summaryrefslogtreecommitdiff
path: root/gcc/fortran/trans-array.c
blob: 452b0fec81c9b5566b2d857b884fbbedfdca1605 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
/* Array translation routines
   Copyright (C) 2002, 2003 Free Software Foundation, Inc.
   Contributed by Paul Brook <paul@nowt.org>
   and Steven Bosscher <s.bosscher@student.tudelft.nl>

This file is part of GNU G95.

GNU G95 is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.

GNU G95 is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with GNU G95; see the file COPYING.  If not, write to
the Free Software Foundation, 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA.  */

/* trans-array.c-- Various array related code, including scalarization,
                   allocation, initialization and other support routines.  */

/* How the scalarizer works.
   In gfortran, array expressions use the same core routines as scalar
   expressions.
   First, a Scalarization State (SS) chain is built.  This is done by walking
   the expression tree, and building a linear list of the terms in the
   expression.  As the tree is walked, scalar subexpressions are translated.

   The scalarization parameters are stored in a gfc_loopinfo structure.
   First the start and stride of each term is calculated by
   gfc_conv_ss_startstride.  During this process the expressions for the array
   descriptors and data pointers are also translated.

   If the expression is an assignment, we must then resolve any dependencies.
   In fortran all the rhs values of an assignment must be evaluated before
   any assignments take place.  This can require a temporary array to store the
   values.  We also require a temporary when we are passing array expressions
   or vector subecripts as procedure parameters.

   Array sections are passed without copying to a temporary.  These use the
   scalarizer to determine the shape of the section.  The flag
   loop->array_parameter tells the scalarizer that the actual values and loop
   variables will not be required.

   The function gfc_conv_loop_setup generates the scalarization setup code.
   It determines the range of the scalarizing loop variables.  If a temporary
   is required, this is created and initialized.  Code for scalar expressions
   taken outside the loop is also generated at this time.  Next the offset and
   scaling required to translate from loop variables to array indices for each
   term is calculated.

   A call to gfc_start_scalarized_body marks the start of the scalarized
   expression.  This creates a scope and declares the loop variables.  Before
   calling this gfc_make_ss_chain_used must be used to indicate which terms
   will be used inside this loop.

   The scalar gfc_conv_* functions are then used to build the main body of the
   scalarization loop.  Scalarization loop variables and precalculated scalar
   values are automaticaly substituted.  Note that gfc_advance_se_ss_chain
   must be used, rather than changing the se->ss directly.

   For assignment expressions requiring a temporary two sub loops are
   generated.  The first stores the result of the expression in the temporary,
   the second copies it to the result.  A call to
   gfc_trans_scalarized_loop_boundary marks the end of the main loop code and
   the start of the copying loop.  The temporary may be less than full rank.

   Finally gfc_trans_scalarizing_loops is called to generate the implicit do
   loops.  The loops are added to the pre chain of the loopinfo.  The post
   chain may still contain cleanup code.

   After the loop code has been added into its parent scope gfc_cleanup_loop
   is called to free all the SS allocated by the scalarizer.  */

#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tree.h"
#include "tree-simple.h"
#include <stdio.h>
#include "ggc.h"
#include "toplev.h"
#include "real.h"
#include "flags.h"
#include <assert.h>
#include <gmp.h>
#include "gfortran.h"
#include "trans.h"
#include "trans-stmt.h"
#include "trans-types.h"
#include "trans-array.h"
#include "trans-const.h"
#include "dependency.h"

static gfc_ss *gfc_walk_subexpr (gfc_ss *, gfc_expr *);

/* The contents of this structure aren't actualy used, just the address.  */
static gfc_ss gfc_ss_terminator_var;
gfc_ss * const gfc_ss_terminator = &gfc_ss_terminator_var;

unsigned HOST_WIDE_INT gfc_stack_space_left;


/* Returns true if a variable of specified size should go on the stack.  */

int
gfc_can_put_var_on_stack (tree size)
{
  unsigned HOST_WIDE_INT low;

  if (!INTEGER_CST_P (size))
    return 0;

  if (gfc_option.flag_max_stack_var_size < 0)
    return 1;

  if (TREE_INT_CST_HIGH (size) != 0)
    return 0;

  low = TREE_INT_CST_LOW (size);
  if (low > (unsigned HOST_WIDE_INT) gfc_option.flag_max_stack_var_size)
    return 0;

/* TODO: Set a per-function stack size limit.  */
#if 0
  /* We should be a bit more clever with array temps.  */
  if (gfc_option.flag_max_function_vars_size >= 0)
    {
      if (low > gfc_stack_space_left)
	return 0;

      gfc_stack_space_left -= low;
    }
#endif

  return 1;
}

static tree
gfc_array_dataptr_type (tree desc)
{
  return (GFC_TYPE_ARRAY_DATAPTR_TYPE (TREE_TYPE (desc)));
}


/* Build expressions to access the members of an array descriptor.
   It's surprisingly easy to mess up here, so never access
   an array descriptor by "brute force", always use these
   functions.  This also avoids problems if we change the format
   of an array descriptor.

   To understand these magic numbers, look at the comments
   before gfc_build_array_type() in trans-types.c.

   The code within these defines should be the only code which knows the format
   of an array descriptor.

   Any code just needing to read obtain the bounds of an array should use
   gfc_conv_array_* rather than the following functions as these will return
   know constant values, and work with arrays which do not have descriptors.

   Don't forget to #undef these!  */

#define DATA_FIELD 0
#define OFFSET_FIELD 1
#define DTYPE_FIELD 2
#define DIMENSION_FIELD 3

#define STRIDE_SUBFIELD 0
#define LBOUND_SUBFIELD 1
#define UBOUND_SUBFIELD 2

tree
gfc_conv_descriptor_data (tree desc)
{
  tree field;
  tree type;

  type = TREE_TYPE (desc);
  assert (GFC_DESCRIPTOR_TYPE_P (type));

  field = TYPE_FIELDS (type);
  assert (DATA_FIELD == 0);
  assert (field != NULL_TREE
	  && TREE_CODE (TREE_TYPE (field)) == POINTER_TYPE
	  && TREE_CODE (TREE_TYPE (TREE_TYPE (field))) == ARRAY_TYPE);

  return build (COMPONENT_REF, TREE_TYPE (field), desc, field);
}

tree
gfc_conv_descriptor_offset (tree desc)
{
  tree type;
  tree field;

  type = TREE_TYPE (desc);
  assert (GFC_DESCRIPTOR_TYPE_P (type));

  field = gfc_advance_chain (TYPE_FIELDS (type), OFFSET_FIELD);
  assert (field != NULL_TREE && TREE_TYPE (field) == gfc_array_index_type);

  return build (COMPONENT_REF, TREE_TYPE (field), desc, field);
}

tree
gfc_conv_descriptor_dtype (tree desc)
{
  tree field;
  tree type;

  type = TREE_TYPE (desc);
  assert (GFC_DESCRIPTOR_TYPE_P (type));

  field = gfc_advance_chain (TYPE_FIELDS (type), DTYPE_FIELD);
  assert (field != NULL_TREE && TREE_TYPE (field) == gfc_array_index_type);

  return build (COMPONENT_REF, TREE_TYPE (field), desc, field);
}

static tree
gfc_conv_descriptor_dimension (tree desc, tree dim)
{
  tree field;
  tree type;
  tree tmp;

  type = TREE_TYPE (desc);
  assert (GFC_DESCRIPTOR_TYPE_P (type));

  field = gfc_advance_chain (TYPE_FIELDS (type), DIMENSION_FIELD);
  assert (field != NULL_TREE
	  && TREE_CODE (TREE_TYPE (field)) == ARRAY_TYPE
	  && TREE_CODE (TREE_TYPE (TREE_TYPE (field))) == RECORD_TYPE);

  tmp = build (COMPONENT_REF, TREE_TYPE (field), desc, field);
  tmp = gfc_build_array_ref (tmp, dim);
  return tmp;
}

tree
gfc_conv_descriptor_stride (tree desc, tree dim)
{
  tree tmp;
  tree field;

  tmp = gfc_conv_descriptor_dimension (desc, dim);
  field = TYPE_FIELDS (TREE_TYPE (tmp));
  field = gfc_advance_chain (field, STRIDE_SUBFIELD);
  assert (field != NULL_TREE && TREE_TYPE (field) == gfc_array_index_type);

  tmp = build (COMPONENT_REF, TREE_TYPE (field), tmp, field);
  return tmp;
}

tree
gfc_conv_descriptor_lbound (tree desc, tree dim)
{
  tree tmp;
  tree field;

  tmp = gfc_conv_descriptor_dimension (desc, dim);
  field = TYPE_FIELDS (TREE_TYPE (tmp));
  field = gfc_advance_chain (field, LBOUND_SUBFIELD);
  assert (field != NULL_TREE && TREE_TYPE (field) == gfc_array_index_type);

  tmp = build (COMPONENT_REF, TREE_TYPE (field), tmp, field);
  return tmp;
}

tree
gfc_conv_descriptor_ubound (tree desc, tree dim)
{
  tree tmp;
  tree field;

  tmp = gfc_conv_descriptor_dimension (desc, dim);
  field = TYPE_FIELDS (TREE_TYPE (tmp));
  field = gfc_advance_chain (field, UBOUND_SUBFIELD);
  assert (field != NULL_TREE && TREE_TYPE (field) == gfc_array_index_type);

  tmp = build (COMPONENT_REF, TREE_TYPE (field), tmp, field);
  return tmp;
}


/* Generate an initializer for a static pointer or allocatable array.  */

void
gfc_trans_static_array_pointer (gfc_symbol * sym)
{
  tree tmp;
  tree field;
  tree type;

  assert (TREE_STATIC (sym->backend_decl));
  /* Just zero the data member.  */
  type = TREE_TYPE (sym->backend_decl);
  assert (GFC_DESCRIPTOR_TYPE_P (type));
  assert (DATA_FIELD == 0);
  field = TYPE_FIELDS (type);

  tmp = tree_cons (field, null_pointer_node, NULL_TREE);
  tmp = build1 (CONSTRUCTOR, type, tmp);
  TREE_CONSTANT (tmp) = 1;
  TREE_INVARIANT (tmp) = 1;
  DECL_INITIAL (sym->backend_decl) = tmp;
}


/* Cleanup those #defines.  */

#undef DATA_FIELD
#undef OFFSET_FIELD
#undef DTYPE_FIELD
#undef DIMENSION_FIELD
#undef STRIDE_SUBFIELD
#undef LBOUND_SUBFIELD
#undef UBOUND_SUBFIELD


/* Mark a SS chain as used.  Flags specifies in which loops the SS is used.
   flags & 1 = Main loop body.
   flags & 2 = temp copy loop.  */

void
gfc_mark_ss_chain_used (gfc_ss * ss, unsigned flags)
{
  for (; ss != gfc_ss_terminator; ss = ss->next)
    ss->useflags = flags;
}

static void gfc_free_ss (gfc_ss *);


/* Free a gfc_ss chain.  */

static void
gfc_free_ss_chain (gfc_ss * ss)
{
  gfc_ss *next;

  while (ss != gfc_ss_terminator)
    {
      assert (ss != NULL);
      next = ss->next;
      gfc_free_ss (ss);
      ss = next;
    }
}


/* Free a SS.  */

static void
gfc_free_ss (gfc_ss * ss)
{
  int n;

  switch (ss->type)
    {
    case GFC_SS_SECTION:
    case GFC_SS_VECTOR:
      for (n = 0; n < GFC_MAX_DIMENSIONS; n++)
	{
	  if (ss->data.info.subscript[n])
	    gfc_free_ss_chain (ss->data.info.subscript[n]);
	}
      break;

    default:
      break;
    }

  gfc_free (ss);
}


/* Free all the SS associated with a loop.  */

void
gfc_cleanup_loop (gfc_loopinfo * loop)
{
  gfc_ss *ss;
  gfc_ss *next;

  ss = loop->ss;
  while (ss != gfc_ss_terminator)
    {
      assert (ss != NULL);
      next = ss->loop_chain;
      gfc_free_ss (ss);
      ss = next;
    }
}


/* Associate a SS chain with a loop.  */

void
gfc_add_ss_to_loop (gfc_loopinfo * loop, gfc_ss * head)
{
  gfc_ss *ss;

  if (head == gfc_ss_terminator)
    return;

  ss = head;
  for (; ss && ss != gfc_ss_terminator; ss = ss->next)
    {
      if (ss->next == gfc_ss_terminator)
	ss->loop_chain = loop->ss;
      else
	ss->loop_chain = ss->next;
    }
  assert (ss == gfc_ss_terminator);
  loop->ss = head;
}


/* Generate code to allocate an array temporary, or create a variable to
   hold the data.  */

static void
gfc_trans_allocate_array_storage (gfc_loopinfo * loop, gfc_ss_info * info,
				  tree size, tree nelem)
{
  tree tmp;
  tree args;
  tree desc;
  tree data;
  bool onstack;

  desc = info->descriptor;
  data = gfc_conv_descriptor_data (desc);
  onstack = gfc_can_put_var_on_stack (size);
  if (onstack)
    {
      /* Make a temporary variable to hold the data.  */
      tmp = fold (build (MINUS_EXPR, TREE_TYPE (nelem), nelem,
			 integer_one_node));
      tmp = build_range_type (gfc_array_index_type, integer_zero_node, tmp);
      tmp = build_array_type (gfc_get_element_type (TREE_TYPE (desc)), tmp);
      tmp = gfc_create_var (tmp, "A");
      tmp = gfc_build_addr_expr (TREE_TYPE (data), tmp);
      gfc_add_modify_expr (&loop->pre, data, tmp);
      info->data = data;
      info->offset = gfc_index_zero_node;

    }
  else
    {
      /* Allocate memory to hold the data.  */
      args = gfc_chainon_list (NULL_TREE, size);

      if (gfc_index_integer_kind == 4)
	tmp = gfor_fndecl_internal_malloc;
      else if (gfc_index_integer_kind == 8)
	tmp = gfor_fndecl_internal_malloc64;
      else
	abort ();
      tmp = gfc_build_function_call (tmp, args);
      tmp = convert (TREE_TYPE (data), tmp);
      gfc_add_modify_expr (&loop->pre, data, tmp);

      info->data = data;
      info->offset = gfc_index_zero_node;
    }

  /* The offset is zero because we create temporaries with a zero
     lower bound.  */
  tmp = gfc_conv_descriptor_offset (desc);
  gfc_add_modify_expr (&loop->pre, tmp, gfc_index_zero_node);

  if (!onstack)
    {
      /* Free the temporary.  */
      tmp = convert (pvoid_type_node, info->data);
      tmp = gfc_chainon_list (NULL_TREE, tmp);
      tmp = gfc_build_function_call (gfor_fndecl_internal_free, tmp);
      gfc_add_expr_to_block (&loop->post, tmp);
    }
}


/* Generate code to allocate and initialize the descriptor for a temporary
   array.  Fills in the descriptor, data and offset fields of info.  Also
   adjusts the loop variables to be zero-based.  Returns the size of the
   array.  */

tree
gfc_trans_allocate_temp_array (gfc_loopinfo * loop, gfc_ss_info * info,
			       tree eltype, tree string_length)
{
  tree type;
  tree desc;
  tree tmp;
  tree size;
  tree nelem;
  int n;
  int dim;

  assert (info->dimen > 0);
  /* Set the lower bound to zero.  */
  for (dim = 0; dim < info->dimen; dim++)
    {
      n = loop->order[dim];
      if (n < loop->temp_dim)
	assert (integer_zerop (loop->from[n]));
      else
	{
	  loop->to[n] = fold (build (MINUS_EXPR, gfc_array_index_type,
				     loop->to[n], loop->from[n]));
	  loop->from[n] = integer_zero_node;
	}

      info->delta[dim] = integer_zero_node;
      info->start[dim] = integer_zero_node;
      info->stride[dim] = integer_one_node;
      info->dim[dim] = dim;
    }

  /* Initialise the descriptor.  */
  type =
    gfc_get_array_type_bounds (eltype, info->dimen, loop->from, loop->to, 1);
  desc = gfc_create_var (type, "atmp");
  GFC_DECL_PACKED_ARRAY (desc) = 1;

  info->descriptor = desc;
  size = integer_one_node;

  /* Fill in the array dtype.  */
  tmp = gfc_conv_descriptor_dtype (desc);
  gfc_add_modify_expr (&loop->pre, tmp,
		       GFC_TYPE_ARRAY_DTYPE (TREE_TYPE (desc)));

  /* Fill in the bounds and stride.  This is a packed array, so:
     size = 1;
     for (n = 0; n < rank; n++)
     {
     stride[n] = size
     delta = ubound[n] + 1 - lbound[n];
     size = size * delta;
     }
     size = size * sizeof(element);  */
  for (n = 0; n < info->dimen; n++)
    {
      /* Store the stride and bound components in the descriptor.  */
      tmp = gfc_conv_descriptor_stride (desc, gfc_rank_cst[n]);
      gfc_add_modify_expr (&loop->pre, tmp, size);

      tmp = gfc_conv_descriptor_lbound (desc, gfc_rank_cst[n]);
      gfc_add_modify_expr (&loop->pre, tmp, integer_zero_node);

      tmp = gfc_conv_descriptor_ubound (desc, gfc_rank_cst[n]);
      gfc_add_modify_expr (&loop->pre, tmp, loop->to[n]);

      tmp = fold (build (PLUS_EXPR, gfc_array_index_type,
			 loop->to[n], integer_one_node));

      size = fold (build (MULT_EXPR, gfc_array_index_type, size, tmp));
      size = gfc_evaluate_now (size, &loop->pre);
    }

  /* TODO: Where does the string length go?  */
  if (string_length)
    gfc_todo_error ("temporary arrays of strings");

  /* Get the size of the array.  */
  nelem = size;
  size = fold (build (MULT_EXPR, gfc_array_index_type, size,
		      TYPE_SIZE_UNIT (gfc_get_element_type (type))));

  gfc_trans_allocate_array_storage (loop, info, size, nelem);

  if (info->dimen > loop->temp_dim)
    loop->temp_dim = info->dimen;

  return size;
}


/* Make sure offset is a variable.  */

static void
gfc_put_offset_into_var (stmtblock_t * pblock, tree * poffset,
			 tree * offsetvar)
{
  /* We should have already created the offset variable.  We cannot
     create it here because we may be in an inner scopde.  */
  assert (*offsetvar != NULL_TREE);
  gfc_add_modify_expr (pblock, *offsetvar, *poffset);
  *poffset = *offsetvar;
  TREE_USED (*offsetvar) = 1;
}


/* Add the contents of an array to the constructor.  */

static void
gfc_trans_array_constructor_subarray (stmtblock_t * pblock,
				      tree type ATTRIBUTE_UNUSED,
				      tree pointer, gfc_expr * expr,
				      tree * poffset, tree * offsetvar)
{
  gfc_se se;
  gfc_ss *ss;
  gfc_loopinfo loop;
  stmtblock_t body;
  tree tmp;

  /* We need this to be a variable so we can increment it.  */
  gfc_put_offset_into_var (pblock, poffset, offsetvar);

  gfc_init_se (&se, NULL);

  /* Walk the array expression.  */
  ss = gfc_walk_expr (expr);
  assert (ss != gfc_ss_terminator);

  /* Initialize the scalarizer.  */
  gfc_init_loopinfo (&loop);
  gfc_add_ss_to_loop (&loop, ss);

  /* Initialize the loop.  */
  gfc_conv_ss_startstride (&loop);
  gfc_conv_loop_setup (&loop);

  /* Make the loop body.  */
  gfc_mark_ss_chain_used (ss, 1);
  gfc_start_scalarized_body (&loop, &body);
  gfc_copy_loopinfo_to_se (&se, &loop);
  se.ss = ss;

  gfc_conv_expr (&se, expr);
  gfc_add_block_to_block (&body, &se.pre);

  /* Store the value.  */
  tmp = gfc_build_indirect_ref (pointer);
  tmp = gfc_build_array_ref (tmp, *poffset);
  gfc_add_modify_expr (&body, tmp, se.expr);

  /* Increment the offset.  */
  tmp = build (PLUS_EXPR, gfc_array_index_type, *poffset, integer_one_node);
  gfc_add_modify_expr (&body, *poffset, tmp);

  /* Finish the loop.  */
  gfc_add_block_to_block (&body, &se.post);
  assert (se.ss == gfc_ss_terminator);
  gfc_trans_scalarizing_loops (&loop, &body);
  gfc_add_block_to_block (&loop.pre, &loop.post);
  tmp = gfc_finish_block (&loop.pre);
  gfc_add_expr_to_block (pblock, tmp);

  gfc_cleanup_loop (&loop);
}


/* Assign the values to the elements of an array constructor.  */

static void
gfc_trans_array_constructor_value (stmtblock_t * pblock, tree type,
				   tree pointer, gfc_constructor * c,
				   tree * poffset, tree * offsetvar)
{
  tree tmp;
  tree ref;
  stmtblock_t body;
  tree loopbody;
  gfc_se se;

  for (; c; c = c->next)
    {
      /* If this is an iterator or an array, the offset must be a variable.  */
      if ((c->iterator || c->expr->rank > 0) && INTEGER_CST_P (*poffset))
	gfc_put_offset_into_var (pblock, poffset, offsetvar);

      gfc_start_block (&body);

      if (c->expr->expr_type == EXPR_ARRAY)
	{
	  /* Array constructors can be nested.  */
	  gfc_trans_array_constructor_value (&body, type, pointer,
					     c->expr->value.constructor,
					     poffset, offsetvar);
	}
      else if (c->expr->rank > 0)
	{
	  gfc_trans_array_constructor_subarray (&body, type, pointer,
						c->expr, poffset, offsetvar);
	}
      else
	{
	  /* This code really upsets the gimplifier so don't bother for now.  */
	  gfc_constructor *p;
	  HOST_WIDE_INT n;
	  HOST_WIDE_INT size;

	  p = c;
	  n = 0;
	  while (p && !(p->iterator || p->expr->expr_type != EXPR_CONSTANT))
	    {
	      p = p->next;
	      n++;
	    }
	  if (n < 4)
	    {
	      /* Scalar values.  */
	      gfc_init_se (&se, NULL);
	      gfc_conv_expr (&se, c->expr);
	      gfc_add_block_to_block (&body, &se.pre);

	      ref = gfc_build_indirect_ref (pointer);
	      ref = gfc_build_array_ref (ref, *poffset);
	      gfc_add_modify_expr (&body, ref, se.expr);
	      gfc_add_block_to_block (&body, &se.post);

	      *poffset = fold (build (PLUS_EXPR, gfc_array_index_type,
				      *poffset, integer_one_node));
	    }
	  else
	    {
	      /* Collect multiple scalar constants into a constructor.  */
	      tree list;
	      tree init;
	      tree bound;
	      tree tmptype;

	      p = c;
	      list = NULL_TREE;
              /* Count the number of consecutive scalar constants.  */
	      while (p && !(p->iterator
			    || p->expr->expr_type != EXPR_CONSTANT))
		{
		  gfc_init_se (&se, NULL);
		  gfc_conv_constant (&se, p->expr);
		  list = tree_cons (NULL_TREE, se.expr, list);
		  c = p;
		  p = p->next;
		}

	      bound = build_int_2 (n - 1, 0);
              /* Create an array type to hold them.  */
	      tmptype = build_range_type (gfc_array_index_type,
					  integer_zero_node, bound);
	      tmptype = build_array_type (type, tmptype);

	      init = build1 (CONSTRUCTOR, tmptype, nreverse (list));
	      TREE_CONSTANT (init) = 1;
	      TREE_INVARIANT (init) = 1;
	      TREE_STATIC (init) = 1;
	      /* Create a static variable to hold the data.  */
	      tmp = gfc_create_var (tmptype, "data");
	      TREE_STATIC (tmp) = 1;
	      TREE_CONSTANT (tmp) = 1;
	      TREE_INVARIANT (tmp) = 1;
	      DECL_INITIAL (tmp) = init;
	      init = tmp;

	      /* Use BUILTIN_MEMCPY to assign the values.  */
	      tmp = gfc_build_indirect_ref (pointer);
	      tmp = gfc_build_array_ref (tmp, *poffset);
	      tmp = gfc_build_addr_expr (NULL, tmp);
	      init = gfc_build_addr_expr (NULL, init);

	      size = TREE_INT_CST_LOW (TYPE_SIZE_UNIT (type));
	      bound = build_int_2 (n * size, 0);
	      tmp = gfc_chainon_list (NULL_TREE, tmp);
	      tmp = gfc_chainon_list (tmp, init);
	      tmp = gfc_chainon_list (tmp, bound);
	      tmp = gfc_build_function_call (built_in_decls[BUILT_IN_MEMCPY],
					     tmp);
	      gfc_add_expr_to_block (&body, tmp);

	      *poffset = fold (build (PLUS_EXPR, gfc_array_index_type,
				      *poffset, bound));
	    }
	  if (!INTEGER_CST_P (*poffset))
            {
              gfc_add_modify_expr (&body, *offsetvar, *poffset);
              *poffset = *offsetvar;
            }
	}

      /* The frontend should already have done any expansions.  */
      if (c->iterator)
	{
	  tree end;
	  tree step;
	  tree loopvar;
	  tree exit_label;

	  loopbody = gfc_finish_block (&body);

	  gfc_init_se (&se, NULL);
	  gfc_conv_expr (&se, c->iterator->var);
	  gfc_add_block_to_block (pblock, &se.pre);
	  loopvar = se.expr;

	  /* Initialize thie loop.  */
	  gfc_init_se (&se, NULL);
	  gfc_conv_expr_val (&se, c->iterator->start);
	  gfc_add_block_to_block (pblock, &se.pre);
	  gfc_add_modify_expr (pblock, loopvar, se.expr);

	  gfc_init_se (&se, NULL);
	  gfc_conv_expr_val (&se, c->iterator->end);
	  gfc_add_block_to_block (pblock, &se.pre);
	  end = gfc_evaluate_now (se.expr, pblock);

	  gfc_init_se (&se, NULL);
	  gfc_conv_expr_val (&se, c->iterator->step);
	  gfc_add_block_to_block (pblock, &se.pre);
	  step = gfc_evaluate_now (se.expr, pblock);

	  /* Generate the loop body.  */
	  exit_label = gfc_build_label_decl (NULL_TREE);
	  gfc_start_block (&body);

	  /* Generate the exit condition.  */
	  end = build (GT_EXPR, boolean_type_node, loopvar, end);
	  tmp = build1_v (GOTO_EXPR, exit_label);
	  TREE_USED (exit_label) = 1;
	  tmp = build_v (COND_EXPR, end, tmp, build_empty_stmt ());
	  gfc_add_expr_to_block (&body, tmp);

	  /* The main loop body.  */
	  gfc_add_expr_to_block (&body, loopbody);

	  /* Increment the loop variable.  */
	  tmp = build (PLUS_EXPR, TREE_TYPE (loopvar), loopvar, step);
	  gfc_add_modify_expr (&body, loopvar, tmp);

	  /* Finish the loop.  */
	  tmp = gfc_finish_block (&body);
	  tmp = build_v (LOOP_EXPR, tmp);
	  gfc_add_expr_to_block (pblock, tmp);

	  /* Add the exit label.  */
	  tmp = build1_v (LABEL_EXPR, exit_label);
	  gfc_add_expr_to_block (pblock, tmp);
	}
      else
	{
	  /* Pass the code as is.  */
	  tmp = gfc_finish_block (&body);
	  gfc_add_expr_to_block (pblock, tmp);
	}
    }
}


/* Get the size of an expression.  Returns -1 if the size isn't constant.
   Implied do loops with non-constant bounds are tricky because we must only
   evaluate the bounds once.  */

static void
gfc_get_array_cons_size (mpz_t * size, gfc_constructor * c)
{
  gfc_iterator *i;
  mpz_t val;
  mpz_t len;

  mpz_set_ui (*size, 0);
  mpz_init (len);
  mpz_init (val);

  for (; c; c = c->next)
    {
      if (c->expr->expr_type == EXPR_ARRAY)
	{
          /* A nested array constructor.  */
	  gfc_get_array_cons_size (&len, c->expr->value.constructor);
	  if (mpz_sgn (len) < 0)
	    {
	      mpz_set (*size, len);
	      mpz_clear (len);
	      mpz_clear (val);
	      return;
	    }
	}
      else
	{
	  if (c->expr->rank > 0)
	    {
	      mpz_set_si (*size, -1);
	      mpz_clear (len);
	      mpz_clear (val);
	      return;
	    }
	  mpz_set_ui (len, 1);
	}

      if (c->iterator)
	{
	  i = c->iterator;

	  if (i->start->expr_type != EXPR_CONSTANT
	      || i->end->expr_type != EXPR_CONSTANT
	      || i->step->expr_type != EXPR_CONSTANT)
	    {
	      mpz_set_si (*size, -1);
	      mpz_clear (len);
	      mpz_clear (val);
	      return;
	    }

	  mpz_add (val, i->end->value.integer, i->start->value.integer);
	  mpz_tdiv_q (val, val, i->step->value.integer);
	  mpz_add_ui (val, val, 1);
	  mpz_mul (len, len, val);
	}
      mpz_add (*size, *size, len);
    }
  mpz_clear (len);
  mpz_clear (val);
}


/* Array constructors are handled by constructing a temporary, then using that
   within the scalarization loop.  This is not optimal, but seems by far the
   simplest method.  */

static void
gfc_trans_array_constructor (gfc_loopinfo * loop, gfc_ss * ss)
{
  tree offset;
  tree offsetvar;
  tree desc;
  tree size;
  tree type;

  if (ss->expr->ts.type == BT_CHARACTER)
    gfc_todo_error ("Character string array constructors");
  type = gfc_typenode_for_spec (&ss->expr->ts);
  ss->data.info.dimen = loop->dimen;
  size =
    gfc_trans_allocate_temp_array (loop, &ss->data.info, type, NULL_TREE);

  desc = ss->data.info.descriptor;
  offset = integer_zero_node;
  offsetvar = gfc_create_var_np (gfc_array_index_type, "offset");
  TREE_USED (offsetvar) = 0;
  gfc_trans_array_constructor_value (&loop->pre, type,
				     ss->data.info.data,
				     ss->expr->value.constructor, &offset,
				     &offsetvar);

  if (TREE_USED (offsetvar))
    pushdecl (offsetvar);
  else
    assert (INTEGER_CST_P (offset));
#if 0
  /* Disable bound checking for now cos it's probably broken.  */
  if (flag_bounds_check)
    {
      abort ();
    }
#endif
}


/* Add the pre and post chains for all the scalar expressions in a SS chain
   to loop.  This is called after the loop parameters have been calculated,
   but before the actual scalarizing loops.  */
/*GCC ARRAYS*/

static void
gfc_add_loop_ss_code (gfc_loopinfo * loop, gfc_ss * ss, bool subscript)
{
  gfc_se se;
  int n;

  assert (ss != NULL);

  for (; ss != gfc_ss_terminator; ss = ss->loop_chain)
    {
      assert (ss);

      switch (ss->type)
	{
	case GFC_SS_SCALAR:
	  /* Scalar expression.  Evaluate this now.  This includes elemental
	     dimension indices, but not array section bounds.  */
	  gfc_init_se (&se, NULL);
          gfc_conv_expr (&se, ss->expr);
          gfc_add_block_to_block (&loop->pre, &se.pre);

          if (ss->expr->ts.type != BT_CHARACTER)
            {
              /* Move the evaluation of scalar expressions outside the
                 scalarization loop.  */
              if (subscript)
                se.expr = convert(gfc_array_index_type, se.expr);
              se.expr = gfc_evaluate_now (se.expr, &loop->pre);
              gfc_add_block_to_block (&loop->pre, &se.post);
            }
          else
            gfc_add_block_to_block (&loop->post, &se.post);

	  ss->data.scalar.expr = se.expr;
	  ss->data.scalar.string_length = se.string_length;
	  break;

	case GFC_SS_REFERENCE:
	  /* Scalar reference.  Evaluate this now.  */
	  gfc_init_se (&se, NULL);
	  gfc_conv_expr_reference (&se, ss->expr);
	  gfc_add_block_to_block (&loop->pre, &se.pre);
	  gfc_add_block_to_block (&loop->post, &se.post);

	  ss->data.scalar.expr = gfc_evaluate_now (se.expr, &loop->pre);
	  ss->data.scalar.string_length = se.string_length;
	  break;

	case GFC_SS_SECTION:
	case GFC_SS_VECTOR:
	  /* Scalarized expression.  Evaluate any scalar subscripts.  */
	  for (n = 0; n < GFC_MAX_DIMENSIONS; n++)
	    {
	      /* Add the expressions for scalar subscripts.  */
	      if (ss->data.info.subscript[n])
		gfc_add_loop_ss_code (loop, ss->data.info.subscript[n], true);
	    }
	  break;

	case GFC_SS_INTRINSIC:
	  gfc_add_intrinsic_ss_code (loop, ss);
	  break;

	case GFC_SS_FUNCTION:
	  /* Array function return value.  We call the function and save its
	     result in a temporary for use inside the loop.  */
	  gfc_init_se (&se, NULL);
	  se.loop = loop;
	  se.ss = ss;
	  gfc_conv_expr (&se, ss->expr);
	  gfc_add_block_to_block (&loop->pre, &se.pre);
	  gfc_add_block_to_block (&loop->post, &se.post);
	  break;

	case GFC_SS_CONSTRUCTOR:
	  gfc_trans_array_constructor (loop, ss);
	  break;

	default:
	  abort ();
	}
    }
}


/* Translate expressions for the descriptor and data pointer of a SS.  */
/*GCC ARRAYS*/

static void
gfc_conv_ss_descriptor (stmtblock_t * block, gfc_ss * ss, int base)
{
  gfc_se se;
  tree tmp;

  /* Get the descriptor for the array to be scalarized.  */
  assert (ss->expr->expr_type == EXPR_VARIABLE);
  gfc_init_se (&se, NULL);
  se.descriptor_only = 1;
  gfc_conv_expr_lhs (&se, ss->expr);
  gfc_add_block_to_block (block, &se.pre);
  ss->data.info.descriptor = se.expr;

  if (base)
    {
      /* Also the data pointer.  */
      tmp = gfc_conv_array_data (se.expr);
      /* If this is a variable or address of a variable we use it directly.
         Otherwise we must evaluate it now to to avoid break dependency
	 analysis by pulling the expressions for elemental array indices
	 inside the loop.  */
      if (!(DECL_P (tmp)
	    || (TREE_CODE (tmp) == ADDR_EXPR
		&& DECL_P (TREE_OPERAND (tmp, 0)))))
	tmp = gfc_evaluate_now (tmp, block);
      ss->data.info.data = tmp;

      tmp = gfc_conv_array_offset (se.expr);
      ss->data.info.offset = gfc_evaluate_now (tmp, block);
    }
}


/* Initialise a gfc_loopinfo structure.  */

void
gfc_init_loopinfo (gfc_loopinfo * loop)
{
  int n;

  memset (loop, 0, sizeof (gfc_loopinfo));
  gfc_init_block (&loop->pre);
  gfc_init_block (&loop->post);

  /* Initialy scalarize in order.  */
  for (n = 0; n < GFC_MAX_DIMENSIONS; n++)
    loop->order[n] = n;

  loop->ss = gfc_ss_terminator;
}


/* Copies the loop variable info to a gfc_se sructure. Does not copy the SS
   chain.  */

void
gfc_copy_loopinfo_to_se (gfc_se * se, gfc_loopinfo * loop)
{
  se->loop = loop;
}


/* Return an expression for the data pointer of an array.  */

tree
gfc_conv_array_data (tree descriptor)
{
  tree type;

  type = TREE_TYPE (descriptor);
  if (GFC_ARRAY_TYPE_P (type))
    {
      if (TREE_CODE (type) == POINTER_TYPE)
        return descriptor;
      else
        {
          /* Descritporless arrays.  */
	  return gfc_build_addr_expr (NULL, descriptor);
        }
    }
  else
    return gfc_conv_descriptor_data (descriptor);
}


/* Return an expression for the base offset of an array.  */

tree
gfc_conv_array_offset (tree descriptor)
{
  tree type;

  type = TREE_TYPE (descriptor);
  if (GFC_ARRAY_TYPE_P (type))
    return GFC_TYPE_ARRAY_OFFSET (type);
  else
    return gfc_conv_descriptor_offset (descriptor);
}


/* Get an expression for the array stride.  */

tree
gfc_conv_array_stride (tree descriptor, int dim)
{
  tree tmp;
  tree type;

  type = TREE_TYPE (descriptor);

  /* For descriptorless arrays use the array size.  */
  tmp = GFC_TYPE_ARRAY_STRIDE (type, dim);
  if (tmp != NULL_TREE)
    return tmp;

  tmp = gfc_conv_descriptor_stride (descriptor, gfc_rank_cst[dim]);
  return tmp;
}


/* Like gfc_conv_array_stride, but for the lower bound.  */

tree
gfc_conv_array_lbound (tree descriptor, int dim)
{
  tree tmp;
  tree type;

  type = TREE_TYPE (descriptor);

  tmp = GFC_TYPE_ARRAY_LBOUND (type, dim);
  if (tmp != NULL_TREE)
    return tmp;

  tmp = gfc_conv_descriptor_lbound (descriptor, gfc_rank_cst[dim]);
  return tmp;
}


/* Like gfc_conv_array_stride, but for the upper bound.  */

tree
gfc_conv_array_ubound (tree descriptor, int dim)
{
  tree tmp;
  tree type;

  type = TREE_TYPE (descriptor);

  tmp = GFC_TYPE_ARRAY_UBOUND (type, dim);
  if (tmp != NULL_TREE)
    return tmp;

  /* This should only ever happen when passing an assumed shape array
     as an actual parameter.  The value will never be used.  */
  if (GFC_ARRAY_TYPE_P (TREE_TYPE (descriptor)))
    return integer_zero_node;

  tmp = gfc_conv_descriptor_ubound (descriptor, gfc_rank_cst[dim]);
  return tmp;
}


/* Translate an array reference.  The descriptor should be in se->expr.
   Do not use this function, it wil be removed soon.  */
/*GCC ARRAYS*/

static void
gfc_conv_array_index_ref (gfc_se * se, tree pointer, tree * indices,
			  tree offset, int dimen)
{
  tree array;
  tree tmp;
  tree index;
  int n;

  array = gfc_build_indirect_ref (pointer);

  index = offset;
  for (n = 0; n < dimen; n++)
    {
      /* index = index + stride[n]*indices[n] */
      tmp = gfc_conv_array_stride (se->expr, n);
      tmp = fold (build (MULT_EXPR, gfc_array_index_type, indices[n], tmp));

      index = fold (build (PLUS_EXPR, gfc_array_index_type, index, tmp));
    }

  /* Result = data[index].  */
  tmp = gfc_build_array_ref (array, index);

  /* Check we've used the correct number of dimensions.  */
  assert (TREE_CODE (TREE_TYPE (tmp)) != ARRAY_TYPE);

  se->expr = tmp;
}


/* Generate code to perform an array index bound check.  */

static tree
gfc_trans_array_bound_check (gfc_se * se, tree descriptor, tree index, int n)
{
  tree cond;
  tree fault;
  tree tmp;

  if (!flag_bounds_check)
    return index;

  index = gfc_evaluate_now (index, &se->pre);
  /* Check lower bound.  */
  tmp = gfc_conv_array_lbound (descriptor, n);
  fault = fold (build (LT_EXPR, boolean_type_node, index, tmp));
  /* Check upper bound.  */
  tmp = gfc_conv_array_ubound (descriptor, n);
  cond = fold (build (GT_EXPR, boolean_type_node, index, tmp));
  fault = fold (build (TRUTH_OR_EXPR, boolean_type_node, fault, cond));

  gfc_trans_runtime_check (fault, gfc_strconst_fault, &se->pre);

  return index;
}


/* A reference to an array vector subscript.  Uses recursion to handle nested
   vector subscripts.  */

static tree
gfc_conv_vector_array_index (gfc_se * se, tree index, gfc_ss * ss)
{
  tree descsave;
  tree indices[GFC_MAX_DIMENSIONS];
  gfc_array_ref *ar;
  gfc_ss_info *info;
  int n;

  assert (ss && ss->type == GFC_SS_VECTOR);

  /* Save the descriptor.  */
  descsave = se->expr;
  info = &ss->data.info;
  se->expr = info->descriptor;

  ar = &info->ref->u.ar;
  for (n = 0; n < ar->dimen; n++)
    {
      switch (ar->dimen_type[n])
	{
	case DIMEN_ELEMENT:
	  assert (info->subscript[n] != gfc_ss_terminator
		  && info->subscript[n]->type == GFC_SS_SCALAR);
	  indices[n] = info->subscript[n]->data.scalar.expr;
	  break;

	case DIMEN_RANGE:
	  indices[n] = index;
	  break;

	case DIMEN_VECTOR:
	  index = gfc_conv_vector_array_index (se, index, info->subscript[n]);

	  indices[n] =
	    gfc_trans_array_bound_check (se, info->descriptor, index, n);
	  break;

	default:
	  abort ();
	}
    }
  /* Get the index from the vector.  */
  gfc_conv_array_index_ref (se, info->data, indices, info->offset, ar->dimen);
  index = se->expr;
  /* Put the descriptor back.  */
  se->expr = descsave;

  return index;
}


/* Return the offset for an index.  Performs bound checking for elemental
   dimensions.  Single element references are processed seperately.  */

static tree
gfc_conv_array_index_offset (gfc_se * se, gfc_ss_info * info, int dim, int i,
			     gfc_array_ref * ar, tree stride)
{
  tree index;

  /* Get the index into the array for this dimension.  */
  if (ar)
    {
      assert (ar->type != AR_ELEMENT);
      if (ar->dimen_type[dim] == DIMEN_ELEMENT)
	{
	  assert (i == -1);
	  /* Elemental dimension.  */
	  assert (info->subscript[dim]
		  && info->subscript[dim]->type == GFC_SS_SCALAR);
	  /* We've already translated this value outside the loop.  */
	  index = info->subscript[dim]->data.scalar.expr;

	  index =
	    gfc_trans_array_bound_check (se, info->descriptor, index, dim);
	}
      else
	{
	  /* Scalarized dimension.  */
	  assert (info && se->loop);

          /* Multiply the loop variable by the stride and dela.  */
	  index = se->loop->loopvar[i];
	  index = fold (build (MULT_EXPR, gfc_array_index_type, index,
			       info->stride[i]));
	  index = fold (build (PLUS_EXPR, gfc_array_index_type, index,
			       info->delta[i]));

	  if (ar->dimen_type[dim] == DIMEN_VECTOR)
	    {
              /* Handle vector subscripts.  */
	      index = gfc_conv_vector_array_index (se, index,
						   info->subscript[dim]);
	      index =
		gfc_trans_array_bound_check (se, info->descriptor, index,
					     dim);
	    }
	  else
	    assert (ar->dimen_type[dim] == DIMEN_RANGE);
	}
    }
  else
    {
      /* Temporary array.  */
      assert (se->loop);
      index = se->loop->loopvar[se->loop->order[i]];
    }

  /* Multiply by the stride.  */
  index = fold (build (MULT_EXPR, gfc_array_index_type, index, stride));

  return index;
}


/* Build a scalarized reference to an array.  */

static void
gfc_conv_scalarized_array_ref (gfc_se * se, gfc_array_ref * ar)
{
  gfc_ss_info *info;
  tree index;
  tree tmp;
  int n;

  info = &se->ss->data.info;
  if (ar)
    n = se->loop->order[0];
  else
    n = 0;

  index = gfc_conv_array_index_offset (se, info, info->dim[n], n, ar,
				       info->stride0);
  /* Add the offset for this dimension to the stored offset for all other
     dimensions.  */
  index = fold (build (PLUS_EXPR, gfc_array_index_type, index, info->offset));

  tmp = gfc_build_indirect_ref (info->data);
  se->expr = gfc_build_array_ref (tmp, index);
}


/* Translate access of temporary array.  */

void
gfc_conv_tmp_array_ref (gfc_se * se)
{
  tree desc;

  desc = se->ss->data.info.descriptor;
  /* TODO: We need the string length for string variables.  */

  gfc_conv_scalarized_array_ref (se, NULL);
}


/* Build an array reference.  se->expr already holds the array descriptor.
   This should be either a variable, indirect variable reference or component
   reference.  For arrays which do not have a descriptor, se->expr will be
   the data pointer.
   a(i, j, k) = base[offset + i * stride[0] + j * stride[1] + k * stride[2]]*/

void
gfc_conv_array_ref (gfc_se * se, gfc_array_ref * ar)
{
  int n;
  tree index;
  tree tmp;
  tree stride;
  tree fault;
  gfc_se indexse;

  /* Handle scalarized references seperately.  */
  if (ar->type != AR_ELEMENT)
    {
      gfc_conv_scalarized_array_ref (se, ar);
      return;
    }

  index = integer_zero_node;

  fault = integer_zero_node;

  /* Calculate the offsets from all the dimensions.  */
  for (n = 0; n < ar->dimen; n++)
    {
      /* Calculate the index for this demension.  */
      gfc_init_se (&indexse, NULL);
      gfc_conv_expr_type (&indexse, ar->start[n], gfc_array_index_type);
      gfc_add_block_to_block (&se->pre, &indexse.pre);

      if (flag_bounds_check)
	{
	  /* Check array bounds.  */
	  tree cond;

	  indexse.expr = gfc_evaluate_now (indexse.expr, &se->pre);

	  tmp = gfc_conv_array_lbound (se->expr, n);
	  cond = fold (build (LT_EXPR, boolean_type_node, indexse.expr, tmp));
	  fault =
	    fold (build (TRUTH_OR_EXPR, boolean_type_node, fault, cond));

	  tmp = gfc_conv_array_ubound (se->expr, n);
	  cond = fold (build (GT_EXPR, boolean_type_node, indexse.expr, tmp));
	  fault =
	    fold (build (TRUTH_OR_EXPR, boolean_type_node, fault, cond));
	}

      /* Multiply the index by the stride.  */
      stride = gfc_conv_array_stride (se->expr, n);
      tmp = fold (build (MULT_EXPR, gfc_array_index_type, indexse.expr,
			 stride));

      /* And add it to the total.  */
      index = fold (build (PLUS_EXPR, gfc_array_index_type, index, tmp));
    }

  if (flag_bounds_check)
    gfc_trans_runtime_check (fault, gfc_strconst_fault, &se->pre);

  tmp = gfc_conv_array_offset (se->expr);
  if (!integer_zerop (tmp))
    index = fold (build (PLUS_EXPR, gfc_array_index_type, index, tmp));
      
  /* Access the calculated element.  */
  tmp = gfc_conv_array_data (se->expr);
  tmp = gfc_build_indirect_ref (tmp);
  se->expr = gfc_build_array_ref (tmp, index);
}


/* Generate the code to be executed immediately before entering a
   scalarization loop.  */

static void
gfc_trans_preloop_setup (gfc_loopinfo * loop, int dim, int flag,
			 stmtblock_t * pblock)
{
  tree index;
  tree stride;
  gfc_ss_info *info;
  gfc_ss *ss;
  gfc_se se;
  int i;

  /* This code will be executed before entering the scalarization loop
     for this dimension.  */
  for (ss = loop->ss; ss != gfc_ss_terminator; ss = ss->loop_chain)
    {
      if ((ss->useflags & flag) == 0)
	continue;

      if (ss->type != GFC_SS_SECTION
	  && ss->type != GFC_SS_FUNCTION && ss->type != GFC_SS_CONSTRUCTOR)
	continue;

      info = &ss->data.info;

      if (dim >= info->dimen)
	continue;

      if (dim == info->dimen - 1)
	{
	  /* For the outermost loop calculate the offset due to any
	     elemental dimensions.  It will have been initialized with the
	     base offset of the array.  */
	  if (info->ref)
	    {
	      for (i = 0; i < info->ref->u.ar.dimen; i++)
		{
		  if (info->ref->u.ar.dimen_type[i] != DIMEN_ELEMENT)
		    continue;

		  gfc_init_se (&se, NULL);
		  se.loop = loop;
		  se.expr = info->descriptor;
		  stride = gfc_conv_array_stride (info->descriptor, i);
		  index = gfc_conv_array_index_offset (&se, info, i, -1,
						       &info->ref->u.ar,
						       stride);
		  gfc_add_block_to_block (pblock, &se.pre);

		  info->offset = fold (build (PLUS_EXPR, gfc_array_index_type,
					      info->offset, index));
		  info->offset = gfc_evaluate_now (info->offset, pblock);
		}

	      i = loop->order[0];
	      stride = gfc_conv_array_stride (info->descriptor, info->dim[i]);
	    }
	  else
	    stride = gfc_conv_array_stride (info->descriptor, 0);

	  /* Calculate the stride of the innermost loop.  Hopefully this will
             allow the backend optimizers to do their stuff more effectively.
           */
	  info->stride0 = gfc_evaluate_now (stride, pblock);
	}
      else
	{
	  /* Add the offset for the previous loop dimension.  */
	  gfc_array_ref *ar;

	  if (info->ref)
	    {
	      ar = &info->ref->u.ar;
	      i = loop->order[dim + 1];
	    }
	  else
	    {
	      ar = NULL;
	      i = dim + 1;
	    }

	  gfc_init_se (&se, NULL);
	  se.loop = loop;
	  se.expr = info->descriptor;
	  stride = gfc_conv_array_stride (info->descriptor, info->dim[i]);
	  index = gfc_conv_array_index_offset (&se, info, info->dim[i], i,
					       ar, stride);
	  gfc_add_block_to_block (pblock, &se.pre);
	  info->offset = fold (build (PLUS_EXPR, gfc_array_index_type,
				      info->offset, index));
	  info->offset = gfc_evaluate_now (info->offset, pblock);
	}

      /* Remeber this offset for the second loop.  */
      if (dim == loop->temp_dim - 1)
        info->saved_offset = info->offset;
    }
}


/* Start a scalarized expression.  Creates a scope and declares loop
   variables.  */

void
gfc_start_scalarized_body (gfc_loopinfo * loop, stmtblock_t * pbody)
{
  int dim;
  int n;
  int flags;

  assert (!loop->array_parameter);

  for (dim = loop->dimen - 1; dim >= 0; dim--)
    {
      n = loop->order[dim];

      gfc_start_block (&loop->code[n]);

      /* Create the loop variable.  */
      loop->loopvar[n] = gfc_create_var (gfc_array_index_type, "S");

      if (dim < loop->temp_dim)
	flags = 3;
      else
	flags = 1;
      /* Calculate values that will be constant within this loop.  */
      gfc_trans_preloop_setup (loop, dim, flags, &loop->code[n]);
    }
  gfc_start_block (pbody);
}


/* Generates the actual loop code for a scalarization loop.  */

static void
gfc_trans_scalarized_loop_end (gfc_loopinfo * loop, int n,
			       stmtblock_t * pbody)
{
  stmtblock_t block;
  tree cond;
  tree tmp;
  tree loopbody;
  tree exit_label;

  loopbody = gfc_finish_block (pbody);

  /* Initialize the loopvar.  */
  gfc_add_modify_expr (&loop->code[n], loop->loopvar[n], loop->from[n]);

  exit_label = gfc_build_label_decl (NULL_TREE);

  /* Generate the loop body.  */
  gfc_init_block (&block);

  /* The exit condition.  */
  cond = build (GT_EXPR, boolean_type_node, loop->loopvar[n], loop->to[n]);
  tmp = build1_v (GOTO_EXPR, exit_label);
  TREE_USED (exit_label) = 1;
  tmp = build_v (COND_EXPR, cond, tmp, build_empty_stmt ());
  gfc_add_expr_to_block (&block, tmp);

  /* The main body.  */
  gfc_add_expr_to_block (&block, loopbody);

  /* Increment the loopvar.  */
  tmp = build (PLUS_EXPR, gfc_array_index_type,
	       loop->loopvar[n], integer_one_node);
  gfc_add_modify_expr (&block, loop->loopvar[n], tmp);

  /* Build the loop.  */
  tmp = gfc_finish_block (&block);
  tmp = build_v (LOOP_EXPR, tmp);
  gfc_add_expr_to_block (&loop->code[n], tmp);

  /* Add the exit label.  */
  tmp = build1_v (LABEL_EXPR, exit_label);
  gfc_add_expr_to_block (&loop->code[n], tmp);
}


/* Finishes and generates the loops for a scalarized expression.  */

void
gfc_trans_scalarizing_loops (gfc_loopinfo * loop, stmtblock_t * body)
{
  int dim;
  int n;
  gfc_ss *ss;
  stmtblock_t *pblock;
  tree tmp;

  pblock = body;
  /* Generate the loops.  */
  for (dim = 0; dim < loop->dimen; dim++)
    {
      n = loop->order[dim];
      gfc_trans_scalarized_loop_end (loop, n, pblock);
      loop->loopvar[n] = NULL_TREE;
      pblock = &loop->code[n];
    }

  tmp = gfc_finish_block (pblock);
  gfc_add_expr_to_block (&loop->pre, tmp);

  /* Clear all the used flags.  */
  for (ss = loop->ss; ss; ss = ss->loop_chain)
    ss->useflags = 0;
}


/* Finish the main body of a scalarized expression, and start the secondary
   copying body.  */

void
gfc_trans_scalarized_loop_boundary (gfc_loopinfo * loop, stmtblock_t * body)
{
  int dim;
  int n;
  stmtblock_t *pblock;
  gfc_ss *ss;

  pblock = body;
  /* We finish as many loops as are used by the temporary.  */
  for (dim = 0; dim < loop->temp_dim - 1; dim++)
    {
      n = loop->order[dim];
      gfc_trans_scalarized_loop_end (loop, n, pblock);
      loop->loopvar[n] = NULL_TREE;
      pblock = &loop->code[n];
    }

  /* We don't want to finish the outermost loop entirely.  */
  n = loop->order[loop->temp_dim - 1];
  gfc_trans_scalarized_loop_end (loop, n, pblock);

  /* Restore the initial offsets.  */
  for (ss = loop->ss; ss != gfc_ss_terminator; ss = ss->loop_chain)
    {
      if ((ss->useflags & 2) == 0)
	continue;

      if (ss->type != GFC_SS_SECTION
	  && ss->type != GFC_SS_FUNCTION && ss->type != GFC_SS_CONSTRUCTOR)
	continue;

      ss->data.info.offset = ss->data.info.saved_offset;
    }

  /* Restart all the inner loops we just finished.  */
  for (dim = loop->temp_dim - 2; dim >= 0; dim--)
    {
      n = loop->order[dim];

      gfc_start_block (&loop->code[n]);

      loop->loopvar[n] = gfc_create_var (gfc_array_index_type, "Q");

      gfc_trans_preloop_setup (loop, dim, 2, &loop->code[n]);
    }

  /* Start a block for the secondary copying code.  */
  gfc_start_block (body);
}


/* Calculate the upper bound of an array section.  */

static tree
gfc_conv_section_upper_bound (gfc_ss * ss, int n, stmtblock_t * pblock)
{
  int dim;
  gfc_ss *vecss;
  gfc_expr *end;
  tree desc;
  tree bound;
  gfc_se se;

  assert (ss->type == GFC_SS_SECTION);

  /* For vector array subscripts we want the size of the vector.  */
  dim = ss->data.info.dim[n];
  vecss = ss;
  while (vecss->data.info.ref->u.ar.dimen_type[dim] == DIMEN_VECTOR)
    {
      vecss = vecss->data.info.subscript[dim];
      assert (vecss && vecss->type == GFC_SS_VECTOR);
      dim = vecss->data.info.dim[0];
    }

  assert (vecss->data.info.ref->u.ar.dimen_type[dim] == DIMEN_RANGE);
  end = vecss->data.info.ref->u.ar.end[dim];
  desc = vecss->data.info.descriptor;

  if (end)
    {
      /* The upper bound was specified.  */
      gfc_init_se (&se, NULL);
      gfc_conv_expr_type (&se, end, gfc_array_index_type);
      gfc_add_block_to_block (pblock, &se.pre);
      bound = se.expr;
    }
  else
    {
      /* No upper bound was specified, so use the bound of the array. */
      bound = gfc_conv_array_ubound (desc, dim);
    }

  return bound;
}


/* Calculate the lower bound of an array section.  */

static void
gfc_conv_section_startstride (gfc_loopinfo * loop, gfc_ss * ss, int n)
{
  gfc_expr *start;
  gfc_expr *stride;
  gfc_ss *vecss;
  tree desc;
  gfc_se se;
  gfc_ss_info *info;
  int dim;

  info = &ss->data.info;

  dim = info->dim[n];

  /* For vector array subscripts we want the size of the vector.  */
  vecss = ss;
  while (vecss->data.info.ref->u.ar.dimen_type[dim] == DIMEN_VECTOR)
    {
      vecss = vecss->data.info.subscript[dim];
      assert (vecss && vecss->type == GFC_SS_VECTOR);
      /* Get the descriptors for the vector subscripts as well.  */
      if (!vecss->data.info.descriptor)
	gfc_conv_ss_descriptor (&loop->pre, vecss, !loop->array_parameter);
      dim = vecss->data.info.dim[0];
    }

  assert (vecss->data.info.ref->u.ar.dimen_type[dim] == DIMEN_RANGE);
  start = vecss->data.info.ref->u.ar.start[dim];
  stride = vecss->data.info.ref->u.ar.stride[dim];
  desc = vecss->data.info.descriptor;

  /* Calculate the start of the range.  For vector subscripts this will
     be the range of the vector.  */
  if (start)
    {
      /* Specified section start.  */
      gfc_init_se (&se, NULL);
      gfc_conv_expr_type (&se, start, gfc_array_index_type);
      gfc_add_block_to_block (&loop->pre, &se.pre);
      info->start[n] = se.expr;
    }
  else
    {
      /* No lower bound specified so use the bound of the array.  */
      info->start[n] = gfc_conv_array_lbound (desc, dim);
    }
  info->start[n] = gfc_evaluate_now (info->start[n], &loop->pre);

  /* Calculate the stride.  */
  if (stride == NULL)
    info->stride[n] = integer_one_node;
  else
    {
      gfc_init_se (&se, NULL);
      gfc_conv_expr_type (&se, stride, gfc_array_index_type);
      gfc_add_block_to_block (&loop->pre, &se.pre);
      info->stride[n] = gfc_evaluate_now (se.expr, &loop->pre);
    }
}


/* Calculates the range start and stride for a SS chain.  Also gets the
   descriptor and data pointer.  The range of vector subscripts is the size
   of the vector.  Array bounds are also checked.  */

void
gfc_conv_ss_startstride (gfc_loopinfo * loop)
{
  int n;
  tree tmp;
  gfc_ss *ss;
  gfc_ss *vecss;
  tree desc;

  loop->dimen = 0;
  /* Determine the rank of the loop.  */
  for (ss = loop->ss;
       ss != gfc_ss_terminator && loop->dimen == 0; ss = ss->loop_chain)
    {
      switch (ss->type)
	{
	case GFC_SS_SECTION:
	case GFC_SS_CONSTRUCTOR:
	case GFC_SS_FUNCTION:
	  loop->dimen = ss->data.info.dimen;
	  break;

	default:
	  break;
	}
    }

  if (loop->dimen == 0)
    gfc_todo_error ("Unable to determine rank of expression");


  /* loop over all the SS in the chain.  */
  for (ss = loop->ss; ss != gfc_ss_terminator; ss = ss->loop_chain)
    {
      switch (ss->type)
	{
	case GFC_SS_SECTION:
	  /* Get the descriptor for the array.  */
	  gfc_conv_ss_descriptor (&loop->pre, ss, !loop->array_parameter);

	  for (n = 0; n < ss->data.info.dimen; n++)
	    gfc_conv_section_startstride (loop, ss, n);
	  break;

	case GFC_SS_CONSTRUCTOR:
	case GFC_SS_FUNCTION:
	  for (n = 0; n < ss->data.info.dimen; n++)
	    {
	      ss->data.info.start[n] = integer_zero_node;
	      ss->data.info.stride[n] = integer_one_node;
	    }
	  break;

	default:
	  break;
	}
    }

  /* The rest is just runtime bound checking.  */
  if (flag_bounds_check)
    {
      stmtblock_t block;
      tree fault;
      tree bound;
      tree end;
      tree size[GFC_MAX_DIMENSIONS];
      gfc_ss_info *info;
      int dim;

      gfc_start_block (&block);

      fault = integer_zero_node;
      for (n = 0; n < loop->dimen; n++)
	size[n] = NULL_TREE;

      for (ss = loop->ss; ss != gfc_ss_terminator; ss = ss->loop_chain)
	{
	  if (ss->type != GFC_SS_SECTION)
	    continue;

	  /* TODO: range checking for mapped dimensions.  */
	  info = &ss->data.info;

	  /* This only checks scalarized dimensions, elemental dimensions are
	     checked later.  */
	  for (n = 0; n < loop->dimen; n++)
	    {
	      dim = info->dim[n];
	      vecss = ss;
	      while (vecss->data.info.ref->u.ar.dimen_type[dim]
		     == DIMEN_VECTOR)
		{
		  vecss = vecss->data.info.subscript[dim];
		  assert (vecss && vecss->type == GFC_SS_VECTOR);
		  dim = vecss->data.info.dim[0];
		}
	      assert (vecss->data.info.ref->u.ar.dimen_type[dim]
		      == DIMEN_RANGE);
	      desc = vecss->data.info.descriptor;

	      /* Check lower bound.  */
	      bound = gfc_conv_array_lbound (desc, dim);
	      tmp = info->start[n];
	      tmp = fold (build (LT_EXPR, boolean_type_node, tmp, bound));
	      fault = fold (build (TRUTH_OR_EXPR, boolean_type_node, fault,
				   tmp));

	      /* Check the upper bound.  */
	      bound = gfc_conv_array_ubound (desc, dim);
	      end = gfc_conv_section_upper_bound (ss, n, &block);
	      tmp = fold (build (GT_EXPR, boolean_type_node, end, bound));
	      fault = fold (build (TRUTH_OR_EXPR, boolean_type_node, fault,
				   tmp));

	      /* Check the section sizes match.  */
	      tmp = fold (build (MINUS_EXPR, gfc_array_index_type, end,
				 info->start[n]));
	      tmp = fold (build (FLOOR_DIV_EXPR, gfc_array_index_type, tmp,
				 info->stride[n]));
	      /* We remember the size of the first section, and check all the
	         others against this.  */
	      if (size[n])
		{
		  tmp =
		    fold (build (NE_EXPR, boolean_type_node, tmp, size[n]));
		  fault =
		    build (TRUTH_OR_EXPR, boolean_type_node, fault, tmp);
		}
	      else
		size[n] = gfc_evaluate_now (tmp, &block);
	    }
	}
      gfc_trans_runtime_check (fault, gfc_strconst_bounds, &block);

      tmp = gfc_finish_block (&block);
      gfc_add_expr_to_block (&loop->pre, tmp);
    }
}


/* Return true if the two SS could be aliased, ie. both point to the same data
   object.  */
/* TODO: resolve aliases based on frontend expressions.  */

static int
gfc_could_be_alias (gfc_ss * lss, gfc_ss * rss)
{
  gfc_ref *lref;
  gfc_ref *rref;
  gfc_symbol *lsym;
  gfc_symbol *rsym;

  lsym = lss->expr->symtree->n.sym;
  rsym = rss->expr->symtree->n.sym;
  if (gfc_symbols_could_alias (lsym, rsym))
    return 1;

  if (rsym->ts.type != BT_DERIVED
      && lsym->ts.type != BT_DERIVED)
    return 0;

  /* For Derived types we must check all the component types.  We can ignore
     array references as these will have the same base type as the previous
     component ref.  */
  for (lref = lss->expr->ref; lref != lss->data.info.ref; lref = lref->next)
    {
      if (lref->type != REF_COMPONENT)
	continue;

      if (gfc_symbols_could_alias (lref->u.c.sym, rsym))
	return 1;

      for (rref = rss->expr->ref; rref != rss->data.info.ref;
	   rref = rref->next)
	{
	  if (rref->type != REF_COMPONENT)
	    continue;

	  if (gfc_symbols_could_alias (lref->u.c.sym, rref->u.c.sym))
	    return 1;
	}
    }

  for (rref = rss->expr->ref; rref != rss->data.info.ref; rref = rref->next)
    {
      if (rref->type != REF_COMPONENT)
	break;

      if (gfc_symbols_could_alias (rref->u.c.sym, lsym))
	return 1;
    }

  return 0;
}


/* Resolve array data dependencies.  Creates a temporary if required.  */
/* TODO: Calc dependencies with gfc_expr rather than gfc_ss, and move to
   dependency.c.  */

void
gfc_conv_resolve_dependencies (gfc_loopinfo * loop, gfc_ss * dest,
			       gfc_ss * rss)
{
  gfc_ss *ss;
  gfc_ref *lref;
  gfc_ref *rref;
  gfc_ref *aref;
  int nDepend = 0;
  int temp_dim = 0;

  loop->temp_ss = NULL;
  aref = dest->data.info.ref;
  temp_dim = 0;

  for (ss = rss; ss != gfc_ss_terminator; ss = ss->next)
    {
      if (ss->type != GFC_SS_SECTION)
	continue;

      if (gfc_could_be_alias (dest, ss))
	{
	  nDepend = 1;
	  break;
	}

      if (dest->expr->symtree->n.sym == ss->expr->symtree->n.sym)
	{
	  lref = dest->expr->ref;
	  rref = ss->expr->ref;

	  nDepend = gfc_dep_resolver (lref, rref);
#if 0
	  /* TODO : loop shifting.  */
	  if (nDepend == 1)
	    {
	      /* Mark the dimensions for LOOP SHIFTING */
	      for (n = 0; n < loop->dimen; n++)
	        {
	          int dim = dest->data.info.dim[n];

		  if (lref->u.ar.dimen_type[dim] == DIMEN_VECTOR)
		    depends[n] = 2;
		  else if (! gfc_is_same_range (&lref->u.ar,
						&rref->u.ar, dim, 0))
		    depends[n] = 1;
	         }

	      /* Put all the dimensions with dependancies in the
		 innermost loops.  */
	      dim = 0;
	      for (n = 0; n < loop->dimen; n++)
		{
		  assert (loop->order[n] == n);
		  if (depends[n])
		  loop->order[dim++] = n;
		}
	      temp_dim = dim;
	      for (n = 0; n < loop->dimen; n++)
	        {
		  if (! depends[n])
		  loop->order[dim++] = n;
		}

	      assert (dim == loop->dimen);
	      break;
	    }
#endif
	}
    }

  if (nDepend == 1)
    {
      loop->temp_ss = gfc_get_ss ();
      loop->temp_ss->type = GFC_SS_TEMP;
      loop->temp_ss->data.temp.type =
	gfc_get_element_type (TREE_TYPE (dest->data.info.descriptor));
      loop->temp_ss->data.temp.string_length = NULL_TREE;
      loop->temp_ss->data.temp.dimen = loop->dimen;
      loop->temp_ss->next = gfc_ss_terminator;
      gfc_add_ss_to_loop (loop, loop->temp_ss);
    }
  else
    loop->temp_ss = NULL;
}


/* Initialise the scalarization loop.  Creates the loop variables.  Determines
   the range of the loop variables.  Creates a temporary if required.
   Calculates how to transform from loop variables to array indices for each
   expression.  Also generates code for scalar expressions which have been
   moved outside the loop. */

void
gfc_conv_loop_setup (gfc_loopinfo * loop)
{
  int n;
  int dim;
  gfc_ss_info *info;
  gfc_ss_info *specinfo;
  gfc_ss *ss;
  tree tmp;
  tree len;
  gfc_ss *loopspec[GFC_MAX_DIMENSIONS];
  mpz_t *cshape;
  mpz_t i;

  mpz_init (i);
  for (n = 0; n < loop->dimen; n++)
    {
      loopspec[n] = NULL;
      /* We use one SS term, and use that to determine the bounds of the
         loop for this dimension.  We try to pick the simplest term.  */
      for (ss = loop->ss; ss != gfc_ss_terminator; ss = ss->loop_chain)
	{
	  if (ss->expr && ss->expr->shape)
	    {
	      /* The frontend has worked out the size for us.  */
	      loopspec[n] = ss;
	      continue;
	    }

	  if (ss->type == GFC_SS_CONSTRUCTOR)
	    {
	      /* Try to figure out the size of the constructior.  */
	      /* TODO: avoid this by making the prontend set the shape.  */
	      gfc_get_array_cons_size (&i, ss->expr->value.constructor);
	      /* A negative value meens we failed. */
	      if (mpz_sgn (i) > 0)
		{
		  mpz_sub_ui (i, i, 1);
		  loop->to[n] =
		    gfc_conv_mpz_to_tree (i, gfc_index_integer_kind);
		  loopspec[n] = ss;
		}
	      continue;
	    }

	  /* We don't know how to handle functions yet.
	     This may not be possible in all cases.  */
	  if (ss->type != GFC_SS_SECTION)
	    continue;

	  info = &ss->data.info;

	  if (loopspec[n])
	    specinfo = &loopspec[n]->data.info;
	  else
	    specinfo = NULL;
	  info = &ss->data.info;

	  /* Criteria for choosing a loop specifier (most important first):
	     stride of one
	     known stride
	     known lower bound
	     known upper bound
	   */
	  if (!specinfo)
	    loopspec[n] = ss;
	  else if (loopspec[n]->type != GFC_SS_CONSTRUCTOR)
	    {
	      if (integer_onep (info->stride[n])
		  && !integer_onep (specinfo->stride[n]))
		loopspec[n] = ss;
	      else if (INTEGER_CST_P (info->stride[n])
		       && !INTEGER_CST_P (specinfo->stride[n]))
		loopspec[n] = ss;
	      else if (INTEGER_CST_P (info->start[n])
		       && !INTEGER_CST_P (specinfo->start[n]))
		loopspec[n] = ss;
	      /* We don't work out the upper bound.
	         else if (INTEGER_CST_P (info->finish[n])
	         && ! INTEGER_CST_P (specinfo->finish[n]))
	         loopspec[n] = ss; */
	    }
	}

      if (!loopspec[n])
	gfc_todo_error ("Unable to find scalarization loop specifier");

      info = &loopspec[n]->data.info;

      /* Set the extents of this range.  */
      cshape = loopspec[n]->expr->shape;
      if (cshape && INTEGER_CST_P (info->start[n])
	  && INTEGER_CST_P (info->stride[n]))
	{
	  loop->from[n] = info->start[n];
	  mpz_set (i, cshape[n]);
	  mpz_sub_ui (i, i, 1);
	  /* To = from + (size - 1) * stride.  */
	  tmp = gfc_conv_mpz_to_tree (i, gfc_index_integer_kind);
	  if (!integer_onep (info->stride[n]))
	    {
	      tmp = fold (build (MULT_EXPR, gfc_array_index_type,
				 tmp, info->stride[n]));
	    }
	  loop->to[n] = fold (build (PLUS_EXPR, gfc_array_index_type,
			      loop->from[n], tmp));
	}
      else
	{
	  loop->from[n] = info->start[n];
	  switch (loopspec[n]->type)
	    {
	    case GFC_SS_CONSTRUCTOR:
	      assert (info->dimen == 1);
	      assert (loop->to[n]);
	      break;

	    case GFC_SS_SECTION:
	      loop->to[n] = gfc_conv_section_upper_bound (loopspec[n], n,
							  &loop->pre);
	      break;

	    default:
	      abort ();
	    }
	}

      /* Transform everything so we have a simple incrementing variable.  */
      if (integer_onep (info->stride[n]))
	info->delta[n] = integer_zero_node;
      else
	{
	  /* Set the delta for this section.  */
	  info->delta[n] = gfc_evaluate_now (loop->from[n], &loop->pre);
	  /* Number of iterations is (end - start + step) / step.
	     with start = 0, this simplifies to
	     last = end / step;
	     for (i = 0; i<=last; i++){...};  */
	  tmp = fold (build (MINUS_EXPR, gfc_array_index_type, loop->to[n],
			     loop->from[n]));
	  tmp = fold (build (TRUNC_DIV_EXPR, gfc_array_index_type, tmp,
			     info->stride[n]));
	  loop->to[n] = gfc_evaluate_now (tmp, &loop->pre);
	  /* Make the loop variable start at 0.  */
	  loop->from[n] = integer_zero_node;
	}
    }

  /* If we want a temporary then create it.  */
  if (loop->temp_ss != NULL)
    {
      assert (loop->temp_ss->type == GFC_SS_TEMP);
      tmp = loop->temp_ss->data.temp.type;
      len = loop->temp_ss->data.temp.string_length;
      n = loop->temp_ss->data.temp.dimen;
      memset (&loop->temp_ss->data.info, 0, sizeof (gfc_ss_info));
      loop->temp_ss->type = GFC_SS_SECTION;
      loop->temp_ss->data.info.dimen = n;
      gfc_trans_allocate_temp_array (loop, &loop->temp_ss->data.info,
				     tmp, len);
    }

  /* Add all the scalar code that can be taken out of the loops.  */
  gfc_add_loop_ss_code (loop, loop->ss, false);

  for (n = 0; n < loop->temp_dim; n++)
    loopspec[loop->order[n]] = NULL;

  mpz_clear (i);

  /* For array parameters we don't have loop variables, so don't calculate the
     translations.  */
  if (loop->array_parameter)
    return;

  /* Calculate the translation from loop variables to array indices.  */
  for (ss = loop->ss; ss != gfc_ss_terminator; ss = ss->loop_chain)
    {
      if (ss->type != GFC_SS_SECTION)
	continue;

      info = &ss->data.info;

      for (n = 0; n < info->dimen; n++)
	{
	  dim = info->dim[n];

	  /* If we are specifying the range the delta may already be set.  */
	  if (loopspec[n] != ss)
	    {
	      /* Calculate the offset relative to the loop variable.
	         First multiply by the stride.  */
	      tmp = fold (build (MULT_EXPR, gfc_array_index_type,
				 loop->from[n], info->stride[n]));

	      /* Then subtract this from our starting value.  */
	      tmp = fold (build (MINUS_EXPR, gfc_array_index_type,
				 info->start[n], tmp));

	      info->delta[n] = gfc_evaluate_now (tmp, &loop->pre);
	    }
	}
    }
}


/* Fills in an array descriptor, and returns the size of the array.  The size
   will be a simple_val, ie a variable or a constant.  Also calculates the
   offset of the base.  Returns the size of the arrary.
   {
    stride = 1;
    offset = 0;
    for (n = 0; n < rank; n++)
      {
        a.lbound[n] = specified_lower_bound;
        offset = offset + a.lbond[n] * stride;
        size = 1 - lbound;
        a.ubound[n] = specified_upper_bound;
        a.stride[n] = stride;
        size = ubound + size; //size = ubound + 1 - lbound
        stride = stride * size;
      }
    return (stride);
   }  */
/*GCC ARRAYS*/

static tree
gfc_array_init_size (tree descriptor, int rank, tree * poffset,
		     gfc_expr ** lower, gfc_expr ** upper,
		     stmtblock_t * pblock)
{
  tree type;
  tree tmp;
  tree size;
  tree offset;
  tree stride;
  gfc_expr *ubound;
  gfc_se se;
  int n;

  type = TREE_TYPE (descriptor);

  stride = integer_one_node;
  offset = integer_zero_node;

  /* Set the dtype.  */
  tmp = gfc_conv_descriptor_dtype (descriptor);
  gfc_add_modify_expr (pblock, tmp,
                       GFC_TYPE_ARRAY_DTYPE (TREE_TYPE (descriptor)));

  for (n = 0; n < rank; n++)
    {
      /* We have 3 possibilities for determining the size of the array:
         lower == NULL    => lbound = 1, ubound = upper[n]
         upper[n] = NULL  => lbound = 1, ubound = lower[n]
         upper[n] != NULL => lbound = lower[n], ubound = upper[n]  */
      ubound = upper[n];

      /* Set lower bound.  */
      gfc_init_se (&se, NULL);
      if (lower == NULL)
	se.expr = integer_one_node;
      else
	{
	  assert (lower[n]);
          if (ubound)
            {
	      gfc_conv_expr_type (&se, lower[n], gfc_array_index_type);
	      gfc_add_block_to_block (pblock, &se.pre);
            }
          else
            {
              se.expr = integer_one_node;
              ubound = lower[n];
            }
	}
      tmp = gfc_conv_descriptor_lbound (descriptor, gfc_rank_cst[n]);
      gfc_add_modify_expr (pblock, tmp, se.expr);

      /* Work out the offset for this component.  */
      tmp = fold (build (MULT_EXPR, gfc_array_index_type, se.expr, stride));
      offset = fold (build (MINUS_EXPR, gfc_array_index_type, offset, tmp));

      /* Start the calculation for the size of this dimension.  */
      size = build (MINUS_EXPR, gfc_array_index_type,
		    integer_one_node, se.expr);

      /* Set upper bound.  */
      gfc_init_se (&se, NULL);
      assert (ubound);
      gfc_conv_expr_type (&se, ubound, gfc_array_index_type);
      gfc_add_block_to_block (pblock, &se.pre);

      tmp = gfc_conv_descriptor_ubound (descriptor, gfc_rank_cst[n]);
      gfc_add_modify_expr (pblock, tmp, se.expr);

      /* Store the stride.  */
      tmp = gfc_conv_descriptor_stride (descriptor, gfc_rank_cst[n]);
      gfc_add_modify_expr (pblock, tmp, stride);

      /* Calculate the size of this dimension.  */
      size = fold (build (PLUS_EXPR, gfc_array_index_type, se.expr, size));

      /* Multiply the stride by the number of elements in this dimension.  */
      stride = fold (build (MULT_EXPR, gfc_array_index_type, stride, size));
      stride = gfc_evaluate_now (stride, pblock);
    }

  /* The stride is the number of elements in the array, so multiply by the
     size of an element to get the total size.  */
  tmp = TYPE_SIZE_UNIT (gfc_get_element_type (type));
  size = fold (build (MULT_EXPR, gfc_array_index_type, stride, tmp));

  if (poffset != NULL)
    {
      offset = gfc_evaluate_now (offset, pblock);
      *poffset = offset;
    }

  size = gfc_evaluate_now (size, pblock);
  return size;
}


/* Initialises the descriptor and generates a call to _gfor_allocate.  Does
   the work for an ALLOCATE statement.  */
/*GCC ARRAYS*/

void
gfc_array_allocate (gfc_se * se, gfc_ref * ref, tree pstat)
{
  tree tmp;
  tree pointer;
  tree allocate;
  tree offset;
  tree size;
  gfc_expr **lower;
  gfc_expr **upper;

  /* Figure out the size of the array.  */
  switch (ref->u.ar.type)
    {
    case AR_ELEMENT:
      lower = NULL;
      upper = ref->u.ar.start;
      break;

    case AR_FULL:
      assert (ref->u.ar.as->type == AS_EXPLICIT);

      lower = ref->u.ar.as->lower;
      upper = ref->u.ar.as->upper;
      break;

    case AR_SECTION:
      lower = ref->u.ar.start;
      upper = ref->u.ar.end;
      break;

    default:
      abort ();
      break;
    }

  size = gfc_array_init_size (se->expr, ref->u.ar.as->rank, &offset,
			      lower, upper, &se->pre);

  /* Allocate memory to store the data.  */
  tmp = gfc_conv_descriptor_data (se->expr);
  pointer = gfc_build_addr_expr (NULL, tmp);
  pointer = gfc_evaluate_now (pointer, &se->pre);

  if (gfc_array_index_type == gfc_int4_type_node)
    allocate = gfor_fndecl_allocate;
  else if (gfc_array_index_type == gfc_int8_type_node)
    allocate = gfor_fndecl_allocate64;
  else
    abort ();

  tmp = gfc_chainon_list (NULL_TREE, pointer);
  tmp = gfc_chainon_list (tmp, size);
  tmp = gfc_chainon_list (tmp, pstat);
  tmp = gfc_build_function_call (allocate, tmp);
  gfc_add_expr_to_block (&se->pre, tmp);

  pointer = gfc_conv_descriptor_data (se->expr);
  
  tmp = gfc_conv_descriptor_offset (se->expr);
  gfc_add_modify_expr (&se->pre, tmp, offset);
}


/* Deallocate an array variable.  Also used when an allocated variable goes
   out of scope.  */
/*GCC ARRAYS*/

tree
gfc_array_deallocate (tree descriptor)
{
  tree var;
  tree tmp;
  stmtblock_t block;

  gfc_start_block (&block);
  /* Get a pointer to the data.  */
  tmp = gfc_conv_descriptor_data (descriptor);
  tmp = gfc_build_addr_expr (NULL, tmp);
  var = gfc_create_var (TREE_TYPE (tmp), "ptr");
  gfc_add_modify_expr (&block, var, tmp);

  /* Parameter is the address of the data component.  */
  tmp = gfc_chainon_list (NULL_TREE, var);
  tmp = gfc_chainon_list (tmp, integer_zero_node);
  tmp = gfc_build_function_call (gfor_fndecl_deallocate, tmp);
  gfc_add_expr_to_block (&block, tmp);

  return gfc_finish_block (&block);
}


/* Create an array constructor from an initialization expression.
   We assume the frontend already did any expansions and conversions.  */

tree
gfc_conv_array_initializer (tree type, gfc_expr * expr)
{
  gfc_constructor *c;
  tree list;
  tree tmp;
  mpz_t maxval;
  gfc_se se;
  HOST_WIDE_INT hi;
  unsigned HOST_WIDE_INT lo;
  tree index, range;

  list = NULL_TREE;
  switch (expr->expr_type)
    {
    case EXPR_CONSTANT:
    case EXPR_STRUCTURE:
      /* A single scalar or derived type value.  Create an array with all
         elements equal to that value.  */
      gfc_init_se (&se, NULL);
      gfc_conv_expr (&se, expr);

      tmp = TYPE_MAX_VALUE (TYPE_DOMAIN (type));
      assert (tmp && INTEGER_CST_P (tmp));
      hi = TREE_INT_CST_HIGH (tmp);
      lo = TREE_INT_CST_LOW (tmp);
      lo++;
      if (lo == 0)
	hi++;
      /* This will probably eat buckets of memory for large arrays.  */
      while (hi != 0 || lo != 0)
        {
          list = tree_cons (NULL_TREE, se.expr, list);
          if (lo == 0)
            hi--;
          lo--;
        }
      break;

    case EXPR_ARRAY:
      /* Create a list of all the elements.  */
      for (c = expr->value.constructor; c; c = c->next)
        {
          if (c->iterator)
            {
              /* Problems occur when we get something like
                 integer :: a(lots) = (/(i, i=1,lots)/)  */
              /* TODO: Unexpanded array initializers.  */
              internal_error
                ("Possible frontend bug: array constructor not expanded");
	    }
          if (mpz_cmp_si (c->n.offset, 0) != 0)
            index = gfc_conv_mpz_to_tree (c->n.offset, gfc_index_integer_kind);
          else
            index = NULL_TREE;
	  mpz_init (maxval);
          if (mpz_cmp_si (c->repeat, 0) != 0)
            {
              tree tmp1, tmp2;

              mpz_set (maxval, c->repeat);
              mpz_add (maxval, c->n.offset, maxval);
              mpz_sub_ui (maxval, maxval, 1);
              tmp2 = gfc_conv_mpz_to_tree (maxval, gfc_index_integer_kind);
              if (mpz_cmp_si (c->n.offset, 0) != 0)
                {
                  mpz_add_ui (maxval, c->n.offset, 1);
                  tmp1 = gfc_conv_mpz_to_tree (maxval, gfc_index_integer_kind);
                }
              else
                tmp1 = gfc_conv_mpz_to_tree (c->n.offset, gfc_index_integer_kind);

              range = build (RANGE_EXPR, integer_type_node, tmp1, tmp2);
            }
          else
            range = NULL;
	  mpz_clear (maxval);

          gfc_init_se (&se, NULL);
	  switch (c->expr->expr_type)
	    {
	    case EXPR_CONSTANT:
	      gfc_conv_constant (&se, c->expr);
              if (range == NULL_TREE)
                list = tree_cons (index, se.expr, list);
              else
                {
                  if (index != NULL_TREE)
                    list = tree_cons (index, se.expr, list);
                  list = tree_cons (range, se.expr, list);
                }
	      break;

	    case EXPR_STRUCTURE:
              gfc_conv_structure (&se, c->expr, 1);
              list = tree_cons (index, se.expr, list);
	      break;

	    default:
	      abort();
	    }
        }
      /* We created the list in reverse order.  */
      list = nreverse (list);
      break;

    default:
      abort();
    }

  /* Create a constructor from the list of elements.  */
  tmp = build1 (CONSTRUCTOR, type, list);
  TREE_CONSTANT (tmp) = 1;
  TREE_INVARIANT (tmp) = 1;
  return tmp;
}


/* Generate code to evaluate non-constant array bounds.  Sets *poffset and
   returns the size (in elements) of the array.  */

static tree
gfc_trans_array_bounds (tree type, gfc_symbol * sym, tree * poffset,
                        stmtblock_t * pblock)
{
  gfc_array_spec *as;
  tree size;
  tree stride;
  tree offset;
  tree ubound;
  tree lbound;
  tree tmp;
  gfc_se se;

  int dim;

  as = sym->as;

  size = integer_one_node;
  offset = integer_zero_node;
  for (dim = 0; dim < as->rank; dim++)
    {
      /* Evaluate non-constant array bound expressions.  */
      lbound = GFC_TYPE_ARRAY_LBOUND (type, dim);
      if (as->lower[dim] && !INTEGER_CST_P (lbound))
        {
          gfc_init_se (&se, NULL);
          gfc_conv_expr_type (&se, as->lower[dim], gfc_array_index_type);
          gfc_add_block_to_block (pblock, &se.pre);
          gfc_add_modify_expr (pblock, lbound, se.expr);
        }
      ubound = GFC_TYPE_ARRAY_UBOUND (type, dim);
      if (as->upper[dim] && !INTEGER_CST_P (ubound))
        {
          gfc_init_se (&se, NULL);
          gfc_conv_expr_type (&se, as->upper[dim], gfc_array_index_type);
          gfc_add_block_to_block (pblock, &se.pre);
          gfc_add_modify_expr (pblock, ubound, se.expr);
        }
      /* The offset of this dimension.  offset = offset - lbound * stride. */
      tmp = fold (build (MULT_EXPR, gfc_array_index_type, lbound, size));
      offset = fold (build (MINUS_EXPR, gfc_array_index_type, offset, tmp));

      /* The size of this dimension, and the stride of the next.  */
      if (dim + 1 < as->rank)
        stride = GFC_TYPE_ARRAY_STRIDE (type, dim + 1);
      else
        stride = NULL_TREE;

      if (ubound != NULL_TREE && !(stride && INTEGER_CST_P (stride)))
        {
          /* Calculate stride = size * (ubound + 1 - lbound).  */
          tmp = fold (build (MINUS_EXPR, gfc_array_index_type,
                             integer_one_node, lbound));
          tmp = fold (build (PLUS_EXPR, gfc_array_index_type, ubound, tmp));
          tmp = fold (build (MULT_EXPR, gfc_array_index_type, size, tmp));
          if (stride)
            gfc_add_modify_expr (pblock, stride, tmp);
          else
            stride = gfc_evaluate_now (tmp, pblock);
        }

      size = stride;
    }

  *poffset = offset;
  return size;
}


/* Generate code to initialize/allocate an array variable.  */

tree
gfc_trans_auto_array_allocation (tree decl, gfc_symbol * sym, tree fnbody)
{
  stmtblock_t block;
  tree type;
  tree tmp;
  tree fndecl;
  tree size;
  tree offset;
  tree args;
  bool onstack;

  assert (!(sym->attr.pointer || sym->attr.allocatable));

  /* Do nothing for USEd variables.  */
  if (sym->attr.use_assoc)
    return fnbody;

  type = TREE_TYPE (decl);
  assert (GFC_ARRAY_TYPE_P (type));
  onstack = TREE_CODE (type) != POINTER_TYPE;

  /* We never generate initialization code of module variables.  */
  if (fnbody == NULL_TREE)
    {
      assert (onstack);

      /* Generate static initializer.  */
      if (sym->value)
	{
	  DECL_INITIAL (decl) =
	    gfc_conv_array_initializer (TREE_TYPE (decl), sym->value);
	}
      return fnbody;
    }

  gfc_start_block (&block);

  /* Evaluate character string length.  */
  if (sym->ts.type == BT_CHARACTER
      && onstack && !INTEGER_CST_P (sym->ts.cl->backend_decl))
    {
      gfc_trans_init_string_length (sym->ts.cl, &block);

      DECL_DEFER_OUTPUT (decl) = 1;

      /* Generate code to allocate the automatic variable.  It will be
	 freed automatically.  */
      tmp = gfc_build_addr_expr (NULL, decl);
      args = gfc_chainon_list (NULL_TREE, tmp);
      args = gfc_chainon_list (args, sym->ts.cl->backend_decl);
      tmp = gfc_build_function_call (built_in_decls[BUILT_IN_STACK_ALLOC],
				     args);
      gfc_add_expr_to_block (&block, tmp);
    }

  if (onstack)
    {
      if (sym->value)
	{
	  DECL_INITIAL (decl) =
	    gfc_conv_array_initializer (TREE_TYPE (decl), sym->value);
	}

      gfc_add_expr_to_block (&block, fnbody);
      return gfc_finish_block (&block);
    }

  type = TREE_TYPE (type);

  assert (!sym->attr.use_assoc);
  assert (!TREE_STATIC (decl));
  assert (!sym->module[0]);

  if (sym->ts.type == BT_CHARACTER
      && !INTEGER_CST_P (sym->ts.cl->backend_decl))
    gfc_trans_init_string_length (sym->ts.cl, &block);

  size = gfc_trans_array_bounds (type, sym, &offset, &block);

  /* The size is the number of elements in the array, so multiply by the
     size of an element to get the total size.  */
  tmp = TYPE_SIZE_UNIT (gfc_get_element_type (type));
  size = fold (build (MULT_EXPR, gfc_array_index_type, size, tmp));

  /* Allocate memory to hold the data.  */
  tmp = gfc_chainon_list (NULL_TREE, size);

  if (gfc_index_integer_kind == 4)
    fndecl = gfor_fndecl_internal_malloc;
  else if (gfc_index_integer_kind == 8)
    fndecl = gfor_fndecl_internal_malloc64;
  else
    abort ();
  tmp = gfc_build_function_call (fndecl, tmp);
  tmp = fold (convert (TREE_TYPE (decl), tmp));
  gfc_add_modify_expr (&block, decl, tmp);

  /* Set offset of the array.  */
  if (TREE_CODE (GFC_TYPE_ARRAY_OFFSET (type)) == VAR_DECL)
    gfc_add_modify_expr (&block, GFC_TYPE_ARRAY_OFFSET (type), offset);


  /* Automatic arrays should not have initializers.  */
  assert (!sym->value);

  gfc_add_expr_to_block (&block, fnbody);

  /* Free the temporary.  */
  tmp = convert (pvoid_type_node, decl);
  tmp = gfc_chainon_list (NULL_TREE, tmp);
  tmp = gfc_build_function_call (gfor_fndecl_internal_free, tmp);
  gfc_add_expr_to_block (&block, tmp);

  return gfc_finish_block (&block);
}


/* Generate entry and exit code for g77 calling convention arrays.  */

tree
gfc_trans_g77_array (gfc_symbol * sym, tree body)
{
  tree parm;
  tree type;
  locus loc;
  tree offset;
  tree tmp;
  stmtblock_t block;

  gfc_get_backend_locus (&loc);
  gfc_set_backend_locus (&sym->declared_at);

  /* Descriptor type.  */
  parm = sym->backend_decl;
  type = TREE_TYPE (parm);
  assert (GFC_ARRAY_TYPE_P (type));

  gfc_start_block (&block);

  if (sym->ts.type == BT_CHARACTER
      && !INTEGER_CST_P (sym->ts.cl->backend_decl))
    gfc_trans_init_string_length (sym->ts.cl, &block);

  /* Evaluate the bounds of the array.  */
  gfc_trans_array_bounds (type, sym, &offset, &block);

  /* Set the offset.  */
  if (TREE_CODE (GFC_TYPE_ARRAY_OFFSET (type)) == VAR_DECL)
    gfc_add_modify_expr (&block, GFC_TYPE_ARRAY_OFFSET (type), offset);

  /* Set the pointer itself if we aren't using the parameter dirtectly.  */
  if (TREE_CODE (parm) != PARM_DECL)
    {
      tmp = convert (TREE_TYPE (parm), GFC_DECL_SAVED_DESCRIPTOR (parm));
      gfc_add_modify_expr (&block, parm, tmp);
    }
  tmp = gfc_finish_block (&block);

  gfc_set_backend_locus (&loc);

  gfc_start_block (&block);
  /* Add the initialization code to the start of the function.  */
  gfc_add_expr_to_block (&block, tmp);
  gfc_add_expr_to_block (&block, body);

  return gfc_finish_block (&block);
}


/* Modify the descriptor of an array parameter so that it has the
   correct lower bound.  Also move the upper bound accordingly.
   If the array is not packed, it will be copied into a temporary.
   For each dimension we set the new lower and upper bounds.  Then we copy the
   stride and calculate the offset for this dimension.  We also work out
   what the stride of a packed array would be, and see it the two match.
   If the array need repacking, we set the stride to the values we just
   calculated, recalculate the offset and copy the array data.
   Code is also added to copy the data back at the end of the function.
   */

tree
gfc_trans_dummy_array_bias (gfc_symbol * sym, tree tmpdesc, tree body)
{
  tree size;
  tree type;
  tree offset;
  locus loc;
  stmtblock_t block;
  stmtblock_t cleanup;
  tree lbound;
  tree ubound;
  tree dubound;
  tree dlbound;
  tree dumdesc;
  tree tmp;
  tree stmt;
  tree stride;
  tree stmt_packed;
  tree stmt_unpacked;
  tree partial;
  gfc_se se;
  int n;
  int checkparm;
  int no_repack;

  if (sym->attr.dummy && gfc_is_nodesc_array (sym))
    return gfc_trans_g77_array (sym, body);

  gfc_get_backend_locus (&loc);
  gfc_set_backend_locus (&sym->declared_at);

  /* Descriptor type.  */
  type = TREE_TYPE (tmpdesc);
  assert (GFC_ARRAY_TYPE_P (type));
  dumdesc = GFC_DECL_SAVED_DESCRIPTOR (tmpdesc);
  dumdesc = gfc_build_indirect_ref (dumdesc);
  gfc_start_block (&block);

  if (sym->ts.type == BT_CHARACTER
      && !INTEGER_CST_P (sym->ts.cl->backend_decl))
    gfc_trans_init_string_length (sym->ts.cl, &block);

  checkparm = (sym->as->type == AS_EXPLICIT && flag_bounds_check);

  no_repack = !(GFC_DECL_PACKED_ARRAY (tmpdesc)
                || GFC_DECL_PARTIAL_PACKED_ARRAY (tmpdesc));

  if (GFC_DECL_PARTIAL_PACKED_ARRAY (tmpdesc))
    {
      /* For non-constant shape arrays we only check if the first dimension
         is contiguous.  Repacking higher dimensions wouldn't gain us
         anything as we still don't know the array stride.  */
      partial = gfc_create_var (boolean_type_node, "partial");
      TREE_USED (partial) = 1;
      tmp = gfc_conv_descriptor_stride (dumdesc, gfc_rank_cst[0]);
      tmp = fold (build (EQ_EXPR, boolean_type_node, tmp, integer_one_node));
      gfc_add_modify_expr (&block, partial, tmp);
    }
  else
    {
      partial = NULL_TREE;
    }

  /* The naming of stmt_unpacked and stmt_packed may be counter-intuitive
     here, however I think it does the right thing.  */
  if (no_repack)
    {
      /* Set the first stride.  */
      stride = gfc_conv_descriptor_stride (dumdesc, gfc_rank_cst[0]);
      stride = gfc_evaluate_now (stride, &block);

      tmp = build (EQ_EXPR, boolean_type_node, stride, integer_zero_node);
      tmp = build (COND_EXPR, gfc_array_index_type, tmp,
                   integer_one_node, stride);
      stride = GFC_TYPE_ARRAY_STRIDE (type, 0);
      gfc_add_modify_expr (&block, stride, tmp);

      /* Allow the user to disable array repacking.  */
      stmt_unpacked = NULL_TREE;
    }
  else
    {
      assert (integer_onep (GFC_TYPE_ARRAY_STRIDE (type, 0)));
      /* A library call to repack the array if neccessary.  */
      tmp = GFC_DECL_SAVED_DESCRIPTOR (tmpdesc);
      tmp = gfc_chainon_list (NULL_TREE, tmp);
      stmt_unpacked = gfc_build_function_call (gfor_fndecl_in_pack, tmp);

      stride = integer_one_node;
    }

  /* This is for the case where the array data is used directly without
     calling the repack function.  */
  if (no_repack || partial != NULL_TREE)
    stmt_packed = gfc_conv_descriptor_data (dumdesc);
  else
    stmt_packed = NULL_TREE;

  /* Assign the data pointer.  */
  if (stmt_packed != NULL_TREE && stmt_unpacked != NULL_TREE)
    {
      /* Don't repack unknown shape arrays when the first stride is 1.  */
      tmp = build (COND_EXPR, TREE_TYPE (stmt_packed), partial,
                   stmt_packed, stmt_unpacked);
    }
  else
    tmp = stmt_packed != NULL_TREE ? stmt_packed : stmt_unpacked;
  gfc_add_modify_expr (&block, tmpdesc, tmp);

  offset = integer_zero_node;
  size = integer_one_node;

  /* Evaluate the bounds of the array.  */
  for (n = 0; n < sym->as->rank; n++)
    {
      if (checkparm || !sym->as->upper[n])
	{
	  /* Get the bounds of the actual parameter.  */
	  dubound = gfc_conv_descriptor_ubound (dumdesc, gfc_rank_cst[n]);
	  dlbound = gfc_conv_descriptor_lbound (dumdesc, gfc_rank_cst[n]);
	}
      else
        {
	  dubound = NULL_TREE;
	  dlbound = NULL_TREE;
        }

      lbound = GFC_TYPE_ARRAY_LBOUND (type, n);
      if (!INTEGER_CST_P (lbound))
        {
          gfc_init_se (&se, NULL);
          gfc_conv_expr_type (&se, sym->as->upper[n],
                              gfc_array_index_type);
          gfc_add_block_to_block (&block, &se.pre);
          gfc_add_modify_expr (&block, lbound, se.expr);
        }

      ubound = GFC_TYPE_ARRAY_UBOUND (type, n);
      /* Set the desired upper bound.  */
      if (sym->as->upper[n])
	{
	  /* We know what we want the upper bound to be.  */
          if (!INTEGER_CST_P (ubound))
            {
	      gfc_init_se (&se, NULL);
	      gfc_conv_expr_type (&se, sym->as->upper[n],
                                  gfc_array_index_type);
	      gfc_add_block_to_block (&block, &se.pre);
              gfc_add_modify_expr (&block, ubound, se.expr);
            }

	  /* Check the sizes match.  */
	  if (checkparm)
	    {
	      /* Check (ubound(a) - lbound(a) == ubound(b) - lbound(b)).  */

	      tmp = fold (build (MINUS_EXPR, gfc_array_index_type, ubound,
				 lbound));
              stride = build (MINUS_EXPR, gfc_array_index_type, dubound,
                            dlbound);
              tmp = fold (build (NE_EXPR, gfc_array_index_type, tmp, stride));
	      gfc_trans_runtime_check (tmp, gfc_strconst_bounds, &block);
	    }
	}
      else
	{
	  /* For assumed shape arrays move the upper bound by the same amount
	     as the lower bound.  */
          tmp = build (MINUS_EXPR, gfc_array_index_type, dubound, dlbound);
          tmp = fold (build (PLUS_EXPR, gfc_array_index_type, tmp, lbound));
          gfc_add_modify_expr (&block, ubound, tmp);
	}
      /* The offset of this dimension.  offset = offset - lbound * stride. */
      tmp = fold (build (MULT_EXPR, gfc_array_index_type, lbound, stride));
      offset = fold (build (MINUS_EXPR, gfc_array_index_type, offset, tmp));

      /* The size of this dimension, and the stride of the next.  */
      if (n + 1 < sym->as->rank)
        {
          stride = GFC_TYPE_ARRAY_STRIDE (type, n + 1);

          if (no_repack || partial != NULL_TREE)
            {
              stmt_unpacked =
                gfc_conv_descriptor_stride (dumdesc, gfc_rank_cst[n+1]);
            }

          /* Figure out the stride if not a known constant.  */
          if (!INTEGER_CST_P (stride))
            {
              if (no_repack)
                stmt_packed = NULL_TREE;
              else
                {
                  /* Calculate stride = size * (ubound + 1 - lbound).  */
                  tmp = fold (build (MINUS_EXPR, gfc_array_index_type,
                                     integer_one_node, lbound));
                  tmp = fold (build (PLUS_EXPR, gfc_array_index_type,
                                     ubound, tmp));
                  size = fold (build (MULT_EXPR, gfc_array_index_type,
                                      size, tmp));
                  stmt_packed = size;
                }

              /* Assign the stride.  */
              if (stmt_packed != NULL_TREE && stmt_unpacked != NULL_TREE)
                {
                  tmp = build (COND_EXPR, gfc_array_index_type, partial,
                               stmt_unpacked, stmt_packed);
                }
              else
                tmp = (stmt_packed != NULL_TREE) ? stmt_packed : stmt_unpacked;
              gfc_add_modify_expr (&block, stride, tmp);
            }
        }
    }

  /* Set the offset.  */
  if (TREE_CODE (GFC_TYPE_ARRAY_OFFSET (type)) == VAR_DECL)
    gfc_add_modify_expr (&block, GFC_TYPE_ARRAY_OFFSET (type), offset);

  stmt = gfc_finish_block (&block);

  gfc_start_block (&block);

  /* Only do the entry/initialization code if the arg is present.  */
  dumdesc = GFC_DECL_SAVED_DESCRIPTOR (tmpdesc);
  if (sym->attr.optional)
    {
      tmp = gfc_conv_expr_present (sym);
      stmt = build_v (COND_EXPR, tmp, stmt, build_empty_stmt ());
    }
  gfc_add_expr_to_block (&block, stmt);

  /* Add the main function body.  */
  gfc_add_expr_to_block (&block, body);

  /* Cleanup code.  */
  if (!no_repack)
    {
      gfc_start_block (&cleanup);
      
      if (sym->attr.intent != INTENT_IN)
	{
	  /* Copy the data back.  */
	  tmp = gfc_chainon_list (NULL_TREE, dumdesc);
	  tmp = gfc_chainon_list (tmp, tmpdesc);
	  tmp = gfc_build_function_call (gfor_fndecl_in_unpack, tmp);
	  gfc_add_expr_to_block (&cleanup, tmp);
	}

      /* Free the temporary.  */
      tmp = gfc_chainon_list (NULL_TREE, tmpdesc);
      tmp = gfc_build_function_call (gfor_fndecl_internal_free, tmp);
      gfc_add_expr_to_block (&cleanup, tmp);

      stmt = gfc_finish_block (&cleanup);
	
      /* Only do the cleanup if the array was repacked.  */
      tmp = gfc_build_indirect_ref (dumdesc);
      tmp = gfc_conv_descriptor_data (tmp);
      tmp = build (NE_EXPR, boolean_type_node, tmp, tmpdesc);
      stmt = build_v (COND_EXPR, tmp, stmt, build_empty_stmt ());

      if (sym->attr.optional)
        {
          tmp = gfc_conv_expr_present (sym);
          stmt = build_v (COND_EXPR, tmp, stmt, build_empty_stmt ());
        }
      gfc_add_expr_to_block (&block, stmt);
    }
  /* We don't need to free any memory allocated by internal_pack as it will
     be freed at the end of the function by pop_context.  */
  return gfc_finish_block (&block);
}


/* Convert an array for passing as an actual parameter.  Expressions
   and vector subscripts are evaluated and stored in a teporary, which is then
   passed.  For whole arrays the descriptor is passed.  For array sections
   a modified copy of the descriptor is passed, but using the original data.
   Also used for array pointer assignments by setting se->direct_byref.  */

void
gfc_conv_expr_descriptor (gfc_se * se, gfc_expr * expr, gfc_ss * ss)
{
  gfc_loopinfo loop;
  gfc_ss *secss;
  gfc_ss_info *info;
  int need_tmp;
  int n;
  tree tmp;
  tree desc;
  stmtblock_t block;
  tree start;
  tree offset;
  int full;

  assert (ss != gfc_ss_terminator);

  /* TODO: Pass constant array constructors without a temporary.  */
  /* If we have a linear array section, we can pass it directly.  Otherwise
     we need to copy it into a temporary.  */
  if (expr->expr_type == EXPR_VARIABLE)
    {
      gfc_ss *vss;

      /* Find the SS for the array section.  */
      secss = ss;
      while (secss != gfc_ss_terminator && secss->type != GFC_SS_SECTION)
	secss = secss->next;

      assert (secss != gfc_ss_terminator);

      need_tmp = 0;
      for (n = 0; n < secss->data.info.dimen; n++)
	{
	  vss = secss->data.info.subscript[secss->data.info.dim[n]];
	  if (vss && vss->type == GFC_SS_VECTOR)
	    need_tmp = 1;
	}

      info = &secss->data.info;

      /* Get the descriptor for the array.  */
      gfc_conv_ss_descriptor (&se->pre, secss, 0);
      desc = info->descriptor;
      if (GFC_ARRAY_TYPE_P (TREE_TYPE (desc)))
	{
	  /* Create a new descriptor if the array doesn't have one.  */
	  full = 0;
	}
      else if (info->ref->u.ar.type == AR_FULL)
	full = 1;
      else if (se->direct_byref)
	full = 0;
      else
	{
	  assert (info->ref->u.ar.type == AR_SECTION);

	  full = 1;
	  for (n = 0; n < info->ref->u.ar.dimen; n++)
	    {
	      /* Detect passing the full array as a section.  This could do
	         even more checking, but it doesn't seem worth it.  */
	      if (info->ref->u.ar.start[n]
		  || info->ref->u.ar.end[n]
		  || (info->ref->u.ar.stride[n]
		      && !gfc_expr_is_one (info->ref->u.ar.stride[n], 0)))
		{
		  full = 0;
		  break;
		}
	    }
	}
      if (full)
	{
	  if (se->direct_byref)
	    {
	      /* Copy the descriptor for pointer assignments.  */
	      gfc_add_modify_expr (&se->pre, se->expr, desc);
	    }
	  else if (se->want_pointer)
	    {
	      /* We pass full arrays directly.  This means that pointers and
	         allocatable arrays should also work.  */
	      se->expr = gfc_build_addr_expr (NULL, desc);
	    }
	  else
	    {
	      se->expr = desc;
	    }
	  return;
	}
    }
  else
    {
      need_tmp = 1;
      secss = NULL;
      info = NULL;
    }

  gfc_init_loopinfo (&loop);

  /* Associate the SS with the loop.  */
  gfc_add_ss_to_loop (&loop, ss);

  /* Tell the scalarizer not to bother creating loop varliables, etc.  */
  if (!need_tmp)
    loop.array_parameter = 1;
  else
    assert (se->want_pointer && !se->direct_byref);

  /* Setup the scalarizing loops and bounds.  */
  gfc_conv_ss_startstride (&loop);

  if (need_tmp)
    {
      /* Tell the scalarizer to make a temporary.  */
      loop.temp_ss = gfc_get_ss ();
      loop.temp_ss->type = GFC_SS_TEMP;
      loop.temp_ss->next = gfc_ss_terminator;
      loop.temp_ss->data.temp.type = gfc_typenode_for_spec (&expr->ts);
      loop.temp_ss->data.temp.string_length = NULL;
      loop.temp_ss->data.temp.dimen = loop.dimen;
      gfc_add_ss_to_loop (&loop, loop.temp_ss);
    }

  gfc_conv_loop_setup (&loop);

  if (need_tmp)
    {
      /* Copy into a temporary and pass that.  We don't need to copy the data
         back because expressions and vector subscripts must be INTENT_IN.  */
      /* TODO: Optimize passing function return values.  */
      gfc_se lse;
      gfc_se rse;

      /* Start the copying loops.  */
      gfc_mark_ss_chain_used (loop.temp_ss, 1);
      gfc_mark_ss_chain_used (ss, 1);
      gfc_start_scalarized_body (&loop, &block);

      /* Copy each data element.  */
      gfc_init_se (&lse, NULL);
      gfc_copy_loopinfo_to_se (&lse, &loop);
      gfc_init_se (&rse, NULL);
      gfc_copy_loopinfo_to_se (&rse, &loop);

      lse.ss = loop.temp_ss;
      rse.ss = ss;

      gfc_conv_scalarized_array_ref (&lse, NULL);
      gfc_conv_expr_val (&rse, expr);

      gfc_add_block_to_block (&block, &rse.pre);
      gfc_add_block_to_block (&block, &lse.pre);

      gfc_add_modify_expr (&block, lse.expr, rse.expr);

      /* Finish the copying loops.  */
      gfc_trans_scalarizing_loops (&loop, &block);

      /* Set the first stride component to zero to indicate a temporary.  */
      desc = loop.temp_ss->data.info.descriptor;
      tmp = gfc_conv_descriptor_stride (desc, gfc_rank_cst[0]);
      gfc_add_modify_expr (&loop.pre, tmp, integer_zero_node);

      assert (is_gimple_lvalue (desc));
      se->expr = gfc_build_addr_expr (NULL, desc);
    }
  else
    {
      /* We pass sections without copying to a temporary.  A function may
         decide to repack the array to speed up access, but we're not
         bothered about that here.  */
      int dim;
      tree parm;
      tree parmtype;
      tree stride;
      tree from;
      tree to;
      tree base;

      /* Otherwise make a new descriptor and point it at the section we
         want.  The loop variable limits will be the limits of the section.
       */
      desc = info->descriptor;
      assert (secss && secss != gfc_ss_terminator);
      if (se->direct_byref)
	{
	  /* For pointer assignments we fill in the destination.  */
	  parm = se->expr;
	  parmtype = TREE_TYPE (parm);
	}
      else
	{
	  /* Otherwise make a new one.  */
	  parmtype = gfc_get_element_type (TREE_TYPE (desc));
	  parmtype = gfc_get_array_type_bounds (parmtype, loop.dimen,
						loop.from, loop.to, 0);
	  parm = gfc_create_var (parmtype, "parm");
	}

      offset = integer_zero_node;
      dim = 0;

      /* The following can be somewhat confusing.  We have two
         descriptors, a new one and the original array.
         {parm, parmtype, dim} refer to the new one.
         {desc, type, n, secss, loop} refer to the original, which maybe
         a descriptorless array.
         The bounds of the scaralization are the bounds of the section.
         We don't have to worry about numeric overflows when calculating
         the offsets because all elements are within the array data.  */

      /* Set the dtype.  */
      tmp = gfc_conv_descriptor_dtype (parm);
      gfc_add_modify_expr (&loop.pre, tmp, GFC_TYPE_ARRAY_DTYPE (parmtype));

      if (se->direct_byref)
	base = integer_zero_node;
      else
	base = NULL_TREE;

      for (n = 0; n < info->ref->u.ar.dimen; n++)
	{
	  stride = gfc_conv_array_stride (desc, n);

	  /* Work out the offset.  */
	  if (info->ref->u.ar.dimen_type[n] == DIMEN_ELEMENT)
	    {
	      assert (info->subscript[n]
		      && info->subscript[n]->type == GFC_SS_SCALAR);
	      start = info->subscript[n]->data.scalar.expr;
	    }
	  else
	    {
	      /* Check we haven't somehow got out of sync.  */
	      assert (info->dim[dim] == n);

	      /* Evaluate and remember the start of the section.  */
	      start = info->start[dim];
	      stride = gfc_evaluate_now (stride, &loop.pre);
	    }

	  tmp = gfc_conv_array_lbound (desc, n);
	  tmp = fold (build (MINUS_EXPR, TREE_TYPE (tmp), start, tmp));

	  tmp = fold (build (MULT_EXPR, TREE_TYPE (tmp), tmp, stride));
	  offset = fold (build (PLUS_EXPR, TREE_TYPE (tmp), offset, tmp));

	  if (info->ref->u.ar.dimen_type[n] == DIMEN_ELEMENT)
	    {
	      /* For elemental dimensions, we only need the offset.  */
	      continue;
	    }

	  /* Vector subscripts need copying and are handled elsewhere.  */
	  assert (info->ref->u.ar.dimen_type[n] == DIMEN_RANGE);

	  /* Set the new lower bound.  */
	  from = loop.from[dim];
	  to = loop.to[dim];
          if (!integer_onep (from))
	    {
	      /* Make sure the new section starts at 1.  */
	      tmp = fold (build (MINUS_EXPR, TREE_TYPE (from),
				 integer_one_node, from));
	      to = fold (build (PLUS_EXPR, TREE_TYPE (to), to, tmp));
	      from = integer_one_node;
	    }
	  tmp = gfc_conv_descriptor_lbound (parm, gfc_rank_cst[dim]);
	  gfc_add_modify_expr (&loop.pre, tmp, from);

	  /* Set the new upper bound.  */
	  tmp = gfc_conv_descriptor_ubound (parm, gfc_rank_cst[dim]);
	  gfc_add_modify_expr (&loop.pre, tmp, to);

	  /* Multiply the stride by the section stride to get the
	     total stride.  */
	  stride = fold (build (MULT_EXPR, gfc_array_index_type, stride,
				info->stride[dim]));

	  if (se->direct_byref)
	    {
	      base = fold (build (MINUS_EXPR, TREE_TYPE (base),
				  base, stride));
	    }

	  /* Store the new stride.  */
	  tmp = gfc_conv_descriptor_stride (parm, gfc_rank_cst[dim]);
	  gfc_add_modify_expr (&loop.pre, tmp, stride);

	  dim++;
	}

      /* Point the data pointer at the first element in the section.  */
      tmp = gfc_conv_array_data (desc);
      tmp = gfc_build_indirect_ref (tmp);
      tmp = gfc_build_array_ref (tmp, offset);
      offset = gfc_build_addr_expr (gfc_array_dataptr_type (desc), tmp);

      tmp = gfc_conv_descriptor_data (parm);
      gfc_add_modify_expr (&loop.pre, tmp, offset);

      if (se->direct_byref)
	{
	  /* Set the offset.  */
	  tmp = gfc_conv_descriptor_offset (parm);
	  gfc_add_modify_expr (&loop.pre, tmp, base);
	}
      else
	{
	  /* Only the callee knows what the correct offset it, so just set
	     it to zero here.  */
	  tmp = gfc_conv_descriptor_offset (parm);
	  gfc_add_modify_expr (&loop.pre, tmp, gfc_index_zero_node);
	}

      if (!se->direct_byref)
	{
	  /* Get a pointer to the new descriptor.  */
          if (se->want_pointer)
	    se->expr = gfc_build_addr_expr (NULL, parm);
          else
            se->expr = parm;
	}
    }

  gfc_add_block_to_block (&se->pre, &loop.pre);
  gfc_add_block_to_block (&se->post, &loop.post);

  /* Cleanup the scalarizer.  */
  gfc_cleanup_loop (&loop);
}


/* Convert an array for passing as an actual parameter.  */
/* TODO: Optimize passing g77 arrays.  */

void
gfc_conv_array_parameter (gfc_se * se, gfc_expr * expr, gfc_ss * ss, int g77)
{
  tree ptr;
  tree desc;
  tree tmp;
  tree stmt;
  gfc_symbol *sym;
  stmtblock_t block;

  /* Passing address of the array if it is not pointer or assumed-shape.  */
  if (expr->expr_type == EXPR_VARIABLE
       && expr->ref->u.ar.type == AR_FULL && g77)
    {
      sym = expr->symtree->n.sym;
      tmp = gfc_get_symbol_decl (sym);
      if (!sym->attr.pointer && sym->as->type != AS_ASSUMED_SHAPE 
          && !sym->attr.allocatable)
        {
          if (!sym->attr.dummy)
	    se->expr = gfc_build_addr_expr (NULL, tmp);
          else
            se->expr = tmp;  
	  return;
        }
      if (sym->attr.allocatable)
        {
          se->expr = gfc_conv_array_data (tmp);
          return;
        }
    }

  se->want_pointer = 1;
  gfc_conv_expr_descriptor (se, expr, ss);

  if (g77)
    {
      desc = se->expr;
      /* Repack the array.  */
      tmp = gfc_chainon_list (NULL_TREE, desc);
      ptr = gfc_build_function_call (gfor_fndecl_in_pack, tmp);
      ptr = gfc_evaluate_now (ptr, &se->pre);
      se->expr = ptr;

      gfc_start_block (&block);

      /* Copy the data back.  */
      tmp = gfc_chainon_list (NULL_TREE, desc);
      tmp = gfc_chainon_list (tmp, ptr);
      tmp = gfc_build_function_call (gfor_fndecl_in_unpack, tmp);
      gfc_add_expr_to_block (&block, tmp);

      /* Free the temporary.  */
      tmp = convert (pvoid_type_node, ptr);
      tmp = gfc_chainon_list (NULL_TREE, tmp);
      tmp = gfc_build_function_call (gfor_fndecl_internal_free, tmp);
      gfc_add_expr_to_block (&block, tmp);

      stmt = gfc_finish_block (&block);

      gfc_init_block (&block);
      /* Only if it was repacked.  This code needs to be executed before the
         loop cleanup code.  */
      tmp = gfc_build_indirect_ref (desc);
      tmp = gfc_conv_array_data (tmp);
      tmp = build (NE_EXPR, boolean_type_node, ptr, tmp);
      tmp = build_v (COND_EXPR, tmp, stmt, build_empty_stmt ());

      gfc_add_expr_to_block (&block, tmp);
      gfc_add_block_to_block (&block, &se->post);

      gfc_init_block (&se->post);
      gfc_add_block_to_block (&se->post, &block);
    }
}


/* NULLIFY an allocated/pointer array on function entry, free it on exit.  */

tree
gfc_trans_deferred_array (gfc_symbol * sym, tree body)
{
  tree type;
  tree tmp;
  tree descriptor;
  tree deallocate;
  stmtblock_t block;
  stmtblock_t fnblock;
  locus loc;

  /* Make sure the frontend gets these right.  */
  if (!(sym->attr.pointer || sym->attr.allocatable))
    fatal_error
      ("Possible frontend bug: Deferred array size without pointer or allocatable attribute.");

  gfc_init_block (&fnblock);

  assert (TREE_CODE (sym->backend_decl) == VAR_DECL);
  if (sym->ts.type == BT_CHARACTER
      && !INTEGER_CST_P (sym->ts.cl->backend_decl))
    gfc_trans_init_string_length (sym->ts.cl, &fnblock);

  /* Parameter variables don't need anything special.  */
  if (sym->attr.dummy)
    {
      gfc_add_expr_to_block (&fnblock, body);

      return gfc_finish_block (&fnblock);
    }

  gfc_get_backend_locus (&loc);
  gfc_set_backend_locus (&sym->declared_at);
  descriptor = sym->backend_decl;

  if (TREE_STATIC (descriptor))
    {
      /* SAVEd variables are not freed on exit.  */
      gfc_trans_static_array_pointer (sym);
      return body;
    }

  /* Get the descriptor type.  */
  type = TREE_TYPE (sym->backend_decl);
  assert (GFC_DESCRIPTOR_TYPE_P (type));

  /* NULLIFY the data pointer.  */
  tmp = gfc_conv_descriptor_data (descriptor);
  gfc_add_modify_expr (&fnblock, tmp, integer_zero_node);

  gfc_add_expr_to_block (&fnblock, body);

  gfc_set_backend_locus (&loc);
  /* Allocatable arrays need to be freed when they go out of scope.  */
  if (sym->attr.allocatable)
    {
      gfc_start_block (&block);

      /* Deallocate if still allocated at the end of the procedure.  */
      deallocate = gfc_array_deallocate (descriptor);

      tmp = gfc_conv_descriptor_data (descriptor);
      tmp = build (NE_EXPR, boolean_type_node, tmp, integer_zero_node);
      tmp = build_v (COND_EXPR, tmp, deallocate, build_empty_stmt ());
      gfc_add_expr_to_block (&block, tmp);

      tmp = gfc_finish_block (&block);
      gfc_add_expr_to_block (&fnblock, tmp);
    }

  return gfc_finish_block (&fnblock);
}

/************ Expression Walking Functions ******************/

/* Walk a variable reference.

   Possible extension - multiple component subscripts.
    x(:,:) = foo%a(:)%b(:)
   Transforms to
    forall (i=..., j=...)
      x(i,j) = foo%a(j)%b(i)
    end forall
   This adds a fair amout of complexity because you need to deal with more
   than one ref.  Maybe handle in a similar manner to vector subscripts.
   Maybe not worth the effort.  */


static gfc_ss *
gfc_walk_variable_expr (gfc_ss * ss, gfc_expr * expr)
{
  gfc_ref *ref;
  gfc_array_ref *ar;
  gfc_ss *newss;
  gfc_ss *head;
  int n;

  for (ref = expr->ref; ref; ref = ref->next)
    {
      /* We're only interested in array sections.  */
      if (ref->type != REF_ARRAY)
	continue;

      ar = &ref->u.ar;
      switch (ar->type)
	{
	case AR_ELEMENT:
          /* TODO: Take elemental array references out of scalarization
             loop.  */
	  break;

	case AR_FULL:
	  newss = gfc_get_ss ();
	  newss->type = GFC_SS_SECTION;
	  newss->expr = expr;
	  newss->next = ss;
	  newss->data.info.dimen = ar->as->rank;
	  newss->data.info.ref = ref;

	  /* Make sure array is the same as array(:,:), this way
	     we don't need to special case all the time.  */
	  ar->dimen = ar->as->rank;
	  for (n = 0; n < ar->dimen; n++)
	    {
	      newss->data.info.dim[n] = n;
	      ar->dimen_type[n] = DIMEN_RANGE;

	      assert (ar->start[n] == NULL);
	      assert (ar->end[n] == NULL);
	      assert (ar->stride[n] == NULL);
	    }
	  return newss;

	case AR_SECTION:
	  newss = gfc_get_ss ();
	  newss->type = GFC_SS_SECTION;
	  newss->expr = expr;
	  newss->next = ss;
	  newss->data.info.dimen = 0;
	  newss->data.info.ref = ref;

	  head = newss;

          /* We add SS chains for all the subscripts in the section.  */
	  for (n = 0; n < ar->dimen; n++)
	    {
	      gfc_ss *indexss;

	      switch (ar->dimen_type[n])
		{
		case DIMEN_ELEMENT:
		  /* Add SS for elemental (scalar) subscripts.  */
		  assert (ar->start[n]);
		  indexss = gfc_get_ss ();
		  indexss->type = GFC_SS_SCALAR;
		  indexss->expr = ar->start[n];
		  indexss->next = gfc_ss_terminator;
		  indexss->loop_chain = gfc_ss_terminator;
		  newss->data.info.subscript[n] = indexss;
		  break;

		case DIMEN_RANGE:
                  /* We don't add anything for sections, just remember this
                     dimension for later.  */
		  newss->data.info.dim[newss->data.info.dimen] = n;
		  newss->data.info.dimen++;
		  break;

		case DIMEN_VECTOR:
		  /* Get a SS for the vector.  This will not be added to the
		     chain directly.  */
		  indexss = gfc_walk_expr (ar->start[n]);
		  if (indexss == gfc_ss_terminator)
		    internal_error ("scalar vector subscript???");

                  /* We currently only handle really simple vector
                     subscripts.  */
		  if (indexss->next != gfc_ss_terminator)
		    gfc_todo_error ("vector subscript expressions");
		  indexss->loop_chain = gfc_ss_terminator;

		  /* Mark this as a vector subscript.  We don't add this
                     directly into the chain, but as a subscript of the
                     existing SS for this term.  */
		  indexss->type = GFC_SS_VECTOR;
		  newss->data.info.subscript[n] = indexss;
                  /* Also remember this dimension.  */
		  newss->data.info.dim[newss->data.info.dimen] = n;
		  newss->data.info.dimen++;
		  break;

		default:
		  /* We should know what sort of section it is by now.  */
		  abort ();
		}
	    }
	  /* We should have at least one non-elemental dimension.  */
	  assert (newss->data.info.dimen > 0);
	  return head;
	  break;

	default:
	  /* We should know what sort of section it is by now.  */
	  abort ();
	}

    }
  return ss;
}


/* Walk an expression operator. If only one operand of a binary expression is
   scalar, we must also add the scalar term to the SS chain.  */

static gfc_ss *
gfc_walk_op_expr (gfc_ss * ss, gfc_expr * expr)
{
  gfc_ss *head;
  gfc_ss *head2;
  gfc_ss *newss;

  head = gfc_walk_subexpr (ss, expr->op1);
  if (expr->op2 == NULL)
    head2 = head;
  else
    head2 = gfc_walk_subexpr (head, expr->op2);

  /* All operands are scalar.  Pass back and let the caller deal with it.  */
  if (head2 == ss)
    return head2;

  /* All operands require scalarization. */
  if (head != ss && (expr->op2 == NULL || head2 != head))
    return head2;

  /* One of the operands needs scalarization, the other is scalar.
     Create a gfc_ss for the scalar expression.  */
  newss = gfc_get_ss ();
  newss->type = GFC_SS_SCALAR;
  if (head == ss)
    {
      /* First operand is scalar.  We build the chain in reverse order, so
         add the scarar SS after the second operand.  */
      head = head2;
      while (head && head->next != ss)
	head = head->next;
      /* Check we haven't somehow broken the chain.  */
      assert (head);
      newss->next = ss;
      head->next = newss;
      newss->expr = expr->op1;
    }
  else				/* head2 == head */
    {
      assert (head2 == head);
      /* Second operand is scalar.  */
      newss->next = head2;
      head2 = newss;
      newss->expr = expr->op2;
    }

  return head2;
}


/* Reverse a SS chain.  */

static gfc_ss *
gfc_reverse_ss (gfc_ss * ss)
{
  gfc_ss *next;
  gfc_ss *head;

  assert (ss != NULL);

  head = gfc_ss_terminator;
  while (ss != gfc_ss_terminator)
    {
      next = ss->next;
      assert (next != NULL);	/* Check we didn't somehow break the chain.  */
      ss->next = head;
      head = ss;
      ss = next;
    }

  return (head);
}


/* Walk the arguments of an elemental function.  */

gfc_ss *
gfc_walk_elemental_function_args (gfc_ss * ss, gfc_expr * expr,
				  gfc_ss_type type)
{
  gfc_actual_arglist *arg;
  int scalar;
  gfc_ss *head;
  gfc_ss *tail;
  gfc_ss *newss;

  head = gfc_ss_terminator;
  tail = NULL;
  scalar = 1;
  for (arg = expr->value.function.actual; arg; arg = arg->next)
    {
      if (!arg->expr)
	continue;

      newss = gfc_walk_subexpr (head, arg->expr);
      if (newss == head)
	{
	  /* Scalar argumet.  */
	  newss = gfc_get_ss ();
	  newss->type = type;
	  newss->expr = arg->expr;
	  newss->next = head;
	}
      else
	scalar = 0;

      head = newss;
      if (!tail)
        {
          tail = head;
          while (tail->next != gfc_ss_terminator)
            tail = tail->next;
        }
    }

  if (scalar)
    {
      /* If all the arguments are scalar we don't need the argument SS.  */
      gfc_free_ss_chain (head);
      /* Pass it back.  */
      return ss;
    }

  /* Add it onto the existing chain.  */
  tail->next = ss;
  return head;
}


/* Walk a function call.  Scalar functions are passed back, and taken out of
   scalarization loops.  For elemental functions we walk their arguments.
   The result of functions returning arrays is stored in a temporary outside
   the loop, so that the function is only called once.  Hence we do not need
   to walk their arguments.  */

static gfc_ss *
gfc_walk_function_expr (gfc_ss * ss, gfc_expr * expr)
{
  gfc_ss *newss;
  gfc_intrinsic_sym *isym;
  gfc_symbol *sym;

  isym = expr->value.function.isym;

  /* Handle intrinsic functions seperately.  */
  if (isym)
    return gfc_walk_intrinsic_function (ss, expr, isym);

  sym = expr->value.function.esym;
  if (!sym)
      sym = expr->symtree->n.sym;

  /* A function that returns arrays.  */
  if (gfc_return_by_reference (sym) && sym->result->attr.dimension)
    {
      newss = gfc_get_ss ();
      newss->type = GFC_SS_FUNCTION;
      newss->expr = expr;
      newss->next = ss;
      newss->data.info.dimen = expr->rank;
      return newss;
    }

  /* Walk the parameters of an elemental function.  For now we always pass
     by reference.  */
  if (sym->attr.elemental)
    return gfc_walk_elemental_function_args (ss, expr, GFC_SS_REFERENCE);

  /* Scalar functions are OK as these are evaluated outside the scalarisation
     loop.  Pass back and let the caller deal with it.  */
  return ss;
}


/* An array temporary is constructed for array constructors.  */

static gfc_ss *
gfc_walk_array_constructor (gfc_ss * ss, gfc_expr * expr)
{
  gfc_ss *newss;
  int n;

  newss = gfc_get_ss ();
  newss->type = GFC_SS_CONSTRUCTOR;
  newss->expr = expr;
  newss->next = ss;
  newss->data.info.dimen = expr->rank;
  for (n = 0; n < expr->rank; n++)
    newss->data.info.dim[n] = n;

  return newss;
}


/* Walk an expresson.  Add walked expressions to the head of the SS chain.
   A wholy scalar expression will not be added.  */

static gfc_ss *
gfc_walk_subexpr (gfc_ss * ss, gfc_expr * expr)
{
  gfc_ss *head;

  switch (expr->expr_type)
    {
    case EXPR_VARIABLE:
      head = gfc_walk_variable_expr (ss, expr);
      return head;

    case EXPR_OP:
      head = gfc_walk_op_expr (ss, expr);
      return head;

    case EXPR_FUNCTION:
      head = gfc_walk_function_expr (ss, expr);
      return head;

    case EXPR_CONSTANT:
    case EXPR_NULL:
    case EXPR_STRUCTURE:
      /* Pass back and let the caller deal with it.  */
      break;

    case EXPR_ARRAY:
      head = gfc_walk_array_constructor (ss, expr);
      return head;

    case EXPR_SUBSTRING:
      /* Pass back and let the caller deal with it.  */
      break;

    default:
      internal_error ("bad expression type during walk (%d)",
		      expr->expr_type);
    }
  return ss;
}


/* Entry point for expression walking.
   A return value equal to the passed chain means this is
   a scalar expression.  It is up to the caller to take whatever action is
   neccessary to translate these.  */

gfc_ss *
gfc_walk_expr (gfc_expr * expr)
{
  gfc_ss *res;

  res = gfc_walk_subexpr (gfc_ss_terminator, expr);
  return gfc_reverse_ss (res);
}