1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
7288
7289
7290
7291
7292
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
7347
7348
7349
7350
7351
7352
7353
7354
7355
7356
7357
7358
7359
7360
7361
7362
7363
7364
7365
7366
7367
7368
7369
7370
7371
7372
7373
7374
7375
7376
7377
7378
7379
7380
7381
7382
7383
7384
7385
7386
7387
7388
7389
7390
7391
7392
7393
7394
7395
7396
7397
7398
7399
7400
7401
7402
7403
7404
7405
7406
7407
7408
7409
7410
7411
7412
7413
7414
7415
7416
7417
7418
7419
7420
7421
7422
7423
7424
7425
7426
7427
7428
7429
7430
7431
7432
7433
7434
7435
7436
7437
7438
7439
7440
7441
7442
7443
7444
7445
7446
7447
7448
7449
7450
7451
7452
7453
7454
7455
7456
7457
7458
7459
7460
7461
7462
7463
7464
7465
7466
7467
7468
7469
7470
7471
7472
7473
7474
7475
7476
7477
7478
7479
7480
7481
7482
7483
7484
7485
7486
7487
7488
7489
7490
7491
7492
7493
7494
7495
7496
7497
7498
7499
7500
7501
7502
7503
7504
7505
7506
7507
7508
7509
7510
7511
7512
7513
7514
7515
7516
7517
7518
7519
7520
7521
7522
7523
7524
7525
7526
7527
7528
7529
7530
7531
7532
7533
7534
7535
7536
7537
7538
7539
7540
7541
7542
7543
7544
7545
7546
7547
7548
7549
7550
7551
7552
7553
7554
7555
7556
7557
7558
7559
7560
7561
7562
7563
7564
7565
7566
7567
7568
7569
7570
7571
7572
7573
7574
7575
7576
7577
7578
7579
7580
7581
7582
7583
7584
7585
7586
7587
7588
7589
7590
7591
7592
7593
7594
7595
7596
7597
7598
7599
7600
7601
7602
7603
7604
7605
7606
7607
7608
7609
7610
7611
7612
7613
7614
7615
7616
7617
7618
7619
7620
7621
7622
7623
7624
7625
7626
7627
7628
7629
7630
7631
7632
7633
7634
7635
7636
7637
7638
7639
7640
7641
7642
7643
7644
7645
7646
7647
7648
7649
7650
7651
7652
7653
7654
7655
7656
7657
7658
7659
7660
7661
7662
7663
7664
7665
7666
7667
7668
7669
7670
7671
7672
7673
7674
7675
7676
7677
7678
7679
7680
7681
7682
7683
7684
7685
7686
7687
7688
7689
7690
7691
7692
7693
7694
7695
7696
7697
7698
7699
7700
7701
7702
7703
7704
7705
7706
7707
7708
7709
7710
7711
7712
7713
7714
7715
7716
7717
7718
7719
7720
7721
7722
7723
7724
7725
7726
7727
7728
7729
7730
7731
7732
7733
7734
7735
7736
7737
7738
7739
7740
7741
7742
7743
7744
7745
7746
7747
7748
7749
7750
7751
7752
7753
7754
7755
7756
7757
7758
7759
7760
7761
7762
7763
7764
7765
7766
7767
7768
7769
7770
7771
7772
7773
7774
7775
7776
7777
7778
7779
7780
7781
7782
7783
7784
7785
7786
7787
7788
7789
7790
7791
7792
7793
7794
7795
7796
7797
7798
7799
7800
7801
7802
7803
7804
7805
7806
7807
7808
7809
7810
7811
7812
7813
7814
7815
7816
7817
7818
7819
7820
7821
7822
7823
7824
7825
7826
7827
7828
7829
7830
7831
7832
7833
7834
7835
7836
7837
7838
7839
7840
7841
7842
7843
7844
7845
7846
7847
7848
7849
7850
7851
7852
7853
7854
7855
7856
7857
7858
7859
7860
7861
7862
7863
7864
7865
7866
7867
7868
7869
7870
7871
7872
7873
7874
7875
7876
7877
7878
7879
7880
7881
7882
7883
7884
7885
7886
7887
7888
7889
7890
7891
7892
7893
7894
7895
7896
7897
7898
7899
7900
7901
7902
7903
7904
7905
7906
7907
7908
7909
7910
7911
7912
7913
7914
7915
7916
7917
7918
7919
7920
7921
7922
7923
7924
7925
7926
7927
7928
7929
7930
7931
7932
7933
7934
7935
7936
7937
7938
7939
7940
7941
7942
7943
7944
7945
7946
7947
7948
7949
7950
7951
7952
7953
7954
7955
7956
7957
7958
7959
7960
7961
7962
7963
7964
7965
7966
7967
7968
7969
7970
7971
7972
7973
7974
7975
7976
7977
7978
7979
7980
7981
7982
7983
7984
7985
7986
7987
7988
7989
7990
7991
7992
7993
7994
7995
7996
7997
7998
7999
8000
8001
8002
8003
8004
8005
8006
8007
8008
8009
8010
8011
8012
8013
8014
8015
8016
8017
8018
8019
8020
8021
8022
8023
8024
8025
8026
8027
8028
8029
8030
8031
8032
8033
8034
8035
8036
8037
8038
8039
8040
8041
8042
8043
8044
8045
8046
8047
8048
8049
8050
8051
8052
8053
8054
8055
8056
8057
8058
8059
8060
8061
8062
8063
8064
8065
8066
8067
8068
8069
8070
8071
8072
8073
8074
8075
8076
8077
8078
8079
8080
8081
8082
8083
8084
8085
8086
8087
8088
8089
8090
8091
8092
8093
8094
8095
8096
8097
8098
8099
8100
8101
8102
8103
8104
8105
8106
8107
8108
8109
8110
8111
8112
8113
8114
8115
8116
8117
8118
8119
8120
8121
8122
8123
8124
8125
8126
8127
8128
8129
8130
8131
8132
8133
8134
8135
8136
8137
8138
8139
8140
8141
8142
8143
8144
8145
8146
8147
8148
8149
8150
8151
8152
8153
8154
8155
8156
8157
8158
8159
8160
8161
8162
8163
8164
8165
8166
8167
8168
8169
8170
8171
8172
8173
8174
8175
8176
8177
8178
8179
8180
8181
8182
8183
8184
8185
8186
8187
8188
8189
8190
8191
8192
8193
8194
8195
8196
8197
8198
8199
8200
8201
8202
8203
8204
8205
8206
8207
8208
8209
8210
8211
8212
8213
8214
8215
8216
8217
8218
8219
8220
8221
8222
8223
8224
8225
8226
8227
8228
8229
8230
8231
8232
8233
8234
8235
8236
8237
8238
8239
8240
8241
8242
8243
8244
8245
8246
8247
8248
8249
8250
8251
8252
8253
8254
8255
8256
8257
8258
8259
8260
8261
8262
8263
8264
8265
8266
8267
8268
8269
8270
8271
8272
8273
8274
8275
8276
8277
8278
8279
8280
8281
8282
8283
8284
8285
8286
8287
8288
8289
8290
8291
8292
8293
8294
8295
8296
8297
8298
8299
8300
8301
8302
8303
8304
8305
8306
8307
8308
8309
8310
8311
8312
8313
8314
8315
8316
8317
8318
8319
8320
8321
8322
8323
8324
8325
8326
8327
8328
8329
8330
8331
8332
8333
8334
8335
8336
8337
8338
8339
8340
8341
8342
8343
8344
8345
8346
8347
8348
8349
8350
8351
8352
8353
8354
8355
8356
8357
8358
8359
8360
8361
8362
8363
8364
8365
8366
8367
8368
8369
8370
8371
8372
8373
8374
8375
8376
8377
8378
8379
8380
8381
8382
8383
8384
8385
8386
8387
8388
8389
8390
8391
8392
8393
8394
8395
8396
8397
8398
8399
8400
8401
8402
8403
8404
8405
8406
8407
8408
8409
8410
8411
8412
8413
8414
8415
8416
8417
8418
8419
8420
8421
8422
8423
8424
8425
8426
8427
8428
8429
8430
8431
8432
8433
8434
8435
8436
8437
8438
8439
8440
8441
8442
8443
8444
8445
8446
8447
8448
8449
8450
8451
8452
8453
8454
8455
8456
8457
8458
8459
8460
8461
8462
8463
8464
8465
8466
8467
8468
8469
8470
8471
8472
8473
8474
8475
8476
8477
8478
8479
8480
8481
8482
8483
8484
8485
8486
8487
8488
8489
8490
8491
8492
8493
8494
8495
8496
8497
8498
8499
8500
8501
8502
8503
8504
8505
8506
8507
8508
8509
8510
8511
8512
8513
8514
8515
8516
8517
8518
8519
8520
8521
8522
8523
8524
8525
8526
8527
8528
8529
8530
8531
8532
8533
8534
8535
8536
8537
8538
8539
8540
8541
8542
8543
8544
8545
8546
8547
8548
8549
8550
8551
8552
8553
8554
8555
8556
8557
8558
8559
8560
8561
8562
8563
8564
8565
8566
8567
8568
8569
8570
8571
8572
8573
8574
8575
8576
8577
8578
8579
8580
8581
8582
8583
8584
8585
8586
8587
8588
8589
8590
8591
8592
8593
8594
8595
8596
8597
8598
8599
8600
8601
8602
8603
8604
8605
8606
8607
8608
8609
8610
8611
8612
8613
8614
8615
8616
8617
8618
8619
8620
8621
8622
8623
8624
8625
8626
8627
8628
8629
8630
8631
8632
8633
8634
8635
8636
8637
8638
8639
8640
8641
8642
8643
8644
8645
8646
8647
8648
8649
8650
8651
8652
8653
8654
8655
8656
8657
8658
8659
8660
8661
8662
8663
8664
8665
8666
8667
8668
8669
8670
8671
8672
8673
8674
8675
8676
8677
8678
8679
8680
8681
8682
8683
8684
8685
8686
8687
8688
8689
8690
8691
8692
8693
8694
8695
8696
8697
8698
8699
8700
8701
8702
8703
8704
8705
8706
8707
8708
8709
8710
8711
8712
8713
8714
8715
8716
8717
8718
8719
8720
8721
8722
8723
8724
8725
8726
8727
8728
8729
8730
8731
8732
8733
8734
8735
8736
8737
8738
8739
8740
8741
8742
8743
8744
8745
8746
8747
8748
8749
8750
8751
8752
8753
8754
8755
8756
8757
8758
8759
8760
8761
8762
8763
8764
8765
8766
8767
8768
8769
8770
8771
8772
8773
8774
8775
8776
8777
8778
8779
8780
8781
8782
8783
8784
8785
8786
8787
8788
8789
|
/* Array translation routines
Copyright (C) 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010,
2011, 2012
Free Software Foundation, Inc.
Contributed by Paul Brook <paul@nowt.org>
and Steven Bosscher <s.bosscher@student.tudelft.nl>
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
/* trans-array.c-- Various array related code, including scalarization,
allocation, initialization and other support routines. */
/* How the scalarizer works.
In gfortran, array expressions use the same core routines as scalar
expressions.
First, a Scalarization State (SS) chain is built. This is done by walking
the expression tree, and building a linear list of the terms in the
expression. As the tree is walked, scalar subexpressions are translated.
The scalarization parameters are stored in a gfc_loopinfo structure.
First the start and stride of each term is calculated by
gfc_conv_ss_startstride. During this process the expressions for the array
descriptors and data pointers are also translated.
If the expression is an assignment, we must then resolve any dependencies.
In Fortran all the rhs values of an assignment must be evaluated before
any assignments take place. This can require a temporary array to store the
values. We also require a temporary when we are passing array expressions
or vector subscripts as procedure parameters.
Array sections are passed without copying to a temporary. These use the
scalarizer to determine the shape of the section. The flag
loop->array_parameter tells the scalarizer that the actual values and loop
variables will not be required.
The function gfc_conv_loop_setup generates the scalarization setup code.
It determines the range of the scalarizing loop variables. If a temporary
is required, this is created and initialized. Code for scalar expressions
taken outside the loop is also generated at this time. Next the offset and
scaling required to translate from loop variables to array indices for each
term is calculated.
A call to gfc_start_scalarized_body marks the start of the scalarized
expression. This creates a scope and declares the loop variables. Before
calling this gfc_make_ss_chain_used must be used to indicate which terms
will be used inside this loop.
The scalar gfc_conv_* functions are then used to build the main body of the
scalarization loop. Scalarization loop variables and precalculated scalar
values are automatically substituted. Note that gfc_advance_se_ss_chain
must be used, rather than changing the se->ss directly.
For assignment expressions requiring a temporary two sub loops are
generated. The first stores the result of the expression in the temporary,
the second copies it to the result. A call to
gfc_trans_scalarized_loop_boundary marks the end of the main loop code and
the start of the copying loop. The temporary may be less than full rank.
Finally gfc_trans_scalarizing_loops is called to generate the implicit do
loops. The loops are added to the pre chain of the loopinfo. The post
chain may still contain cleanup code.
After the loop code has been added into its parent scope gfc_cleanup_loop
is called to free all the SS allocated by the scalarizer. */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tree.h"
#include "gimple.h" /* For create_tmp_var_name. */
#include "diagnostic-core.h" /* For internal_error/fatal_error. */
#include "flags.h"
#include "gfortran.h"
#include "constructor.h"
#include "trans.h"
#include "trans-stmt.h"
#include "trans-types.h"
#include "trans-array.h"
#include "trans-const.h"
#include "dependency.h"
static bool gfc_get_array_constructor_size (mpz_t *, gfc_constructor_base);
/* The contents of this structure aren't actually used, just the address. */
static gfc_ss gfc_ss_terminator_var;
gfc_ss * const gfc_ss_terminator = &gfc_ss_terminator_var;
static tree
gfc_array_dataptr_type (tree desc)
{
return (GFC_TYPE_ARRAY_DATAPTR_TYPE (TREE_TYPE (desc)));
}
/* Build expressions to access the members of an array descriptor.
It's surprisingly easy to mess up here, so never access
an array descriptor by "brute force", always use these
functions. This also avoids problems if we change the format
of an array descriptor.
To understand these magic numbers, look at the comments
before gfc_build_array_type() in trans-types.c.
The code within these defines should be the only code which knows the format
of an array descriptor.
Any code just needing to read obtain the bounds of an array should use
gfc_conv_array_* rather than the following functions as these will return
know constant values, and work with arrays which do not have descriptors.
Don't forget to #undef these! */
#define DATA_FIELD 0
#define OFFSET_FIELD 1
#define DTYPE_FIELD 2
#define DIMENSION_FIELD 3
#define CAF_TOKEN_FIELD 4
#define STRIDE_SUBFIELD 0
#define LBOUND_SUBFIELD 1
#define UBOUND_SUBFIELD 2
/* This provides READ-ONLY access to the data field. The field itself
doesn't have the proper type. */
tree
gfc_conv_descriptor_data_get (tree desc)
{
tree field, type, t;
type = TREE_TYPE (desc);
gcc_assert (GFC_DESCRIPTOR_TYPE_P (type));
field = TYPE_FIELDS (type);
gcc_assert (DATA_FIELD == 0);
t = fold_build3_loc (input_location, COMPONENT_REF, TREE_TYPE (field), desc,
field, NULL_TREE);
t = fold_convert (GFC_TYPE_ARRAY_DATAPTR_TYPE (type), t);
return t;
}
/* This provides WRITE access to the data field.
TUPLES_P is true if we are generating tuples.
This function gets called through the following macros:
gfc_conv_descriptor_data_set
gfc_conv_descriptor_data_set. */
void
gfc_conv_descriptor_data_set (stmtblock_t *block, tree desc, tree value)
{
tree field, type, t;
type = TREE_TYPE (desc);
gcc_assert (GFC_DESCRIPTOR_TYPE_P (type));
field = TYPE_FIELDS (type);
gcc_assert (DATA_FIELD == 0);
t = fold_build3_loc (input_location, COMPONENT_REF, TREE_TYPE (field), desc,
field, NULL_TREE);
gfc_add_modify (block, t, fold_convert (TREE_TYPE (field), value));
}
/* This provides address access to the data field. This should only be
used by array allocation, passing this on to the runtime. */
tree
gfc_conv_descriptor_data_addr (tree desc)
{
tree field, type, t;
type = TREE_TYPE (desc);
gcc_assert (GFC_DESCRIPTOR_TYPE_P (type));
field = TYPE_FIELDS (type);
gcc_assert (DATA_FIELD == 0);
t = fold_build3_loc (input_location, COMPONENT_REF, TREE_TYPE (field), desc,
field, NULL_TREE);
return gfc_build_addr_expr (NULL_TREE, t);
}
static tree
gfc_conv_descriptor_offset (tree desc)
{
tree type;
tree field;
type = TREE_TYPE (desc);
gcc_assert (GFC_DESCRIPTOR_TYPE_P (type));
field = gfc_advance_chain (TYPE_FIELDS (type), OFFSET_FIELD);
gcc_assert (field != NULL_TREE && TREE_TYPE (field) == gfc_array_index_type);
return fold_build3_loc (input_location, COMPONENT_REF, TREE_TYPE (field),
desc, field, NULL_TREE);
}
tree
gfc_conv_descriptor_offset_get (tree desc)
{
return gfc_conv_descriptor_offset (desc);
}
void
gfc_conv_descriptor_offset_set (stmtblock_t *block, tree desc,
tree value)
{
tree t = gfc_conv_descriptor_offset (desc);
gfc_add_modify (block, t, fold_convert (TREE_TYPE (t), value));
}
tree
gfc_conv_descriptor_dtype (tree desc)
{
tree field;
tree type;
type = TREE_TYPE (desc);
gcc_assert (GFC_DESCRIPTOR_TYPE_P (type));
field = gfc_advance_chain (TYPE_FIELDS (type), DTYPE_FIELD);
gcc_assert (field != NULL_TREE && TREE_TYPE (field) == gfc_array_index_type);
return fold_build3_loc (input_location, COMPONENT_REF, TREE_TYPE (field),
desc, field, NULL_TREE);
}
tree
gfc_conv_descriptor_rank (tree desc)
{
tree tmp;
tree dtype;
dtype = gfc_conv_descriptor_dtype (desc);
tmp = build_int_cst (TREE_TYPE (dtype), GFC_DTYPE_RANK_MASK);
tmp = fold_build2_loc (input_location, BIT_AND_EXPR, TREE_TYPE (dtype),
dtype, tmp);
return fold_convert (gfc_get_int_type (gfc_default_integer_kind), tmp);
}
tree
gfc_get_descriptor_dimension (tree desc)
{
tree type, field;
type = TREE_TYPE (desc);
gcc_assert (GFC_DESCRIPTOR_TYPE_P (type));
field = gfc_advance_chain (TYPE_FIELDS (type), DIMENSION_FIELD);
gcc_assert (field != NULL_TREE
&& TREE_CODE (TREE_TYPE (field)) == ARRAY_TYPE
&& TREE_CODE (TREE_TYPE (TREE_TYPE (field))) == RECORD_TYPE);
return fold_build3_loc (input_location, COMPONENT_REF, TREE_TYPE (field),
desc, field, NULL_TREE);
}
static tree
gfc_conv_descriptor_dimension (tree desc, tree dim)
{
tree tmp;
tmp = gfc_get_descriptor_dimension (desc);
return gfc_build_array_ref (tmp, dim, NULL);
}
tree
gfc_conv_descriptor_token (tree desc)
{
tree type;
tree field;
type = TREE_TYPE (desc);
gcc_assert (GFC_DESCRIPTOR_TYPE_P (type));
gcc_assert (GFC_TYPE_ARRAY_AKIND (type) == GFC_ARRAY_ALLOCATABLE);
gcc_assert (gfc_option.coarray == GFC_FCOARRAY_LIB);
field = gfc_advance_chain (TYPE_FIELDS (type), CAF_TOKEN_FIELD);
gcc_assert (field != NULL_TREE && TREE_TYPE (field) == prvoid_type_node);
return fold_build3_loc (input_location, COMPONENT_REF, TREE_TYPE (field),
desc, field, NULL_TREE);
}
static tree
gfc_conv_descriptor_stride (tree desc, tree dim)
{
tree tmp;
tree field;
tmp = gfc_conv_descriptor_dimension (desc, dim);
field = TYPE_FIELDS (TREE_TYPE (tmp));
field = gfc_advance_chain (field, STRIDE_SUBFIELD);
gcc_assert (field != NULL_TREE && TREE_TYPE (field) == gfc_array_index_type);
tmp = fold_build3_loc (input_location, COMPONENT_REF, TREE_TYPE (field),
tmp, field, NULL_TREE);
return tmp;
}
tree
gfc_conv_descriptor_stride_get (tree desc, tree dim)
{
tree type = TREE_TYPE (desc);
gcc_assert (GFC_DESCRIPTOR_TYPE_P (type));
if (integer_zerop (dim)
&& (GFC_TYPE_ARRAY_AKIND (type) == GFC_ARRAY_ALLOCATABLE
||GFC_TYPE_ARRAY_AKIND (type) == GFC_ARRAY_ASSUMED_SHAPE_CONT
||GFC_TYPE_ARRAY_AKIND (type) == GFC_ARRAY_ASSUMED_RANK_CONT
||GFC_TYPE_ARRAY_AKIND (type) == GFC_ARRAY_POINTER_CONT))
return gfc_index_one_node;
return gfc_conv_descriptor_stride (desc, dim);
}
void
gfc_conv_descriptor_stride_set (stmtblock_t *block, tree desc,
tree dim, tree value)
{
tree t = gfc_conv_descriptor_stride (desc, dim);
gfc_add_modify (block, t, fold_convert (TREE_TYPE (t), value));
}
static tree
gfc_conv_descriptor_lbound (tree desc, tree dim)
{
tree tmp;
tree field;
tmp = gfc_conv_descriptor_dimension (desc, dim);
field = TYPE_FIELDS (TREE_TYPE (tmp));
field = gfc_advance_chain (field, LBOUND_SUBFIELD);
gcc_assert (field != NULL_TREE && TREE_TYPE (field) == gfc_array_index_type);
tmp = fold_build3_loc (input_location, COMPONENT_REF, TREE_TYPE (field),
tmp, field, NULL_TREE);
return tmp;
}
tree
gfc_conv_descriptor_lbound_get (tree desc, tree dim)
{
return gfc_conv_descriptor_lbound (desc, dim);
}
void
gfc_conv_descriptor_lbound_set (stmtblock_t *block, tree desc,
tree dim, tree value)
{
tree t = gfc_conv_descriptor_lbound (desc, dim);
gfc_add_modify (block, t, fold_convert (TREE_TYPE (t), value));
}
static tree
gfc_conv_descriptor_ubound (tree desc, tree dim)
{
tree tmp;
tree field;
tmp = gfc_conv_descriptor_dimension (desc, dim);
field = TYPE_FIELDS (TREE_TYPE (tmp));
field = gfc_advance_chain (field, UBOUND_SUBFIELD);
gcc_assert (field != NULL_TREE && TREE_TYPE (field) == gfc_array_index_type);
tmp = fold_build3_loc (input_location, COMPONENT_REF, TREE_TYPE (field),
tmp, field, NULL_TREE);
return tmp;
}
tree
gfc_conv_descriptor_ubound_get (tree desc, tree dim)
{
return gfc_conv_descriptor_ubound (desc, dim);
}
void
gfc_conv_descriptor_ubound_set (stmtblock_t *block, tree desc,
tree dim, tree value)
{
tree t = gfc_conv_descriptor_ubound (desc, dim);
gfc_add_modify (block, t, fold_convert (TREE_TYPE (t), value));
}
/* Build a null array descriptor constructor. */
tree
gfc_build_null_descriptor (tree type)
{
tree field;
tree tmp;
gcc_assert (GFC_DESCRIPTOR_TYPE_P (type));
gcc_assert (DATA_FIELD == 0);
field = TYPE_FIELDS (type);
/* Set a NULL data pointer. */
tmp = build_constructor_single (type, field, null_pointer_node);
TREE_CONSTANT (tmp) = 1;
/* All other fields are ignored. */
return tmp;
}
/* Modify a descriptor such that the lbound of a given dimension is the value
specified. This also updates ubound and offset accordingly. */
void
gfc_conv_shift_descriptor_lbound (stmtblock_t* block, tree desc,
int dim, tree new_lbound)
{
tree offs, ubound, lbound, stride;
tree diff, offs_diff;
new_lbound = fold_convert (gfc_array_index_type, new_lbound);
offs = gfc_conv_descriptor_offset_get (desc);
lbound = gfc_conv_descriptor_lbound_get (desc, gfc_rank_cst[dim]);
ubound = gfc_conv_descriptor_ubound_get (desc, gfc_rank_cst[dim]);
stride = gfc_conv_descriptor_stride_get (desc, gfc_rank_cst[dim]);
/* Get difference (new - old) by which to shift stuff. */
diff = fold_build2_loc (input_location, MINUS_EXPR, gfc_array_index_type,
new_lbound, lbound);
/* Shift ubound and offset accordingly. This has to be done before
updating the lbound, as they depend on the lbound expression! */
ubound = fold_build2_loc (input_location, PLUS_EXPR, gfc_array_index_type,
ubound, diff);
gfc_conv_descriptor_ubound_set (block, desc, gfc_rank_cst[dim], ubound);
offs_diff = fold_build2_loc (input_location, MULT_EXPR, gfc_array_index_type,
diff, stride);
offs = fold_build2_loc (input_location, MINUS_EXPR, gfc_array_index_type,
offs, offs_diff);
gfc_conv_descriptor_offset_set (block, desc, offs);
/* Finally set lbound to value we want. */
gfc_conv_descriptor_lbound_set (block, desc, gfc_rank_cst[dim], new_lbound);
}
/* Cleanup those #defines. */
#undef DATA_FIELD
#undef OFFSET_FIELD
#undef DTYPE_FIELD
#undef DIMENSION_FIELD
#undef CAF_TOKEN_FIELD
#undef STRIDE_SUBFIELD
#undef LBOUND_SUBFIELD
#undef UBOUND_SUBFIELD
/* Mark a SS chain as used. Flags specifies in which loops the SS is used.
flags & 1 = Main loop body.
flags & 2 = temp copy loop. */
void
gfc_mark_ss_chain_used (gfc_ss * ss, unsigned flags)
{
for (; ss != gfc_ss_terminator; ss = ss->next)
ss->info->useflags = flags;
}
/* Free a gfc_ss chain. */
void
gfc_free_ss_chain (gfc_ss * ss)
{
gfc_ss *next;
while (ss != gfc_ss_terminator)
{
gcc_assert (ss != NULL);
next = ss->next;
gfc_free_ss (ss);
ss = next;
}
}
static void
free_ss_info (gfc_ss_info *ss_info)
{
int n;
ss_info->refcount--;
if (ss_info->refcount > 0)
return;
gcc_assert (ss_info->refcount == 0);
switch (ss_info->type)
{
case GFC_SS_SECTION:
for (n = 0; n < GFC_MAX_DIMENSIONS; n++)
if (ss_info->data.array.subscript[n])
gfc_free_ss_chain (ss_info->data.array.subscript[n]);
break;
default:
break;
}
free (ss_info);
}
/* Free a SS. */
void
gfc_free_ss (gfc_ss * ss)
{
free_ss_info (ss->info);
free (ss);
}
/* Creates and initializes an array type gfc_ss struct. */
gfc_ss *
gfc_get_array_ss (gfc_ss *next, gfc_expr *expr, int dimen, gfc_ss_type type)
{
gfc_ss *ss;
gfc_ss_info *ss_info;
int i;
ss_info = gfc_get_ss_info ();
ss_info->refcount++;
ss_info->type = type;
ss_info->expr = expr;
ss = gfc_get_ss ();
ss->info = ss_info;
ss->next = next;
ss->dimen = dimen;
for (i = 0; i < ss->dimen; i++)
ss->dim[i] = i;
return ss;
}
/* Creates and initializes a temporary type gfc_ss struct. */
gfc_ss *
gfc_get_temp_ss (tree type, tree string_length, int dimen)
{
gfc_ss *ss;
gfc_ss_info *ss_info;
int i;
ss_info = gfc_get_ss_info ();
ss_info->refcount++;
ss_info->type = GFC_SS_TEMP;
ss_info->string_length = string_length;
ss_info->data.temp.type = type;
ss = gfc_get_ss ();
ss->info = ss_info;
ss->next = gfc_ss_terminator;
ss->dimen = dimen;
for (i = 0; i < ss->dimen; i++)
ss->dim[i] = i;
return ss;
}
/* Creates and initializes a scalar type gfc_ss struct. */
gfc_ss *
gfc_get_scalar_ss (gfc_ss *next, gfc_expr *expr)
{
gfc_ss *ss;
gfc_ss_info *ss_info;
ss_info = gfc_get_ss_info ();
ss_info->refcount++;
ss_info->type = GFC_SS_SCALAR;
ss_info->expr = expr;
ss = gfc_get_ss ();
ss->info = ss_info;
ss->next = next;
return ss;
}
/* Free all the SS associated with a loop. */
void
gfc_cleanup_loop (gfc_loopinfo * loop)
{
gfc_loopinfo *loop_next, **ploop;
gfc_ss *ss;
gfc_ss *next;
ss = loop->ss;
while (ss != gfc_ss_terminator)
{
gcc_assert (ss != NULL);
next = ss->loop_chain;
gfc_free_ss (ss);
ss = next;
}
/* Remove reference to self in the parent loop. */
if (loop->parent)
for (ploop = &loop->parent->nested; *ploop; ploop = &(*ploop)->next)
if (*ploop == loop)
{
*ploop = loop->next;
break;
}
/* Free non-freed nested loops. */
for (loop = loop->nested; loop; loop = loop_next)
{
loop_next = loop->next;
gfc_cleanup_loop (loop);
free (loop);
}
}
static void
set_ss_loop (gfc_ss *ss, gfc_loopinfo *loop)
{
int n;
for (; ss != gfc_ss_terminator; ss = ss->next)
{
ss->loop = loop;
if (ss->info->type == GFC_SS_SCALAR
|| ss->info->type == GFC_SS_REFERENCE
|| ss->info->type == GFC_SS_TEMP)
continue;
for (n = 0; n < GFC_MAX_DIMENSIONS; n++)
if (ss->info->data.array.subscript[n] != NULL)
set_ss_loop (ss->info->data.array.subscript[n], loop);
}
}
/* Associate a SS chain with a loop. */
void
gfc_add_ss_to_loop (gfc_loopinfo * loop, gfc_ss * head)
{
gfc_ss *ss;
gfc_loopinfo *nested_loop;
if (head == gfc_ss_terminator)
return;
set_ss_loop (head, loop);
ss = head;
for (; ss && ss != gfc_ss_terminator; ss = ss->next)
{
if (ss->nested_ss)
{
nested_loop = ss->nested_ss->loop;
/* More than one ss can belong to the same loop. Hence, we add the
loop to the chain only if it is different from the previously
added one, to avoid duplicate nested loops. */
if (nested_loop != loop->nested)
{
gcc_assert (nested_loop->parent == NULL);
nested_loop->parent = loop;
gcc_assert (nested_loop->next == NULL);
nested_loop->next = loop->nested;
loop->nested = nested_loop;
}
else
gcc_assert (nested_loop->parent == loop);
}
if (ss->next == gfc_ss_terminator)
ss->loop_chain = loop->ss;
else
ss->loop_chain = ss->next;
}
gcc_assert (ss == gfc_ss_terminator);
loop->ss = head;
}
/* Generate an initializer for a static pointer or allocatable array. */
void
gfc_trans_static_array_pointer (gfc_symbol * sym)
{
tree type;
gcc_assert (TREE_STATIC (sym->backend_decl));
/* Just zero the data member. */
type = TREE_TYPE (sym->backend_decl);
DECL_INITIAL (sym->backend_decl) = gfc_build_null_descriptor (type);
}
/* If the bounds of SE's loop have not yet been set, see if they can be
determined from array spec AS, which is the array spec of a called
function. MAPPING maps the callee's dummy arguments to the values
that the caller is passing. Add any initialization and finalization
code to SE. */
void
gfc_set_loop_bounds_from_array_spec (gfc_interface_mapping * mapping,
gfc_se * se, gfc_array_spec * as)
{
int n, dim, total_dim;
gfc_se tmpse;
gfc_ss *ss;
tree lower;
tree upper;
tree tmp;
total_dim = 0;
if (!as || as->type != AS_EXPLICIT)
return;
for (ss = se->ss; ss; ss = ss->parent)
{
total_dim += ss->loop->dimen;
for (n = 0; n < ss->loop->dimen; n++)
{
/* The bound is known, nothing to do. */
if (ss->loop->to[n] != NULL_TREE)
continue;
dim = ss->dim[n];
gcc_assert (dim < as->rank);
gcc_assert (ss->loop->dimen <= as->rank);
/* Evaluate the lower bound. */
gfc_init_se (&tmpse, NULL);
gfc_apply_interface_mapping (mapping, &tmpse, as->lower[dim]);
gfc_add_block_to_block (&se->pre, &tmpse.pre);
gfc_add_block_to_block (&se->post, &tmpse.post);
lower = fold_convert (gfc_array_index_type, tmpse.expr);
/* ...and the upper bound. */
gfc_init_se (&tmpse, NULL);
gfc_apply_interface_mapping (mapping, &tmpse, as->upper[dim]);
gfc_add_block_to_block (&se->pre, &tmpse.pre);
gfc_add_block_to_block (&se->post, &tmpse.post);
upper = fold_convert (gfc_array_index_type, tmpse.expr);
/* Set the upper bound of the loop to UPPER - LOWER. */
tmp = fold_build2_loc (input_location, MINUS_EXPR,
gfc_array_index_type, upper, lower);
tmp = gfc_evaluate_now (tmp, &se->pre);
ss->loop->to[n] = tmp;
}
}
gcc_assert (total_dim == as->rank);
}
/* Generate code to allocate an array temporary, or create a variable to
hold the data. If size is NULL, zero the descriptor so that the
callee will allocate the array. If DEALLOC is true, also generate code to
free the array afterwards.
If INITIAL is not NULL, it is packed using internal_pack and the result used
as data instead of allocating a fresh, unitialized area of memory.
Initialization code is added to PRE and finalization code to POST.
DYNAMIC is true if the caller may want to extend the array later
using realloc. This prevents us from putting the array on the stack. */
static void
gfc_trans_allocate_array_storage (stmtblock_t * pre, stmtblock_t * post,
gfc_array_info * info, tree size, tree nelem,
tree initial, bool dynamic, bool dealloc)
{
tree tmp;
tree desc;
bool onstack;
desc = info->descriptor;
info->offset = gfc_index_zero_node;
if (size == NULL_TREE || integer_zerop (size))
{
/* A callee allocated array. */
gfc_conv_descriptor_data_set (pre, desc, null_pointer_node);
onstack = FALSE;
}
else
{
/* Allocate the temporary. */
onstack = !dynamic && initial == NULL_TREE
&& (gfc_option.flag_stack_arrays
|| gfc_can_put_var_on_stack (size));
if (onstack)
{
/* Make a temporary variable to hold the data. */
tmp = fold_build2_loc (input_location, MINUS_EXPR, TREE_TYPE (nelem),
nelem, gfc_index_one_node);
tmp = gfc_evaluate_now (tmp, pre);
tmp = build_range_type (gfc_array_index_type, gfc_index_zero_node,
tmp);
tmp = build_array_type (gfc_get_element_type (TREE_TYPE (desc)),
tmp);
tmp = gfc_create_var (tmp, "A");
/* If we're here only because of -fstack-arrays we have to
emit a DECL_EXPR to make the gimplifier emit alloca calls. */
if (!gfc_can_put_var_on_stack (size))
gfc_add_expr_to_block (pre,
fold_build1_loc (input_location,
DECL_EXPR, TREE_TYPE (tmp),
tmp));
tmp = gfc_build_addr_expr (NULL_TREE, tmp);
gfc_conv_descriptor_data_set (pre, desc, tmp);
}
else
{
/* Allocate memory to hold the data or call internal_pack. */
if (initial == NULL_TREE)
{
tmp = gfc_call_malloc (pre, NULL, size);
tmp = gfc_evaluate_now (tmp, pre);
}
else
{
tree packed;
tree source_data;
tree was_packed;
stmtblock_t do_copying;
tmp = TREE_TYPE (initial); /* Pointer to descriptor. */
gcc_assert (TREE_CODE (tmp) == POINTER_TYPE);
tmp = TREE_TYPE (tmp); /* The descriptor itself. */
tmp = gfc_get_element_type (tmp);
gcc_assert (tmp == gfc_get_element_type (TREE_TYPE (desc)));
packed = gfc_create_var (build_pointer_type (tmp), "data");
tmp = build_call_expr_loc (input_location,
gfor_fndecl_in_pack, 1, initial);
tmp = fold_convert (TREE_TYPE (packed), tmp);
gfc_add_modify (pre, packed, tmp);
tmp = build_fold_indirect_ref_loc (input_location,
initial);
source_data = gfc_conv_descriptor_data_get (tmp);
/* internal_pack may return source->data without any allocation
or copying if it is already packed. If that's the case, we
need to allocate and copy manually. */
gfc_start_block (&do_copying);
tmp = gfc_call_malloc (&do_copying, NULL, size);
tmp = fold_convert (TREE_TYPE (packed), tmp);
gfc_add_modify (&do_copying, packed, tmp);
tmp = gfc_build_memcpy_call (packed, source_data, size);
gfc_add_expr_to_block (&do_copying, tmp);
was_packed = fold_build2_loc (input_location, EQ_EXPR,
boolean_type_node, packed,
source_data);
tmp = gfc_finish_block (&do_copying);
tmp = build3_v (COND_EXPR, was_packed, tmp,
build_empty_stmt (input_location));
gfc_add_expr_to_block (pre, tmp);
tmp = fold_convert (pvoid_type_node, packed);
}
gfc_conv_descriptor_data_set (pre, desc, tmp);
}
}
info->data = gfc_conv_descriptor_data_get (desc);
/* The offset is zero because we create temporaries with a zero
lower bound. */
gfc_conv_descriptor_offset_set (pre, desc, gfc_index_zero_node);
if (dealloc && !onstack)
{
/* Free the temporary. */
tmp = gfc_conv_descriptor_data_get (desc);
tmp = gfc_call_free (fold_convert (pvoid_type_node, tmp));
gfc_add_expr_to_block (post, tmp);
}
}
/* Get the scalarizer array dimension corresponding to actual array dimension
given by ARRAY_DIM.
For example, if SS represents the array ref a(1,:,:,1), it is a
bidimensional scalarizer array, and the result would be 0 for ARRAY_DIM=1,
and 1 for ARRAY_DIM=2.
If SS represents transpose(a(:,1,1,:)), it is again a bidimensional
scalarizer array, and the result would be 1 for ARRAY_DIM=0 and 0 for
ARRAY_DIM=3.
If SS represents sum(a(:,:,:,1), dim=1), it is a 2+1-dimensional scalarizer
array. If called on the inner ss, the result would be respectively 0,1,2 for
ARRAY_DIM=0,1,2. If called on the outer ss, the result would be 0,1
for ARRAY_DIM=1,2. */
static int
get_scalarizer_dim_for_array_dim (gfc_ss *ss, int array_dim)
{
int array_ref_dim;
int n;
array_ref_dim = 0;
for (; ss; ss = ss->parent)
for (n = 0; n < ss->dimen; n++)
if (ss->dim[n] < array_dim)
array_ref_dim++;
return array_ref_dim;
}
static gfc_ss *
innermost_ss (gfc_ss *ss)
{
while (ss->nested_ss != NULL)
ss = ss->nested_ss;
return ss;
}
/* Get the array reference dimension corresponding to the given loop dimension.
It is different from the true array dimension given by the dim array in
the case of a partial array reference (i.e. a(:,:,1,:) for example)
It is different from the loop dimension in the case of a transposed array.
*/
static int
get_array_ref_dim_for_loop_dim (gfc_ss *ss, int loop_dim)
{
return get_scalarizer_dim_for_array_dim (innermost_ss (ss),
ss->dim[loop_dim]);
}
/* Generate code to create and initialize the descriptor for a temporary
array. This is used for both temporaries needed by the scalarizer, and
functions returning arrays. Adjusts the loop variables to be
zero-based, and calculates the loop bounds for callee allocated arrays.
Allocate the array unless it's callee allocated (we have a callee
allocated array if 'callee_alloc' is true, or if loop->to[n] is
NULL_TREE for any n). Also fills in the descriptor, data and offset
fields of info if known. Returns the size of the array, or NULL for a
callee allocated array.
'eltype' == NULL signals that the temporary should be a class object.
The 'initial' expression is used to obtain the size of the dynamic
type; otherwise the allocation and initialisation proceeds as for any
other expression
PRE, POST, INITIAL, DYNAMIC and DEALLOC are as for
gfc_trans_allocate_array_storage. */
tree
gfc_trans_create_temp_array (stmtblock_t * pre, stmtblock_t * post, gfc_ss * ss,
tree eltype, tree initial, bool dynamic,
bool dealloc, bool callee_alloc, locus * where)
{
gfc_loopinfo *loop;
gfc_ss *s;
gfc_array_info *info;
tree from[GFC_MAX_DIMENSIONS], to[GFC_MAX_DIMENSIONS];
tree type;
tree desc;
tree tmp;
tree size;
tree nelem;
tree cond;
tree or_expr;
tree class_expr = NULL_TREE;
int n, dim, tmp_dim;
int total_dim = 0;
/* This signals a class array for which we need the size of the
dynamic type. Generate an eltype and then the class expression. */
if (eltype == NULL_TREE && initial)
{
if (POINTER_TYPE_P (TREE_TYPE (initial)))
class_expr = build_fold_indirect_ref_loc (input_location, initial);
eltype = TREE_TYPE (class_expr);
eltype = gfc_get_element_type (eltype);
/* Obtain the structure (class) expression. */
class_expr = TREE_OPERAND (class_expr, 0);
gcc_assert (class_expr);
}
memset (from, 0, sizeof (from));
memset (to, 0, sizeof (to));
info = &ss->info->data.array;
gcc_assert (ss->dimen > 0);
gcc_assert (ss->loop->dimen == ss->dimen);
if (gfc_option.warn_array_temp && where)
gfc_warning ("Creating array temporary at %L", where);
/* Set the lower bound to zero. */
for (s = ss; s; s = s->parent)
{
loop = s->loop;
total_dim += loop->dimen;
for (n = 0; n < loop->dimen; n++)
{
dim = s->dim[n];
/* Callee allocated arrays may not have a known bound yet. */
if (loop->to[n])
loop->to[n] = gfc_evaluate_now (
fold_build2_loc (input_location, MINUS_EXPR,
gfc_array_index_type,
loop->to[n], loop->from[n]),
pre);
loop->from[n] = gfc_index_zero_node;
/* We have just changed the loop bounds, we must clear the
corresponding specloop, so that delta calculation is not skipped
later in gfc_set_delta. */
loop->specloop[n] = NULL;
/* We are constructing the temporary's descriptor based on the loop
dimensions. As the dimensions may be accessed in arbitrary order
(think of transpose) the size taken from the n'th loop may not map
to the n'th dimension of the array. We need to reconstruct loop
infos in the right order before using it to set the descriptor
bounds. */
tmp_dim = get_scalarizer_dim_for_array_dim (ss, dim);
from[tmp_dim] = loop->from[n];
to[tmp_dim] = loop->to[n];
info->delta[dim] = gfc_index_zero_node;
info->start[dim] = gfc_index_zero_node;
info->end[dim] = gfc_index_zero_node;
info->stride[dim] = gfc_index_one_node;
}
}
/* Initialize the descriptor. */
type =
gfc_get_array_type_bounds (eltype, total_dim, 0, from, to, 1,
GFC_ARRAY_UNKNOWN, true);
desc = gfc_create_var (type, "atmp");
GFC_DECL_PACKED_ARRAY (desc) = 1;
info->descriptor = desc;
size = gfc_index_one_node;
/* Fill in the array dtype. */
tmp = gfc_conv_descriptor_dtype (desc);
gfc_add_modify (pre, tmp, gfc_get_dtype (TREE_TYPE (desc)));
/*
Fill in the bounds and stride. This is a packed array, so:
size = 1;
for (n = 0; n < rank; n++)
{
stride[n] = size
delta = ubound[n] + 1 - lbound[n];
size = size * delta;
}
size = size * sizeof(element);
*/
or_expr = NULL_TREE;
/* If there is at least one null loop->to[n], it is a callee allocated
array. */
for (n = 0; n < total_dim; n++)
if (to[n] == NULL_TREE)
{
size = NULL_TREE;
break;
}
if (size == NULL_TREE)
for (s = ss; s; s = s->parent)
for (n = 0; n < s->loop->dimen; n++)
{
dim = get_scalarizer_dim_for_array_dim (ss, s->dim[n]);
/* For a callee allocated array express the loop bounds in terms
of the descriptor fields. */
tmp = fold_build2_loc (input_location,
MINUS_EXPR, gfc_array_index_type,
gfc_conv_descriptor_ubound_get (desc, gfc_rank_cst[dim]),
gfc_conv_descriptor_lbound_get (desc, gfc_rank_cst[dim]));
s->loop->to[n] = tmp;
}
else
{
for (n = 0; n < total_dim; n++)
{
/* Store the stride and bound components in the descriptor. */
gfc_conv_descriptor_stride_set (pre, desc, gfc_rank_cst[n], size);
gfc_conv_descriptor_lbound_set (pre, desc, gfc_rank_cst[n],
gfc_index_zero_node);
gfc_conv_descriptor_ubound_set (pre, desc, gfc_rank_cst[n], to[n]);
tmp = fold_build2_loc (input_location, PLUS_EXPR,
gfc_array_index_type,
to[n], gfc_index_one_node);
/* Check whether the size for this dimension is negative. */
cond = fold_build2_loc (input_location, LE_EXPR, boolean_type_node,
tmp, gfc_index_zero_node);
cond = gfc_evaluate_now (cond, pre);
if (n == 0)
or_expr = cond;
else
or_expr = fold_build2_loc (input_location, TRUTH_OR_EXPR,
boolean_type_node, or_expr, cond);
size = fold_build2_loc (input_location, MULT_EXPR,
gfc_array_index_type, size, tmp);
size = gfc_evaluate_now (size, pre);
}
}
/* Get the size of the array. */
if (size && !callee_alloc)
{
tree elemsize;
/* If or_expr is true, then the extent in at least one
dimension is zero and the size is set to zero. */
size = fold_build3_loc (input_location, COND_EXPR, gfc_array_index_type,
or_expr, gfc_index_zero_node, size);
nelem = size;
if (class_expr == NULL_TREE)
elemsize = fold_convert (gfc_array_index_type,
TYPE_SIZE_UNIT (gfc_get_element_type (type)));
else
elemsize = gfc_vtable_size_get (class_expr);
size = fold_build2_loc (input_location, MULT_EXPR, gfc_array_index_type,
size, elemsize);
}
else
{
nelem = size;
size = NULL_TREE;
}
gfc_trans_allocate_array_storage (pre, post, info, size, nelem, initial,
dynamic, dealloc);
while (ss->parent)
ss = ss->parent;
if (ss->dimen > ss->loop->temp_dim)
ss->loop->temp_dim = ss->dimen;
return size;
}
/* Return the number of iterations in a loop that starts at START,
ends at END, and has step STEP. */
static tree
gfc_get_iteration_count (tree start, tree end, tree step)
{
tree tmp;
tree type;
type = TREE_TYPE (step);
tmp = fold_build2_loc (input_location, MINUS_EXPR, type, end, start);
tmp = fold_build2_loc (input_location, FLOOR_DIV_EXPR, type, tmp, step);
tmp = fold_build2_loc (input_location, PLUS_EXPR, type, tmp,
build_int_cst (type, 1));
tmp = fold_build2_loc (input_location, MAX_EXPR, type, tmp,
build_int_cst (type, 0));
return fold_convert (gfc_array_index_type, tmp);
}
/* Extend the data in array DESC by EXTRA elements. */
static void
gfc_grow_array (stmtblock_t * pblock, tree desc, tree extra)
{
tree arg0, arg1;
tree tmp;
tree size;
tree ubound;
if (integer_zerop (extra))
return;
ubound = gfc_conv_descriptor_ubound_get (desc, gfc_rank_cst[0]);
/* Add EXTRA to the upper bound. */
tmp = fold_build2_loc (input_location, PLUS_EXPR, gfc_array_index_type,
ubound, extra);
gfc_conv_descriptor_ubound_set (pblock, desc, gfc_rank_cst[0], tmp);
/* Get the value of the current data pointer. */
arg0 = gfc_conv_descriptor_data_get (desc);
/* Calculate the new array size. */
size = TYPE_SIZE_UNIT (gfc_get_element_type (TREE_TYPE (desc)));
tmp = fold_build2_loc (input_location, PLUS_EXPR, gfc_array_index_type,
ubound, gfc_index_one_node);
arg1 = fold_build2_loc (input_location, MULT_EXPR, size_type_node,
fold_convert (size_type_node, tmp),
fold_convert (size_type_node, size));
/* Call the realloc() function. */
tmp = gfc_call_realloc (pblock, arg0, arg1);
gfc_conv_descriptor_data_set (pblock, desc, tmp);
}
/* Return true if the bounds of iterator I can only be determined
at run time. */
static inline bool
gfc_iterator_has_dynamic_bounds (gfc_iterator * i)
{
return (i->start->expr_type != EXPR_CONSTANT
|| i->end->expr_type != EXPR_CONSTANT
|| i->step->expr_type != EXPR_CONSTANT);
}
/* Split the size of constructor element EXPR into the sum of two terms,
one of which can be determined at compile time and one of which must
be calculated at run time. Set *SIZE to the former and return true
if the latter might be nonzero. */
static bool
gfc_get_array_constructor_element_size (mpz_t * size, gfc_expr * expr)
{
if (expr->expr_type == EXPR_ARRAY)
return gfc_get_array_constructor_size (size, expr->value.constructor);
else if (expr->rank > 0)
{
/* Calculate everything at run time. */
mpz_set_ui (*size, 0);
return true;
}
else
{
/* A single element. */
mpz_set_ui (*size, 1);
return false;
}
}
/* Like gfc_get_array_constructor_element_size, but applied to the whole
of array constructor C. */
static bool
gfc_get_array_constructor_size (mpz_t * size, gfc_constructor_base base)
{
gfc_constructor *c;
gfc_iterator *i;
mpz_t val;
mpz_t len;
bool dynamic;
mpz_set_ui (*size, 0);
mpz_init (len);
mpz_init (val);
dynamic = false;
for (c = gfc_constructor_first (base); c; c = gfc_constructor_next (c))
{
i = c->iterator;
if (i && gfc_iterator_has_dynamic_bounds (i))
dynamic = true;
else
{
dynamic |= gfc_get_array_constructor_element_size (&len, c->expr);
if (i)
{
/* Multiply the static part of the element size by the
number of iterations. */
mpz_sub (val, i->end->value.integer, i->start->value.integer);
mpz_fdiv_q (val, val, i->step->value.integer);
mpz_add_ui (val, val, 1);
if (mpz_sgn (val) > 0)
mpz_mul (len, len, val);
else
mpz_set_ui (len, 0);
}
mpz_add (*size, *size, len);
}
}
mpz_clear (len);
mpz_clear (val);
return dynamic;
}
/* Make sure offset is a variable. */
static void
gfc_put_offset_into_var (stmtblock_t * pblock, tree * poffset,
tree * offsetvar)
{
/* We should have already created the offset variable. We cannot
create it here because we may be in an inner scope. */
gcc_assert (*offsetvar != NULL_TREE);
gfc_add_modify (pblock, *offsetvar, *poffset);
*poffset = *offsetvar;
TREE_USED (*offsetvar) = 1;
}
/* Variables needed for bounds-checking. */
static bool first_len;
static tree first_len_val;
static bool typespec_chararray_ctor;
static void
gfc_trans_array_ctor_element (stmtblock_t * pblock, tree desc,
tree offset, gfc_se * se, gfc_expr * expr)
{
tree tmp;
gfc_conv_expr (se, expr);
/* Store the value. */
tmp = build_fold_indirect_ref_loc (input_location,
gfc_conv_descriptor_data_get (desc));
tmp = gfc_build_array_ref (tmp, offset, NULL);
if (expr->ts.type == BT_CHARACTER)
{
int i = gfc_validate_kind (BT_CHARACTER, expr->ts.kind, false);
tree esize;
esize = size_in_bytes (gfc_get_element_type (TREE_TYPE (desc)));
esize = fold_convert (gfc_charlen_type_node, esize);
esize = fold_build2_loc (input_location, TRUNC_DIV_EXPR,
gfc_charlen_type_node, esize,
build_int_cst (gfc_charlen_type_node,
gfc_character_kinds[i].bit_size / 8));
gfc_conv_string_parameter (se);
if (POINTER_TYPE_P (TREE_TYPE (tmp)))
{
/* The temporary is an array of pointers. */
se->expr = fold_convert (TREE_TYPE (tmp), se->expr);
gfc_add_modify (&se->pre, tmp, se->expr);
}
else
{
/* The temporary is an array of string values. */
tmp = gfc_build_addr_expr (gfc_get_pchar_type (expr->ts.kind), tmp);
/* We know the temporary and the value will be the same length,
so can use memcpy. */
gfc_trans_string_copy (&se->pre, esize, tmp, expr->ts.kind,
se->string_length, se->expr, expr->ts.kind);
}
if ((gfc_option.rtcheck & GFC_RTCHECK_BOUNDS) && !typespec_chararray_ctor)
{
if (first_len)
{
gfc_add_modify (&se->pre, first_len_val,
se->string_length);
first_len = false;
}
else
{
/* Verify that all constructor elements are of the same
length. */
tree cond = fold_build2_loc (input_location, NE_EXPR,
boolean_type_node, first_len_val,
se->string_length);
gfc_trans_runtime_check
(true, false, cond, &se->pre, &expr->where,
"Different CHARACTER lengths (%ld/%ld) in array constructor",
fold_convert (long_integer_type_node, first_len_val),
fold_convert (long_integer_type_node, se->string_length));
}
}
}
else
{
/* TODO: Should the frontend already have done this conversion? */
se->expr = fold_convert (TREE_TYPE (tmp), se->expr);
gfc_add_modify (&se->pre, tmp, se->expr);
}
gfc_add_block_to_block (pblock, &se->pre);
gfc_add_block_to_block (pblock, &se->post);
}
/* Add the contents of an array to the constructor. DYNAMIC is as for
gfc_trans_array_constructor_value. */
static void
gfc_trans_array_constructor_subarray (stmtblock_t * pblock,
tree type ATTRIBUTE_UNUSED,
tree desc, gfc_expr * expr,
tree * poffset, tree * offsetvar,
bool dynamic)
{
gfc_se se;
gfc_ss *ss;
gfc_loopinfo loop;
stmtblock_t body;
tree tmp;
tree size;
int n;
/* We need this to be a variable so we can increment it. */
gfc_put_offset_into_var (pblock, poffset, offsetvar);
gfc_init_se (&se, NULL);
/* Walk the array expression. */
ss = gfc_walk_expr (expr);
gcc_assert (ss != gfc_ss_terminator);
/* Initialize the scalarizer. */
gfc_init_loopinfo (&loop);
gfc_add_ss_to_loop (&loop, ss);
/* Initialize the loop. */
gfc_conv_ss_startstride (&loop);
gfc_conv_loop_setup (&loop, &expr->where);
/* Make sure the constructed array has room for the new data. */
if (dynamic)
{
/* Set SIZE to the total number of elements in the subarray. */
size = gfc_index_one_node;
for (n = 0; n < loop.dimen; n++)
{
tmp = gfc_get_iteration_count (loop.from[n], loop.to[n],
gfc_index_one_node);
size = fold_build2_loc (input_location, MULT_EXPR,
gfc_array_index_type, size, tmp);
}
/* Grow the constructed array by SIZE elements. */
gfc_grow_array (&loop.pre, desc, size);
}
/* Make the loop body. */
gfc_mark_ss_chain_used (ss, 1);
gfc_start_scalarized_body (&loop, &body);
gfc_copy_loopinfo_to_se (&se, &loop);
se.ss = ss;
gfc_trans_array_ctor_element (&body, desc, *poffset, &se, expr);
gcc_assert (se.ss == gfc_ss_terminator);
/* Increment the offset. */
tmp = fold_build2_loc (input_location, PLUS_EXPR, gfc_array_index_type,
*poffset, gfc_index_one_node);
gfc_add_modify (&body, *poffset, tmp);
/* Finish the loop. */
gfc_trans_scalarizing_loops (&loop, &body);
gfc_add_block_to_block (&loop.pre, &loop.post);
tmp = gfc_finish_block (&loop.pre);
gfc_add_expr_to_block (pblock, tmp);
gfc_cleanup_loop (&loop);
}
/* Assign the values to the elements of an array constructor. DYNAMIC
is true if descriptor DESC only contains enough data for the static
size calculated by gfc_get_array_constructor_size. When true, memory
for the dynamic parts must be allocated using realloc. */
static void
gfc_trans_array_constructor_value (stmtblock_t * pblock, tree type,
tree desc, gfc_constructor_base base,
tree * poffset, tree * offsetvar,
bool dynamic)
{
tree tmp;
tree start = NULL_TREE;
tree end = NULL_TREE;
tree step = NULL_TREE;
stmtblock_t body;
gfc_se se;
mpz_t size;
gfc_constructor *c;
tree shadow_loopvar = NULL_TREE;
gfc_saved_var saved_loopvar;
mpz_init (size);
for (c = gfc_constructor_first (base); c; c = gfc_constructor_next (c))
{
/* If this is an iterator or an array, the offset must be a variable. */
if ((c->iterator || c->expr->rank > 0) && INTEGER_CST_P (*poffset))
gfc_put_offset_into_var (pblock, poffset, offsetvar);
/* Shadowing the iterator avoids changing its value and saves us from
keeping track of it. Further, it makes sure that there's always a
backend-decl for the symbol, even if there wasn't one before,
e.g. in the case of an iterator that appears in a specification
expression in an interface mapping. */
if (c->iterator)
{
gfc_symbol *sym;
tree type;
/* Evaluate loop bounds before substituting the loop variable
in case they depend on it. Such a case is invalid, but it is
not more expensive to do the right thing here.
See PR 44354. */
gfc_init_se (&se, NULL);
gfc_conv_expr_val (&se, c->iterator->start);
gfc_add_block_to_block (pblock, &se.pre);
start = gfc_evaluate_now (se.expr, pblock);
gfc_init_se (&se, NULL);
gfc_conv_expr_val (&se, c->iterator->end);
gfc_add_block_to_block (pblock, &se.pre);
end = gfc_evaluate_now (se.expr, pblock);
gfc_init_se (&se, NULL);
gfc_conv_expr_val (&se, c->iterator->step);
gfc_add_block_to_block (pblock, &se.pre);
step = gfc_evaluate_now (se.expr, pblock);
sym = c->iterator->var->symtree->n.sym;
type = gfc_typenode_for_spec (&sym->ts);
shadow_loopvar = gfc_create_var (type, "shadow_loopvar");
gfc_shadow_sym (sym, shadow_loopvar, &saved_loopvar);
}
gfc_start_block (&body);
if (c->expr->expr_type == EXPR_ARRAY)
{
/* Array constructors can be nested. */
gfc_trans_array_constructor_value (&body, type, desc,
c->expr->value.constructor,
poffset, offsetvar, dynamic);
}
else if (c->expr->rank > 0)
{
gfc_trans_array_constructor_subarray (&body, type, desc, c->expr,
poffset, offsetvar, dynamic);
}
else
{
/* This code really upsets the gimplifier so don't bother for now. */
gfc_constructor *p;
HOST_WIDE_INT n;
HOST_WIDE_INT size;
p = c;
n = 0;
while (p && !(p->iterator || p->expr->expr_type != EXPR_CONSTANT))
{
p = gfc_constructor_next (p);
n++;
}
if (n < 4)
{
/* Scalar values. */
gfc_init_se (&se, NULL);
gfc_trans_array_ctor_element (&body, desc, *poffset,
&se, c->expr);
*poffset = fold_build2_loc (input_location, PLUS_EXPR,
gfc_array_index_type,
*poffset, gfc_index_one_node);
}
else
{
/* Collect multiple scalar constants into a constructor. */
VEC(constructor_elt,gc) *v = NULL;
tree init;
tree bound;
tree tmptype;
HOST_WIDE_INT idx = 0;
p = c;
/* Count the number of consecutive scalar constants. */
while (p && !(p->iterator
|| p->expr->expr_type != EXPR_CONSTANT))
{
gfc_init_se (&se, NULL);
gfc_conv_constant (&se, p->expr);
if (c->expr->ts.type != BT_CHARACTER)
se.expr = fold_convert (type, se.expr);
/* For constant character array constructors we build
an array of pointers. */
else if (POINTER_TYPE_P (type))
se.expr = gfc_build_addr_expr
(gfc_get_pchar_type (p->expr->ts.kind),
se.expr);
CONSTRUCTOR_APPEND_ELT (v,
build_int_cst (gfc_array_index_type,
idx++),
se.expr);
c = p;
p = gfc_constructor_next (p);
}
bound = size_int (n - 1);
/* Create an array type to hold them. */
tmptype = build_range_type (gfc_array_index_type,
gfc_index_zero_node, bound);
tmptype = build_array_type (type, tmptype);
init = build_constructor (tmptype, v);
TREE_CONSTANT (init) = 1;
TREE_STATIC (init) = 1;
/* Create a static variable to hold the data. */
tmp = gfc_create_var (tmptype, "data");
TREE_STATIC (tmp) = 1;
TREE_CONSTANT (tmp) = 1;
TREE_READONLY (tmp) = 1;
DECL_INITIAL (tmp) = init;
init = tmp;
/* Use BUILTIN_MEMCPY to assign the values. */
tmp = gfc_conv_descriptor_data_get (desc);
tmp = build_fold_indirect_ref_loc (input_location,
tmp);
tmp = gfc_build_array_ref (tmp, *poffset, NULL);
tmp = gfc_build_addr_expr (NULL_TREE, tmp);
init = gfc_build_addr_expr (NULL_TREE, init);
size = TREE_INT_CST_LOW (TYPE_SIZE_UNIT (type));
bound = build_int_cst (size_type_node, n * size);
tmp = build_call_expr_loc (input_location,
builtin_decl_explicit (BUILT_IN_MEMCPY),
3, tmp, init, bound);
gfc_add_expr_to_block (&body, tmp);
*poffset = fold_build2_loc (input_location, PLUS_EXPR,
gfc_array_index_type, *poffset,
build_int_cst (gfc_array_index_type, n));
}
if (!INTEGER_CST_P (*poffset))
{
gfc_add_modify (&body, *offsetvar, *poffset);
*poffset = *offsetvar;
}
}
/* The frontend should already have done any expansions
at compile-time. */
if (!c->iterator)
{
/* Pass the code as is. */
tmp = gfc_finish_block (&body);
gfc_add_expr_to_block (pblock, tmp);
}
else
{
/* Build the implied do-loop. */
stmtblock_t implied_do_block;
tree cond;
tree exit_label;
tree loopbody;
tree tmp2;
loopbody = gfc_finish_block (&body);
/* Create a new block that holds the implied-do loop. A temporary
loop-variable is used. */
gfc_start_block(&implied_do_block);
/* Initialize the loop. */
gfc_add_modify (&implied_do_block, shadow_loopvar, start);
/* If this array expands dynamically, and the number of iterations
is not constant, we won't have allocated space for the static
part of C->EXPR's size. Do that now. */
if (dynamic && gfc_iterator_has_dynamic_bounds (c->iterator))
{
/* Get the number of iterations. */
tmp = gfc_get_iteration_count (shadow_loopvar, end, step);
/* Get the static part of C->EXPR's size. */
gfc_get_array_constructor_element_size (&size, c->expr);
tmp2 = gfc_conv_mpz_to_tree (size, gfc_index_integer_kind);
/* Grow the array by TMP * TMP2 elements. */
tmp = fold_build2_loc (input_location, MULT_EXPR,
gfc_array_index_type, tmp, tmp2);
gfc_grow_array (&implied_do_block, desc, tmp);
}
/* Generate the loop body. */
exit_label = gfc_build_label_decl (NULL_TREE);
gfc_start_block (&body);
/* Generate the exit condition. Depending on the sign of
the step variable we have to generate the correct
comparison. */
tmp = fold_build2_loc (input_location, GT_EXPR, boolean_type_node,
step, build_int_cst (TREE_TYPE (step), 0));
cond = fold_build3_loc (input_location, COND_EXPR,
boolean_type_node, tmp,
fold_build2_loc (input_location, GT_EXPR,
boolean_type_node, shadow_loopvar, end),
fold_build2_loc (input_location, LT_EXPR,
boolean_type_node, shadow_loopvar, end));
tmp = build1_v (GOTO_EXPR, exit_label);
TREE_USED (exit_label) = 1;
tmp = build3_v (COND_EXPR, cond, tmp,
build_empty_stmt (input_location));
gfc_add_expr_to_block (&body, tmp);
/* The main loop body. */
gfc_add_expr_to_block (&body, loopbody);
/* Increase loop variable by step. */
tmp = fold_build2_loc (input_location, PLUS_EXPR,
TREE_TYPE (shadow_loopvar), shadow_loopvar,
step);
gfc_add_modify (&body, shadow_loopvar, tmp);
/* Finish the loop. */
tmp = gfc_finish_block (&body);
tmp = build1_v (LOOP_EXPR, tmp);
gfc_add_expr_to_block (&implied_do_block, tmp);
/* Add the exit label. */
tmp = build1_v (LABEL_EXPR, exit_label);
gfc_add_expr_to_block (&implied_do_block, tmp);
/* Finish the implied-do loop. */
tmp = gfc_finish_block(&implied_do_block);
gfc_add_expr_to_block(pblock, tmp);
gfc_restore_sym (c->iterator->var->symtree->n.sym, &saved_loopvar);
}
}
mpz_clear (size);
}
/* A catch-all to obtain the string length for anything that is not
a substring of non-constant length, a constant, array or variable. */
static void
get_array_ctor_all_strlen (stmtblock_t *block, gfc_expr *e, tree *len)
{
gfc_se se;
/* Don't bother if we already know the length is a constant. */
if (*len && INTEGER_CST_P (*len))
return;
if (!e->ref && e->ts.u.cl && e->ts.u.cl->length
&& e->ts.u.cl->length->expr_type == EXPR_CONSTANT)
{
/* This is easy. */
gfc_conv_const_charlen (e->ts.u.cl);
*len = e->ts.u.cl->backend_decl;
}
else
{
/* Otherwise, be brutal even if inefficient. */
gfc_init_se (&se, NULL);
/* No function call, in case of side effects. */
se.no_function_call = 1;
if (e->rank == 0)
gfc_conv_expr (&se, e);
else
gfc_conv_expr_descriptor (&se, e);
/* Fix the value. */
*len = gfc_evaluate_now (se.string_length, &se.pre);
gfc_add_block_to_block (block, &se.pre);
gfc_add_block_to_block (block, &se.post);
e->ts.u.cl->backend_decl = *len;
}
}
/* Figure out the string length of a variable reference expression.
Used by get_array_ctor_strlen. */
static void
get_array_ctor_var_strlen (stmtblock_t *block, gfc_expr * expr, tree * len)
{
gfc_ref *ref;
gfc_typespec *ts;
mpz_t char_len;
/* Don't bother if we already know the length is a constant. */
if (*len && INTEGER_CST_P (*len))
return;
ts = &expr->symtree->n.sym->ts;
for (ref = expr->ref; ref; ref = ref->next)
{
switch (ref->type)
{
case REF_ARRAY:
/* Array references don't change the string length. */
break;
case REF_COMPONENT:
/* Use the length of the component. */
ts = &ref->u.c.component->ts;
break;
case REF_SUBSTRING:
if (ref->u.ss.start->expr_type != EXPR_CONSTANT
|| ref->u.ss.end->expr_type != EXPR_CONSTANT)
{
/* Note that this might evaluate expr. */
get_array_ctor_all_strlen (block, expr, len);
return;
}
mpz_init_set_ui (char_len, 1);
mpz_add (char_len, char_len, ref->u.ss.end->value.integer);
mpz_sub (char_len, char_len, ref->u.ss.start->value.integer);
*len = gfc_conv_mpz_to_tree (char_len, gfc_default_integer_kind);
*len = convert (gfc_charlen_type_node, *len);
mpz_clear (char_len);
return;
default:
gcc_unreachable ();
}
}
*len = ts->u.cl->backend_decl;
}
/* Figure out the string length of a character array constructor.
If len is NULL, don't calculate the length; this happens for recursive calls
when a sub-array-constructor is an element but not at the first position,
so when we're not interested in the length.
Returns TRUE if all elements are character constants. */
bool
get_array_ctor_strlen (stmtblock_t *block, gfc_constructor_base base, tree * len)
{
gfc_constructor *c;
bool is_const;
is_const = TRUE;
if (gfc_constructor_first (base) == NULL)
{
if (len)
*len = build_int_cstu (gfc_charlen_type_node, 0);
return is_const;
}
/* Loop over all constructor elements to find out is_const, but in len we
want to store the length of the first, not the last, element. We can
of course exit the loop as soon as is_const is found to be false. */
for (c = gfc_constructor_first (base);
c && is_const; c = gfc_constructor_next (c))
{
switch (c->expr->expr_type)
{
case EXPR_CONSTANT:
if (len && !(*len && INTEGER_CST_P (*len)))
*len = build_int_cstu (gfc_charlen_type_node,
c->expr->value.character.length);
break;
case EXPR_ARRAY:
if (!get_array_ctor_strlen (block, c->expr->value.constructor, len))
is_const = false;
break;
case EXPR_VARIABLE:
is_const = false;
if (len)
get_array_ctor_var_strlen (block, c->expr, len);
break;
default:
is_const = false;
if (len)
get_array_ctor_all_strlen (block, c->expr, len);
break;
}
/* After the first iteration, we don't want the length modified. */
len = NULL;
}
return is_const;
}
/* Check whether the array constructor C consists entirely of constant
elements, and if so returns the number of those elements, otherwise
return zero. Note, an empty or NULL array constructor returns zero. */
unsigned HOST_WIDE_INT
gfc_constant_array_constructor_p (gfc_constructor_base base)
{
unsigned HOST_WIDE_INT nelem = 0;
gfc_constructor *c = gfc_constructor_first (base);
while (c)
{
if (c->iterator
|| c->expr->rank > 0
|| c->expr->expr_type != EXPR_CONSTANT)
return 0;
c = gfc_constructor_next (c);
nelem++;
}
return nelem;
}
/* Given EXPR, the constant array constructor specified by an EXPR_ARRAY,
and the tree type of it's elements, TYPE, return a static constant
variable that is compile-time initialized. */
tree
gfc_build_constant_array_constructor (gfc_expr * expr, tree type)
{
tree tmptype, init, tmp;
HOST_WIDE_INT nelem;
gfc_constructor *c;
gfc_array_spec as;
gfc_se se;
int i;
VEC(constructor_elt,gc) *v = NULL;
/* First traverse the constructor list, converting the constants
to tree to build an initializer. */
nelem = 0;
c = gfc_constructor_first (expr->value.constructor);
while (c)
{
gfc_init_se (&se, NULL);
gfc_conv_constant (&se, c->expr);
if (c->expr->ts.type != BT_CHARACTER)
se.expr = fold_convert (type, se.expr);
else if (POINTER_TYPE_P (type))
se.expr = gfc_build_addr_expr (gfc_get_pchar_type (c->expr->ts.kind),
se.expr);
CONSTRUCTOR_APPEND_ELT (v, build_int_cst (gfc_array_index_type, nelem),
se.expr);
c = gfc_constructor_next (c);
nelem++;
}
/* Next determine the tree type for the array. We use the gfortran
front-end's gfc_get_nodesc_array_type in order to create a suitable
GFC_ARRAY_TYPE_P that may be used by the scalarizer. */
memset (&as, 0, sizeof (gfc_array_spec));
as.rank = expr->rank;
as.type = AS_EXPLICIT;
if (!expr->shape)
{
as.lower[0] = gfc_get_int_expr (gfc_default_integer_kind, NULL, 0);
as.upper[0] = gfc_get_int_expr (gfc_default_integer_kind,
NULL, nelem - 1);
}
else
for (i = 0; i < expr->rank; i++)
{
int tmp = (int) mpz_get_si (expr->shape[i]);
as.lower[i] = gfc_get_int_expr (gfc_default_integer_kind, NULL, 0);
as.upper[i] = gfc_get_int_expr (gfc_default_integer_kind,
NULL, tmp - 1);
}
tmptype = gfc_get_nodesc_array_type (type, &as, PACKED_STATIC, true);
/* as is not needed anymore. */
for (i = 0; i < as.rank + as.corank; i++)
{
gfc_free_expr (as.lower[i]);
gfc_free_expr (as.upper[i]);
}
init = build_constructor (tmptype, v);
TREE_CONSTANT (init) = 1;
TREE_STATIC (init) = 1;
tmp = gfc_create_var (tmptype, "A");
TREE_STATIC (tmp) = 1;
TREE_CONSTANT (tmp) = 1;
TREE_READONLY (tmp) = 1;
DECL_INITIAL (tmp) = init;
return tmp;
}
/* Translate a constant EXPR_ARRAY array constructor for the scalarizer.
This mostly initializes the scalarizer state info structure with the
appropriate values to directly use the array created by the function
gfc_build_constant_array_constructor. */
static void
trans_constant_array_constructor (gfc_ss * ss, tree type)
{
gfc_array_info *info;
tree tmp;
int i;
tmp = gfc_build_constant_array_constructor (ss->info->expr, type);
info = &ss->info->data.array;
info->descriptor = tmp;
info->data = gfc_build_addr_expr (NULL_TREE, tmp);
info->offset = gfc_index_zero_node;
for (i = 0; i < ss->dimen; i++)
{
info->delta[i] = gfc_index_zero_node;
info->start[i] = gfc_index_zero_node;
info->end[i] = gfc_index_zero_node;
info->stride[i] = gfc_index_one_node;
}
}
static int
get_rank (gfc_loopinfo *loop)
{
int rank;
rank = 0;
for (; loop; loop = loop->parent)
rank += loop->dimen;
return rank;
}
/* Helper routine of gfc_trans_array_constructor to determine if the
bounds of the loop specified by LOOP are constant and simple enough
to use with trans_constant_array_constructor. Returns the
iteration count of the loop if suitable, and NULL_TREE otherwise. */
static tree
constant_array_constructor_loop_size (gfc_loopinfo * l)
{
gfc_loopinfo *loop;
tree size = gfc_index_one_node;
tree tmp;
int i, total_dim;
total_dim = get_rank (l);
for (loop = l; loop; loop = loop->parent)
{
for (i = 0; i < loop->dimen; i++)
{
/* If the bounds aren't constant, return NULL_TREE. */
if (!INTEGER_CST_P (loop->from[i]) || !INTEGER_CST_P (loop->to[i]))
return NULL_TREE;
if (!integer_zerop (loop->from[i]))
{
/* Only allow nonzero "from" in one-dimensional arrays. */
if (total_dim != 1)
return NULL_TREE;
tmp = fold_build2_loc (input_location, MINUS_EXPR,
gfc_array_index_type,
loop->to[i], loop->from[i]);
}
else
tmp = loop->to[i];
tmp = fold_build2_loc (input_location, PLUS_EXPR,
gfc_array_index_type, tmp, gfc_index_one_node);
size = fold_build2_loc (input_location, MULT_EXPR,
gfc_array_index_type, size, tmp);
}
}
return size;
}
static tree *
get_loop_upper_bound_for_array (gfc_ss *array, int array_dim)
{
gfc_ss *ss;
int n;
gcc_assert (array->nested_ss == NULL);
for (ss = array; ss; ss = ss->parent)
for (n = 0; n < ss->loop->dimen; n++)
if (array_dim == get_array_ref_dim_for_loop_dim (ss, n))
return &(ss->loop->to[n]);
gcc_unreachable ();
}
static gfc_loopinfo *
outermost_loop (gfc_loopinfo * loop)
{
while (loop->parent != NULL)
loop = loop->parent;
return loop;
}
/* Array constructors are handled by constructing a temporary, then using that
within the scalarization loop. This is not optimal, but seems by far the
simplest method. */
static void
trans_array_constructor (gfc_ss * ss, locus * where)
{
gfc_constructor_base c;
tree offset;
tree offsetvar;
tree desc;
tree type;
tree tmp;
tree *loop_ubound0;
bool dynamic;
bool old_first_len, old_typespec_chararray_ctor;
tree old_first_len_val;
gfc_loopinfo *loop, *outer_loop;
gfc_ss_info *ss_info;
gfc_expr *expr;
gfc_ss *s;
/* Save the old values for nested checking. */
old_first_len = first_len;
old_first_len_val = first_len_val;
old_typespec_chararray_ctor = typespec_chararray_ctor;
loop = ss->loop;
outer_loop = outermost_loop (loop);
ss_info = ss->info;
expr = ss_info->expr;
/* Do bounds-checking here and in gfc_trans_array_ctor_element only if no
typespec was given for the array constructor. */
typespec_chararray_ctor = (expr->ts.u.cl
&& expr->ts.u.cl->length_from_typespec);
if ((gfc_option.rtcheck & GFC_RTCHECK_BOUNDS)
&& expr->ts.type == BT_CHARACTER && !typespec_chararray_ctor)
{
first_len_val = gfc_create_var (gfc_charlen_type_node, "len");
first_len = true;
}
gcc_assert (ss->dimen == ss->loop->dimen);
c = expr->value.constructor;
if (expr->ts.type == BT_CHARACTER)
{
bool const_string;
/* get_array_ctor_strlen walks the elements of the constructor, if a
typespec was given, we already know the string length and want the one
specified there. */
if (typespec_chararray_ctor && expr->ts.u.cl->length
&& expr->ts.u.cl->length->expr_type != EXPR_CONSTANT)
{
gfc_se length_se;
const_string = false;
gfc_init_se (&length_se, NULL);
gfc_conv_expr_type (&length_se, expr->ts.u.cl->length,
gfc_charlen_type_node);
ss_info->string_length = length_se.expr;
gfc_add_block_to_block (&outer_loop->pre, &length_se.pre);
gfc_add_block_to_block (&outer_loop->post, &length_se.post);
}
else
const_string = get_array_ctor_strlen (&outer_loop->pre, c,
&ss_info->string_length);
/* Complex character array constructors should have been taken care of
and not end up here. */
gcc_assert (ss_info->string_length);
expr->ts.u.cl->backend_decl = ss_info->string_length;
type = gfc_get_character_type_len (expr->ts.kind, ss_info->string_length);
if (const_string)
type = build_pointer_type (type);
}
else
type = gfc_typenode_for_spec (&expr->ts);
/* See if the constructor determines the loop bounds. */
dynamic = false;
loop_ubound0 = get_loop_upper_bound_for_array (ss, 0);
if (expr->shape && get_rank (loop) > 1 && *loop_ubound0 == NULL_TREE)
{
/* We have a multidimensional parameter. */
for (s = ss; s; s = s->parent)
{
int n;
for (n = 0; n < s->loop->dimen; n++)
{
s->loop->from[n] = gfc_index_zero_node;
s->loop->to[n] = gfc_conv_mpz_to_tree (expr->shape[s->dim[n]],
gfc_index_integer_kind);
s->loop->to[n] = fold_build2_loc (input_location, MINUS_EXPR,
gfc_array_index_type,
s->loop->to[n],
gfc_index_one_node);
}
}
}
if (*loop_ubound0 == NULL_TREE)
{
mpz_t size;
/* We should have a 1-dimensional, zero-based loop. */
gcc_assert (loop->parent == NULL && loop->nested == NULL);
gcc_assert (loop->dimen == 1);
gcc_assert (integer_zerop (loop->from[0]));
/* Split the constructor size into a static part and a dynamic part.
Allocate the static size up-front and record whether the dynamic
size might be nonzero. */
mpz_init (size);
dynamic = gfc_get_array_constructor_size (&size, c);
mpz_sub_ui (size, size, 1);
loop->to[0] = gfc_conv_mpz_to_tree (size, gfc_index_integer_kind);
mpz_clear (size);
}
/* Special case constant array constructors. */
if (!dynamic)
{
unsigned HOST_WIDE_INT nelem = gfc_constant_array_constructor_p (c);
if (nelem > 0)
{
tree size = constant_array_constructor_loop_size (loop);
if (size && compare_tree_int (size, nelem) == 0)
{
trans_constant_array_constructor (ss, type);
goto finish;
}
}
}
if (TREE_CODE (*loop_ubound0) == VAR_DECL)
dynamic = true;
gfc_trans_create_temp_array (&outer_loop->pre, &outer_loop->post, ss, type,
NULL_TREE, dynamic, true, false, where);
desc = ss_info->data.array.descriptor;
offset = gfc_index_zero_node;
offsetvar = gfc_create_var_np (gfc_array_index_type, "offset");
TREE_NO_WARNING (offsetvar) = 1;
TREE_USED (offsetvar) = 0;
gfc_trans_array_constructor_value (&outer_loop->pre, type, desc, c,
&offset, &offsetvar, dynamic);
/* If the array grows dynamically, the upper bound of the loop variable
is determined by the array's final upper bound. */
if (dynamic)
{
tmp = fold_build2_loc (input_location, MINUS_EXPR,
gfc_array_index_type,
offsetvar, gfc_index_one_node);
tmp = gfc_evaluate_now (tmp, &outer_loop->pre);
gfc_conv_descriptor_ubound_set (&loop->pre, desc, gfc_rank_cst[0], tmp);
if (*loop_ubound0 && TREE_CODE (*loop_ubound0) == VAR_DECL)
gfc_add_modify (&outer_loop->pre, *loop_ubound0, tmp);
else
*loop_ubound0 = tmp;
}
if (TREE_USED (offsetvar))
pushdecl (offsetvar);
else
gcc_assert (INTEGER_CST_P (offset));
#if 0
/* Disable bound checking for now because it's probably broken. */
if (gfc_option.rtcheck & GFC_RTCHECK_BOUNDS)
{
gcc_unreachable ();
}
#endif
finish:
/* Restore old values of globals. */
first_len = old_first_len;
first_len_val = old_first_len_val;
typespec_chararray_ctor = old_typespec_chararray_ctor;
}
/* INFO describes a GFC_SS_SECTION in loop LOOP, and this function is
called after evaluating all of INFO's vector dimensions. Go through
each such vector dimension and see if we can now fill in any missing
loop bounds. */
static void
set_vector_loop_bounds (gfc_ss * ss)
{
gfc_loopinfo *loop, *outer_loop;
gfc_array_info *info;
gfc_se se;
tree tmp;
tree desc;
tree zero;
int n;
int dim;
outer_loop = outermost_loop (ss->loop);
info = &ss->info->data.array;
for (; ss; ss = ss->parent)
{
loop = ss->loop;
for (n = 0; n < loop->dimen; n++)
{
dim = ss->dim[n];
if (info->ref->u.ar.dimen_type[dim] != DIMEN_VECTOR
|| loop->to[n] != NULL)
continue;
/* Loop variable N indexes vector dimension DIM, and we don't
yet know the upper bound of loop variable N. Set it to the
difference between the vector's upper and lower bounds. */
gcc_assert (loop->from[n] == gfc_index_zero_node);
gcc_assert (info->subscript[dim]
&& info->subscript[dim]->info->type == GFC_SS_VECTOR);
gfc_init_se (&se, NULL);
desc = info->subscript[dim]->info->data.array.descriptor;
zero = gfc_rank_cst[0];
tmp = fold_build2_loc (input_location, MINUS_EXPR,
gfc_array_index_type,
gfc_conv_descriptor_ubound_get (desc, zero),
gfc_conv_descriptor_lbound_get (desc, zero));
tmp = gfc_evaluate_now (tmp, &outer_loop->pre);
loop->to[n] = tmp;
}
}
}
/* Add the pre and post chains for all the scalar expressions in a SS chain
to loop. This is called after the loop parameters have been calculated,
but before the actual scalarizing loops. */
static void
gfc_add_loop_ss_code (gfc_loopinfo * loop, gfc_ss * ss, bool subscript,
locus * where)
{
gfc_loopinfo *nested_loop, *outer_loop;
gfc_se se;
gfc_ss_info *ss_info;
gfc_array_info *info;
gfc_expr *expr;
int n;
/* Don't evaluate the arguments for realloc_lhs_loop_for_fcn_call; otherwise,
arguments could get evaluated multiple times. */
if (ss->is_alloc_lhs)
return;
outer_loop = outermost_loop (loop);
/* TODO: This can generate bad code if there are ordering dependencies,
e.g., a callee allocated function and an unknown size constructor. */
gcc_assert (ss != NULL);
for (; ss != gfc_ss_terminator; ss = ss->loop_chain)
{
gcc_assert (ss);
/* Cross loop arrays are handled from within the most nested loop. */
if (ss->nested_ss != NULL)
continue;
ss_info = ss->info;
expr = ss_info->expr;
info = &ss_info->data.array;
switch (ss_info->type)
{
case GFC_SS_SCALAR:
/* Scalar expression. Evaluate this now. This includes elemental
dimension indices, but not array section bounds. */
gfc_init_se (&se, NULL);
gfc_conv_expr (&se, expr);
gfc_add_block_to_block (&outer_loop->pre, &se.pre);
if (expr->ts.type != BT_CHARACTER)
{
/* Move the evaluation of scalar expressions outside the
scalarization loop, except for WHERE assignments. */
if (subscript)
se.expr = convert(gfc_array_index_type, se.expr);
if (!ss_info->where)
se.expr = gfc_evaluate_now (se.expr, &outer_loop->pre);
gfc_add_block_to_block (&outer_loop->pre, &se.post);
}
else
gfc_add_block_to_block (&outer_loop->post, &se.post);
ss_info->data.scalar.value = se.expr;
ss_info->string_length = se.string_length;
break;
case GFC_SS_REFERENCE:
/* Scalar argument to elemental procedure. */
gfc_init_se (&se, NULL);
if (ss_info->can_be_null_ref)
{
/* If the actual argument can be absent (in other words, it can
be a NULL reference), don't try to evaluate it; pass instead
the reference directly. */
gfc_conv_expr_reference (&se, expr);
}
else
{
/* Otherwise, evaluate the argument outside the loop and pass
a reference to the value. */
gfc_conv_expr (&se, expr);
}
gfc_add_block_to_block (&outer_loop->pre, &se.pre);
gfc_add_block_to_block (&outer_loop->post, &se.post);
if (gfc_is_class_scalar_expr (expr))
/* This is necessary because the dynamic type will always be
large than the declared type. In consequence, assigning
the value to a temporary could segfault.
OOP-TODO: see if this is generally correct or is the value
has to be written to an allocated temporary, whose address
is passed via ss_info. */
ss_info->data.scalar.value = se.expr;
else
ss_info->data.scalar.value = gfc_evaluate_now (se.expr,
&outer_loop->pre);
ss_info->string_length = se.string_length;
break;
case GFC_SS_SECTION:
/* Add the expressions for scalar and vector subscripts. */
for (n = 0; n < GFC_MAX_DIMENSIONS; n++)
if (info->subscript[n])
gfc_add_loop_ss_code (loop, info->subscript[n], true, where);
set_vector_loop_bounds (ss);
break;
case GFC_SS_VECTOR:
/* Get the vector's descriptor and store it in SS. */
gfc_init_se (&se, NULL);
gfc_conv_expr_descriptor (&se, expr);
gfc_add_block_to_block (&outer_loop->pre, &se.pre);
gfc_add_block_to_block (&outer_loop->post, &se.post);
info->descriptor = se.expr;
break;
case GFC_SS_INTRINSIC:
gfc_add_intrinsic_ss_code (loop, ss);
break;
case GFC_SS_FUNCTION:
/* Array function return value. We call the function and save its
result in a temporary for use inside the loop. */
gfc_init_se (&se, NULL);
se.loop = loop;
se.ss = ss;
gfc_conv_expr (&se, expr);
gfc_add_block_to_block (&outer_loop->pre, &se.pre);
gfc_add_block_to_block (&outer_loop->post, &se.post);
ss_info->string_length = se.string_length;
break;
case GFC_SS_CONSTRUCTOR:
if (expr->ts.type == BT_CHARACTER
&& ss_info->string_length == NULL
&& expr->ts.u.cl
&& expr->ts.u.cl->length)
{
gfc_init_se (&se, NULL);
gfc_conv_expr_type (&se, expr->ts.u.cl->length,
gfc_charlen_type_node);
ss_info->string_length = se.expr;
gfc_add_block_to_block (&outer_loop->pre, &se.pre);
gfc_add_block_to_block (&outer_loop->post, &se.post);
}
trans_array_constructor (ss, where);
break;
case GFC_SS_TEMP:
case GFC_SS_COMPONENT:
/* Do nothing. These are handled elsewhere. */
break;
default:
gcc_unreachable ();
}
}
if (!subscript)
for (nested_loop = loop->nested; nested_loop;
nested_loop = nested_loop->next)
gfc_add_loop_ss_code (nested_loop, nested_loop->ss, subscript, where);
}
/* Translate expressions for the descriptor and data pointer of a SS. */
/*GCC ARRAYS*/
static void
gfc_conv_ss_descriptor (stmtblock_t * block, gfc_ss * ss, int base)
{
gfc_se se;
gfc_ss_info *ss_info;
gfc_array_info *info;
tree tmp;
ss_info = ss->info;
info = &ss_info->data.array;
/* Get the descriptor for the array to be scalarized. */
gcc_assert (ss_info->expr->expr_type == EXPR_VARIABLE);
gfc_init_se (&se, NULL);
se.descriptor_only = 1;
gfc_conv_expr_lhs (&se, ss_info->expr);
gfc_add_block_to_block (block, &se.pre);
info->descriptor = se.expr;
ss_info->string_length = se.string_length;
if (base)
{
/* Also the data pointer. */
tmp = gfc_conv_array_data (se.expr);
/* If this is a variable or address of a variable we use it directly.
Otherwise we must evaluate it now to avoid breaking dependency
analysis by pulling the expressions for elemental array indices
inside the loop. */
if (!(DECL_P (tmp)
|| (TREE_CODE (tmp) == ADDR_EXPR
&& DECL_P (TREE_OPERAND (tmp, 0)))))
tmp = gfc_evaluate_now (tmp, block);
info->data = tmp;
tmp = gfc_conv_array_offset (se.expr);
info->offset = gfc_evaluate_now (tmp, block);
/* Make absolutely sure that the saved_offset is indeed saved
so that the variable is still accessible after the loops
are translated. */
info->saved_offset = info->offset;
}
}
/* Initialize a gfc_loopinfo structure. */
void
gfc_init_loopinfo (gfc_loopinfo * loop)
{
int n;
memset (loop, 0, sizeof (gfc_loopinfo));
gfc_init_block (&loop->pre);
gfc_init_block (&loop->post);
/* Initially scalarize in order and default to no loop reversal. */
for (n = 0; n < GFC_MAX_DIMENSIONS; n++)
{
loop->order[n] = n;
loop->reverse[n] = GFC_INHIBIT_REVERSE;
}
loop->ss = gfc_ss_terminator;
}
/* Copies the loop variable info to a gfc_se structure. Does not copy the SS
chain. */
void
gfc_copy_loopinfo_to_se (gfc_se * se, gfc_loopinfo * loop)
{
se->loop = loop;
}
/* Return an expression for the data pointer of an array. */
tree
gfc_conv_array_data (tree descriptor)
{
tree type;
type = TREE_TYPE (descriptor);
if (GFC_ARRAY_TYPE_P (type))
{
if (TREE_CODE (type) == POINTER_TYPE)
return descriptor;
else
{
/* Descriptorless arrays. */
return gfc_build_addr_expr (NULL_TREE, descriptor);
}
}
else
return gfc_conv_descriptor_data_get (descriptor);
}
/* Return an expression for the base offset of an array. */
tree
gfc_conv_array_offset (tree descriptor)
{
tree type;
type = TREE_TYPE (descriptor);
if (GFC_ARRAY_TYPE_P (type))
return GFC_TYPE_ARRAY_OFFSET (type);
else
return gfc_conv_descriptor_offset_get (descriptor);
}
/* Get an expression for the array stride. */
tree
gfc_conv_array_stride (tree descriptor, int dim)
{
tree tmp;
tree type;
type = TREE_TYPE (descriptor);
/* For descriptorless arrays use the array size. */
tmp = GFC_TYPE_ARRAY_STRIDE (type, dim);
if (tmp != NULL_TREE)
return tmp;
tmp = gfc_conv_descriptor_stride_get (descriptor, gfc_rank_cst[dim]);
return tmp;
}
/* Like gfc_conv_array_stride, but for the lower bound. */
tree
gfc_conv_array_lbound (tree descriptor, int dim)
{
tree tmp;
tree type;
type = TREE_TYPE (descriptor);
tmp = GFC_TYPE_ARRAY_LBOUND (type, dim);
if (tmp != NULL_TREE)
return tmp;
tmp = gfc_conv_descriptor_lbound_get (descriptor, gfc_rank_cst[dim]);
return tmp;
}
/* Like gfc_conv_array_stride, but for the upper bound. */
tree
gfc_conv_array_ubound (tree descriptor, int dim)
{
tree tmp;
tree type;
type = TREE_TYPE (descriptor);
tmp = GFC_TYPE_ARRAY_UBOUND (type, dim);
if (tmp != NULL_TREE)
return tmp;
/* This should only ever happen when passing an assumed shape array
as an actual parameter. The value will never be used. */
if (GFC_ARRAY_TYPE_P (TREE_TYPE (descriptor)))
return gfc_index_zero_node;
tmp = gfc_conv_descriptor_ubound_get (descriptor, gfc_rank_cst[dim]);
return tmp;
}
/* Generate code to perform an array index bound check. */
static tree
trans_array_bound_check (gfc_se * se, gfc_ss *ss, tree index, int n,
locus * where, bool check_upper)
{
tree fault;
tree tmp_lo, tmp_up;
tree descriptor;
char *msg;
const char * name = NULL;
if (!(gfc_option.rtcheck & GFC_RTCHECK_BOUNDS))
return index;
descriptor = ss->info->data.array.descriptor;
index = gfc_evaluate_now (index, &se->pre);
/* We find a name for the error message. */
name = ss->info->expr->symtree->n.sym->name;
gcc_assert (name != NULL);
if (TREE_CODE (descriptor) == VAR_DECL)
name = IDENTIFIER_POINTER (DECL_NAME (descriptor));
/* If upper bound is present, include both bounds in the error message. */
if (check_upper)
{
tmp_lo = gfc_conv_array_lbound (descriptor, n);
tmp_up = gfc_conv_array_ubound (descriptor, n);
if (name)
asprintf (&msg, "Index '%%ld' of dimension %d of array '%s' "
"outside of expected range (%%ld:%%ld)", n+1, name);
else
asprintf (&msg, "Index '%%ld' of dimension %d "
"outside of expected range (%%ld:%%ld)", n+1);
fault = fold_build2_loc (input_location, LT_EXPR, boolean_type_node,
index, tmp_lo);
gfc_trans_runtime_check (true, false, fault, &se->pre, where, msg,
fold_convert (long_integer_type_node, index),
fold_convert (long_integer_type_node, tmp_lo),
fold_convert (long_integer_type_node, tmp_up));
fault = fold_build2_loc (input_location, GT_EXPR, boolean_type_node,
index, tmp_up);
gfc_trans_runtime_check (true, false, fault, &se->pre, where, msg,
fold_convert (long_integer_type_node, index),
fold_convert (long_integer_type_node, tmp_lo),
fold_convert (long_integer_type_node, tmp_up));
free (msg);
}
else
{
tmp_lo = gfc_conv_array_lbound (descriptor, n);
if (name)
asprintf (&msg, "Index '%%ld' of dimension %d of array '%s' "
"below lower bound of %%ld", n+1, name);
else
asprintf (&msg, "Index '%%ld' of dimension %d "
"below lower bound of %%ld", n+1);
fault = fold_build2_loc (input_location, LT_EXPR, boolean_type_node,
index, tmp_lo);
gfc_trans_runtime_check (true, false, fault, &se->pre, where, msg,
fold_convert (long_integer_type_node, index),
fold_convert (long_integer_type_node, tmp_lo));
free (msg);
}
return index;
}
/* Return the offset for an index. Performs bound checking for elemental
dimensions. Single element references are processed separately.
DIM is the array dimension, I is the loop dimension. */
static tree
conv_array_index_offset (gfc_se * se, gfc_ss * ss, int dim, int i,
gfc_array_ref * ar, tree stride)
{
gfc_array_info *info;
tree index;
tree desc;
tree data;
info = &ss->info->data.array;
/* Get the index into the array for this dimension. */
if (ar)
{
gcc_assert (ar->type != AR_ELEMENT);
switch (ar->dimen_type[dim])
{
case DIMEN_THIS_IMAGE:
gcc_unreachable ();
break;
case DIMEN_ELEMENT:
/* Elemental dimension. */
gcc_assert (info->subscript[dim]
&& info->subscript[dim]->info->type == GFC_SS_SCALAR);
/* We've already translated this value outside the loop. */
index = info->subscript[dim]->info->data.scalar.value;
index = trans_array_bound_check (se, ss, index, dim, &ar->where,
ar->as->type != AS_ASSUMED_SIZE
|| dim < ar->dimen - 1);
break;
case DIMEN_VECTOR:
gcc_assert (info && se->loop);
gcc_assert (info->subscript[dim]
&& info->subscript[dim]->info->type == GFC_SS_VECTOR);
desc = info->subscript[dim]->info->data.array.descriptor;
/* Get a zero-based index into the vector. */
index = fold_build2_loc (input_location, MINUS_EXPR,
gfc_array_index_type,
se->loop->loopvar[i], se->loop->from[i]);
/* Multiply the index by the stride. */
index = fold_build2_loc (input_location, MULT_EXPR,
gfc_array_index_type,
index, gfc_conv_array_stride (desc, 0));
/* Read the vector to get an index into info->descriptor. */
data = build_fold_indirect_ref_loc (input_location,
gfc_conv_array_data (desc));
index = gfc_build_array_ref (data, index, NULL);
index = gfc_evaluate_now (index, &se->pre);
index = fold_convert (gfc_array_index_type, index);
/* Do any bounds checking on the final info->descriptor index. */
index = trans_array_bound_check (se, ss, index, dim, &ar->where,
ar->as->type != AS_ASSUMED_SIZE
|| dim < ar->dimen - 1);
break;
case DIMEN_RANGE:
/* Scalarized dimension. */
gcc_assert (info && se->loop);
/* Multiply the loop variable by the stride and delta. */
index = se->loop->loopvar[i];
if (!integer_onep (info->stride[dim]))
index = fold_build2_loc (input_location, MULT_EXPR,
gfc_array_index_type, index,
info->stride[dim]);
if (!integer_zerop (info->delta[dim]))
index = fold_build2_loc (input_location, PLUS_EXPR,
gfc_array_index_type, index,
info->delta[dim]);
break;
default:
gcc_unreachable ();
}
}
else
{
/* Temporary array or derived type component. */
gcc_assert (se->loop);
index = se->loop->loopvar[se->loop->order[i]];
/* Pointer functions can have stride[0] different from unity.
Use the stride returned by the function call and stored in
the descriptor for the temporary. */
if (se->ss && se->ss->info->type == GFC_SS_FUNCTION
&& se->ss->info->expr
&& se->ss->info->expr->symtree
&& se->ss->info->expr->symtree->n.sym->result
&& se->ss->info->expr->symtree->n.sym->result->attr.pointer)
stride = gfc_conv_descriptor_stride_get (info->descriptor,
gfc_rank_cst[dim]);
if (!integer_zerop (info->delta[dim]))
index = fold_build2_loc (input_location, PLUS_EXPR,
gfc_array_index_type, index, info->delta[dim]);
}
/* Multiply by the stride. */
if (!integer_onep (stride))
index = fold_build2_loc (input_location, MULT_EXPR, gfc_array_index_type,
index, stride);
return index;
}
/* Build a scalarized array reference using the vptr 'size'. */
static bool
build_class_array_ref (gfc_se *se, tree base, tree index)
{
tree type;
tree size;
tree offset;
tree decl;
tree tmp;
gfc_expr *expr = se->ss->info->expr;
gfc_ref *ref;
gfc_ref *class_ref;
gfc_typespec *ts;
if (expr == NULL || expr->ts.type != BT_CLASS)
return false;
if (expr->symtree && expr->symtree->n.sym->ts.type == BT_CLASS)
ts = &expr->symtree->n.sym->ts;
else
ts = NULL;
class_ref = NULL;
for (ref = expr->ref; ref; ref = ref->next)
{
if (ref->type == REF_COMPONENT
&& ref->u.c.component->ts.type == BT_CLASS
&& ref->next && ref->next->type == REF_COMPONENT
&& strcmp (ref->next->u.c.component->name, "_data") == 0
&& ref->next->next
&& ref->next->next->type == REF_ARRAY
&& ref->next->next->u.ar.type != AR_ELEMENT)
{
ts = &ref->u.c.component->ts;
class_ref = ref;
break;
}
}
if (ts == NULL)
return false;
if (class_ref == NULL)
decl = expr->symtree->n.sym->backend_decl;
else
{
/* Remove everything after the last class reference, convert the
expression and then recover its tailend once more. */
gfc_se tmpse;
ref = class_ref->next;
class_ref->next = NULL;
gfc_init_se (&tmpse, NULL);
gfc_conv_expr (&tmpse, expr);
decl = tmpse.expr;
class_ref->next = ref;
}
size = gfc_vtable_size_get (decl);
/* Build the address of the element. */
type = TREE_TYPE (TREE_TYPE (base));
size = fold_convert (TREE_TYPE (index), size);
offset = fold_build2_loc (input_location, MULT_EXPR,
gfc_array_index_type,
index, size);
tmp = gfc_build_addr_expr (pvoid_type_node, base);
tmp = fold_build_pointer_plus_loc (input_location, tmp, offset);
tmp = fold_convert (build_pointer_type (type), tmp);
/* Return the element in the se expression. */
se->expr = build_fold_indirect_ref_loc (input_location, tmp);
return true;
}
/* Build a scalarized reference to an array. */
static void
gfc_conv_scalarized_array_ref (gfc_se * se, gfc_array_ref * ar)
{
gfc_array_info *info;
tree decl = NULL_TREE;
tree index;
tree tmp;
gfc_ss *ss;
gfc_expr *expr;
int n;
ss = se->ss;
expr = ss->info->expr;
info = &ss->info->data.array;
if (ar)
n = se->loop->order[0];
else
n = 0;
index = conv_array_index_offset (se, ss, ss->dim[n], n, ar, info->stride0);
/* Add the offset for this dimension to the stored offset for all other
dimensions. */
if (!integer_zerop (info->offset))
index = fold_build2_loc (input_location, PLUS_EXPR, gfc_array_index_type,
index, info->offset);
if (expr && is_subref_array (expr))
decl = expr->symtree->n.sym->backend_decl;
tmp = build_fold_indirect_ref_loc (input_location, info->data);
/* Use the vptr 'size' field to access a class the element of a class
array. */
if (build_class_array_ref (se, tmp, index))
return;
se->expr = gfc_build_array_ref (tmp, index, decl);
}
/* Translate access of temporary array. */
void
gfc_conv_tmp_array_ref (gfc_se * se)
{
se->string_length = se->ss->info->string_length;
gfc_conv_scalarized_array_ref (se, NULL);
gfc_advance_se_ss_chain (se);
}
/* Add T to the offset pair *OFFSET, *CST_OFFSET. */
static void
add_to_offset (tree *cst_offset, tree *offset, tree t)
{
if (TREE_CODE (t) == INTEGER_CST)
*cst_offset = int_const_binop (PLUS_EXPR, *cst_offset, t);
else
{
if (!integer_zerop (*offset))
*offset = fold_build2_loc (input_location, PLUS_EXPR,
gfc_array_index_type, *offset, t);
else
*offset = t;
}
}
static tree
build_array_ref (tree desc, tree offset, tree decl)
{
tree tmp;
/* Class array references need special treatment because the assigned
type size needs to be used to point to the element. */
if (GFC_DESCRIPTOR_TYPE_P (TREE_TYPE (desc))
&& TREE_CODE (desc) == COMPONENT_REF
&& GFC_CLASS_TYPE_P (TREE_TYPE (TREE_OPERAND (desc, 0))))
{
tree type = gfc_get_element_type (TREE_TYPE (desc));
tmp = TREE_OPERAND (desc, 0);
tmp = gfc_get_class_array_ref (offset, tmp);
tmp = fold_convert (build_pointer_type (type), tmp);
tmp = build_fold_indirect_ref_loc (input_location, tmp);
}
else
{
tmp = gfc_conv_array_data (desc);
tmp = build_fold_indirect_ref_loc (input_location, tmp);
tmp = gfc_build_array_ref (tmp, offset, decl);
}
return tmp;
}
/* Build an array reference. se->expr already holds the array descriptor.
This should be either a variable, indirect variable reference or component
reference. For arrays which do not have a descriptor, se->expr will be
the data pointer.
a(i, j, k) = base[offset + i * stride[0] + j * stride[1] + k * stride[2]]*/
void
gfc_conv_array_ref (gfc_se * se, gfc_array_ref * ar, gfc_symbol * sym,
locus * where)
{
int n;
tree offset, cst_offset;
tree tmp;
tree stride;
gfc_se indexse;
gfc_se tmpse;
if (ar->dimen == 0)
{
gcc_assert (ar->codimen);
if (GFC_DESCRIPTOR_TYPE_P (TREE_TYPE (se->expr)))
se->expr = build_fold_indirect_ref (gfc_conv_array_data (se->expr));
else
{
if (GFC_ARRAY_TYPE_P (TREE_TYPE (se->expr))
&& TREE_CODE (TREE_TYPE (se->expr)) == POINTER_TYPE)
se->expr = build_fold_indirect_ref_loc (input_location, se->expr);
/* Use the actual tree type and not the wrapped coarray. */
if (!se->want_pointer)
se->expr = fold_convert (TYPE_MAIN_VARIANT (TREE_TYPE (se->expr)),
se->expr);
}
return;
}
/* Handle scalarized references separately. */
if (ar->type != AR_ELEMENT)
{
gfc_conv_scalarized_array_ref (se, ar);
gfc_advance_se_ss_chain (se);
return;
}
cst_offset = offset = gfc_index_zero_node;
add_to_offset (&cst_offset, &offset, gfc_conv_array_offset (se->expr));
/* Calculate the offsets from all the dimensions. Make sure to associate
the final offset so that we form a chain of loop invariant summands. */
for (n = ar->dimen - 1; n >= 0; n--)
{
/* Calculate the index for this dimension. */
gfc_init_se (&indexse, se);
gfc_conv_expr_type (&indexse, ar->start[n], gfc_array_index_type);
gfc_add_block_to_block (&se->pre, &indexse.pre);
if (gfc_option.rtcheck & GFC_RTCHECK_BOUNDS)
{
/* Check array bounds. */
tree cond;
char *msg;
/* Evaluate the indexse.expr only once. */
indexse.expr = save_expr (indexse.expr);
/* Lower bound. */
tmp = gfc_conv_array_lbound (se->expr, n);
if (sym->attr.temporary)
{
gfc_init_se (&tmpse, se);
gfc_conv_expr_type (&tmpse, ar->as->lower[n],
gfc_array_index_type);
gfc_add_block_to_block (&se->pre, &tmpse.pre);
tmp = tmpse.expr;
}
cond = fold_build2_loc (input_location, LT_EXPR, boolean_type_node,
indexse.expr, tmp);
asprintf (&msg, "Index '%%ld' of dimension %d of array '%s' "
"below lower bound of %%ld", n+1, sym->name);
gfc_trans_runtime_check (true, false, cond, &se->pre, where, msg,
fold_convert (long_integer_type_node,
indexse.expr),
fold_convert (long_integer_type_node, tmp));
free (msg);
/* Upper bound, but not for the last dimension of assumed-size
arrays. */
if (n < ar->dimen - 1 || ar->as->type != AS_ASSUMED_SIZE)
{
tmp = gfc_conv_array_ubound (se->expr, n);
if (sym->attr.temporary)
{
gfc_init_se (&tmpse, se);
gfc_conv_expr_type (&tmpse, ar->as->upper[n],
gfc_array_index_type);
gfc_add_block_to_block (&se->pre, &tmpse.pre);
tmp = tmpse.expr;
}
cond = fold_build2_loc (input_location, GT_EXPR,
boolean_type_node, indexse.expr, tmp);
asprintf (&msg, "Index '%%ld' of dimension %d of array '%s' "
"above upper bound of %%ld", n+1, sym->name);
gfc_trans_runtime_check (true, false, cond, &se->pre, where, msg,
fold_convert (long_integer_type_node,
indexse.expr),
fold_convert (long_integer_type_node, tmp));
free (msg);
}
}
/* Multiply the index by the stride. */
stride = gfc_conv_array_stride (se->expr, n);
tmp = fold_build2_loc (input_location, MULT_EXPR, gfc_array_index_type,
indexse.expr, stride);
/* And add it to the total. */
add_to_offset (&cst_offset, &offset, tmp);
}
if (!integer_zerop (cst_offset))
offset = fold_build2_loc (input_location, PLUS_EXPR,
gfc_array_index_type, offset, cst_offset);
se->expr = build_array_ref (se->expr, offset, sym->backend_decl);
}
/* Add the offset corresponding to array's ARRAY_DIM dimension and loop's
LOOP_DIM dimension (if any) to array's offset. */
static void
add_array_offset (stmtblock_t *pblock, gfc_loopinfo *loop, gfc_ss *ss,
gfc_array_ref *ar, int array_dim, int loop_dim)
{
gfc_se se;
gfc_array_info *info;
tree stride, index;
info = &ss->info->data.array;
gfc_init_se (&se, NULL);
se.loop = loop;
se.expr = info->descriptor;
stride = gfc_conv_array_stride (info->descriptor, array_dim);
index = conv_array_index_offset (&se, ss, array_dim, loop_dim, ar, stride);
gfc_add_block_to_block (pblock, &se.pre);
info->offset = fold_build2_loc (input_location, PLUS_EXPR,
gfc_array_index_type,
info->offset, index);
info->offset = gfc_evaluate_now (info->offset, pblock);
}
/* Generate the code to be executed immediately before entering a
scalarization loop. */
static void
gfc_trans_preloop_setup (gfc_loopinfo * loop, int dim, int flag,
stmtblock_t * pblock)
{
tree stride;
gfc_ss_info *ss_info;
gfc_array_info *info;
gfc_ss_type ss_type;
gfc_ss *ss, *pss;
gfc_loopinfo *ploop;
gfc_array_ref *ar;
int i;
/* This code will be executed before entering the scalarization loop
for this dimension. */
for (ss = loop->ss; ss != gfc_ss_terminator; ss = ss->loop_chain)
{
ss_info = ss->info;
if ((ss_info->useflags & flag) == 0)
continue;
ss_type = ss_info->type;
if (ss_type != GFC_SS_SECTION
&& ss_type != GFC_SS_FUNCTION
&& ss_type != GFC_SS_CONSTRUCTOR
&& ss_type != GFC_SS_COMPONENT)
continue;
info = &ss_info->data.array;
gcc_assert (dim < ss->dimen);
gcc_assert (ss->dimen == loop->dimen);
if (info->ref)
ar = &info->ref->u.ar;
else
ar = NULL;
if (dim == loop->dimen - 1 && loop->parent != NULL)
{
/* If we are in the outermost dimension of this loop, the previous
dimension shall be in the parent loop. */
gcc_assert (ss->parent != NULL);
pss = ss->parent;
ploop = loop->parent;
/* ss and ss->parent are about the same array. */
gcc_assert (ss_info == pss->info);
}
else
{
ploop = loop;
pss = ss;
}
if (dim == loop->dimen - 1)
i = 0;
else
i = dim + 1;
/* For the time being, there is no loop reordering. */
gcc_assert (i == ploop->order[i]);
i = ploop->order[i];
if (dim == loop->dimen - 1 && loop->parent == NULL)
{
stride = gfc_conv_array_stride (info->descriptor,
innermost_ss (ss)->dim[i]);
/* Calculate the stride of the innermost loop. Hopefully this will
allow the backend optimizers to do their stuff more effectively.
*/
info->stride0 = gfc_evaluate_now (stride, pblock);
/* For the outermost loop calculate the offset due to any
elemental dimensions. It will have been initialized with the
base offset of the array. */
if (info->ref)
{
for (i = 0; i < ar->dimen; i++)
{
if (ar->dimen_type[i] != DIMEN_ELEMENT)
continue;
add_array_offset (pblock, loop, ss, ar, i, /* unused */ -1);
}
}
}
else
/* Add the offset for the previous loop dimension. */
add_array_offset (pblock, ploop, ss, ar, pss->dim[i], i);
/* Remember this offset for the second loop. */
if (dim == loop->temp_dim - 1 && loop->parent == NULL)
info->saved_offset = info->offset;
}
}
/* Start a scalarized expression. Creates a scope and declares loop
variables. */
void
gfc_start_scalarized_body (gfc_loopinfo * loop, stmtblock_t * pbody)
{
int dim;
int n;
int flags;
gcc_assert (!loop->array_parameter);
for (dim = loop->dimen - 1; dim >= 0; dim--)
{
n = loop->order[dim];
gfc_start_block (&loop->code[n]);
/* Create the loop variable. */
loop->loopvar[n] = gfc_create_var (gfc_array_index_type, "S");
if (dim < loop->temp_dim)
flags = 3;
else
flags = 1;
/* Calculate values that will be constant within this loop. */
gfc_trans_preloop_setup (loop, dim, flags, &loop->code[n]);
}
gfc_start_block (pbody);
}
/* Generates the actual loop code for a scalarization loop. */
void
gfc_trans_scalarized_loop_end (gfc_loopinfo * loop, int n,
stmtblock_t * pbody)
{
stmtblock_t block;
tree cond;
tree tmp;
tree loopbody;
tree exit_label;
tree stmt;
tree init;
tree incr;
if ((ompws_flags & (OMPWS_WORKSHARE_FLAG | OMPWS_SCALARIZER_WS))
== (OMPWS_WORKSHARE_FLAG | OMPWS_SCALARIZER_WS)
&& n == loop->dimen - 1)
{
/* We create an OMP_FOR construct for the outermost scalarized loop. */
init = make_tree_vec (1);
cond = make_tree_vec (1);
incr = make_tree_vec (1);
/* Cycle statement is implemented with a goto. Exit statement must not
be present for this loop. */
exit_label = gfc_build_label_decl (NULL_TREE);
TREE_USED (exit_label) = 1;
/* Label for cycle statements (if needed). */
tmp = build1_v (LABEL_EXPR, exit_label);
gfc_add_expr_to_block (pbody, tmp);
stmt = make_node (OMP_FOR);
TREE_TYPE (stmt) = void_type_node;
OMP_FOR_BODY (stmt) = loopbody = gfc_finish_block (pbody);
OMP_FOR_CLAUSES (stmt) = build_omp_clause (input_location,
OMP_CLAUSE_SCHEDULE);
OMP_CLAUSE_SCHEDULE_KIND (OMP_FOR_CLAUSES (stmt))
= OMP_CLAUSE_SCHEDULE_STATIC;
if (ompws_flags & OMPWS_NOWAIT)
OMP_CLAUSE_CHAIN (OMP_FOR_CLAUSES (stmt))
= build_omp_clause (input_location, OMP_CLAUSE_NOWAIT);
/* Initialize the loopvar. */
TREE_VEC_ELT (init, 0) = build2_v (MODIFY_EXPR, loop->loopvar[n],
loop->from[n]);
OMP_FOR_INIT (stmt) = init;
/* The exit condition. */
TREE_VEC_ELT (cond, 0) = build2_loc (input_location, LE_EXPR,
boolean_type_node,
loop->loopvar[n], loop->to[n]);
SET_EXPR_LOCATION (TREE_VEC_ELT (cond, 0), input_location);
OMP_FOR_COND (stmt) = cond;
/* Increment the loopvar. */
tmp = build2_loc (input_location, PLUS_EXPR, gfc_array_index_type,
loop->loopvar[n], gfc_index_one_node);
TREE_VEC_ELT (incr, 0) = fold_build2_loc (input_location, MODIFY_EXPR,
void_type_node, loop->loopvar[n], tmp);
OMP_FOR_INCR (stmt) = incr;
ompws_flags &= ~OMPWS_CURR_SINGLEUNIT;
gfc_add_expr_to_block (&loop->code[n], stmt);
}
else
{
bool reverse_loop = (loop->reverse[n] == GFC_REVERSE_SET)
&& (loop->temp_ss == NULL);
loopbody = gfc_finish_block (pbody);
if (reverse_loop)
{
tmp = loop->from[n];
loop->from[n] = loop->to[n];
loop->to[n] = tmp;
}
/* Initialize the loopvar. */
if (loop->loopvar[n] != loop->from[n])
gfc_add_modify (&loop->code[n], loop->loopvar[n], loop->from[n]);
exit_label = gfc_build_label_decl (NULL_TREE);
/* Generate the loop body. */
gfc_init_block (&block);
/* The exit condition. */
cond = fold_build2_loc (input_location, reverse_loop ? LT_EXPR : GT_EXPR,
boolean_type_node, loop->loopvar[n], loop->to[n]);
tmp = build1_v (GOTO_EXPR, exit_label);
TREE_USED (exit_label) = 1;
tmp = build3_v (COND_EXPR, cond, tmp, build_empty_stmt (input_location));
gfc_add_expr_to_block (&block, tmp);
/* The main body. */
gfc_add_expr_to_block (&block, loopbody);
/* Increment the loopvar. */
tmp = fold_build2_loc (input_location,
reverse_loop ? MINUS_EXPR : PLUS_EXPR,
gfc_array_index_type, loop->loopvar[n],
gfc_index_one_node);
gfc_add_modify (&block, loop->loopvar[n], tmp);
/* Build the loop. */
tmp = gfc_finish_block (&block);
tmp = build1_v (LOOP_EXPR, tmp);
gfc_add_expr_to_block (&loop->code[n], tmp);
/* Add the exit label. */
tmp = build1_v (LABEL_EXPR, exit_label);
gfc_add_expr_to_block (&loop->code[n], tmp);
}
}
/* Finishes and generates the loops for a scalarized expression. */
void
gfc_trans_scalarizing_loops (gfc_loopinfo * loop, stmtblock_t * body)
{
int dim;
int n;
gfc_ss *ss;
stmtblock_t *pblock;
tree tmp;
pblock = body;
/* Generate the loops. */
for (dim = 0; dim < loop->dimen; dim++)
{
n = loop->order[dim];
gfc_trans_scalarized_loop_end (loop, n, pblock);
loop->loopvar[n] = NULL_TREE;
pblock = &loop->code[n];
}
tmp = gfc_finish_block (pblock);
gfc_add_expr_to_block (&loop->pre, tmp);
/* Clear all the used flags. */
for (ss = loop->ss; ss != gfc_ss_terminator; ss = ss->loop_chain)
if (ss->parent == NULL)
ss->info->useflags = 0;
}
/* Finish the main body of a scalarized expression, and start the secondary
copying body. */
void
gfc_trans_scalarized_loop_boundary (gfc_loopinfo * loop, stmtblock_t * body)
{
int dim;
int n;
stmtblock_t *pblock;
gfc_ss *ss;
pblock = body;
/* We finish as many loops as are used by the temporary. */
for (dim = 0; dim < loop->temp_dim - 1; dim++)
{
n = loop->order[dim];
gfc_trans_scalarized_loop_end (loop, n, pblock);
loop->loopvar[n] = NULL_TREE;
pblock = &loop->code[n];
}
/* We don't want to finish the outermost loop entirely. */
n = loop->order[loop->temp_dim - 1];
gfc_trans_scalarized_loop_end (loop, n, pblock);
/* Restore the initial offsets. */
for (ss = loop->ss; ss != gfc_ss_terminator; ss = ss->loop_chain)
{
gfc_ss_type ss_type;
gfc_ss_info *ss_info;
ss_info = ss->info;
if ((ss_info->useflags & 2) == 0)
continue;
ss_type = ss_info->type;
if (ss_type != GFC_SS_SECTION
&& ss_type != GFC_SS_FUNCTION
&& ss_type != GFC_SS_CONSTRUCTOR
&& ss_type != GFC_SS_COMPONENT)
continue;
ss_info->data.array.offset = ss_info->data.array.saved_offset;
}
/* Restart all the inner loops we just finished. */
for (dim = loop->temp_dim - 2; dim >= 0; dim--)
{
n = loop->order[dim];
gfc_start_block (&loop->code[n]);
loop->loopvar[n] = gfc_create_var (gfc_array_index_type, "Q");
gfc_trans_preloop_setup (loop, dim, 2, &loop->code[n]);
}
/* Start a block for the secondary copying code. */
gfc_start_block (body);
}
/* Precalculate (either lower or upper) bound of an array section.
BLOCK: Block in which the (pre)calculation code will go.
BOUNDS[DIM]: Where the bound value will be stored once evaluated.
VALUES[DIM]: Specified bound (NULL <=> unspecified).
DESC: Array descriptor from which the bound will be picked if unspecified
(either lower or upper bound according to LBOUND). */
static void
evaluate_bound (stmtblock_t *block, tree *bounds, gfc_expr ** values,
tree desc, int dim, bool lbound)
{
gfc_se se;
gfc_expr * input_val = values[dim];
tree *output = &bounds[dim];
if (input_val)
{
/* Specified section bound. */
gfc_init_se (&se, NULL);
gfc_conv_expr_type (&se, input_val, gfc_array_index_type);
gfc_add_block_to_block (block, &se.pre);
*output = se.expr;
}
else
{
/* No specific bound specified so use the bound of the array. */
*output = lbound ? gfc_conv_array_lbound (desc, dim) :
gfc_conv_array_ubound (desc, dim);
}
*output = gfc_evaluate_now (*output, block);
}
/* Calculate the lower bound of an array section. */
static void
gfc_conv_section_startstride (gfc_loopinfo * loop, gfc_ss * ss, int dim)
{
gfc_expr *stride = NULL;
tree desc;
gfc_se se;
gfc_array_info *info;
gfc_array_ref *ar;
gcc_assert (ss->info->type == GFC_SS_SECTION);
info = &ss->info->data.array;
ar = &info->ref->u.ar;
if (ar->dimen_type[dim] == DIMEN_VECTOR)
{
/* We use a zero-based index to access the vector. */
info->start[dim] = gfc_index_zero_node;
info->end[dim] = NULL;
info->stride[dim] = gfc_index_one_node;
return;
}
gcc_assert (ar->dimen_type[dim] == DIMEN_RANGE
|| ar->dimen_type[dim] == DIMEN_THIS_IMAGE);
desc = info->descriptor;
stride = ar->stride[dim];
/* Calculate the start of the range. For vector subscripts this will
be the range of the vector. */
evaluate_bound (&loop->pre, info->start, ar->start, desc, dim, true);
/* Similarly calculate the end. Although this is not used in the
scalarizer, it is needed when checking bounds and where the end
is an expression with side-effects. */
evaluate_bound (&loop->pre, info->end, ar->end, desc, dim, false);
/* Calculate the stride. */
if (stride == NULL)
info->stride[dim] = gfc_index_one_node;
else
{
gfc_init_se (&se, NULL);
gfc_conv_expr_type (&se, stride, gfc_array_index_type);
gfc_add_block_to_block (&loop->pre, &se.pre);
info->stride[dim] = gfc_evaluate_now (se.expr, &loop->pre);
}
}
/* Calculates the range start and stride for a SS chain. Also gets the
descriptor and data pointer. The range of vector subscripts is the size
of the vector. Array bounds are also checked. */
void
gfc_conv_ss_startstride (gfc_loopinfo * loop)
{
int n;
tree tmp;
gfc_ss *ss;
tree desc;
loop->dimen = 0;
/* Determine the rank of the loop. */
for (ss = loop->ss; ss != gfc_ss_terminator; ss = ss->loop_chain)
{
switch (ss->info->type)
{
case GFC_SS_SECTION:
case GFC_SS_CONSTRUCTOR:
case GFC_SS_FUNCTION:
case GFC_SS_COMPONENT:
loop->dimen = ss->dimen;
goto done;
/* As usual, lbound and ubound are exceptions!. */
case GFC_SS_INTRINSIC:
switch (ss->info->expr->value.function.isym->id)
{
case GFC_ISYM_LBOUND:
case GFC_ISYM_UBOUND:
case GFC_ISYM_LCOBOUND:
case GFC_ISYM_UCOBOUND:
case GFC_ISYM_THIS_IMAGE:
loop->dimen = ss->dimen;
goto done;
default:
break;
}
default:
break;
}
}
/* We should have determined the rank of the expression by now. If
not, that's bad news. */
gcc_unreachable ();
done:
/* Loop over all the SS in the chain. */
for (ss = loop->ss; ss != gfc_ss_terminator; ss = ss->loop_chain)
{
gfc_ss_info *ss_info;
gfc_array_info *info;
gfc_expr *expr;
ss_info = ss->info;
expr = ss_info->expr;
info = &ss_info->data.array;
if (expr && expr->shape && !info->shape)
info->shape = expr->shape;
switch (ss_info->type)
{
case GFC_SS_SECTION:
/* Get the descriptor for the array. If it is a cross loops array,
we got the descriptor already in the outermost loop. */
if (ss->parent == NULL)
gfc_conv_ss_descriptor (&loop->pre, ss, !loop->array_parameter);
for (n = 0; n < ss->dimen; n++)
gfc_conv_section_startstride (loop, ss, ss->dim[n]);
break;
case GFC_SS_INTRINSIC:
switch (expr->value.function.isym->id)
{
/* Fall through to supply start and stride. */
case GFC_ISYM_LBOUND:
case GFC_ISYM_UBOUND:
{
gfc_expr *arg;
/* This is the variant without DIM=... */
gcc_assert (expr->value.function.actual->next->expr == NULL);
arg = expr->value.function.actual->expr;
if (arg->rank == -1)
{
gfc_se se;
tree rank, tmp;
/* The rank (hence the return value's shape) is unknown,
we have to retrieve it. */
gfc_init_se (&se, NULL);
se.descriptor_only = 1;
gfc_conv_expr (&se, arg);
/* This is a bare variable, so there is no preliminary
or cleanup code. */
gcc_assert (se.pre.head == NULL_TREE
&& se.post.head == NULL_TREE);
rank = gfc_conv_descriptor_rank (se.expr);
tmp = fold_build2_loc (input_location, MINUS_EXPR,
gfc_array_index_type,
fold_convert (gfc_array_index_type,
rank),
gfc_index_one_node);
info->end[0] = gfc_evaluate_now (tmp, &loop->pre);
info->start[0] = gfc_index_zero_node;
info->stride[0] = gfc_index_one_node;
continue;
}
/* Otherwise fall through GFC_SS_FUNCTION. */
}
case GFC_ISYM_LCOBOUND:
case GFC_ISYM_UCOBOUND:
case GFC_ISYM_THIS_IMAGE:
break;
default:
continue;
}
case GFC_SS_CONSTRUCTOR:
case GFC_SS_FUNCTION:
for (n = 0; n < ss->dimen; n++)
{
int dim = ss->dim[n];
info->start[dim] = gfc_index_zero_node;
info->end[dim] = gfc_index_zero_node;
info->stride[dim] = gfc_index_one_node;
}
break;
default:
break;
}
}
/* The rest is just runtime bound checking. */
if (gfc_option.rtcheck & GFC_RTCHECK_BOUNDS)
{
stmtblock_t block;
tree lbound, ubound;
tree end;
tree size[GFC_MAX_DIMENSIONS];
tree stride_pos, stride_neg, non_zerosized, tmp2, tmp3;
gfc_array_info *info;
char *msg;
int dim;
gfc_start_block (&block);
for (n = 0; n < loop->dimen; n++)
size[n] = NULL_TREE;
for (ss = loop->ss; ss != gfc_ss_terminator; ss = ss->loop_chain)
{
stmtblock_t inner;
gfc_ss_info *ss_info;
gfc_expr *expr;
locus *expr_loc;
const char *expr_name;
ss_info = ss->info;
if (ss_info->type != GFC_SS_SECTION)
continue;
/* Catch allocatable lhs in f2003. */
if (gfc_option.flag_realloc_lhs && ss->is_alloc_lhs)
continue;
expr = ss_info->expr;
expr_loc = &expr->where;
expr_name = expr->symtree->name;
gfc_start_block (&inner);
/* TODO: range checking for mapped dimensions. */
info = &ss_info->data.array;
/* This code only checks ranges. Elemental and vector
dimensions are checked later. */
for (n = 0; n < loop->dimen; n++)
{
bool check_upper;
dim = ss->dim[n];
if (info->ref->u.ar.dimen_type[dim] != DIMEN_RANGE)
continue;
if (dim == info->ref->u.ar.dimen - 1
&& info->ref->u.ar.as->type == AS_ASSUMED_SIZE)
check_upper = false;
else
check_upper = true;
/* Zero stride is not allowed. */
tmp = fold_build2_loc (input_location, EQ_EXPR, boolean_type_node,
info->stride[dim], gfc_index_zero_node);
asprintf (&msg, "Zero stride is not allowed, for dimension %d "
"of array '%s'", dim + 1, expr_name);
gfc_trans_runtime_check (true, false, tmp, &inner,
expr_loc, msg);
free (msg);
desc = info->descriptor;
/* This is the run-time equivalent of resolve.c's
check_dimension(). The logical is more readable there
than it is here, with all the trees. */
lbound = gfc_conv_array_lbound (desc, dim);
end = info->end[dim];
if (check_upper)
ubound = gfc_conv_array_ubound (desc, dim);
else
ubound = NULL;
/* non_zerosized is true when the selected range is not
empty. */
stride_pos = fold_build2_loc (input_location, GT_EXPR,
boolean_type_node, info->stride[dim],
gfc_index_zero_node);
tmp = fold_build2_loc (input_location, LE_EXPR, boolean_type_node,
info->start[dim], end);
stride_pos = fold_build2_loc (input_location, TRUTH_AND_EXPR,
boolean_type_node, stride_pos, tmp);
stride_neg = fold_build2_loc (input_location, LT_EXPR,
boolean_type_node,
info->stride[dim], gfc_index_zero_node);
tmp = fold_build2_loc (input_location, GE_EXPR, boolean_type_node,
info->start[dim], end);
stride_neg = fold_build2_loc (input_location, TRUTH_AND_EXPR,
boolean_type_node,
stride_neg, tmp);
non_zerosized = fold_build2_loc (input_location, TRUTH_OR_EXPR,
boolean_type_node,
stride_pos, stride_neg);
/* Check the start of the range against the lower and upper
bounds of the array, if the range is not empty.
If upper bound is present, include both bounds in the
error message. */
if (check_upper)
{
tmp = fold_build2_loc (input_location, LT_EXPR,
boolean_type_node,
info->start[dim], lbound);
tmp = fold_build2_loc (input_location, TRUTH_AND_EXPR,
boolean_type_node,
non_zerosized, tmp);
tmp2 = fold_build2_loc (input_location, GT_EXPR,
boolean_type_node,
info->start[dim], ubound);
tmp2 = fold_build2_loc (input_location, TRUTH_AND_EXPR,
boolean_type_node,
non_zerosized, tmp2);
asprintf (&msg, "Index '%%ld' of dimension %d of array '%s' "
"outside of expected range (%%ld:%%ld)",
dim + 1, expr_name);
gfc_trans_runtime_check (true, false, tmp, &inner,
expr_loc, msg,
fold_convert (long_integer_type_node, info->start[dim]),
fold_convert (long_integer_type_node, lbound),
fold_convert (long_integer_type_node, ubound));
gfc_trans_runtime_check (true, false, tmp2, &inner,
expr_loc, msg,
fold_convert (long_integer_type_node, info->start[dim]),
fold_convert (long_integer_type_node, lbound),
fold_convert (long_integer_type_node, ubound));
free (msg);
}
else
{
tmp = fold_build2_loc (input_location, LT_EXPR,
boolean_type_node,
info->start[dim], lbound);
tmp = fold_build2_loc (input_location, TRUTH_AND_EXPR,
boolean_type_node, non_zerosized, tmp);
asprintf (&msg, "Index '%%ld' of dimension %d of array '%s' "
"below lower bound of %%ld",
dim + 1, expr_name);
gfc_trans_runtime_check (true, false, tmp, &inner,
expr_loc, msg,
fold_convert (long_integer_type_node, info->start[dim]),
fold_convert (long_integer_type_node, lbound));
free (msg);
}
/* Compute the last element of the range, which is not
necessarily "end" (think 0:5:3, which doesn't contain 5)
and check it against both lower and upper bounds. */
tmp = fold_build2_loc (input_location, MINUS_EXPR,
gfc_array_index_type, end,
info->start[dim]);
tmp = fold_build2_loc (input_location, TRUNC_MOD_EXPR,
gfc_array_index_type, tmp,
info->stride[dim]);
tmp = fold_build2_loc (input_location, MINUS_EXPR,
gfc_array_index_type, end, tmp);
tmp2 = fold_build2_loc (input_location, LT_EXPR,
boolean_type_node, tmp, lbound);
tmp2 = fold_build2_loc (input_location, TRUTH_AND_EXPR,
boolean_type_node, non_zerosized, tmp2);
if (check_upper)
{
tmp3 = fold_build2_loc (input_location, GT_EXPR,
boolean_type_node, tmp, ubound);
tmp3 = fold_build2_loc (input_location, TRUTH_AND_EXPR,
boolean_type_node, non_zerosized, tmp3);
asprintf (&msg, "Index '%%ld' of dimension %d of array '%s' "
"outside of expected range (%%ld:%%ld)",
dim + 1, expr_name);
gfc_trans_runtime_check (true, false, tmp2, &inner,
expr_loc, msg,
fold_convert (long_integer_type_node, tmp),
fold_convert (long_integer_type_node, ubound),
fold_convert (long_integer_type_node, lbound));
gfc_trans_runtime_check (true, false, tmp3, &inner,
expr_loc, msg,
fold_convert (long_integer_type_node, tmp),
fold_convert (long_integer_type_node, ubound),
fold_convert (long_integer_type_node, lbound));
free (msg);
}
else
{
asprintf (&msg, "Index '%%ld' of dimension %d of array '%s' "
"below lower bound of %%ld",
dim + 1, expr_name);
gfc_trans_runtime_check (true, false, tmp2, &inner,
expr_loc, msg,
fold_convert (long_integer_type_node, tmp),
fold_convert (long_integer_type_node, lbound));
free (msg);
}
/* Check the section sizes match. */
tmp = fold_build2_loc (input_location, MINUS_EXPR,
gfc_array_index_type, end,
info->start[dim]);
tmp = fold_build2_loc (input_location, FLOOR_DIV_EXPR,
gfc_array_index_type, tmp,
info->stride[dim]);
tmp = fold_build2_loc (input_location, PLUS_EXPR,
gfc_array_index_type,
gfc_index_one_node, tmp);
tmp = fold_build2_loc (input_location, MAX_EXPR,
gfc_array_index_type, tmp,
build_int_cst (gfc_array_index_type, 0));
/* We remember the size of the first section, and check all the
others against this. */
if (size[n])
{
tmp3 = fold_build2_loc (input_location, NE_EXPR,
boolean_type_node, tmp, size[n]);
asprintf (&msg, "Array bound mismatch for dimension %d "
"of array '%s' (%%ld/%%ld)",
dim + 1, expr_name);
gfc_trans_runtime_check (true, false, tmp3, &inner,
expr_loc, msg,
fold_convert (long_integer_type_node, tmp),
fold_convert (long_integer_type_node, size[n]));
free (msg);
}
else
size[n] = gfc_evaluate_now (tmp, &inner);
}
tmp = gfc_finish_block (&inner);
/* For optional arguments, only check bounds if the argument is
present. */
if (expr->symtree->n.sym->attr.optional
|| expr->symtree->n.sym->attr.not_always_present)
tmp = build3_v (COND_EXPR,
gfc_conv_expr_present (expr->symtree->n.sym),
tmp, build_empty_stmt (input_location));
gfc_add_expr_to_block (&block, tmp);
}
tmp = gfc_finish_block (&block);
gfc_add_expr_to_block (&loop->pre, tmp);
}
for (loop = loop->nested; loop; loop = loop->next)
gfc_conv_ss_startstride (loop);
}
/* Return true if both symbols could refer to the same data object. Does
not take account of aliasing due to equivalence statements. */
static int
symbols_could_alias (gfc_symbol *lsym, gfc_symbol *rsym, bool lsym_pointer,
bool lsym_target, bool rsym_pointer, bool rsym_target)
{
/* Aliasing isn't possible if the symbols have different base types. */
if (gfc_compare_types (&lsym->ts, &rsym->ts) == 0)
return 0;
/* Pointers can point to other pointers and target objects. */
if ((lsym_pointer && (rsym_pointer || rsym_target))
|| (rsym_pointer && (lsym_pointer || lsym_target)))
return 1;
/* Special case: Argument association, cf. F90 12.4.1.6, F2003 12.4.1.7
and F2008 12.5.2.13 items 3b and 4b. The pointer case (a) is already
checked above. */
if (lsym_target && rsym_target
&& ((lsym->attr.dummy && !lsym->attr.contiguous
&& (!lsym->attr.dimension || lsym->as->type == AS_ASSUMED_SHAPE))
|| (rsym->attr.dummy && !rsym->attr.contiguous
&& (!rsym->attr.dimension
|| rsym->as->type == AS_ASSUMED_SHAPE))))
return 1;
return 0;
}
/* Return true if the two SS could be aliased, i.e. both point to the same data
object. */
/* TODO: resolve aliases based on frontend expressions. */
static int
gfc_could_be_alias (gfc_ss * lss, gfc_ss * rss)
{
gfc_ref *lref;
gfc_ref *rref;
gfc_expr *lexpr, *rexpr;
gfc_symbol *lsym;
gfc_symbol *rsym;
bool lsym_pointer, lsym_target, rsym_pointer, rsym_target;
lexpr = lss->info->expr;
rexpr = rss->info->expr;
lsym = lexpr->symtree->n.sym;
rsym = rexpr->symtree->n.sym;
lsym_pointer = lsym->attr.pointer;
lsym_target = lsym->attr.target;
rsym_pointer = rsym->attr.pointer;
rsym_target = rsym->attr.target;
if (symbols_could_alias (lsym, rsym, lsym_pointer, lsym_target,
rsym_pointer, rsym_target))
return 1;
if (rsym->ts.type != BT_DERIVED && rsym->ts.type != BT_CLASS
&& lsym->ts.type != BT_DERIVED && lsym->ts.type != BT_CLASS)
return 0;
/* For derived types we must check all the component types. We can ignore
array references as these will have the same base type as the previous
component ref. */
for (lref = lexpr->ref; lref != lss->info->data.array.ref; lref = lref->next)
{
if (lref->type != REF_COMPONENT)
continue;
lsym_pointer = lsym_pointer || lref->u.c.sym->attr.pointer;
lsym_target = lsym_target || lref->u.c.sym->attr.target;
if (symbols_could_alias (lref->u.c.sym, rsym, lsym_pointer, lsym_target,
rsym_pointer, rsym_target))
return 1;
if ((lsym_pointer && (rsym_pointer || rsym_target))
|| (rsym_pointer && (lsym_pointer || lsym_target)))
{
if (gfc_compare_types (&lref->u.c.component->ts,
&rsym->ts))
return 1;
}
for (rref = rexpr->ref; rref != rss->info->data.array.ref;
rref = rref->next)
{
if (rref->type != REF_COMPONENT)
continue;
rsym_pointer = rsym_pointer || rref->u.c.sym->attr.pointer;
rsym_target = lsym_target || rref->u.c.sym->attr.target;
if (symbols_could_alias (lref->u.c.sym, rref->u.c.sym,
lsym_pointer, lsym_target,
rsym_pointer, rsym_target))
return 1;
if ((lsym_pointer && (rsym_pointer || rsym_target))
|| (rsym_pointer && (lsym_pointer || lsym_target)))
{
if (gfc_compare_types (&lref->u.c.component->ts,
&rref->u.c.sym->ts))
return 1;
if (gfc_compare_types (&lref->u.c.sym->ts,
&rref->u.c.component->ts))
return 1;
if (gfc_compare_types (&lref->u.c.component->ts,
&rref->u.c.component->ts))
return 1;
}
}
}
lsym_pointer = lsym->attr.pointer;
lsym_target = lsym->attr.target;
lsym_pointer = lsym->attr.pointer;
lsym_target = lsym->attr.target;
for (rref = rexpr->ref; rref != rss->info->data.array.ref; rref = rref->next)
{
if (rref->type != REF_COMPONENT)
break;
rsym_pointer = rsym_pointer || rref->u.c.sym->attr.pointer;
rsym_target = lsym_target || rref->u.c.sym->attr.target;
if (symbols_could_alias (rref->u.c.sym, lsym,
lsym_pointer, lsym_target,
rsym_pointer, rsym_target))
return 1;
if ((lsym_pointer && (rsym_pointer || rsym_target))
|| (rsym_pointer && (lsym_pointer || lsym_target)))
{
if (gfc_compare_types (&lsym->ts, &rref->u.c.component->ts))
return 1;
}
}
return 0;
}
/* Resolve array data dependencies. Creates a temporary if required. */
/* TODO: Calc dependencies with gfc_expr rather than gfc_ss, and move to
dependency.c. */
void
gfc_conv_resolve_dependencies (gfc_loopinfo * loop, gfc_ss * dest,
gfc_ss * rss)
{
gfc_ss *ss;
gfc_ref *lref;
gfc_ref *rref;
gfc_expr *dest_expr;
gfc_expr *ss_expr;
int nDepend = 0;
int i, j;
loop->temp_ss = NULL;
dest_expr = dest->info->expr;
for (ss = rss; ss != gfc_ss_terminator; ss = ss->next)
{
if (ss->info->type != GFC_SS_SECTION)
continue;
ss_expr = ss->info->expr;
if (dest_expr->symtree->n.sym != ss_expr->symtree->n.sym)
{
if (gfc_could_be_alias (dest, ss)
|| gfc_are_equivalenced_arrays (dest_expr, ss_expr))
{
nDepend = 1;
break;
}
}
else
{
lref = dest_expr->ref;
rref = ss_expr->ref;
nDepend = gfc_dep_resolver (lref, rref, &loop->reverse[0]);
if (nDepend == 1)
break;
for (i = 0; i < dest->dimen; i++)
for (j = 0; j < ss->dimen; j++)
if (i != j
&& dest->dim[i] == ss->dim[j])
{
/* If we don't access array elements in the same order,
there is a dependency. */
nDepend = 1;
goto temporary;
}
#if 0
/* TODO : loop shifting. */
if (nDepend == 1)
{
/* Mark the dimensions for LOOP SHIFTING */
for (n = 0; n < loop->dimen; n++)
{
int dim = dest->data.info.dim[n];
if (lref->u.ar.dimen_type[dim] == DIMEN_VECTOR)
depends[n] = 2;
else if (! gfc_is_same_range (&lref->u.ar,
&rref->u.ar, dim, 0))
depends[n] = 1;
}
/* Put all the dimensions with dependencies in the
innermost loops. */
dim = 0;
for (n = 0; n < loop->dimen; n++)
{
gcc_assert (loop->order[n] == n);
if (depends[n])
loop->order[dim++] = n;
}
for (n = 0; n < loop->dimen; n++)
{
if (! depends[n])
loop->order[dim++] = n;
}
gcc_assert (dim == loop->dimen);
break;
}
#endif
}
}
temporary:
if (nDepend == 1)
{
tree base_type = gfc_typenode_for_spec (&dest_expr->ts);
if (GFC_ARRAY_TYPE_P (base_type)
|| GFC_DESCRIPTOR_TYPE_P (base_type))
base_type = gfc_get_element_type (base_type);
loop->temp_ss = gfc_get_temp_ss (base_type, dest->info->string_length,
loop->dimen);
gfc_add_ss_to_loop (loop, loop->temp_ss);
}
else
loop->temp_ss = NULL;
}
/* Browse through each array's information from the scalarizer and set the loop
bounds according to the "best" one (per dimension), i.e. the one which
provides the most information (constant bounds, shape, etc.). */
static void
set_loop_bounds (gfc_loopinfo *loop)
{
int n, dim, spec_dim;
gfc_array_info *info;
gfc_array_info *specinfo;
gfc_ss *ss;
tree tmp;
gfc_ss **loopspec;
bool dynamic[GFC_MAX_DIMENSIONS];
mpz_t *cshape;
mpz_t i;
bool nonoptional_arr;
loopspec = loop->specloop;
mpz_init (i);
for (n = 0; n < loop->dimen; n++)
{
loopspec[n] = NULL;
dynamic[n] = false;
/* If there are both optional and nonoptional array arguments, scalarize
over the nonoptional; otherwise, it does not matter as then all
(optional) arrays have to be present per F2008, 125.2.12p3(6). */
nonoptional_arr = false;
for (ss = loop->ss; ss != gfc_ss_terminator; ss = ss->loop_chain)
if (ss->info->type != GFC_SS_SCALAR && ss->info->type != GFC_SS_TEMP
&& ss->info->type != GFC_SS_REFERENCE && !ss->info->can_be_null_ref)
nonoptional_arr = true;
/* We use one SS term, and use that to determine the bounds of the
loop for this dimension. We try to pick the simplest term. */
for (ss = loop->ss; ss != gfc_ss_terminator; ss = ss->loop_chain)
{
gfc_ss_type ss_type;
ss_type = ss->info->type;
if (ss_type == GFC_SS_SCALAR
|| ss_type == GFC_SS_TEMP
|| ss_type == GFC_SS_REFERENCE
|| (ss->info->can_be_null_ref && nonoptional_arr))
continue;
info = &ss->info->data.array;
dim = ss->dim[n];
if (loopspec[n] != NULL)
{
specinfo = &loopspec[n]->info->data.array;
spec_dim = loopspec[n]->dim[n];
}
else
{
/* Silence uninitialized warnings. */
specinfo = NULL;
spec_dim = 0;
}
if (info->shape)
{
gcc_assert (info->shape[dim]);
/* The frontend has worked out the size for us. */
if (!loopspec[n]
|| !specinfo->shape
|| !integer_zerop (specinfo->start[spec_dim]))
/* Prefer zero-based descriptors if possible. */
loopspec[n] = ss;
continue;
}
if (ss_type == GFC_SS_CONSTRUCTOR)
{
gfc_constructor_base base;
/* An unknown size constructor will always be rank one.
Higher rank constructors will either have known shape,
or still be wrapped in a call to reshape. */
gcc_assert (loop->dimen == 1);
/* Always prefer to use the constructor bounds if the size
can be determined at compile time. Prefer not to otherwise,
since the general case involves realloc, and it's better to
avoid that overhead if possible. */
base = ss->info->expr->value.constructor;
dynamic[n] = gfc_get_array_constructor_size (&i, base);
if (!dynamic[n] || !loopspec[n])
loopspec[n] = ss;
continue;
}
/* Avoid using an allocatable lhs in an assignment, since
there might be a reallocation coming. */
if (loopspec[n] && ss->is_alloc_lhs)
continue;
if (!loopspec[n])
loopspec[n] = ss;
/* Criteria for choosing a loop specifier (most important first):
doesn't need realloc
stride of one
known stride
known lower bound
known upper bound
*/
else if (loopspec[n]->info->type == GFC_SS_CONSTRUCTOR && dynamic[n])
loopspec[n] = ss;
else if (integer_onep (info->stride[dim])
&& !integer_onep (specinfo->stride[spec_dim]))
loopspec[n] = ss;
else if (INTEGER_CST_P (info->stride[dim])
&& !INTEGER_CST_P (specinfo->stride[spec_dim]))
loopspec[n] = ss;
else if (INTEGER_CST_P (info->start[dim])
&& !INTEGER_CST_P (specinfo->start[spec_dim])
&& integer_onep (info->stride[dim])
== integer_onep (specinfo->stride[spec_dim])
&& INTEGER_CST_P (info->stride[dim])
== INTEGER_CST_P (specinfo->stride[spec_dim]))
loopspec[n] = ss;
/* We don't work out the upper bound.
else if (INTEGER_CST_P (info->finish[n])
&& ! INTEGER_CST_P (specinfo->finish[n]))
loopspec[n] = ss; */
}
/* We should have found the scalarization loop specifier. If not,
that's bad news. */
gcc_assert (loopspec[n]);
info = &loopspec[n]->info->data.array;
dim = loopspec[n]->dim[n];
/* Set the extents of this range. */
cshape = info->shape;
if (cshape && INTEGER_CST_P (info->start[dim])
&& INTEGER_CST_P (info->stride[dim]))
{
loop->from[n] = info->start[dim];
mpz_set (i, cshape[get_array_ref_dim_for_loop_dim (loopspec[n], n)]);
mpz_sub_ui (i, i, 1);
/* To = from + (size - 1) * stride. */
tmp = gfc_conv_mpz_to_tree (i, gfc_index_integer_kind);
if (!integer_onep (info->stride[dim]))
tmp = fold_build2_loc (input_location, MULT_EXPR,
gfc_array_index_type, tmp,
info->stride[dim]);
loop->to[n] = fold_build2_loc (input_location, PLUS_EXPR,
gfc_array_index_type,
loop->from[n], tmp);
}
else
{
loop->from[n] = info->start[dim];
switch (loopspec[n]->info->type)
{
case GFC_SS_CONSTRUCTOR:
/* The upper bound is calculated when we expand the
constructor. */
gcc_assert (loop->to[n] == NULL_TREE);
break;
case GFC_SS_SECTION:
/* Use the end expression if it exists and is not constant,
so that it is only evaluated once. */
loop->to[n] = info->end[dim];
break;
case GFC_SS_FUNCTION:
/* The loop bound will be set when we generate the call. */
gcc_assert (loop->to[n] == NULL_TREE);
break;
case GFC_SS_INTRINSIC:
{
gfc_expr *expr = loopspec[n]->info->expr;
/* The {l,u}bound of an assumed rank. */
gcc_assert ((expr->value.function.isym->id == GFC_ISYM_LBOUND
|| expr->value.function.isym->id == GFC_ISYM_UBOUND)
&& expr->value.function.actual->next->expr == NULL
&& expr->value.function.actual->expr->rank == -1);
loop->to[n] = info->end[dim];
break;
}
default:
gcc_unreachable ();
}
}
/* Transform everything so we have a simple incrementing variable. */
if (integer_onep (info->stride[dim]))
info->delta[dim] = gfc_index_zero_node;
else
{
/* Set the delta for this section. */
info->delta[dim] = gfc_evaluate_now (loop->from[n], &loop->pre);
/* Number of iterations is (end - start + step) / step.
with start = 0, this simplifies to
last = end / step;
for (i = 0; i<=last; i++){...}; */
tmp = fold_build2_loc (input_location, MINUS_EXPR,
gfc_array_index_type, loop->to[n],
loop->from[n]);
tmp = fold_build2_loc (input_location, FLOOR_DIV_EXPR,
gfc_array_index_type, tmp, info->stride[dim]);
tmp = fold_build2_loc (input_location, MAX_EXPR, gfc_array_index_type,
tmp, build_int_cst (gfc_array_index_type, -1));
loop->to[n] = gfc_evaluate_now (tmp, &loop->pre);
/* Make the loop variable start at 0. */
loop->from[n] = gfc_index_zero_node;
}
}
mpz_clear (i);
for (loop = loop->nested; loop; loop = loop->next)
set_loop_bounds (loop);
}
/* Initialize the scalarization loop. Creates the loop variables. Determines
the range of the loop variables. Creates a temporary if required.
Also generates code for scalar expressions which have been
moved outside the loop. */
void
gfc_conv_loop_setup (gfc_loopinfo * loop, locus * where)
{
gfc_ss *tmp_ss;
tree tmp;
set_loop_bounds (loop);
/* Add all the scalar code that can be taken out of the loops.
This may include calculating the loop bounds, so do it before
allocating the temporary. */
gfc_add_loop_ss_code (loop, loop->ss, false, where);
tmp_ss = loop->temp_ss;
/* If we want a temporary then create it. */
if (tmp_ss != NULL)
{
gfc_ss_info *tmp_ss_info;
tmp_ss_info = tmp_ss->info;
gcc_assert (tmp_ss_info->type == GFC_SS_TEMP);
gcc_assert (loop->parent == NULL);
/* Make absolutely sure that this is a complete type. */
if (tmp_ss_info->string_length)
tmp_ss_info->data.temp.type
= gfc_get_character_type_len_for_eltype
(TREE_TYPE (tmp_ss_info->data.temp.type),
tmp_ss_info->string_length);
tmp = tmp_ss_info->data.temp.type;
memset (&tmp_ss_info->data.array, 0, sizeof (gfc_array_info));
tmp_ss_info->type = GFC_SS_SECTION;
gcc_assert (tmp_ss->dimen != 0);
gfc_trans_create_temp_array (&loop->pre, &loop->post, tmp_ss, tmp,
NULL_TREE, false, true, false, where);
}
/* For array parameters we don't have loop variables, so don't calculate the
translations. */
if (!loop->array_parameter)
gfc_set_delta (loop);
}
/* Calculates how to transform from loop variables to array indices for each
array: once loop bounds are chosen, sets the difference (DELTA field) between
loop bounds and array reference bounds, for each array info. */
void
gfc_set_delta (gfc_loopinfo *loop)
{
gfc_ss *ss, **loopspec;
gfc_array_info *info;
tree tmp;
int n, dim;
loopspec = loop->specloop;
/* Calculate the translation from loop variables to array indices. */
for (ss = loop->ss; ss != gfc_ss_terminator; ss = ss->loop_chain)
{
gfc_ss_type ss_type;
ss_type = ss->info->type;
if (ss_type != GFC_SS_SECTION
&& ss_type != GFC_SS_COMPONENT
&& ss_type != GFC_SS_CONSTRUCTOR)
continue;
info = &ss->info->data.array;
for (n = 0; n < ss->dimen; n++)
{
/* If we are specifying the range the delta is already set. */
if (loopspec[n] != ss)
{
dim = ss->dim[n];
/* Calculate the offset relative to the loop variable.
First multiply by the stride. */
tmp = loop->from[n];
if (!integer_onep (info->stride[dim]))
tmp = fold_build2_loc (input_location, MULT_EXPR,
gfc_array_index_type,
tmp, info->stride[dim]);
/* Then subtract this from our starting value. */
tmp = fold_build2_loc (input_location, MINUS_EXPR,
gfc_array_index_type,
info->start[dim], tmp);
info->delta[dim] = gfc_evaluate_now (tmp, &loop->pre);
}
}
}
for (loop = loop->nested; loop; loop = loop->next)
gfc_set_delta (loop);
}
/* Calculate the size of a given array dimension from the bounds. This
is simply (ubound - lbound + 1) if this expression is positive
or 0 if it is negative (pick either one if it is zero). Optionally
(if or_expr is present) OR the (expression != 0) condition to it. */
tree
gfc_conv_array_extent_dim (tree lbound, tree ubound, tree* or_expr)
{
tree res;
tree cond;
/* Calculate (ubound - lbound + 1). */
res = fold_build2_loc (input_location, MINUS_EXPR, gfc_array_index_type,
ubound, lbound);
res = fold_build2_loc (input_location, PLUS_EXPR, gfc_array_index_type, res,
gfc_index_one_node);
/* Check whether the size for this dimension is negative. */
cond = fold_build2_loc (input_location, LE_EXPR, boolean_type_node, res,
gfc_index_zero_node);
res = fold_build3_loc (input_location, COND_EXPR, gfc_array_index_type, cond,
gfc_index_zero_node, res);
/* Build OR expression. */
if (or_expr)
*or_expr = fold_build2_loc (input_location, TRUTH_OR_EXPR,
boolean_type_node, *or_expr, cond);
return res;
}
/* For an array descriptor, get the total number of elements. This is just
the product of the extents along from_dim to to_dim. */
static tree
gfc_conv_descriptor_size_1 (tree desc, int from_dim, int to_dim)
{
tree res;
int dim;
res = gfc_index_one_node;
for (dim = from_dim; dim < to_dim; ++dim)
{
tree lbound;
tree ubound;
tree extent;
lbound = gfc_conv_descriptor_lbound_get (desc, gfc_rank_cst[dim]);
ubound = gfc_conv_descriptor_ubound_get (desc, gfc_rank_cst[dim]);
extent = gfc_conv_array_extent_dim (lbound, ubound, NULL);
res = fold_build2_loc (input_location, MULT_EXPR, gfc_array_index_type,
res, extent);
}
return res;
}
/* Full size of an array. */
tree
gfc_conv_descriptor_size (tree desc, int rank)
{
return gfc_conv_descriptor_size_1 (desc, 0, rank);
}
/* Size of a coarray for all dimensions but the last. */
tree
gfc_conv_descriptor_cosize (tree desc, int rank, int corank)
{
return gfc_conv_descriptor_size_1 (desc, rank, rank + corank - 1);
}
/* Fills in an array descriptor, and returns the size of the array.
The size will be a simple_val, ie a variable or a constant. Also
calculates the offset of the base. The pointer argument overflow,
which should be of integer type, will increase in value if overflow
occurs during the size calculation. Returns the size of the array.
{
stride = 1;
offset = 0;
for (n = 0; n < rank; n++)
{
a.lbound[n] = specified_lower_bound;
offset = offset + a.lbond[n] * stride;
size = 1 - lbound;
a.ubound[n] = specified_upper_bound;
a.stride[n] = stride;
size = size >= 0 ? ubound + size : 0; //size = ubound + 1 - lbound
overflow += size == 0 ? 0: (MAX/size < stride ? 1: 0);
stride = stride * size;
}
for (n = rank; n < rank+corank; n++)
(Set lcobound/ucobound as above.)
element_size = sizeof (array element);
if (!rank)
return element_size
stride = (size_t) stride;
overflow += element_size == 0 ? 0: (MAX/element_size < stride ? 1: 0);
stride = stride * element_size;
return (stride);
} */
/*GCC ARRAYS*/
static tree
gfc_array_init_size (tree descriptor, int rank, int corank, tree * poffset,
gfc_expr ** lower, gfc_expr ** upper, stmtblock_t * pblock,
stmtblock_t * descriptor_block, tree * overflow,
tree expr3_elem_size, tree *nelems, gfc_expr *expr3)
{
tree type;
tree tmp;
tree size;
tree offset;
tree stride;
tree element_size;
tree or_expr;
tree thencase;
tree elsecase;
tree cond;
tree var;
stmtblock_t thenblock;
stmtblock_t elseblock;
gfc_expr *ubound;
gfc_se se;
int n;
type = TREE_TYPE (descriptor);
stride = gfc_index_one_node;
offset = gfc_index_zero_node;
/* Set the dtype. */
tmp = gfc_conv_descriptor_dtype (descriptor);
gfc_add_modify (descriptor_block, tmp, gfc_get_dtype (TREE_TYPE (descriptor)));
or_expr = boolean_false_node;
for (n = 0; n < rank; n++)
{
tree conv_lbound;
tree conv_ubound;
/* We have 3 possibilities for determining the size of the array:
lower == NULL => lbound = 1, ubound = upper[n]
upper[n] = NULL => lbound = 1, ubound = lower[n]
upper[n] != NULL => lbound = lower[n], ubound = upper[n] */
ubound = upper[n];
/* Set lower bound. */
gfc_init_se (&se, NULL);
if (lower == NULL)
se.expr = gfc_index_one_node;
else
{
gcc_assert (lower[n]);
if (ubound)
{
gfc_conv_expr_type (&se, lower[n], gfc_array_index_type);
gfc_add_block_to_block (pblock, &se.pre);
}
else
{
se.expr = gfc_index_one_node;
ubound = lower[n];
}
}
gfc_conv_descriptor_lbound_set (descriptor_block, descriptor,
gfc_rank_cst[n], se.expr);
conv_lbound = se.expr;
/* Work out the offset for this component. */
tmp = fold_build2_loc (input_location, MULT_EXPR, gfc_array_index_type,
se.expr, stride);
offset = fold_build2_loc (input_location, MINUS_EXPR,
gfc_array_index_type, offset, tmp);
/* Set upper bound. */
gfc_init_se (&se, NULL);
gcc_assert (ubound);
gfc_conv_expr_type (&se, ubound, gfc_array_index_type);
gfc_add_block_to_block (pblock, &se.pre);
gfc_conv_descriptor_ubound_set (descriptor_block, descriptor,
gfc_rank_cst[n], se.expr);
conv_ubound = se.expr;
/* Store the stride. */
gfc_conv_descriptor_stride_set (descriptor_block, descriptor,
gfc_rank_cst[n], stride);
/* Calculate size and check whether extent is negative. */
size = gfc_conv_array_extent_dim (conv_lbound, conv_ubound, &or_expr);
size = gfc_evaluate_now (size, pblock);
/* Check whether multiplying the stride by the number of
elements in this dimension would overflow. We must also check
whether the current dimension has zero size in order to avoid
division by zero.
*/
tmp = fold_build2_loc (input_location, TRUNC_DIV_EXPR,
gfc_array_index_type,
fold_convert (gfc_array_index_type,
TYPE_MAX_VALUE (gfc_array_index_type)),
size);
cond = gfc_unlikely (fold_build2_loc (input_location, LT_EXPR,
boolean_type_node, tmp, stride));
tmp = fold_build3_loc (input_location, COND_EXPR, integer_type_node, cond,
integer_one_node, integer_zero_node);
cond = gfc_unlikely (fold_build2_loc (input_location, EQ_EXPR,
boolean_type_node, size,
gfc_index_zero_node));
tmp = fold_build3_loc (input_location, COND_EXPR, integer_type_node, cond,
integer_zero_node, tmp);
tmp = fold_build2_loc (input_location, PLUS_EXPR, integer_type_node,
*overflow, tmp);
*overflow = gfc_evaluate_now (tmp, pblock);
/* Multiply the stride by the number of elements in this dimension. */
stride = fold_build2_loc (input_location, MULT_EXPR,
gfc_array_index_type, stride, size);
stride = gfc_evaluate_now (stride, pblock);
}
for (n = rank; n < rank + corank; n++)
{
ubound = upper[n];
/* Set lower bound. */
gfc_init_se (&se, NULL);
if (lower == NULL || lower[n] == NULL)
{
gcc_assert (n == rank + corank - 1);
se.expr = gfc_index_one_node;
}
else
{
if (ubound || n == rank + corank - 1)
{
gfc_conv_expr_type (&se, lower[n], gfc_array_index_type);
gfc_add_block_to_block (pblock, &se.pre);
}
else
{
se.expr = gfc_index_one_node;
ubound = lower[n];
}
}
gfc_conv_descriptor_lbound_set (descriptor_block, descriptor,
gfc_rank_cst[n], se.expr);
if (n < rank + corank - 1)
{
gfc_init_se (&se, NULL);
gcc_assert (ubound);
gfc_conv_expr_type (&se, ubound, gfc_array_index_type);
gfc_add_block_to_block (pblock, &se.pre);
gfc_conv_descriptor_ubound_set (descriptor_block, descriptor,
gfc_rank_cst[n], se.expr);
}
}
/* The stride is the number of elements in the array, so multiply by the
size of an element to get the total size. Obviously, if there is a
SOURCE expression (expr3) we must use its element size. */
if (expr3_elem_size != NULL_TREE)
tmp = expr3_elem_size;
else if (expr3 != NULL)
{
if (expr3->ts.type == BT_CLASS)
{
gfc_se se_sz;
gfc_expr *sz = gfc_copy_expr (expr3);
gfc_add_vptr_component (sz);
gfc_add_size_component (sz);
gfc_init_se (&se_sz, NULL);
gfc_conv_expr (&se_sz, sz);
gfc_free_expr (sz);
tmp = se_sz.expr;
}
else
{
tmp = gfc_typenode_for_spec (&expr3->ts);
tmp = TYPE_SIZE_UNIT (tmp);
}
}
else
tmp = TYPE_SIZE_UNIT (gfc_get_element_type (type));
/* Convert to size_t. */
element_size = fold_convert (size_type_node, tmp);
if (rank == 0)
return element_size;
*nelems = gfc_evaluate_now (stride, pblock);
stride = fold_convert (size_type_node, stride);
/* First check for overflow. Since an array of type character can
have zero element_size, we must check for that before
dividing. */
tmp = fold_build2_loc (input_location, TRUNC_DIV_EXPR,
size_type_node,
TYPE_MAX_VALUE (size_type_node), element_size);
cond = gfc_unlikely (fold_build2_loc (input_location, LT_EXPR,
boolean_type_node, tmp, stride));
tmp = fold_build3_loc (input_location, COND_EXPR, integer_type_node, cond,
integer_one_node, integer_zero_node);
cond = gfc_unlikely (fold_build2_loc (input_location, EQ_EXPR,
boolean_type_node, element_size,
build_int_cst (size_type_node, 0)));
tmp = fold_build3_loc (input_location, COND_EXPR, integer_type_node, cond,
integer_zero_node, tmp);
tmp = fold_build2_loc (input_location, PLUS_EXPR, integer_type_node,
*overflow, tmp);
*overflow = gfc_evaluate_now (tmp, pblock);
size = fold_build2_loc (input_location, MULT_EXPR, size_type_node,
stride, element_size);
if (poffset != NULL)
{
offset = gfc_evaluate_now (offset, pblock);
*poffset = offset;
}
if (integer_zerop (or_expr))
return size;
if (integer_onep (or_expr))
return build_int_cst (size_type_node, 0);
var = gfc_create_var (TREE_TYPE (size), "size");
gfc_start_block (&thenblock);
gfc_add_modify (&thenblock, var, build_int_cst (size_type_node, 0));
thencase = gfc_finish_block (&thenblock);
gfc_start_block (&elseblock);
gfc_add_modify (&elseblock, var, size);
elsecase = gfc_finish_block (&elseblock);
tmp = gfc_evaluate_now (or_expr, pblock);
tmp = build3_v (COND_EXPR, tmp, thencase, elsecase);
gfc_add_expr_to_block (pblock, tmp);
return var;
}
/* Initializes the descriptor and generates a call to _gfor_allocate. Does
the work for an ALLOCATE statement. */
/*GCC ARRAYS*/
bool
gfc_array_allocate (gfc_se * se, gfc_expr * expr, tree status, tree errmsg,
tree errlen, tree label_finish, tree expr3_elem_size,
tree *nelems, gfc_expr *expr3)
{
tree tmp;
tree pointer;
tree offset = NULL_TREE;
tree token = NULL_TREE;
tree size;
tree msg;
tree error = NULL_TREE;
tree overflow; /* Boolean storing whether size calculation overflows. */
tree var_overflow = NULL_TREE;
tree cond;
tree set_descriptor;
stmtblock_t set_descriptor_block;
stmtblock_t elseblock;
gfc_expr **lower;
gfc_expr **upper;
gfc_ref *ref, *prev_ref = NULL;
bool allocatable, coarray, dimension;
ref = expr->ref;
/* Find the last reference in the chain. */
while (ref && ref->next != NULL)
{
gcc_assert (ref->type != REF_ARRAY || ref->u.ar.type == AR_ELEMENT
|| (ref->u.ar.dimen == 0 && ref->u.ar.codimen > 0));
prev_ref = ref;
ref = ref->next;
}
if (ref == NULL || ref->type != REF_ARRAY)
return false;
if (!prev_ref)
{
allocatable = expr->symtree->n.sym->attr.allocatable;
coarray = expr->symtree->n.sym->attr.codimension;
dimension = expr->symtree->n.sym->attr.dimension;
}
else
{
allocatable = prev_ref->u.c.component->attr.allocatable;
coarray = prev_ref->u.c.component->attr.codimension;
dimension = prev_ref->u.c.component->attr.dimension;
}
if (!dimension)
gcc_assert (coarray);
/* Figure out the size of the array. */
switch (ref->u.ar.type)
{
case AR_ELEMENT:
if (!coarray)
{
lower = NULL;
upper = ref->u.ar.start;
break;
}
/* Fall through. */
case AR_SECTION:
lower = ref->u.ar.start;
upper = ref->u.ar.end;
break;
case AR_FULL:
gcc_assert (ref->u.ar.as->type == AS_EXPLICIT);
lower = ref->u.ar.as->lower;
upper = ref->u.ar.as->upper;
break;
default:
gcc_unreachable ();
break;
}
overflow = integer_zero_node;
gfc_init_block (&set_descriptor_block);
size = gfc_array_init_size (se->expr, ref->u.ar.as->rank,
ref->u.ar.as->corank, &offset, lower, upper,
&se->pre, &set_descriptor_block, &overflow,
expr3_elem_size, nelems, expr3);
if (dimension)
{
var_overflow = gfc_create_var (integer_type_node, "overflow");
gfc_add_modify (&se->pre, var_overflow, overflow);
/* Generate the block of code handling overflow. */
msg = gfc_build_addr_expr (pchar_type_node,
gfc_build_localized_cstring_const
("Integer overflow when calculating the amount of "
"memory to allocate"));
error = build_call_expr_loc (input_location, gfor_fndecl_runtime_error,
1, msg);
}
if (status != NULL_TREE)
{
tree status_type = TREE_TYPE (status);
stmtblock_t set_status_block;
gfc_start_block (&set_status_block);
gfc_add_modify (&set_status_block, status,
build_int_cst (status_type, LIBERROR_ALLOCATION));
error = gfc_finish_block (&set_status_block);
}
gfc_start_block (&elseblock);
/* Allocate memory to store the data. */
if (POINTER_TYPE_P (TREE_TYPE (se->expr)))
se->expr = build_fold_indirect_ref_loc (input_location, se->expr);
pointer = gfc_conv_descriptor_data_get (se->expr);
STRIP_NOPS (pointer);
if (coarray && gfc_option.coarray == GFC_FCOARRAY_LIB)
token = gfc_build_addr_expr (NULL_TREE,
gfc_conv_descriptor_token (se->expr));
/* The allocatable variant takes the old pointer as first argument. */
if (allocatable)
gfc_allocate_allocatable (&elseblock, pointer, size, token,
status, errmsg, errlen, label_finish, expr);
else
gfc_allocate_using_malloc (&elseblock, pointer, size, status);
if (dimension)
{
cond = gfc_unlikely (fold_build2_loc (input_location, NE_EXPR,
boolean_type_node, var_overflow, integer_zero_node));
tmp = fold_build3_loc (input_location, COND_EXPR, void_type_node, cond,
error, gfc_finish_block (&elseblock));
}
else
tmp = gfc_finish_block (&elseblock);
gfc_add_expr_to_block (&se->pre, tmp);
if (expr->ts.type == BT_CLASS)
{
tmp = build_int_cst (unsigned_char_type_node, 0);
/* With class objects, it is best to play safe and null the
memory because we cannot know if dynamic types have allocatable
components or not. */
tmp = build_call_expr_loc (input_location,
builtin_decl_explicit (BUILT_IN_MEMSET),
3, pointer, tmp, size);
gfc_add_expr_to_block (&se->pre, tmp);
}
/* Update the array descriptors. */
if (dimension)
gfc_conv_descriptor_offset_set (&set_descriptor_block, se->expr, offset);
set_descriptor = gfc_finish_block (&set_descriptor_block);
if (status != NULL_TREE)
{
cond = fold_build2_loc (input_location, EQ_EXPR,
boolean_type_node, status,
build_int_cst (TREE_TYPE (status), 0));
gfc_add_expr_to_block (&se->pre,
fold_build3_loc (input_location, COND_EXPR, void_type_node,
gfc_likely (cond), set_descriptor,
build_empty_stmt (input_location)));
}
else
gfc_add_expr_to_block (&se->pre, set_descriptor);
if ((expr->ts.type == BT_DERIVED)
&& expr->ts.u.derived->attr.alloc_comp)
{
tmp = gfc_nullify_alloc_comp (expr->ts.u.derived, se->expr,
ref->u.ar.as->rank);
gfc_add_expr_to_block (&se->pre, tmp);
}
return true;
}
/* Deallocate an array variable. Also used when an allocated variable goes
out of scope. */
/*GCC ARRAYS*/
tree
gfc_array_deallocate (tree descriptor, tree pstat, tree errmsg, tree errlen,
tree label_finish, gfc_expr* expr)
{
tree var;
tree tmp;
stmtblock_t block;
bool coarray = gfc_is_coarray (expr);
gfc_start_block (&block);
/* Get a pointer to the data. */
var = gfc_conv_descriptor_data_get (descriptor);
STRIP_NOPS (var);
/* Parameter is the address of the data component. */
tmp = gfc_deallocate_with_status (coarray ? descriptor : var, pstat, errmsg,
errlen, label_finish, false, expr, coarray);
gfc_add_expr_to_block (&block, tmp);
/* Zero the data pointer; only for coarrays an error can occur and then
the allocation status may not be changed. */
tmp = fold_build2_loc (input_location, MODIFY_EXPR, void_type_node,
var, build_int_cst (TREE_TYPE (var), 0));
if (pstat != NULL_TREE && coarray && gfc_option.coarray == GFC_FCOARRAY_LIB)
{
tree cond;
tree stat = build_fold_indirect_ref_loc (input_location, pstat);
cond = fold_build2_loc (input_location, EQ_EXPR, boolean_type_node,
stat, build_int_cst (TREE_TYPE (stat), 0));
tmp = fold_build3_loc (input_location, COND_EXPR, void_type_node,
cond, tmp, build_empty_stmt (input_location));
}
gfc_add_expr_to_block (&block, tmp);
return gfc_finish_block (&block);
}
/* Create an array constructor from an initialization expression.
We assume the frontend already did any expansions and conversions. */
tree
gfc_conv_array_initializer (tree type, gfc_expr * expr)
{
gfc_constructor *c;
tree tmp;
gfc_se se;
HOST_WIDE_INT hi;
unsigned HOST_WIDE_INT lo;
tree index, range;
VEC(constructor_elt,gc) *v = NULL;
if (expr->expr_type == EXPR_VARIABLE
&& expr->symtree->n.sym->attr.flavor == FL_PARAMETER
&& expr->symtree->n.sym->value)
expr = expr->symtree->n.sym->value;
switch (expr->expr_type)
{
case EXPR_CONSTANT:
case EXPR_STRUCTURE:
/* A single scalar or derived type value. Create an array with all
elements equal to that value. */
gfc_init_se (&se, NULL);
if (expr->expr_type == EXPR_CONSTANT)
gfc_conv_constant (&se, expr);
else
gfc_conv_structure (&se, expr, 1);
tmp = TYPE_MAX_VALUE (TYPE_DOMAIN (type));
gcc_assert (tmp && INTEGER_CST_P (tmp));
hi = TREE_INT_CST_HIGH (tmp);
lo = TREE_INT_CST_LOW (tmp);
lo++;
if (lo == 0)
hi++;
/* This will probably eat buckets of memory for large arrays. */
while (hi != 0 || lo != 0)
{
CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, se.expr);
if (lo == 0)
hi--;
lo--;
}
break;
case EXPR_ARRAY:
/* Create a vector of all the elements. */
for (c = gfc_constructor_first (expr->value.constructor);
c; c = gfc_constructor_next (c))
{
if (c->iterator)
{
/* Problems occur when we get something like
integer :: a(lots) = (/(i, i=1, lots)/) */
gfc_fatal_error ("The number of elements in the array constructor "
"at %L requires an increase of the allowed %d "
"upper limit. See -fmax-array-constructor "
"option", &expr->where,
gfc_option.flag_max_array_constructor);
return NULL_TREE;
}
if (mpz_cmp_si (c->offset, 0) != 0)
index = gfc_conv_mpz_to_tree (c->offset, gfc_index_integer_kind);
else
index = NULL_TREE;
if (mpz_cmp_si (c->repeat, 1) > 0)
{
tree tmp1, tmp2;
mpz_t maxval;
mpz_init (maxval);
mpz_add (maxval, c->offset, c->repeat);
mpz_sub_ui (maxval, maxval, 1);
tmp2 = gfc_conv_mpz_to_tree (maxval, gfc_index_integer_kind);
if (mpz_cmp_si (c->offset, 0) != 0)
{
mpz_add_ui (maxval, c->offset, 1);
tmp1 = gfc_conv_mpz_to_tree (maxval, gfc_index_integer_kind);
}
else
tmp1 = gfc_conv_mpz_to_tree (c->offset, gfc_index_integer_kind);
range = fold_build2 (RANGE_EXPR, gfc_array_index_type, tmp1, tmp2);
mpz_clear (maxval);
}
else
range = NULL;
gfc_init_se (&se, NULL);
switch (c->expr->expr_type)
{
case EXPR_CONSTANT:
gfc_conv_constant (&se, c->expr);
break;
case EXPR_STRUCTURE:
gfc_conv_structure (&se, c->expr, 1);
break;
default:
/* Catch those occasional beasts that do not simplify
for one reason or another, assuming that if they are
standard defying the frontend will catch them. */
gfc_conv_expr (&se, c->expr);
break;
}
if (range == NULL_TREE)
CONSTRUCTOR_APPEND_ELT (v, index, se.expr);
else
{
if (index != NULL_TREE)
CONSTRUCTOR_APPEND_ELT (v, index, se.expr);
CONSTRUCTOR_APPEND_ELT (v, range, se.expr);
}
}
break;
case EXPR_NULL:
return gfc_build_null_descriptor (type);
default:
gcc_unreachable ();
}
/* Create a constructor from the list of elements. */
tmp = build_constructor (type, v);
TREE_CONSTANT (tmp) = 1;
return tmp;
}
/* Generate code to evaluate non-constant coarray cobounds. */
void
gfc_trans_array_cobounds (tree type, stmtblock_t * pblock,
const gfc_symbol *sym)
{
int dim;
tree ubound;
tree lbound;
gfc_se se;
gfc_array_spec *as;
as = sym->as;
for (dim = as->rank; dim < as->rank + as->corank; dim++)
{
/* Evaluate non-constant array bound expressions. */
lbound = GFC_TYPE_ARRAY_LBOUND (type, dim);
if (as->lower[dim] && !INTEGER_CST_P (lbound))
{
gfc_init_se (&se, NULL);
gfc_conv_expr_type (&se, as->lower[dim], gfc_array_index_type);
gfc_add_block_to_block (pblock, &se.pre);
gfc_add_modify (pblock, lbound, se.expr);
}
ubound = GFC_TYPE_ARRAY_UBOUND (type, dim);
if (as->upper[dim] && !INTEGER_CST_P (ubound))
{
gfc_init_se (&se, NULL);
gfc_conv_expr_type (&se, as->upper[dim], gfc_array_index_type);
gfc_add_block_to_block (pblock, &se.pre);
gfc_add_modify (pblock, ubound, se.expr);
}
}
}
/* Generate code to evaluate non-constant array bounds. Sets *poffset and
returns the size (in elements) of the array. */
static tree
gfc_trans_array_bounds (tree type, gfc_symbol * sym, tree * poffset,
stmtblock_t * pblock)
{
gfc_array_spec *as;
tree size;
tree stride;
tree offset;
tree ubound;
tree lbound;
tree tmp;
gfc_se se;
int dim;
as = sym->as;
size = gfc_index_one_node;
offset = gfc_index_zero_node;
for (dim = 0; dim < as->rank; dim++)
{
/* Evaluate non-constant array bound expressions. */
lbound = GFC_TYPE_ARRAY_LBOUND (type, dim);
if (as->lower[dim] && !INTEGER_CST_P (lbound))
{
gfc_init_se (&se, NULL);
gfc_conv_expr_type (&se, as->lower[dim], gfc_array_index_type);
gfc_add_block_to_block (pblock, &se.pre);
gfc_add_modify (pblock, lbound, se.expr);
}
ubound = GFC_TYPE_ARRAY_UBOUND (type, dim);
if (as->upper[dim] && !INTEGER_CST_P (ubound))
{
gfc_init_se (&se, NULL);
gfc_conv_expr_type (&se, as->upper[dim], gfc_array_index_type);
gfc_add_block_to_block (pblock, &se.pre);
gfc_add_modify (pblock, ubound, se.expr);
}
/* The offset of this dimension. offset = offset - lbound * stride. */
tmp = fold_build2_loc (input_location, MULT_EXPR, gfc_array_index_type,
lbound, size);
offset = fold_build2_loc (input_location, MINUS_EXPR, gfc_array_index_type,
offset, tmp);
/* The size of this dimension, and the stride of the next. */
if (dim + 1 < as->rank)
stride = GFC_TYPE_ARRAY_STRIDE (type, dim + 1);
else
stride = GFC_TYPE_ARRAY_SIZE (type);
if (ubound != NULL_TREE && !(stride && INTEGER_CST_P (stride)))
{
/* Calculate stride = size * (ubound + 1 - lbound). */
tmp = fold_build2_loc (input_location, MINUS_EXPR,
gfc_array_index_type,
gfc_index_one_node, lbound);
tmp = fold_build2_loc (input_location, PLUS_EXPR,
gfc_array_index_type, ubound, tmp);
tmp = fold_build2_loc (input_location, MULT_EXPR,
gfc_array_index_type, size, tmp);
if (stride)
gfc_add_modify (pblock, stride, tmp);
else
stride = gfc_evaluate_now (tmp, pblock);
/* Make sure that negative size arrays are translated
to being zero size. */
tmp = fold_build2_loc (input_location, GE_EXPR, boolean_type_node,
stride, gfc_index_zero_node);
tmp = fold_build3_loc (input_location, COND_EXPR,
gfc_array_index_type, tmp,
stride, gfc_index_zero_node);
gfc_add_modify (pblock, stride, tmp);
}
size = stride;
}
gfc_trans_array_cobounds (type, pblock, sym);
gfc_trans_vla_type_sizes (sym, pblock);
*poffset = offset;
return size;
}
/* Generate code to initialize/allocate an array variable. */
void
gfc_trans_auto_array_allocation (tree decl, gfc_symbol * sym,
gfc_wrapped_block * block)
{
stmtblock_t init;
tree type;
tree tmp = NULL_TREE;
tree size;
tree offset;
tree space;
tree inittree;
bool onstack;
gcc_assert (!(sym->attr.pointer || sym->attr.allocatable));
/* Do nothing for USEd variables. */
if (sym->attr.use_assoc)
return;
type = TREE_TYPE (decl);
gcc_assert (GFC_ARRAY_TYPE_P (type));
onstack = TREE_CODE (type) != POINTER_TYPE;
gfc_init_block (&init);
/* Evaluate character string length. */
if (sym->ts.type == BT_CHARACTER
&& onstack && !INTEGER_CST_P (sym->ts.u.cl->backend_decl))
{
gfc_conv_string_length (sym->ts.u.cl, NULL, &init);
gfc_trans_vla_type_sizes (sym, &init);
/* Emit a DECL_EXPR for this variable, which will cause the
gimplifier to allocate storage, and all that good stuff. */
tmp = fold_build1_loc (input_location, DECL_EXPR, TREE_TYPE (decl), decl);
gfc_add_expr_to_block (&init, tmp);
}
if (onstack)
{
gfc_add_init_cleanup (block, gfc_finish_block (&init), NULL_TREE);
return;
}
type = TREE_TYPE (type);
gcc_assert (!sym->attr.use_assoc);
gcc_assert (!TREE_STATIC (decl));
gcc_assert (!sym->module);
if (sym->ts.type == BT_CHARACTER
&& !INTEGER_CST_P (sym->ts.u.cl->backend_decl))
gfc_conv_string_length (sym->ts.u.cl, NULL, &init);
size = gfc_trans_array_bounds (type, sym, &offset, &init);
/* Don't actually allocate space for Cray Pointees. */
if (sym->attr.cray_pointee)
{
if (TREE_CODE (GFC_TYPE_ARRAY_OFFSET (type)) == VAR_DECL)
gfc_add_modify (&init, GFC_TYPE_ARRAY_OFFSET (type), offset);
gfc_add_init_cleanup (block, gfc_finish_block (&init), NULL_TREE);
return;
}
if (gfc_option.flag_stack_arrays)
{
gcc_assert (TREE_CODE (TREE_TYPE (decl)) == POINTER_TYPE);
space = build_decl (sym->declared_at.lb->location,
VAR_DECL, create_tmp_var_name ("A"),
TREE_TYPE (TREE_TYPE (decl)));
gfc_trans_vla_type_sizes (sym, &init);
}
else
{
/* The size is the number of elements in the array, so multiply by the
size of an element to get the total size. */
tmp = TYPE_SIZE_UNIT (gfc_get_element_type (type));
size = fold_build2_loc (input_location, MULT_EXPR, gfc_array_index_type,
size, fold_convert (gfc_array_index_type, tmp));
/* Allocate memory to hold the data. */
tmp = gfc_call_malloc (&init, TREE_TYPE (decl), size);
gfc_add_modify (&init, decl, tmp);
/* Free the temporary. */
tmp = gfc_call_free (convert (pvoid_type_node, decl));
space = NULL_TREE;
}
/* Set offset of the array. */
if (TREE_CODE (GFC_TYPE_ARRAY_OFFSET (type)) == VAR_DECL)
gfc_add_modify (&init, GFC_TYPE_ARRAY_OFFSET (type), offset);
/* Automatic arrays should not have initializers. */
gcc_assert (!sym->value);
inittree = gfc_finish_block (&init);
if (space)
{
tree addr;
pushdecl (space);
/* Don't create new scope, emit the DECL_EXPR in exactly the scope
where also space is located. */
gfc_init_block (&init);
tmp = fold_build1_loc (input_location, DECL_EXPR,
TREE_TYPE (space), space);
gfc_add_expr_to_block (&init, tmp);
addr = fold_build1_loc (sym->declared_at.lb->location,
ADDR_EXPR, TREE_TYPE (decl), space);
gfc_add_modify (&init, decl, addr);
gfc_add_init_cleanup (block, gfc_finish_block (&init), NULL_TREE);
tmp = NULL_TREE;
}
gfc_add_init_cleanup (block, inittree, tmp);
}
/* Generate entry and exit code for g77 calling convention arrays. */
void
gfc_trans_g77_array (gfc_symbol * sym, gfc_wrapped_block * block)
{
tree parm;
tree type;
locus loc;
tree offset;
tree tmp;
tree stmt;
stmtblock_t init;
gfc_save_backend_locus (&loc);
gfc_set_backend_locus (&sym->declared_at);
/* Descriptor type. */
parm = sym->backend_decl;
type = TREE_TYPE (parm);
gcc_assert (GFC_ARRAY_TYPE_P (type));
gfc_start_block (&init);
if (sym->ts.type == BT_CHARACTER
&& TREE_CODE (sym->ts.u.cl->backend_decl) == VAR_DECL)
gfc_conv_string_length (sym->ts.u.cl, NULL, &init);
/* Evaluate the bounds of the array. */
gfc_trans_array_bounds (type, sym, &offset, &init);
/* Set the offset. */
if (TREE_CODE (GFC_TYPE_ARRAY_OFFSET (type)) == VAR_DECL)
gfc_add_modify (&init, GFC_TYPE_ARRAY_OFFSET (type), offset);
/* Set the pointer itself if we aren't using the parameter directly. */
if (TREE_CODE (parm) != PARM_DECL)
{
tmp = convert (TREE_TYPE (parm), GFC_DECL_SAVED_DESCRIPTOR (parm));
gfc_add_modify (&init, parm, tmp);
}
stmt = gfc_finish_block (&init);
gfc_restore_backend_locus (&loc);
/* Add the initialization code to the start of the function. */
if (sym->attr.optional || sym->attr.not_always_present)
{
tmp = gfc_conv_expr_present (sym);
stmt = build3_v (COND_EXPR, tmp, stmt, build_empty_stmt (input_location));
}
gfc_add_init_cleanup (block, stmt, NULL_TREE);
}
/* Modify the descriptor of an array parameter so that it has the
correct lower bound. Also move the upper bound accordingly.
If the array is not packed, it will be copied into a temporary.
For each dimension we set the new lower and upper bounds. Then we copy the
stride and calculate the offset for this dimension. We also work out
what the stride of a packed array would be, and see it the two match.
If the array need repacking, we set the stride to the values we just
calculated, recalculate the offset and copy the array data.
Code is also added to copy the data back at the end of the function.
*/
void
gfc_trans_dummy_array_bias (gfc_symbol * sym, tree tmpdesc,
gfc_wrapped_block * block)
{
tree size;
tree type;
tree offset;
locus loc;
stmtblock_t init;
tree stmtInit, stmtCleanup;
tree lbound;
tree ubound;
tree dubound;
tree dlbound;
tree dumdesc;
tree tmp;
tree stride, stride2;
tree stmt_packed;
tree stmt_unpacked;
tree partial;
gfc_se se;
int n;
int checkparm;
int no_repack;
bool optional_arg;
/* Do nothing for pointer and allocatable arrays. */
if (sym->attr.pointer || sym->attr.allocatable)
return;
if (sym->attr.dummy && gfc_is_nodesc_array (sym))
{
gfc_trans_g77_array (sym, block);
return;
}
gfc_save_backend_locus (&loc);
gfc_set_backend_locus (&sym->declared_at);
/* Descriptor type. */
type = TREE_TYPE (tmpdesc);
gcc_assert (GFC_ARRAY_TYPE_P (type));
dumdesc = GFC_DECL_SAVED_DESCRIPTOR (tmpdesc);
dumdesc = build_fold_indirect_ref_loc (input_location, dumdesc);
gfc_start_block (&init);
if (sym->ts.type == BT_CHARACTER
&& TREE_CODE (sym->ts.u.cl->backend_decl) == VAR_DECL)
gfc_conv_string_length (sym->ts.u.cl, NULL, &init);
checkparm = (sym->as->type == AS_EXPLICIT
&& (gfc_option.rtcheck & GFC_RTCHECK_BOUNDS));
no_repack = !(GFC_DECL_PACKED_ARRAY (tmpdesc)
|| GFC_DECL_PARTIAL_PACKED_ARRAY (tmpdesc));
if (GFC_DECL_PARTIAL_PACKED_ARRAY (tmpdesc))
{
/* For non-constant shape arrays we only check if the first dimension
is contiguous. Repacking higher dimensions wouldn't gain us
anything as we still don't know the array stride. */
partial = gfc_create_var (boolean_type_node, "partial");
TREE_USED (partial) = 1;
tmp = gfc_conv_descriptor_stride_get (dumdesc, gfc_rank_cst[0]);
tmp = fold_build2_loc (input_location, EQ_EXPR, boolean_type_node, tmp,
gfc_index_one_node);
gfc_add_modify (&init, partial, tmp);
}
else
partial = NULL_TREE;
/* The naming of stmt_unpacked and stmt_packed may be counter-intuitive
here, however I think it does the right thing. */
if (no_repack)
{
/* Set the first stride. */
stride = gfc_conv_descriptor_stride_get (dumdesc, gfc_rank_cst[0]);
stride = gfc_evaluate_now (stride, &init);
tmp = fold_build2_loc (input_location, EQ_EXPR, boolean_type_node,
stride, gfc_index_zero_node);
tmp = fold_build3_loc (input_location, COND_EXPR, gfc_array_index_type,
tmp, gfc_index_one_node, stride);
stride = GFC_TYPE_ARRAY_STRIDE (type, 0);
gfc_add_modify (&init, stride, tmp);
/* Allow the user to disable array repacking. */
stmt_unpacked = NULL_TREE;
}
else
{
gcc_assert (integer_onep (GFC_TYPE_ARRAY_STRIDE (type, 0)));
/* A library call to repack the array if necessary. */
tmp = GFC_DECL_SAVED_DESCRIPTOR (tmpdesc);
stmt_unpacked = build_call_expr_loc (input_location,
gfor_fndecl_in_pack, 1, tmp);
stride = gfc_index_one_node;
if (gfc_option.warn_array_temp)
gfc_warning ("Creating array temporary at %L", &loc);
}
/* This is for the case where the array data is used directly without
calling the repack function. */
if (no_repack || partial != NULL_TREE)
stmt_packed = gfc_conv_descriptor_data_get (dumdesc);
else
stmt_packed = NULL_TREE;
/* Assign the data pointer. */
if (stmt_packed != NULL_TREE && stmt_unpacked != NULL_TREE)
{
/* Don't repack unknown shape arrays when the first stride is 1. */
tmp = fold_build3_loc (input_location, COND_EXPR, TREE_TYPE (stmt_packed),
partial, stmt_packed, stmt_unpacked);
}
else
tmp = stmt_packed != NULL_TREE ? stmt_packed : stmt_unpacked;
gfc_add_modify (&init, tmpdesc, fold_convert (type, tmp));
offset = gfc_index_zero_node;
size = gfc_index_one_node;
/* Evaluate the bounds of the array. */
for (n = 0; n < sym->as->rank; n++)
{
if (checkparm || !sym->as->upper[n])
{
/* Get the bounds of the actual parameter. */
dubound = gfc_conv_descriptor_ubound_get (dumdesc, gfc_rank_cst[n]);
dlbound = gfc_conv_descriptor_lbound_get (dumdesc, gfc_rank_cst[n]);
}
else
{
dubound = NULL_TREE;
dlbound = NULL_TREE;
}
lbound = GFC_TYPE_ARRAY_LBOUND (type, n);
if (!INTEGER_CST_P (lbound))
{
gfc_init_se (&se, NULL);
gfc_conv_expr_type (&se, sym->as->lower[n],
gfc_array_index_type);
gfc_add_block_to_block (&init, &se.pre);
gfc_add_modify (&init, lbound, se.expr);
}
ubound = GFC_TYPE_ARRAY_UBOUND (type, n);
/* Set the desired upper bound. */
if (sym->as->upper[n])
{
/* We know what we want the upper bound to be. */
if (!INTEGER_CST_P (ubound))
{
gfc_init_se (&se, NULL);
gfc_conv_expr_type (&se, sym->as->upper[n],
gfc_array_index_type);
gfc_add_block_to_block (&init, &se.pre);
gfc_add_modify (&init, ubound, se.expr);
}
/* Check the sizes match. */
if (checkparm)
{
/* Check (ubound(a) - lbound(a) == ubound(b) - lbound(b)). */
char * msg;
tree temp;
temp = fold_build2_loc (input_location, MINUS_EXPR,
gfc_array_index_type, ubound, lbound);
temp = fold_build2_loc (input_location, PLUS_EXPR,
gfc_array_index_type,
gfc_index_one_node, temp);
stride2 = fold_build2_loc (input_location, MINUS_EXPR,
gfc_array_index_type, dubound,
dlbound);
stride2 = fold_build2_loc (input_location, PLUS_EXPR,
gfc_array_index_type,
gfc_index_one_node, stride2);
tmp = fold_build2_loc (input_location, NE_EXPR,
gfc_array_index_type, temp, stride2);
asprintf (&msg, "Dimension %d of array '%s' has extent "
"%%ld instead of %%ld", n+1, sym->name);
gfc_trans_runtime_check (true, false, tmp, &init, &loc, msg,
fold_convert (long_integer_type_node, temp),
fold_convert (long_integer_type_node, stride2));
free (msg);
}
}
else
{
/* For assumed shape arrays move the upper bound by the same amount
as the lower bound. */
tmp = fold_build2_loc (input_location, MINUS_EXPR,
gfc_array_index_type, dubound, dlbound);
tmp = fold_build2_loc (input_location, PLUS_EXPR,
gfc_array_index_type, tmp, lbound);
gfc_add_modify (&init, ubound, tmp);
}
/* The offset of this dimension. offset = offset - lbound * stride. */
tmp = fold_build2_loc (input_location, MULT_EXPR, gfc_array_index_type,
lbound, stride);
offset = fold_build2_loc (input_location, MINUS_EXPR,
gfc_array_index_type, offset, tmp);
/* The size of this dimension, and the stride of the next. */
if (n + 1 < sym->as->rank)
{
stride = GFC_TYPE_ARRAY_STRIDE (type, n + 1);
if (no_repack || partial != NULL_TREE)
stmt_unpacked =
gfc_conv_descriptor_stride_get (dumdesc, gfc_rank_cst[n+1]);
/* Figure out the stride if not a known constant. */
if (!INTEGER_CST_P (stride))
{
if (no_repack)
stmt_packed = NULL_TREE;
else
{
/* Calculate stride = size * (ubound + 1 - lbound). */
tmp = fold_build2_loc (input_location, MINUS_EXPR,
gfc_array_index_type,
gfc_index_one_node, lbound);
tmp = fold_build2_loc (input_location, PLUS_EXPR,
gfc_array_index_type, ubound, tmp);
size = fold_build2_loc (input_location, MULT_EXPR,
gfc_array_index_type, size, tmp);
stmt_packed = size;
}
/* Assign the stride. */
if (stmt_packed != NULL_TREE && stmt_unpacked != NULL_TREE)
tmp = fold_build3_loc (input_location, COND_EXPR,
gfc_array_index_type, partial,
stmt_unpacked, stmt_packed);
else
tmp = (stmt_packed != NULL_TREE) ? stmt_packed : stmt_unpacked;
gfc_add_modify (&init, stride, tmp);
}
}
else
{
stride = GFC_TYPE_ARRAY_SIZE (type);
if (stride && !INTEGER_CST_P (stride))
{
/* Calculate size = stride * (ubound + 1 - lbound). */
tmp = fold_build2_loc (input_location, MINUS_EXPR,
gfc_array_index_type,
gfc_index_one_node, lbound);
tmp = fold_build2_loc (input_location, PLUS_EXPR,
gfc_array_index_type,
ubound, tmp);
tmp = fold_build2_loc (input_location, MULT_EXPR,
gfc_array_index_type,
GFC_TYPE_ARRAY_STRIDE (type, n), tmp);
gfc_add_modify (&init, stride, tmp);
}
}
}
gfc_trans_array_cobounds (type, &init, sym);
/* Set the offset. */
if (TREE_CODE (GFC_TYPE_ARRAY_OFFSET (type)) == VAR_DECL)
gfc_add_modify (&init, GFC_TYPE_ARRAY_OFFSET (type), offset);
gfc_trans_vla_type_sizes (sym, &init);
stmtInit = gfc_finish_block (&init);
/* Only do the entry/initialization code if the arg is present. */
dumdesc = GFC_DECL_SAVED_DESCRIPTOR (tmpdesc);
optional_arg = (sym->attr.optional
|| (sym->ns->proc_name->attr.entry_master
&& sym->attr.dummy));
if (optional_arg)
{
tmp = gfc_conv_expr_present (sym);
stmtInit = build3_v (COND_EXPR, tmp, stmtInit,
build_empty_stmt (input_location));
}
/* Cleanup code. */
if (no_repack)
stmtCleanup = NULL_TREE;
else
{
stmtblock_t cleanup;
gfc_start_block (&cleanup);
if (sym->attr.intent != INTENT_IN)
{
/* Copy the data back. */
tmp = build_call_expr_loc (input_location,
gfor_fndecl_in_unpack, 2, dumdesc, tmpdesc);
gfc_add_expr_to_block (&cleanup, tmp);
}
/* Free the temporary. */
tmp = gfc_call_free (tmpdesc);
gfc_add_expr_to_block (&cleanup, tmp);
stmtCleanup = gfc_finish_block (&cleanup);
/* Only do the cleanup if the array was repacked. */
tmp = build_fold_indirect_ref_loc (input_location, dumdesc);
tmp = gfc_conv_descriptor_data_get (tmp);
tmp = fold_build2_loc (input_location, NE_EXPR, boolean_type_node,
tmp, tmpdesc);
stmtCleanup = build3_v (COND_EXPR, tmp, stmtCleanup,
build_empty_stmt (input_location));
if (optional_arg)
{
tmp = gfc_conv_expr_present (sym);
stmtCleanup = build3_v (COND_EXPR, tmp, stmtCleanup,
build_empty_stmt (input_location));
}
}
/* We don't need to free any memory allocated by internal_pack as it will
be freed at the end of the function by pop_context. */
gfc_add_init_cleanup (block, stmtInit, stmtCleanup);
gfc_restore_backend_locus (&loc);
}
/* Calculate the overall offset, including subreferences. */
static void
gfc_get_dataptr_offset (stmtblock_t *block, tree parm, tree desc, tree offset,
bool subref, gfc_expr *expr)
{
tree tmp;
tree field;
tree stride;
tree index;
gfc_ref *ref;
gfc_se start;
int n;
/* If offset is NULL and this is not a subreferenced array, there is
nothing to do. */
if (offset == NULL_TREE)
{
if (subref)
offset = gfc_index_zero_node;
else
return;
}
tmp = build_array_ref (desc, offset, NULL);
/* Offset the data pointer for pointer assignments from arrays with
subreferences; e.g. my_integer => my_type(:)%integer_component. */
if (subref)
{
/* Go past the array reference. */
for (ref = expr->ref; ref; ref = ref->next)
if (ref->type == REF_ARRAY &&
ref->u.ar.type != AR_ELEMENT)
{
ref = ref->next;
break;
}
/* Calculate the offset for each subsequent subreference. */
for (; ref; ref = ref->next)
{
switch (ref->type)
{
case REF_COMPONENT:
field = ref->u.c.component->backend_decl;
gcc_assert (field && TREE_CODE (field) == FIELD_DECL);
tmp = fold_build3_loc (input_location, COMPONENT_REF,
TREE_TYPE (field),
tmp, field, NULL_TREE);
break;
case REF_SUBSTRING:
gcc_assert (TREE_CODE (TREE_TYPE (tmp)) == ARRAY_TYPE);
gfc_init_se (&start, NULL);
gfc_conv_expr_type (&start, ref->u.ss.start, gfc_charlen_type_node);
gfc_add_block_to_block (block, &start.pre);
tmp = gfc_build_array_ref (tmp, start.expr, NULL);
break;
case REF_ARRAY:
gcc_assert (TREE_CODE (TREE_TYPE (tmp)) == ARRAY_TYPE
&& ref->u.ar.type == AR_ELEMENT);
/* TODO - Add bounds checking. */
stride = gfc_index_one_node;
index = gfc_index_zero_node;
for (n = 0; n < ref->u.ar.dimen; n++)
{
tree itmp;
tree jtmp;
/* Update the index. */
gfc_init_se (&start, NULL);
gfc_conv_expr_type (&start, ref->u.ar.start[n], gfc_array_index_type);
itmp = gfc_evaluate_now (start.expr, block);
gfc_init_se (&start, NULL);
gfc_conv_expr_type (&start, ref->u.ar.as->lower[n], gfc_array_index_type);
jtmp = gfc_evaluate_now (start.expr, block);
itmp = fold_build2_loc (input_location, MINUS_EXPR,
gfc_array_index_type, itmp, jtmp);
itmp = fold_build2_loc (input_location, MULT_EXPR,
gfc_array_index_type, itmp, stride);
index = fold_build2_loc (input_location, PLUS_EXPR,
gfc_array_index_type, itmp, index);
index = gfc_evaluate_now (index, block);
/* Update the stride. */
gfc_init_se (&start, NULL);
gfc_conv_expr_type (&start, ref->u.ar.as->upper[n], gfc_array_index_type);
itmp = fold_build2_loc (input_location, MINUS_EXPR,
gfc_array_index_type, start.expr,
jtmp);
itmp = fold_build2_loc (input_location, PLUS_EXPR,
gfc_array_index_type,
gfc_index_one_node, itmp);
stride = fold_build2_loc (input_location, MULT_EXPR,
gfc_array_index_type, stride, itmp);
stride = gfc_evaluate_now (stride, block);
}
/* Apply the index to obtain the array element. */
tmp = gfc_build_array_ref (tmp, index, NULL);
break;
default:
gcc_unreachable ();
break;
}
}
}
/* Set the target data pointer. */
offset = gfc_build_addr_expr (gfc_array_dataptr_type (desc), tmp);
gfc_conv_descriptor_data_set (block, parm, offset);
}
/* gfc_conv_expr_descriptor needs the string length an expression
so that the size of the temporary can be obtained. This is done
by adding up the string lengths of all the elements in the
expression. Function with non-constant expressions have their
string lengths mapped onto the actual arguments using the
interface mapping machinery in trans-expr.c. */
static void
get_array_charlen (gfc_expr *expr, gfc_se *se)
{
gfc_interface_mapping mapping;
gfc_formal_arglist *formal;
gfc_actual_arglist *arg;
gfc_se tse;
if (expr->ts.u.cl->length
&& gfc_is_constant_expr (expr->ts.u.cl->length))
{
if (!expr->ts.u.cl->backend_decl)
gfc_conv_string_length (expr->ts.u.cl, expr, &se->pre);
return;
}
switch (expr->expr_type)
{
case EXPR_OP:
get_array_charlen (expr->value.op.op1, se);
/* For parentheses the expression ts.u.cl is identical. */
if (expr->value.op.op == INTRINSIC_PARENTHESES)
return;
expr->ts.u.cl->backend_decl =
gfc_create_var (gfc_charlen_type_node, "sln");
if (expr->value.op.op2)
{
get_array_charlen (expr->value.op.op2, se);
gcc_assert (expr->value.op.op == INTRINSIC_CONCAT);
/* Add the string lengths and assign them to the expression
string length backend declaration. */
gfc_add_modify (&se->pre, expr->ts.u.cl->backend_decl,
fold_build2_loc (input_location, PLUS_EXPR,
gfc_charlen_type_node,
expr->value.op.op1->ts.u.cl->backend_decl,
expr->value.op.op2->ts.u.cl->backend_decl));
}
else
gfc_add_modify (&se->pre, expr->ts.u.cl->backend_decl,
expr->value.op.op1->ts.u.cl->backend_decl);
break;
case EXPR_FUNCTION:
if (expr->value.function.esym == NULL
|| expr->ts.u.cl->length->expr_type == EXPR_CONSTANT)
{
gfc_conv_string_length (expr->ts.u.cl, expr, &se->pre);
break;
}
/* Map expressions involving the dummy arguments onto the actual
argument expressions. */
gfc_init_interface_mapping (&mapping);
formal = expr->symtree->n.sym->formal;
arg = expr->value.function.actual;
/* Set se = NULL in the calls to the interface mapping, to suppress any
backend stuff. */
for (; arg != NULL; arg = arg->next, formal = formal ? formal->next : NULL)
{
if (!arg->expr)
continue;
if (formal->sym)
gfc_add_interface_mapping (&mapping, formal->sym, NULL, arg->expr);
}
gfc_init_se (&tse, NULL);
/* Build the expression for the character length and convert it. */
gfc_apply_interface_mapping (&mapping, &tse, expr->ts.u.cl->length);
gfc_add_block_to_block (&se->pre, &tse.pre);
gfc_add_block_to_block (&se->post, &tse.post);
tse.expr = fold_convert (gfc_charlen_type_node, tse.expr);
tse.expr = fold_build2_loc (input_location, MAX_EXPR,
gfc_charlen_type_node, tse.expr,
build_int_cst (gfc_charlen_type_node, 0));
expr->ts.u.cl->backend_decl = tse.expr;
gfc_free_interface_mapping (&mapping);
break;
default:
gfc_conv_string_length (expr->ts.u.cl, expr, &se->pre);
break;
}
}
/* Helper function to check dimensions. */
static bool
transposed_dims (gfc_ss *ss)
{
int n;
for (n = 0; n < ss->dimen; n++)
if (ss->dim[n] != n)
return true;
return false;
}
/* Convert the last ref of a scalar coarray from an AR_ELEMENT to an
AR_FULL, suitable for the scalarizer. */
static gfc_ss *
walk_coarray (gfc_expr *e)
{
gfc_ss *ss;
gcc_assert (gfc_get_corank (e) > 0);
ss = gfc_walk_expr (e);
/* Fix scalar coarray. */
if (ss == gfc_ss_terminator)
{
gfc_ref *ref;
ref = e->ref;
while (ref)
{
if (ref->type == REF_ARRAY
&& ref->u.ar.codimen > 0)
break;
ref = ref->next;
}
gcc_assert (ref != NULL);
if (ref->u.ar.type == AR_ELEMENT)
ref->u.ar.type = AR_SECTION;
ss = gfc_reverse_ss (gfc_walk_array_ref (ss, e, ref));
}
return ss;
}
/* Convert an array for passing as an actual argument. Expressions and
vector subscripts are evaluated and stored in a temporary, which is then
passed. For whole arrays the descriptor is passed. For array sections
a modified copy of the descriptor is passed, but using the original data.
This function is also used for array pointer assignments, and there
are three cases:
- se->want_pointer && !se->direct_byref
EXPR is an actual argument. On exit, se->expr contains a
pointer to the array descriptor.
- !se->want_pointer && !se->direct_byref
EXPR is an actual argument to an intrinsic function or the
left-hand side of a pointer assignment. On exit, se->expr
contains the descriptor for EXPR.
- !se->want_pointer && se->direct_byref
EXPR is the right-hand side of a pointer assignment and
se->expr is the descriptor for the previously-evaluated
left-hand side. The function creates an assignment from
EXPR to se->expr.
The se->force_tmp flag disables the non-copying descriptor optimization
that is used for transpose. It may be used in cases where there is an
alias between the transpose argument and another argument in the same
function call. */
void
gfc_conv_expr_descriptor (gfc_se *se, gfc_expr *expr)
{
gfc_ss *ss;
gfc_ss_type ss_type;
gfc_ss_info *ss_info;
gfc_loopinfo loop;
gfc_array_info *info;
int need_tmp;
int n;
tree tmp;
tree desc;
stmtblock_t block;
tree start;
tree offset;
int full;
bool subref_array_target = false;
gfc_expr *arg, *ss_expr;
if (se->want_coarray)
ss = walk_coarray (expr);
else
ss = gfc_walk_expr (expr);
gcc_assert (ss != NULL);
gcc_assert (ss != gfc_ss_terminator);
ss_info = ss->info;
ss_type = ss_info->type;
ss_expr = ss_info->expr;
/* Special case: TRANSPOSE which needs no temporary. */
while (expr->expr_type == EXPR_FUNCTION && expr->value.function.isym
&& NULL != (arg = gfc_get_noncopying_intrinsic_argument (expr)))
{
/* This is a call to transpose which has already been handled by the
scalarizer, so that we just need to get its argument's descriptor. */
gcc_assert (expr->value.function.isym->id == GFC_ISYM_TRANSPOSE);
expr = expr->value.function.actual->expr;
}
/* Special case things we know we can pass easily. */
switch (expr->expr_type)
{
case EXPR_VARIABLE:
/* If we have a linear array section, we can pass it directly.
Otherwise we need to copy it into a temporary. */
gcc_assert (ss_type == GFC_SS_SECTION);
gcc_assert (ss_expr == expr);
info = &ss_info->data.array;
/* Get the descriptor for the array. */
gfc_conv_ss_descriptor (&se->pre, ss, 0);
desc = info->descriptor;
subref_array_target = se->direct_byref && is_subref_array (expr);
need_tmp = gfc_ref_needs_temporary_p (expr->ref)
&& !subref_array_target;
if (se->force_tmp)
need_tmp = 1;
if (need_tmp)
full = 0;
else if (GFC_ARRAY_TYPE_P (TREE_TYPE (desc)))
{
/* Create a new descriptor if the array doesn't have one. */
full = 0;
}
else if (info->ref->u.ar.type == AR_FULL || se->descriptor_only)
full = 1;
else if (se->direct_byref)
full = 0;
else
full = gfc_full_array_ref_p (info->ref, NULL);
if (full && !transposed_dims (ss))
{
if (se->direct_byref && !se->byref_noassign)
{
/* Copy the descriptor for pointer assignments. */
gfc_add_modify (&se->pre, se->expr, desc);
/* Add any offsets from subreferences. */
gfc_get_dataptr_offset (&se->pre, se->expr, desc, NULL_TREE,
subref_array_target, expr);
}
else if (se->want_pointer)
{
/* We pass full arrays directly. This means that pointers and
allocatable arrays should also work. */
se->expr = gfc_build_addr_expr (NULL_TREE, desc);
}
else
{
se->expr = desc;
}
if (expr->ts.type == BT_CHARACTER)
se->string_length = gfc_get_expr_charlen (expr);
gfc_free_ss_chain (ss);
return;
}
break;
case EXPR_FUNCTION:
/* A transformational function return value will be a temporary
array descriptor. We still need to go through the scalarizer
to create the descriptor. Elemental functions are handled as
arbitrary expressions, i.e. copy to a temporary. */
if (se->direct_byref)
{
gcc_assert (ss_type == GFC_SS_FUNCTION && ss_expr == expr);
/* For pointer assignments pass the descriptor directly. */
if (se->ss == NULL)
se->ss = ss;
else
gcc_assert (se->ss == ss);
se->expr = gfc_build_addr_expr (NULL_TREE, se->expr);
gfc_conv_expr (se, expr);
gfc_free_ss_chain (ss);
return;
}
if (ss_expr != expr || ss_type != GFC_SS_FUNCTION)
{
if (ss_expr != expr)
/* Elemental function. */
gcc_assert ((expr->value.function.esym != NULL
&& expr->value.function.esym->attr.elemental)
|| (expr->value.function.isym != NULL
&& expr->value.function.isym->elemental)
|| gfc_inline_intrinsic_function_p (expr));
else
gcc_assert (ss_type == GFC_SS_INTRINSIC);
need_tmp = 1;
if (expr->ts.type == BT_CHARACTER
&& expr->ts.u.cl->length->expr_type != EXPR_CONSTANT)
get_array_charlen (expr, se);
info = NULL;
}
else
{
/* Transformational function. */
info = &ss_info->data.array;
need_tmp = 0;
}
break;
case EXPR_ARRAY:
/* Constant array constructors don't need a temporary. */
if (ss_type == GFC_SS_CONSTRUCTOR
&& expr->ts.type != BT_CHARACTER
&& gfc_constant_array_constructor_p (expr->value.constructor))
{
need_tmp = 0;
info = &ss_info->data.array;
}
else
{
need_tmp = 1;
info = NULL;
}
break;
default:
/* Something complicated. Copy it into a temporary. */
need_tmp = 1;
info = NULL;
break;
}
/* If we are creating a temporary, we don't need to bother about aliases
anymore. */
if (need_tmp)
se->force_tmp = 0;
gfc_init_loopinfo (&loop);
/* Associate the SS with the loop. */
gfc_add_ss_to_loop (&loop, ss);
/* Tell the scalarizer not to bother creating loop variables, etc. */
if (!need_tmp)
loop.array_parameter = 1;
else
/* The right-hand side of a pointer assignment mustn't use a temporary. */
gcc_assert (!se->direct_byref);
/* Setup the scalarizing loops and bounds. */
gfc_conv_ss_startstride (&loop);
if (need_tmp)
{
if (expr->ts.type == BT_CHARACTER && !expr->ts.u.cl->backend_decl)
get_array_charlen (expr, se);
/* Tell the scalarizer to make a temporary. */
loop.temp_ss = gfc_get_temp_ss (gfc_typenode_for_spec (&expr->ts),
((expr->ts.type == BT_CHARACTER)
? expr->ts.u.cl->backend_decl
: NULL),
loop.dimen);
se->string_length = loop.temp_ss->info->string_length;
gcc_assert (loop.temp_ss->dimen == loop.dimen);
gfc_add_ss_to_loop (&loop, loop.temp_ss);
}
gfc_conv_loop_setup (&loop, & expr->where);
if (need_tmp)
{
/* Copy into a temporary and pass that. We don't need to copy the data
back because expressions and vector subscripts must be INTENT_IN. */
/* TODO: Optimize passing function return values. */
gfc_se lse;
gfc_se rse;
/* Start the copying loops. */
gfc_mark_ss_chain_used (loop.temp_ss, 1);
gfc_mark_ss_chain_used (ss, 1);
gfc_start_scalarized_body (&loop, &block);
/* Copy each data element. */
gfc_init_se (&lse, NULL);
gfc_copy_loopinfo_to_se (&lse, &loop);
gfc_init_se (&rse, NULL);
gfc_copy_loopinfo_to_se (&rse, &loop);
lse.ss = loop.temp_ss;
rse.ss = ss;
gfc_conv_scalarized_array_ref (&lse, NULL);
if (expr->ts.type == BT_CHARACTER)
{
gfc_conv_expr (&rse, expr);
if (POINTER_TYPE_P (TREE_TYPE (rse.expr)))
rse.expr = build_fold_indirect_ref_loc (input_location,
rse.expr);
}
else
gfc_conv_expr_val (&rse, expr);
gfc_add_block_to_block (&block, &rse.pre);
gfc_add_block_to_block (&block, &lse.pre);
lse.string_length = rse.string_length;
tmp = gfc_trans_scalar_assign (&lse, &rse, expr->ts, true,
expr->expr_type == EXPR_VARIABLE
|| expr->expr_type == EXPR_ARRAY, true);
gfc_add_expr_to_block (&block, tmp);
/* Finish the copying loops. */
gfc_trans_scalarizing_loops (&loop, &block);
desc = loop.temp_ss->info->data.array.descriptor;
}
else if (expr->expr_type == EXPR_FUNCTION && !transposed_dims (ss))
{
desc = info->descriptor;
se->string_length = ss_info->string_length;
}
else
{
/* We pass sections without copying to a temporary. Make a new
descriptor and point it at the section we want. The loop variable
limits will be the limits of the section.
A function may decide to repack the array to speed up access, but
we're not bothered about that here. */
int dim, ndim, codim;
tree parm;
tree parmtype;
tree stride;
tree from;
tree to;
tree base;
ndim = info->ref ? info->ref->u.ar.dimen : ss->dimen;
if (se->want_coarray)
{
gfc_array_ref *ar = &info->ref->u.ar;
codim = gfc_get_corank (expr);
for (n = 0; n < codim - 1; n++)
{
/* Make sure we are not lost somehow. */
gcc_assert (ar->dimen_type[n + ndim] == DIMEN_THIS_IMAGE);
/* Make sure the call to gfc_conv_section_startstride won't
generate unnecessary code to calculate stride. */
gcc_assert (ar->stride[n + ndim] == NULL);
gfc_conv_section_startstride (&loop, ss, n + ndim);
loop.from[n + loop.dimen] = info->start[n + ndim];
loop.to[n + loop.dimen] = info->end[n + ndim];
}
gcc_assert (n == codim - 1);
evaluate_bound (&loop.pre, info->start, ar->start,
info->descriptor, n + ndim, true);
loop.from[n + loop.dimen] = info->start[n + ndim];
}
else
codim = 0;
/* Set the string_length for a character array. */
if (expr->ts.type == BT_CHARACTER)
se->string_length = gfc_get_expr_charlen (expr);
desc = info->descriptor;
if (se->direct_byref && !se->byref_noassign)
{
/* For pointer assignments we fill in the destination. */
parm = se->expr;
parmtype = TREE_TYPE (parm);
}
else
{
/* Otherwise make a new one. */
parmtype = gfc_get_element_type (TREE_TYPE (desc));
parmtype = gfc_get_array_type_bounds (parmtype, loop.dimen, codim,
loop.from, loop.to, 0,
GFC_ARRAY_UNKNOWN, false);
parm = gfc_create_var (parmtype, "parm");
}
offset = gfc_index_zero_node;
/* The following can be somewhat confusing. We have two
descriptors, a new one and the original array.
{parm, parmtype, dim} refer to the new one.
{desc, type, n, loop} refer to the original, which maybe
a descriptorless array.
The bounds of the scalarization are the bounds of the section.
We don't have to worry about numeric overflows when calculating
the offsets because all elements are within the array data. */
/* Set the dtype. */
tmp = gfc_conv_descriptor_dtype (parm);
gfc_add_modify (&loop.pre, tmp, gfc_get_dtype (parmtype));
/* Set offset for assignments to pointer only to zero if it is not
the full array. */
if (se->direct_byref
&& info->ref && info->ref->u.ar.type != AR_FULL)
base = gfc_index_zero_node;
else if (GFC_ARRAY_TYPE_P (TREE_TYPE (desc)))
base = gfc_evaluate_now (gfc_conv_array_offset (desc), &loop.pre);
else
base = NULL_TREE;
for (n = 0; n < ndim; n++)
{
stride = gfc_conv_array_stride (desc, n);
/* Work out the offset. */
if (info->ref
&& info->ref->u.ar.dimen_type[n] == DIMEN_ELEMENT)
{
gcc_assert (info->subscript[n]
&& info->subscript[n]->info->type == GFC_SS_SCALAR);
start = info->subscript[n]->info->data.scalar.value;
}
else
{
/* Evaluate and remember the start of the section. */
start = info->start[n];
stride = gfc_evaluate_now (stride, &loop.pre);
}
tmp = gfc_conv_array_lbound (desc, n);
tmp = fold_build2_loc (input_location, MINUS_EXPR, TREE_TYPE (tmp),
start, tmp);
tmp = fold_build2_loc (input_location, MULT_EXPR, TREE_TYPE (tmp),
tmp, stride);
offset = fold_build2_loc (input_location, PLUS_EXPR, TREE_TYPE (tmp),
offset, tmp);
if (info->ref
&& info->ref->u.ar.dimen_type[n] == DIMEN_ELEMENT)
{
/* For elemental dimensions, we only need the offset. */
continue;
}
/* Vector subscripts need copying and are handled elsewhere. */
if (info->ref)
gcc_assert (info->ref->u.ar.dimen_type[n] == DIMEN_RANGE);
/* look for the corresponding scalarizer dimension: dim. */
for (dim = 0; dim < ndim; dim++)
if (ss->dim[dim] == n)
break;
/* loop exited early: the DIM being looked for has been found. */
gcc_assert (dim < ndim);
/* Set the new lower bound. */
from = loop.from[dim];
to = loop.to[dim];
/* If we have an array section or are assigning make sure that
the lower bound is 1. References to the full
array should otherwise keep the original bounds. */
if ((!info->ref
|| info->ref->u.ar.type != AR_FULL)
&& !integer_onep (from))
{
tmp = fold_build2_loc (input_location, MINUS_EXPR,
gfc_array_index_type, gfc_index_one_node,
from);
to = fold_build2_loc (input_location, PLUS_EXPR,
gfc_array_index_type, to, tmp);
from = gfc_index_one_node;
}
gfc_conv_descriptor_lbound_set (&loop.pre, parm,
gfc_rank_cst[dim], from);
/* Set the new upper bound. */
gfc_conv_descriptor_ubound_set (&loop.pre, parm,
gfc_rank_cst[dim], to);
/* Multiply the stride by the section stride to get the
total stride. */
stride = fold_build2_loc (input_location, MULT_EXPR,
gfc_array_index_type,
stride, info->stride[n]);
if (se->direct_byref
&& info->ref
&& info->ref->u.ar.type != AR_FULL)
{
base = fold_build2_loc (input_location, MINUS_EXPR,
TREE_TYPE (base), base, stride);
}
else if (GFC_ARRAY_TYPE_P (TREE_TYPE (desc)))
{
tmp = gfc_conv_array_lbound (desc, n);
tmp = fold_build2_loc (input_location, MINUS_EXPR,
TREE_TYPE (base), tmp, loop.from[dim]);
tmp = fold_build2_loc (input_location, MULT_EXPR,
TREE_TYPE (base), tmp,
gfc_conv_array_stride (desc, n));
base = fold_build2_loc (input_location, PLUS_EXPR,
TREE_TYPE (base), tmp, base);
}
/* Store the new stride. */
gfc_conv_descriptor_stride_set (&loop.pre, parm,
gfc_rank_cst[dim], stride);
}
for (n = loop.dimen; n < loop.dimen + codim; n++)
{
from = loop.from[n];
to = loop.to[n];
gfc_conv_descriptor_lbound_set (&loop.pre, parm,
gfc_rank_cst[n], from);
if (n < loop.dimen + codim - 1)
gfc_conv_descriptor_ubound_set (&loop.pre, parm,
gfc_rank_cst[n], to);
}
if (se->data_not_needed)
gfc_conv_descriptor_data_set (&loop.pre, parm,
gfc_index_zero_node);
else
/* Point the data pointer at the 1st element in the section. */
gfc_get_dataptr_offset (&loop.pre, parm, desc, offset,
subref_array_target, expr);
if ((se->direct_byref || GFC_ARRAY_TYPE_P (TREE_TYPE (desc)))
&& !se->data_not_needed)
{
/* Set the offset. */
gfc_conv_descriptor_offset_set (&loop.pre, parm, base);
}
else
{
/* Only the callee knows what the correct offset it, so just set
it to zero here. */
gfc_conv_descriptor_offset_set (&loop.pre, parm, gfc_index_zero_node);
}
desc = parm;
}
if (!se->direct_byref || se->byref_noassign)
{
/* Get a pointer to the new descriptor. */
if (se->want_pointer)
se->expr = gfc_build_addr_expr (NULL_TREE, desc);
else
se->expr = desc;
}
gfc_add_block_to_block (&se->pre, &loop.pre);
gfc_add_block_to_block (&se->post, &loop.post);
/* Cleanup the scalarizer. */
gfc_cleanup_loop (&loop);
}
/* Helper function for gfc_conv_array_parameter if array size needs to be
computed. */
static void
array_parameter_size (tree desc, gfc_expr *expr, tree *size)
{
tree elem;
if (GFC_ARRAY_TYPE_P (TREE_TYPE (desc)))
*size = GFC_TYPE_ARRAY_SIZE (TREE_TYPE (desc));
else if (expr->rank > 1)
*size = build_call_expr_loc (input_location,
gfor_fndecl_size0, 1,
gfc_build_addr_expr (NULL, desc));
else
{
tree ubound = gfc_conv_descriptor_ubound_get (desc, gfc_index_zero_node);
tree lbound = gfc_conv_descriptor_lbound_get (desc, gfc_index_zero_node);
*size = fold_build2_loc (input_location, MINUS_EXPR,
gfc_array_index_type, ubound, lbound);
*size = fold_build2_loc (input_location, PLUS_EXPR, gfc_array_index_type,
*size, gfc_index_one_node);
*size = fold_build2_loc (input_location, MAX_EXPR, gfc_array_index_type,
*size, gfc_index_zero_node);
}
elem = TYPE_SIZE_UNIT (gfc_get_element_type (TREE_TYPE (desc)));
*size = fold_build2_loc (input_location, MULT_EXPR, gfc_array_index_type,
*size, fold_convert (gfc_array_index_type, elem));
}
/* Convert an array for passing as an actual parameter. */
/* TODO: Optimize passing g77 arrays. */
void
gfc_conv_array_parameter (gfc_se * se, gfc_expr * expr, bool g77,
const gfc_symbol *fsym, const char *proc_name,
tree *size)
{
tree ptr;
tree desc;
tree tmp = NULL_TREE;
tree stmt;
tree parent = DECL_CONTEXT (current_function_decl);
bool full_array_var;
bool this_array_result;
bool contiguous;
bool no_pack;
bool array_constructor;
bool good_allocatable;
bool ultimate_ptr_comp;
bool ultimate_alloc_comp;
gfc_symbol *sym;
stmtblock_t block;
gfc_ref *ref;
ultimate_ptr_comp = false;
ultimate_alloc_comp = false;
for (ref = expr->ref; ref; ref = ref->next)
{
if (ref->next == NULL)
break;
if (ref->type == REF_COMPONENT)
{
ultimate_ptr_comp = ref->u.c.component->attr.pointer;
ultimate_alloc_comp = ref->u.c.component->attr.allocatable;
}
}
full_array_var = false;
contiguous = false;
if (expr->expr_type == EXPR_VARIABLE && ref && !ultimate_ptr_comp)
full_array_var = gfc_full_array_ref_p (ref, &contiguous);
sym = full_array_var ? expr->symtree->n.sym : NULL;
/* The symbol should have an array specification. */
gcc_assert (!sym || sym->as || ref->u.ar.as);
if (expr->expr_type == EXPR_ARRAY && expr->ts.type == BT_CHARACTER)
{
get_array_ctor_strlen (&se->pre, expr->value.constructor, &tmp);
expr->ts.u.cl->backend_decl = tmp;
se->string_length = tmp;
}
/* Is this the result of the enclosing procedure? */
this_array_result = (full_array_var && sym->attr.flavor == FL_PROCEDURE);
if (this_array_result
&& (sym->backend_decl != current_function_decl)
&& (sym->backend_decl != parent))
this_array_result = false;
/* Passing address of the array if it is not pointer or assumed-shape. */
if (full_array_var && g77 && !this_array_result)
{
tmp = gfc_get_symbol_decl (sym);
if (sym->ts.type == BT_CHARACTER)
se->string_length = sym->ts.u.cl->backend_decl;
if (sym->ts.type == BT_DERIVED || sym->ts.type == BT_CLASS)
{
gfc_conv_expr_descriptor (se, expr);
se->expr = gfc_conv_array_data (se->expr);
return;
}
if (!sym->attr.pointer
&& sym->as
&& sym->as->type != AS_ASSUMED_SHAPE
&& sym->as->type != AS_ASSUMED_RANK
&& !sym->attr.allocatable)
{
/* Some variables are declared directly, others are declared as
pointers and allocated on the heap. */
if (sym->attr.dummy || POINTER_TYPE_P (TREE_TYPE (tmp)))
se->expr = tmp;
else
se->expr = gfc_build_addr_expr (NULL_TREE, tmp);
if (size)
array_parameter_size (tmp, expr, size);
return;
}
if (sym->attr.allocatable)
{
if (sym->attr.dummy || sym->attr.result)
{
gfc_conv_expr_descriptor (se, expr);
tmp = se->expr;
}
if (size)
array_parameter_size (tmp, expr, size);
se->expr = gfc_conv_array_data (tmp);
return;
}
}
/* A convenient reduction in scope. */
contiguous = g77 && !this_array_result && contiguous;
/* There is no need to pack and unpack the array, if it is contiguous
and not a deferred- or assumed-shape array, or if it is simply
contiguous. */
no_pack = ((sym && sym->as
&& !sym->attr.pointer
&& sym->as->type != AS_DEFERRED
&& sym->as->type != AS_ASSUMED_RANK
&& sym->as->type != AS_ASSUMED_SHAPE)
||
(ref && ref->u.ar.as
&& ref->u.ar.as->type != AS_DEFERRED
&& ref->u.ar.as->type != AS_ASSUMED_RANK
&& ref->u.ar.as->type != AS_ASSUMED_SHAPE)
||
gfc_is_simply_contiguous (expr, false));
no_pack = contiguous && no_pack;
/* Array constructors are always contiguous and do not need packing. */
array_constructor = g77 && !this_array_result && expr->expr_type == EXPR_ARRAY;
/* Same is true of contiguous sections from allocatable variables. */
good_allocatable = contiguous
&& expr->symtree
&& expr->symtree->n.sym->attr.allocatable;
/* Or ultimate allocatable components. */
ultimate_alloc_comp = contiguous && ultimate_alloc_comp;
if (no_pack || array_constructor || good_allocatable || ultimate_alloc_comp)
{
gfc_conv_expr_descriptor (se, expr);
if (expr->ts.type == BT_CHARACTER)
se->string_length = expr->ts.u.cl->backend_decl;
if (size)
array_parameter_size (se->expr, expr, size);
se->expr = gfc_conv_array_data (se->expr);
return;
}
if (this_array_result)
{
/* Result of the enclosing function. */
gfc_conv_expr_descriptor (se, expr);
if (size)
array_parameter_size (se->expr, expr, size);
se->expr = gfc_build_addr_expr (NULL_TREE, se->expr);
if (g77 && TREE_TYPE (TREE_TYPE (se->expr)) != NULL_TREE
&& GFC_DESCRIPTOR_TYPE_P (TREE_TYPE (TREE_TYPE (se->expr))))
se->expr = gfc_conv_array_data (build_fold_indirect_ref_loc (input_location,
se->expr));
return;
}
else
{
/* Every other type of array. */
se->want_pointer = 1;
gfc_conv_expr_descriptor (se, expr);
if (size)
array_parameter_size (build_fold_indirect_ref_loc (input_location,
se->expr),
expr, size);
}
/* Deallocate the allocatable components of structures that are
not variable. */
if ((expr->ts.type == BT_DERIVED || expr->ts.type == BT_CLASS)
&& expr->ts.u.derived->attr.alloc_comp
&& expr->expr_type != EXPR_VARIABLE)
{
tmp = build_fold_indirect_ref_loc (input_location, se->expr);
tmp = gfc_deallocate_alloc_comp (expr->ts.u.derived, tmp, expr->rank);
/* The components shall be deallocated before their containing entity. */
gfc_prepend_expr_to_block (&se->post, tmp);
}
if (g77 || (fsym && fsym->attr.contiguous
&& !gfc_is_simply_contiguous (expr, false)))
{
tree origptr = NULL_TREE;
desc = se->expr;
/* For contiguous arrays, save the original value of the descriptor. */
if (!g77)
{
origptr = gfc_create_var (pvoid_type_node, "origptr");
tmp = build_fold_indirect_ref_loc (input_location, desc);
tmp = gfc_conv_array_data (tmp);
tmp = fold_build2_loc (input_location, MODIFY_EXPR,
TREE_TYPE (origptr), origptr,
fold_convert (TREE_TYPE (origptr), tmp));
gfc_add_expr_to_block (&se->pre, tmp);
}
/* Repack the array. */
if (gfc_option.warn_array_temp)
{
if (fsym)
gfc_warning ("Creating array temporary at %L for argument '%s'",
&expr->where, fsym->name);
else
gfc_warning ("Creating array temporary at %L", &expr->where);
}
ptr = build_call_expr_loc (input_location,
gfor_fndecl_in_pack, 1, desc);
if (fsym && fsym->attr.optional && sym && sym->attr.optional)
{
tmp = gfc_conv_expr_present (sym);
ptr = build3_loc (input_location, COND_EXPR, TREE_TYPE (se->expr),
tmp, fold_convert (TREE_TYPE (se->expr), ptr),
fold_convert (TREE_TYPE (se->expr), null_pointer_node));
}
ptr = gfc_evaluate_now (ptr, &se->pre);
/* Use the packed data for the actual argument, except for contiguous arrays,
where the descriptor's data component is set. */
if (g77)
se->expr = ptr;
else
{
tmp = build_fold_indirect_ref_loc (input_location, desc);
gfc_conv_descriptor_data_set (&se->pre, tmp, ptr);
}
if (gfc_option.rtcheck & GFC_RTCHECK_ARRAY_TEMPS)
{
char * msg;
if (fsym && proc_name)
asprintf (&msg, "An array temporary was created for argument "
"'%s' of procedure '%s'", fsym->name, proc_name);
else
asprintf (&msg, "An array temporary was created");
tmp = build_fold_indirect_ref_loc (input_location,
desc);
tmp = gfc_conv_array_data (tmp);
tmp = fold_build2_loc (input_location, NE_EXPR, boolean_type_node,
fold_convert (TREE_TYPE (tmp), ptr), tmp);
if (fsym && fsym->attr.optional && sym && sym->attr.optional)
tmp = fold_build2_loc (input_location, TRUTH_AND_EXPR,
boolean_type_node,
gfc_conv_expr_present (sym), tmp);
gfc_trans_runtime_check (false, true, tmp, &se->pre,
&expr->where, msg);
free (msg);
}
gfc_start_block (&block);
/* Copy the data back. */
if (fsym == NULL || fsym->attr.intent != INTENT_IN)
{
tmp = build_call_expr_loc (input_location,
gfor_fndecl_in_unpack, 2, desc, ptr);
gfc_add_expr_to_block (&block, tmp);
}
/* Free the temporary. */
tmp = gfc_call_free (convert (pvoid_type_node, ptr));
gfc_add_expr_to_block (&block, tmp);
stmt = gfc_finish_block (&block);
gfc_init_block (&block);
/* Only if it was repacked. This code needs to be executed before the
loop cleanup code. */
tmp = build_fold_indirect_ref_loc (input_location,
desc);
tmp = gfc_conv_array_data (tmp);
tmp = fold_build2_loc (input_location, NE_EXPR, boolean_type_node,
fold_convert (TREE_TYPE (tmp), ptr), tmp);
if (fsym && fsym->attr.optional && sym && sym->attr.optional)
tmp = fold_build2_loc (input_location, TRUTH_AND_EXPR,
boolean_type_node,
gfc_conv_expr_present (sym), tmp);
tmp = build3_v (COND_EXPR, tmp, stmt, build_empty_stmt (input_location));
gfc_add_expr_to_block (&block, tmp);
gfc_add_block_to_block (&block, &se->post);
gfc_init_block (&se->post);
/* Reset the descriptor pointer. */
if (!g77)
{
tmp = build_fold_indirect_ref_loc (input_location, desc);
gfc_conv_descriptor_data_set (&se->post, tmp, origptr);
}
gfc_add_block_to_block (&se->post, &block);
}
}
/* Generate code to deallocate an array, if it is allocated. */
tree
gfc_trans_dealloc_allocated (tree descriptor, bool coarray)
{
tree tmp;
tree var;
stmtblock_t block;
gfc_start_block (&block);
var = gfc_conv_descriptor_data_get (descriptor);
STRIP_NOPS (var);
/* Call array_deallocate with an int * present in the second argument.
Although it is ignored here, it's presence ensures that arrays that
are already deallocated are ignored. */
tmp = gfc_deallocate_with_status (coarray ? descriptor : var, NULL_TREE,
NULL_TREE, NULL_TREE, NULL_TREE, true,
NULL, coarray);
gfc_add_expr_to_block (&block, tmp);
/* Zero the data pointer. */
tmp = fold_build2_loc (input_location, MODIFY_EXPR, void_type_node,
var, build_int_cst (TREE_TYPE (var), 0));
gfc_add_expr_to_block (&block, tmp);
return gfc_finish_block (&block);
}
/* This helper function calculates the size in words of a full array. */
static tree
get_full_array_size (stmtblock_t *block, tree decl, int rank)
{
tree idx;
tree nelems;
tree tmp;
idx = gfc_rank_cst[rank - 1];
nelems = gfc_conv_descriptor_ubound_get (decl, idx);
tmp = gfc_conv_descriptor_lbound_get (decl, idx);
tmp = fold_build2_loc (input_location, MINUS_EXPR, gfc_array_index_type,
nelems, tmp);
tmp = fold_build2_loc (input_location, PLUS_EXPR, gfc_array_index_type,
tmp, gfc_index_one_node);
tmp = gfc_evaluate_now (tmp, block);
nelems = gfc_conv_descriptor_stride_get (decl, idx);
tmp = fold_build2_loc (input_location, MULT_EXPR, gfc_array_index_type,
nelems, tmp);
return gfc_evaluate_now (tmp, block);
}
/* Allocate dest to the same size as src, and copy src -> dest.
If no_malloc is set, only the copy is done. */
static tree
duplicate_allocatable (tree dest, tree src, tree type, int rank,
bool no_malloc)
{
tree tmp;
tree size;
tree nelems;
tree null_cond;
tree null_data;
stmtblock_t block;
/* If the source is null, set the destination to null. Then,
allocate memory to the destination. */
gfc_init_block (&block);
if (rank == 0)
{
tmp = null_pointer_node;
tmp = fold_build2_loc (input_location, MODIFY_EXPR, type, dest, tmp);
gfc_add_expr_to_block (&block, tmp);
null_data = gfc_finish_block (&block);
gfc_init_block (&block);
size = TYPE_SIZE_UNIT (TREE_TYPE (type));
if (!no_malloc)
{
tmp = gfc_call_malloc (&block, type, size);
tmp = fold_build2_loc (input_location, MODIFY_EXPR, void_type_node,
dest, fold_convert (type, tmp));
gfc_add_expr_to_block (&block, tmp);
}
tmp = builtin_decl_explicit (BUILT_IN_MEMCPY);
tmp = build_call_expr_loc (input_location, tmp, 3,
dest, src, size);
}
else
{
gfc_conv_descriptor_data_set (&block, dest, null_pointer_node);
null_data = gfc_finish_block (&block);
gfc_init_block (&block);
nelems = get_full_array_size (&block, src, rank);
tmp = fold_convert (gfc_array_index_type,
TYPE_SIZE_UNIT (gfc_get_element_type (type)));
size = fold_build2_loc (input_location, MULT_EXPR, gfc_array_index_type,
nelems, tmp);
if (!no_malloc)
{
tmp = TREE_TYPE (gfc_conv_descriptor_data_get (src));
tmp = gfc_call_malloc (&block, tmp, size);
gfc_conv_descriptor_data_set (&block, dest, tmp);
}
/* We know the temporary and the value will be the same length,
so can use memcpy. */
tmp = builtin_decl_explicit (BUILT_IN_MEMCPY);
tmp = build_call_expr_loc (input_location,
tmp, 3, gfc_conv_descriptor_data_get (dest),
gfc_conv_descriptor_data_get (src), size);
}
gfc_add_expr_to_block (&block, tmp);
tmp = gfc_finish_block (&block);
/* Null the destination if the source is null; otherwise do
the allocate and copy. */
if (rank == 0)
null_cond = src;
else
null_cond = gfc_conv_descriptor_data_get (src);
null_cond = convert (pvoid_type_node, null_cond);
null_cond = fold_build2_loc (input_location, NE_EXPR, boolean_type_node,
null_cond, null_pointer_node);
return build3_v (COND_EXPR, null_cond, tmp, null_data);
}
/* Allocate dest to the same size as src, and copy data src -> dest. */
tree
gfc_duplicate_allocatable (tree dest, tree src, tree type, int rank)
{
return duplicate_allocatable (dest, src, type, rank, false);
}
/* Copy data src -> dest. */
tree
gfc_copy_allocatable_data (tree dest, tree src, tree type, int rank)
{
return duplicate_allocatable (dest, src, type, rank, true);
}
/* Recursively traverse an object of derived type, generating code to
deallocate, nullify or copy allocatable components. This is the work horse
function for the functions named in this enum. */
enum {DEALLOCATE_ALLOC_COMP = 1, NULLIFY_ALLOC_COMP, COPY_ALLOC_COMP,
COPY_ONLY_ALLOC_COMP};
static tree
structure_alloc_comps (gfc_symbol * der_type, tree decl,
tree dest, int rank, int purpose)
{
gfc_component *c;
gfc_loopinfo loop;
stmtblock_t fnblock;
stmtblock_t loopbody;
stmtblock_t tmpblock;
tree decl_type;
tree tmp;
tree comp;
tree dcmp;
tree nelems;
tree index;
tree var;
tree cdecl;
tree ctype;
tree vref, dref;
tree null_cond = NULL_TREE;
bool called_dealloc_with_status;
gfc_init_block (&fnblock);
decl_type = TREE_TYPE (decl);
if ((POINTER_TYPE_P (decl_type) && rank != 0)
|| (TREE_CODE (decl_type) == REFERENCE_TYPE && rank == 0))
decl = build_fold_indirect_ref_loc (input_location, decl);
/* Just in case in gets dereferenced. */
decl_type = TREE_TYPE (decl);
/* If this an array of derived types with allocatable components
build a loop and recursively call this function. */
if (TREE_CODE (decl_type) == ARRAY_TYPE
|| (GFC_DESCRIPTOR_TYPE_P (decl_type) && rank != 0))
{
tmp = gfc_conv_array_data (decl);
var = build_fold_indirect_ref_loc (input_location,
tmp);
/* Get the number of elements - 1 and set the counter. */
if (GFC_DESCRIPTOR_TYPE_P (decl_type))
{
/* Use the descriptor for an allocatable array. Since this
is a full array reference, we only need the descriptor
information from dimension = rank. */
tmp = get_full_array_size (&fnblock, decl, rank);
tmp = fold_build2_loc (input_location, MINUS_EXPR,
gfc_array_index_type, tmp,
gfc_index_one_node);
null_cond = gfc_conv_descriptor_data_get (decl);
null_cond = fold_build2_loc (input_location, NE_EXPR,
boolean_type_node, null_cond,
build_int_cst (TREE_TYPE (null_cond), 0));
}
else
{
/* Otherwise use the TYPE_DOMAIN information. */
tmp = array_type_nelts (decl_type);
tmp = fold_convert (gfc_array_index_type, tmp);
}
/* Remember that this is, in fact, the no. of elements - 1. */
nelems = gfc_evaluate_now (tmp, &fnblock);
index = gfc_create_var (gfc_array_index_type, "S");
/* Build the body of the loop. */
gfc_init_block (&loopbody);
vref = gfc_build_array_ref (var, index, NULL);
if (purpose == COPY_ALLOC_COMP)
{
if (GFC_DESCRIPTOR_TYPE_P (TREE_TYPE (dest)))
{
tmp = gfc_duplicate_allocatable (dest, decl, decl_type, rank);
gfc_add_expr_to_block (&fnblock, tmp);
}
tmp = build_fold_indirect_ref_loc (input_location,
gfc_conv_array_data (dest));
dref = gfc_build_array_ref (tmp, index, NULL);
tmp = structure_alloc_comps (der_type, vref, dref, rank, purpose);
}
else if (purpose == COPY_ONLY_ALLOC_COMP)
{
tmp = build_fold_indirect_ref_loc (input_location,
gfc_conv_array_data (dest));
dref = gfc_build_array_ref (tmp, index, NULL);
tmp = structure_alloc_comps (der_type, vref, dref, rank,
COPY_ALLOC_COMP);
}
else
tmp = structure_alloc_comps (der_type, vref, NULL_TREE, rank, purpose);
gfc_add_expr_to_block (&loopbody, tmp);
/* Build the loop and return. */
gfc_init_loopinfo (&loop);
loop.dimen = 1;
loop.from[0] = gfc_index_zero_node;
loop.loopvar[0] = index;
loop.to[0] = nelems;
gfc_trans_scalarizing_loops (&loop, &loopbody);
gfc_add_block_to_block (&fnblock, &loop.pre);
tmp = gfc_finish_block (&fnblock);
if (null_cond != NULL_TREE)
tmp = build3_v (COND_EXPR, null_cond, tmp,
build_empty_stmt (input_location));
return tmp;
}
/* Otherwise, act on the components or recursively call self to
act on a chain of components. */
for (c = der_type->components; c; c = c->next)
{
bool cmp_has_alloc_comps = (c->ts.type == BT_DERIVED
|| c->ts.type == BT_CLASS)
&& c->ts.u.derived->attr.alloc_comp;
cdecl = c->backend_decl;
ctype = TREE_TYPE (cdecl);
switch (purpose)
{
case DEALLOCATE_ALLOC_COMP:
/* gfc_deallocate_scalar_with_status calls gfc_deallocate_alloc_comp
(i.e. this function) so generate all the calls and suppress the
recursion from here, if necessary. */
called_dealloc_with_status = false;
gfc_init_block (&tmpblock);
if (c->attr.allocatable
&& (c->attr.dimension || c->attr.codimension))
{
comp = fold_build3_loc (input_location, COMPONENT_REF, ctype,
decl, cdecl, NULL_TREE);
tmp = gfc_trans_dealloc_allocated (comp, c->attr.codimension);
gfc_add_expr_to_block (&tmpblock, tmp);
}
else if (c->attr.allocatable)
{
/* Allocatable scalar components. */
comp = fold_build3_loc (input_location, COMPONENT_REF, ctype,
decl, cdecl, NULL_TREE);
tmp = gfc_deallocate_scalar_with_status (comp, NULL, true, NULL,
c->ts);
gfc_add_expr_to_block (&tmpblock, tmp);
called_dealloc_with_status = true;
tmp = fold_build2_loc (input_location, MODIFY_EXPR,
void_type_node, comp,
build_int_cst (TREE_TYPE (comp), 0));
gfc_add_expr_to_block (&tmpblock, tmp);
}
else if (c->ts.type == BT_CLASS && CLASS_DATA (c)->attr.allocatable)
{
/* Allocatable CLASS components. */
comp = fold_build3_loc (input_location, COMPONENT_REF, ctype,
decl, cdecl, NULL_TREE);
/* Add reference to '_data' component. */
tmp = CLASS_DATA (c)->backend_decl;
comp = fold_build3_loc (input_location, COMPONENT_REF,
TREE_TYPE (tmp), comp, tmp, NULL_TREE);
if (GFC_DESCRIPTOR_TYPE_P(TREE_TYPE (comp)))
tmp = gfc_trans_dealloc_allocated (comp,
CLASS_DATA (c)->attr.codimension);
else
{
tmp = gfc_deallocate_scalar_with_status (comp, NULL, true, NULL,
CLASS_DATA (c)->ts);
gfc_add_expr_to_block (&tmpblock, tmp);
called_dealloc_with_status = true;
tmp = fold_build2_loc (input_location, MODIFY_EXPR,
void_type_node, comp,
build_int_cst (TREE_TYPE (comp), 0));
}
gfc_add_expr_to_block (&tmpblock, tmp);
}
if (cmp_has_alloc_comps
&& !c->attr.pointer
&& !called_dealloc_with_status)
{
/* Do not deallocate the components of ultimate pointer
components or iteratively call self if call has been made
to gfc_trans_dealloc_allocated */
comp = fold_build3_loc (input_location, COMPONENT_REF, ctype,
decl, cdecl, NULL_TREE);
rank = c->as ? c->as->rank : 0;
tmp = structure_alloc_comps (c->ts.u.derived, comp, NULL_TREE,
rank, purpose);
gfc_add_expr_to_block (&fnblock, tmp);
}
/* Now add the deallocation of this component. */
gfc_add_block_to_block (&fnblock, &tmpblock);
break;
case NULLIFY_ALLOC_COMP:
if (c->attr.pointer)
continue;
else if (c->attr.allocatable
&& (c->attr.dimension|| c->attr.codimension))
{
comp = fold_build3_loc (input_location, COMPONENT_REF, ctype,
decl, cdecl, NULL_TREE);
gfc_conv_descriptor_data_set (&fnblock, comp, null_pointer_node);
}
else if (c->attr.allocatable)
{
/* Allocatable scalar components. */
comp = fold_build3_loc (input_location, COMPONENT_REF, ctype,
decl, cdecl, NULL_TREE);
tmp = fold_build2_loc (input_location, MODIFY_EXPR,
void_type_node, comp,
build_int_cst (TREE_TYPE (comp), 0));
gfc_add_expr_to_block (&fnblock, tmp);
}
else if (c->ts.type == BT_CLASS && CLASS_DATA (c)->attr.allocatable)
{
/* Allocatable CLASS components. */
comp = fold_build3_loc (input_location, COMPONENT_REF, ctype,
decl, cdecl, NULL_TREE);
/* Add reference to '_data' component. */
tmp = CLASS_DATA (c)->backend_decl;
comp = fold_build3_loc (input_location, COMPONENT_REF,
TREE_TYPE (tmp), comp, tmp, NULL_TREE);
if (GFC_DESCRIPTOR_TYPE_P(TREE_TYPE (comp)))
gfc_conv_descriptor_data_set (&fnblock, comp, null_pointer_node);
else
{
tmp = fold_build2_loc (input_location, MODIFY_EXPR,
void_type_node, comp,
build_int_cst (TREE_TYPE (comp), 0));
gfc_add_expr_to_block (&fnblock, tmp);
}
}
else if (cmp_has_alloc_comps)
{
comp = fold_build3_loc (input_location, COMPONENT_REF, ctype,
decl, cdecl, NULL_TREE);
rank = c->as ? c->as->rank : 0;
tmp = structure_alloc_comps (c->ts.u.derived, comp, NULL_TREE,
rank, purpose);
gfc_add_expr_to_block (&fnblock, tmp);
}
break;
case COPY_ALLOC_COMP:
if (c->attr.pointer)
continue;
/* We need source and destination components. */
comp = fold_build3_loc (input_location, COMPONENT_REF, ctype, decl,
cdecl, NULL_TREE);
dcmp = fold_build3_loc (input_location, COMPONENT_REF, ctype, dest,
cdecl, NULL_TREE);
dcmp = fold_convert (TREE_TYPE (comp), dcmp);
if (c->ts.type == BT_CLASS && CLASS_DATA (c)->attr.allocatable)
{
tree ftn_tree;
tree size;
tree dst_data;
tree src_data;
tree null_data;
dst_data = gfc_class_data_get (dcmp);
src_data = gfc_class_data_get (comp);
size = fold_convert (size_type_node, gfc_vtable_size_get (comp));
if (CLASS_DATA (c)->attr.dimension)
{
nelems = gfc_conv_descriptor_size (src_data,
CLASS_DATA (c)->as->rank);
src_data = gfc_conv_descriptor_data_get (src_data);
dst_data = gfc_conv_descriptor_data_get (dst_data);
}
else
nelems = build_int_cst (size_type_node, 1);
gfc_init_block (&tmpblock);
/* We need to use CALLOC as _copy might try to free allocatable
components of the destination. */
ftn_tree = builtin_decl_explicit (BUILT_IN_CALLOC);
tmp = build_call_expr_loc (input_location, ftn_tree, 2, nelems,
size);
gfc_add_modify (&tmpblock, dst_data,
fold_convert (TREE_TYPE (dst_data), tmp));
tmp = gfc_copy_class_to_class (comp, dcmp, nelems);
gfc_add_expr_to_block (&tmpblock, tmp);
tmp = gfc_finish_block (&tmpblock);
gfc_init_block (&tmpblock);
gfc_add_modify (&tmpblock, dst_data,
fold_convert (TREE_TYPE (dst_data),
null_pointer_node));
null_data = gfc_finish_block (&tmpblock);
null_cond = fold_build2_loc (input_location, NE_EXPR,
boolean_type_node, src_data,
null_pointer_node);
gfc_add_expr_to_block (&fnblock, build3_v (COND_EXPR, null_cond,
tmp, null_data));
continue;
}
if (c->attr.allocatable && !cmp_has_alloc_comps)
{
rank = c->as ? c->as->rank : 0;
tmp = gfc_duplicate_allocatable (dcmp, comp, ctype, rank);
gfc_add_expr_to_block (&fnblock, tmp);
}
if (cmp_has_alloc_comps)
{
rank = c->as ? c->as->rank : 0;
tmp = fold_convert (TREE_TYPE (dcmp), comp);
gfc_add_modify (&fnblock, dcmp, tmp);
tmp = structure_alloc_comps (c->ts.u.derived, comp, dcmp,
rank, purpose);
gfc_add_expr_to_block (&fnblock, tmp);
}
break;
default:
gcc_unreachable ();
break;
}
}
return gfc_finish_block (&fnblock);
}
/* Recursively traverse an object of derived type, generating code to
nullify allocatable components. */
tree
gfc_nullify_alloc_comp (gfc_symbol * der_type, tree decl, int rank)
{
return structure_alloc_comps (der_type, decl, NULL_TREE, rank,
NULLIFY_ALLOC_COMP);
}
/* Recursively traverse an object of derived type, generating code to
deallocate allocatable components. */
tree
gfc_deallocate_alloc_comp (gfc_symbol * der_type, tree decl, int rank)
{
return structure_alloc_comps (der_type, decl, NULL_TREE, rank,
DEALLOCATE_ALLOC_COMP);
}
/* Recursively traverse an object of derived type, generating code to
copy it and its allocatable components. */
tree
gfc_copy_alloc_comp (gfc_symbol * der_type, tree decl, tree dest, int rank)
{
return structure_alloc_comps (der_type, decl, dest, rank, COPY_ALLOC_COMP);
}
/* Recursively traverse an object of derived type, generating code to
copy only its allocatable components. */
tree
gfc_copy_only_alloc_comp (gfc_symbol * der_type, tree decl, tree dest, int rank)
{
return structure_alloc_comps (der_type, decl, dest, rank, COPY_ONLY_ALLOC_COMP);
}
/* Returns the value of LBOUND for an expression. This could be broken out
from gfc_conv_intrinsic_bound but this seemed to be simpler. This is
called by gfc_alloc_allocatable_for_assignment. */
static tree
get_std_lbound (gfc_expr *expr, tree desc, int dim, bool assumed_size)
{
tree lbound;
tree ubound;
tree stride;
tree cond, cond1, cond3, cond4;
tree tmp;
gfc_ref *ref;
if (GFC_DESCRIPTOR_TYPE_P (TREE_TYPE (desc)))
{
tmp = gfc_rank_cst[dim];
lbound = gfc_conv_descriptor_lbound_get (desc, tmp);
ubound = gfc_conv_descriptor_ubound_get (desc, tmp);
stride = gfc_conv_descriptor_stride_get (desc, tmp);
cond1 = fold_build2_loc (input_location, GE_EXPR, boolean_type_node,
ubound, lbound);
cond3 = fold_build2_loc (input_location, GE_EXPR, boolean_type_node,
stride, gfc_index_zero_node);
cond3 = fold_build2_loc (input_location, TRUTH_AND_EXPR,
boolean_type_node, cond3, cond1);
cond4 = fold_build2_loc (input_location, LT_EXPR, boolean_type_node,
stride, gfc_index_zero_node);
if (assumed_size)
cond = fold_build2_loc (input_location, EQ_EXPR, boolean_type_node,
tmp, build_int_cst (gfc_array_index_type,
expr->rank - 1));
else
cond = boolean_false_node;
cond1 = fold_build2_loc (input_location, TRUTH_OR_EXPR,
boolean_type_node, cond3, cond4);
cond = fold_build2_loc (input_location, TRUTH_OR_EXPR,
boolean_type_node, cond, cond1);
return fold_build3_loc (input_location, COND_EXPR,
gfc_array_index_type, cond,
lbound, gfc_index_one_node);
}
if (expr->expr_type == EXPR_FUNCTION)
{
/* A conversion function, so use the argument. */
gcc_assert (expr->value.function.isym
&& expr->value.function.isym->conversion);
expr = expr->value.function.actual->expr;
}
if (expr->expr_type == EXPR_VARIABLE)
{
tmp = TREE_TYPE (expr->symtree->n.sym->backend_decl);
for (ref = expr->ref; ref; ref = ref->next)
{
if (ref->type == REF_COMPONENT
&& ref->u.c.component->as
&& ref->next
&& ref->next->u.ar.type == AR_FULL)
tmp = TREE_TYPE (ref->u.c.component->backend_decl);
}
return GFC_TYPE_ARRAY_LBOUND(tmp, dim);
}
return gfc_index_one_node;
}
/* Returns true if an expression represents an lhs that can be reallocated
on assignment. */
bool
gfc_is_reallocatable_lhs (gfc_expr *expr)
{
gfc_ref * ref;
if (!expr->ref)
return false;
/* An allocatable variable. */
if (expr->symtree->n.sym->attr.allocatable
&& expr->ref
&& expr->ref->type == REF_ARRAY
&& expr->ref->u.ar.type == AR_FULL)
return true;
/* All that can be left are allocatable components. */
if ((expr->symtree->n.sym->ts.type != BT_DERIVED
&& expr->symtree->n.sym->ts.type != BT_CLASS)
|| !expr->symtree->n.sym->ts.u.derived->attr.alloc_comp)
return false;
/* Find a component ref followed by an array reference. */
for (ref = expr->ref; ref; ref = ref->next)
if (ref->next
&& ref->type == REF_COMPONENT
&& ref->next->type == REF_ARRAY
&& !ref->next->next)
break;
if (!ref)
return false;
/* Return true if valid reallocatable lhs. */
if (ref->u.c.component->attr.allocatable
&& ref->next->u.ar.type == AR_FULL)
return true;
return false;
}
/* Allocate the lhs of an assignment to an allocatable array, otherwise
reallocate it. */
tree
gfc_alloc_allocatable_for_assignment (gfc_loopinfo *loop,
gfc_expr *expr1,
gfc_expr *expr2)
{
stmtblock_t realloc_block;
stmtblock_t alloc_block;
stmtblock_t fblock;
gfc_ss *rss;
gfc_ss *lss;
gfc_array_info *linfo;
tree realloc_expr;
tree alloc_expr;
tree size1;
tree size2;
tree array1;
tree cond;
tree tmp;
tree tmp2;
tree lbound;
tree ubound;
tree desc;
tree desc2;
tree offset;
tree jump_label1;
tree jump_label2;
tree neq_size;
tree lbd;
int n;
int dim;
gfc_array_spec * as;
/* x = f(...) with x allocatable. In this case, expr1 is the rhs.
Find the lhs expression in the loop chain and set expr1 and
expr2 accordingly. */
if (expr1->expr_type == EXPR_FUNCTION && expr2 == NULL)
{
expr2 = expr1;
/* Find the ss for the lhs. */
lss = loop->ss;
for (; lss && lss != gfc_ss_terminator; lss = lss->loop_chain)
if (lss->info->expr && lss->info->expr->expr_type == EXPR_VARIABLE)
break;
if (lss == gfc_ss_terminator)
return NULL_TREE;
expr1 = lss->info->expr;
}
/* Bail out if this is not a valid allocate on assignment. */
if (!gfc_is_reallocatable_lhs (expr1)
|| (expr2 && !expr2->rank))
return NULL_TREE;
/* Find the ss for the lhs. */
lss = loop->ss;
for (; lss && lss != gfc_ss_terminator; lss = lss->loop_chain)
if (lss->info->expr == expr1)
break;
if (lss == gfc_ss_terminator)
return NULL_TREE;
linfo = &lss->info->data.array;
/* Find an ss for the rhs. For operator expressions, we see the
ss's for the operands. Any one of these will do. */
rss = loop->ss;
for (; rss && rss != gfc_ss_terminator; rss = rss->loop_chain)
if (rss->info->expr != expr1 && rss != loop->temp_ss)
break;
if (expr2 && rss == gfc_ss_terminator)
return NULL_TREE;
gfc_start_block (&fblock);
/* Since the lhs is allocatable, this must be a descriptor type.
Get the data and array size. */
desc = linfo->descriptor;
gcc_assert (GFC_DESCRIPTOR_TYPE_P (TREE_TYPE (desc)));
array1 = gfc_conv_descriptor_data_get (desc);
/* 7.4.1.3 "If variable is an allocated allocatable variable, it is
deallocated if expr is an array of different shape or any of the
corresponding length type parameter values of variable and expr
differ." This assures F95 compatibility. */
jump_label1 = gfc_build_label_decl (NULL_TREE);
jump_label2 = gfc_build_label_decl (NULL_TREE);
/* Allocate if data is NULL. */
cond = fold_build2_loc (input_location, EQ_EXPR, boolean_type_node,
array1, build_int_cst (TREE_TYPE (array1), 0));
tmp = build3_v (COND_EXPR, cond,
build1_v (GOTO_EXPR, jump_label1),
build_empty_stmt (input_location));
gfc_add_expr_to_block (&fblock, tmp);
/* Get arrayspec if expr is a full array. */
if (expr2 && expr2->expr_type == EXPR_FUNCTION
&& expr2->value.function.isym
&& expr2->value.function.isym->conversion)
{
/* For conversion functions, take the arg. */
gfc_expr *arg = expr2->value.function.actual->expr;
as = gfc_get_full_arrayspec_from_expr (arg);
}
else if (expr2)
as = gfc_get_full_arrayspec_from_expr (expr2);
else
as = NULL;
/* If the lhs shape is not the same as the rhs jump to setting the
bounds and doing the reallocation....... */
for (n = 0; n < expr1->rank; n++)
{
/* Check the shape. */
lbound = gfc_conv_descriptor_lbound_get (desc, gfc_rank_cst[n]);
ubound = gfc_conv_descriptor_ubound_get (desc, gfc_rank_cst[n]);
tmp = fold_build2_loc (input_location, MINUS_EXPR,
gfc_array_index_type,
loop->to[n], loop->from[n]);
tmp = fold_build2_loc (input_location, PLUS_EXPR,
gfc_array_index_type,
tmp, lbound);
tmp = fold_build2_loc (input_location, MINUS_EXPR,
gfc_array_index_type,
tmp, ubound);
cond = fold_build2_loc (input_location, NE_EXPR,
boolean_type_node,
tmp, gfc_index_zero_node);
tmp = build3_v (COND_EXPR, cond,
build1_v (GOTO_EXPR, jump_label1),
build_empty_stmt (input_location));
gfc_add_expr_to_block (&fblock, tmp);
}
/* ....else jump past the (re)alloc code. */
tmp = build1_v (GOTO_EXPR, jump_label2);
gfc_add_expr_to_block (&fblock, tmp);
/* Add the label to start automatic (re)allocation. */
tmp = build1_v (LABEL_EXPR, jump_label1);
gfc_add_expr_to_block (&fblock, tmp);
size1 = gfc_conv_descriptor_size (desc, expr1->rank);
/* Get the rhs size. Fix both sizes. */
if (expr2)
desc2 = rss->info->data.array.descriptor;
else
desc2 = NULL_TREE;
size2 = gfc_index_one_node;
for (n = 0; n < expr2->rank; n++)
{
tmp = fold_build2_loc (input_location, MINUS_EXPR,
gfc_array_index_type,
loop->to[n], loop->from[n]);
tmp = fold_build2_loc (input_location, PLUS_EXPR,
gfc_array_index_type,
tmp, gfc_index_one_node);
size2 = fold_build2_loc (input_location, MULT_EXPR,
gfc_array_index_type,
tmp, size2);
}
size1 = gfc_evaluate_now (size1, &fblock);
size2 = gfc_evaluate_now (size2, &fblock);
cond = fold_build2_loc (input_location, NE_EXPR, boolean_type_node,
size1, size2);
neq_size = gfc_evaluate_now (cond, &fblock);
/* Now modify the lhs descriptor and the associated scalarizer
variables. F2003 7.4.1.3: "If variable is or becomes an
unallocated allocatable variable, then it is allocated with each
deferred type parameter equal to the corresponding type parameters
of expr , with the shape of expr , and with each lower bound equal
to the corresponding element of LBOUND(expr)."
Reuse size1 to keep a dimension-by-dimension track of the
stride of the new array. */
size1 = gfc_index_one_node;
offset = gfc_index_zero_node;
for (n = 0; n < expr2->rank; n++)
{
tmp = fold_build2_loc (input_location, MINUS_EXPR,
gfc_array_index_type,
loop->to[n], loop->from[n]);
tmp = fold_build2_loc (input_location, PLUS_EXPR,
gfc_array_index_type,
tmp, gfc_index_one_node);
lbound = gfc_index_one_node;
ubound = tmp;
if (as)
{
lbd = get_std_lbound (expr2, desc2, n,
as->type == AS_ASSUMED_SIZE);
ubound = fold_build2_loc (input_location,
MINUS_EXPR,
gfc_array_index_type,
ubound, lbound);
ubound = fold_build2_loc (input_location,
PLUS_EXPR,
gfc_array_index_type,
ubound, lbd);
lbound = lbd;
}
gfc_conv_descriptor_lbound_set (&fblock, desc,
gfc_rank_cst[n],
lbound);
gfc_conv_descriptor_ubound_set (&fblock, desc,
gfc_rank_cst[n],
ubound);
gfc_conv_descriptor_stride_set (&fblock, desc,
gfc_rank_cst[n],
size1);
lbound = gfc_conv_descriptor_lbound_get (desc,
gfc_rank_cst[n]);
tmp2 = fold_build2_loc (input_location, MULT_EXPR,
gfc_array_index_type,
lbound, size1);
offset = fold_build2_loc (input_location, MINUS_EXPR,
gfc_array_index_type,
offset, tmp2);
size1 = fold_build2_loc (input_location, MULT_EXPR,
gfc_array_index_type,
tmp, size1);
}
/* Set the lhs descriptor and scalarizer offsets. For rank > 1,
the array offset is saved and the info.offset is used for a
running offset. Use the saved_offset instead. */
tmp = gfc_conv_descriptor_offset (desc);
gfc_add_modify (&fblock, tmp, offset);
if (linfo->saved_offset
&& TREE_CODE (linfo->saved_offset) == VAR_DECL)
gfc_add_modify (&fblock, linfo->saved_offset, tmp);
/* Now set the deltas for the lhs. */
for (n = 0; n < expr1->rank; n++)
{
tmp = gfc_conv_descriptor_lbound_get (desc, gfc_rank_cst[n]);
dim = lss->dim[n];
tmp = fold_build2_loc (input_location, MINUS_EXPR,
gfc_array_index_type, tmp,
loop->from[dim]);
if (linfo->delta[dim]
&& TREE_CODE (linfo->delta[dim]) == VAR_DECL)
gfc_add_modify (&fblock, linfo->delta[dim], tmp);
}
/* Get the new lhs size in bytes. */
if (expr1->ts.type == BT_CHARACTER && expr1->ts.deferred)
{
tmp = expr2->ts.u.cl->backend_decl;
gcc_assert (expr1->ts.u.cl->backend_decl);
tmp = fold_convert (TREE_TYPE (expr1->ts.u.cl->backend_decl), tmp);
gfc_add_modify (&fblock, expr1->ts.u.cl->backend_decl, tmp);
}
else if (expr1->ts.type == BT_CHARACTER && expr1->ts.u.cl->backend_decl)
{
tmp = TYPE_SIZE_UNIT (TREE_TYPE (gfc_typenode_for_spec (&expr1->ts)));
tmp = fold_build2_loc (input_location, MULT_EXPR,
gfc_array_index_type, tmp,
expr1->ts.u.cl->backend_decl);
}
else
tmp = TYPE_SIZE_UNIT (gfc_typenode_for_spec (&expr1->ts));
tmp = fold_convert (gfc_array_index_type, tmp);
size2 = fold_build2_loc (input_location, MULT_EXPR,
gfc_array_index_type,
tmp, size2);
size2 = fold_convert (size_type_node, size2);
size2 = gfc_evaluate_now (size2, &fblock);
/* Realloc expression. Note that the scalarizer uses desc.data
in the array reference - (*desc.data)[<element>]. */
gfc_init_block (&realloc_block);
tmp = build_call_expr_loc (input_location,
builtin_decl_explicit (BUILT_IN_REALLOC), 2,
fold_convert (pvoid_type_node, array1),
size2);
gfc_conv_descriptor_data_set (&realloc_block,
desc, tmp);
realloc_expr = gfc_finish_block (&realloc_block);
/* Only reallocate if sizes are different. */
tmp = build3_v (COND_EXPR, neq_size, realloc_expr,
build_empty_stmt (input_location));
realloc_expr = tmp;
/* Malloc expression. */
gfc_init_block (&alloc_block);
tmp = build_call_expr_loc (input_location,
builtin_decl_explicit (BUILT_IN_MALLOC),
1, size2);
gfc_conv_descriptor_data_set (&alloc_block,
desc, tmp);
tmp = gfc_conv_descriptor_dtype (desc);
gfc_add_modify (&alloc_block, tmp, gfc_get_dtype (TREE_TYPE (desc)));
alloc_expr = gfc_finish_block (&alloc_block);
/* Malloc if not allocated; realloc otherwise. */
tmp = build_int_cst (TREE_TYPE (array1), 0);
cond = fold_build2_loc (input_location, EQ_EXPR,
boolean_type_node,
array1, tmp);
tmp = build3_v (COND_EXPR, cond, alloc_expr, realloc_expr);
gfc_add_expr_to_block (&fblock, tmp);
/* Make sure that the scalarizer data pointer is updated. */
if (linfo->data
&& TREE_CODE (linfo->data) == VAR_DECL)
{
tmp = gfc_conv_descriptor_data_get (desc);
gfc_add_modify (&fblock, linfo->data, tmp);
}
/* Add the exit label. */
tmp = build1_v (LABEL_EXPR, jump_label2);
gfc_add_expr_to_block (&fblock, tmp);
return gfc_finish_block (&fblock);
}
/* NULLIFY an allocatable/pointer array on function entry, free it on exit.
Do likewise, recursively if necessary, with the allocatable components of
derived types. */
void
gfc_trans_deferred_array (gfc_symbol * sym, gfc_wrapped_block * block)
{
tree type;
tree tmp;
tree descriptor;
stmtblock_t init;
stmtblock_t cleanup;
locus loc;
int rank;
bool sym_has_alloc_comp;
sym_has_alloc_comp = (sym->ts.type == BT_DERIVED
|| sym->ts.type == BT_CLASS)
&& sym->ts.u.derived->attr.alloc_comp;
/* Make sure the frontend gets these right. */
if (!(sym->attr.pointer || sym->attr.allocatable || sym_has_alloc_comp))
fatal_error ("Possible front-end bug: Deferred array size without pointer, "
"allocatable attribute or derived type without allocatable "
"components.");
gfc_save_backend_locus (&loc);
gfc_set_backend_locus (&sym->declared_at);
gfc_init_block (&init);
gcc_assert (TREE_CODE (sym->backend_decl) == VAR_DECL
|| TREE_CODE (sym->backend_decl) == PARM_DECL);
if (sym->ts.type == BT_CHARACTER
&& !INTEGER_CST_P (sym->ts.u.cl->backend_decl))
{
gfc_conv_string_length (sym->ts.u.cl, NULL, &init);
gfc_trans_vla_type_sizes (sym, &init);
}
/* Dummy, use associated and result variables don't need anything special. */
if (sym->attr.dummy || sym->attr.use_assoc || sym->attr.result)
{
gfc_add_init_cleanup (block, gfc_finish_block (&init), NULL_TREE);
gfc_restore_backend_locus (&loc);
return;
}
descriptor = sym->backend_decl;
/* Although static, derived types with default initializers and
allocatable components must not be nulled wholesale; instead they
are treated component by component. */
if (TREE_STATIC (descriptor) && !sym_has_alloc_comp)
{
/* SAVEd variables are not freed on exit. */
gfc_trans_static_array_pointer (sym);
gfc_add_init_cleanup (block, gfc_finish_block (&init), NULL_TREE);
gfc_restore_backend_locus (&loc);
return;
}
/* Get the descriptor type. */
type = TREE_TYPE (sym->backend_decl);
if (sym_has_alloc_comp && !(sym->attr.pointer || sym->attr.allocatable))
{
if (!sym->attr.save
&& !(TREE_STATIC (sym->backend_decl) && sym->attr.is_main_program))
{
if (sym->value == NULL
|| !gfc_has_default_initializer (sym->ts.u.derived))
{
rank = sym->as ? sym->as->rank : 0;
tmp = gfc_nullify_alloc_comp (sym->ts.u.derived,
descriptor, rank);
gfc_add_expr_to_block (&init, tmp);
}
else
gfc_init_default_dt (sym, &init, false);
}
}
else if (!GFC_DESCRIPTOR_TYPE_P (type))
{
/* If the backend_decl is not a descriptor, we must have a pointer
to one. */
descriptor = build_fold_indirect_ref_loc (input_location,
sym->backend_decl);
type = TREE_TYPE (descriptor);
}
/* NULLIFY the data pointer. */
if (GFC_DESCRIPTOR_TYPE_P (type) && !sym->attr.save)
gfc_conv_descriptor_data_set (&init, descriptor, null_pointer_node);
gfc_restore_backend_locus (&loc);
gfc_init_block (&cleanup);
/* Allocatable arrays need to be freed when they go out of scope.
The allocatable components of pointers must not be touched. */
if (sym_has_alloc_comp && !(sym->attr.function || sym->attr.result)
&& !sym->attr.pointer && !sym->attr.save)
{
int rank;
rank = sym->as ? sym->as->rank : 0;
tmp = gfc_deallocate_alloc_comp (sym->ts.u.derived, descriptor, rank);
gfc_add_expr_to_block (&cleanup, tmp);
}
if (sym->attr.allocatable && (sym->attr.dimension || sym->attr.codimension)
&& !sym->attr.save && !sym->attr.result)
{
tmp = gfc_trans_dealloc_allocated (sym->backend_decl,
sym->attr.codimension);
gfc_add_expr_to_block (&cleanup, tmp);
}
gfc_add_init_cleanup (block, gfc_finish_block (&init),
gfc_finish_block (&cleanup));
}
/************ Expression Walking Functions ******************/
/* Walk a variable reference.
Possible extension - multiple component subscripts.
x(:,:) = foo%a(:)%b(:)
Transforms to
forall (i=..., j=...)
x(i,j) = foo%a(j)%b(i)
end forall
This adds a fair amount of complexity because you need to deal with more
than one ref. Maybe handle in a similar manner to vector subscripts.
Maybe not worth the effort. */
static gfc_ss *
gfc_walk_variable_expr (gfc_ss * ss, gfc_expr * expr)
{
gfc_ref *ref;
for (ref = expr->ref; ref; ref = ref->next)
if (ref->type == REF_ARRAY && ref->u.ar.type != AR_ELEMENT)
break;
return gfc_walk_array_ref (ss, expr, ref);
}
gfc_ss *
gfc_walk_array_ref (gfc_ss * ss, gfc_expr * expr, gfc_ref * ref)
{
gfc_array_ref *ar;
gfc_ss *newss;
int n;
for (; ref; ref = ref->next)
{
if (ref->type == REF_SUBSTRING)
{
ss = gfc_get_scalar_ss (ss, ref->u.ss.start);
ss = gfc_get_scalar_ss (ss, ref->u.ss.end);
}
/* We're only interested in array sections from now on. */
if (ref->type != REF_ARRAY)
continue;
ar = &ref->u.ar;
switch (ar->type)
{
case AR_ELEMENT:
for (n = ar->dimen - 1; n >= 0; n--)
ss = gfc_get_scalar_ss (ss, ar->start[n]);
break;
case AR_FULL:
newss = gfc_get_array_ss (ss, expr, ar->as->rank, GFC_SS_SECTION);
newss->info->data.array.ref = ref;
/* Make sure array is the same as array(:,:), this way
we don't need to special case all the time. */
ar->dimen = ar->as->rank;
for (n = 0; n < ar->dimen; n++)
{
ar->dimen_type[n] = DIMEN_RANGE;
gcc_assert (ar->start[n] == NULL);
gcc_assert (ar->end[n] == NULL);
gcc_assert (ar->stride[n] == NULL);
}
ss = newss;
break;
case AR_SECTION:
newss = gfc_get_array_ss (ss, expr, 0, GFC_SS_SECTION);
newss->info->data.array.ref = ref;
/* We add SS chains for all the subscripts in the section. */
for (n = 0; n < ar->dimen; n++)
{
gfc_ss *indexss;
switch (ar->dimen_type[n])
{
case DIMEN_ELEMENT:
/* Add SS for elemental (scalar) subscripts. */
gcc_assert (ar->start[n]);
indexss = gfc_get_scalar_ss (gfc_ss_terminator, ar->start[n]);
indexss->loop_chain = gfc_ss_terminator;
newss->info->data.array.subscript[n] = indexss;
break;
case DIMEN_RANGE:
/* We don't add anything for sections, just remember this
dimension for later. */
newss->dim[newss->dimen] = n;
newss->dimen++;
break;
case DIMEN_VECTOR:
/* Create a GFC_SS_VECTOR index in which we can store
the vector's descriptor. */
indexss = gfc_get_array_ss (gfc_ss_terminator, ar->start[n],
1, GFC_SS_VECTOR);
indexss->loop_chain = gfc_ss_terminator;
newss->info->data.array.subscript[n] = indexss;
newss->dim[newss->dimen] = n;
newss->dimen++;
break;
default:
/* We should know what sort of section it is by now. */
gcc_unreachable ();
}
}
/* We should have at least one non-elemental dimension,
unless we are creating a descriptor for a (scalar) coarray. */
gcc_assert (newss->dimen > 0
|| newss->info->data.array.ref->u.ar.as->corank > 0);
ss = newss;
break;
default:
/* We should know what sort of section it is by now. */
gcc_unreachable ();
}
}
return ss;
}
/* Walk an expression operator. If only one operand of a binary expression is
scalar, we must also add the scalar term to the SS chain. */
static gfc_ss *
gfc_walk_op_expr (gfc_ss * ss, gfc_expr * expr)
{
gfc_ss *head;
gfc_ss *head2;
head = gfc_walk_subexpr (ss, expr->value.op.op1);
if (expr->value.op.op2 == NULL)
head2 = head;
else
head2 = gfc_walk_subexpr (head, expr->value.op.op2);
/* All operands are scalar. Pass back and let the caller deal with it. */
if (head2 == ss)
return head2;
/* All operands require scalarization. */
if (head != ss && (expr->value.op.op2 == NULL || head2 != head))
return head2;
/* One of the operands needs scalarization, the other is scalar.
Create a gfc_ss for the scalar expression. */
if (head == ss)
{
/* First operand is scalar. We build the chain in reverse order, so
add the scalar SS after the second operand. */
head = head2;
while (head && head->next != ss)
head = head->next;
/* Check we haven't somehow broken the chain. */
gcc_assert (head);
head->next = gfc_get_scalar_ss (ss, expr->value.op.op1);
}
else /* head2 == head */
{
gcc_assert (head2 == head);
/* Second operand is scalar. */
head2 = gfc_get_scalar_ss (head2, expr->value.op.op2);
}
return head2;
}
/* Reverse a SS chain. */
gfc_ss *
gfc_reverse_ss (gfc_ss * ss)
{
gfc_ss *next;
gfc_ss *head;
gcc_assert (ss != NULL);
head = gfc_ss_terminator;
while (ss != gfc_ss_terminator)
{
next = ss->next;
/* Check we didn't somehow break the chain. */
gcc_assert (next != NULL);
ss->next = head;
head = ss;
ss = next;
}
return (head);
}
/* Given an expression referring to a procedure, return the symbol of its
interface. We can't get the procedure symbol directly as we have to handle
the case of (deferred) type-bound procedures. */
gfc_symbol *
gfc_get_proc_ifc_for_expr (gfc_expr *procedure_ref)
{
gfc_symbol *sym;
gfc_ref *ref;
if (procedure_ref == NULL)
return NULL;
/* Normal procedure case. */
sym = procedure_ref->symtree->n.sym;
/* Typebound procedure case. */
for (ref = procedure_ref->ref; ref; ref = ref->next)
{
if (ref->type == REF_COMPONENT
&& ref->u.c.component->attr.proc_pointer)
sym = ref->u.c.component->ts.interface;
else
sym = NULL;
}
return sym;
}
/* Walk the arguments of an elemental function.
PROC_EXPR is used to check whether an argument is permitted to be absent. If
it is NULL, we don't do the check and the argument is assumed to be present.
*/
gfc_ss *
gfc_walk_elemental_function_args (gfc_ss * ss, gfc_actual_arglist *arg,
gfc_symbol *proc_ifc, gfc_ss_type type)
{
gfc_formal_arglist *dummy_arg;
int scalar;
gfc_ss *head;
gfc_ss *tail;
gfc_ss *newss;
head = gfc_ss_terminator;
tail = NULL;
if (proc_ifc)
dummy_arg = proc_ifc->formal;
else
dummy_arg = NULL;
scalar = 1;
for (; arg; arg = arg->next)
{
if (!arg->expr || arg->expr->expr_type == EXPR_NULL)
continue;
newss = gfc_walk_subexpr (head, arg->expr);
if (newss == head)
{
/* Scalar argument. */
gcc_assert (type == GFC_SS_SCALAR || type == GFC_SS_REFERENCE);
newss = gfc_get_scalar_ss (head, arg->expr);
newss->info->type = type;
}
else
scalar = 0;
if (dummy_arg != NULL
&& dummy_arg->sym->attr.optional
&& arg->expr->expr_type == EXPR_VARIABLE
&& (gfc_expr_attr (arg->expr).optional
|| gfc_expr_attr (arg->expr).allocatable
|| gfc_expr_attr (arg->expr).pointer))
newss->info->can_be_null_ref = true;
head = newss;
if (!tail)
{
tail = head;
while (tail->next != gfc_ss_terminator)
tail = tail->next;
}
if (dummy_arg != NULL)
dummy_arg = dummy_arg->next;
}
if (scalar)
{
/* If all the arguments are scalar we don't need the argument SS. */
gfc_free_ss_chain (head);
/* Pass it back. */
return ss;
}
/* Add it onto the existing chain. */
tail->next = ss;
return head;
}
/* Walk a function call. Scalar functions are passed back, and taken out of
scalarization loops. For elemental functions we walk their arguments.
The result of functions returning arrays is stored in a temporary outside
the loop, so that the function is only called once. Hence we do not need
to walk their arguments. */
static gfc_ss *
gfc_walk_function_expr (gfc_ss * ss, gfc_expr * expr)
{
gfc_intrinsic_sym *isym;
gfc_symbol *sym;
gfc_component *comp = NULL;
isym = expr->value.function.isym;
/* Handle intrinsic functions separately. */
if (isym)
return gfc_walk_intrinsic_function (ss, expr, isym);
sym = expr->value.function.esym;
if (!sym)
sym = expr->symtree->n.sym;
/* A function that returns arrays. */
comp = gfc_get_proc_ptr_comp (expr);
if ((!comp && gfc_return_by_reference (sym) && sym->result->attr.dimension)
|| (comp && comp->attr.dimension))
return gfc_get_array_ss (ss, expr, expr->rank, GFC_SS_FUNCTION);
/* Walk the parameters of an elemental function. For now we always pass
by reference. */
if (sym->attr.elemental || (comp && comp->attr.elemental))
return gfc_walk_elemental_function_args (ss, expr->value.function.actual,
gfc_get_proc_ifc_for_expr (expr),
GFC_SS_REFERENCE);
/* Scalar functions are OK as these are evaluated outside the scalarization
loop. Pass back and let the caller deal with it. */
return ss;
}
/* An array temporary is constructed for array constructors. */
static gfc_ss *
gfc_walk_array_constructor (gfc_ss * ss, gfc_expr * expr)
{
return gfc_get_array_ss (ss, expr, expr->rank, GFC_SS_CONSTRUCTOR);
}
/* Walk an expression. Add walked expressions to the head of the SS chain.
A wholly scalar expression will not be added. */
gfc_ss *
gfc_walk_subexpr (gfc_ss * ss, gfc_expr * expr)
{
gfc_ss *head;
switch (expr->expr_type)
{
case EXPR_VARIABLE:
head = gfc_walk_variable_expr (ss, expr);
return head;
case EXPR_OP:
head = gfc_walk_op_expr (ss, expr);
return head;
case EXPR_FUNCTION:
head = gfc_walk_function_expr (ss, expr);
return head;
case EXPR_CONSTANT:
case EXPR_NULL:
case EXPR_STRUCTURE:
/* Pass back and let the caller deal with it. */
break;
case EXPR_ARRAY:
head = gfc_walk_array_constructor (ss, expr);
return head;
case EXPR_SUBSTRING:
/* Pass back and let the caller deal with it. */
break;
default:
internal_error ("bad expression type during walk (%d)",
expr->expr_type);
}
return ss;
}
/* Entry point for expression walking.
A return value equal to the passed chain means this is
a scalar expression. It is up to the caller to take whatever action is
necessary to translate these. */
gfc_ss *
gfc_walk_expr (gfc_expr * expr)
{
gfc_ss *res;
res = gfc_walk_subexpr (gfc_ss_terminator, expr);
return gfc_reverse_ss (res);
}
|