end table
@node LOG10
@section @code{LOG10} --- Base 10 logarithm function
@fnindex LOG10
@fnindex ALOG10
@fnindex DLOG10
@cindex exponential function, inverse
@cindex logarithm function with base 10
@cindex base 10 logarithm function
@table @asis
@item @emph{Description}:
@code{LOG10(X)} computes the base 10 logarithm of @var{X}.
@item @emph{Standard}:
Fortran 77 and later
@item @emph{Class}:
Elemental function
@item @emph{Syntax}:
@code{RESULT = LOG10(X)}
@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{X} @tab The type shall be @code{REAL}.
@end multitable
@item @emph{Return value}:
The return value is of type @code{REAL} or @code{COMPLEX}.
The kind type parameter is the same as @var{X}.
@item @emph{Example}:
@smallexample
program test_log10
real(8) :: x = 10.0_8
x = log10(x)
end program test_log10
@end smallexample
@item @emph{Specific names}:
@multitable @columnfractions .20 .20 .20 .25
@item Name @tab Argument @tab Return type @tab Standard
@item @code{ALOG10(X)} @tab @code{REAL(4) X} @tab @code{REAL(4)} @tab Fortran 95 and later
@item @code{DLOG10(X)} @tab @code{REAL(8) X} @tab @code{REAL(8)} @tab Fortran 95 and later
@end multitable
@end table
@node LOG_GAMMA
@section @code{LOG_GAMMA} --- Logarithm of the Gamma function
@fnindex LOG_GAMMA
@fnindex LGAMMA
@fnindex ALGAMA
@fnindex DLGAMA
@cindex Gamma function, logarithm of
@table @asis
@item @emph{Description}:
@code{LOG_GAMMA(X)} computes the natural logarithm of the absolute value
of the Gamma (@math{\Gamma}) function.
@item @emph{Standard}:
Fortran 2008 and later
@item @emph{Class}:
Elemental function
@item @emph{Syntax}:
@code{X = LOG_GAMMA(X)}
@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{X} @tab Shall be of type @code{REAL} and neither zero
nor a negative integer.
@end multitable
@item @emph{Return value}:
The return value is of type @code{REAL} of the same kind as @var{X}.
@item @emph{Example}:
@smallexample
program test_log_gamma
real :: x = 1.0
x = lgamma(x) ! returns 0.0
end program test_log_gamma
@end smallexample
@item @emph{Specific names}:
@multitable @columnfractions .20 .20 .20 .25
@item Name @tab Argument @tab Return type @tab Standard
@item @code{LGAMMA(X)} @tab @code{REAL(4) X} @tab @code{REAL(4)} @tab GNU Extension
@item @code{ALGAMA(X)} @tab @code{REAL(4) X} @tab @code{REAL(4)} @tab GNU Extension
@item @code{DLGAMA(X)} @tab @code{REAL(8) X} @tab @code{REAL(8)} @tab GNU Extension
@end multitable
@item @emph{See also}:
Gamma function: @ref{GAMMA}
@end table
@node LOGICAL
@section @code{LOGICAL} --- Convert to logical type
@fnindex LOGICAL
@cindex conversion, to logical
@table @asis
@item @emph{Description}:
Converts one kind of @code{LOGICAL} variable to another.
@item @emph{Standard}:
Fortran 95 and later
@item @emph{Class}:
Elemental function
@item @emph{Syntax}:
@code{RESULT = LOGICAL(L [, KIND])}
@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{L} @tab The type shall be @code{LOGICAL}.
@item @var{KIND} @tab (Optional) An @code{INTEGER} initialization
expression indicating the kind parameter of the result.
@end multitable
@item @emph{Return value}:
The return value is a @code{LOGICAL} value equal to @var{L}, with a
kind corresponding to @var{KIND}, or of the default logical kind if
@var{KIND} is not given.
@item @emph{See also}:
@ref{INT}, @ref{REAL}, @ref{CMPLX}
@end table
@node LONG
@section @code{LONG} --- Convert to integer type
@fnindex LONG
@cindex conversion, to integer
@table @asis
@item @emph{Description}:
Convert to a @code{KIND=4} integer type, which is the same size as a C
@code{long} integer. This is equivalent to the standard @code{INT}
intrinsic with an optional argument of @code{KIND=4}, and is only
included for backwards compatibility.
@item @emph{Standard}:
GNU extension
@item @emph{Class}:
Elemental function
@item @emph{Syntax}:
@code{RESULT = LONG(A)}
@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{A} @tab Shall be of type @code{INTEGER},
@code{REAL}, or @code{COMPLEX}.
@end multitable
@item @emph{Return value}:
The return value is a @code{INTEGER(4)} variable.
@item @emph{See also}:
@ref{INT}, @ref{INT2}, @ref{INT8}
@end table
@node LSHIFT
@section @code{LSHIFT} --- Left shift bits
@fnindex LSHIFT
@cindex bits, shift left
@table @asis
@item @emph{Description}:
@code{LSHIFT} returns a value corresponding to @var{I} with all of the
bits shifted left by @var{SHIFT} places. If the absolute value of
@var{SHIFT} is greater than @code{BIT_SIZE(I)}, the value is undefined.
Bits shifted out from the left end are lost; zeros are shifted in from
the opposite end.
This function has been superseded by the @code{ISHFT} intrinsic, which
is standard in Fortran 95 and later, and the @code{SHIFTL} intrinsic,
which is standard in Fortran 2008 and later.
@item @emph{Standard}:
GNU extension
@item @emph{Class}:
Elemental function
@item @emph{Syntax}:
@code{RESULT = LSHIFT(I, SHIFT)}
@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{I} @tab The type shall be @code{INTEGER}.
@item @var{SHIFT} @tab The type shall be @code{INTEGER}.
@end multitable
@item @emph{Return value}:
The return value is of type @code{INTEGER} and of the same kind as
@var{I}.
@item @emph{See also}:
@ref{ISHFT}, @ref{ISHFTC}, @ref{RSHIFT}, @ref{SHIFTA}, @ref{SHIFTL},
@ref{SHIFTR}
@end table
@node LSTAT
@section @code{LSTAT} --- Get file status
@fnindex LSTAT
@cindex file system, file status
@table @asis
@item @emph{Description}:
@code{LSTAT} is identical to @ref{STAT}, except that if path is a
symbolic link, then the link itself is statted, not the file that it
refers to.
The elements in @code{VALUES} are the same as described by @ref{STAT}.
This intrinsic is provided in both subroutine and function forms;
however, only one form can be used in any given program unit.
@item @emph{Standard}:
GNU extension
@item @emph{Class}:
Subroutine, function
@item @emph{Syntax}:
@multitable @columnfractions .80
@item @code{CALL LSTAT(NAME, VALUES [, STATUS])}
@item @code{STATUS = LSTAT(NAME, VALUES)}
@end multitable
@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{NAME} @tab The type shall be @code{CHARACTER} of the default
kind, a valid path within the file system.
@item @var{VALUES} @tab The type shall be @code{INTEGER(4), DIMENSION(13)}.
@item @var{STATUS} @tab (Optional) status flag of type @code{INTEGER(4)}.
Returns 0 on success and a system specific error code otherwise.
@end multitable
@item @emph{Example}:
See @ref{STAT} for an example.
@item @emph{See also}:
To stat an open file: @ref{FSTAT}, to stat a file: @ref{STAT}
@end table
@node LTIME
@section @code{LTIME} --- Convert time to local time info
@fnindex LTIME
@cindex time, conversion to local time info
@table @asis
@item @emph{Description}:
Given a system time value @var{TIME} (as provided by the @code{TIME8}
intrinsic), fills @var{VALUES} with values extracted from it appropriate
to the local time zone using @code{localtime(3)}.
@item @emph{Standard}:
GNU extension
@item @emph{Class}:
Subroutine
@item @emph{Syntax}:
@code{CALL LTIME(TIME, VALUES)}
@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{TIME} @tab An @code{INTEGER} scalar expression
corresponding to a system time, with @code{INTENT(IN)}.
@item @var{VALUES} @tab A default @code{INTEGER} array with 9 elements,
with @code{INTENT(OUT)}.
@end multitable
@item @emph{Return value}:
The elements of @var{VALUES} are assigned as follows:
@enumerate
@item Seconds after the minute, range 0--59 or 0--61 to allow for leap
seconds
@item Minutes after the hour, range 0--59
@item Hours past midnight, range 0--23
@item Day of month, range 0--31
@item Number of months since January, range 0--12
@item Years since 1900
@item Number of days since Sunday, range 0--6
@item Days since January 1
@item Daylight savings indicator: positive if daylight savings is in
effect, zero if not, and negative if the information is not available.
@end enumerate
@item @emph{See also}:
@ref{CTIME}, @ref{GMTIME}, @ref{TIME}, @ref{TIME8}
@end table
@node MALLOC
@section @code{MALLOC} --- Allocate dynamic memory
@fnindex MALLOC
@cindex pointer, cray
@table @asis
@item @emph{Description}:
@code{MALLOC(SIZE)} allocates @var{SIZE} bytes of dynamic memory and
returns the address of the allocated memory. The @code{MALLOC} intrinsic
is an extension intended to be used with Cray pointers, and is provided
in GNU Fortran to allow the user to compile legacy code. For new code
using Fortran 95 pointers, the memory allocation intrinsic is
@code{ALLOCATE}.
@item @emph{Standard}:
GNU extension
@item @emph{Class}:
Function
@item @emph{Syntax}:
@code{PTR = MALLOC(SIZE)}
@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{SIZE} @tab The type shall be @code{INTEGER}.
@end multitable
@item @emph{Return value}:
The return value is of type @code{INTEGER(K)}, with @var{K} such that
variables of type @code{INTEGER(K)} have the same size as
C pointers (@code{sizeof(void *)}).
@item @emph{Example}:
The following example demonstrates the use of @code{MALLOC} and
@code{FREE} with Cray pointers.
@smallexample
program test_malloc
implicit none
integer i
real*8 x(*), z
pointer(ptr_x,x)
ptr_x = malloc(20*8)
do i = 1, 20
x(i) = sqrt(1.0d0 / i)
end do
z = 0
do i = 1, 20
z = z + x(i)
print *, z
end do
call free(ptr_x)
end program test_malloc
@end smallexample
@item @emph{See also}:
@ref{FREE}
@end table
@node MASKL
@section @code{MASKL} --- Left justified mask
@fnindex MASKL
@cindex mask, left justified
@table @asis
@item @emph{Description}:
@code{MASKL(I[, KIND])} has its leftmost @var{I} bits set to 1, and the
remaining bits set to 0.
@item @emph{Standard}:
Fortran 2008 and later
@item @emph{Class}:
Elemental function
@item @emph{Syntax}:
@code{RESULT = MASKL(I[, KIND])}
@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{I} @tab Shall be of type @code{INTEGER}.
@item @var{KIND} @tab Shall be a scalar constant expression of type
@code{INTEGER}.
@end multitable
@item @emph{Return value}:
The return value is of type @code{INTEGER}. If @var{KIND} is present, it
specifies the kind value of the return type; otherwise, it is of the
default integer kind.
@item @emph{See also}:
@ref{MASKR}
@end table
@node MASKR
@section @code{MASKR} --- Right justified mask
@fnindex MASKR
@cindex mask, right justified
@table @asis
@item @emph{Description}:
@code{MASKL(I[, KIND])} has its rightmost @var{I} bits set to 1, and the
remaining bits set to 0.
@item @emph{Standard}:
Fortran 2008 and later
@item @emph{Class}:
Elemental function
@item @emph{Syntax}:
@code{RESULT = MASKR(I[, KIND])}
@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{I} @tab Shall be of type @code{INTEGER}.
@item @var{KIND} @tab Shall be a scalar constant expression of type
@code{INTEGER}.
@end multitable
@item @emph{Return value}:
The return value is of type @code{INTEGER}. If @var{KIND} is present, it
specifies the kind value of the return type; otherwise, it is of the
default integer kind.
@item @emph{See also}:
@ref{MASKL}
@end table
@node MATMUL
@section @code{MATMUL} --- matrix multiplication
@fnindex MATMUL
@cindex matrix multiplication
@cindex product, matrix
@table @asis
@item @emph{Description}:
Performs a matrix multiplication on numeric or logical arguments.
@item @emph{Standard}:
Fortran 95 and later
@item @emph{Class}:
Transformational function
@item @emph{Syntax}:
@code{RESULT = MATMUL(MATRIX_A, MATRIX_B)}
@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{MATRIX_A} @tab An array of @code{INTEGER},
@code{REAL}, @code{COMPLEX}, or @code{LOGICAL} type, with a rank of
one or two.
@item @var{MATRIX_B} @tab An array of @code{INTEGER},
@code{REAL}, or @code{COMPLEX} type if @var{MATRIX_A} is of a numeric
type; otherwise, an array of @code{LOGICAL} type. The rank shall be one
or two, and the first (or only) dimension of @var{MATRIX_B} shall be
equal to the last (or only) dimension of @var{MATRIX_A}.
@end multitable
@item @emph{Return value}:
The matrix product of @var{MATRIX_A} and @var{MATRIX_B}. The type and
kind of the result follow the usual type and kind promotion rules, as
for the @code{*} or @code{.AND.} operators.
@item @emph{See also}:
@end table
@node MAX
@section @code{MAX} --- Maximum value of an argument list
@fnindex MAX
@fnindex MAX0
@fnindex AMAX0
@fnindex MAX1
@fnindex AMAX1
@fnindex DMAX1
@cindex maximum value
@table @asis
@item @emph{Description}:
Returns the argument with the largest (most positive) value.
@item @emph{Standard}:
Fortran 77 and later
@item @emph{Class}:
Elemental function
@item @emph{Syntax}:
@code{RESULT = MAX(A1, A2 [, A3 [, ...]])}
@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{A1} @tab The type shall be @code{INTEGER} or
@code{REAL}.
@item @var{A2}, @var{A3}, ... @tab An expression of the same type and kind
as @var{A1}. (As a GNU extension, arguments of different kinds are
permitted.)
@end multitable
@item @emph{Return value}:
The return value corresponds to the maximum value among the arguments,
and has the same type and kind as the first argument.
@item @emph{Specific names}:
@multitable @columnfractions .20 .20 .20 .25
@item Name @tab Argument @tab Return type @tab Standard
@item @code{MAX0(A1)} @tab @code{INTEGER(4) A1} @tab @code{INTEGER(4)} @tab Fortran 77 and later
@item @code{AMAX0(A1)} @tab @code{INTEGER(4) A1} @tab @code{REAL(MAX(X))} @tab Fortran 77 and later
@item @code{MAX1(A1)} @tab @code{REAL A1} @tab @code{INT(MAX(X))} @tab Fortran 77 and later
@item @code{AMAX1(A1)} @tab @code{REAL(4) A1} @tab @code{REAL(4)} @tab Fortran 77 and later
@item @code{DMAX1(A1)} @tab @code{REAL(8) A1} @tab @code{REAL(8)} @tab Fortran 77 and later
@end multitable
@item @emph{See also}:
@ref{MAXLOC} @ref{MAXVAL}, @ref{MIN}
@end table
@node MAXEXPONENT
@section @code{MAXEXPONENT} --- Maximum exponent of a real kind
@fnindex MAXEXPONENT
@cindex model representation, maximum exponent
@table @asis
@item @emph{Description}:
@code{MAXEXPONENT(X)} returns the maximum exponent in the model of the
type of @code{X}.
@item @emph{Standard}:
Fortran 95 and later
@item @emph{Class}:
Inquiry function
@item @emph{Syntax}:
@code{RESULT = MAXEXPONENT(X)}
@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{X} @tab Shall be of type @code{REAL}.
@end multitable
@item @emph{Return value}:
The return value is of type @code{INTEGER} and of the default integer
kind.
@item @emph{Example}:
@smallexample
program exponents
real(kind=4) :: x
real(kind=8) :: y
print *, minexponent(x), maxexponent(x)
print *, minexponent(y), maxexponent(y)
end program exponents
@end smallexample
@end table
@node MAXLOC
@section @code{MAXLOC} --- Location of the maximum value within an array
@fnindex MAXLOC
@cindex array, location of maximum element
@table @asis
@item @emph{Description}:
Determines the location of the element in the array with the maximum
value, or, if the @var{DIM} argument is supplied, determines the
locations of the maximum element along each row of the array in the
@var{DIM} direction. If @var{MASK} is present, only the elements for
which @var{MASK} is @code{.TRUE.} are considered. If more than one
element in the array has the maximum value, the location returned is
that of the first such element in array element order. If the array has
zero size, or all of the elements of @var{MASK} are @code{.FALSE.}, then
the result is an array of zeroes. Similarly, if @var{DIM} is supplied
and all of the elements of @var{MASK} along a given row are zero, the
result value for that row is zero.
@item @emph{Standard}:
Fortran 95 and later
@item @emph{Class}:
Transformational function
@item @emph{Syntax}:
@multitable @columnfractions .80
@item @code{RESULT = MAXLOC(ARRAY, DIM [, MASK])}
@item @code{RESULT = MAXLOC(ARRAY [, MASK])}
@end multitable
@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{ARRAY} @tab Shall be an array of type @code{INTEGER} or
@code{REAL}.
@item @var{DIM} @tab (Optional) Shall be a scalar of type
@code{INTEGER}, with a value between one and the rank of @var{ARRAY},
inclusive. It may not be an optional dummy argument.
@item @var{MASK} @tab Shall be an array of type @code{LOGICAL},
and conformable with @var{ARRAY}.
@end multitable
@item @emph{Return value}:
If @var{DIM} is absent, the result is a rank-one array with a length
equal to the rank of @var{ARRAY}. If @var{DIM} is present, the result
is an array with a rank one less than the rank of @var{ARRAY}, and a
size corresponding to the size of @var{ARRAY} with the @var{DIM}
dimension removed. If @var{DIM} is present and @var{ARRAY} has a rank
of one, the result is a scalar. In all cases, the result is of default
@code{INTEGER} type.
@item @emph{See also}:
@ref{MAX}, @ref{MAXVAL}
@end table
@node MAXVAL
@section @code{MAXVAL} --- Maximum value of an array
@fnindex MAXVAL
@cindex array, maximum value
@cindex maximum value
@table @asis
@item @emph{Description}:
Determines the maximum value of the elements in an array value, or, if
the @var{DIM} argument is supplied, determines the maximum value along
each row of the array in the @var{DIM} direction. If @var{MASK} is
present, only the elements for which @var{MASK} is @code{.TRUE.} are
considered. If the array has zero size, or all of the elements of
@var{MASK} are @code{.FALSE.}, then the result is @code{-HUGE(ARRAY)}
if @var{ARRAY} is numeric, or a string of nulls if @var{ARRAY} is of character
type.
@item @emph{Standard}:
Fortran 95 and later
@item @emph{Class}:
Transformational function
@item @emph{Syntax}:
@multitable @columnfractions .80
@item @code{RESULT = MAXVAL(ARRAY, DIM [, MASK])}
@item @code{RESULT = MAXVAL(ARRAY [, MASK])}
@end multitable
@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{ARRAY} @tab Shall be an array of type @code{INTEGER} or
@code{REAL}.
@item @var{DIM} @tab (Optional) Shall be a scalar of type
@code{INTEGER}, with a value between one and the rank of @var{ARRAY},
inclusive. It may not be an optional dummy argument.
@item @var{MASK} @tab Shall be an array of type @code{LOGICAL},
and conformable with @var{ARRAY}.
@end multitable
@item @emph{Return value}:
If @var{DIM} is absent, or if @var{ARRAY} has a rank of one, the result
is a scalar. If @var{DIM} is present, the result is an array with a
rank one less than the rank of @var{ARRAY}, and a size corresponding to
the size of @var{ARRAY} with the @var{DIM} dimension removed. In all
cases, the result is of the same type and kind as @var{ARRAY}.
@item @emph{See also}:
@ref{MAX}, @ref{MAXLOC}
@end table
@node MCLOCK
@section @code{MCLOCK} --- Time function
@fnindex MCLOCK
@cindex time, clock ticks
@cindex clock ticks
@table @asis
@item @emph{Description}:
Returns the number of clock ticks since the start of the process, based
on the function @code{clock(3)} in the C standard library.
This intrinsic is not fully portable, such as to systems with 32-bit
@code{INTEGER} types but supporting times wider than 32 bits. Therefore,
the values returned by this intrinsic might be, or become, negative, or
numerically less than previous values, during a single run of the
compiled program.
@item @emph{Standard}:
GNU extension
@item @emph{Class}:
Function
@item @emph{Syntax}:
@code{RESULT = MCLOCK()}
@item @emph{Return value}:
The return value is a scalar of type @code{INTEGER(4)}, equal to the
number of clock ticks since the start of the process, or @code{-1} if
the system does not support @code{clock(3)}.
@item @emph{See also}:
@ref{CTIME}, @ref{GMTIME}, @ref{LTIME}, @ref{MCLOCK}, @ref{TIME}
@end table
@node MCLOCK8
@section @code{MCLOCK8} --- Time function (64-bit)
@fnindex MCLOCK8
@cindex time, clock ticks
@cindex clock ticks
@table @asis
@item @emph{Description}:
Returns the number of clock ticks since the start of the process, based
on the function @code{clock(3)} in the C standard library.
@emph{Warning:} this intrinsic does not increase the range of the timing
values over that returned by @code{clock(3)}. On a system with a 32-bit
@code{clock(3)}, @code{MCLOCK8} will return a 32-bit value, even though
it is converted to a 64-bit @code{INTEGER(8)} value. That means
overflows of the 32-bit value can still occur. Therefore, the values
returned by this intrinsic might be or become negative or numerically
less than previous values during a single run of the compiled program.
@item @emph{Standard}:
GNU extension
@item @emph{Class}:
Function
@item @emph{Syntax}:
@code{RESULT = MCLOCK8()}
@item @emph{Return value}:
The return value is a scalar of type @code{INTEGER(8)}, equal to the
number of clock ticks since the start of the process, or @code{-1} if
the system does not support @code{clock(3)}.
@item @emph{See also}:
@ref{CTIME}, @ref{GMTIME}, @ref{LTIME}, @ref{MCLOCK}, @ref{TIME8}
@end table
@node MERGE
@section @code{MERGE} --- Merge variables
@fnindex MERGE
@cindex array, merge arrays
@cindex array, combine arrays
@table @asis
@item @emph{Description}:
Select values from two arrays according to a logical mask. The result
is equal to @var{TSOURCE} if @var{MASK} is @code{.TRUE.}, or equal to
@var{FSOURCE} if it is @code{.FALSE.}.
@item @emph{Standard}:
Fortran 95 and later
@item @emph{Class}:
Elemental function
@item @emph{Syntax}:
@code{RESULT = MERGE(TSOURCE, FSOURCE, MASK)}
@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{TSOURCE} @tab May be of any type.
@item @var{FSOURCE} @tab Shall be of the same type and type parameters
as @var{TSOURCE}.
@item @var{MASK} @tab Shall be of type @code{LOGICAL}.
@end multitable
@item @emph{Return value}:
The result is of the same type and type parameters as @var{TSOURCE}.
@end table
@node MERGE_BITS
@section @code{MERGE_BITS} --- Merge of bits under mask
@fnindex MERGE_BITS
@cindex bits, merge
@table @asis
@item @emph{Description}:
@code{MERGE_BITS(I, J, MASK)} merges the bits of @var{I} and @var{J}
as determined by the mask. The i-th bit of the result is equal to the
i-th bit of @var{I} if the i-th bit of @var{MASK} is 1; it is equal to
the i-th bit of @var{J} otherwise.
@item @emph{Standard}:
Fortran 2008 and later
@item @emph{Class}:
Elemental function
@item @emph{Syntax}:
@code{RESULT = MERGE_BITS(I, J, MASK)}
@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{I} @tab Shall be of type @code{INTEGER}.
@item @var{J} @tab Shall be of type @code{INTEGER} and of the same
kind as @var{I}.
@item @var{MASK} @tab Shall be of type @code{INTEGER} and of the same
kind as @var{I}.
@end multitable
@item @emph{Return value}:
The result is of the same type and kind as @var{I}.
@end table
@node MIN
@section @code{MIN} --- Minimum value of an argument list
@fnindex MIN
@fnindex MIN0
@fnindex AMIN0
@fnindex MIN1
@fnindex AMIN1
@fnindex DMIN1
@cindex minimum value
@table @asis
@item @emph{Description}:
Returns the argument with the smallest (most negative) value.
@item @emph{Standard}:
Fortran 77 and later
@item @emph{Class}:
Elemental function
@item @emph{Syntax}:
@code{RESULT = MIN(A1, A2 [, A3, ...])}
@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{A1} @tab The type shall be @code{INTEGER} or
@code{REAL}.
@item @var{A2}, @var{A3}, ... @tab An expression of the same type and kind
as @var{A1}. (As a GNU extension, arguments of different kinds are
permitted.)
@end multitable
@item @emph{Return value}:
The return value corresponds to the maximum value among the arguments,
and has the same type and kind as the first argument.
@item @emph{Specific names}:
@multitable @columnfractions .20 .20 .20 .25
@item Name @tab Argument @tab Return type @tab Standard
@item @code{MIN0(A1)} @tab @code{INTEGER(4) A1} @tab @code{INTEGER(4)} @tab Fortran 77 and later
@item @code{AMIN0(A1)} @tab @code{INTEGER(4) A1} @tab @code{REAL(4)} @tab Fortran 77 and later
@item @code{MIN1(A1)} @tab @code{REAL A1} @tab @code{INTEGER(4)} @tab Fortran 77 and later
@item @code{AMIN1(A1)} @tab @code{REAL(4) A1} @tab @code{REAL(4)} @tab Fortran 77 and later
@item @code{DMIN1(A1)} @tab @code{REAL(8) A1} @tab @code{REAL(8)} @tab Fortran 77 and later
@end multitable
@item @emph{See also}:
@ref{MAX}, @ref{MINLOC}, @ref{MINVAL}
@end table
@node MINEXPONENT
@section @code{MINEXPONENT} --- Minimum exponent of a real kind
@fnindex MINEXPONENT
@cindex model representation, minimum exponent
@table @asis
@item @emph{Description}:
@code{MINEXPONENT(X)} returns the minimum exponent in the model of the
type of @code{X}.
@item @emph{Standard}:
Fortran 95 and later
@item @emph{Class}:
Inquiry function
@item @emph{Syntax}:
@code{RESULT = MINEXPONENT(X)}
@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{X} @tab Shall be of type @code{REAL}.
@end multitable
@item @emph{Return value}:
The return value is of type @code{INTEGER} and of the default integer
kind.
@item @emph{Example}:
See @code{MAXEXPONENT} for an example.
@end table
@node MINLOC
@section @code{MINLOC} --- Location of the minimum value within an array
@fnindex MINLOC
@cindex array, location of minimum element
@table @asis
@item @emph{Description}:
Determines the location of the element in the array with the minimum
value, or, if the @var{DIM} argument is supplied, determines the
locations of the minimum element along each row of the array in the
@var{DIM} direction. If @var{MASK} is present, only the elements for
which @var{MASK} is @code{.TRUE.} are considered. If more than one
element in the array has the minimum value, the location returned is
that of the first such element in array element order. If the array has
zero size, or all of the elements of @var{MASK} are @code{.FALSE.}, then
the result is an array of zeroes. Similarly, if @var{DIM} is supplied
and all of the elements of @var{MASK} along a given row are zero, the
result value for that row is zero.
@item @emph{Standard}:
Fortran 95 and later
@item @emph{Class}:
Transformational function
@item @emph{Syntax}:
@multitable @columnfractions .80
@item @code{RESULT = MINLOC(ARRAY, DIM [, MASK])}
@item @code{RESULT = MINLOC(ARRAY [, MASK])}
@end multitable
@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{ARRAY} @tab Shall be an array of type @code{INTEGER} or
@code{REAL}.
@item @var{DIM} @tab (Optional) Shall be a scalar of type
@code{INTEGER}, with a value between one and the rank of @var{ARRAY},
inclusive. It may not be an optional dummy argument.
@item @var{MASK} @tab Shall be an array of type @code{LOGICAL},
and conformable with @var{ARRAY}.
@end multitable
@item @emph{Return value}:
If @var{DIM} is absent, the result is a rank-one array with a length
equal to the rank of @var{ARRAY}. If @var{DIM} is present, the result
is an array with a rank one less than the rank of @var{ARRAY}, and a
size corresponding to the size of @var{ARRAY} with the @var{DIM}
dimension removed. If @var{DIM} is present and @var{ARRAY} has a rank
of one, the result is a scalar. In all cases, the result is of default
@code{INTEGER} type.
@item @emph{See also}:
@ref{MIN}, @ref{MINVAL}
@end table
@node MINVAL
@section @code{MINVAL} --- Minimum value of an array
@fnindex MINVAL
@cindex array, minimum value
@cindex minimum value
@table @asis
@item @emph{Description}:
Determines the minimum value of the elements in an array value, or, if
the @var{DIM} argument is supplied, determines the minimum value along
each row of the array in the @var{DIM} direction. If @var{MASK} is
present, only the elements for which @var{MASK} is @code{.TRUE.} are
considered. If the array has zero size, or all of the elements of
@var{MASK} are @code{.FALSE.}, then the result is @code{HUGE(ARRAY)} if
@var{ARRAY} is numeric, or a string of @code{CHAR(255)} characters if
@var{ARRAY} is of character type.
@item @emph{Standard}:
Fortran 95 and later
@item @emph{Class}:
Transformational function
@item @emph{Syntax}:
@multitable @columnfractions .80
@item @code{RESULT = MINVAL(ARRAY, DIM [, MASK])}
@item @code{RESULT = MINVAL(ARRAY [, MASK])}
@end multitable
@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{ARRAY} @tab Shall be an array of type @code{INTEGER} or
@code{REAL}.
@item @var{DIM} @tab (Optional) Shall be a scalar of type
@code{INTEGER}, with a value between one and the rank of @var{ARRAY},
inclusive. It may not be an optional dummy argument.
@item @var{MASK} @tab Shall be an array of type @code{LOGICAL},
and conformable with @var{ARRAY}.
@end multitable
@item @emph{Return value}:
If @var{DIM} is absent, or if @var{ARRAY} has a rank of one, the result
is a scalar. If @var{DIM} is present, the result is an array with a
rank one less than the rank of @var{ARRAY}, and a size corresponding to
the size of @var{ARRAY} with the @var{DIM} dimension removed. In all
cases, the result is of the same type and kind as @var{ARRAY}.
@item @emph{See also}:
@ref{MIN}, @ref{MINLOC}
@end table
@node MOD
@section @code{MOD} --- Remainder function
@fnindex MOD
@fnindex AMOD
@fnindex DMOD
@cindex remainder
@cindex division, remainder
@table @asis
@item @emph{Description}:
@code{MOD(A,P)} computes the remainder of the division of A by P@.
@item @emph{Standard}:
Fortran 77 and later
@item @emph{Class}:
Elemental function
@item @emph{Syntax}:
@code{RESULT = MOD(A, P)}
@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{A} @tab Shall be a scalar of type @code{INTEGER} or @code{REAL}.
@item @var{P} @tab Shall be a scalar of the same type and kind as @var{A}
and not equal to zero.
@end multitable
@item @emph{Return value}:
The return value is the result of @code{A - (INT(A/P) * P)}. The type
and kind of the return value is the same as that of the arguments. The
returned value has the same sign as A and a magnitude less than the
magnitude of P.
@item @emph{Example}:
@smallexample
program test_mod
print *, mod(17,3)
print *, mod(17.5,5.5)
print *, mod(17.5d0,5.5)
print *, mod(17.5,5.5d0)
print *, mod(-17,3)
print *, mod(-17.5,5.5)
print *, mod(-17.5d0,5.5)
print *, mod(-17.5,5.5d0)
print *, mod(17,-3)
print *, mod(17.5,-5.5)
print *, mod(17.5d0,-5.5)
print *, mod(17.5,-5.5d0)
end program test_mod
@end smallexample
@item @emph{Specific names}:
@multitable @columnfractions .20 .20 .20 .25
@item Name @tab Arguments @tab Return type @tab Standard
@item @code{MOD(A,P)} @tab @code{INTEGER A,P} @tab @code{INTEGER} @tab Fortran 95 and later
@item @code{AMOD(A,P)} @tab @code{REAL(4) A,P} @tab @code{REAL(4)} @tab Fortran 95 and later
@item @code{DMOD(A,P)} @tab @code{REAL(8) A,P} @tab @code{REAL(8)} @tab Fortran 95 and later
@end multitable
@item @emph{See also}:
@ref{MODULO}
@end table
@node MODULO
@section @code{MODULO} --- Modulo function
@fnindex MODULO
@cindex modulo
@cindex division, modulo
@table @asis
@item @emph{Description}:
@code{MODULO(A,P)} computes the @var{A} modulo @var{P}.
@item @emph{Standard}:
Fortran 95 and later
@item @emph{Class}:
Elemental function
@item @emph{Syntax}:
@code{RESULT = MODULO(A, P)}
@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{A} @tab Shall be a scalar of type @code{INTEGER} or @code{REAL}.
@item @var{P} @tab Shall be a scalar of the same type and kind as @var{A}.
It shall not be zero.
@end multitable
@item @emph{Return value}:
The type and kind of the result are those of the arguments.
@table @asis
@item If @var{A} and @var{P} are of type @code{INTEGER}:
@code{MODULO(A,P)} has the value @var{R} such that @code{A=Q*P+R}, where
@var{Q} is an integer and @var{R} is between 0 (inclusive) and @var{P}
(exclusive).
@item If @var{A} and @var{P} are of type @code{REAL}:
@code{MODULO(A,P)} has the value of @code{A - FLOOR (A / P) * P}.
@end table
The returned value has the same sign as P and a magnitude less than
the magnitude of P.
@item @emph{Example}:
@smallexample
program test_modulo
print *, modulo(17,3)
print *, modulo(17.5,5.5)
print *, modulo(-17,3)
print *, modulo(-17.5,5.5)
print *, modulo(17,-3)
print *, modulo(17.5,-5.5)
end program
@end smallexample
@item @emph{See also}:
@ref{MOD}
@end table
@node MOVE_ALLOC
@section @code{MOVE_ALLOC} --- Move allocation from one object to another
@fnindex MOVE_ALLOC
@cindex moving allocation
@cindex allocation, moving
@table @asis
@item @emph{Description}:
@code{MOVE_ALLOC(FROM, TO)} moves the allocation from @var{FROM} to
@var{TO}. @var{FROM} will become deallocated in the process.
@item @emph{Standard}:
Fortran 2003 and later
@item @emph{Class}:
Pure subroutine
@item @emph{Syntax}:
@code{CALL MOVE_ALLOC(FROM, TO)}
@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{FROM} @tab @code{ALLOCATABLE}, @code{INTENT(INOUT)}, may be
of any type and kind.
@item @var{TO} @tab @code{ALLOCATABLE}, @code{INTENT(OUT)}, shall be
of the same type, kind and rank as @var{FROM}.
@end multitable
@item @emph{Return value}:
None
@item @emph{Example}:
@smallexample
program test_move_alloc
integer, allocatable :: a(:), b(:)
allocate(a(3))
a = [ 1, 2, 3 ]
call move_alloc(a, b)
print *, allocated(a), allocated(b)
print *, b
end program test_move_alloc
@end smallexample
@end table
@node MVBITS
@section @code{MVBITS} --- Move bits from one integer to another
@fnindex MVBITS
@cindex bits, move
@table @asis
@item @emph{Description}:
Moves @var{LEN} bits from positions @var{FROMPOS} through
@code{FROMPOS+LEN-1} of @var{FROM} to positions @var{TOPOS} through
@code{TOPOS+LEN-1} of @var{TO}. The portion of argument @var{TO} not
affected by the movement of bits is unchanged. The values of
@code{FROMPOS+LEN-1} and @code{TOPOS+LEN-1} must be less than
@code{BIT_SIZE(FROM)}.
@item @emph{Standard}:
Fortran 95 and later
@item @emph{Class}:
Elemental subroutine
@item @emph{Syntax}:
@code{CALL MVBITS(FROM, FROMPOS, LEN, TO, TOPOS)}
@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{FROM} @tab The type shall be @code{INTEGER}.
@item @var{FROMPOS} @tab The type shall be @code{INTEGER}.
@item @var{LEN} @tab The type shall be @code{INTEGER}.
@item @var{TO} @tab The type shall be @code{INTEGER}, of the
same kind as @var{FROM}.
@item @var{TOPOS} @tab The type shall be @code{INTEGER}.
@end multitable
@item @emph{See also}:
@ref{IBCLR}, @ref{IBSET}, @ref{IBITS}, @ref{IAND}, @ref{IOR}, @ref{IEOR}
@end table
@node NEAREST
@section @code{NEAREST} --- Nearest representable number
@fnindex NEAREST
@cindex real number, nearest different
@cindex floating point, nearest different
@table @asis
@item @emph{Description}:
@code{NEAREST(X, S)} returns the processor-representable number nearest
to @code{X} in the direction indicated by the sign of @code{S}.
@item @emph{Standard}:
Fortran 95 and later
@item @emph{Class}:
Elemental function
@item @emph{Syntax}:
@code{RESULT = NEAREST(X, S)}
@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{X} @tab Shall be of type @code{REAL}.
@item @var{S} @tab Shall be of type @code{REAL} and
not equal to zero.
@end multitable
@item @emph{Return value}:
The return value is of the same type as @code{X}. If @code{S} is
positive, @code{NEAREST} returns the processor-representable number
greater than @code{X} and nearest to it. If @code{S} is negative,
@code{NEAREST} returns the processor-representable number smaller than
@code{X} and nearest to it.
@item @emph{Example}:
@smallexample
program test_nearest
real :: x, y
x = nearest(42.0, 1.0)
y = nearest(42.0, -1.0)
write (*,"(3(G20.15))") x, y, x - y
end program test_nearest
@end smallexample
@end table
@node NEW_LINE
@section @code{NEW_LINE} --- New line character
@fnindex NEW_LINE
@cindex newline
@cindex output, newline
@table @asis
@item @emph{Description}:
@code{NEW_LINE(C)} returns the new-line character.
@item @emph{Standard}:
Fortran 2003 and later
@item @emph{Class}:
Inquiry function
@item @emph{Syntax}:
@code{RESULT = NEW_LINE(C)}
@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{C} @tab The argument shall be a scalar or array of the
type @code{CHARACTER}.
@end multitable
@item @emph{Return value}:
Returns a @var{CHARACTER} scalar of length one with the new-line character of
the same kind as parameter @var{C}.
@item @emph{Example}:
@smallexample
program newline
implicit none
write(*,'(A)') 'This is record 1.'//NEW_LINE('A')//'This is record 2.'
end program newline
@end smallexample
@end table
@node NINT
@section @code{NINT} --- Nearest whole number
@fnindex NINT
@fnindex IDNINT
@cindex rounding, nearest whole number
@table @asis
@item @emph{Description}:
@code{NINT(A)} rounds its argument to the nearest whole number.
@item @emph{Standard}:
Fortran 77 and later, with @var{KIND} argument Fortran 90 and later
@item @emph{Class}:
Elemental function
@item @emph{Syntax}:
@code{RESULT = NINT(A [, KIND])}
@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{A} @tab The type of the argument shall be @code{REAL}.
@item @var{KIND} @tab (Optional) An @code{INTEGER} initialization
expression indicating the kind parameter of the result.
@end multitable
@item @emph{Return value}:
Returns @var{A} with the fractional portion of its magnitude eliminated by
rounding to the nearest whole number and with its sign preserved,
converted to an @code{INTEGER} of the default kind.
@item @emph{Example}:
@smallexample
program test_nint
real(4) x4
real(8) x8
x4 = 1.234E0_4
x8 = 4.321_8
print *, nint(x4), idnint(x8)
end program test_nint
@end smallexample
@item @emph{Specific names}:
@multitable @columnfractions .20 .20 .20 .25
@item Name @tab Argument @tab Return Type @tab Standard
@item @code{NINT(A)} @tab @code{REAL(4) A} @tab @code{INTEGER} @tab Fortran 95 and later
@item @code{IDNINT(A)} @tab @code{REAL(8) A} @tab @code{INTEGER} @tab Fortran 95 and later
@end multitable
@item @emph{See also}:
@ref{CEILING}, @ref{FLOOR}
@end table
@node NORM2
@section @code{NORM2} --- Euclidean vector norms
@fnindex NORM2
@cindex Euclidean vector norm
@cindex L2 vector norm
@cindex norm, Euclidean
@table @asis
@item @emph{Description}:
Calculates the Euclidean vector norm (@math{L_2} norm) of
of @var{ARRAY} along dimension @var{DIM}.
@item @emph{Standard}:
Fortran 2008 and later
@item @emph{Class}:
Transformational function
@item @emph{Syntax}:
@multitable @columnfractions .80
@item @code{RESULT = NORM2(ARRAY[, DIM])}
@end multitable
@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{ARRAY} @tab Shall be an array of type @code{REAL}
@item @var{DIM} @tab (Optional) shall be a scalar of type
@code{INTEGER} with a value in the range from 1 to n, where n
equals the rank of @var{ARRAY}.
@end multitable
@item @emph{Return value}:
The result is of the same type as @var{ARRAY}.
If @var{DIM} is absent, a scalar with the square root of the sum of all
elements in @var{ARRAY} squared is returned. Otherwise, an array of
rank @math{n-1}, where @math{n} equals the rank of @var{ARRAY}, and a
shape similar to that of @var{ARRAY} with dimension @var{DIM} dropped
is returned.
@item @emph{Example}:
@smallexample
PROGRAM test_sum
REAL :: x(5) = [ real :: 1, 2, 3, 4, 5 ]
print *, NORM2(x) ! = sqrt(55.) ~ 7.416
END PROGRAM
@end smallexample
@end table
@node NOT
@section @code{NOT} --- Logical negation
@fnindex NOT
@cindex bits, negate
@cindex bitwise logical not
@cindex logical not, bitwise
@table @asis
@item @emph{Description}:
@code{NOT} returns the bitwise Boolean inverse of @var{I}.
@item @emph{Standard}:
Fortran 95 and later
@item @emph{Class}:
Elemental function
@item @emph{Syntax}:
@code{RESULT = NOT(I)}
@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{I} @tab The type shall be @code{INTEGER}.
@end multitable
@item @emph{Return value}:
The return type is @code{INTEGER}, of the same kind as the
argument.
@item @emph{See also}:
@ref{IAND}, @ref{IEOR}, @ref{IOR}, @ref{IBITS}, @ref{IBSET}, @ref{IBCLR}
@end table
@node NULL
@section @code{NULL} --- Function that returns an disassociated pointer
@fnindex NULL
@cindex pointer, status
@cindex pointer, disassociated
@table @asis
@item @emph{Description}:
Returns a disassociated pointer.
If @var{MOLD} is present, a disassociated pointer of the same type is
returned, otherwise the type is determined by context.
In Fortran 95, @var{MOLD} is optional. Please note that Fortran 2003
includes cases where it is required.
@item @emph{Standard}:
Fortran 95 and later
@item @emph{Class}:
Transformational function
@item @emph{Syntax}:
@code{PTR => NULL([MOLD])}
@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{MOLD} @tab (Optional) shall be a pointer of any association
status and of any type.
@end multitable
@item @emph{Return value}:
A disassociated pointer.
@item @emph{Example}:
@smallexample
REAL, POINTER, DIMENSION(:) :: VEC => NULL ()
@end smallexample
@item @emph{See also}:
@ref{ASSOCIATED}
@end table
@node NUM_IMAGES
@section @code{NUM_IMAGES} --- Function that returns the number of images
@fnindex NUM_IMAGES
@cindex coarray, @code{NUM_IMAGES}
@cindex images, number of
@table @asis
@item @emph{Description}:
Returns the number of images.
@item @emph{Standard}:
Fortran 2008 and later
@item @emph{Class}:
Transformational function
@item @emph{Syntax}:
@code{RESULT = NUM_IMAGES()}
@item @emph{Arguments}: None.
@item @emph{Return value}:
Scalar default-kind integer.
@item @emph{Example}:
@smallexample
INTEGER :: value[*]
INTEGER :: i
value = THIS_IMAGE()
SYNC ALL
IF (THIS_IMAGE() == 1) THEN
DO i = 1, NUM_IMAGES()
WRITE(*,'(2(a,i0))') 'value[', i, '] is ', value[i]
END DO
END IF
@end smallexample
@item @emph{See also}:
@ref{THIS_IMAGE}, @ref{IMAGE_INDEX}
@end table
@node OR
@section @code{OR} --- Bitwise logical OR
@fnindex OR
@cindex bitwise logical or
@cindex logical or, bitwise
@table @asis
@item @emph{Description}:
Bitwise logical @code{OR}.
This intrinsic routine is provided for backwards compatibility with
GNU Fortran 77. For integer arguments, programmers should consider
the use of the @ref{IOR} intrinsic defined by the Fortran standard.
@item @emph{Standard}:
GNU extension
@item @emph{Class}:
Function
@item @emph{Syntax}:
@code{RESULT = OR(I, J)}
@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{I} @tab The type shall be either a scalar @code{INTEGER}
type or a scalar @code{LOGICAL} type.
@item @var{J} @tab The type shall be the same as the type of @var{J}.
@end multitable
@item @emph{Return value}:
The return type is either a scalar @code{INTEGER} or a scalar
@code{LOGICAL}. If the kind type parameters differ, then the
smaller kind type is implicitly converted to larger kind, and the
return has the larger kind.
@item @emph{Example}:
@smallexample
PROGRAM test_or
LOGICAL :: T = .TRUE., F = .FALSE.
INTEGER :: a, b
DATA a / Z'F' /, b / Z'3' /
WRITE (*,*) OR(T, T), OR(T, F), OR(F, T), OR(F, F)
WRITE (*,*) OR(a, b)
END PROGRAM
@end smallexample
@item @emph{See also}:
Fortran 95 elemental function: @ref{IOR}
@end table
@node PACK
@section @code{PACK} --- Pack an array into an array of rank one
@fnindex PACK
@cindex array, packing
@cindex array, reduce dimension
@cindex array, gather elements
@table @asis
@item @emph{Description}:
Stores the elements of @var{ARRAY} in an array of rank one.
The beginning of the resulting array is made up of elements whose @var{MASK}
equals @code{TRUE}. Afterwards, positions are filled with elements taken from
@var{VECTOR}.
@item @emph{Standard}:
Fortran 95 and later
@item @emph{Class}:
Transformational function
@item @emph{Syntax}:
@code{RESULT = PACK(ARRAY, MASK[,VECTOR])}
@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{ARRAY} @tab Shall be an array of any type.
@item @var{MASK} @tab Shall be an array of type @code{LOGICAL} and
of the same size as @var{ARRAY}. Alternatively, it may be a @code{LOGICAL}
scalar.
@item @var{VECTOR} @tab (Optional) shall be an array of the same type
as @var{ARRAY} and of rank one. If present, the number of elements in
@var{VECTOR} shall be equal to or greater than the number of true elements
in @var{MASK}. If @var{MASK} is scalar, the number of elements in
@var{VECTOR} shall be equal to or greater than the number of elements in
@var{ARRAY}.
@end multitable
@item @emph{Return value}:
The result is an array of rank one and the same type as that of @var{ARRAY}.
If @var{VECTOR} is present, the result size is that of @var{VECTOR}, the
number of @code{TRUE} values in @var{MASK} otherwise.
@item @emph{Example}:
Gathering nonzero elements from an array:
@smallexample
PROGRAM test_pack_1
INTEGER :: m(6)
m = (/ 1, 0, 0, 0, 5, 0 /)
WRITE(*, FMT="(6(I0, ' '))") pack(m, m /= 0) ! "1 5"
END PROGRAM
@end smallexample
Gathering nonzero elements from an array and appending elements from @var{VECTOR}:
@smallexample
PROGRAM test_pack_2
INTEGER :: m(4)
m = (/ 1, 0, 0, 2 /)
WRITE(*, FMT="(4(I0, ' '))") pack(m, m /= 0, (/ 0, 0, 3, 4 /)) ! "1 2 3 4"
END PROGRAM
@end smallexample
@item @emph{See also}:
@ref{UNPACK}
@end table
@node PARITY
@section @code{PARITY} --- Reduction with exclusive OR
@fnindex PARITY
@cindex Parity
@cindex Reduction, XOR
@cindex XOR reduction
@table @asis
@item @emph{Description}:
Calculates the parity, i.e. the reduction using @code{.XOR.},
of @var{MASK} along dimension @var{DIM}.
@item @emph{Standard}:
Fortran 2008 and later
@item @emph{Class}:
Transformational function
@item @emph{Syntax}:
@multitable @columnfractions .80
@item @code{RESULT = PARITY(MASK[, DIM])}
@end multitable
@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{LOGICAL} @tab Shall be an array of type @code{LOGICAL}
@item @var{DIM} @tab (Optional) shall be a scalar of type
@code{INTEGER} with a value in the range from 1 to n, where n
equals the rank of @var{MASK}.
@end multitable
@item @emph{Return value}:
The result is of the same type as @var{MASK}.
If @var{DIM} is absent, a scalar with the parity of all elements in
@var{MASK} is returned, i.e. true if an odd number of elements is
@code{.true.} and false otherwise. If @var{DIM} is present, an array
of rank @math{n-1}, where @math{n} equals the rank of @var{ARRAY},
and a shape similar to that of @var{MASK} with dimension @var{DIM}
dropped is returned.
@item @emph{Example}:
@smallexample
PROGRAM test_sum
LOGICAL :: x(2) = [ .true., .false. ]
print *, PARITY(x) ! prints "T" (true).
END PROGRAM
@end smallexample
@end table
@node PERROR
@section @code{PERROR} --- Print system error message
@fnindex PERROR
@cindex system, error handling
@table @asis
@item @emph{Description}:
Prints (on the C @code{stderr} stream) a newline-terminated error
message corresponding to the last system error. This is prefixed by
@var{STRING}, a colon and a space. See @code{perror(3)}.
@item @emph{Standard}:
GNU extension
@item @emph{Class}:
Subroutine
@item @emph{Syntax}:
@code{CALL PERROR(STRING)}
@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{STRING} @tab A scalar of type @code{CHARACTER} and of the
default kind.
@end multitable
@item @emph{See also}:
@ref{IERRNO}
@end table
@node POPCNT
@section @code{POPCNT} --- Number of bits set
@fnindex POPCNT
@cindex binary representation
@cindex bits set
@table @asis
@item @emph{Description}:
@code{POPCNT(I)} returns the number of bits set ('1' bits) in the binary
representation of @code{I}.
@item @emph{Standard}:
Fortran 2008 and later
@item @emph{Class}:
Elemental function
@item @emph{Syntax}:
@code{RESULT = POPCNT(I)}
@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{I} @tab Shall be of type @code{INTEGER}.
@end multitable
@item @emph{Return value}:
The return value is of type @code{INTEGER} and of the default integer
kind.
@item @emph{See also}:
@ref{POPPAR}, @ref{LEADZ}, @ref{TRAILZ}
@item @emph{Example}:
@smallexample
program test_population
print *, popcnt(127), poppar(127)
print *, popcnt(huge(0_4)), poppar(huge(0_4))
print *, popcnt(huge(0_8)), poppar(huge(0_8))
end program test_population
@end smallexample
@end table
@node POPPAR
@section @code{POPPAR} --- Parity of the number of bits set
@fnindex POPPAR
@cindex binary representation
@cindex parity
@table @asis
@item @emph{Description}:
@code{POPPAR(I)} returns parity of the integer @code{I}, i.e. the parity
of the number of bits set ('1' bits) in the binary representation of
@code{I}. It is equal to 0 if @code{I} has an even number of bits set,
and 1 for an odd number of '1' bits.
@item @emph{Standard}:
Fortran 2008 and later
@item @emph{Class}:
Elemental function
@item @emph{Syntax}:
@code{RESULT = POPPAR(I)}
@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{I} @tab Shall be of type @code{INTEGER}.
@end multitable
@item @emph{Return value}:
The return value is of type @code{INTEGER} and of the default integer
kind.
@item @emph{See also}:
@ref{POPCNT}, @ref{LEADZ}, @ref{TRAILZ}
@item @emph{Example}:
@smallexample
program test_population
print *, popcnt(127), poppar(127)
print *, popcnt(huge(0_4)), poppar(huge(0_4))
print *, popcnt(huge(0_8)), poppar(huge(0_8))
end program test_population
@end smallexample
@end table
@node PRECISION
@section @code{PRECISION} --- Decimal precision of a real kind
@fnindex PRECISION
@cindex model representation, precision
@table @asis
@item @emph{Description}:
@code{PRECISION(X)} returns the decimal precision in the model of the
type of @code{X}.
@item @emph{Standard}:
Fortran 95 and later
@item @emph{Class}:
Inquiry function
@item @emph{Syntax}:
@code{RESULT = PRECISION(X)}
@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{X} @tab Shall be of type @code{REAL} or @code{COMPLEX}.
@end multitable
@item @emph{Return value}:
The return value is of type @code{INTEGER} and of the default integer
kind.
@item @emph{See also}:
@ref{SELECTED_REAL_KIND}, @ref{RANGE}
@item @emph{Example}:
@smallexample
program prec_and_range
real(kind=4) :: x(2)
complex(kind=8) :: y
print *, precision(x), range(x)
print *, precision(y), range(y)
end program prec_and_range
@end smallexample
@end table
@node PRESENT
@section @code{PRESENT} --- Determine whether an optional dummy argument is specified
@fnindex PRESENT
@table @asis
@item @emph{Description}:
Determines whether an optional dummy argument is present.
@item @emph{Standard}:
Fortran 95 and later
@item @emph{Class}:
Inquiry function
@item @emph{Syntax}:
@code{RESULT = PRESENT(A)}
@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{A} @tab May be of any type and may be a pointer, scalar or array
value, or a dummy procedure. It shall be the name of an optional dummy argument
accessible within the current subroutine or function.
@end multitable
@item @emph{Return value}:
Returns either @code{TRUE} if the optional argument @var{A} is present, or
@code{FALSE} otherwise.
@item @emph{Example}:
@smallexample
PROGRAM test_present
WRITE(*,*) f(), f(42) ! "F T"
CONTAINS
LOGICAL FUNCTION f(x)
INTEGER, INTENT(IN), OPTIONAL :: x
f = PRESENT(x)
END FUNCTION
END PROGRAM
@end smallexample
@end table
@node PRODUCT
@section @code{PRODUCT} --- Product of array elements
@fnindex PRODUCT
@cindex array, product
@cindex array, multiply elements
@cindex array, conditionally multiply elements
@cindex multiply array elements
@table @asis
@item @emph{Description}:
Multiplies the elements of @var{ARRAY} along dimension @var{DIM} if
the corresponding element in @var{MASK} is @code{TRUE}.
@item @emph{Standard}:
Fortran 95 and later
@item @emph{Class}:
Transformational function
@item @emph{Syntax}:
@multitable @columnfractions .80
@item @code{RESULT = PRODUCT(ARRAY[, MASK])}
@item @code{RESULT = PRODUCT(ARRAY, DIM[, MASK])}
@end multitable
@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{ARRAY} @tab Shall be an array of type @code{INTEGER},
@code{REAL} or @code{COMPLEX}.
@item @var{DIM} @tab (Optional) shall be a scalar of type
@code{INTEGER} with a value in the range from 1 to n, where n
equals the rank of @var{ARRAY}.
@item @var{MASK} @tab (Optional) shall be of type @code{LOGICAL}
and either be a scalar or an array of the same shape as @var{ARRAY}.
@end multitable
@item @emph{Return value}:
The result is of the same type as @var{ARRAY}.
If @var{DIM} is absent, a scalar with the product of all elements in
@var{ARRAY} is returned. Otherwise, an array of rank n-1, where n equals
the rank of @var{ARRAY}, and a shape similar to that of @var{ARRAY} with
dimension @var{DIM} dropped is returned.
@item @emph{Example}:
@smallexample
PROGRAM test_product
INTEGER :: x(5) = (/ 1, 2, 3, 4 ,5 /)
print *, PRODUCT(x) ! all elements, product = 120
print *, PRODUCT(x, MASK=MOD(x, 2)==1) ! odd elements, product = 15
END PROGRAM
@end smallexample
@item @emph{See also}:
@ref{SUM}
@end table
@node RADIX
@section @code{RADIX} --- Base of a model number
@fnindex RADIX
@cindex model representation, base
@cindex model representation, radix
@table @asis
@item @emph{Description}:
@code{RADIX(X)} returns the base of the model representing the entity @var{X}.
@item @emph{Standard}:
Fortran 95 and later
@item @emph{Class}:
Inquiry function
@item @emph{Syntax}:
@code{RESULT = RADIX(X)}
@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{X} @tab Shall be of type @code{INTEGER} or @code{REAL}
@end multitable
@item @emph{Return value}:
The return value is a scalar of type @code{INTEGER} and of the default
integer kind.
@item @emph{See also}:
@ref{SELECTED_REAL_KIND}
@item @emph{Example}:
@smallexample
program test_radix
print *, "The radix for the default integer kind is", radix(0)
print *, "The radix for the default real kind is", radix(0.0)
end program test_radix
@end smallexample
@end table
@node RAN
@section @code{RAN} --- Real pseudo-random number
@fnindex RAN
@cindex random number generation
@table @asis
@item @emph{Description}:
For compatibility with HP FORTRAN 77/iX, the @code{RAN} intrinsic is
provided as an alias for @code{RAND}. See @ref{RAND} for complete
documentation.
@item @emph{Standard}:
GNU extension
@item @emph{Class}:
Function
@item @emph{See also}:
@ref{RAND}, @ref{RANDOM_NUMBER}
@end table
@node RAND
@section @code{RAND} --- Real pseudo-random number
@fnindex RAND
@cindex random number generation
@table @asis
@item @emph{Description}:
@code{RAND(FLAG)} returns a pseudo-random number from a uniform
distribution between 0 and 1. If @var{FLAG} is 0, the next number
in the current sequence is returned; if @var{FLAG} is 1, the generator
is restarted by @code{CALL SRAND(0)}; if @var{FLAG} has any other value,
it is used as a new seed with @code{SRAND}.
This intrinsic routine is provided for backwards compatibility with
GNU Fortran 77. It implements a simple modulo generator as provided
by @command{g77}. For new code, one should consider the use of
@ref{RANDOM_NUMBER} as it implements a superior algorithm.
@item @emph{Standard}:
GNU extension
@item @emph{Class}:
Function
@item @emph{Syntax}:
@code{RESULT = RAND(I)}
@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{I} @tab Shall be a scalar @code{INTEGER} of kind 4.
@end multitable
@item @emph{Return value}:
The return value is of @code{REAL} type and the default kind.
@item @emph{Example}:
@smallexample
program test_rand
integer,parameter :: seed = 86456
call srand(seed)
print *, rand(), rand(), rand(), rand()
print *, rand(seed), rand(), rand(), rand()
end program test_rand
@end smallexample
@item @emph{See also}:
@ref{SRAND}, @ref{RANDOM_NUMBER}
@end table
@node RANDOM_NUMBER
@section @code{RANDOM_NUMBER} --- Pseudo-random number
@fnindex RANDOM_NUMBER
@cindex random number generation
@table @asis
@item @emph{Description}:
Returns a single pseudorandom number or an array of pseudorandom numbers
from the uniform distribution over the range @math{ 0 \leq x < 1}.
The runtime-library implements George Marsaglia's KISS (Keep It Simple
Stupid) random number generator (RNG). This RNG combines:
@enumerate
@item The congruential generator @math{x(n) = 69069 \cdot x(n-1) + 1327217885}
with a period of @math{2^{32}},
@item A 3-shift shift-register generator with a period of @math{2^{32} - 1},
@item Two 16-bit multiply-with-carry generators with a period of
@math{597273182964842497 > 2^{59}}.
@end enumerate
The overall period exceeds @math{2^{123}}.
Please note, this RNG is thread safe if used within OpenMP directives,
i.e., its state will be consistent while called from multiple threads.
However, the KISS generator does not create random numbers in parallel
from multiple sources, but in sequence from a single source. If an
OpenMP-enabled application heavily relies on random numbers, one should
consider employing a dedicated parallel random number generator instead.
@item @emph{Standard}:
Fortran 95 and later
@item @emph{Class}:
Subroutine
@item @emph{Syntax}:
@code{RANDOM_NUMBER(HARVEST)}
@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{HARVEST} @tab Shall be a scalar or an array of type @code{REAL}.
@end multitable
@item @emph{Example}:
@smallexample
program test_random_number
REAL :: r(5,5)
CALL init_random_seed() ! see example of RANDOM_SEED
CALL RANDOM_NUMBER(r)
end program
@end smallexample
@item @emph{See also}:
@ref{RANDOM_SEED}
@end table
@node RANDOM_SEED
@section @code{RANDOM_SEED} --- Initialize a pseudo-random number sequence
@fnindex RANDOM_SEED
@cindex random number generation, seeding
@cindex seeding a random number generator
@table @asis
@item @emph{Description}:
Restarts or queries the state of the pseudorandom number generator used by
@code{RANDOM_NUMBER}.
If @code{RANDOM_SEED} is called without arguments, it is initialized
to a default state. The example below shows how to initialize the
random seed with a varying seed in order to ensure a different random
number sequence for each invocation of the program. Note that setting
any of the seed values to zero should be avoided as it can result in
poor quality random numbers being generated.
@item @emph{Standard}:
Fortran 95 and later
@item @emph{Class}:
Subroutine
@item @emph{Syntax}:
@code{CALL RANDOM_SEED([SIZE, PUT, GET])}
@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{SIZE} @tab (Optional) Shall be a scalar and of type default
@code{INTEGER}, with @code{INTENT(OUT)}. It specifies the minimum size
of the arrays used with the @var{PUT} and @var{GET} arguments.
@item @var{PUT} @tab (Optional) Shall be an array of type default
@code{INTEGER} and rank one. It is @code{INTENT(IN)} and the size of
the array must be larger than or equal to the number returned by the
@var{SIZE} argument.
@item @var{GET} @tab (Optional) Shall be an array of type default
@code{INTEGER} and rank one. It is @code{INTENT(OUT)} and the size
of the array must be larger than or equal to the number returned by
the @var{SIZE} argument.
@end multitable
@item @emph{Example}:
@smallexample
subroutine init_random_seed()
use iso_fortran_env, only: int64
implicit none
integer, allocatable :: seed(:)
integer :: i, n, un, istat, dt(8), pid
integer(int64) :: t
call random_seed(size = n)
allocate(seed(n))
! First try if the OS provides a random number generator
open(newunit=un, file="/dev/urandom", access="stream", &
form="unformatted", action="read", status="old", iostat=istat)
if (istat == 0) then
read(un) seed
close(un)
else
! Fallback to XOR:ing the current time and pid. The PID is
! useful in case one launches multiple instances of the same
! program in parallel.
call system_clock(t)
if (t == 0) then
call date_and_time(values=dt)
t = (dt(1) - 1970) * 365_int64 * 24 * 60 * 60 * 1000 &
+ dt(2) * 31_int64 * 24 * 60 * 60 * 1000 &
+ dt(3) * 24_int64 * 60 * 60 * 1000 &
+ dt(5) * 60 * 60 * 1000 &
+ dt(6) * 60 * 1000 + dt(7) * 1000 &
+ dt(8)
end if
pid = getpid()
t = ieor(t, int(pid, kind(t)))
do i = 1, n
seed(i) = lcg(t)
end do
end if
call random_seed(put=seed)
contains
! This simple PRNG might not be good enough for real work, but is
! sufficient for seeding a better PRNG.
function lcg(s)
integer :: lcg
integer(int64) :: s
if (s == 0) then
s = 104729
else
s = mod(s, 4294967296_int64)
end if
s = mod(s * 279470273_int64, 4294967291_int64)
lcg = int(mod(s, int(huge(0), int64)), kind(0))
end function lcg
end subroutine init_random_seed
@end smallexample
@item @emph{See also}:
@ref{RANDOM_NUMBER}
@end table
@node RANGE
@section @code{RANGE} --- Decimal exponent range
@fnindex RANGE
@cindex model representation, range
@table @asis
@item @emph{Description}:
@code{RANGE(X)} returns the decimal exponent range in the model of the
type of @code{X}.
@item @emph{Standard}:
Fortran 95 and later
@item @emph{Class}:
Inquiry function
@item @emph{Syntax}:
@code{RESULT = RANGE(X)}
@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{X} @tab Shall be of type @code{INTEGER}, @code{REAL}
or @code{COMPLEX}.
@end multitable
@item @emph{Return value}:
The return value is of type @code{INTEGER} and of the default integer
kind.
@item @emph{See also}:
@ref{SELECTED_REAL_KIND}, @ref{PRECISION}
@item @emph{Example}:
See @code{PRECISION} for an example.
@end table
@node RANK
@section @code{RANK} --- Rank of a data object
@fnindex RANK
@cindex rank
@table @asis
@item @emph{Description}:
@code{RANK(A)} returns the rank of a scalar or array data object.
@item @emph{Standard}:
Technical Specification (TS) 29113
@item @emph{Class}:
Inquiry function
@item @emph{Syntax}:
@code{RESULT = RANK(A)}
@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{A} @tab can be of any type
@end multitable
@item @emph{Return value}:
The return value is of type @code{INTEGER} and of the default integer
kind. For arrays, their rank is returned; for scalars zero is returned.
@item @emph{Example}:
@smallexample
program test_rank
integer :: a
real, allocatable :: b(:,:)
print *, rank(a), rank(b) ! Prints: 0 2
end program test_rank
@end smallexample
@end table
@node REAL
@section @code{REAL} --- Convert to real type
@fnindex REAL
@fnindex REALPART
@fnindex FLOAT
@fnindex DFLOAT
@fnindex SNGL
@cindex conversion, to real
@cindex complex numbers, real part
@table @asis
@item @emph{Description}:
@code{REAL(A [, KIND])} converts its argument @var{A} to a real type. The
@code{REALPART} function is provided for compatibility with @command{g77},
and its use is strongly discouraged.
@item @emph{Standard}:
Fortran 77 and later
@item @emph{Class}:
Elemental function
@item @emph{Syntax}:
@multitable @columnfractions .80
@item @code{RESULT = REAL(A [, KIND])}
@item @code{RESULT = REALPART(Z)}
@end multitable
@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{A} @tab Shall be @code{INTEGER}, @code{REAL}, or
@code{COMPLEX}.
@item @var{KIND} @tab (Optional) An @code{INTEGER} initialization
expression indicating the kind parameter of the result.
@end multitable
@item @emph{Return value}:
These functions return a @code{REAL} variable or array under
the following rules:
@table @asis
@item (A)
@code{REAL(A)} is converted to a default real type if @var{A} is an
integer or real variable.
@item (B)
@code{REAL(A)} is converted to a real type with the kind type parameter
of @var{A} if @var{A} is a complex variable.
@item (C)
@code{REAL(A, KIND)} is converted to a real type with kind type
parameter @var{KIND} if @var{A} is a complex, integer, or real
variable.
@end table
@item @emph{Example}:
@smallexample
program test_real
complex :: x = (1.0, 2.0)
print *, real(x), real(x,8), realpart(x)
end program test_real
@end smallexample
@item @emph{Specific names}:
@multitable @columnfractions .20 .20 .20 .25
@item Name @tab Argument @tab Return type @tab Standard
@item @code{FLOAT(A)} @tab @code{INTEGER(4)} @tab @code{REAL(4)} @tab Fortran 77 and later
@item @code{DFLOAT(A)} @tab @code{INTEGER(4)} @tab @code{REAL(8)} @tab GNU extension
@item @code{SNGL(A)} @tab @code{INTEGER(8)} @tab @code{REAL(4)} @tab Fortran 77 and later
@end multitable
@item @emph{See also}:
@ref{DBLE}
@end table
@node RENAME
@section @code{RENAME} --- Rename a file
@fnindex RENAME
@cindex file system, rename file
@table @asis
@item @emph{Description}:
Renames a file from file @var{PATH1} to @var{PATH2}. A null
character (@code{CHAR(0)}) can be used to mark the end of the names in
@var{PATH1} and @var{PATH2}; otherwise, trailing blanks in the file
names are ignored. If the @var{STATUS} argument is supplied, it
contains 0 on success or a nonzero error code upon return; see
@code{rename(2)}.
This intrinsic is provided in both subroutine and function forms;
however, only one form can be used in any given program unit.
@item @emph{Standard}:
GNU extension
@item @emph{Class}:
Subroutine, function
@item @emph{Syntax}:
@multitable @columnfractions .80
@item @code{CALL RENAME(PATH1, PATH2 [, STATUS])}
@item @code{STATUS = RENAME(PATH1, PATH2)}
@end multitable
@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{PATH1} @tab Shall be of default @code{CHARACTER} type.
@item @var{PATH2} @tab Shall be of default @code{CHARACTER} type.
@item @var{STATUS} @tab (Optional) Shall be of default @code{INTEGER} type.
@end multitable
@item @emph{See also}:
@ref{LINK}
@end table
@node REPEAT
@section @code{REPEAT} --- Repeated string concatenation
@fnindex REPEAT
@cindex string, repeat
@cindex string, concatenate
@table @asis
@item @emph{Description}:
Concatenates @var{NCOPIES} copies of a string.
@item @emph{Standard}:
Fortran 95 and later
@item @emph{Class}:
Transformational function
@item @emph{Syntax}:
@code{RESULT = REPEAT(STRING, NCOPIES)}
@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{STRING} @tab Shall be scalar and of type @code{CHARACTER}.
@item @var{NCOPIES} @tab Shall be scalar and of type @code{INTEGER}.
@end multitable
@item @emph{Return value}:
A new scalar of type @code{CHARACTER} built up from @var{NCOPIES} copies
of @var{STRING}.
@item @emph{Example}:
@smallexample
program test_repeat
write(*,*) repeat("x", 5) ! "xxxxx"
end program
@end smallexample
@end table
@node RESHAPE
@section @code{RESHAPE} --- Function to reshape an array
@fnindex RESHAPE
@cindex array, change dimensions
@cindex array, transmogrify
@table @asis
@item @emph{Description}:
Reshapes @var{SOURCE} to correspond to @var{SHAPE}. If necessary,
the new array may be padded with elements from @var{PAD} or permuted
as defined by @var{ORDER}.
@item @emph{Standard}:
Fortran 95 and later
@item @emph{Class}:
Transformational function
@item @emph{Syntax}:
@code{RESULT = RESHAPE(SOURCE, SHAPE[, PAD, ORDER])}
@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{SOURCE} @tab Shall be an array of any type.
@item @var{SHAPE} @tab Shall be of type @code{INTEGER} and an
array of rank one. Its values must be positive or zero.
@item @var{PAD} @tab (Optional) shall be an array of the same
type as @var{SOURCE}.
@item @var{ORDER} @tab (Optional) shall be of type @code{INTEGER}
and an array of the same shape as @var{SHAPE}. Its values shall
be a permutation of the numbers from 1 to n, where n is the size of
@var{SHAPE}. If @var{ORDER} is absent, the natural ordering shall
be assumed.
@end multitable
@item @emph{Return value}:
The result is an array of shape @var{SHAPE} with the same type as
@var{SOURCE}.
@item @emph{Example}:
@smallexample
PROGRAM test_reshape
INTEGER, DIMENSION(4) :: x
WRITE(*,*) SHAPE(x) ! prints "4"
WRITE(*,*) SHAPE(RESHAPE(x, (/2, 2/))) ! prints "2 2"
END PROGRAM
@end smallexample
@item @emph{See also}:
@ref{SHAPE}
@end table
@node RRSPACING
@section @code{RRSPACING} --- Reciprocal of the relative spacing
@fnindex RRSPACING
@cindex real number, relative spacing
@cindex floating point, relative spacing
@table @asis
@item @emph{Description}:
@code{RRSPACING(X)} returns the reciprocal of the relative spacing of
model numbers near @var{X}.
@item @emph{Standard}:
Fortran 95 and later
@item @emph{Class}:
Elemental function
@item @emph{Syntax}:
@code{RESULT = RRSPACING(X)}
@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{X} @tab Shall be of type @code{REAL}.
@end multitable
@item @emph{Return value}:
The return value is of the same type and kind as @var{X}.
The value returned is equal to
@code{ABS(FRACTION(X)) * FLOAT(RADIX(X))**DIGITS(X)}.
@item @emph{See also}:
@ref{SPACING}
@end table
@node RSHIFT
@section @code{RSHIFT} --- Right shift bits
@fnindex RSHIFT
@cindex bits, shift right
@table @asis
@item @emph{Description}:
@code{RSHIFT} returns a value corresponding to @var{I} with all of the
bits shifted right by @var{SHIFT} places. If the absolute value of
@var{SHIFT} is greater than @code{BIT_SIZE(I)}, the value is undefined.
Bits shifted out from the right end are lost. The fill is arithmetic: the
bits shifted in from the left end are equal to the leftmost bit, which in
two's complement representation is the sign bit.
This function has been superseded by the @code{SHIFTA} intrinsic, which
is standard in Fortran 2008 and later.
@item @emph{Standard}:
GNU extension
@item @emph{Class}:
Elemental function
@item @emph{Syntax}:
@code{RESULT = RSHIFT(I, SHIFT)}
@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{I} @tab The type shall be @code{INTEGER}.
@item @var{SHIFT} @tab The type shall be @code{INTEGER}.
@end multitable
@item @emph{Return value}:
The return value is of type @code{INTEGER} and of the same kind as
@var{I}.
@item @emph{See also}:
@ref{ISHFT}, @ref{ISHFTC}, @ref{LSHIFT}, @ref{SHIFTA}, @ref{SHIFTR},
@ref{SHIFTL}
@end table
@node SAME_TYPE_AS
@section @code{SAME_TYPE_AS} --- Query dynamic types for equality
@fnindex SAME_TYPE_AS
@table @asis
@item @emph{Description}:
Query dynamic types for equality.
@item @emph{Standard}:
Fortran 2003 and later
@item @emph{Class}:
Inquiry function
@item @emph{Syntax}:
@code{RESULT = SAME_TYPE_AS(A, B)}
@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{A} @tab Shall be an object of extensible declared type or
unlimited polymorphic.
@item @var{B} @tab Shall be an object of extensible declared type or
unlimited polymorphic.
@end multitable
@item @emph{Return value}:
The return value is a scalar of type default logical. It is true if and
only if the dynamic type of A is the same as the dynamic type of B.
@item @emph{See also}:
@ref{EXTENDS_TYPE_OF}
@end table
@node SCALE
@section @code{SCALE} --- Scale a real value
@fnindex SCALE
@cindex real number, scale
@cindex floating point, scale
@table @asis
@item @emph{Description}:
@code{SCALE(X,I)} returns @code{X * RADIX(X)**I}.
@item @emph{Standard}:
Fortran 95 and later
@item @emph{Class}:
Elemental function
@item @emph{Syntax}:
@code{RESULT = SCALE(X, I)}
@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{X} @tab The type of the argument shall be a @code{REAL}.
@item @var{I} @tab The type of the argument shall be a @code{INTEGER}.
@end multitable
@item @emph{Return value}:
The return value is of the same type and kind as @var{X}.
Its value is @code{X * RADIX(X)**I}.
@item @emph{Example}:
@smallexample
program test_scale
real :: x = 178.1387e-4
integer :: i = 5
print *, scale(x,i), x*radix(x)**i
end program test_scale
@end smallexample
@end table
@node SCAN
@section @code{SCAN} --- Scan a string for the presence of a set of characters
@fnindex SCAN
@cindex string, find subset
@table @asis
@item @emph{Description}:
Scans a @var{STRING} for any of the characters in a @var{SET}
of characters.
If @var{BACK} is either absent or equals @code{FALSE}, this function
returns the position of the leftmost character of @var{STRING} that is
in @var{SET}. If @var{BACK} equals @code{TRUE}, the rightmost position
is returned. If no character of @var{SET} is found in @var{STRING}, the
result is zero.
@item @emph{Standard}:
Fortran 95 and later, with @var{KIND} argument Fortran 2003 and later
@item @emph{Class}:
Elemental function
@item @emph{Syntax}:
@code{RESULT = SCAN(STRING, SET[, BACK [, KIND]])}
@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{STRING} @tab Shall be of type @code{CHARACTER}.
@item @var{SET} @tab Shall be of type @code{CHARACTER}.
@item @var{BACK} @tab (Optional) shall be of type @code{LOGICAL}.
@item @var{KIND} @tab (Optional) An @code{INTEGER} initialization
expression indicating the kind parameter of the result.
@end multitable
@item @emph{Return value}:
The return value is of type @code{INTEGER} and of kind @var{KIND}. If
@var{KIND} is absent, the return value is of default integer kind.
@item @emph{Example}:
@smallexample
PROGRAM test_scan
WRITE(*,*) SCAN("FORTRAN", "AO") ! 2, found 'O'
WRITE(*,*) SCAN("FORTRAN", "AO", .TRUE.) ! 6, found 'A'
WRITE(*,*) SCAN("FORTRAN", "C++") ! 0, found none
END PROGRAM
@end smallexample
@item @emph{See also}:
@ref{INDEX intrinsic}, @ref{VERIFY}
@end table
@node SECNDS
@section @code{SECNDS} --- Time function
@fnindex SECNDS
@cindex time, elapsed
@cindex elapsed time
@table @asis
@item @emph{Description}:
@code{SECNDS(X)} gets the time in seconds from the real-time system clock.
@var{X} is a reference time, also in seconds. If this is zero, the time in
seconds from midnight is returned. This function is non-standard and its
use is discouraged.
@item @emph{Standard}:
GNU extension
@item @emph{Class}:
Function
@item @emph{Syntax}:
@code{RESULT = SECNDS (X)}
@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{T} @tab Shall be of type @code{REAL(4)}.
@item @var{X} @tab Shall be of type @code{REAL(4)}.
@end multitable
@item @emph{Return value}:
None
@item @emph{Example}:
@smallexample
program test_secnds
integer :: i
real(4) :: t1, t2
print *, secnds (0.0) ! seconds since midnight
t1 = secnds (0.0) ! reference time
do i = 1, 10000000 ! do something
end do
t2 = secnds (t1) ! elapsed time
print *, "Something took ", t2, " seconds."
end program test_secnds
@end smallexample
@end table
@node SECOND
@section @code{SECOND} --- CPU time function
@fnindex SECOND
@cindex time, elapsed
@cindex elapsed time
@table @asis
@item @emph{Description}:
Returns a @code{REAL(4)} value representing the elapsed CPU time in
seconds. This provides the same functionality as the standard
@code{CPU_TIME} intrinsic, and is only included for backwards
compatibility.
This intrinsic is provided in both subroutine and function forms;
however, only one form can be used in any given program unit.
@item @emph{Standard}:
GNU extension
@item @emph{Class}:
Subroutine, function
@item @emph{Syntax}:
@multitable @columnfractions .80
@item @code{CALL SECOND(TIME)}
@item @code{TIME = SECOND()}
@end multitable
@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{TIME} @tab Shall be of type @code{REAL(4)}.
@end multitable
@item @emph{Return value}:
In either syntax, @var{TIME} is set to the process's current runtime in
seconds.
@item @emph{See also}:
@ref{CPU_TIME}
@end table
@node SELECTED_CHAR_KIND
@section @code{SELECTED_CHAR_KIND} --- Choose character kind
@fnindex SELECTED_CHAR_KIND
@cindex character kind
@cindex kind, character
@table @asis
@item @emph{Description}:
@code{SELECTED_CHAR_KIND(NAME)} returns the kind value for the character
set named @var{NAME}, if a character set with such a name is supported,
or @math{-1} otherwise. Currently, supported character sets include
``ASCII'' and ``DEFAULT'', which are equivalent, and ``ISO_10646''
(Universal Character Set, UCS-4) which is commonly known as Unicode.
@item @emph{Standard}:
Fortran 2003 and later
@item @emph{Class}:
Transformational function
@item @emph{Syntax}:
@code{RESULT = SELECTED_CHAR_KIND(NAME)}
@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{NAME} @tab Shall be a scalar and of the default character type.
@end multitable
@item @emph{Example}:
@smallexample
program character_kind
use iso_fortran_env
implicit none
integer, parameter :: ascii = selected_char_kind ("ascii")
integer, parameter :: ucs4 = selected_char_kind ('ISO_10646')
character(kind=ascii, len=26) :: alphabet
character(kind=ucs4, len=30) :: hello_world
alphabet = ascii_"abcdefghijklmnopqrstuvwxyz"
hello_world = ucs4_'Hello World and Ni Hao -- ' &
// char (int (z'4F60'), ucs4) &
// char (int (z'597D'), ucs4)
write (*,*) alphabet
open (output_unit, encoding='UTF-8')
write (*,*) trim (hello_world)
end program character_kind
@end smallexample
@end table
@node SELECTED_INT_KIND
@section @code{SELECTED_INT_KIND} --- Choose integer kind
@fnindex SELECTED_INT_KIND
@cindex integer kind
@cindex kind, integer
@table @asis
@item @emph{Description}:
@code{SELECTED_INT_KIND(R)} return the kind value of the smallest integer
type that can represent all values ranging from @math{-10^R} (exclusive)
to @math{10^R} (exclusive). If there is no integer kind that accommodates
this range, @code{SELECTED_INT_KIND} returns @math{-1}.
@item @emph{Standard}:
Fortran 95 and later
@item @emph{Class}:
Transformational function
@item @emph{Syntax}:
@code{RESULT = SELECTED_INT_KIND(R)}
@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{R} @tab Shall be a scalar and of type @code{INTEGER}.
@end multitable
@item @emph{Example}:
@smallexample
program large_integers
integer,parameter :: k5 = selected_int_kind(5)
integer,parameter :: k15 = selected_int_kind(15)
integer(kind=k5) :: i5
integer(kind=k15) :: i15
print *, huge(i5), huge(i15)
! The following inequalities are always true
print *, huge(i5) >= 10_k5**5-1
print *, huge(i15) >= 10_k15**15-1
end program large_integers
@end smallexample
@end table
@node SELECTED_REAL_KIND
@section @code{SELECTED_REAL_KIND} --- Choose real kind
@fnindex SELECTED_REAL_KIND
@cindex real kind
@cindex kind, real
@cindex radix, real
@table @asis
@item @emph{Description}:
@code{SELECTED_REAL_KIND(P,R)} returns the kind value of a real data type
with decimal precision of at least @code{P} digits, exponent range of
at least @code{R}, and with a radix of @code{RADIX}.
@item @emph{Standard}:
Fortran 95 and later, with @code{RADIX} Fortran 2008 or later
@item @emph{Class}:
Transformational function
@item @emph{Syntax}:
@code{RESULT = SELECTED_REAL_KIND([P, R, RADIX])}
@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{P} @tab (Optional) shall be a scalar and of type @code{INTEGER}.
@item @var{R} @tab (Optional) shall be a scalar and of type @code{INTEGER}.
@item @var{RADIX} @tab (Optional) shall be a scalar and of type @code{INTEGER}.
@end multitable
Before Fortran 2008, at least one of the arguments @var{R} or @var{P} shall
be present; since Fortran 2008, they are assumed to be zero if absent.
@item @emph{Return value}:
@code{SELECTED_REAL_KIND} returns the value of the kind type parameter of
a real data type with decimal precision of at least @code{P} digits, a
decimal exponent range of at least @code{R}, and with the requested
@code{RADIX}. If the @code{RADIX} parameter is absent, real kinds with
any radix can be returned. If more than one real data type meet the
criteria, the kind of the data type with the smallest decimal precision
is returned. If no real data type matches the criteria, the result is
@table @asis
@item -1 if the processor does not support a real data type with a
precision greater than or equal to @code{P}, but the @code{R} and
@code{RADIX} requirements can be fulfilled
@item -2 if the processor does not support a real type with an exponent
range greater than or equal to @code{R}, but @code{P} and @code{RADIX}
are fulfillable
@item -3 if @code{RADIX} but not @code{P} and @code{R} requirements
are fulfillable
@item -4 if @code{RADIX} and either @code{P} or @code{R} requirements
are fulfillable
@item -5 if there is no real type with the given @code{RADIX}
@end table
@item @emph{See also}:
@ref{PRECISION}, @ref{RANGE}, @ref{RADIX}
@item @emph{Example}:
@smallexample
program real_kinds
integer,parameter :: p6 = selected_real_kind(6)
integer,parameter :: p10r100 = selected_real_kind(10,100)
integer,parameter :: r400 = selected_real_kind(r=400)
real(kind=p6) :: x
real(kind=p10r100) :: y
real(kind=r400) :: z
print *, precision(x), range(x)
print *, precision(y), range(y)
print *, precision(z), range(z)
end program real_kinds
@end smallexample
@end table
@node SET_EXPONENT
@section @code{SET_EXPONENT} --- Set the exponent of the model
@fnindex SET_EXPONENT
@cindex real number, set exponent
@cindex floating point, set exponent
@table @asis
@item @emph{Description}:
@code{SET_EXPONENT(X, I)} returns the real number whose fractional part
is that that of @var{X} and whose exponent part is @var{I}.
@item @emph{Standard}:
Fortran 95 and later
@item @emph{Class}:
Elemental function
@item @emph{Syntax}:
@code{RESULT = SET_EXPONENT(X, I)}
@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{X} @tab Shall be of type @code{REAL}.
@item @var{I} @tab Shall be of type @code{INTEGER}.
@end multitable
@item @emph{Return value}:
The return value is of the same type and kind as @var{X}.
The real number whose fractional part
is that that of @var{X} and whose exponent part if @var{I} is returned;
it is @code{FRACTION(X) * RADIX(X)**I}.
@item @emph{Example}:
@smallexample
PROGRAM test_setexp
REAL :: x = 178.1387e-4
INTEGER :: i = 17
PRINT *, SET_EXPONENT(x, i), FRACTION(x) * RADIX(x)**i
END PROGRAM
@end smallexample
@end table
@node SHAPE
@section @code{SHAPE} --- Determine the shape of an array
@fnindex SHAPE
@cindex array, shape
@table @asis
@item @emph{Description}:
Determines the shape of an array.
@item @emph{Standard}:
Fortran 95 and later, with @var{KIND} argument Fortran 2003 and later
@item @emph{Class}:
Inquiry function
@item @emph{Syntax}:
@code{RESULT = SHAPE(SOURCE [, KIND])}
@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{SOURCE} @tab Shall be an array or scalar of any type.
If @var{SOURCE} is a pointer it must be associated and allocatable
arrays must be allocated.
@item @var{KIND} @tab (Optional) An @code{INTEGER} initialization
expression indicating the kind parameter of the result.
@end multitable
@item @emph{Return value}:
An @code{INTEGER} array of rank one with as many elements as @var{SOURCE}
has dimensions. The elements of the resulting array correspond to the extend
of @var{SOURCE} along the respective dimensions. If @var{SOURCE} is a scalar,
the result is the rank one array of size zero. If @var{KIND} is absent, the
return value has the default integer kind otherwise the specified kind.
@item @emph{Example}:
@smallexample
PROGRAM test_shape
INTEGER, DIMENSION(-1:1, -1:2) :: A
WRITE(*,*) SHAPE(A) ! (/ 3, 4 /)
WRITE(*,*) SIZE(SHAPE(42)) ! (/ /)
END PROGRAM
@end smallexample
@item @emph{See also}:
@ref{RESHAPE}, @ref{SIZE}
@end table
@node SHIFTA
@section @code{SHIFTA} --- Right shift with fill
@fnindex SHIFTA
@cindex bits, shift right
@cindex shift, right with fill
@table @asis
@item @emph{Description}:
@code{SHIFTA} returns a value corresponding to @var{I} with all of the
bits shifted right by @var{SHIFT} places. If the absolute value of
@var{SHIFT} is greater than @code{BIT_SIZE(I)}, the value is undefined.
Bits shifted out from the right end are lost. The fill is arithmetic: the
bits shifted in from the left end are equal to the leftmost bit, which in
two's complement representation is the sign bit.
@item @emph{Standard}:
Fortran 2008 and later
@item @emph{Class}:
Elemental function
@item @emph{Syntax}:
@code{RESULT = SHIFTA(I, SHIFT)}
@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{I} @tab The type shall be @code{INTEGER}.
@item @var{SHIFT} @tab The type shall be @code{INTEGER}.
@end multitable
@item @emph{Return value}:
The return value is of type @code{INTEGER} and of the same kind as
@var{I}.
@item @emph{See also}:
@ref{SHIFTL}, @ref{SHIFTR}
@end table
@node SHIFTL
@section @code{SHIFTL} --- Left shift
@fnindex SHIFTL
@cindex bits, shift left
@cindex shift, left
@table @asis
@item @emph{Description}:
@code{SHIFTL} returns a value corresponding to @var{I} with all of the
bits shifted left by @var{SHIFT} places. If the absolute value of
@var{SHIFT} is greater than @code{BIT_SIZE(I)}, the value is undefined.
Bits shifted out from the left end are lost, and bits shifted in from
the right end are set to 0.
@item @emph{Standard}:
Fortran 2008 and later
@item @emph{Class}:
Elemental function
@item @emph{Syntax}:
@code{RESULT = SHIFTL(I, SHIFT)}
@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{I} @tab The type shall be @code{INTEGER}.
@item @var{SHIFT} @tab The type shall be @code{INTEGER}.
@end multitable
@item @emph{Return value}:
The return value is of type @code{INTEGER} and of the same kind as
@var{I}.
@item @emph{See also}:
@ref{SHIFTA}, @ref{SHIFTR}
@end table
@node SHIFTR
@section @code{SHIFTR} --- Right shift
@fnindex SHIFTR
@cindex bits, shift right
@cindex shift, right
@table @asis
@item @emph{Description}:
@code{SHIFTR} returns a value corresponding to @var{I} with all of the
bits shifted right by @var{SHIFT} places. If the absolute value of
@var{SHIFT} is greater than @code{BIT_SIZE(I)}, the value is undefined.
Bits shifted out from the right end are lost, and bits shifted in from
the left end are set to 0.
@item @emph{Standard}:
Fortran 2008 and later
@item @emph{Class}:
Elemental function
@item @emph{Syntax}:
@code{RESULT = SHIFTR(I, SHIFT)}
@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{I} @tab The type shall be @code{INTEGER}.
@item @var{SHIFT} @tab The type shall be @code{INTEGER}.
@end multitable
@item @emph{Return value}:
The return value is of type @code{INTEGER} and of the same kind as
@var{I}.
@item @emph{See also}:
@ref{SHIFTA}, @ref{SHIFTL}
@end table
@node SIGN
@section @code{SIGN} --- Sign copying function
@fnindex SIGN
@fnindex ISIGN
@fnindex DSIGN
@cindex sign copying
@table @asis
@item @emph{Description}:
@code{SIGN(A,B)} returns the value of @var{A} with the sign of @var{B}.
@item @emph{Standard}:
Fortran 77 and later
@item @emph{Class}:
Elemental function
@item @emph{Syntax}:
@code{RESULT = SIGN(A, B)}
@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{A} @tab Shall be of type @code{INTEGER} or @code{REAL}
@item @var{B} @tab Shall be of the same type and kind as @var{A}
@end multitable
@item @emph{Return value}:
The kind of the return value is that of @var{A} and @var{B}.
If @math{B\ge 0} then the result is @code{ABS(A)}, else
it is @code{-ABS(A)}.
@item @emph{Example}:
@smallexample
program test_sign
print *, sign(-12,1)
print *, sign(-12,0)
print *, sign(-12,-1)
print *, sign(-12.,1.)
print *, sign(-12.,0.)
print *, sign(-12.,-1.)
end program test_sign
@end smallexample
@item @emph{Specific names}:
@multitable @columnfractions .20 .20 .20 .25
@item Name @tab Arguments @tab Return type @tab Standard
@item @code{SIGN(A,B)} @tab @code{REAL(4) A, B} @tab @code{REAL(4)} @tab f77, gnu
@item @code{ISIGN(A,B)} @tab @code{INTEGER(4) A, B} @tab @code{INTEGER(4)} @tab f77, gnu
@item @code{DSIGN(A,B)} @tab @code{REAL(8) A, B} @tab @code{REAL(8)} @tab f77, gnu
@end multitable
@end table
@node SIGNAL
@section @code{SIGNAL} --- Signal handling subroutine (or function)
@fnindex SIGNAL
@cindex system, signal handling
@table @asis
@item @emph{Description}:
@code{SIGNAL(NUMBER, HANDLER [, STATUS])} causes external subroutine
@var{HANDLER} to be executed with a single integer argument when signal
@var{NUMBER} occurs. If @var{HANDLER} is an integer, it can be used to
turn off handling of signal @var{NUMBER} or revert to its default
action. See @code{signal(2)}.
If @code{SIGNAL} is called as a subroutine and the @var{STATUS} argument
is supplied, it is set to the value returned by @code{signal(2)}.
@item @emph{Standard}:
GNU extension
@item @emph{Class}:
Subroutine, function
@item @emph{Syntax}:
@multitable @columnfractions .80
@item @code{CALL SIGNAL(NUMBER, HANDLER [, STATUS])}
@item @code{STATUS = SIGNAL(NUMBER, HANDLER)}
@end multitable
@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{NUMBER} @tab Shall be a scalar integer, with @code{INTENT(IN)}
@item @var{HANDLER}@tab Signal handler (@code{INTEGER FUNCTION} or
@code{SUBROUTINE}) or dummy/global @code{INTEGER} scalar.
@code{INTEGER}. It is @code{INTENT(IN)}.
@item @var{STATUS} @tab (Optional) @var{STATUS} shall be a scalar
integer. It has @code{INTENT(OUT)}.
@end multitable
@c TODO: What should the interface of the handler be? Does it take arguments?
@item @emph{Return value}:
The @code{SIGNAL} function returns the value returned by @code{signal(2)}.
@item @emph{Example}:
@smallexample
program test_signal
intrinsic signal
external handler_print
call signal (12, handler_print)
call signal (10, 1)
call sleep (30)
end program test_signal
@end smallexample
@end table
@node SIN
@section @code{SIN} --- Sine function
@fnindex SIN
@fnindex DSIN
@fnindex CSIN
@fnindex ZSIN
@fnindex CDSIN
@cindex trigonometric function, sine
@cindex sine
@table @asis
@item @emph{Description}:
@code{SIN(X)} computes the sine of @var{X}.
@item @emph{Standard}:
Fortran 77 and later
@item @emph{Class}:
Elemental function
@item @emph{Syntax}:
@code{RESULT = SIN(X)}
@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{X} @tab The type shall be @code{REAL} or
@code{COMPLEX}.
@end multitable
@item @emph{Return value}:
The return value has same type and kind as @var{X}.
@item @emph{Example}:
@smallexample
program test_sin
real :: x = 0.0
x = sin(x)
end program test_sin
@end smallexample
@item @emph{Specific names}:
@multitable @columnfractions .20 .20 .20 .25
@item Name @tab Argument @tab Return type @tab Standard
@item @code{SIN(X)} @tab @code{REAL(4) X} @tab @code{REAL(4)} @tab f77, gnu
@item @code{DSIN(X)} @tab @code{REAL(8) X} @tab @code{REAL(8)} @tab f95, gnu
@item @code{CSIN(X)} @tab @code{COMPLEX(4) X} @tab @code{COMPLEX(4)} @tab f95, gnu
@item @code{ZSIN(X)} @tab @code{COMPLEX(8) X} @tab @code{COMPLEX(8)} @tab f95, gnu
@item @code{CDSIN(X)} @tab @code{COMPLEX(8) X} @tab @code{COMPLEX(8)} @tab f95, gnu
@end multitable
@item @emph{See also}:
@ref{ASIN}
@end table
@node SINH
@section @code{SINH} --- Hyperbolic sine function
@fnindex SINH
@fnindex DSINH
@cindex hyperbolic sine
@cindex hyperbolic function, sine
@cindex sine, hyperbolic
@table @asis
@item @emph{Description}:
@code{SINH(X)} computes the hyperbolic sine of @var{X}.
@item @emph{Standard}:
Fortran 95 and later, for a complex argument Fortran 2008 or later
@item @emph{Class}:
Elemental function
@item @emph{Syntax}:
@code{RESULT = SINH(X)}
@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{X} @tab The type shall be @code{REAL} or @code{COMPLEX}.
@end multitable
@item @emph{Return value}:
The return value has same type and kind as @var{X}.
@item @emph{Example}:
@smallexample
program test_sinh
real(8) :: x = - 1.0_8
x = sinh(x)
end program test_sinh
@end smallexample
@item @emph{Specific names}:
@multitable @columnfractions .20 .20 .20 .25
@item Name @tab Argument @tab Return type @tab Standard
@item @code{SINH(X)} @tab @code{REAL(4) X} @tab @code{REAL(4)} @tab Fortran 95 and later
@item @code{DSINH(X)} @tab @code{REAL(8) X} @tab @code{REAL(8)} @tab Fortran 95 and later
@end multitable
@item @emph{See also}:
@ref{ASINH}
@end table
@node SIZE
@section @code{SIZE} --- Determine the size of an array
@fnindex SIZE
@cindex array, size
@cindex array, number of elements
@cindex array, count elements
@table @asis
@item @emph{Description}:
Determine the extent of @var{ARRAY} along a specified dimension @var{DIM},
or the total number of elements in @var{ARRAY} if @var{DIM} is absent.
@item @emph{Standard}:
Fortran 95 and later, with @var{KIND} argument Fortran 2003 and later
@item @emph{Class}:
Inquiry function
@item @emph{Syntax}:
@code{RESULT = SIZE(ARRAY[, DIM [, KIND]])}
@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{ARRAY} @tab Shall be an array of any type. If @var{ARRAY} is
a pointer it must be associated and allocatable arrays must be allocated.
@item @var{DIM} @tab (Optional) shall be a scalar of type @code{INTEGER}
and its value shall be in the range from 1 to n, where n equals the rank
of @var{ARRAY}.
@item @var{KIND} @tab (Optional) An @code{INTEGER} initialization
expression indicating the kind parameter of the result.
@end multitable
@item @emph{Return value}:
The return value is of type @code{INTEGER} and of kind @var{KIND}. If
@var{KIND} is absent, the return value is of default integer kind.
@item @emph{Example}:
@smallexample
PROGRAM test_size
WRITE(*,*) SIZE((/ 1, 2 /)) ! 2
END PROGRAM
@end smallexample
@item @emph{See also}:
@ref{SHAPE}, @ref{RESHAPE}
@end table
@node SIZEOF
@section @code{SIZEOF} --- Size in bytes of an expression
@fnindex SIZEOF
@cindex expression size
@cindex size of an expression
@table @asis
@item @emph{Description}:
@code{SIZEOF(X)} calculates the number of bytes of storage the
expression @code{X} occupies.
@item @emph{Standard}:
GNU extension
@item @emph{Class}:
Inquiry function
@item @emph{Syntax}:
@code{N = SIZEOF(X)}
@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{X} @tab The argument shall be of any type, rank or shape.
@end multitable
@item @emph{Return value}:
The return value is of type integer and of the system-dependent kind
@var{C_SIZE_T} (from the @var{ISO_C_BINDING} module). Its value is the
number of bytes occupied by the argument. If the argument has the
@code{POINTER} attribute, the number of bytes of the storage area pointed
to is returned. If the argument is of a derived type with @code{POINTER}
or @code{ALLOCATABLE} components, the return value does not account for
the sizes of the data pointed to by these components. If the argument is
polymorphic, the size according to the declared type is returned. The argument
may not be a procedure or procedure pointer.
@item @emph{Example}:
@smallexample
integer :: i
real :: r, s(5)
print *, (sizeof(s)/sizeof(r) == 5)
end
@end smallexample
The example will print @code{.TRUE.} unless you are using a platform
where default @code{REAL} variables are unusually padded.
@item @emph{See also}:
@ref{C_SIZEOF}, @ref{STORAGE_SIZE}
@end table
@node SLEEP
@section @code{SLEEP} --- Sleep for the specified number of seconds
@fnindex SLEEP
@cindex delayed execution
@table @asis
@item @emph{Description}:
Calling this subroutine causes the process to pause for @var{SECONDS} seconds.
@item @emph{Standard}:
GNU extension
@item @emph{Class}:
Subroutine
@item @emph{Syntax}:
@code{CALL SLEEP(SECONDS)}
@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{SECONDS} @tab The type shall be of default @code{INTEGER}.
@end multitable
@item @emph{Example}:
@smallexample
program test_sleep
call sleep(5)
end
@end smallexample
@end table
@node SPACING
@section @code{SPACING} --- Smallest distance between two numbers of a given type
@fnindex SPACING
@cindex real number, relative spacing
@cindex floating point, relative spacing
@table @asis
@item @emph{Description}:
Determines the distance between the argument @var{X} and the nearest
adjacent number of the same type.
@item @emph{Standard}:
Fortran 95 and later
@item @emph{Class}:
Elemental function
@item @emph{Syntax}:
@code{RESULT = SPACING(X)}
@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{X} @tab Shall be of type @code{REAL}.
@end multitable
@item @emph{Return value}:
The result is of the same type as the input argument @var{X}.
@item @emph{Example}:
@smallexample
PROGRAM test_spacing
INTEGER, PARAMETER :: SGL = SELECTED_REAL_KIND(p=6, r=37)
INTEGER, PARAMETER :: DBL = SELECTED_REAL_KIND(p=13, r=200)
WRITE(*,*) spacing(1.0_SGL) ! "1.1920929E-07" on i686
WRITE(*,*) spacing(1.0_DBL) ! "2.220446049250313E-016" on i686
END PROGRAM
@end smallexample
@item @emph{See also}:
@ref{RRSPACING}
@end table
@node SPREAD
@section @code{SPREAD} --- Add a dimension to an array
@fnindex SPREAD
@cindex array, increase dimension
@cindex array, duplicate elements
@cindex array, duplicate dimensions
@table @asis
@item @emph{Description}:
Replicates a @var{SOURCE} array @var{NCOPIES} times along a specified
dimension @var{DIM}.
@item @emph{Standard}:
Fortran 95 and later
@item @emph{Class}:
Transformational function
@item @emph{Syntax}:
@code{RESULT = SPREAD(SOURCE, DIM, NCOPIES)}
@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{SOURCE} @tab Shall be a scalar or an array of any type and
a rank less than seven.
@item @var{DIM} @tab Shall be a scalar of type @code{INTEGER} with a
value in the range from 1 to n+1, where n equals the rank of @var{SOURCE}.
@item @var{NCOPIES} @tab Shall be a scalar of type @code{INTEGER}.
@end multitable
@item @emph{Return value}:
The result is an array of the same type as @var{SOURCE} and has rank n+1
where n equals the rank of @var{SOURCE}.
@item @emph{Example}:
@smallexample
PROGRAM test_spread
INTEGER :: a = 1, b(2) = (/ 1, 2 /)
WRITE(*,*) SPREAD(A, 1, 2) ! "1 1"
WRITE(*,*) SPREAD(B, 1, 2) ! "1 1 2 2"
END PROGRAM
@end smallexample
@item @emph{See also}:
@ref{UNPACK}
@end table
@node SQRT
@section @code{SQRT} --- Square-root function
@fnindex SQRT
@fnindex DSQRT
@fnindex CSQRT
@fnindex ZSQRT
@fnindex CDSQRT
@cindex root
@cindex square-root
@table @asis
@item @emph{Description}:
@code{SQRT(X)} computes the square root of @var{X}.
@item @emph{Standard}:
Fortran 77 and later
@item @emph{Class}:
Elemental function
@item @emph{Syntax}:
@code{RESULT = SQRT(X)}
@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{X} @tab The type shall be @code{REAL} or
@code{COMPLEX}.
@end multitable
@item @emph{Return value}:
The return value is of type @code{REAL} or @code{COMPLEX}.
The kind type parameter is the same as @var{X}.
@item @emph{Example}:
@smallexample
program test_sqrt
real(8) :: x = 2.0_8
complex :: z = (1.0, 2.0)
x = sqrt(x)
z = sqrt(z)
end program test_sqrt
@end smallexample
@item @emph{Specific names}:
@multitable @columnfractions .20 .20 .20 .25
@item Name @tab Argument @tab Return type @tab Standard
@item @code{SQRT(X)} @tab @code{REAL(4) X} @tab @code{REAL(4)} @tab Fortran 95 and later
@item @code{DSQRT(X)} @tab @code{REAL(8) X} @tab @code{REAL(8)} @tab Fortran 95 and later
@item @code{CSQRT(X)} @tab @code{COMPLEX(4) X} @tab @code{COMPLEX(4)} @tab Fortran 95 and later
@item @code{ZSQRT(X)} @tab @code{COMPLEX(8) X} @tab @code{COMPLEX(8)} @tab GNU extension
@item @code{CDSQRT(X)} @tab @code{COMPLEX(8) X} @tab @code{COMPLEX(8)} @tab GNU extension
@end multitable
@end table
@node SRAND
@section @code{SRAND} --- Reinitialize the random number generator
@fnindex SRAND
@cindex random number generation, seeding
@cindex seeding a random number generator
@table @asis
@item @emph{Description}:
@code{SRAND} reinitializes the pseudo-random number generator
called by @code{RAND} and @code{IRAND}. The new seed used by the
generator is specified by the required argument @var{SEED}.
@item @emph{Standard}:
GNU extension
@item @emph{Class}:
Subroutine
@item @emph{Syntax}:
@code{CALL SRAND(SEED)}
@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{SEED} @tab Shall be a scalar @code{INTEGER(kind=4)}.
@end multitable
@item @emph{Return value}:
Does not return anything.
@item @emph{Example}:
See @code{RAND} and @code{IRAND} for examples.
@item @emph{Notes}:
The Fortran 2003 standard specifies the intrinsic @code{RANDOM_SEED} to
initialize the pseudo-random numbers generator and @code{RANDOM_NUMBER}
to generate pseudo-random numbers. Please note that in
GNU Fortran, these two sets of intrinsics (@code{RAND},
@code{IRAND} and @code{SRAND} on the one hand, @code{RANDOM_NUMBER} and
@code{RANDOM_SEED} on the other hand) access two independent
pseudo-random number generators.
@item @emph{See also}:
@ref{RAND}, @ref{RANDOM_SEED}, @ref{RANDOM_NUMBER}
@end table
@node STAT
@section @code{STAT} --- Get file status
@fnindex STAT
@cindex file system, file status
@table @asis
@item @emph{Description}:
This function returns information about a file. No permissions are required on
the file itself, but execute (search) permission is required on all of the
directories in path that lead to the file.
The elements that are obtained and stored in the array @code{VALUES}:
@multitable @columnfractions .15 .70
@item @code{VALUES(1)} @tab Device ID
@item @code{VALUES(2)} @tab Inode number
@item @code{VALUES(3)} @tab File mode
@item @code{VALUES(4)} @tab Number of links
@item @code{VALUES(5)} @tab Owner's uid
@item @code{VALUES(6)} @tab Owner's gid
@item @code{VALUES(7)} @tab ID of device containing directory entry for file (0 if not available)
@item @code{VALUES(8)} @tab File size (bytes)
@item @code{VALUES(9)} @tab Last access time
@item @code{VALUES(10)} @tab Last modification time
@item @code{VALUES(11)} @tab Last file status change time
@item @code{VALUES(12)} @tab Preferred I/O block size (-1 if not available)
@item @code{VALUES(13)} @tab Number of blocks allocated (-1 if not available)
@end multitable
Not all these elements are relevant on all systems.
If an element is not relevant, it is returned as 0.
This intrinsic is provided in both subroutine and function forms; however,
only one form can be used in any given program unit.
@item @emph{Standard}:
GNU extension
@item @emph{Class}:
Subroutine, function
@item @emph{Syntax}:
@multitable @columnfractions .80
@item @code{CALL STAT(NAME, VALUES [, STATUS])}
@item @code{STATUS = STAT(NAME, VALUES)}
@end multitable
@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{NAME} @tab The type shall be @code{CHARACTER}, of the
default kind and a valid path within the file system.
@item @var{VALUES} @tab The type shall be @code{INTEGER(4), DIMENSION(13)}.
@item @var{STATUS} @tab (Optional) status flag of type @code{INTEGER(4)}. Returns 0
on success and a system specific error code otherwise.
@end multitable
@item @emph{Example}:
@smallexample
PROGRAM test_stat
INTEGER, DIMENSION(13) :: buff
INTEGER :: status
CALL STAT("/etc/passwd", buff, status)
IF (status == 0) THEN
WRITE (*, FMT="('Device ID:', T30, I19)") buff(1)
WRITE (*, FMT="('Inode number:', T30, I19)") buff(2)
WRITE (*, FMT="('File mode (octal):', T30, O19)") buff(3)
WRITE (*, FMT="('Number of links:', T30, I19)") buff(4)
WRITE (*, FMT="('Owner''s uid:', T30, I19)") buff(5)
WRITE (*, FMT="('Owner''s gid:', T30, I19)") buff(6)
WRITE (*, FMT="('Device where located:', T30, I19)") buff(7)
WRITE (*, FMT="('File size:', T30, I19)") buff(8)
WRITE (*, FMT="('Last access time:', T30, A19)") CTIME(buff(9))
WRITE (*, FMT="('Last modification time', T30, A19)") CTIME(buff(10))
WRITE (*, FMT="('Last status change time:', T30, A19)") CTIME(buff(11))
WRITE (*, FMT="('Preferred block size:', T30, I19)") buff(12)
WRITE (*, FMT="('No. of blocks allocated:', T30, I19)") buff(13)
END IF
END PROGRAM
@end smallexample
@item @emph{See also}:
To stat an open file: @ref{FSTAT}, to stat a link: @ref{LSTAT}
@end table
@node STORAGE_SIZE
@section @code{STORAGE_SIZE} --- Storage size in bits
@fnindex STORAGE_SIZE
@cindex storage size
@table @asis
@item @emph{Description}:
Returns the storage size of argument @var{A} in bits.
@item @emph{Standard}:
Fortran 2008 and later
@item @emph{Class}:
Inquiry function
@item @emph{Syntax}:
@code{RESULT = STORAGE_SIZE(A [, KIND])}
@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{A} @tab Shall be a scalar or array of any type.
@item @var{KIND} @tab (Optional) shall be a scalar integer constant expression.
@end multitable
@item @emph{Return Value}:
The result is a scalar integer with the kind type parameter specified by KIND
(or default integer type if KIND is missing). The result value is the size
expressed in bits for an element of an array that has the dynamic type and type
parameters of A.
@item @emph{See also}:
@ref{C_SIZEOF}, @ref{SIZEOF}
@end table
@node SUM
@section @code{SUM} --- Sum of array elements
@fnindex SUM
@cindex array, sum
@cindex array, add elements
@cindex array, conditionally add elements
@cindex sum array elements
@table @asis
@item @emph{Description}:
Adds the elements of @var{ARRAY} along dimension @var{DIM} if
the corresponding element in @var{MASK} is @code{TRUE}.
@item @emph{Standard}:
Fortran 95 and later
@item @emph{Class}:
Transformational function
@item @emph{Syntax}:
@multitable @columnfractions .80
@item @code{RESULT = SUM(ARRAY[, MASK])}
@item @code{RESULT = SUM(ARRAY, DIM[, MASK])}
@end multitable
@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{ARRAY} @tab Shall be an array of type @code{INTEGER},
@code{REAL} or @code{COMPLEX}.
@item @var{DIM} @tab (Optional) shall be a scalar of type
@code{INTEGER} with a value in the range from 1 to n, where n
equals the rank of @var{ARRAY}.
@item @var{MASK} @tab (Optional) shall be of type @code{LOGICAL}
and either be a scalar or an array of the same shape as @var{ARRAY}.
@end multitable
@item @emph{Return value}:
The result is of the same type as @var{ARRAY}.
If @var{DIM} is absent, a scalar with the sum of all elements in @var{ARRAY}
is returned. Otherwise, an array of rank n-1, where n equals the rank of
@var{ARRAY}, and a shape similar to that of @var{ARRAY} with dimension @var{DIM}
dropped is returned.
@item @emph{Example}:
@smallexample
PROGRAM test_sum
INTEGER :: x(5) = (/ 1, 2, 3, 4 ,5 /)
print *, SUM(x) ! all elements, sum = 15
print *, SUM(x, MASK=MOD(x, 2)==1) ! odd elements, sum = 9
END PROGRAM
@end smallexample
@item @emph{See also}:
@ref{PRODUCT}
@end table
@node SYMLNK
@section @code{SYMLNK} --- Create a symbolic link
@fnindex SYMLNK
@cindex file system, create link
@cindex file system, soft link
@table @asis
@item @emph{Description}:
Makes a symbolic link from file @var{PATH1} to @var{PATH2}. A null
character (@code{CHAR(0)}) can be used to mark the end of the names in
@var{PATH1} and @var{PATH2}; otherwise, trailing blanks in the file
names are ignored. If the @var{STATUS} argument is supplied, it
contains 0 on success or a nonzero error code upon return; see
@code{symlink(2)}. If the system does not supply @code{symlink(2)},
@code{ENOSYS} is returned.
This intrinsic is provided in both subroutine and function forms;
however, only one form can be used in any given program unit.
@item @emph{Standard}:
GNU extension
@item @emph{Class}:
Subroutine, function
@item @emph{Syntax}:
@multitable @columnfractions .80
@item @code{CALL SYMLNK(PATH1, PATH2 [, STATUS])}
@item @code{STATUS = SYMLNK(PATH1, PATH2)}
@end multitable
@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{PATH1} @tab Shall be of default @code{CHARACTER} type.
@item @var{PATH2} @tab Shall be of default @code{CHARACTER} type.
@item @var{STATUS} @tab (Optional) Shall be of default @code{INTEGER} type.
@end multitable
@item @emph{See also}:
@ref{LINK}, @ref{UNLINK}
@end table
@node SYSTEM
@section @code{SYSTEM} --- Execute a shell command
@fnindex SYSTEM
@cindex system, system call
@table @asis
@item @emph{Description}:
Passes the command @var{COMMAND} to a shell (see @code{system(3)}). If
argument @var{STATUS} is present, it contains the value returned by
@code{system(3)}, which is presumably 0 if the shell command succeeded.
Note that which shell is used to invoke the command is system-dependent
and environment-dependent.
This intrinsic is provided in both subroutine and function forms;
however, only one form can be used in any given program unit.
Note that the @code{system} function need not be thread-safe. It is
the responsibility of the user to ensure that @code{system} is not
called concurrently.
@item @emph{Standard}:
GNU extension
@item @emph{Class}:
Subroutine, function
@item @emph{Syntax}:
@multitable @columnfractions .80
@item @code{CALL SYSTEM(COMMAND [, STATUS])}
@item @code{STATUS = SYSTEM(COMMAND)}
@end multitable
@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{COMMAND} @tab Shall be of default @code{CHARACTER} type.
@item @var{STATUS} @tab (Optional) Shall be of default @code{INTEGER} type.
@end multitable
@item @emph{See also}:
@ref{EXECUTE_COMMAND_LINE}, which is part of the Fortran 2008 standard
and should considered in new code for future portability.
@end table
@node SYSTEM_CLOCK
@section @code{SYSTEM_CLOCK} --- Time function
@fnindex SYSTEM_CLOCK
@cindex time, clock ticks
@cindex clock ticks
@table @asis
@item @emph{Description}:
Determines the @var{COUNT} of a processor clock since an unspecified
time in the past modulo @var{COUNT_MAX}, @var{COUNT_RATE} determines
the number of clock ticks per second. If the platform supports a
monotonic clock, that clock is used and can, depending on the platform
clock implementation, provide up to nanosecond resolution. If a
monotonic clock is not available, the implementation falls back to a
realtime clock.
@var{COUNT_RATE} is system dependent and can vary depending on the
kind of the arguments. For @var{kind=4} arguments, @var{COUNT}
represents milliseconds, while for @var{kind=8} arguments, @var{COUNT}
typically represents micro- or nanoseconds depending on resolution of
the underlying platform clock. @var{COUNT_MAX} usually equals
@code{HUGE(COUNT_MAX)}. Note that the millisecond resolution of the
@var{kind=4} version implies that the @var{COUNT} will wrap around in
roughly 25 days. In order to avoid issues with the wrap around and for
more precise timing, please use the @var{kind=8} version.
If there is no clock, or querying the clock fails, @var{COUNT} is set
to @code{-HUGE(COUNT)}, and @var{COUNT_RATE} and @var{COUNT_MAX} are
set to zero.
When running on a platform using the GNU C library (glibc) version
2.16 or older, or a derivative thereof, the high resolution monotonic
clock is available only when linking with the @var{rt} library. This
can be done explicitly by adding the @code{-lrt} flag when linking the
application, but is also done implicitly when using OpenMP.
On the Windows platform, the version with @var{kind=4} arguments uses
the @code{GetTickCount} function, whereas the @var{kind=8} version
uses @code{QueryPerformanceCounter} and
@code{QueryPerformanceCounterFrequency}. For more information, and
potential caveats, please see the platform documentation.
@item @emph{Standard}:
Fortran 95 and later
@item @emph{Class}:
Subroutine
@item @emph{Syntax}:
@code{CALL SYSTEM_CLOCK([COUNT, COUNT_RATE, COUNT_MAX])}
@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{COUNT} @tab (Optional) shall be a scalar of type
@code{INTEGER} with @code{INTENT(OUT)}.
@item @var{COUNT_RATE} @tab (Optional) shall be a scalar of type
@code{INTEGER} with @code{INTENT(OUT)}.
@item @var{COUNT_MAX} @tab (Optional) shall be a scalar of type
@code{INTEGER} with @code{INTENT(OUT)}.
@end multitable
@item @emph{Example}:
@smallexample
PROGRAM test_system_clock
INTEGER :: count, count_rate, count_max
CALL SYSTEM_CLOCK(count, count_rate, count_max)
WRITE(*,*) count, count_rate, count_max
END PROGRAM
@end smallexample
@item @emph{See also}:
@ref{DATE_AND_TIME}, @ref{CPU_TIME}
@end table
@node TAN
@section @code{TAN} --- Tangent function
@fnindex TAN
@fnindex DTAN
@cindex trigonometric function, tangent
@cindex tangent
@table @asis
@item @emph{Description}:
@code{TAN(X)} computes the tangent of @var{X}.
@item @emph{Standard}:
Fortran 77 and later, for a complex argument Fortran 2008 or later
@item @emph{Class}:
Elemental function
@item @emph{Syntax}:
@code{RESULT = TAN(X)}
@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{X} @tab The type shall be @code{REAL} or @code{COMPLEX}.
@end multitable
@item @emph{Return value}:
The return value has same type and kind as @var{X}.
@item @emph{Example}:
@smallexample
program test_tan
real(8) :: x = 0.165_8
x = tan(x)
end program test_tan
@end smallexample
@item @emph{Specific names}:
@multitable @columnfractions .20 .20 .20 .25
@item Name @tab Argument @tab Return type @tab Standard
@item @code{TAN(X)} @tab @code{REAL(4) X} @tab @code{REAL(4)} @tab Fortran 95 and later
@item @code{DTAN(X)} @tab @code{REAL(8) X} @tab @code{REAL(8)} @tab Fortran 95 and later
@end multitable
@item @emph{See also}:
@ref{ATAN}
@end table
@node TANH
@section @code{TANH} --- Hyperbolic tangent function
@fnindex TANH
@fnindex DTANH
@cindex hyperbolic tangent
@cindex hyperbolic function, tangent
@cindex tangent, hyperbolic
@table @asis
@item @emph{Description}:
@code{TANH(X)} computes the hyperbolic tangent of @var{X}.
@item @emph{Standard}:
Fortran 77 and later, for a complex argument Fortran 2008 or later
@item @emph{Class}:
Elemental function
@item @emph{Syntax}:
@code{X = TANH(X)}
@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{X} @tab The type shall be @code{REAL} or @code{COMPLEX}.
@end multitable
@item @emph{Return value}:
The return value has same type and kind as @var{X}. If @var{X} is
complex, the imaginary part of the result is in radians. If @var{X}
is @code{REAL}, the return value lies in the range
@math{ - 1 \leq tanh(x) \leq 1 }.
@item @emph{Example}:
@smallexample
program test_tanh
real(8) :: x = 2.1_8
x = tanh(x)
end program test_tanh
@end smallexample
@item @emph{Specific names}:
@multitable @columnfractions .20 .20 .20 .25
@item Name @tab Argument @tab Return type @tab Standard
@item @code{TANH(X)} @tab @code{REAL(4) X} @tab @code{REAL(4)} @tab Fortran 95 and later
@item @code{DTANH(X)} @tab @code{REAL(8) X} @tab @code{REAL(8)} @tab Fortran 95 and later
@end multitable
@item @emph{See also}:
@ref{ATANH}
@end table
@node THIS_IMAGE
@section @code{THIS_IMAGE} --- Function that returns the cosubscript index of this image
@fnindex THIS_IMAGE
@cindex coarray, @code{THIS_IMAGE}
@cindex images, index of this image
@table @asis
@item @emph{Description}:
Returns the cosubscript for this image.
@item @emph{Standard}:
Fortran 2008 and later
@item @emph{Class}:
Transformational function
@item @emph{Syntax}:
@multitable @columnfractions .80
@item @code{RESULT = THIS_IMAGE()}
@item @code{RESULT = THIS_IMAGE(COARRAY [, DIM])}
@end multitable
@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{COARRAY} @tab Coarray of any type (optional; if @var{DIM}
present, required).
@item @var{DIM} @tab default integer scalar (optional). If present,
@var{DIM} shall be between one and the corank of @var{COARRAY}.
@end multitable
@item @emph{Return value}:
Default integer. If @var{COARRAY} is not present, it is scalar and its value
is the index of the invoking image. Otherwise, if @var{DIM} is not present,
a rank-1 array with corank elements is returned, containing the cosubscripts
for @var{COARRAY} specifying the invoking image. If @var{DIM} is present,
a scalar is returned, with the value of the @var{DIM} element of
@code{THIS_IMAGE(COARRAY)}.
@item @emph{Example}:
@smallexample
INTEGER :: value[*]
INTEGER :: i
value = THIS_IMAGE()
SYNC ALL
IF (THIS_IMAGE() == 1) THEN
DO i = 1, NUM_IMAGES()
WRITE(*,'(2(a,i0))') 'value[', i, '] is ', value[i]
END DO
END IF
@end smallexample
@item @emph{See also}:
@ref{NUM_IMAGES}, @ref{IMAGE_INDEX}
@end table
@node TIME
@section @code{TIME} --- Time function
@fnindex TIME
@cindex time, current
@cindex current time
@table @asis
@item @emph{Description}:
Returns the current time encoded as an integer (in the manner of the
function @code{time(3)} in the C standard library). This value is
suitable for passing to @code{CTIME}, @code{GMTIME}, and @code{LTIME}.
This intrinsic is not fully portable, such as to systems with 32-bit
@code{INTEGER} types but supporting times wider than 32 bits. Therefore,
the values returned by this intrinsic might be, or become, negative, or
numerically less than previous values, during a single run of the
compiled program.
See @ref{TIME8}, for information on a similar intrinsic that might be
portable to more GNU Fortran implementations, though to fewer Fortran
compilers.
@item @emph{Standard}:
GNU extension
@item @emph{Class}:
Function
@item @emph{Syntax}:
@code{RESULT = TIME()}
@item @emph{Return value}:
The return value is a scalar of type @code{INTEGER(4)}.
@item @emph{See also}:
@ref{CTIME}, @ref{GMTIME}, @ref{LTIME}, @ref{MCLOCK}, @ref{TIME8}
@end table
@node TIME8
@section @code{TIME8} --- Time function (64-bit)
@fnindex TIME8
@cindex time, current
@cindex current time
@table @asis
@item @emph{Description}:
Returns the current time encoded as an integer (in the manner of the
function @code{time(3)} in the C standard library). This value is
suitable for passing to @code{CTIME}, @code{GMTIME}, and @code{LTIME}.
@emph{Warning:} this intrinsic does not increase the range of the timing
values over that returned by @code{time(3)}. On a system with a 32-bit
@code{time(3)}, @code{TIME8} will return a 32-bit value, even though
it is converted to a 64-bit @code{INTEGER(8)} value. That means
overflows of the 32-bit value can still occur. Therefore, the values
returned by this intrinsic might be or become negative or numerically
less than previous values during a single run of the compiled program.
@item @emph{Standard}:
GNU extension
@item @emph{Class}:
Function
@item @emph{Syntax}:
@code{RESULT = TIME8()}
@item @emph{Return value}:
The return value is a scalar of type @code{INTEGER(8)}.
@item @emph{See also}:
@ref{CTIME}, @ref{GMTIME}, @ref{LTIME}, @ref{MCLOCK8}, @ref{TIME}
@end table
@node TINY
@section @code{TINY} --- Smallest positive number of a real kind
@fnindex TINY
@cindex limits, smallest number
@cindex model representation, smallest number
@table @asis
@item @emph{Description}:
@code{TINY(X)} returns the smallest positive (non zero) number
in the model of the type of @code{X}.
@item @emph{Standard}:
Fortran 95 and later
@item @emph{Class}:
Inquiry function
@item @emph{Syntax}:
@code{RESULT = TINY(X)}
@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{X} @tab Shall be of type @code{REAL}.
@end multitable
@item @emph{Return value}:
The return value is of the same type and kind as @var{X}
@item @emph{Example}:
See @code{HUGE} for an example.
@end table
@node TRAILZ
@section @code{TRAILZ} --- Number of trailing zero bits of an integer
@fnindex TRAILZ
@cindex zero bits
@table @asis
@item @emph{Description}:
@code{TRAILZ} returns the number of trailing zero bits of an integer.
@item @emph{Standard}:
Fortran 2008 and later
@item @emph{Class}:
Elemental function
@item @emph{Syntax}:
@code{RESULT = TRAILZ(I)}
@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{I} @tab Shall be of type @code{INTEGER}.
@end multitable
@item @emph{Return value}:
The type of the return value is the default @code{INTEGER}.
If all the bits of @code{I} are zero, the result value is @code{BIT_SIZE(I)}.
@item @emph{Example}:
@smallexample
PROGRAM test_trailz
WRITE (*,*) TRAILZ(8) ! prints 3
END PROGRAM
@end smallexample
@item @emph{See also}:
@ref{BIT_SIZE}, @ref{LEADZ}, @ref{POPPAR}, @ref{POPCNT}
@end table
@node TRANSFER
@section @code{TRANSFER} --- Transfer bit patterns
@fnindex TRANSFER
@cindex bits, move
@cindex type cast
@table @asis
@item @emph{Description}:
Interprets the bitwise representation of @var{SOURCE} in memory as if it
is the representation of a variable or array of the same type and type
parameters as @var{MOLD}.
This is approximately equivalent to the C concept of @emph{casting} one
type to another.
@item @emph{Standard}:
Fortran 95 and later
@item @emph{Class}:
Transformational function
@item @emph{Syntax}:
@code{RESULT = TRANSFER(SOURCE, MOLD[, SIZE])}
@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{SOURCE} @tab Shall be a scalar or an array of any type.
@item @var{MOLD} @tab Shall be a scalar or an array of any type.
@item @var{SIZE} @tab (Optional) shall be a scalar of type
@code{INTEGER}.
@end multitable
@item @emph{Return value}:
The result has the same type as @var{MOLD}, with the bit level
representation of @var{SOURCE}. If @var{SIZE} is present, the result is
a one-dimensional array of length @var{SIZE}. If @var{SIZE} is absent
but @var{MOLD} is an array (of any size or shape), the result is a one-
dimensional array of the minimum length needed to contain the entirety
of the bitwise representation of @var{SOURCE}. If @var{SIZE} is absent
and @var{MOLD} is a scalar, the result is a scalar.
If the bitwise representation of the result is longer than that of
@var{SOURCE}, then the leading bits of the result correspond to those of
@var{SOURCE} and any trailing bits are filled arbitrarily.
When the resulting bit representation does not correspond to a valid
representation of a variable of the same type as @var{MOLD}, the results
are undefined, and subsequent operations on the result cannot be
guaranteed to produce sensible behavior. For example, it is possible to
create @code{LOGICAL} variables for which @code{@var{VAR}} and
@code{.NOT.@var{VAR}} both appear to be true.
@item @emph{Example}:
@smallexample
PROGRAM test_transfer
integer :: x = 2143289344
print *, transfer(x, 1.0) ! prints "NaN" on i686
END PROGRAM
@end smallexample
@end table
@node TRANSPOSE
@section @code{TRANSPOSE} --- Transpose an array of rank two
@fnindex TRANSPOSE
@cindex array, transpose
@cindex matrix, transpose
@cindex transpose
@table @asis
@item @emph{Description}:
Transpose an array of rank two. Element (i, j) of the result has the value
@code{MATRIX(j, i)}, for all i, j.
@item @emph{Standard}:
Fortran 95 and later
@item @emph{Class}:
Transformational function
@item @emph{Syntax}:
@code{RESULT = TRANSPOSE(MATRIX)}
@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{MATRIX} @tab Shall be an array of any type and have a rank of two.
@end multitable
@item @emph{Return value}:
The result has the same type as @var{MATRIX}, and has shape
@code{(/ m, n /)} if @var{MATRIX} has shape @code{(/ n, m /)}.
@end table
@node TRIM
@section @code{TRIM} --- Remove trailing blank characters of a string
@fnindex TRIM
@cindex string, remove trailing whitespace
@table @asis
@item @emph{Description}:
Removes trailing blank characters of a string.
@item @emph{Standard}:
Fortran 95 and later
@item @emph{Class}:
Transformational function
@item @emph{Syntax}:
@code{RESULT = TRIM(STRING)}
@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{STRING} @tab Shall be a scalar of type @code{CHARACTER}.
@end multitable
@item @emph{Return value}:
A scalar of type @code{CHARACTER} which length is that of @var{STRING}
less the number of trailing blanks.
@item @emph{Example}:
@smallexample
PROGRAM test_trim
CHARACTER(len=10), PARAMETER :: s = "GFORTRAN "
WRITE(*,*) LEN(s), LEN(TRIM(s)) ! "10 8", with/without trailing blanks
END PROGRAM
@end smallexample
@item @emph{See also}:
@ref{ADJUSTL}, @ref{ADJUSTR}
@end table
@node TTYNAM
@section @code{TTYNAM} --- Get the name of a terminal device.
@fnindex TTYNAM
@cindex system, terminal
@table @asis
@item @emph{Description}:
Get the name of a terminal device. For more information,
see @code{ttyname(3)}.
This intrinsic is provided in both subroutine and function forms;
however, only one form can be used in any given program unit.
@item @emph{Standard}:
GNU extension
@item @emph{Class}:
Subroutine, function
@item @emph{Syntax}:
@multitable @columnfractions .80
@item @code{CALL TTYNAM(UNIT, NAME)}
@item @code{NAME = TTYNAM(UNIT)}
@end multitable
@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{UNIT} @tab Shall be a scalar @code{INTEGER}.
@item @var{NAME} @tab Shall be of type @code{CHARACTER}.
@end multitable
@item @emph{Example}:
@smallexample
PROGRAM test_ttynam
INTEGER :: unit
DO unit = 1, 10
IF (isatty(unit=unit)) write(*,*) ttynam(unit)
END DO
END PROGRAM
@end smallexample
@item @emph{See also}:
@ref{ISATTY}
@end table
@node UBOUND
@section @code{UBOUND} --- Upper dimension bounds of an array
@fnindex UBOUND
@cindex array, upper bound
@table @asis
@item @emph{Description}:
Returns the upper bounds of an array, or a single upper bound
along the @var{DIM} dimension.
@item @emph{Standard}:
Fortran 95 and later, with @var{KIND} argument Fortran 2003 and later
@item @emph{Class}:
Inquiry function
@item @emph{Syntax}:
@code{RESULT = UBOUND(ARRAY [, DIM [, KIND]])}
@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{ARRAY} @tab Shall be an array, of any type.
@item @var{DIM} @tab (Optional) Shall be a scalar @code{INTEGER}.
@item @var{KIND}@tab (Optional) An @code{INTEGER} initialization
expression indicating the kind parameter of the result.
@end multitable
@item @emph{Return value}:
The return value is of type @code{INTEGER} and of kind @var{KIND}. If
@var{KIND} is absent, the return value is of default integer kind.
If @var{DIM} is absent, the result is an array of the upper bounds of
@var{ARRAY}. If @var{DIM} is present, the result is a scalar
corresponding to the upper bound of the array along that dimension. If
@var{ARRAY} is an expression rather than a whole array or array
structure component, or if it has a zero extent along the relevant
dimension, the upper bound is taken to be the number of elements along
the relevant dimension.
@item @emph{See also}:
@ref{LBOUND}, @ref{LCOBOUND}
@end table
@node UCOBOUND
@section @code{UCOBOUND} --- Upper codimension bounds of an array
@fnindex UCOBOUND
@cindex coarray, upper bound
@table @asis
@item @emph{Description}:
Returns the upper cobounds of a coarray, or a single upper cobound
along the @var{DIM} codimension.
@item @emph{Standard}:
Fortran 2008 and later
@item @emph{Class}:
Inquiry function
@item @emph{Syntax}:
@code{RESULT = UCOBOUND(COARRAY [, DIM [, KIND]])}
@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{ARRAY} @tab Shall be an coarray, of any type.
@item @var{DIM} @tab (Optional) Shall be a scalar @code{INTEGER}.
@item @var{KIND} @tab (Optional) An @code{INTEGER} initialization
expression indicating the kind parameter of the result.
@end multitable
@item @emph{Return value}:
The return value is of type @code{INTEGER} and of kind @var{KIND}. If
@var{KIND} is absent, the return value is of default integer kind.
If @var{DIM} is absent, the result is an array of the lower cobounds of
@var{COARRAY}. If @var{DIM} is present, the result is a scalar
corresponding to the lower cobound of the array along that codimension.
@item @emph{See also}:
@ref{LCOBOUND}, @ref{LBOUND}
@end table
@node UMASK
@section @code{UMASK} --- Set the file creation mask
@fnindex UMASK
@cindex file system, file creation mask
@table @asis
@item @emph{Description}:
Sets the file creation mask to @var{MASK}. If called as a function, it
returns the old value. If called as a subroutine and argument @var{OLD}
if it is supplied, it is set to the old value. See @code{umask(2)}.
@item @emph{Standard}:
GNU extension
@item @emph{Class}:
Subroutine, function
@item @emph{Syntax}:
@multitable @columnfractions .80
@item @code{CALL UMASK(MASK [, OLD])}
@item @code{OLD = UMASK(MASK)}
@end multitable
@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{MASK} @tab Shall be a scalar of type @code{INTEGER}.
@item @var{OLD} @tab (Optional) Shall be a scalar of type
@code{INTEGER}.
@end multitable
@end table
@node UNLINK
@section @code{UNLINK} --- Remove a file from the file system
@fnindex UNLINK
@cindex file system, remove file
@table @asis
@item @emph{Description}:
Unlinks the file @var{PATH}. A null character (@code{CHAR(0)}) can be
used to mark the end of the name in @var{PATH}; otherwise, trailing
blanks in the file name are ignored. If the @var{STATUS} argument is
supplied, it contains 0 on success or a nonzero error code upon return;
see @code{unlink(2)}.
This intrinsic is provided in both subroutine and function forms;
however, only one form can be used in any given program unit.
@item @emph{Standard}:
GNU extension
@item @emph{Class}:
Subroutine, function
@item @emph{Syntax}:
@multitable @columnfractions .80
@item @code{CALL UNLINK(PATH [, STATUS])}
@item @code{STATUS = UNLINK(PATH)}
@end multitable
@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{PATH} @tab Shall be of default @code{CHARACTER} type.
@item @var{STATUS} @tab (Optional) Shall be of default @code{INTEGER} type.
@end multitable
@item @emph{See also}:
@ref{LINK}, @ref{SYMLNK}
@end table
@node UNPACK
@section @code{UNPACK} --- Unpack an array of rank one into an array
@fnindex UNPACK
@cindex array, unpacking
@cindex array, increase dimension
@cindex array, scatter elements
@table @asis
@item @emph{Description}:
Store the elements of @var{VECTOR} in an array of higher rank.
@item @emph{Standard}:
Fortran 95 and later
@item @emph{Class}:
Transformational function
@item @emph{Syntax}:
@code{RESULT = UNPACK(VECTOR, MASK, FIELD)}
@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{VECTOR} @tab Shall be an array of any type and rank one. It
shall have at least as many elements as @var{MASK} has @code{TRUE} values.
@item @var{MASK} @tab Shall be an array of type @code{LOGICAL}.
@item @var{FIELD} @tab Shall be of the same type as @var{VECTOR} and have
the same shape as @var{MASK}.
@end multitable
@item @emph{Return value}:
The resulting array corresponds to @var{FIELD} with @code{TRUE} elements
of @var{MASK} replaced by values from @var{VECTOR} in array element order.
@item @emph{Example}:
@smallexample
PROGRAM test_unpack
integer :: vector(2) = (/1,1/)
logical :: mask(4) = (/ .TRUE., .FALSE., .FALSE., .TRUE. /)
integer :: field(2,2) = 0, unity(2,2)
! result: unity matrix
unity = unpack(vector, reshape(mask, (/2,2/)), field)
END PROGRAM
@end smallexample
@item @emph{See also}:
@ref{PACK}, @ref{SPREAD}
@end table
@node VERIFY
@section @code{VERIFY} --- Scan a string for characters not a given set
@fnindex VERIFY
@cindex string, find missing set
@table @asis
@item @emph{Description}:
Verifies that all the characters in @var{STRING} belong to the set of
characters in @var{SET}.
If @var{BACK} is either absent or equals @code{FALSE}, this function
returns the position of the leftmost character of @var{STRING} that is
not in @var{SET}. If @var{BACK} equals @code{TRUE}, the rightmost
position is returned. If all characters of @var{STRING} are found in
@var{SET}, the result is zero.
@item @emph{Standard}:
Fortran 95 and later, with @var{KIND} argument Fortran 2003 and later
@item @emph{Class}:
Elemental function
@item @emph{Syntax}:
@code{RESULT = VERIFY(STRING, SET[, BACK [, KIND]])}
@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{STRING} @tab Shall be of type @code{CHARACTER}.
@item @var{SET} @tab Shall be of type @code{CHARACTER}.
@item @var{BACK} @tab (Optional) shall be of type @code{LOGICAL}.
@item @var{KIND} @tab (Optional) An @code{INTEGER} initialization
expression indicating the kind parameter of the result.
@end multitable
@item @emph{Return value}:
The return value is of type @code{INTEGER} and of kind @var{KIND}. If
@var{KIND} is absent, the return value is of default integer kind.
@item @emph{Example}:
@smallexample
PROGRAM test_verify
WRITE(*,*) VERIFY("FORTRAN", "AO") ! 1, found 'F'
WRITE(*,*) VERIFY("FORTRAN", "FOO") ! 3, found 'R'
WRITE(*,*) VERIFY("FORTRAN", "C++") ! 1, found 'F'
WRITE(*,*) VERIFY("FORTRAN", "C++", .TRUE.) ! 7, found 'N'
WRITE(*,*) VERIFY("FORTRAN", "FORTRAN") ! 0' found none
END PROGRAM
@end smallexample
@item @emph{See also}:
@ref{SCAN}, @ref{INDEX intrinsic}
@end table
@node XOR
@section @code{XOR} --- Bitwise logical exclusive OR
@fnindex XOR
@cindex bitwise logical exclusive or
@cindex logical exclusive or, bitwise
@table @asis
@item @emph{Description}:
Bitwise logical exclusive or.
This intrinsic routine is provided for backwards compatibility with
GNU Fortran 77. For integer arguments, programmers should consider
the use of the @ref{IEOR} intrinsic and for logical arguments the
@code{.NEQV.} operator, which are both defined by the Fortran standard.
@item @emph{Standard}:
GNU extension
@item @emph{Class}:
Function
@item @emph{Syntax}:
@code{RESULT = XOR(I, J)}
@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{I} @tab The type shall be either a scalar @code{INTEGER}
type or a scalar @code{LOGICAL} type.
@item @var{J} @tab The type shall be the same as the type of @var{I}.
@end multitable
@item @emph{Return value}:
The return type is either a scalar @code{INTEGER} or a scalar
@code{LOGICAL}. If the kind type parameters differ, then the
smaller kind type is implicitly converted to larger kind, and the
return has the larger kind.
@item @emph{Example}:
@smallexample
PROGRAM test_xor
LOGICAL :: T = .TRUE., F = .FALSE.
INTEGER :: a, b
DATA a / Z'F' /, b / Z'3' /
WRITE (*,*) XOR(T, T), XOR(T, F), XOR(F, T), XOR(F, F)
WRITE (*,*) XOR(a, b)
END PROGRAM
@end smallexample
@item @emph{See also}:
Fortran 95 elemental function: @ref{IEOR}
@end table
@node Intrinsic Modules
@chapter Intrinsic Modules
@cindex intrinsic Modules
@menu
* ISO_FORTRAN_ENV::
* ISO_C_BINDING::
* OpenMP Modules OMP_LIB and OMP_LIB_KINDS::
@end menu
@node ISO_FORTRAN_ENV
@section @code{ISO_FORTRAN_ENV}
@table @asis
@item @emph{Standard}:
Fortran 2003 and later, except when otherwise noted
@end table
The @code{ISO_FORTRAN_ENV} module provides the following scalar default-integer
named constants:
@table @asis
@item @code{ATOMIC_INT_KIND}:
Default-kind integer constant to be used as kind parameter when defining
integer variables used in atomic operations. (Fortran 2008 or later.)
@item @code{ATOMIC_LOGICAL_KIND}:
Default-kind integer constant to be used as kind parameter when defining
logical variables used in atomic operations. (Fortran 2008 or later.)
@item @code{CHARACTER_KINDS}:
Default-kind integer constant array of rank one containing the supported kind
parameters of the @code{CHARACTER} type. (Fortran 2008 or later.)
@item @code{CHARACTER_STORAGE_SIZE}:
Size in bits of the character storage unit.
@item @code{ERROR_UNIT}:
Identifies the preconnected unit used for error reporting.
@item @code{FILE_STORAGE_SIZE}:
Size in bits of the file-storage unit.
@item @code{INPUT_UNIT}:
Identifies the preconnected unit identified by the asterisk
(@code{*}) in @code{READ} statement.
@item @code{INT8}, @code{INT16}, @code{INT32}, @code{INT64}:
Kind type parameters to specify an INTEGER type with a storage
size of 16, 32, and 64 bits. It is negative if a target platform
does not support the particular kind. (Fortran 2008 or later.)
@item @code{INTEGER_KINDS}:
Default-kind integer constant array of rank one containing the supported kind
parameters of the @code{INTEGER} type. (Fortran 2008 or later.)
@item @code{IOSTAT_END}:
The value assigned to the variable passed to the @code{IOSTAT=} specifier of
an input/output statement if an end-of-file condition occurred.
@item @code{IOSTAT_EOR}:
The value assigned to the variable passed to the @code{IOSTAT=} specifier of
an input/output statement if an end-of-record condition occurred.
@item @code{IOSTAT_INQUIRE_INTERNAL_UNIT}:
Scalar default-integer constant, used by @code{INQUIRE} for the
@code{IOSTAT=} specifier to denote an that a unit number identifies an
internal unit. (Fortran 2008 or later.)
@item @code{NUMERIC_STORAGE_SIZE}:
The size in bits of the numeric storage unit.
@item @code{LOGICAL_KINDS}:
Default-kind integer constant array of rank one containing the supported kind
parameters of the @code{LOGICAL} type. (Fortran 2008 or later.)
@item @code{OUTPUT_UNIT}:
Identifies the preconnected unit identified by the asterisk
(@code{*}) in @code{WRITE} statement.
@item @code{REAL32}, @code{REAL64}, @code{REAL128}:
Kind type parameters to specify a REAL type with a storage
size of 32, 64, and 128 bits. It is negative if a target platform
does not support the particular kind. (Fortran 2008 or later.)
@item @code{REAL_KINDS}:
Default-kind integer constant array of rank one containing the supported kind
parameters of the @code{REAL} type. (Fortran 2008 or later.)
@item @code{STAT_LOCKED}:
Scalar default-integer constant used as STAT= return value by @code{LOCK} to
denote that the lock variable is locked by the executing image. (Fortran 2008
or later.)
@item @code{STAT_LOCKED_OTHER_IMAGE}:
Scalar default-integer constant used as STAT= return value by @code{UNLOCK} to
denote that the lock variable is locked by another image. (Fortran 2008 or
later.)
@item @code{STAT_STOPPED_IMAGE}:
Positive, scalar default-integer constant used as STAT= return value if the
argument in the statement requires synchronisation with an image, which has
initiated the termination of the execution. (Fortran 2008 or later.)
@item @code{STAT_UNLOCKED}:
Scalar default-integer constant used as STAT= return value by @code{UNLOCK} to
denote that the lock variable is unlocked. (Fortran 2008 or later.)
@end table
The module provides the following derived type:
@table @asis
@item @code{LOCK_TYPE}:
Derived type with private components to be use with the @code{LOCK} and
@code{UNLOCK} statement. A variable of its type has to be always declared
as coarray and may not appear in a variable-definition context.
(Fortran 2008 or later.)
@end table
The module also provides the following intrinsic procedures:
@ref{COMPILER_OPTIONS} and @ref{COMPILER_VERSION}.
@node ISO_C_BINDING
@section @code{ISO_C_BINDING}
@table @asis
@item @emph{Standard}:
Fortran 2003 and later, GNU extensions
@end table
The following intrinsic procedures are provided by the module; their
definition can be found in the section Intrinsic Procedures of this
manual.
@table @asis
@item @code{C_ASSOCIATED}
@item @code{C_F_POINTER}
@item @code{C_F_PROCPOINTER}
@item @code{C_FUNLOC}
@item @code{C_LOC}
@item @code{C_SIZEOF}
@end table
@c TODO: Vertical spacing between C_FUNLOC and C_LOC wrong in PDF,
@c don't really know why.
The @code{ISO_C_BINDING} module provides the following named constants of
type default integer, which can be used as KIND type parameters.
In addition to the integer named constants required by the Fortran 2003
standard and @code{C_PTRDIFF_T} of TS 29113, GNU Fortran provides as an
extension named constants for the 128-bit integer types supported by the
C compiler: @code{C_INT128_T, C_INT_LEAST128_T, C_INT_FAST128_T}.
Furthermore, if @code{__float128} is supported in C, the named constants
@code{C_FLOAT128, C_FLOAT128_COMPLEX} are defined.
@multitable @columnfractions .15 .35 .35 .35
@item Fortran Type @tab Named constant @tab C type @tab Extension
@item @code{INTEGER}@tab @code{C_INT} @tab @code{int}
@item @code{INTEGER}@tab @code{C_SHORT} @tab @code{short int}
@item @code{INTEGER}@tab @code{C_LONG} @tab @code{long int}
@item @code{INTEGER}@tab @code{C_LONG_LONG} @tab @code{long long int}
@item @code{INTEGER}@tab @code{C_SIGNED_CHAR} @tab @code{signed char}/@code{unsigned char}
@item @code{INTEGER}@tab @code{C_SIZE_T} @tab @code{size_t}
@item @code{INTEGER}@tab @code{C_INT8_T} @tab @code{int8_t}
@item @code{INTEGER}@tab @code{C_INT16_T} @tab @code{int16_t}
@item @code{INTEGER}@tab @code{C_INT32_T} @tab @code{int32_t}
@item @code{INTEGER}@tab @code{C_INT64_T} @tab @code{int64_t}
@item @code{INTEGER}@tab @code{C_INT128_T} @tab @code{int128_t} @tab Ext.
@item @code{INTEGER}@tab @code{C_INT_LEAST8_T} @tab @code{int_least8_t}
@item @code{INTEGER}@tab @code{C_INT_LEAST16_T} @tab @code{int_least16_t}
@item @code{INTEGER}@tab @code{C_INT_LEAST32_T} @tab @code{int_least32_t}
@item @code{INTEGER}@tab @code{C_INT_LEAST64_T} @tab @code{int_least64_t}
@item @code{INTEGER}@tab @code{C_INT_LEAST128_T}@tab @code{int_least128_t} @tab Ext.
@item @code{INTEGER}@tab @code{C_INT_FAST8_T} @tab @code{int_fast8_t}
@item @code{INTEGER}@tab @code{C_INT_FAST16_T} @tab @code{int_fast16_t}
@item @code{INTEGER}@tab @code{C_INT_FAST32_T} @tab @code{int_fast32_t}
@item @code{INTEGER}@tab @code{C_INT_FAST64_T} @tab @code{int_fast64_t}
@item @code{INTEGER}@tab @code{C_INT_FAST128_T} @tab @code{int_fast128_t} @tab Ext.
@item @code{INTEGER}@tab @code{C_INTMAX_T} @tab @code{intmax_t}
@item @code{INTEGER}@tab @code{C_INTPTR_T} @tab @code{intptr_t}
@item @code{INTEGER}@tab @code{C_PTRDIFF_T} @tab @code{intptr_t} @tab TS 29113
@item @code{REAL} @tab @code{C_FLOAT} @tab @code{float}
@item @code{REAL} @tab @code{C_DOUBLE} @tab @code{double}
@item @code{REAL} @tab @code{C_LONG_DOUBLE} @tab @code{long double}
@item @code{REAL} @tab @code{C_FLOAT128} @tab @code{__float128} @tab Ext.
@item @code{COMPLEX}@tab @code{C_FLOAT_COMPLEX} @tab @code{float _Complex}
@item @code{COMPLEX}@tab @code{C_DOUBLE_COMPLEX}@tab @code{double _Complex}
@item @code{COMPLEX}@tab @code{C_LONG_DOUBLE_COMPLEX}@tab @code{long double _Complex}
@item @code{REAL} @tab @code{C_FLOAT128_COMPLEX} @tab @code{__float128 _Complex} @tab Ext.
@item @code{LOGICAL}@tab @code{C_BOOL} @tab @code{_Bool}
@item @code{CHARACTER}@tab @code{C_CHAR} @tab @code{char}
@end multitable
Additionally, the following parameters of type @code{CHARACTER(KIND=C_CHAR)}
are defined.
@multitable @columnfractions .20 .45 .15
@item Name @tab C definition @tab Value
@item @code{C_NULL_CHAR} @tab null character @tab @code{'\0'}
@item @code{C_ALERT} @tab alert @tab @code{'\a'}
@item @code{C_BACKSPACE} @tab backspace @tab @code{'\b'}
@item @code{C_FORM_FEED} @tab form feed @tab @code{'\f'}
@item @code{C_NEW_LINE} @tab new line @tab @code{'\n'}
@item @code{C_CARRIAGE_RETURN} @tab carriage return @tab @code{'\r'}
@item @code{C_HORIZONTAL_TAB} @tab horizontal tab @tab @code{'\t'}
@item @code{C_VERTICAL_TAB} @tab vertical tab @tab @code{'\v'}
@end multitable
Moreover, the following two named constants are defined:
@multitable @columnfractions .20 .80
@item Name @tab Type
@item @code{C_NULL_PTR} @tab @code{C_PTR}
@item @code{C_NULL_FUNPTR} @tab @code{C_FUNPTR}
@end multitable
Both are equivalent to the value @code{NULL} in C.
@node OpenMP Modules OMP_LIB and OMP_LIB_KINDS
@section OpenMP Modules @code{OMP_LIB} and @code{OMP_LIB_KINDS}
@table @asis
@item @emph{Standard}:
OpenMP Application Program Interface v4.0
@end table
The OpenMP Fortran runtime library routines are provided both in
a form of two Fortran 90 modules, named @code{OMP_LIB} and
@code{OMP_LIB_KINDS}, and in a form of a Fortran @code{include} file named
@file{omp_lib.h}. The procedures provided by @code{OMP_LIB} can be found
in the @ref{Top,,Introduction,libgomp,GNU OpenMP runtime library} manual,
the named constants defined in the modules are listed
below.
For details refer to the actual
@uref{http://www.openmp.org/mp-documents/OpenMP4.0.0.pdf,
OpenMP Application Program Interface v4.0}.
@code{OMP_LIB_KINDS} provides the following scalar default-integer
named constants:
@table @asis
@item @code{omp_lock_kind}
@item @code{omp_nest_lock_kind}
@item @code{omp_proc_bind_kind}
@item @code{omp_sched_kind}
@end table
@code{OMP_LIB} provides the scalar default-integer
named constant @code{openmp_version} with a value of the form
@var{yyyymm}, where @code{yyyy} is the year and @var{mm} the month
of the OpenMP version; for OpenMP v3.1 the value is @code{201107}
and for OpenMP v4.0 the value is @code{201307}.
The following scalar integer named constants of the
kind @code{omp_sched_kind}:
@table @asis
@item @code{omp_sched_static}
@item @code{omp_sched_dynamic}
@item @code{omp_sched_guided}
@item @code{omp_sched_auto}
@end table
And the following scalar integer named constants of the
kind @code{omp_proc_bind_kind}:
@table @asis
@item @code{omp_proc_bind_false}
@item @code{omp_proc_bind_true}
@item @code{omp_proc_bind_master}
@item @code{omp_proc_bind_close}
@item @code{omp_proc_bind_spread}
@end table
|