summaryrefslogtreecommitdiff
path: root/gcc/fortran/trans-intrinsic.c
blob: 4273b8226e88b4b2eadfae1d1fa38fbf42a54375 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
/* Intrinsic translation
   Copyright (C) 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
   Free Software Foundation, Inc.
   Contributed by Paul Brook <paul@nowt.org>
   and Steven Bosscher <s.bosscher@student.tudelft.nl>

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.

GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3.  If not see
<http://www.gnu.org/licenses/>.  */

/* trans-intrinsic.c-- generate GENERIC trees for calls to intrinsics.  */

#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "tree.h"
#include "ggc.h"
#include "toplev.h"
#include "real.h"
#include "gimple.h"
#include "flags.h"
#include "gfortran.h"
#include "arith.h"
#include "intrinsic.h"
#include "trans.h"
#include "trans-const.h"
#include "trans-types.h"
#include "trans-array.h"
#include "defaults.h"
/* Only for gfc_trans_assign and gfc_trans_pointer_assign.  */
#include "trans-stmt.h"

/* This maps fortran intrinsic math functions to external library or GCC
   builtin functions.  */
typedef struct GTY(()) gfc_intrinsic_map_t {
  /* The explicit enum is required to work around inadequacies in the
     garbage collection/gengtype parsing mechanism.  */
  enum gfc_isym_id id;

  /* Enum value from the "language-independent", aka C-centric, part
     of gcc, or END_BUILTINS of no such value set.  */
  enum built_in_function code_r4;
  enum built_in_function code_r8;
  enum built_in_function code_r10;
  enum built_in_function code_r16;
  enum built_in_function code_c4;
  enum built_in_function code_c8;
  enum built_in_function code_c10;
  enum built_in_function code_c16;

  /* True if the naming pattern is to prepend "c" for complex and
     append "f" for kind=4.  False if the naming pattern is to
     prepend "_gfortran_" and append "[rc](4|8|10|16)".  */
  bool libm_name;

  /* True if a complex version of the function exists.  */
  bool complex_available;

  /* True if the function should be marked const.  */
  bool is_constant;

  /* The base library name of this function.  */
  const char *name;

  /* Cache decls created for the various operand types.  */
  tree real4_decl;
  tree real8_decl;
  tree real10_decl;
  tree real16_decl;
  tree complex4_decl;
  tree complex8_decl;
  tree complex10_decl;
  tree complex16_decl;
}
gfc_intrinsic_map_t;

/* ??? The NARGS==1 hack here is based on the fact that (c99 at least)
   defines complex variants of all of the entries in mathbuiltins.def
   except for atan2.  */
#define DEFINE_MATH_BUILTIN(ID, NAME, ARGTYPE) \
  { GFC_ISYM_ ## ID, BUILT_IN_ ## ID ## F, BUILT_IN_ ## ID, \
    BUILT_IN_ ## ID ## L, BUILT_IN_ ## ID ## L, (enum built_in_function) 0, \
    (enum built_in_function) 0, (enum built_in_function) 0, \
    (enum built_in_function) 0, true, false, true, NAME, NULL_TREE, \
    NULL_TREE, NULL_TREE, NULL_TREE, NULL_TREE, NULL_TREE, NULL_TREE, \
    NULL_TREE},

#define DEFINE_MATH_BUILTIN_C(ID, NAME, ARGTYPE) \
  { GFC_ISYM_ ## ID, BUILT_IN_ ## ID ## F, BUILT_IN_ ## ID, \
    BUILT_IN_ ## ID ## L, BUILT_IN_ ## ID ## L, BUILT_IN_C ## ID ## F, \
    BUILT_IN_C ## ID, BUILT_IN_C ## ID ## L, BUILT_IN_C ## ID ## L, true, \
    true, true, NAME, NULL_TREE, NULL_TREE, NULL_TREE, NULL_TREE, \
    NULL_TREE, NULL_TREE, NULL_TREE, NULL_TREE},

#define LIB_FUNCTION(ID, NAME, HAVE_COMPLEX) \
  { GFC_ISYM_ ## ID, END_BUILTINS, END_BUILTINS, END_BUILTINS, END_BUILTINS, \
    END_BUILTINS, END_BUILTINS, END_BUILTINS, END_BUILTINS, \
    false, HAVE_COMPLEX, true, NAME, NULL_TREE, NULL_TREE, NULL_TREE, \
    NULL_TREE, NULL_TREE, NULL_TREE, NULL_TREE, NULL_TREE }

static GTY(()) gfc_intrinsic_map_t gfc_intrinsic_map[] =
{
  /* Functions built into gcc itself.  */
#include "mathbuiltins.def"

  /* Functions in libgfortran.  */
  LIB_FUNCTION (ERFC_SCALED, "erfc_scaled", false),

  /* End the list.  */
  LIB_FUNCTION (NONE, NULL, false)

};
#undef LIB_FUNCTION
#undef DEFINE_MATH_BUILTIN
#undef DEFINE_MATH_BUILTIN_C

/* Structure for storing components of a floating number to be used by
   elemental functions to manipulate reals.  */
typedef struct
{
  tree arg;     /* Variable tree to view convert to integer.  */
  tree expn;    /* Variable tree to save exponent.  */
  tree frac;    /* Variable tree to save fraction.  */
  tree smask;   /* Constant tree of sign's mask.  */
  tree emask;   /* Constant tree of exponent's mask.  */
  tree fmask;   /* Constant tree of fraction's mask.  */
  tree edigits; /* Constant tree of the number of exponent bits.  */
  tree fdigits; /* Constant tree of the number of fraction bits.  */
  tree f1;      /* Constant tree of the f1 defined in the real model.  */
  tree bias;    /* Constant tree of the bias of exponent in the memory.  */
  tree type;    /* Type tree of arg1.  */
  tree mtype;   /* Type tree of integer type. Kind is that of arg1.  */
}
real_compnt_info;

enum rounding_mode { RND_ROUND, RND_TRUNC, RND_CEIL, RND_FLOOR };

/* Evaluate the arguments to an intrinsic function.  The value
   of NARGS may be less than the actual number of arguments in EXPR
   to allow optional "KIND" arguments that are not included in the
   generated code to be ignored.  */

static void
gfc_conv_intrinsic_function_args (gfc_se *se, gfc_expr *expr,
				  tree *argarray, int nargs)
{
  gfc_actual_arglist *actual;
  gfc_expr *e;
  gfc_intrinsic_arg  *formal;
  gfc_se argse;
  int curr_arg;

  formal = expr->value.function.isym->formal;
  actual = expr->value.function.actual;

   for (curr_arg = 0; curr_arg < nargs; curr_arg++,
	actual = actual->next,
	formal = formal ? formal->next : NULL)
    {
      gcc_assert (actual);
      e = actual->expr;
      /* Skip omitted optional arguments.  */
      if (!e)
	{
	  --curr_arg;
	  continue;
	}

      /* Evaluate the parameter.  This will substitute scalarized
         references automatically.  */
      gfc_init_se (&argse, se);

      if (e->ts.type == BT_CHARACTER)
	{
	  gfc_conv_expr (&argse, e);
	  gfc_conv_string_parameter (&argse);
          argarray[curr_arg++] = argse.string_length;
	  gcc_assert (curr_arg < nargs);
	}
      else
        gfc_conv_expr_val (&argse, e);

      /* If an optional argument is itself an optional dummy argument,
	 check its presence and substitute a null if absent.  */
      if (e->expr_type == EXPR_VARIABLE
	    && e->symtree->n.sym->attr.optional
	    && formal
	    && formal->optional)
	gfc_conv_missing_dummy (&argse, e, formal->ts, 0);

      gfc_add_block_to_block (&se->pre, &argse.pre);
      gfc_add_block_to_block (&se->post, &argse.post);
      argarray[curr_arg] = argse.expr;
    }
}

/* Count the number of actual arguments to the intrinsic function EXPR
   including any "hidden" string length arguments.  */

static unsigned int
gfc_intrinsic_argument_list_length (gfc_expr *expr)
{
  int n = 0;
  gfc_actual_arglist *actual;

  for (actual = expr->value.function.actual; actual; actual = actual->next)
    {
      if (!actual->expr)
	continue;

      if (actual->expr->ts.type == BT_CHARACTER)
	n += 2;
      else
	n++;
    }

  return n;
}


/* Conversions between different types are output by the frontend as
   intrinsic functions.  We implement these directly with inline code.  */

static void
gfc_conv_intrinsic_conversion (gfc_se * se, gfc_expr * expr)
{
  tree type;
  tree *args;
  int nargs;

  nargs = gfc_intrinsic_argument_list_length (expr);
  args = (tree *) alloca (sizeof (tree) * nargs);

  /* Evaluate all the arguments passed. Whilst we're only interested in the 
     first one here, there are other parts of the front-end that assume this 
     and will trigger an ICE if it's not the case.  */
  type = gfc_typenode_for_spec (&expr->ts);
  gcc_assert (expr->value.function.actual->expr);
  gfc_conv_intrinsic_function_args (se, expr, args, nargs);

  /* Conversion between character kinds involves a call to a library
     function.  */
  if (expr->ts.type == BT_CHARACTER)
    {
      tree fndecl, var, addr, tmp;

      if (expr->ts.kind == 1
	  && expr->value.function.actual->expr->ts.kind == 4)
	fndecl = gfor_fndecl_convert_char4_to_char1;
      else if (expr->ts.kind == 4
	       && expr->value.function.actual->expr->ts.kind == 1)
	fndecl = gfor_fndecl_convert_char1_to_char4;
      else
	gcc_unreachable ();

      /* Create the variable storing the converted value.  */
      type = gfc_get_pchar_type (expr->ts.kind);
      var = gfc_create_var (type, "str");
      addr = gfc_build_addr_expr (build_pointer_type (type), var);

      /* Call the library function that will perform the conversion.  */
      gcc_assert (nargs >= 2);
      tmp = build_call_expr_loc (input_location,
			     fndecl, 3, addr, args[0], args[1]);
      gfc_add_expr_to_block (&se->pre, tmp);

      /* Free the temporary afterwards.  */
      tmp = gfc_call_free (var);
      gfc_add_expr_to_block (&se->post, tmp);

      se->expr = var;
      se->string_length = args[0];

      return;
    }

  /* Conversion from complex to non-complex involves taking the real
     component of the value.  */
  if (TREE_CODE (TREE_TYPE (args[0])) == COMPLEX_TYPE
      && expr->ts.type != BT_COMPLEX)
    {
      tree artype;

      artype = TREE_TYPE (TREE_TYPE (args[0]));
      args[0] = fold_build1 (REALPART_EXPR, artype, args[0]);
    }

  se->expr = convert (type, args[0]);
}

/* This is needed because the gcc backend only implements
   FIX_TRUNC_EXPR, which is the same as INT() in Fortran.
   FLOOR(x) = INT(x) <= x ? INT(x) : INT(x) - 1
   Similarly for CEILING.  */

static tree
build_fixbound_expr (stmtblock_t * pblock, tree arg, tree type, int up)
{
  tree tmp;
  tree cond;
  tree argtype;
  tree intval;

  argtype = TREE_TYPE (arg);
  arg = gfc_evaluate_now (arg, pblock);

  intval = convert (type, arg);
  intval = gfc_evaluate_now (intval, pblock);

  tmp = convert (argtype, intval);
  cond = fold_build2 (up ? GE_EXPR : LE_EXPR, boolean_type_node, tmp, arg);

  tmp = fold_build2 (up ? PLUS_EXPR : MINUS_EXPR, type, intval,
		     build_int_cst (type, 1));
  tmp = fold_build3 (COND_EXPR, type, cond, intval, tmp);
  return tmp;
}


/* Round to nearest integer, away from zero.  */

static tree
build_round_expr (tree arg, tree restype)
{
  tree argtype;
  tree fn;
  bool longlong;
  int argprec, resprec;

  argtype = TREE_TYPE (arg);
  argprec = TYPE_PRECISION (argtype);
  resprec = TYPE_PRECISION (restype);

  /* Depending on the type of the result, choose the long int intrinsic
     (lround family) or long long intrinsic (llround).  We might also
     need to convert the result afterwards.  */
  if (resprec <= LONG_TYPE_SIZE)
    longlong = false;
  else if (resprec <= LONG_LONG_TYPE_SIZE)
    longlong = true;
  else
    gcc_unreachable ();

  /* Now, depending on the argument type, we choose between intrinsics.  */
  if (argprec == TYPE_PRECISION (float_type_node))
    fn = built_in_decls[longlong ? BUILT_IN_LLROUNDF : BUILT_IN_LROUNDF];
  else if (argprec == TYPE_PRECISION (double_type_node))
    fn = built_in_decls[longlong ? BUILT_IN_LLROUND : BUILT_IN_LROUND];
  else if (argprec == TYPE_PRECISION (long_double_type_node))
    fn = built_in_decls[longlong ? BUILT_IN_LLROUNDL : BUILT_IN_LROUNDL];
  else
    gcc_unreachable ();

  return fold_convert (restype, build_call_expr_loc (input_location,
						 fn, 1, arg));
}


/* Convert a real to an integer using a specific rounding mode.
   Ideally we would just build the corresponding GENERIC node,
   however the RTL expander only actually supports FIX_TRUNC_EXPR.  */

static tree
build_fix_expr (stmtblock_t * pblock, tree arg, tree type,
               enum rounding_mode op)
{
  switch (op)
    {
    case RND_FLOOR:
      return build_fixbound_expr (pblock, arg, type, 0);
      break;

    case RND_CEIL:
      return build_fixbound_expr (pblock, arg, type, 1);
      break;

    case RND_ROUND:
      return build_round_expr (arg, type);
      break;

    case RND_TRUNC:
      return fold_build1 (FIX_TRUNC_EXPR, type, arg);
      break;

    default:
      gcc_unreachable ();
    }
}


/* Round a real value using the specified rounding mode.
   We use a temporary integer of that same kind size as the result.
   Values larger than those that can be represented by this kind are
   unchanged, as they will not be accurate enough to represent the
   rounding.
    huge = HUGE (KIND (a))
    aint (a) = ((a > huge) || (a < -huge)) ? a : (real)(int)a
   */

static void
gfc_conv_intrinsic_aint (gfc_se * se, gfc_expr * expr, enum rounding_mode op)
{
  tree type;
  tree itype;
  tree arg[2];
  tree tmp;
  tree cond;
  mpfr_t huge;
  int n, nargs;
  int kind;

  kind = expr->ts.kind;
  nargs =  gfc_intrinsic_argument_list_length (expr);

  n = END_BUILTINS;
  /* We have builtin functions for some cases.  */
  switch (op)
    {
    case RND_ROUND:
      switch (kind)
	{
	case 4:
	  n = BUILT_IN_ROUNDF;
	  break;

	case 8:
	  n = BUILT_IN_ROUND;
	  break;

	case 10:
	case 16:
	  n = BUILT_IN_ROUNDL;
	  break;
	}
      break;

    case RND_TRUNC:
      switch (kind)
	{
	case 4:
	  n = BUILT_IN_TRUNCF;
	  break;

	case 8:
	  n = BUILT_IN_TRUNC;
	  break;

	case 10:
	case 16:
	  n = BUILT_IN_TRUNCL;
	  break;
	}
      break;

    default:
      gcc_unreachable ();
    }

  /* Evaluate the argument.  */
  gcc_assert (expr->value.function.actual->expr);
  gfc_conv_intrinsic_function_args (se, expr, arg, nargs);

  /* Use a builtin function if one exists.  */
  if (n != END_BUILTINS)
    {
      tmp = built_in_decls[n];
      se->expr = build_call_expr_loc (input_location,
				  tmp, 1, arg[0]);
      return;
    }

  /* This code is probably redundant, but we'll keep it lying around just
     in case.  */
  type = gfc_typenode_for_spec (&expr->ts);
  arg[0] = gfc_evaluate_now (arg[0], &se->pre);

  /* Test if the value is too large to handle sensibly.  */
  gfc_set_model_kind (kind);
  mpfr_init (huge);
  n = gfc_validate_kind (BT_INTEGER, kind, false);
  mpfr_set_z (huge, gfc_integer_kinds[n].huge, GFC_RND_MODE);
  tmp = gfc_conv_mpfr_to_tree (huge, kind, 0);
  cond = fold_build2 (LT_EXPR, boolean_type_node, arg[0], tmp);

  mpfr_neg (huge, huge, GFC_RND_MODE);
  tmp = gfc_conv_mpfr_to_tree (huge, kind, 0);
  tmp = fold_build2 (GT_EXPR, boolean_type_node, arg[0], tmp);
  cond = fold_build2 (TRUTH_AND_EXPR, boolean_type_node, cond, tmp);
  itype = gfc_get_int_type (kind);

  tmp = build_fix_expr (&se->pre, arg[0], itype, op);
  tmp = convert (type, tmp);
  se->expr = fold_build3 (COND_EXPR, type, cond, tmp, arg[0]);
  mpfr_clear (huge);
}


/* Convert to an integer using the specified rounding mode.  */

static void
gfc_conv_intrinsic_int (gfc_se * se, gfc_expr * expr, enum rounding_mode op)
{
  tree type;
  tree *args;
  int nargs;

  nargs = gfc_intrinsic_argument_list_length (expr);
  args = (tree *) alloca (sizeof (tree) * nargs);

  /* Evaluate the argument, we process all arguments even though we only 
     use the first one for code generation purposes.  */
  type = gfc_typenode_for_spec (&expr->ts);
  gcc_assert (expr->value.function.actual->expr);
  gfc_conv_intrinsic_function_args (se, expr, args, nargs);

  if (TREE_CODE (TREE_TYPE (args[0])) == INTEGER_TYPE)
    {
      /* Conversion to a different integer kind.  */
      se->expr = convert (type, args[0]);
    }
  else
    {
      /* Conversion from complex to non-complex involves taking the real
         component of the value.  */
      if (TREE_CODE (TREE_TYPE (args[0])) == COMPLEX_TYPE
	  && expr->ts.type != BT_COMPLEX)
	{
	  tree artype;

	  artype = TREE_TYPE (TREE_TYPE (args[0]));
	  args[0] = fold_build1 (REALPART_EXPR, artype, args[0]);
	}

      se->expr = build_fix_expr (&se->pre, args[0], type, op);
    }
}


/* Get the imaginary component of a value.  */

static void
gfc_conv_intrinsic_imagpart (gfc_se * se, gfc_expr * expr)
{
  tree arg;

  gfc_conv_intrinsic_function_args (se, expr, &arg, 1);
  se->expr = fold_build1 (IMAGPART_EXPR, TREE_TYPE (TREE_TYPE (arg)), arg);
}


/* Get the complex conjugate of a value.  */

static void
gfc_conv_intrinsic_conjg (gfc_se * se, gfc_expr * expr)
{
  tree arg;

  gfc_conv_intrinsic_function_args (se, expr, &arg, 1);
  se->expr = fold_build1 (CONJ_EXPR, TREE_TYPE (arg), arg);
}


/* Initialize function decls for library functions.  The external functions
   are created as required.  Builtin functions are added here.  */

void
gfc_build_intrinsic_lib_fndecls (void)
{
  gfc_intrinsic_map_t *m;

  /* Add GCC builtin functions.  */
  for (m = gfc_intrinsic_map; m->id != GFC_ISYM_NONE; m++)
    {
      if (m->code_r4 != END_BUILTINS)
	m->real4_decl = built_in_decls[m->code_r4];
      if (m->code_r8 != END_BUILTINS)
	m->real8_decl = built_in_decls[m->code_r8];
      if (m->code_r10 != END_BUILTINS)
	m->real10_decl = built_in_decls[m->code_r10];
      if (m->code_r16 != END_BUILTINS)
	m->real16_decl = built_in_decls[m->code_r16];
      if (m->code_c4 != END_BUILTINS)
	m->complex4_decl = built_in_decls[m->code_c4];
      if (m->code_c8 != END_BUILTINS)
	m->complex8_decl = built_in_decls[m->code_c8];
      if (m->code_c10 != END_BUILTINS)
	m->complex10_decl = built_in_decls[m->code_c10];
      if (m->code_c16 != END_BUILTINS)
	m->complex16_decl = built_in_decls[m->code_c16];
    }
}


/* Create a fndecl for a simple intrinsic library function.  */

static tree
gfc_get_intrinsic_lib_fndecl (gfc_intrinsic_map_t * m, gfc_expr * expr)
{
  tree type;
  tree argtypes;
  tree fndecl;
  gfc_actual_arglist *actual;
  tree *pdecl;
  gfc_typespec *ts;
  char name[GFC_MAX_SYMBOL_LEN + 3];

  ts = &expr->ts;
  if (ts->type == BT_REAL)
    {
      switch (ts->kind)
	{
	case 4:
	  pdecl = &m->real4_decl;
	  break;
	case 8:
	  pdecl = &m->real8_decl;
	  break;
	case 10:
	  pdecl = &m->real10_decl;
	  break;
	case 16:
	  pdecl = &m->real16_decl;
	  break;
	default:
	  gcc_unreachable ();
	}
    }
  else if (ts->type == BT_COMPLEX)
    {
      gcc_assert (m->complex_available);

      switch (ts->kind)
	{
	case 4:
	  pdecl = &m->complex4_decl;
	  break;
	case 8:
	  pdecl = &m->complex8_decl;
	  break;
	case 10:
	  pdecl = &m->complex10_decl;
	  break;
	case 16:
	  pdecl = &m->complex16_decl;
	  break;
	default:
	  gcc_unreachable ();
	}
    }
  else
    gcc_unreachable ();

  if (*pdecl)
    return *pdecl;

  if (m->libm_name)
    {
      if (ts->kind == 4)
	snprintf (name, sizeof (name), "%s%s%s",
		ts->type == BT_COMPLEX ? "c" : "", m->name, "f");
      else if (ts->kind == 8)
	snprintf (name, sizeof (name), "%s%s",
		ts->type == BT_COMPLEX ? "c" : "", m->name);
      else
	{
	  gcc_assert (ts->kind == 10 || ts->kind == 16);
	  snprintf (name, sizeof (name), "%s%s%s",
		ts->type == BT_COMPLEX ? "c" : "", m->name, "l");
	}
    }
  else
    {
      snprintf (name, sizeof (name), PREFIX ("%s_%c%d"), m->name,
		ts->type == BT_COMPLEX ? 'c' : 'r',
		ts->kind);
    }

  argtypes = NULL_TREE;
  for (actual = expr->value.function.actual; actual; actual = actual->next)
    {
      type = gfc_typenode_for_spec (&actual->expr->ts);
      argtypes = gfc_chainon_list (argtypes, type);
    }
  argtypes = gfc_chainon_list (argtypes, void_type_node);
  type = build_function_type (gfc_typenode_for_spec (ts), argtypes);
  fndecl = build_decl (input_location,
		       FUNCTION_DECL, get_identifier (name), type);

  /* Mark the decl as external.  */
  DECL_EXTERNAL (fndecl) = 1;
  TREE_PUBLIC (fndecl) = 1;

  /* Mark it __attribute__((const)), if possible.  */
  TREE_READONLY (fndecl) = m->is_constant;

  rest_of_decl_compilation (fndecl, 1, 0);

  (*pdecl) = fndecl;
  return fndecl;
}


/* Convert an intrinsic function into an external or builtin call.  */

static void
gfc_conv_intrinsic_lib_function (gfc_se * se, gfc_expr * expr)
{
  gfc_intrinsic_map_t *m;
  tree fndecl;
  tree rettype;
  tree *args;
  unsigned int num_args;
  gfc_isym_id id;

  id = expr->value.function.isym->id;
  /* Find the entry for this function.  */
  for (m = gfc_intrinsic_map; m->id != GFC_ISYM_NONE; m++)
    {
      if (id == m->id)
	break;
    }

  if (m->id == GFC_ISYM_NONE)
    {
      internal_error ("Intrinsic function %s(%d) not recognized",
		      expr->value.function.name, id);
    }

  /* Get the decl and generate the call.  */
  num_args = gfc_intrinsic_argument_list_length (expr);
  args = (tree *) alloca (sizeof (tree) * num_args);

  gfc_conv_intrinsic_function_args (se, expr, args, num_args);
  fndecl = gfc_get_intrinsic_lib_fndecl (m, expr);
  rettype = TREE_TYPE (TREE_TYPE (fndecl));

  fndecl = build_addr (fndecl, current_function_decl);
  se->expr = build_call_array_loc (input_location, rettype, fndecl, num_args, args);
}


/* If bounds-checking is enabled, create code to verify at runtime that the
   string lengths for both expressions are the same (needed for e.g. MERGE).
   If bounds-checking is not enabled, does nothing.  */

void
gfc_trans_same_strlen_check (const char* intr_name, locus* where,
			     tree a, tree b, stmtblock_t* target)
{
  tree cond;
  tree name;

  /* If bounds-checking is disabled, do nothing.  */
  if (!(gfc_option.rtcheck & GFC_RTCHECK_BOUNDS))
    return;

  /* Compare the two string lengths.  */
  cond = fold_build2 (NE_EXPR, boolean_type_node, a, b);

  /* Output the runtime-check.  */
  name = gfc_build_cstring_const (intr_name);
  name = gfc_build_addr_expr (pchar_type_node, name);
  gfc_trans_runtime_check (true, false, cond, target, where,
			   "Unequal character lengths (%ld/%ld) in %s",
			   fold_convert (long_integer_type_node, a),
			   fold_convert (long_integer_type_node, b), name);
}


/* The EXPONENT(s) intrinsic function is translated into
       int ret;
       frexp (s, &ret);
       return ret;
 */

static void
gfc_conv_intrinsic_exponent (gfc_se *se, gfc_expr *expr)
{
  tree arg, type, res, tmp;
  int frexp;

  switch (expr->value.function.actual->expr->ts.kind)
    {
    case 4:
      frexp = BUILT_IN_FREXPF;
      break;
    case 8:
      frexp = BUILT_IN_FREXP;
      break;
    case 10:
    case 16:
      frexp = BUILT_IN_FREXPL;
      break;
    default:
      gcc_unreachable ();
    }

  gfc_conv_intrinsic_function_args (se, expr, &arg, 1);

  res = gfc_create_var (integer_type_node, NULL);
  tmp = build_call_expr_loc (input_location,
			 built_in_decls[frexp], 2, arg,
			 gfc_build_addr_expr (NULL_TREE, res));
  gfc_add_expr_to_block (&se->pre, tmp);

  type = gfc_typenode_for_spec (&expr->ts);
  se->expr = fold_convert (type, res);
}

/* Evaluate a single upper or lower bound.  */
/* TODO: bound intrinsic generates way too much unnecessary code.  */

static void
gfc_conv_intrinsic_bound (gfc_se * se, gfc_expr * expr, int upper)
{
  gfc_actual_arglist *arg;
  gfc_actual_arglist *arg2;
  tree desc;
  tree type;
  tree bound;
  tree tmp;
  tree cond, cond1, cond3, cond4, size;
  tree ubound;
  tree lbound;
  gfc_se argse;
  gfc_ss *ss;
  gfc_array_spec * as;
  gfc_ref *ref;

  arg = expr->value.function.actual;
  arg2 = arg->next;

  if (se->ss)
    {
      /* Create an implicit second parameter from the loop variable.  */
      gcc_assert (!arg2->expr);
      gcc_assert (se->loop->dimen == 1);
      gcc_assert (se->ss->expr == expr);
      gfc_advance_se_ss_chain (se);
      bound = se->loop->loopvar[0];
      bound = fold_build2 (MINUS_EXPR, gfc_array_index_type, bound,
			   se->loop->from[0]);
    }
  else
    {
      /* use the passed argument.  */
      gcc_assert (arg->next->expr);
      gfc_init_se (&argse, NULL);
      gfc_conv_expr_type (&argse, arg->next->expr, gfc_array_index_type);
      gfc_add_block_to_block (&se->pre, &argse.pre);
      bound = argse.expr;
      /* Convert from one based to zero based.  */
      bound = fold_build2 (MINUS_EXPR, gfc_array_index_type, bound,
			   gfc_index_one_node);
    }

  /* TODO: don't re-evaluate the descriptor on each iteration.  */
  /* Get a descriptor for the first parameter.  */
  ss = gfc_walk_expr (arg->expr);
  gcc_assert (ss != gfc_ss_terminator);
  gfc_init_se (&argse, NULL);
  gfc_conv_expr_descriptor (&argse, arg->expr, ss);
  gfc_add_block_to_block (&se->pre, &argse.pre);
  gfc_add_block_to_block (&se->post, &argse.post);

  desc = argse.expr;

  if (INTEGER_CST_P (bound))
    {
      int hi, low;

      hi = TREE_INT_CST_HIGH (bound);
      low = TREE_INT_CST_LOW (bound);
      if (hi || low < 0 || low >= GFC_TYPE_ARRAY_RANK (TREE_TYPE (desc)))
	gfc_error ("'dim' argument of %s intrinsic at %L is not a valid "
		   "dimension index", upper ? "UBOUND" : "LBOUND",
		   &expr->where);
    }
  else
    {
      if (gfc_option.rtcheck & GFC_RTCHECK_BOUNDS)
        {
          bound = gfc_evaluate_now (bound, &se->pre);
          cond = fold_build2 (LT_EXPR, boolean_type_node,
			      bound, build_int_cst (TREE_TYPE (bound), 0));
          tmp = gfc_rank_cst[GFC_TYPE_ARRAY_RANK (TREE_TYPE (desc))];
          tmp = fold_build2 (GE_EXPR, boolean_type_node, bound, tmp);
          cond = fold_build2 (TRUTH_ORIF_EXPR, boolean_type_node, cond, tmp);
          gfc_trans_runtime_check (true, false, cond, &se->pre, &expr->where,
				   gfc_msg_fault);
        }
    }

  ubound = gfc_conv_descriptor_ubound_get (desc, bound);
  lbound = gfc_conv_descriptor_lbound_get (desc, bound);
  
  /* Follow any component references.  */
  if (arg->expr->expr_type == EXPR_VARIABLE
      || arg->expr->expr_type == EXPR_CONSTANT)
    {
      as = arg->expr->symtree->n.sym->as;
      for (ref = arg->expr->ref; ref; ref = ref->next)
	{
	  switch (ref->type)
	    {
	    case REF_COMPONENT:
	      as = ref->u.c.component->as;
	      continue;

	    case REF_SUBSTRING:
	      continue;

	    case REF_ARRAY:
	      {
		switch (ref->u.ar.type)
		  {
		  case AR_ELEMENT:
		  case AR_SECTION:
		  case AR_UNKNOWN:
		    as = NULL;
		    continue;

		  case AR_FULL:
		    break;
		  }
		break;
	      }
	    }
	}
    }
  else
    as = NULL;

  /* 13.14.53: Result value for LBOUND

     Case (i): For an array section or for an array expression other than a
               whole array or array structure component, LBOUND(ARRAY, DIM)
               has the value 1.  For a whole array or array structure
               component, LBOUND(ARRAY, DIM) has the value:
                 (a) equal to the lower bound for subscript DIM of ARRAY if
                     dimension DIM of ARRAY does not have extent zero
                     or if ARRAY is an assumed-size array of rank DIM,
              or (b) 1 otherwise.

     13.14.113: Result value for UBOUND

     Case (i): For an array section or for an array expression other than a
               whole array or array structure component, UBOUND(ARRAY, DIM)
               has the value equal to the number of elements in the given
               dimension; otherwise, it has a value equal to the upper bound
               for subscript DIM of ARRAY if dimension DIM of ARRAY does
               not have size zero and has value zero if dimension DIM has
               size zero.  */

  if (as)
    {
      tree stride = gfc_conv_descriptor_stride_get (desc, bound);

      cond1 = fold_build2 (GE_EXPR, boolean_type_node, ubound, lbound);

      cond3 = fold_build2 (GE_EXPR, boolean_type_node, stride,
			   gfc_index_zero_node);
      cond3 = fold_build2 (TRUTH_AND_EXPR, boolean_type_node, cond3, cond1);

      cond4 = fold_build2 (LT_EXPR, boolean_type_node, stride,
			   gfc_index_zero_node);

      if (upper)
	{
	  tree cond5;
	  cond = fold_build2 (TRUTH_OR_EXPR, boolean_type_node, cond3, cond4);

	  cond5 = fold_build2 (EQ_EXPR, boolean_type_node, gfc_index_one_node, lbound);
	  cond5 = fold_build2 (TRUTH_AND_EXPR, boolean_type_node, cond4, cond5);

	  cond = fold_build2 (TRUTH_OR_EXPR, boolean_type_node, cond, cond5);

	  se->expr = fold_build3 (COND_EXPR, gfc_array_index_type, cond,
				  ubound, gfc_index_zero_node);
	}
      else
	{
	  if (as->type == AS_ASSUMED_SIZE)
	    cond = fold_build2 (EQ_EXPR, boolean_type_node, bound,
				build_int_cst (TREE_TYPE (bound),
					       arg->expr->rank - 1));
	  else
	    cond = boolean_false_node;

	  cond1 = fold_build2 (TRUTH_OR_EXPR, boolean_type_node, cond3, cond4);
	  cond = fold_build2 (TRUTH_OR_EXPR, boolean_type_node, cond, cond1);

	  se->expr = fold_build3 (COND_EXPR, gfc_array_index_type, cond,
				  lbound, gfc_index_one_node);
	}
    }
  else
    {
      if (upper)
        {
	  size = fold_build2 (MINUS_EXPR, gfc_array_index_type, ubound, lbound);
	  se->expr = fold_build2 (PLUS_EXPR, gfc_array_index_type, size,
				  gfc_index_one_node);
	  se->expr = fold_build2 (MAX_EXPR, gfc_array_index_type, se->expr,
				  gfc_index_zero_node);
	}
      else
	se->expr = gfc_index_one_node;
    }

  type = gfc_typenode_for_spec (&expr->ts);
  se->expr = convert (type, se->expr);
}


static void
gfc_conv_intrinsic_abs (gfc_se * se, gfc_expr * expr)
{
  tree arg;
  int n;

  gfc_conv_intrinsic_function_args (se, expr, &arg, 1);

  switch (expr->value.function.actual->expr->ts.type)
    {
    case BT_INTEGER:
    case BT_REAL:
      se->expr = fold_build1 (ABS_EXPR, TREE_TYPE (arg), arg);
      break;

    case BT_COMPLEX:
      switch (expr->ts.kind)
	{
	case 4:
	  n = BUILT_IN_CABSF;
	  break;
	case 8:
	  n = BUILT_IN_CABS;
	  break;
	case 10:
	case 16:
	  n = BUILT_IN_CABSL;
	  break;
	default:
	  gcc_unreachable ();
	}
      se->expr = build_call_expr_loc (input_location,
				  built_in_decls[n], 1, arg);
      break;

    default:
      gcc_unreachable ();
    }
}


/* Create a complex value from one or two real components.  */

static void
gfc_conv_intrinsic_cmplx (gfc_se * se, gfc_expr * expr, int both)
{
  tree real;
  tree imag;
  tree type;
  tree *args;
  unsigned int num_args;

  num_args = gfc_intrinsic_argument_list_length (expr);
  args = (tree *) alloca (sizeof (tree) * num_args);

  type = gfc_typenode_for_spec (&expr->ts);
  gfc_conv_intrinsic_function_args (se, expr, args, num_args);
  real = convert (TREE_TYPE (type), args[0]);
  if (both)
    imag = convert (TREE_TYPE (type), args[1]);
  else if (TREE_CODE (TREE_TYPE (args[0])) == COMPLEX_TYPE)
    {
      imag = fold_build1 (IMAGPART_EXPR, TREE_TYPE (TREE_TYPE (args[0])),
			  args[0]);
      imag = convert (TREE_TYPE (type), imag);
    }
  else
    imag = build_real_from_int_cst (TREE_TYPE (type), integer_zero_node);

  se->expr = fold_build2 (COMPLEX_EXPR, type, real, imag);
}

/* Remainder function MOD(A, P) = A - INT(A / P) * P
                      MODULO(A, P) = A - FLOOR (A / P) * P  */
/* TODO: MOD(x, 0)  */

static void
gfc_conv_intrinsic_mod (gfc_se * se, gfc_expr * expr, int modulo)
{
  tree type;
  tree itype;
  tree tmp;
  tree test;
  tree test2;
  mpfr_t huge;
  int n, ikind;
  tree args[2];

  gfc_conv_intrinsic_function_args (se, expr, args, 2);

  switch (expr->ts.type)
    {
    case BT_INTEGER:
      /* Integer case is easy, we've got a builtin op.  */
      type = TREE_TYPE (args[0]);

      if (modulo)
       se->expr = fold_build2 (FLOOR_MOD_EXPR, type, args[0], args[1]);
      else
       se->expr = fold_build2 (TRUNC_MOD_EXPR, type, args[0], args[1]);
      break;

    case BT_REAL:
      n = END_BUILTINS;
      /* Check if we have a builtin fmod.  */
      switch (expr->ts.kind)
	{
	case 4:
	  n = BUILT_IN_FMODF;
	  break;

	case 8:
	  n = BUILT_IN_FMOD;
	  break;

	case 10:
	case 16:
	  n = BUILT_IN_FMODL;
	  break;

	default:
	  break;
	}

      /* Use it if it exists.  */
      if (n != END_BUILTINS)
	{
  	  tmp = build_addr (built_in_decls[n], current_function_decl);
	  se->expr = build_call_array_loc (input_location,
				       TREE_TYPE (TREE_TYPE (built_in_decls[n])),
                                       tmp, 2, args);
	  if (modulo == 0)
	    return;
	}

      type = TREE_TYPE (args[0]);

      args[0] = gfc_evaluate_now (args[0], &se->pre);
      args[1] = gfc_evaluate_now (args[1], &se->pre);

      /* Definition:
	 modulo = arg - floor (arg/arg2) * arg2, so
		= test ? fmod (arg, arg2) : fmod (arg, arg2) + arg2, 
	 where
	  test  = (fmod (arg, arg2) != 0) && ((arg < 0) xor (arg2 < 0))
	 thereby avoiding another division and retaining the accuracy
	 of the builtin function.  */
      if (n != END_BUILTINS && modulo)
	{
	  tree zero = gfc_build_const (type, integer_zero_node);
	  tmp = gfc_evaluate_now (se->expr, &se->pre);
	  test = fold_build2 (LT_EXPR, boolean_type_node, args[0], zero);
	  test2 = fold_build2 (LT_EXPR, boolean_type_node, args[1], zero);
	  test2 = fold_build2 (TRUTH_XOR_EXPR, boolean_type_node, test, test2);
	  test = fold_build2 (NE_EXPR, boolean_type_node, tmp, zero);
	  test = fold_build2 (TRUTH_AND_EXPR, boolean_type_node, test, test2);
	  test = gfc_evaluate_now (test, &se->pre);
	  se->expr = fold_build3 (COND_EXPR, type, test,
				  fold_build2 (PLUS_EXPR, type, tmp, args[1]),
				  tmp);
	  return;
	}

      /* If we do not have a built_in fmod, the calculation is going to
	 have to be done longhand.  */
      tmp = fold_build2 (RDIV_EXPR, type, args[0], args[1]);

      /* Test if the value is too large to handle sensibly.  */
      gfc_set_model_kind (expr->ts.kind);
      mpfr_init (huge);
      n = gfc_validate_kind (BT_INTEGER, expr->ts.kind, true);
      ikind = expr->ts.kind;
      if (n < 0)
	{
	  n = gfc_validate_kind (BT_INTEGER, gfc_max_integer_kind, false);
	  ikind = gfc_max_integer_kind;
	}
      mpfr_set_z (huge, gfc_integer_kinds[n].huge, GFC_RND_MODE);
      test = gfc_conv_mpfr_to_tree (huge, expr->ts.kind, 0);
      test2 = fold_build2 (LT_EXPR, boolean_type_node, tmp, test);

      mpfr_neg (huge, huge, GFC_RND_MODE);
      test = gfc_conv_mpfr_to_tree (huge, expr->ts.kind, 0);
      test = fold_build2 (GT_EXPR, boolean_type_node, tmp, test);
      test2 = fold_build2 (TRUTH_AND_EXPR, boolean_type_node, test, test2);

      itype = gfc_get_int_type (ikind);
      if (modulo)
       tmp = build_fix_expr (&se->pre, tmp, itype, RND_FLOOR);
      else
       tmp = build_fix_expr (&se->pre, tmp, itype, RND_TRUNC);
      tmp = convert (type, tmp);
      tmp = fold_build3 (COND_EXPR, type, test2, tmp, args[0]);
      tmp = fold_build2 (MULT_EXPR, type, tmp, args[1]);
      se->expr = fold_build2 (MINUS_EXPR, type, args[0], tmp);
      mpfr_clear (huge);
      break;

    default:
      gcc_unreachable ();
    }
}

/* Positive difference DIM (x, y) = ((x - y) < 0) ? 0 : x - y.  */

static void
gfc_conv_intrinsic_dim (gfc_se * se, gfc_expr * expr)
{
  tree val;
  tree tmp;
  tree type;
  tree zero;
  tree args[2];

  gfc_conv_intrinsic_function_args (se, expr, args, 2);
  type = TREE_TYPE (args[0]);

  val = fold_build2 (MINUS_EXPR, type, args[0], args[1]);
  val = gfc_evaluate_now (val, &se->pre);

  zero = gfc_build_const (type, integer_zero_node);
  tmp = fold_build2 (LE_EXPR, boolean_type_node, val, zero);
  se->expr = fold_build3 (COND_EXPR, type, tmp, zero, val);
}


/* SIGN(A, B) is absolute value of A times sign of B.
   The real value versions use library functions to ensure the correct
   handling of negative zero.  Integer case implemented as:
   SIGN(A, B) = { tmp = (A ^ B) >> C; (A + tmp) ^ tmp }
  */

static void
gfc_conv_intrinsic_sign (gfc_se * se, gfc_expr * expr)
{
  tree tmp;
  tree type;
  tree args[2];

  gfc_conv_intrinsic_function_args (se, expr, args, 2);
  if (expr->ts.type == BT_REAL)
    {
      tree abs;

      switch (expr->ts.kind)
	{
	case 4:
	  tmp = built_in_decls[BUILT_IN_COPYSIGNF];
	  abs = built_in_decls[BUILT_IN_FABSF];
	  break;
	case 8:
	  tmp = built_in_decls[BUILT_IN_COPYSIGN];
	  abs = built_in_decls[BUILT_IN_FABS];
	  break;
	case 10:
	case 16:
	  tmp = built_in_decls[BUILT_IN_COPYSIGNL];
	  abs = built_in_decls[BUILT_IN_FABSL];
	  break;
	default:
	  gcc_unreachable ();
	}

      /* We explicitly have to ignore the minus sign. We do so by using
	 result = (arg1 == 0) ? abs(arg0) : copysign(arg0, arg1).  */
      if (!gfc_option.flag_sign_zero
	  && MODE_HAS_SIGNED_ZEROS (TYPE_MODE (TREE_TYPE (args[1]))))
	{
	  tree cond, zero;
	  zero = build_real_from_int_cst (TREE_TYPE (args[1]), integer_zero_node);
	  cond = fold_build2 (EQ_EXPR, boolean_type_node, args[1], zero);
	  se->expr = fold_build3 (COND_EXPR, TREE_TYPE (args[0]), cond,
				  build_call_expr (abs, 1, args[0]),
				  build_call_expr (tmp, 2, args[0], args[1]));
	}
      else
        se->expr = build_call_expr_loc (input_location,
				  tmp, 2, args[0], args[1]);
      return;
    }

  /* Having excluded floating point types, we know we are now dealing
     with signed integer types.  */
  type = TREE_TYPE (args[0]);

  /* Args[0] is used multiple times below.  */
  args[0] = gfc_evaluate_now (args[0], &se->pre);

  /* Construct (A ^ B) >> 31, which generates a bit mask of all zeros if
     the signs of A and B are the same, and of all ones if they differ.  */
  tmp = fold_build2 (BIT_XOR_EXPR, type, args[0], args[1]);
  tmp = fold_build2 (RSHIFT_EXPR, type, tmp,
		     build_int_cst (type, TYPE_PRECISION (type) - 1));
  tmp = gfc_evaluate_now (tmp, &se->pre);

  /* Construct (A + tmp) ^ tmp, which is A if tmp is zero, and -A if tmp]
     is all ones (i.e. -1).  */
  se->expr = fold_build2 (BIT_XOR_EXPR, type,
			  fold_build2 (PLUS_EXPR, type, args[0], tmp),
			  tmp);
}


/* Test for the presence of an optional argument.  */

static void
gfc_conv_intrinsic_present (gfc_se * se, gfc_expr * expr)
{
  gfc_expr *arg;

  arg = expr->value.function.actual->expr;
  gcc_assert (arg->expr_type == EXPR_VARIABLE);
  se->expr = gfc_conv_expr_present (arg->symtree->n.sym);
  se->expr = convert (gfc_typenode_for_spec (&expr->ts), se->expr);
}


/* Calculate the double precision product of two single precision values.  */

static void
gfc_conv_intrinsic_dprod (gfc_se * se, gfc_expr * expr)
{
  tree type;
  tree args[2];

  gfc_conv_intrinsic_function_args (se, expr, args, 2);

  /* Convert the args to double precision before multiplying.  */
  type = gfc_typenode_for_spec (&expr->ts);
  args[0] = convert (type, args[0]);
  args[1] = convert (type, args[1]);
  se->expr = fold_build2 (MULT_EXPR, type, args[0], args[1]);
}


/* Return a length one character string containing an ascii character.  */

static void
gfc_conv_intrinsic_char (gfc_se * se, gfc_expr * expr)
{
  tree arg[2];
  tree var;
  tree type;
  unsigned int num_args;

  num_args = gfc_intrinsic_argument_list_length (expr);
  gfc_conv_intrinsic_function_args (se, expr, arg, num_args);

  type = gfc_get_char_type (expr->ts.kind);
  var = gfc_create_var (type, "char");

  arg[0] = fold_build1 (NOP_EXPR, type, arg[0]);
  gfc_add_modify (&se->pre, var, arg[0]);
  se->expr = gfc_build_addr_expr (build_pointer_type (type), var);
  se->string_length = integer_one_node;
}


static void
gfc_conv_intrinsic_ctime (gfc_se * se, gfc_expr * expr)
{
  tree var;
  tree len;
  tree tmp;
  tree cond;
  tree fndecl;
  tree *args;
  unsigned int num_args;

  num_args = gfc_intrinsic_argument_list_length (expr) + 2;
  args = (tree *) alloca (sizeof (tree) * num_args);

  var = gfc_create_var (pchar_type_node, "pstr");
  len = gfc_create_var (gfc_get_int_type (8), "len");

  gfc_conv_intrinsic_function_args (se, expr, &args[2], num_args - 2);
  args[0] = gfc_build_addr_expr (NULL_TREE, var);
  args[1] = gfc_build_addr_expr (NULL_TREE, len);

  fndecl = build_addr (gfor_fndecl_ctime, current_function_decl);
  tmp = build_call_array_loc (input_location,
			  TREE_TYPE (TREE_TYPE (gfor_fndecl_ctime)),
			  fndecl, num_args, args);
  gfc_add_expr_to_block (&se->pre, tmp);

  /* Free the temporary afterwards, if necessary.  */
  cond = fold_build2 (GT_EXPR, boolean_type_node,
		      len, build_int_cst (TREE_TYPE (len), 0));
  tmp = gfc_call_free (var);
  tmp = build3_v (COND_EXPR, cond, tmp, build_empty_stmt (input_location));
  gfc_add_expr_to_block (&se->post, tmp);

  se->expr = var;
  se->string_length = len;
}


static void
gfc_conv_intrinsic_fdate (gfc_se * se, gfc_expr * expr)
{
  tree var;
  tree len;
  tree tmp;
  tree cond;
  tree fndecl;
  tree *args;
  unsigned int num_args;

  num_args = gfc_intrinsic_argument_list_length (expr) + 2;
  args = (tree *) alloca (sizeof (tree) * num_args);

  var = gfc_create_var (pchar_type_node, "pstr");
  len = gfc_create_var (gfc_get_int_type (4), "len");

  gfc_conv_intrinsic_function_args (se, expr, &args[2], num_args - 2);
  args[0] = gfc_build_addr_expr (NULL_TREE, var);
  args[1] = gfc_build_addr_expr (NULL_TREE, len);

  fndecl = build_addr (gfor_fndecl_fdate, current_function_decl);
  tmp = build_call_array_loc (input_location,
			  TREE_TYPE (TREE_TYPE (gfor_fndecl_fdate)),
			  fndecl, num_args, args);
  gfc_add_expr_to_block (&se->pre, tmp);

  /* Free the temporary afterwards, if necessary.  */
  cond = fold_build2 (GT_EXPR, boolean_type_node,
		      len, build_int_cst (TREE_TYPE (len), 0));
  tmp = gfc_call_free (var);
  tmp = build3_v (COND_EXPR, cond, tmp, build_empty_stmt (input_location));
  gfc_add_expr_to_block (&se->post, tmp);

  se->expr = var;
  se->string_length = len;
}


/* Return a character string containing the tty name.  */

static void
gfc_conv_intrinsic_ttynam (gfc_se * se, gfc_expr * expr)
{
  tree var;
  tree len;
  tree tmp;
  tree cond;
  tree fndecl;
  tree *args;
  unsigned int num_args;

  num_args = gfc_intrinsic_argument_list_length (expr) + 2;
  args = (tree *) alloca (sizeof (tree) * num_args);

  var = gfc_create_var (pchar_type_node, "pstr");
  len = gfc_create_var (gfc_get_int_type (4), "len");

  gfc_conv_intrinsic_function_args (se, expr, &args[2], num_args - 2);
  args[0] = gfc_build_addr_expr (NULL_TREE, var);
  args[1] = gfc_build_addr_expr (NULL_TREE, len);

  fndecl = build_addr (gfor_fndecl_ttynam, current_function_decl);
  tmp = build_call_array_loc (input_location,
			  TREE_TYPE (TREE_TYPE (gfor_fndecl_ttynam)),
			  fndecl, num_args, args);
  gfc_add_expr_to_block (&se->pre, tmp);

  /* Free the temporary afterwards, if necessary.  */
  cond = fold_build2 (GT_EXPR, boolean_type_node,
		      len, build_int_cst (TREE_TYPE (len), 0));
  tmp = gfc_call_free (var);
  tmp = build3_v (COND_EXPR, cond, tmp, build_empty_stmt (input_location));
  gfc_add_expr_to_block (&se->post, tmp);

  se->expr = var;
  se->string_length = len;
}


/* Get the minimum/maximum value of all the parameters.
    minmax (a1, a2, a3, ...)
    {
      mvar = a1;
      if (a2 .op. mvar || isnan(mvar))
        mvar = a2;
      if (a3 .op. mvar || isnan(mvar))
        mvar = a3;
      ...
      return mvar
    }
 */

/* TODO: Mismatching types can occur when specific names are used.
   These should be handled during resolution.  */
static void
gfc_conv_intrinsic_minmax (gfc_se * se, gfc_expr * expr, enum tree_code op)
{
  tree tmp;
  tree mvar;
  tree val;
  tree thencase;
  tree *args;
  tree type;
  gfc_actual_arglist *argexpr;
  unsigned int i, nargs;

  nargs = gfc_intrinsic_argument_list_length (expr);
  args = (tree *) alloca (sizeof (tree) * nargs);

  gfc_conv_intrinsic_function_args (se, expr, args, nargs);
  type = gfc_typenode_for_spec (&expr->ts);

  argexpr = expr->value.function.actual;
  if (TREE_TYPE (args[0]) != type)
    args[0] = convert (type, args[0]);
  /* Only evaluate the argument once.  */
  if (TREE_CODE (args[0]) != VAR_DECL && !TREE_CONSTANT (args[0]))
    args[0] = gfc_evaluate_now (args[0], &se->pre);

  mvar = gfc_create_var (type, "M");
  gfc_add_modify (&se->pre, mvar, args[0]);
  for (i = 1, argexpr = argexpr->next; i < nargs; i++)
    {
      tree cond, isnan;

      val = args[i]; 

      /* Handle absent optional arguments by ignoring the comparison.  */
      if (argexpr->expr->expr_type == EXPR_VARIABLE
	  && argexpr->expr->symtree->n.sym->attr.optional
	  && TREE_CODE (val) == INDIRECT_REF)
	cond = fold_build2_loc (input_location,
				NE_EXPR, boolean_type_node,
				TREE_OPERAND (val, 0), 
			build_int_cst (TREE_TYPE (TREE_OPERAND (val, 0)), 0));
      else
      {
	cond = NULL_TREE;

	/* Only evaluate the argument once.  */
	if (TREE_CODE (val) != VAR_DECL && !TREE_CONSTANT (val))
	  val = gfc_evaluate_now (val, &se->pre);
      }

      thencase = build2_v (MODIFY_EXPR, mvar, convert (type, val));

      tmp = fold_build2 (op, boolean_type_node, convert (type, val), mvar);

      /* FIXME: When the IEEE_ARITHMETIC module is implemented, the call to
	 __builtin_isnan might be made dependent on that module being loaded,
	 to help performance of programs that don't rely on IEEE semantics.  */
      if (FLOAT_TYPE_P (TREE_TYPE (mvar)))
	{
	  isnan = build_call_expr_loc (input_location,
				   built_in_decls[BUILT_IN_ISNAN], 1, mvar);
	  tmp = fold_build2 (TRUTH_OR_EXPR, boolean_type_node, tmp,
			     fold_convert (boolean_type_node, isnan));
	}
      tmp = build3_v (COND_EXPR, tmp, thencase,
		      build_empty_stmt (input_location));

      if (cond != NULL_TREE)
	tmp = build3_v (COND_EXPR, cond, tmp,
			build_empty_stmt (input_location));

      gfc_add_expr_to_block (&se->pre, tmp);
      argexpr = argexpr->next;
    }
  se->expr = mvar;
}


/* Generate library calls for MIN and MAX intrinsics for character
   variables.  */
static void
gfc_conv_intrinsic_minmax_char (gfc_se * se, gfc_expr * expr, int op)
{
  tree *args;
  tree var, len, fndecl, tmp, cond, function;
  unsigned int nargs;

  nargs = gfc_intrinsic_argument_list_length (expr);
  args = (tree *) alloca (sizeof (tree) * (nargs + 4));
  gfc_conv_intrinsic_function_args (se, expr, &args[4], nargs);

  /* Create the result variables.  */
  len = gfc_create_var (gfc_charlen_type_node, "len");
  args[0] = gfc_build_addr_expr (NULL_TREE, len);
  var = gfc_create_var (gfc_get_pchar_type (expr->ts.kind), "pstr");
  args[1] = gfc_build_addr_expr (ppvoid_type_node, var);
  args[2] = build_int_cst (NULL_TREE, op);
  args[3] = build_int_cst (NULL_TREE, nargs / 2);

  if (expr->ts.kind == 1)
    function = gfor_fndecl_string_minmax;
  else if (expr->ts.kind == 4)
    function = gfor_fndecl_string_minmax_char4;
  else
    gcc_unreachable ();

  /* Make the function call.  */
  fndecl = build_addr (function, current_function_decl);
  tmp = build_call_array_loc (input_location,
			  TREE_TYPE (TREE_TYPE (function)), fndecl,
			  nargs + 4, args);
  gfc_add_expr_to_block (&se->pre, tmp);

  /* Free the temporary afterwards, if necessary.  */
  cond = fold_build2 (GT_EXPR, boolean_type_node,
		      len, build_int_cst (TREE_TYPE (len), 0));
  tmp = gfc_call_free (var);
  tmp = build3_v (COND_EXPR, cond, tmp, build_empty_stmt (input_location));
  gfc_add_expr_to_block (&se->post, tmp);

  se->expr = var;
  se->string_length = len;
}


/* Create a symbol node for this intrinsic.  The symbol from the frontend
   has the generic name.  */

static gfc_symbol *
gfc_get_symbol_for_expr (gfc_expr * expr)
{
  gfc_symbol *sym;

  /* TODO: Add symbols for intrinsic function to the global namespace.  */
  gcc_assert (strlen (expr->value.function.name) <= GFC_MAX_SYMBOL_LEN - 5);
  sym = gfc_new_symbol (expr->value.function.name, NULL);

  sym->ts = expr->ts;
  sym->attr.external = 1;
  sym->attr.function = 1;
  sym->attr.always_explicit = 1;
  sym->attr.proc = PROC_INTRINSIC;
  sym->attr.flavor = FL_PROCEDURE;
  sym->result = sym;
  if (expr->rank > 0)
    {
      sym->attr.dimension = 1;
      sym->as = gfc_get_array_spec ();
      sym->as->type = AS_ASSUMED_SHAPE;
      sym->as->rank = expr->rank;
    }

  /* TODO: proper argument lists for external intrinsics.  */
  return sym;
}

/* Generate a call to an external intrinsic function.  */
static void
gfc_conv_intrinsic_funcall (gfc_se * se, gfc_expr * expr)
{
  gfc_symbol *sym;
  tree append_args;

  gcc_assert (!se->ss || se->ss->expr == expr);

  if (se->ss)
    gcc_assert (expr->rank > 0);
  else
    gcc_assert (expr->rank == 0);

  sym = gfc_get_symbol_for_expr (expr);

  /* Calls to libgfortran_matmul need to be appended special arguments,
     to be able to call the BLAS ?gemm functions if required and possible.  */
  append_args = NULL_TREE;
  if (expr->value.function.isym->id == GFC_ISYM_MATMUL
      && sym->ts.type != BT_LOGICAL)
    {
      tree cint = gfc_get_int_type (gfc_c_int_kind);

      if (gfc_option.flag_external_blas
	  && (sym->ts.type == BT_REAL || sym->ts.type == BT_COMPLEX)
	  && (sym->ts.kind == gfc_default_real_kind
	      || sym->ts.kind == gfc_default_double_kind))
	{
	  tree gemm_fndecl;

	  if (sym->ts.type == BT_REAL)
	    {
	      if (sym->ts.kind == gfc_default_real_kind)
		gemm_fndecl = gfor_fndecl_sgemm;
	      else
		gemm_fndecl = gfor_fndecl_dgemm;
	    }
	  else
	    {
	      if (sym->ts.kind == gfc_default_real_kind)
		gemm_fndecl = gfor_fndecl_cgemm;
	      else
		gemm_fndecl = gfor_fndecl_zgemm;
	    }

	  append_args = gfc_chainon_list (NULL_TREE, build_int_cst (cint, 1));
	  append_args = gfc_chainon_list
			  (append_args, build_int_cst
					  (cint, gfc_option.blas_matmul_limit));
	  append_args = gfc_chainon_list (append_args,
					  gfc_build_addr_expr (NULL_TREE,
							       gemm_fndecl));
	}
      else
	{
	  append_args = gfc_chainon_list (NULL_TREE, build_int_cst (cint, 0));
	  append_args = gfc_chainon_list (append_args, build_int_cst (cint, 0));
	  append_args = gfc_chainon_list (append_args, null_pointer_node);
	}
    }

  gfc_conv_procedure_call (se, sym, expr->value.function.actual, expr,
			  append_args);
  gfc_free (sym);
}

/* ANY and ALL intrinsics. ANY->op == NE_EXPR, ALL->op == EQ_EXPR.
   Implemented as
    any(a)
    {
      forall (i=...)
        if (a[i] != 0)
          return 1
      end forall
      return 0
    }
    all(a)
    {
      forall (i=...)
        if (a[i] == 0)
          return 0
      end forall
      return 1
    }
 */
static void
gfc_conv_intrinsic_anyall (gfc_se * se, gfc_expr * expr, enum tree_code op)
{
  tree resvar;
  stmtblock_t block;
  stmtblock_t body;
  tree type;
  tree tmp;
  tree found;
  gfc_loopinfo loop;
  gfc_actual_arglist *actual;
  gfc_ss *arrayss;
  gfc_se arrayse;
  tree exit_label;

  if (se->ss)
    {
      gfc_conv_intrinsic_funcall (se, expr);
      return;
    }

  actual = expr->value.function.actual;
  type = gfc_typenode_for_spec (&expr->ts);
  /* Initialize the result.  */
  resvar = gfc_create_var (type, "test");
  if (op == EQ_EXPR)
    tmp = convert (type, boolean_true_node);
  else
    tmp = convert (type, boolean_false_node);
  gfc_add_modify (&se->pre, resvar, tmp);

  /* Walk the arguments.  */
  arrayss = gfc_walk_expr (actual->expr);
  gcc_assert (arrayss != gfc_ss_terminator);

  /* Initialize the scalarizer.  */
  gfc_init_loopinfo (&loop);
  exit_label = gfc_build_label_decl (NULL_TREE);
  TREE_USED (exit_label) = 1;
  gfc_add_ss_to_loop (&loop, arrayss);

  /* Initialize the loop.  */
  gfc_conv_ss_startstride (&loop);
  gfc_conv_loop_setup (&loop, &expr->where);

  gfc_mark_ss_chain_used (arrayss, 1);
  /* Generate the loop body.  */
  gfc_start_scalarized_body (&loop, &body);

  /* If the condition matches then set the return value.  */
  gfc_start_block (&block);
  if (op == EQ_EXPR)
    tmp = convert (type, boolean_false_node);
  else
    tmp = convert (type, boolean_true_node);
  gfc_add_modify (&block, resvar, tmp);

  /* And break out of the loop.  */
  tmp = build1_v (GOTO_EXPR, exit_label);
  gfc_add_expr_to_block (&block, tmp);

  found = gfc_finish_block (&block);

  /* Check this element.  */
  gfc_init_se (&arrayse, NULL);
  gfc_copy_loopinfo_to_se (&arrayse, &loop);
  arrayse.ss = arrayss;
  gfc_conv_expr_val (&arrayse, actual->expr);

  gfc_add_block_to_block (&body, &arrayse.pre);
  tmp = fold_build2 (op, boolean_type_node, arrayse.expr,
		     build_int_cst (TREE_TYPE (arrayse.expr), 0));
  tmp = build3_v (COND_EXPR, tmp, found, build_empty_stmt (input_location));
  gfc_add_expr_to_block (&body, tmp);
  gfc_add_block_to_block (&body, &arrayse.post);

  gfc_trans_scalarizing_loops (&loop, &body);

  /* Add the exit label.  */
  tmp = build1_v (LABEL_EXPR, exit_label);
  gfc_add_expr_to_block (&loop.pre, tmp);

  gfc_add_block_to_block (&se->pre, &loop.pre);
  gfc_add_block_to_block (&se->pre, &loop.post);
  gfc_cleanup_loop (&loop);

  se->expr = resvar;
}

/* COUNT(A) = Number of true elements in A.  */
static void
gfc_conv_intrinsic_count (gfc_se * se, gfc_expr * expr)
{
  tree resvar;
  tree type;
  stmtblock_t body;
  tree tmp;
  gfc_loopinfo loop;
  gfc_actual_arglist *actual;
  gfc_ss *arrayss;
  gfc_se arrayse;

  if (se->ss)
    {
      gfc_conv_intrinsic_funcall (se, expr);
      return;
    }

  actual = expr->value.function.actual;

  type = gfc_typenode_for_spec (&expr->ts);
  /* Initialize the result.  */
  resvar = gfc_create_var (type, "count");
  gfc_add_modify (&se->pre, resvar, build_int_cst (type, 0));

  /* Walk the arguments.  */
  arrayss = gfc_walk_expr (actual->expr);
  gcc_assert (arrayss != gfc_ss_terminator);

  /* Initialize the scalarizer.  */
  gfc_init_loopinfo (&loop);
  gfc_add_ss_to_loop (&loop, arrayss);

  /* Initialize the loop.  */
  gfc_conv_ss_startstride (&loop);
  gfc_conv_loop_setup (&loop, &expr->where);

  gfc_mark_ss_chain_used (arrayss, 1);
  /* Generate the loop body.  */
  gfc_start_scalarized_body (&loop, &body);

  tmp = fold_build2 (PLUS_EXPR, TREE_TYPE (resvar),
		     resvar, build_int_cst (TREE_TYPE (resvar), 1));
  tmp = build2_v (MODIFY_EXPR, resvar, tmp);

  gfc_init_se (&arrayse, NULL);
  gfc_copy_loopinfo_to_se (&arrayse, &loop);
  arrayse.ss = arrayss;
  gfc_conv_expr_val (&arrayse, actual->expr);
  tmp = build3_v (COND_EXPR, arrayse.expr, tmp,
		  build_empty_stmt (input_location));

  gfc_add_block_to_block (&body, &arrayse.pre);
  gfc_add_expr_to_block (&body, tmp);
  gfc_add_block_to_block (&body, &arrayse.post);

  gfc_trans_scalarizing_loops (&loop, &body);

  gfc_add_block_to_block (&se->pre, &loop.pre);
  gfc_add_block_to_block (&se->pre, &loop.post);
  gfc_cleanup_loop (&loop);

  se->expr = resvar;
}

/* Inline implementation of the sum and product intrinsics.  */
static void
gfc_conv_intrinsic_arith (gfc_se * se, gfc_expr * expr, enum tree_code op)
{
  tree resvar;
  tree type;
  stmtblock_t body;
  stmtblock_t block;
  tree tmp;
  gfc_loopinfo loop;
  gfc_actual_arglist *actual;
  gfc_ss *arrayss;
  gfc_ss *maskss;
  gfc_se arrayse;
  gfc_se maskse;
  gfc_expr *arrayexpr;
  gfc_expr *maskexpr;

  if (se->ss)
    {
      gfc_conv_intrinsic_funcall (se, expr);
      return;
    }

  type = gfc_typenode_for_spec (&expr->ts);
  /* Initialize the result.  */
  resvar = gfc_create_var (type, "val");
  if (op == PLUS_EXPR)
    tmp = gfc_build_const (type, integer_zero_node);
  else
    tmp = gfc_build_const (type, integer_one_node);

  gfc_add_modify (&se->pre, resvar, tmp);

  /* Walk the arguments.  */
  actual = expr->value.function.actual;
  arrayexpr = actual->expr;
  arrayss = gfc_walk_expr (arrayexpr);
  gcc_assert (arrayss != gfc_ss_terminator);

  actual = actual->next->next;
  gcc_assert (actual);
  maskexpr = actual->expr;
  if (maskexpr && maskexpr->rank != 0)
    {
      maskss = gfc_walk_expr (maskexpr);
      gcc_assert (maskss != gfc_ss_terminator);
    }
  else
    maskss = NULL;

  /* Initialize the scalarizer.  */
  gfc_init_loopinfo (&loop);
  gfc_add_ss_to_loop (&loop, arrayss);
  if (maskss)
    gfc_add_ss_to_loop (&loop, maskss);

  /* Initialize the loop.  */
  gfc_conv_ss_startstride (&loop);
  gfc_conv_loop_setup (&loop, &expr->where);

  gfc_mark_ss_chain_used (arrayss, 1);
  if (maskss)
    gfc_mark_ss_chain_used (maskss, 1);
  /* Generate the loop body.  */
  gfc_start_scalarized_body (&loop, &body);

  /* If we have a mask, only add this element if the mask is set.  */
  if (maskss)
    {
      gfc_init_se (&maskse, NULL);
      gfc_copy_loopinfo_to_se (&maskse, &loop);
      maskse.ss = maskss;
      gfc_conv_expr_val (&maskse, maskexpr);
      gfc_add_block_to_block (&body, &maskse.pre);

      gfc_start_block (&block);
    }
  else
    gfc_init_block (&block);

  /* Do the actual summation/product.  */
  gfc_init_se (&arrayse, NULL);
  gfc_copy_loopinfo_to_se (&arrayse, &loop);
  arrayse.ss = arrayss;
  gfc_conv_expr_val (&arrayse, arrayexpr);
  gfc_add_block_to_block (&block, &arrayse.pre);

  tmp = fold_build2 (op, type, resvar, arrayse.expr);
  gfc_add_modify (&block, resvar, tmp);
  gfc_add_block_to_block (&block, &arrayse.post);

  if (maskss)
    {
      /* We enclose the above in if (mask) {...} .  */
      tmp = gfc_finish_block (&block);

      tmp = build3_v (COND_EXPR, maskse.expr, tmp,
		      build_empty_stmt (input_location));
    }
  else
    tmp = gfc_finish_block (&block);
  gfc_add_expr_to_block (&body, tmp);

  gfc_trans_scalarizing_loops (&loop, &body);

  /* For a scalar mask, enclose the loop in an if statement.  */
  if (maskexpr && maskss == NULL)
    {
      gfc_init_se (&maskse, NULL);
      gfc_conv_expr_val (&maskse, maskexpr);
      gfc_init_block (&block);
      gfc_add_block_to_block (&block, &loop.pre);
      gfc_add_block_to_block (&block, &loop.post);
      tmp = gfc_finish_block (&block);

      tmp = build3_v (COND_EXPR, maskse.expr, tmp,
		      build_empty_stmt (input_location));
      gfc_add_expr_to_block (&block, tmp);
      gfc_add_block_to_block (&se->pre, &block);
    }
  else
    {
      gfc_add_block_to_block (&se->pre, &loop.pre);
      gfc_add_block_to_block (&se->pre, &loop.post);
    }

  gfc_cleanup_loop (&loop);

  se->expr = resvar;
}


/* Inline implementation of the dot_product intrinsic. This function
   is based on gfc_conv_intrinsic_arith (the previous function).  */
static void
gfc_conv_intrinsic_dot_product (gfc_se * se, gfc_expr * expr)
{
  tree resvar;
  tree type;
  stmtblock_t body;
  stmtblock_t block;
  tree tmp;
  gfc_loopinfo loop;
  gfc_actual_arglist *actual;
  gfc_ss *arrayss1, *arrayss2;
  gfc_se arrayse1, arrayse2;
  gfc_expr *arrayexpr1, *arrayexpr2;

  type = gfc_typenode_for_spec (&expr->ts);

  /* Initialize the result.  */
  resvar = gfc_create_var (type, "val");
  if (expr->ts.type == BT_LOGICAL)
    tmp = build_int_cst (type, 0);
  else
    tmp = gfc_build_const (type, integer_zero_node);

  gfc_add_modify (&se->pre, resvar, tmp);

  /* Walk argument #1.  */
  actual = expr->value.function.actual;
  arrayexpr1 = actual->expr;
  arrayss1 = gfc_walk_expr (arrayexpr1);
  gcc_assert (arrayss1 != gfc_ss_terminator);

  /* Walk argument #2.  */
  actual = actual->next;
  arrayexpr2 = actual->expr;
  arrayss2 = gfc_walk_expr (arrayexpr2);
  gcc_assert (arrayss2 != gfc_ss_terminator);

  /* Initialize the scalarizer.  */
  gfc_init_loopinfo (&loop);
  gfc_add_ss_to_loop (&loop, arrayss1);
  gfc_add_ss_to_loop (&loop, arrayss2);

  /* Initialize the loop.  */
  gfc_conv_ss_startstride (&loop);
  gfc_conv_loop_setup (&loop, &expr->where);

  gfc_mark_ss_chain_used (arrayss1, 1);
  gfc_mark_ss_chain_used (arrayss2, 1);

  /* Generate the loop body.  */
  gfc_start_scalarized_body (&loop, &body);
  gfc_init_block (&block);

  /* Make the tree expression for [conjg(]array1[)].  */
  gfc_init_se (&arrayse1, NULL);
  gfc_copy_loopinfo_to_se (&arrayse1, &loop);
  arrayse1.ss = arrayss1;
  gfc_conv_expr_val (&arrayse1, arrayexpr1);
  if (expr->ts.type == BT_COMPLEX)
    arrayse1.expr = fold_build1 (CONJ_EXPR, type, arrayse1.expr);
  gfc_add_block_to_block (&block, &arrayse1.pre);

  /* Make the tree expression for array2.  */
  gfc_init_se (&arrayse2, NULL);
  gfc_copy_loopinfo_to_se (&arrayse2, &loop);
  arrayse2.ss = arrayss2;
  gfc_conv_expr_val (&arrayse2, arrayexpr2);
  gfc_add_block_to_block (&block, &arrayse2.pre);

  /* Do the actual product and sum.  */
  if (expr->ts.type == BT_LOGICAL)
    {
      tmp = fold_build2 (TRUTH_AND_EXPR, type, arrayse1.expr, arrayse2.expr);
      tmp = fold_build2 (TRUTH_OR_EXPR, type, resvar, tmp);
    }
  else
    {
      tmp = fold_build2 (MULT_EXPR, type, arrayse1.expr, arrayse2.expr);
      tmp = fold_build2 (PLUS_EXPR, type, resvar, tmp);
    }
  gfc_add_modify (&block, resvar, tmp);

  /* Finish up the loop block and the loop.  */
  tmp = gfc_finish_block (&block);
  gfc_add_expr_to_block (&body, tmp);

  gfc_trans_scalarizing_loops (&loop, &body);
  gfc_add_block_to_block (&se->pre, &loop.pre);
  gfc_add_block_to_block (&se->pre, &loop.post);
  gfc_cleanup_loop (&loop);

  se->expr = resvar;
}


/* Emit code for minloc or maxloc intrinsic.  There are many different cases
   we need to handle.  For performance reasons we sometimes create two
   loops instead of one, where the second one is much simpler.
   Examples for minloc intrinsic:
   1) Result is an array, a call is generated
   2) Array mask is used and NaNs need to be supported:
      limit = Infinity;
      pos = 0;
      S = from;
      while (S <= to) {
	if (mask[S]) {
	  if (pos == 0) pos = S + (1 - from);
	  if (a[S] <= limit) { limit = a[S]; pos = S + (1 - from); goto lab1; }
	}
	S++;
      }
      goto lab2;
      lab1:;
      while (S <= to) {
	if (mask[S]) if (a[S] < limit) { limit = a[S]; pos = S + (1 - from); }
	S++;
      }
      lab2:;
   3) NaNs need to be supported, but it is known at compile time or cheaply
      at runtime whether array is nonempty or not:
      limit = Infinity;
      pos = 0;
      S = from;
      while (S <= to) {
	if (a[S] <= limit) { limit = a[S]; pos = S + (1 - from); goto lab1; }
	S++;
      }
      if (from <= to) pos = 1;
      goto lab2;
      lab1:;
      while (S <= to) {
	if (a[S] < limit) { limit = a[S]; pos = S + (1 - from); }
	S++;
      }
      lab2:;
   4) NaNs aren't supported, array mask is used:
      limit = infinities_supported ? Infinity : huge (limit);
      pos = 0;
      S = from;
      while (S <= to) {
	if (mask[S]) { limit = a[S]; pos = S + (1 - from); goto lab1; }
	S++;
      }
      goto lab2;
      lab1:;
      while (S <= to) {
	if (mask[S]) if (a[S] < limit) { limit = a[S]; pos = S + (1 - from); }
	S++;
      }
      lab2:;
   5) Same without array mask:
      limit = infinities_supported ? Infinity : huge (limit);
      pos = (from <= to) ? 1 : 0;
      S = from;
      while (S <= to) {
	if (a[S] < limit) { limit = a[S]; pos = S + (1 - from); }
	S++;
      }
   For 3) and 5), if mask is scalar, this all goes into a conditional,
   setting pos = 0; in the else branch.  */

static void
gfc_conv_intrinsic_minmaxloc (gfc_se * se, gfc_expr * expr, enum tree_code op)
{
  stmtblock_t body;
  stmtblock_t block;
  stmtblock_t ifblock;
  stmtblock_t elseblock;
  tree limit;
  tree type;
  tree tmp;
  tree cond;
  tree elsetmp;
  tree ifbody;
  tree offset;
  tree nonempty;
  tree lab1, lab2;
  gfc_loopinfo loop;
  gfc_actual_arglist *actual;
  gfc_ss *arrayss;
  gfc_ss *maskss;
  gfc_se arrayse;
  gfc_se maskse;
  gfc_expr *arrayexpr;
  gfc_expr *maskexpr;
  tree pos;
  int n;

  if (se->ss)
    {
      gfc_conv_intrinsic_funcall (se, expr);
      return;
    }

  /* Initialize the result.  */
  pos = gfc_create_var (gfc_array_index_type, "pos");
  offset = gfc_create_var (gfc_array_index_type, "offset");
  type = gfc_typenode_for_spec (&expr->ts);

  /* Walk the arguments.  */
  actual = expr->value.function.actual;
  arrayexpr = actual->expr;
  arrayss = gfc_walk_expr (arrayexpr);
  gcc_assert (arrayss != gfc_ss_terminator);

  actual = actual->next->next;
  gcc_assert (actual);
  maskexpr = actual->expr;
  nonempty = NULL;
  if (maskexpr && maskexpr->rank != 0)
    {
      maskss = gfc_walk_expr (maskexpr);
      gcc_assert (maskss != gfc_ss_terminator);
    }
  else
    {
      mpz_t asize;
      if (gfc_array_size (arrayexpr, &asize) == SUCCESS)
	{
	  nonempty = gfc_conv_mpz_to_tree (asize, gfc_index_integer_kind);
	  mpz_clear (asize);
	  nonempty = fold_build2 (GT_EXPR, boolean_type_node, nonempty,
				  gfc_index_zero_node);
	}
      maskss = NULL;
    }

  limit = gfc_create_var (gfc_typenode_for_spec (&arrayexpr->ts), "limit");
  n = gfc_validate_kind (arrayexpr->ts.type, arrayexpr->ts.kind, false);
  switch (arrayexpr->ts.type)
    {
    case BT_REAL:
      if (HONOR_INFINITIES (DECL_MODE (limit)))
	{
	  REAL_VALUE_TYPE real;
	  real_inf (&real);
	  tmp = build_real (TREE_TYPE (limit), real);
	}
      else
	tmp = gfc_conv_mpfr_to_tree (gfc_real_kinds[n].huge,
				     arrayexpr->ts.kind, 0);
      break;

    case BT_INTEGER:
      tmp = gfc_conv_mpz_to_tree (gfc_integer_kinds[n].huge,
				  arrayexpr->ts.kind);
      break;

    default:
      gcc_unreachable ();
    }

  /* We start with the most negative possible value for MAXLOC, and the most
     positive possible value for MINLOC. The most negative possible value is
     -HUGE for BT_REAL and (-HUGE - 1) for BT_INTEGER; the most positive
     possible value is HUGE in both cases.  */
  if (op == GT_EXPR)
    tmp = fold_build1 (NEGATE_EXPR, TREE_TYPE (tmp), tmp);
  if (op == GT_EXPR && expr->ts.type == BT_INTEGER)
    tmp = fold_build2 (MINUS_EXPR, TREE_TYPE (tmp), tmp,
		       build_int_cst (type, 1));

  gfc_add_modify (&se->pre, limit, tmp);

  /* Initialize the scalarizer.  */
  gfc_init_loopinfo (&loop);
  gfc_add_ss_to_loop (&loop, arrayss);
  if (maskss)
    gfc_add_ss_to_loop (&loop, maskss);

  /* Initialize the loop.  */
  gfc_conv_ss_startstride (&loop);
  gfc_conv_loop_setup (&loop, &expr->where);

  gcc_assert (loop.dimen == 1);
  if (nonempty == NULL && maskss == NULL && loop.from[0] && loop.to[0])
    nonempty = fold_build2 (LE_EXPR, boolean_type_node, loop.from[0],
			    loop.to[0]);

  lab1 = NULL;
  lab2 = NULL;
  /* Initialize the position to zero, following Fortran 2003.  We are free
     to do this because Fortran 95 allows the result of an entirely false
     mask to be processor dependent.  If we know at compile time the array
     is non-empty and no MASK is used, we can initialize to 1 to simplify
     the inner loop.  */
  if (nonempty != NULL && !HONOR_NANS (DECL_MODE (limit)))
    gfc_add_modify (&loop.pre, pos,
		    fold_build3 (COND_EXPR, gfc_array_index_type,
				 nonempty, gfc_index_one_node,
				 gfc_index_zero_node));
  else
    {
      gfc_add_modify (&loop.pre, pos, gfc_index_zero_node);
      lab1 = gfc_build_label_decl (NULL_TREE);
      TREE_USED (lab1) = 1;
      lab2 = gfc_build_label_decl (NULL_TREE);
      TREE_USED (lab2) = 1;
    }

  gfc_mark_ss_chain_used (arrayss, 1);
  if (maskss)
    gfc_mark_ss_chain_used (maskss, 1);
  /* Generate the loop body.  */
  gfc_start_scalarized_body (&loop, &body);

  /* If we have a mask, only check this element if the mask is set.  */
  if (maskss)
    {
      gfc_init_se (&maskse, NULL);
      gfc_copy_loopinfo_to_se (&maskse, &loop);
      maskse.ss = maskss;
      gfc_conv_expr_val (&maskse, maskexpr);
      gfc_add_block_to_block (&body, &maskse.pre);

      gfc_start_block (&block);
    }
  else
    gfc_init_block (&block);

  /* Compare with the current limit.  */
  gfc_init_se (&arrayse, NULL);
  gfc_copy_loopinfo_to_se (&arrayse, &loop);
  arrayse.ss = arrayss;
  gfc_conv_expr_val (&arrayse, arrayexpr);
  gfc_add_block_to_block (&block, &arrayse.pre);

  /* We do the following if this is a more extreme value.  */
  gfc_start_block (&ifblock);

  /* Assign the value to the limit...  */
  gfc_add_modify (&ifblock, limit, arrayse.expr);

  /* Remember where we are.  An offset must be added to the loop
     counter to obtain the required position.  */
  if (loop.from[0])
    tmp = fold_build2 (MINUS_EXPR, gfc_array_index_type,
		       gfc_index_one_node, loop.from[0]);
  else
    tmp = gfc_index_one_node;

  gfc_add_modify (&block, offset, tmp);

  if (nonempty == NULL && HONOR_NANS (DECL_MODE (limit)))
    {
      stmtblock_t ifblock2;
      tree ifbody2;

      gfc_start_block (&ifblock2);
      tmp = fold_build2 (PLUS_EXPR, TREE_TYPE (pos),
			 loop.loopvar[0], offset);
      gfc_add_modify (&ifblock2, pos, tmp);
      ifbody2 = gfc_finish_block (&ifblock2);
      cond = fold_build2 (EQ_EXPR, boolean_type_node, pos,
			  gfc_index_zero_node);
      tmp = build3_v (COND_EXPR, cond, ifbody2,
		      build_empty_stmt (input_location));
      gfc_add_expr_to_block (&block, tmp);
    }

  tmp = fold_build2 (PLUS_EXPR, TREE_TYPE (pos),
		     loop.loopvar[0], offset);
  gfc_add_modify (&ifblock, pos, tmp);

  if (lab1)
    gfc_add_expr_to_block (&ifblock, build1_v (GOTO_EXPR, lab1));

  ifbody = gfc_finish_block (&ifblock);

  if (!lab1 || HONOR_NANS (DECL_MODE (limit)))
    {
      if (lab1)
	cond = fold_build2 (op == GT_EXPR ? GE_EXPR : LE_EXPR,
			    boolean_type_node, arrayse.expr, limit);
      else
	cond = fold_build2 (op, boolean_type_node, arrayse.expr, limit);

      ifbody = build3_v (COND_EXPR, cond, ifbody,
			 build_empty_stmt (input_location));
    }
  gfc_add_expr_to_block (&block, ifbody);

  if (maskss)
    {
      /* We enclose the above in if (mask) {...}.  */
      tmp = gfc_finish_block (&block);

      tmp = build3_v (COND_EXPR, maskse.expr, tmp,
		      build_empty_stmt (input_location));
    }
  else
    tmp = gfc_finish_block (&block);
  gfc_add_expr_to_block (&body, tmp);

  if (lab1)
    {
      gfc_trans_scalarized_loop_end (&loop, 0, &body);

      if (HONOR_NANS (DECL_MODE (limit)))
	{
	  if (nonempty != NULL)
	    {
	      ifbody = build2_v (MODIFY_EXPR, pos, gfc_index_one_node);
	      tmp = build3_v (COND_EXPR, nonempty, ifbody,
			      build_empty_stmt (input_location));
	      gfc_add_expr_to_block (&loop.code[0], tmp);
	    }
	}

      gfc_add_expr_to_block (&loop.code[0], build1_v (GOTO_EXPR, lab2));
      gfc_add_expr_to_block (&loop.code[0], build1_v (LABEL_EXPR, lab1));
      gfc_start_block (&body);

      /* If we have a mask, only check this element if the mask is set.  */
      if (maskss)
	{
	  gfc_init_se (&maskse, NULL);
	  gfc_copy_loopinfo_to_se (&maskse, &loop);
	  maskse.ss = maskss;
	  gfc_conv_expr_val (&maskse, maskexpr);
	  gfc_add_block_to_block (&body, &maskse.pre);

	  gfc_start_block (&block);
	}
      else
	gfc_init_block (&block);

      /* Compare with the current limit.  */
      gfc_init_se (&arrayse, NULL);
      gfc_copy_loopinfo_to_se (&arrayse, &loop);
      arrayse.ss = arrayss;
      gfc_conv_expr_val (&arrayse, arrayexpr);
      gfc_add_block_to_block (&block, &arrayse.pre);

      /* We do the following if this is a more extreme value.  */
      gfc_start_block (&ifblock);

      /* Assign the value to the limit...  */
      gfc_add_modify (&ifblock, limit, arrayse.expr);

      /* Remember where we are.  An offset must be added to the loop
	 counter to obtain the required position.  */
      if (loop.from[0])
	tmp = fold_build2 (MINUS_EXPR, gfc_array_index_type,
			   gfc_index_one_node, loop.from[0]);
      else
	tmp = gfc_index_one_node;

      gfc_add_modify (&block, offset, tmp);

      tmp = fold_build2 (PLUS_EXPR, TREE_TYPE (pos),
			 loop.loopvar[0], offset);
      gfc_add_modify (&ifblock, pos, tmp);

      ifbody = gfc_finish_block (&ifblock);

      cond = fold_build2 (op, boolean_type_node, arrayse.expr, limit);

      tmp = build3_v (COND_EXPR, cond, ifbody,
		      build_empty_stmt (input_location));
      gfc_add_expr_to_block (&block, tmp);

      if (maskss)
	{
	  /* We enclose the above in if (mask) {...}.  */
	  tmp = gfc_finish_block (&block);

	  tmp = build3_v (COND_EXPR, maskse.expr, tmp,
			  build_empty_stmt (input_location));
	}
      else
	tmp = gfc_finish_block (&block);
      gfc_add_expr_to_block (&body, tmp);
      /* Avoid initializing loopvar[0] again, it should be left where
	 it finished by the first loop.  */
      loop.from[0] = loop.loopvar[0];
    }

  gfc_trans_scalarizing_loops (&loop, &body);

  if (lab2)
    gfc_add_expr_to_block (&loop.pre, build1_v (LABEL_EXPR, lab2));

  /* For a scalar mask, enclose the loop in an if statement.  */
  if (maskexpr && maskss == NULL)
    {
      gfc_init_se (&maskse, NULL);
      gfc_conv_expr_val (&maskse, maskexpr);
      gfc_init_block (&block);
      gfc_add_block_to_block (&block, &loop.pre);
      gfc_add_block_to_block (&block, &loop.post);
      tmp = gfc_finish_block (&block);

      /* For the else part of the scalar mask, just initialize
	 the pos variable the same way as above.  */

      gfc_init_block (&elseblock);
      gfc_add_modify (&elseblock, pos, gfc_index_zero_node);
      elsetmp = gfc_finish_block (&elseblock);

      tmp = build3_v (COND_EXPR, maskse.expr, tmp, elsetmp);
      gfc_add_expr_to_block (&block, tmp);
      gfc_add_block_to_block (&se->pre, &block);
    }
  else
    {
      gfc_add_block_to_block (&se->pre, &loop.pre);
      gfc_add_block_to_block (&se->pre, &loop.post);
    }
  gfc_cleanup_loop (&loop);

  se->expr = convert (type, pos);
}

/* Emit code for minval or maxval intrinsic.  There are many different cases
   we need to handle.  For performance reasons we sometimes create two
   loops instead of one, where the second one is much simpler.
   Examples for minval intrinsic:
   1) Result is an array, a call is generated
   2) Array mask is used and NaNs need to be supported, rank 1:
      limit = Infinity;
      nonempty = false;
      S = from;
      while (S <= to) {
	if (mask[S]) { nonempty = true; if (a[S] <= limit) goto lab; }
	S++;
      }
      limit = nonempty ? NaN : huge (limit);
      lab:
      while (S <= to) { if(mask[S]) limit = min (a[S], limit); S++; }
   3) NaNs need to be supported, but it is known at compile time or cheaply
      at runtime whether array is nonempty or not, rank 1:
      limit = Infinity;
      S = from;
      while (S <= to) { if (a[S] <= limit) goto lab; S++; }
      limit = (from <= to) ? NaN : huge (limit);
      lab:
      while (S <= to) { limit = min (a[S], limit); S++; }
   4) Array mask is used and NaNs need to be supported, rank > 1:
      limit = Infinity;
      nonempty = false;
      fast = false;
      S1 = from1;
      while (S1 <= to1) {
	S2 = from2;
	while (S2 <= to2) {
	  if (mask[S1][S2]) {
	    if (fast) limit = min (a[S1][S2], limit);
	    else {
	      nonempty = true;
	      if (a[S1][S2] <= limit) {
		limit = a[S1][S2];
		fast = true;
	      }
	    }
	  }
	  S2++;
	}
	S1++;
      }
      if (!fast)
	limit = nonempty ? NaN : huge (limit);
   5) NaNs need to be supported, but it is known at compile time or cheaply
      at runtime whether array is nonempty or not, rank > 1:
      limit = Infinity;
      fast = false;
      S1 = from1;
      while (S1 <= to1) {
	S2 = from2;
	while (S2 <= to2) {
	  if (fast) limit = min (a[S1][S2], limit);
	  else {
	    if (a[S1][S2] <= limit) {
	      limit = a[S1][S2];
	      fast = true;
	    }
	  }
	  S2++;
	}
	S1++;
      }
      if (!fast)
	limit = (nonempty_array) ? NaN : huge (limit);
   6) NaNs aren't supported, but infinities are.  Array mask is used:
      limit = Infinity;
      nonempty = false;
      S = from;
      while (S <= to) {
	if (mask[S]) { nonempty = true; limit = min (a[S], limit); }
	S++;
      }
      limit = nonempty ? limit : huge (limit);
   7) Same without array mask:
      limit = Infinity;
      S = from;
      while (S <= to) { limit = min (a[S], limit); S++; }
      limit = (from <= to) ? limit : huge (limit);
   8) Neither NaNs nor infinities are supported (-ffast-math or BT_INTEGER):
      limit = huge (limit);
      S = from;
      while (S <= to) { limit = min (a[S], limit); S++); }
      (or
      while (S <= to) { if (mask[S]) limit = min (a[S], limit); S++; }
      with array mask instead).
   For 3), 5), 7) and 8), if mask is scalar, this all goes into a conditional,
   setting limit = huge (limit); in the else branch.  */

static void
gfc_conv_intrinsic_minmaxval (gfc_se * se, gfc_expr * expr, enum tree_code op)
{
  tree limit;
  tree type;
  tree tmp;
  tree ifbody;
  tree nonempty;
  tree nonempty_var;
  tree lab;
  tree fast;
  tree huge_cst = NULL, nan_cst = NULL;
  stmtblock_t body;
  stmtblock_t block, block2;
  gfc_loopinfo loop;
  gfc_actual_arglist *actual;
  gfc_ss *arrayss;
  gfc_ss *maskss;
  gfc_se arrayse;
  gfc_se maskse;
  gfc_expr *arrayexpr;
  gfc_expr *maskexpr;
  int n;

  if (se->ss)
    {
      gfc_conv_intrinsic_funcall (se, expr);
      return;
    }

  type = gfc_typenode_for_spec (&expr->ts);
  /* Initialize the result.  */
  limit = gfc_create_var (type, "limit");
  n = gfc_validate_kind (expr->ts.type, expr->ts.kind, false);
  switch (expr->ts.type)
    {
    case BT_REAL:
      huge_cst = gfc_conv_mpfr_to_tree (gfc_real_kinds[n].huge,
					expr->ts.kind, 0);
      if (HONOR_INFINITIES (DECL_MODE (limit)))
	{
	  REAL_VALUE_TYPE real;
	  real_inf (&real);
	  tmp = build_real (type, real);
	}
      else
	tmp = huge_cst;
      if (HONOR_NANS (DECL_MODE (limit)))
	{
	  REAL_VALUE_TYPE real;
	  real_nan (&real, "", 1, DECL_MODE (limit));
	  nan_cst = build_real (type, real);
	}
      break;

    case BT_INTEGER:
      tmp = gfc_conv_mpz_to_tree (gfc_integer_kinds[n].huge, expr->ts.kind);
      break;

    default:
      gcc_unreachable ();
    }

  /* We start with the most negative possible value for MAXVAL, and the most
     positive possible value for MINVAL. The most negative possible value is
     -HUGE for BT_REAL and (-HUGE - 1) for BT_INTEGER; the most positive
     possible value is HUGE in both cases.  */
  if (op == GT_EXPR)
    {
      tmp = fold_build1 (NEGATE_EXPR, TREE_TYPE (tmp), tmp);
      if (huge_cst)
	huge_cst = fold_build1 (NEGATE_EXPR, TREE_TYPE (huge_cst), huge_cst);
    }

  if (op == GT_EXPR && expr->ts.type == BT_INTEGER)
    tmp = fold_build2 (MINUS_EXPR, TREE_TYPE (tmp),
		       tmp, build_int_cst (type, 1));

  gfc_add_modify (&se->pre, limit, tmp);

  /* Walk the arguments.  */
  actual = expr->value.function.actual;
  arrayexpr = actual->expr;
  arrayss = gfc_walk_expr (arrayexpr);
  gcc_assert (arrayss != gfc_ss_terminator);

  actual = actual->next->next;
  gcc_assert (actual);
  maskexpr = actual->expr;
  nonempty = NULL;
  if (maskexpr && maskexpr->rank != 0)
    {
      maskss = gfc_walk_expr (maskexpr);
      gcc_assert (maskss != gfc_ss_terminator);
    }
  else
    {
      mpz_t asize;
      if (gfc_array_size (arrayexpr, &asize) == SUCCESS)
	{
	  nonempty = gfc_conv_mpz_to_tree (asize, gfc_index_integer_kind);
	  mpz_clear (asize);
	  nonempty = fold_build2 (GT_EXPR, boolean_type_node, nonempty,
				  gfc_index_zero_node);
	}
      maskss = NULL;
    }

  /* Initialize the scalarizer.  */
  gfc_init_loopinfo (&loop);
  gfc_add_ss_to_loop (&loop, arrayss);
  if (maskss)
    gfc_add_ss_to_loop (&loop, maskss);

  /* Initialize the loop.  */
  gfc_conv_ss_startstride (&loop);
  gfc_conv_loop_setup (&loop, &expr->where);

  if (nonempty == NULL && maskss == NULL
      && loop.dimen == 1 && loop.from[0] && loop.to[0])
    nonempty = fold_build2 (LE_EXPR, boolean_type_node, loop.from[0],
			    loop.to[0]);
  nonempty_var = NULL;
  if (nonempty == NULL
      && (HONOR_INFINITIES (DECL_MODE (limit))
	  || HONOR_NANS (DECL_MODE (limit))))
    {
      nonempty_var = gfc_create_var (boolean_type_node, "nonempty");
      gfc_add_modify (&se->pre, nonempty_var, boolean_false_node);
      nonempty = nonempty_var;
    }
  lab = NULL;
  fast = NULL;
  if (HONOR_NANS (DECL_MODE (limit)))
    {
      if (loop.dimen == 1)
	{
	  lab = gfc_build_label_decl (NULL_TREE);
	  TREE_USED (lab) = 1;
	}
      else
	{
	  fast = gfc_create_var (boolean_type_node, "fast");
	  gfc_add_modify (&se->pre, fast, boolean_false_node);
	}
    }

  gfc_mark_ss_chain_used (arrayss, 1);
  if (maskss)
    gfc_mark_ss_chain_used (maskss, 1);
  /* Generate the loop body.  */
  gfc_start_scalarized_body (&loop, &body);

  /* If we have a mask, only add this element if the mask is set.  */
  if (maskss)
    {
      gfc_init_se (&maskse, NULL);
      gfc_copy_loopinfo_to_se (&maskse, &loop);
      maskse.ss = maskss;
      gfc_conv_expr_val (&maskse, maskexpr);
      gfc_add_block_to_block (&body, &maskse.pre);

      gfc_start_block (&block);
    }
  else
    gfc_init_block (&block);

  /* Compare with the current limit.  */
  gfc_init_se (&arrayse, NULL);
  gfc_copy_loopinfo_to_se (&arrayse, &loop);
  arrayse.ss = arrayss;
  gfc_conv_expr_val (&arrayse, arrayexpr);
  gfc_add_block_to_block (&block, &arrayse.pre);

  gfc_init_block (&block2);

  if (nonempty_var)
    gfc_add_modify (&block2, nonempty_var, boolean_true_node);

  if (HONOR_NANS (DECL_MODE (limit)))
    {
      tmp = fold_build2 (op == GT_EXPR ? GE_EXPR : LE_EXPR,
			 boolean_type_node, arrayse.expr, limit);
      if (lab)
	ifbody = build1_v (GOTO_EXPR, lab);
      else
	{
	  stmtblock_t ifblock;

	  gfc_init_block (&ifblock);
	  gfc_add_modify (&ifblock, limit, arrayse.expr);
	  gfc_add_modify (&ifblock, fast, boolean_true_node);
	  ifbody = gfc_finish_block (&ifblock);
	}
      tmp = build3_v (COND_EXPR, tmp, ifbody,
		      build_empty_stmt (input_location));
      gfc_add_expr_to_block (&block2, tmp);
    }
  else
    {
      /* MIN_EXPR/MAX_EXPR has unspecified behavior with NaNs or
	 signed zeros.  */
      if (HONOR_SIGNED_ZEROS (DECL_MODE (limit)))
	{
	  tmp = fold_build2 (op, boolean_type_node, arrayse.expr, limit);
	  ifbody = build2_v (MODIFY_EXPR, limit, arrayse.expr);
	  tmp = build3_v (COND_EXPR, tmp, ifbody,
			  build_empty_stmt (input_location));
	  gfc_add_expr_to_block (&block2, tmp);
	}
      else
	{
	  tmp = fold_build2 (op == GT_EXPR ? MAX_EXPR : MIN_EXPR,
			     type, arrayse.expr, limit);
	  gfc_add_modify (&block2, limit, tmp);
	}
    }

  if (fast)
    {
      tree elsebody = gfc_finish_block (&block2);

      /* MIN_EXPR/MAX_EXPR has unspecified behavior with NaNs or
	 signed zeros.  */
      if (HONOR_NANS (DECL_MODE (limit))
	  || HONOR_SIGNED_ZEROS (DECL_MODE (limit)))
	{
	  tmp = fold_build2 (op, boolean_type_node, arrayse.expr, limit);
	  ifbody = build2_v (MODIFY_EXPR, limit, arrayse.expr);
	  ifbody = build3_v (COND_EXPR, tmp, ifbody,
			     build_empty_stmt (input_location));
	}
      else
	{
	  tmp = fold_build2 (op == GT_EXPR ? MAX_EXPR : MIN_EXPR,
			     type, arrayse.expr, limit);
	  ifbody = build2_v (MODIFY_EXPR, limit, tmp);
	}
      tmp = build3_v (COND_EXPR, fast, ifbody, elsebody);
      gfc_add_expr_to_block (&block, tmp);
    }
  else
    gfc_add_block_to_block (&block, &block2);

  gfc_add_block_to_block (&block, &arrayse.post);

  tmp = gfc_finish_block (&block);
  if (maskss)
    /* We enclose the above in if (mask) {...}.  */
    tmp = build3_v (COND_EXPR, maskse.expr, tmp,
		    build_empty_stmt (input_location));
  gfc_add_expr_to_block (&body, tmp);

  if (lab)
    {
      gfc_trans_scalarized_loop_end (&loop, 0, &body);

      tmp = fold_build3 (COND_EXPR, type, nonempty, nan_cst, huge_cst);
      gfc_add_modify (&loop.code[0], limit, tmp);
      gfc_add_expr_to_block (&loop.code[0], build1_v (LABEL_EXPR, lab));

      gfc_start_block (&body);

      /* If we have a mask, only add this element if the mask is set.  */
      if (maskss)
	{
	  gfc_init_se (&maskse, NULL);
	  gfc_copy_loopinfo_to_se (&maskse, &loop);
	  maskse.ss = maskss;
	  gfc_conv_expr_val (&maskse, maskexpr);
	  gfc_add_block_to_block (&body, &maskse.pre);

	  gfc_start_block (&block);
	}
      else
	gfc_init_block (&block);

      /* Compare with the current limit.  */
      gfc_init_se (&arrayse, NULL);
      gfc_copy_loopinfo_to_se (&arrayse, &loop);
      arrayse.ss = arrayss;
      gfc_conv_expr_val (&arrayse, arrayexpr);
      gfc_add_block_to_block (&block, &arrayse.pre);

      /* MIN_EXPR/MAX_EXPR has unspecified behavior with NaNs or
	 signed zeros.  */
      if (HONOR_NANS (DECL_MODE (limit))
	  || HONOR_SIGNED_ZEROS (DECL_MODE (limit)))
	{
	  tmp = fold_build2 (op, boolean_type_node, arrayse.expr, limit);
	  ifbody = build2_v (MODIFY_EXPR, limit, arrayse.expr);
	  tmp = build3_v (COND_EXPR, tmp, ifbody,
			  build_empty_stmt (input_location));
	  gfc_add_expr_to_block (&block, tmp);
	}
      else
	{
	  tmp = fold_build2 (op == GT_EXPR ? MAX_EXPR : MIN_EXPR,
			     type, arrayse.expr, limit);
	  gfc_add_modify (&block, limit, tmp);
	}

      gfc_add_block_to_block (&block, &arrayse.post);

      tmp = gfc_finish_block (&block);
      if (maskss)
	/* We enclose the above in if (mask) {...}.  */
	tmp = build3_v (COND_EXPR, maskse.expr, tmp,
			build_empty_stmt (input_location));
      gfc_add_expr_to_block (&body, tmp);
      /* Avoid initializing loopvar[0] again, it should be left where
	 it finished by the first loop.  */
      loop.from[0] = loop.loopvar[0];
    }
  gfc_trans_scalarizing_loops (&loop, &body);

  if (fast)
    {
      tmp = fold_build3 (COND_EXPR, type, nonempty, nan_cst, huge_cst);
      ifbody = build2_v (MODIFY_EXPR, limit, tmp);
      tmp = build3_v (COND_EXPR, fast, build_empty_stmt (input_location),
		      ifbody);
      gfc_add_expr_to_block (&loop.pre, tmp);
    }
  else if (HONOR_INFINITIES (DECL_MODE (limit)) && !lab)
    {
      tmp = fold_build3 (COND_EXPR, type, nonempty, limit, huge_cst);
      gfc_add_modify (&loop.pre, limit, tmp);
    }

  /* For a scalar mask, enclose the loop in an if statement.  */
  if (maskexpr && maskss == NULL)
    {
      tree else_stmt;

      gfc_init_se (&maskse, NULL);
      gfc_conv_expr_val (&maskse, maskexpr);
      gfc_init_block (&block);
      gfc_add_block_to_block (&block, &loop.pre);
      gfc_add_block_to_block (&block, &loop.post);
      tmp = gfc_finish_block (&block);

      if (HONOR_INFINITIES (DECL_MODE (limit)))
	else_stmt = build2_v (MODIFY_EXPR, limit, huge_cst);
      else
	else_stmt = build_empty_stmt (input_location);
      tmp = build3_v (COND_EXPR, maskse.expr, tmp, else_stmt);
      gfc_add_expr_to_block (&block, tmp);
      gfc_add_block_to_block (&se->pre, &block);
    }
  else
    {
      gfc_add_block_to_block (&se->pre, &loop.pre);
      gfc_add_block_to_block (&se->pre, &loop.post);
    }

  gfc_cleanup_loop (&loop);

  se->expr = limit;
}

/* BTEST (i, pos) = (i & (1 << pos)) != 0.  */
static void
gfc_conv_intrinsic_btest (gfc_se * se, gfc_expr * expr)
{
  tree args[2];
  tree type;
  tree tmp;

  gfc_conv_intrinsic_function_args (se, expr, args, 2);
  type = TREE_TYPE (args[0]);

  tmp = fold_build2 (LSHIFT_EXPR, type, build_int_cst (type, 1), args[1]);
  tmp = fold_build2 (BIT_AND_EXPR, type, args[0], tmp);
  tmp = fold_build2 (NE_EXPR, boolean_type_node, tmp,
		     build_int_cst (type, 0));
  type = gfc_typenode_for_spec (&expr->ts);
  se->expr = convert (type, tmp);
}

/* Generate code to perform the specified operation.  */
static void
gfc_conv_intrinsic_bitop (gfc_se * se, gfc_expr * expr, enum tree_code op)
{
  tree args[2];

  gfc_conv_intrinsic_function_args (se, expr, args, 2);
  se->expr = fold_build2 (op, TREE_TYPE (args[0]), args[0], args[1]);
}

/* Bitwise not.  */
static void
gfc_conv_intrinsic_not (gfc_se * se, gfc_expr * expr)
{
  tree arg;

  gfc_conv_intrinsic_function_args (se, expr, &arg, 1);
  se->expr = fold_build1 (BIT_NOT_EXPR, TREE_TYPE (arg), arg);
}

/* Set or clear a single bit.  */
static void
gfc_conv_intrinsic_singlebitop (gfc_se * se, gfc_expr * expr, int set)
{
  tree args[2];
  tree type;
  tree tmp;
  enum tree_code op;

  gfc_conv_intrinsic_function_args (se, expr, args, 2);
  type = TREE_TYPE (args[0]);

  tmp = fold_build2 (LSHIFT_EXPR, type, build_int_cst (type, 1), args[1]);
  if (set)
    op = BIT_IOR_EXPR;
  else
    {
      op = BIT_AND_EXPR;
      tmp = fold_build1 (BIT_NOT_EXPR, type, tmp);
    }
  se->expr = fold_build2 (op, type, args[0], tmp);
}

/* Extract a sequence of bits.
    IBITS(I, POS, LEN) = (I >> POS) & ~((~0) << LEN).  */
static void
gfc_conv_intrinsic_ibits (gfc_se * se, gfc_expr * expr)
{
  tree args[3];
  tree type;
  tree tmp;
  tree mask;

  gfc_conv_intrinsic_function_args (se, expr, args, 3);
  type = TREE_TYPE (args[0]);

  mask = build_int_cst (type, -1);
  mask = fold_build2 (LSHIFT_EXPR, type, mask, args[2]);
  mask = fold_build1 (BIT_NOT_EXPR, type, mask);

  tmp = fold_build2 (RSHIFT_EXPR, type, args[0], args[1]);

  se->expr = fold_build2 (BIT_AND_EXPR, type, tmp, mask);
}

/* RSHIFT (I, SHIFT) = I >> SHIFT
   LSHIFT (I, SHIFT) = I << SHIFT  */
static void
gfc_conv_intrinsic_rlshift (gfc_se * se, gfc_expr * expr, int right_shift)
{
  tree args[2];

  gfc_conv_intrinsic_function_args (se, expr, args, 2);

  se->expr = fold_build2 (right_shift ? RSHIFT_EXPR : LSHIFT_EXPR,
			  TREE_TYPE (args[0]), args[0], args[1]);
}

/* ISHFT (I, SHIFT) = (abs (shift) >= BIT_SIZE (i))
                        ? 0
	 	        : ((shift >= 0) ? i << shift : i >> -shift)
   where all shifts are logical shifts.  */
static void
gfc_conv_intrinsic_ishft (gfc_se * se, gfc_expr * expr)
{
  tree args[2];
  tree type;
  tree utype;
  tree tmp;
  tree width;
  tree num_bits;
  tree cond;
  tree lshift;
  tree rshift;

  gfc_conv_intrinsic_function_args (se, expr, args, 2);
  type = TREE_TYPE (args[0]);
  utype = unsigned_type_for (type);

  width = fold_build1 (ABS_EXPR, TREE_TYPE (args[1]), args[1]);

  /* Left shift if positive.  */
  lshift = fold_build2 (LSHIFT_EXPR, type, args[0], width);

  /* Right shift if negative.
     We convert to an unsigned type because we want a logical shift.
     The standard doesn't define the case of shifting negative
     numbers, and we try to be compatible with other compilers, most
     notably g77, here.  */
  rshift = fold_convert (type, fold_build2 (RSHIFT_EXPR, utype, 
					    convert (utype, args[0]), width));

  tmp = fold_build2 (GE_EXPR, boolean_type_node, args[1],
		     build_int_cst (TREE_TYPE (args[1]), 0));
  tmp = fold_build3 (COND_EXPR, type, tmp, lshift, rshift);

  /* The Fortran standard allows shift widths <= BIT_SIZE(I), whereas
     gcc requires a shift width < BIT_SIZE(I), so we have to catch this
     special case.  */
  num_bits = build_int_cst (TREE_TYPE (args[1]), TYPE_PRECISION (type));
  cond = fold_build2 (GE_EXPR, boolean_type_node, width, num_bits);

  se->expr = fold_build3 (COND_EXPR, type, cond,
			  build_int_cst (type, 0), tmp);
}


/* Circular shift.  AKA rotate or barrel shift.  */

static void
gfc_conv_intrinsic_ishftc (gfc_se * se, gfc_expr * expr)
{
  tree *args;
  tree type;
  tree tmp;
  tree lrot;
  tree rrot;
  tree zero;
  unsigned int num_args;

  num_args = gfc_intrinsic_argument_list_length (expr);
  args = (tree *) alloca (sizeof (tree) * num_args);

  gfc_conv_intrinsic_function_args (se, expr, args, num_args);

  if (num_args == 3)
    {
      /* Use a library function for the 3 parameter version.  */
      tree int4type = gfc_get_int_type (4);

      type = TREE_TYPE (args[0]);
      /* We convert the first argument to at least 4 bytes, and
	 convert back afterwards.  This removes the need for library
	 functions for all argument sizes, and function will be
	 aligned to at least 32 bits, so there's no loss.  */
      if (expr->ts.kind < 4)
	args[0] = convert (int4type, args[0]);

      /* Convert the SHIFT and SIZE args to INTEGER*4 otherwise we would
         need loads of library  functions.  They cannot have values >
	 BIT_SIZE (I) so the conversion is safe.  */
      args[1] = convert (int4type, args[1]);
      args[2] = convert (int4type, args[2]);

      switch (expr->ts.kind)
	{
	case 1:
	case 2:
	case 4:
	  tmp = gfor_fndecl_math_ishftc4;
	  break;
	case 8:
	  tmp = gfor_fndecl_math_ishftc8;
	  break;
	case 16:
	  tmp = gfor_fndecl_math_ishftc16;
	  break;
	default:
	  gcc_unreachable ();
	}
      se->expr = build_call_expr_loc (input_location,
				  tmp, 3, args[0], args[1], args[2]);
      /* Convert the result back to the original type, if we extended
	 the first argument's width above.  */
      if (expr->ts.kind < 4)
	se->expr = convert (type, se->expr);

      return;
    }
  type = TREE_TYPE (args[0]);

  /* Rotate left if positive.  */
  lrot = fold_build2 (LROTATE_EXPR, type, args[0], args[1]);

  /* Rotate right if negative.  */
  tmp = fold_build1 (NEGATE_EXPR, TREE_TYPE (args[1]), args[1]);
  rrot = fold_build2 (RROTATE_EXPR, type, args[0], tmp);

  zero = build_int_cst (TREE_TYPE (args[1]), 0);
  tmp = fold_build2 (GT_EXPR, boolean_type_node, args[1], zero);
  rrot = fold_build3 (COND_EXPR, type, tmp, lrot, rrot);

  /* Do nothing if shift == 0.  */
  tmp = fold_build2 (EQ_EXPR, boolean_type_node, args[1], zero);
  se->expr = fold_build3 (COND_EXPR, type, tmp, args[0], rrot);
}

/* LEADZ (i) = (i == 0) ? BIT_SIZE (i)
			: __builtin_clz(i) - (BIT_SIZE('int') - BIT_SIZE(i))

   The conditional expression is necessary because the result of LEADZ(0)
   is defined, but the result of __builtin_clz(0) is undefined for most
   targets.

   For INTEGER kinds smaller than the C 'int' type, we have to subtract the
   difference in bit size between the argument of LEADZ and the C int.  */
 
static void
gfc_conv_intrinsic_leadz (gfc_se * se, gfc_expr * expr)
{
  tree arg;
  tree arg_type;
  tree cond;
  tree result_type;
  tree leadz;
  tree bit_size;
  tree tmp;
  tree func;
  int s, argsize;

  gfc_conv_intrinsic_function_args (se, expr, &arg, 1);
  argsize = TYPE_PRECISION (TREE_TYPE (arg));

  /* Which variant of __builtin_clz* should we call?  */
  if (argsize <= INT_TYPE_SIZE)
    {
      arg_type = unsigned_type_node;
      func = built_in_decls[BUILT_IN_CLZ];
    }
  else if (argsize <= LONG_TYPE_SIZE)
    {
      arg_type = long_unsigned_type_node;
      func = built_in_decls[BUILT_IN_CLZL];
    }
  else if (argsize <= LONG_LONG_TYPE_SIZE)
    {
      arg_type = long_long_unsigned_type_node;
      func = built_in_decls[BUILT_IN_CLZLL];
    }
  else
    {
      gcc_assert (argsize == 128);
      arg_type = gfc_build_uint_type (argsize);
      func = gfor_fndecl_clz128;
    }

  /* Convert the actual argument twice: first, to the unsigned type of the
     same size; then, to the proper argument type for the built-in
     function.  But the return type is of the default INTEGER kind.  */
  arg = fold_convert (gfc_build_uint_type (argsize), arg);
  arg = fold_convert (arg_type, arg);
  result_type = gfc_get_int_type (gfc_default_integer_kind);

  /* Compute LEADZ for the case i .ne. 0.  */
  s = TYPE_PRECISION (arg_type) - argsize;
  tmp = fold_convert (result_type, build_call_expr (func, 1, arg));
  leadz = fold_build2 (MINUS_EXPR, result_type,
		       tmp, build_int_cst (result_type, s));

  /* Build BIT_SIZE.  */
  bit_size = build_int_cst (result_type, argsize);

  cond = fold_build2 (EQ_EXPR, boolean_type_node,
		      arg, build_int_cst (arg_type, 0));
  se->expr = fold_build3 (COND_EXPR, result_type, cond, bit_size, leadz);
}

/* TRAILZ(i) = (i == 0) ? BIT_SIZE (i) : __builtin_ctz(i)

   The conditional expression is necessary because the result of TRAILZ(0)
   is defined, but the result of __builtin_ctz(0) is undefined for most
   targets.  */
 
static void
gfc_conv_intrinsic_trailz (gfc_se * se, gfc_expr *expr)
{
  tree arg;
  tree arg_type;
  tree cond;
  tree result_type;
  tree trailz;
  tree bit_size;
  tree func;
  int argsize;

  gfc_conv_intrinsic_function_args (se, expr, &arg, 1);
  argsize = TYPE_PRECISION (TREE_TYPE (arg));

  /* Which variant of __builtin_ctz* should we call?  */
  if (argsize <= INT_TYPE_SIZE)
    {
      arg_type = unsigned_type_node;
      func = built_in_decls[BUILT_IN_CTZ];
    }
  else if (argsize <= LONG_TYPE_SIZE)
    {
      arg_type = long_unsigned_type_node;
      func = built_in_decls[BUILT_IN_CTZL];
    }
  else if (argsize <= LONG_LONG_TYPE_SIZE)
    {
      arg_type = long_long_unsigned_type_node;
      func = built_in_decls[BUILT_IN_CTZLL];
    }
  else
    {
      gcc_assert (argsize == 128);
      arg_type = gfc_build_uint_type (argsize);
      func = gfor_fndecl_ctz128;
    }

  /* Convert the actual argument twice: first, to the unsigned type of the
     same size; then, to the proper argument type for the built-in
     function.  But the return type is of the default INTEGER kind.  */
  arg = fold_convert (gfc_build_uint_type (argsize), arg);
  arg = fold_convert (arg_type, arg);
  result_type = gfc_get_int_type (gfc_default_integer_kind);

  /* Compute TRAILZ for the case i .ne. 0.  */
  trailz = fold_convert (result_type, build_call_expr_loc (input_location,
						       func, 1, arg));

  /* Build BIT_SIZE.  */
  bit_size = build_int_cst (result_type, argsize);

  cond = fold_build2 (EQ_EXPR, boolean_type_node,
		      arg, build_int_cst (arg_type, 0));
  se->expr = fold_build3 (COND_EXPR, result_type, cond, bit_size, trailz);
}

/* Process an intrinsic with unspecified argument-types that has an optional
   argument (which could be of type character), e.g. EOSHIFT.  For those, we
   need to append the string length of the optional argument if it is not
   present and the type is really character.
   primary specifies the position (starting at 1) of the non-optional argument
   specifying the type and optional gives the position of the optional
   argument in the arglist.  */

static void
conv_generic_with_optional_char_arg (gfc_se* se, gfc_expr* expr,
				     unsigned primary, unsigned optional)
{
  gfc_actual_arglist* prim_arg;
  gfc_actual_arglist* opt_arg;
  unsigned cur_pos;
  gfc_actual_arglist* arg;
  gfc_symbol* sym;
  tree append_args;

  /* Find the two arguments given as position.  */
  cur_pos = 0;
  prim_arg = NULL;
  opt_arg = NULL;
  for (arg = expr->value.function.actual; arg; arg = arg->next)
    {
      ++cur_pos;

      if (cur_pos == primary)
	prim_arg = arg;
      if (cur_pos == optional)
	opt_arg = arg;

      if (cur_pos >= primary && cur_pos >= optional)
	break;
    }
  gcc_assert (prim_arg);
  gcc_assert (prim_arg->expr);
  gcc_assert (opt_arg);

  /* If we do have type CHARACTER and the optional argument is really absent,
     append a dummy 0 as string length.  */
  append_args = NULL_TREE;
  if (prim_arg->expr->ts.type == BT_CHARACTER && !opt_arg->expr)
    {
      tree dummy;

      dummy = build_int_cst (gfc_charlen_type_node, 0);
      append_args = gfc_chainon_list (append_args, dummy);
    }

  /* Build the call itself.  */
  sym = gfc_get_symbol_for_expr (expr);
  gfc_conv_procedure_call (se, sym, expr->value.function.actual, expr,
			  append_args);
  gfc_free (sym);
}


/* The length of a character string.  */
static void
gfc_conv_intrinsic_len (gfc_se * se, gfc_expr * expr)
{
  tree len;
  tree type;
  tree decl;
  gfc_symbol *sym;
  gfc_se argse;
  gfc_expr *arg;
  gfc_ss *ss;

  gcc_assert (!se->ss);

  arg = expr->value.function.actual->expr;

  type = gfc_typenode_for_spec (&expr->ts);
  switch (arg->expr_type)
    {
    case EXPR_CONSTANT:
      len = build_int_cst (NULL_TREE, arg->value.character.length);
      break;

    case EXPR_ARRAY:
      /* Obtain the string length from the function used by
         trans-array.c(gfc_trans_array_constructor).  */
      len = NULL_TREE;
      get_array_ctor_strlen (&se->pre, arg->value.constructor, &len);
      break;

    case EXPR_VARIABLE:
      if (arg->ref == NULL
	    || (arg->ref->next == NULL && arg->ref->type == REF_ARRAY))
	{
	  /* This doesn't catch all cases.
	     See http://gcc.gnu.org/ml/fortran/2004-06/msg00165.html
	     and the surrounding thread.  */
	  sym = arg->symtree->n.sym;
	  decl = gfc_get_symbol_decl (sym);
	  if (decl == current_function_decl && sym->attr.function
		&& (sym->result == sym))
	    decl = gfc_get_fake_result_decl (sym, 0);

	  len = sym->ts.u.cl->backend_decl;
	  gcc_assert (len);
	  break;
	}

      /* Otherwise fall through.  */

    default:
      /* Anybody stupid enough to do this deserves inefficient code.  */
      ss = gfc_walk_expr (arg);
      gfc_init_se (&argse, se);
      if (ss == gfc_ss_terminator)
	gfc_conv_expr (&argse, arg);
      else
	gfc_conv_expr_descriptor (&argse, arg, ss);
      gfc_add_block_to_block (&se->pre, &argse.pre);
      gfc_add_block_to_block (&se->post, &argse.post);
      len = argse.string_length;
      break;
    }
  se->expr = convert (type, len);
}

/* The length of a character string not including trailing blanks.  */
static void
gfc_conv_intrinsic_len_trim (gfc_se * se, gfc_expr * expr)
{
  int kind = expr->value.function.actual->expr->ts.kind;
  tree args[2], type, fndecl;

  gfc_conv_intrinsic_function_args (se, expr, args, 2);
  type = gfc_typenode_for_spec (&expr->ts);

  if (kind == 1)
    fndecl = gfor_fndecl_string_len_trim;
  else if (kind == 4)
    fndecl = gfor_fndecl_string_len_trim_char4;
  else
    gcc_unreachable ();

  se->expr = build_call_expr_loc (input_location,
			      fndecl, 2, args[0], args[1]);
  se->expr = convert (type, se->expr);
}


/* Returns the starting position of a substring within a string.  */

static void
gfc_conv_intrinsic_index_scan_verify (gfc_se * se, gfc_expr * expr,
				      tree function)
{
  tree logical4_type_node = gfc_get_logical_type (4);
  tree type;
  tree fndecl;
  tree *args;
  unsigned int num_args;

  args = (tree *) alloca (sizeof (tree) * 5);

  /* Get number of arguments; characters count double due to the
     string length argument. Kind= is not passed to the library
     and thus ignored.  */
  if (expr->value.function.actual->next->next->expr == NULL)
    num_args = 4;
  else
    num_args = 5;

  gfc_conv_intrinsic_function_args (se, expr, args, num_args);
  type = gfc_typenode_for_spec (&expr->ts);

  if (num_args == 4)
    args[4] = build_int_cst (logical4_type_node, 0);
  else
    args[4] = convert (logical4_type_node, args[4]);

  fndecl = build_addr (function, current_function_decl);
  se->expr = build_call_array_loc (input_location,
			       TREE_TYPE (TREE_TYPE (function)), fndecl,
			       5, args);
  se->expr = convert (type, se->expr);

}

/* The ascii value for a single character.  */
static void
gfc_conv_intrinsic_ichar (gfc_se * se, gfc_expr * expr)
{
  tree args[2], type, pchartype;

  gfc_conv_intrinsic_function_args (se, expr, args, 2);
  gcc_assert (POINTER_TYPE_P (TREE_TYPE (args[1])));
  pchartype = gfc_get_pchar_type (expr->value.function.actual->expr->ts.kind);
  args[1] = fold_build1 (NOP_EXPR, pchartype, args[1]);
  type = gfc_typenode_for_spec (&expr->ts);

  se->expr = build_fold_indirect_ref_loc (input_location,
				      args[1]);
  se->expr = convert (type, se->expr);
}


/* Intrinsic ISNAN calls __builtin_isnan.  */

static void
gfc_conv_intrinsic_isnan (gfc_se * se, gfc_expr * expr)
{
  tree arg;

  gfc_conv_intrinsic_function_args (se, expr, &arg, 1);
  se->expr = build_call_expr_loc (input_location,
			      built_in_decls[BUILT_IN_ISNAN], 1, arg);
  STRIP_TYPE_NOPS (se->expr);
  se->expr = fold_convert (gfc_typenode_for_spec (&expr->ts), se->expr);
}


/* Intrinsics IS_IOSTAT_END and IS_IOSTAT_EOR just need to compare
   their argument against a constant integer value.  */

static void
gfc_conv_has_intvalue (gfc_se * se, gfc_expr * expr, const int value)
{
  tree arg;

  gfc_conv_intrinsic_function_args (se, expr, &arg, 1);
  se->expr = fold_build2 (EQ_EXPR, gfc_typenode_for_spec (&expr->ts),
			  arg, build_int_cst (TREE_TYPE (arg), value));
}



/* MERGE (tsource, fsource, mask) = mask ? tsource : fsource.  */

static void
gfc_conv_intrinsic_merge (gfc_se * se, gfc_expr * expr)
{
  tree tsource;
  tree fsource;
  tree mask;
  tree type;
  tree len, len2;
  tree *args;
  unsigned int num_args;

  num_args = gfc_intrinsic_argument_list_length (expr);
  args = (tree *) alloca (sizeof (tree) * num_args);

  gfc_conv_intrinsic_function_args (se, expr, args, num_args);
  if (expr->ts.type != BT_CHARACTER)
    {
      tsource = args[0];
      fsource = args[1];
      mask = args[2];
    }
  else
    {
      /* We do the same as in the non-character case, but the argument
	 list is different because of the string length arguments. We
	 also have to set the string length for the result.  */
      len = args[0];
      tsource = args[1];
      len2 = args[2];
      fsource = args[3];
      mask = args[4];

      gfc_trans_same_strlen_check ("MERGE intrinsic", &expr->where, len, len2,
				   &se->pre);
      se->string_length = len;
    }
  type = TREE_TYPE (tsource);
  se->expr = fold_build3 (COND_EXPR, type, mask, tsource,
			  fold_convert (type, fsource));
}


/* FRACTION (s) is translated into frexp (s, &dummy_int).  */
static void
gfc_conv_intrinsic_fraction (gfc_se * se, gfc_expr * expr)
{
  tree arg, type, tmp;
  int frexp;

  switch (expr->ts.kind)
    {
      case 4:
	frexp = BUILT_IN_FREXPF;
	break;
      case 8:
	frexp = BUILT_IN_FREXP;
	break;
      case 10:
      case 16:
	frexp = BUILT_IN_FREXPL;
	break;
      default:
	gcc_unreachable ();
    }

  type = gfc_typenode_for_spec (&expr->ts);
  gfc_conv_intrinsic_function_args (se, expr, &arg, 1);
  tmp = gfc_create_var (integer_type_node, NULL);
  se->expr = build_call_expr_loc (input_location,
			      built_in_decls[frexp], 2,
			      fold_convert (type, arg),
			      gfc_build_addr_expr (NULL_TREE, tmp));
  se->expr = fold_convert (type, se->expr);
}


/* NEAREST (s, dir) is translated into
     tmp = copysign (HUGE_VAL, dir);
     return nextafter (s, tmp);
 */
static void
gfc_conv_intrinsic_nearest (gfc_se * se, gfc_expr * expr)
{
  tree args[2], type, tmp;
  int nextafter, copysign, huge_val;

  switch (expr->ts.kind)
    {
      case 4:
	nextafter = BUILT_IN_NEXTAFTERF;
	copysign = BUILT_IN_COPYSIGNF;
	huge_val = BUILT_IN_HUGE_VALF;
	break;
      case 8:
	nextafter = BUILT_IN_NEXTAFTER;
	copysign = BUILT_IN_COPYSIGN;
	huge_val = BUILT_IN_HUGE_VAL;
	break;
      case 10:
      case 16:
	nextafter = BUILT_IN_NEXTAFTERL;
	copysign = BUILT_IN_COPYSIGNL;
	huge_val = BUILT_IN_HUGE_VALL;
	break;
      default:
	gcc_unreachable ();
    }

  type = gfc_typenode_for_spec (&expr->ts);
  gfc_conv_intrinsic_function_args (se, expr, args, 2);
  tmp = build_call_expr_loc (input_location,
			 built_in_decls[copysign], 2,
			 build_call_expr_loc (input_location,
					  built_in_decls[huge_val], 0),
			 fold_convert (type, args[1]));
  se->expr = build_call_expr_loc (input_location,
			      built_in_decls[nextafter], 2,
			      fold_convert (type, args[0]), tmp);
  se->expr = fold_convert (type, se->expr);
}


/* SPACING (s) is translated into
    int e;
    if (s == 0)
      res = tiny;
    else
    {
      frexp (s, &e);
      e = e - prec;
      e = MAX_EXPR (e, emin);
      res = scalbn (1., e);
    }
    return res;

 where prec is the precision of s, gfc_real_kinds[k].digits,
       emin is min_exponent - 1, gfc_real_kinds[k].min_exponent - 1,
   and tiny is tiny(s), gfc_real_kinds[k].tiny.  */

static void
gfc_conv_intrinsic_spacing (gfc_se * se, gfc_expr * expr)
{
  tree arg, type, prec, emin, tiny, res, e;
  tree cond, tmp;
  int frexp, scalbn, k;
  stmtblock_t block;

  k = gfc_validate_kind (BT_REAL, expr->ts.kind, false);
  prec = build_int_cst (NULL_TREE, gfc_real_kinds[k].digits);
  emin = build_int_cst (NULL_TREE, gfc_real_kinds[k].min_exponent - 1);
  tiny = gfc_conv_mpfr_to_tree (gfc_real_kinds[k].tiny, expr->ts.kind, 0);

  switch (expr->ts.kind)
    {
      case 4:
	frexp = BUILT_IN_FREXPF;
	scalbn = BUILT_IN_SCALBNF;
	break;
      case 8:
	frexp = BUILT_IN_FREXP;
	scalbn = BUILT_IN_SCALBN;
	break;
      case 10:
      case 16:
	frexp = BUILT_IN_FREXPL;
	scalbn = BUILT_IN_SCALBNL;
	break;
      default:
	gcc_unreachable ();
    }

  gfc_conv_intrinsic_function_args (se, expr, &arg, 1);
  arg = gfc_evaluate_now (arg, &se->pre);

  type = gfc_typenode_for_spec (&expr->ts);
  e = gfc_create_var (integer_type_node, NULL);
  res = gfc_create_var (type, NULL);


  /* Build the block for s /= 0.  */
  gfc_start_block (&block);
  tmp = build_call_expr_loc (input_location,
			 built_in_decls[frexp], 2, arg,
			 gfc_build_addr_expr (NULL_TREE, e));
  gfc_add_expr_to_block (&block, tmp);

  tmp = fold_build2 (MINUS_EXPR, integer_type_node, e, prec);
  gfc_add_modify (&block, e, fold_build2 (MAX_EXPR, integer_type_node,
					  tmp, emin));

  tmp = build_call_expr_loc (input_location,
			 built_in_decls[scalbn], 2,
			 build_real_from_int_cst (type, integer_one_node), e);
  gfc_add_modify (&block, res, tmp);

  /* Finish by building the IF statement.  */
  cond = fold_build2 (EQ_EXPR, boolean_type_node, arg,
		      build_real_from_int_cst (type, integer_zero_node));
  tmp = build3_v (COND_EXPR, cond, build2_v (MODIFY_EXPR, res, tiny),
		  gfc_finish_block (&block));

  gfc_add_expr_to_block (&se->pre, tmp);
  se->expr = res;
}


/* RRSPACING (s) is translated into
      int e;
      real x;
      x = fabs (s);
      if (x != 0)
      {
	frexp (s, &e);
	x = scalbn (x, precision - e);
      }
      return x;

 where precision is gfc_real_kinds[k].digits.  */

static void
gfc_conv_intrinsic_rrspacing (gfc_se * se, gfc_expr * expr)
{
  tree arg, type, e, x, cond, stmt, tmp;
  int frexp, scalbn, fabs, prec, k;
  stmtblock_t block;

  k = gfc_validate_kind (BT_REAL, expr->ts.kind, false);
  prec = gfc_real_kinds[k].digits;
  switch (expr->ts.kind)
    {
      case 4:
	frexp = BUILT_IN_FREXPF;
	scalbn = BUILT_IN_SCALBNF;
	fabs = BUILT_IN_FABSF;
	break;
      case 8:
	frexp = BUILT_IN_FREXP;
	scalbn = BUILT_IN_SCALBN;
	fabs = BUILT_IN_FABS;
	break;
      case 10:
      case 16:
	frexp = BUILT_IN_FREXPL;
	scalbn = BUILT_IN_SCALBNL;
	fabs = BUILT_IN_FABSL;
	break;
      default:
	gcc_unreachable ();
    }

  type = gfc_typenode_for_spec (&expr->ts);
  gfc_conv_intrinsic_function_args (se, expr, &arg, 1);
  arg = gfc_evaluate_now (arg, &se->pre);

  e = gfc_create_var (integer_type_node, NULL);
  x = gfc_create_var (type, NULL);
  gfc_add_modify (&se->pre, x,
		  build_call_expr_loc (input_location,
				   built_in_decls[fabs], 1, arg));


  gfc_start_block (&block);
  tmp = build_call_expr_loc (input_location,
			 built_in_decls[frexp], 2, arg,
			 gfc_build_addr_expr (NULL_TREE, e));
  gfc_add_expr_to_block (&block, tmp);

  tmp = fold_build2 (MINUS_EXPR, integer_type_node,
		     build_int_cst (NULL_TREE, prec), e);
  tmp = build_call_expr_loc (input_location,
			 built_in_decls[scalbn], 2, x, tmp);
  gfc_add_modify (&block, x, tmp);
  stmt = gfc_finish_block (&block);

  cond = fold_build2 (NE_EXPR, boolean_type_node, x,
		      build_real_from_int_cst (type, integer_zero_node));
  tmp = build3_v (COND_EXPR, cond, stmt, build_empty_stmt (input_location));
  gfc_add_expr_to_block (&se->pre, tmp);

  se->expr = fold_convert (type, x);
}


/* SCALE (s, i) is translated into scalbn (s, i).  */
static void
gfc_conv_intrinsic_scale (gfc_se * se, gfc_expr * expr)
{
  tree args[2], type;
  int scalbn;

  switch (expr->ts.kind)
    {
      case 4:
	scalbn = BUILT_IN_SCALBNF;
	break;
      case 8:
	scalbn = BUILT_IN_SCALBN;
	break;
      case 10:
      case 16:
	scalbn = BUILT_IN_SCALBNL;
	break;
      default:
	gcc_unreachable ();
    }

  type = gfc_typenode_for_spec (&expr->ts);
  gfc_conv_intrinsic_function_args (se, expr, args, 2);
  se->expr = build_call_expr_loc (input_location,
			      built_in_decls[scalbn], 2,
			      fold_convert (type, args[0]),
			      fold_convert (integer_type_node, args[1]));
  se->expr = fold_convert (type, se->expr);
}


/* SET_EXPONENT (s, i) is translated into
   scalbn (frexp (s, &dummy_int), i).  */
static void
gfc_conv_intrinsic_set_exponent (gfc_se * se, gfc_expr * expr)
{
  tree args[2], type, tmp;
  int frexp, scalbn;

  switch (expr->ts.kind)
    {
      case 4:
	frexp = BUILT_IN_FREXPF;
	scalbn = BUILT_IN_SCALBNF;
	break;
      case 8:
	frexp = BUILT_IN_FREXP;
	scalbn = BUILT_IN_SCALBN;
	break;
      case 10:
      case 16:
	frexp = BUILT_IN_FREXPL;
	scalbn = BUILT_IN_SCALBNL;
	break;
      default:
	gcc_unreachable ();
    }

  type = gfc_typenode_for_spec (&expr->ts);
  gfc_conv_intrinsic_function_args (se, expr, args, 2);

  tmp = gfc_create_var (integer_type_node, NULL);
  tmp = build_call_expr_loc (input_location,
			 built_in_decls[frexp], 2,
			 fold_convert (type, args[0]),
			 gfc_build_addr_expr (NULL_TREE, tmp));
  se->expr = build_call_expr_loc (input_location,
			      built_in_decls[scalbn], 2, tmp,
			      fold_convert (integer_type_node, args[1]));
  se->expr = fold_convert (type, se->expr);
}


static void
gfc_conv_intrinsic_size (gfc_se * se, gfc_expr * expr)
{
  gfc_actual_arglist *actual;
  tree arg1;
  tree type;
  tree fncall0;
  tree fncall1;
  gfc_se argse;
  gfc_ss *ss;

  gfc_init_se (&argse, NULL);
  actual = expr->value.function.actual;

  ss = gfc_walk_expr (actual->expr);
  gcc_assert (ss != gfc_ss_terminator);
  argse.want_pointer = 1;
  argse.data_not_needed = 1;
  gfc_conv_expr_descriptor (&argse, actual->expr, ss);
  gfc_add_block_to_block (&se->pre, &argse.pre);
  gfc_add_block_to_block (&se->post, &argse.post);
  arg1 = gfc_evaluate_now (argse.expr, &se->pre);

  /* Build the call to size0.  */
  fncall0 = build_call_expr_loc (input_location,
			     gfor_fndecl_size0, 1, arg1);

  actual = actual->next;

  if (actual->expr)
    {
      gfc_init_se (&argse, NULL);
      gfc_conv_expr_type (&argse, actual->expr,
			  gfc_array_index_type);
      gfc_add_block_to_block (&se->pre, &argse.pre);

      /* Unusually, for an intrinsic, size does not exclude
	 an optional arg2, so we must test for it.  */  
      if (actual->expr->expr_type == EXPR_VARIABLE
	    && actual->expr->symtree->n.sym->attr.dummy
	    && actual->expr->symtree->n.sym->attr.optional)
	{
	  tree tmp;
	  /* Build the call to size1.  */
	  fncall1 = build_call_expr_loc (input_location,
				     gfor_fndecl_size1, 2,
				     arg1, argse.expr);

	  gfc_init_se (&argse, NULL);
	  argse.want_pointer = 1;
	  argse.data_not_needed = 1;
	  gfc_conv_expr (&argse, actual->expr);
	  gfc_add_block_to_block (&se->pre, &argse.pre);
	  tmp = fold_build2 (NE_EXPR, boolean_type_node,
			     argse.expr, null_pointer_node);
	  tmp = gfc_evaluate_now (tmp, &se->pre);
	  se->expr = fold_build3 (COND_EXPR, pvoid_type_node,
				  tmp, fncall1, fncall0);
	}
      else
	{
	  se->expr = NULL_TREE;
	  argse.expr = fold_build2 (MINUS_EXPR, gfc_array_index_type,
				    argse.expr, gfc_index_one_node);
	}
    }
  else if (expr->value.function.actual->expr->rank == 1)
    {
      argse.expr = gfc_index_zero_node;
      se->expr = NULL_TREE;
    }
  else
    se->expr = fncall0;

  if (se->expr == NULL_TREE)
    {
      tree ubound, lbound;

      arg1 = build_fold_indirect_ref_loc (input_location,
				      arg1);
      ubound = gfc_conv_descriptor_ubound_get (arg1, argse.expr);
      lbound = gfc_conv_descriptor_lbound_get (arg1, argse.expr);
      se->expr = fold_build2 (MINUS_EXPR, gfc_array_index_type,
			      ubound, lbound);
      se->expr = fold_build2 (PLUS_EXPR, gfc_array_index_type, se->expr,
			      gfc_index_one_node);
      se->expr = fold_build2 (MAX_EXPR, gfc_array_index_type, se->expr,
			      gfc_index_zero_node);
    }

  type = gfc_typenode_for_spec (&expr->ts);
  se->expr = convert (type, se->expr);
}


/* Helper function to compute the size of a character variable,
   excluding the terminating null characters.  The result has
   gfc_array_index_type type.  */

static tree
size_of_string_in_bytes (int kind, tree string_length)
{
  tree bytesize;
  int i = gfc_validate_kind (BT_CHARACTER, kind, false);
 
  bytesize = build_int_cst (gfc_array_index_type,
			    gfc_character_kinds[i].bit_size / 8);

  return fold_build2 (MULT_EXPR, gfc_array_index_type, bytesize,
		      fold_convert (gfc_array_index_type, string_length));
}


static void
gfc_conv_intrinsic_sizeof (gfc_se *se, gfc_expr *expr)
{
  gfc_expr *arg;
  gfc_ss *ss;
  gfc_se argse;
  tree source_bytes;
  tree type;
  tree tmp;
  tree lower;
  tree upper;
  int n;

  arg = expr->value.function.actual->expr;

  gfc_init_se (&argse, NULL);
  ss = gfc_walk_expr (arg);

  if (ss == gfc_ss_terminator)
    {
      gfc_conv_expr_reference (&argse, arg);

      type = TREE_TYPE (build_fold_indirect_ref_loc (input_location,
						 argse.expr));

      /* Obtain the source word length.  */
      if (arg->ts.type == BT_CHARACTER)
	se->expr = size_of_string_in_bytes (arg->ts.kind,
					    argse.string_length);
      else
	se->expr = fold_convert (gfc_array_index_type, size_in_bytes (type)); 
    }
  else
    {
      source_bytes = gfc_create_var (gfc_array_index_type, "bytes");
      argse.want_pointer = 0;
      gfc_conv_expr_descriptor (&argse, arg, ss);
      type = gfc_get_element_type (TREE_TYPE (argse.expr));

      /* Obtain the argument's word length.  */
      if (arg->ts.type == BT_CHARACTER)
	tmp = size_of_string_in_bytes (arg->ts.kind, argse.string_length);
      else
	tmp = fold_convert (gfc_array_index_type,
			    size_in_bytes (type)); 
      gfc_add_modify (&argse.pre, source_bytes, tmp);

      /* Obtain the size of the array in bytes.  */
      for (n = 0; n < arg->rank; n++)
	{
	  tree idx;
	  idx = gfc_rank_cst[n];
	  lower = gfc_conv_descriptor_lbound_get (argse.expr, idx);
	  upper = gfc_conv_descriptor_ubound_get (argse.expr, idx);
	  tmp = fold_build2 (MINUS_EXPR, gfc_array_index_type,
			     upper, lower);
	  tmp = fold_build2 (PLUS_EXPR, gfc_array_index_type,
			     tmp, gfc_index_one_node);
	  tmp = fold_build2 (MULT_EXPR, gfc_array_index_type,
			     tmp, source_bytes);
	  gfc_add_modify (&argse.pre, source_bytes, tmp);
	}
      se->expr = source_bytes;
    }

  gfc_add_block_to_block (&se->pre, &argse.pre);
}


/* Intrinsic string comparison functions.  */

static void
gfc_conv_intrinsic_strcmp (gfc_se * se, gfc_expr * expr, enum tree_code op)
{
  tree args[4];

  gfc_conv_intrinsic_function_args (se, expr, args, 4);

  se->expr
    = gfc_build_compare_string (args[0], args[1], args[2], args[3],
				expr->value.function.actual->expr->ts.kind);
  se->expr = fold_build2 (op, gfc_typenode_for_spec (&expr->ts), se->expr,
			  build_int_cst (TREE_TYPE (se->expr), 0));
}

/* Generate a call to the adjustl/adjustr library function.  */
static void
gfc_conv_intrinsic_adjust (gfc_se * se, gfc_expr * expr, tree fndecl)
{
  tree args[3];
  tree len;
  tree type;
  tree var;
  tree tmp;

  gfc_conv_intrinsic_function_args (se, expr, &args[1], 2);
  len = args[1];

  type = TREE_TYPE (args[2]);
  var = gfc_conv_string_tmp (se, type, len);
  args[0] = var;

  tmp = build_call_expr_loc (input_location,
			 fndecl, 3, args[0], args[1], args[2]);
  gfc_add_expr_to_block (&se->pre, tmp);
  se->expr = var;
  se->string_length = len;
}


/* Generate code for the TRANSFER intrinsic:
	For scalar results:
	  DEST = TRANSFER (SOURCE, MOLD)
	where:
	  typeof<DEST> = typeof<MOLD>
	and:
	  MOLD is scalar.

	For array results:
	  DEST(1:N) = TRANSFER (SOURCE, MOLD[, SIZE])
	where:
	  typeof<DEST> = typeof<MOLD>
	and:
	  N = min (sizeof (SOURCE(:)), sizeof (DEST(:)),
	      sizeof (DEST(0) * SIZE).  */
static void
gfc_conv_intrinsic_transfer (gfc_se * se, gfc_expr * expr)
{
  tree tmp;
  tree tmpdecl;
  tree ptr;
  tree extent;
  tree source;
  tree source_type;
  tree source_bytes;
  tree mold_type;
  tree dest_word_len;
  tree size_words;
  tree size_bytes;
  tree upper;
  tree lower;
  tree stmt;
  gfc_actual_arglist *arg;
  gfc_se argse;
  gfc_ss *ss;
  gfc_ss_info *info;
  stmtblock_t block;
  int n;
  bool scalar_mold;

  info = NULL;
  if (se->loop)
    info = &se->ss->data.info;

  /* Convert SOURCE.  The output from this stage is:-
	source_bytes = length of the source in bytes
	source = pointer to the source data.  */
  arg = expr->value.function.actual;

  /* Ensure double transfer through LOGICAL preserves all
     the needed bits.  */
  if (arg->expr->expr_type == EXPR_FUNCTION
	&& arg->expr->value.function.esym == NULL
	&& arg->expr->value.function.isym != NULL
	&& arg->expr->value.function.isym->id == GFC_ISYM_TRANSFER
	&& arg->expr->ts.type == BT_LOGICAL
	&& expr->ts.type != arg->expr->ts.type)
    arg->expr->value.function.name = "__transfer_in_transfer";

  gfc_init_se (&argse, NULL);
  ss = gfc_walk_expr (arg->expr);

  source_bytes = gfc_create_var (gfc_array_index_type, NULL);

  /* Obtain the pointer to source and the length of source in bytes.  */
  if (ss == gfc_ss_terminator)
    {
      gfc_conv_expr_reference (&argse, arg->expr);
      source = argse.expr;

      source_type = TREE_TYPE (build_fold_indirect_ref_loc (input_location,
							argse.expr));

      /* Obtain the source word length.  */
      if (arg->expr->ts.type == BT_CHARACTER)
	tmp = size_of_string_in_bytes (arg->expr->ts.kind,
				       argse.string_length);
      else
	tmp = fold_convert (gfc_array_index_type,
			    size_in_bytes (source_type)); 
    }
  else
    {
      argse.want_pointer = 0;
      gfc_conv_expr_descriptor (&argse, arg->expr, ss);
      source = gfc_conv_descriptor_data_get (argse.expr);
      source_type = gfc_get_element_type (TREE_TYPE (argse.expr));

      /* Repack the source if not a full variable array.  */
      if (arg->expr->expr_type == EXPR_VARIABLE
	      && arg->expr->ref->u.ar.type != AR_FULL)
	{
	  tmp = gfc_build_addr_expr (NULL_TREE, argse.expr);

	  if (gfc_option.warn_array_temp)
	    gfc_warning ("Creating array temporary at %L", &expr->where);

	  source = build_call_expr_loc (input_location,
				    gfor_fndecl_in_pack, 1, tmp);
	  source = gfc_evaluate_now (source, &argse.pre);

	  /* Free the temporary.  */
	  gfc_start_block (&block);
	  tmp = gfc_call_free (convert (pvoid_type_node, source));
	  gfc_add_expr_to_block (&block, tmp);
	  stmt = gfc_finish_block (&block);

	  /* Clean up if it was repacked.  */
	  gfc_init_block (&block);
	  tmp = gfc_conv_array_data (argse.expr);
	  tmp = fold_build2 (NE_EXPR, boolean_type_node, source, tmp);
	  tmp = build3_v (COND_EXPR, tmp, stmt,
			  build_empty_stmt (input_location));
	  gfc_add_expr_to_block (&block, tmp);
	  gfc_add_block_to_block (&block, &se->post);
	  gfc_init_block (&se->post);
	  gfc_add_block_to_block (&se->post, &block);
	}

      /* Obtain the source word length.  */
      if (arg->expr->ts.type == BT_CHARACTER)
	tmp = size_of_string_in_bytes (arg->expr->ts.kind,
				       argse.string_length);
      else
	tmp = fold_convert (gfc_array_index_type,
			    size_in_bytes (source_type)); 

      /* Obtain the size of the array in bytes.  */
      extent = gfc_create_var (gfc_array_index_type, NULL);
      for (n = 0; n < arg->expr->rank; n++)
	{
	  tree idx;
	  idx = gfc_rank_cst[n];
	  gfc_add_modify (&argse.pre, source_bytes, tmp);
	  lower = gfc_conv_descriptor_lbound_get (argse.expr, idx);
	  upper = gfc_conv_descriptor_ubound_get (argse.expr, idx);
	  tmp = fold_build2 (MINUS_EXPR, gfc_array_index_type,
			     upper, lower);
	  gfc_add_modify (&argse.pre, extent, tmp);
	  tmp = fold_build2 (PLUS_EXPR, gfc_array_index_type,
			     extent, gfc_index_one_node);
	  tmp = fold_build2 (MULT_EXPR, gfc_array_index_type,
			     tmp, source_bytes);
	}
    }

  gfc_add_modify (&argse.pre, source_bytes, tmp);
  gfc_add_block_to_block (&se->pre, &argse.pre);
  gfc_add_block_to_block (&se->post, &argse.post);

  /* Now convert MOLD.  The outputs are:
	mold_type = the TREE type of MOLD
	dest_word_len = destination word length in bytes.  */
  arg = arg->next;

  gfc_init_se (&argse, NULL);
  ss = gfc_walk_expr (arg->expr);

  scalar_mold = arg->expr->rank == 0;

  if (ss == gfc_ss_terminator)
    {
      gfc_conv_expr_reference (&argse, arg->expr);
      mold_type = TREE_TYPE (build_fold_indirect_ref_loc (input_location,
						      argse.expr));
    }
  else
    {
      gfc_init_se (&argse, NULL);
      argse.want_pointer = 0;
      gfc_conv_expr_descriptor (&argse, arg->expr, ss);
      mold_type = gfc_get_element_type (TREE_TYPE (argse.expr));
    }

  gfc_add_block_to_block (&se->pre, &argse.pre);
  gfc_add_block_to_block (&se->post, &argse.post);

  if (strcmp (expr->value.function.name, "__transfer_in_transfer") == 0)
    {
      /* If this TRANSFER is nested in another TRANSFER, use a type
	 that preserves all bits.  */
      if (arg->expr->ts.type == BT_LOGICAL)
	mold_type = gfc_get_int_type (arg->expr->ts.kind);
    }

  if (arg->expr->ts.type == BT_CHARACTER)
    {
      tmp = size_of_string_in_bytes (arg->expr->ts.kind, argse.string_length);
      mold_type = gfc_get_character_type_len (arg->expr->ts.kind, tmp);
    }
  else
    tmp = fold_convert (gfc_array_index_type,
			size_in_bytes (mold_type)); 
 
  dest_word_len = gfc_create_var (gfc_array_index_type, NULL);
  gfc_add_modify (&se->pre, dest_word_len, tmp);

  /* Finally convert SIZE, if it is present.  */
  arg = arg->next;
  size_words = gfc_create_var (gfc_array_index_type, NULL);

  if (arg->expr)
    {
      gfc_init_se (&argse, NULL);
      gfc_conv_expr_reference (&argse, arg->expr);
      tmp = convert (gfc_array_index_type,
		     build_fold_indirect_ref_loc (input_location,
					      argse.expr));
      gfc_add_block_to_block (&se->pre, &argse.pre);
      gfc_add_block_to_block (&se->post, &argse.post);
    }
  else
    tmp = NULL_TREE;

  /* Separate array and scalar results.  */
  if (scalar_mold && tmp == NULL_TREE)
    goto scalar_transfer;

  size_bytes = gfc_create_var (gfc_array_index_type, NULL);
  if (tmp != NULL_TREE)
    tmp = fold_build2 (MULT_EXPR, gfc_array_index_type,
		       tmp, dest_word_len);
  else
    tmp = source_bytes;

  gfc_add_modify (&se->pre, size_bytes, tmp);
  gfc_add_modify (&se->pre, size_words,
		       fold_build2 (CEIL_DIV_EXPR, gfc_array_index_type,
				    size_bytes, dest_word_len));

  /* Evaluate the bounds of the result.  If the loop range exists, we have
     to check if it is too large.  If so, we modify loop->to be consistent
     with min(size, size(source)).  Otherwise, size is made consistent with
     the loop range, so that the right number of bytes is transferred.*/
  n = se->loop->order[0];
  if (se->loop->to[n] != NULL_TREE)
    {
      tmp = fold_build2 (MINUS_EXPR, gfc_array_index_type,
			 se->loop->to[n], se->loop->from[n]);
      tmp = fold_build2 (PLUS_EXPR, gfc_array_index_type,
			 tmp, gfc_index_one_node);
      tmp = fold_build2 (MIN_EXPR, gfc_array_index_type,
			 tmp, size_words);
      gfc_add_modify (&se->pre, size_words, tmp);
      gfc_add_modify (&se->pre, size_bytes,
			   fold_build2 (MULT_EXPR, gfc_array_index_type,
					size_words, dest_word_len));
      upper = fold_build2 (PLUS_EXPR, gfc_array_index_type,
			   size_words, se->loop->from[n]);
      upper = fold_build2 (MINUS_EXPR, gfc_array_index_type,
			   upper, gfc_index_one_node);
    }
  else
    {
      upper = fold_build2 (MINUS_EXPR, gfc_array_index_type,
			   size_words, gfc_index_one_node);
      se->loop->from[n] = gfc_index_zero_node;
    }

  se->loop->to[n] = upper;

  /* Build a destination descriptor, using the pointer, source, as the
     data field.  */
  gfc_trans_create_temp_array (&se->pre, &se->post, se->loop,
			       info, mold_type, NULL_TREE, false, true, false,
			       &expr->where);

  /* Cast the pointer to the result.  */
  tmp = gfc_conv_descriptor_data_get (info->descriptor);
  tmp = fold_convert (pvoid_type_node, tmp);

  /* Use memcpy to do the transfer.  */
  tmp = build_call_expr_loc (input_location,
			 built_in_decls[BUILT_IN_MEMCPY],
			 3,
			 tmp,
			 fold_convert (pvoid_type_node, source),
			 fold_build2 (MIN_EXPR, gfc_array_index_type,
				      size_bytes, source_bytes));
  gfc_add_expr_to_block (&se->pre, tmp);

  se->expr = info->descriptor;
  if (expr->ts.type == BT_CHARACTER)
    se->string_length = dest_word_len;

  return;

/* Deal with scalar results.  */
scalar_transfer:
  extent = fold_build2 (MIN_EXPR, gfc_array_index_type,
			dest_word_len, source_bytes);
  extent = fold_build2 (MAX_EXPR, gfc_array_index_type,
			extent, gfc_index_zero_node);

  if (expr->ts.type == BT_CHARACTER)
    {
      tree direct;
      tree indirect;

      ptr = convert (gfc_get_pchar_type (expr->ts.kind), source);
      tmpdecl = gfc_create_var (gfc_get_pchar_type (expr->ts.kind),
				"transfer");

      /* If source is longer than the destination, use a pointer to
	 the source directly.  */
      gfc_init_block (&block);
      gfc_add_modify (&block, tmpdecl, ptr);
      direct = gfc_finish_block (&block);

      /* Otherwise, allocate a string with the length of the destination
	 and copy the source into it.  */
      gfc_init_block (&block);
      tmp = gfc_get_pchar_type (expr->ts.kind);
      tmp = gfc_call_malloc (&block, tmp, dest_word_len);
      gfc_add_modify (&block, tmpdecl,
		      fold_convert (TREE_TYPE (ptr), tmp));
      tmp = build_call_expr_loc (input_location,
			     built_in_decls[BUILT_IN_MEMCPY], 3,
			     fold_convert (pvoid_type_node, tmpdecl),
			     fold_convert (pvoid_type_node, ptr),
			     extent);
      gfc_add_expr_to_block (&block, tmp);
      indirect = gfc_finish_block (&block);

      /* Wrap it up with the condition.  */
      tmp = fold_build2 (LE_EXPR, boolean_type_node,
			 dest_word_len, source_bytes);
      tmp = build3_v (COND_EXPR, tmp, direct, indirect);
      gfc_add_expr_to_block (&se->pre, tmp);

      se->expr = tmpdecl;
      se->string_length = dest_word_len;
    }
  else
    {
      tmpdecl = gfc_create_var (mold_type, "transfer");

      ptr = convert (build_pointer_type (mold_type), source);

      /* Use memcpy to do the transfer.  */
      tmp = gfc_build_addr_expr (NULL_TREE, tmpdecl);
      tmp = build_call_expr_loc (input_location,
			     built_in_decls[BUILT_IN_MEMCPY], 3,
			     fold_convert (pvoid_type_node, tmp),
			     fold_convert (pvoid_type_node, ptr),
			     extent);
      gfc_add_expr_to_block (&se->pre, tmp);

      se->expr = tmpdecl;
    }
}


/* Generate code for the ALLOCATED intrinsic.
   Generate inline code that directly check the address of the argument.  */

static void
gfc_conv_allocated (gfc_se *se, gfc_expr *expr)
{
  gfc_actual_arglist *arg1;
  gfc_se arg1se;
  gfc_ss *ss1;
  tree tmp;

  gfc_init_se (&arg1se, NULL);
  arg1 = expr->value.function.actual;
  ss1 = gfc_walk_expr (arg1->expr);

  if (ss1 == gfc_ss_terminator)
    {
      /* Allocatable scalar.  */
      arg1se.want_pointer = 1;
      gfc_conv_expr (&arg1se, arg1->expr);
      tmp = arg1se.expr;
    }
  else
    {
      /* Allocatable array.  */
      arg1se.descriptor_only = 1;
      gfc_conv_expr_descriptor (&arg1se, arg1->expr, ss1);
      tmp = gfc_conv_descriptor_data_get (arg1se.expr);
    }

  tmp = fold_build2 (NE_EXPR, boolean_type_node,
		     tmp, fold_convert (TREE_TYPE (tmp), null_pointer_node));
  se->expr = convert (gfc_typenode_for_spec (&expr->ts), tmp);
}


/* Generate code for the ASSOCIATED intrinsic.
   If both POINTER and TARGET are arrays, generate a call to library function
   _gfor_associated, and pass descriptors of POINTER and TARGET to it.
   In other cases, generate inline code that directly compare the address of
   POINTER with the address of TARGET.  */

static void
gfc_conv_associated (gfc_se *se, gfc_expr *expr)
{
  gfc_actual_arglist *arg1;
  gfc_actual_arglist *arg2;
  gfc_se arg1se;
  gfc_se arg2se;
  tree tmp2;
  tree tmp;
  tree nonzero_charlen;
  tree nonzero_arraylen;
  gfc_ss *ss1, *ss2;

  gfc_init_se (&arg1se, NULL);
  gfc_init_se (&arg2se, NULL);
  arg1 = expr->value.function.actual;
  if (arg1->expr->ts.type == BT_CLASS)
    gfc_add_component_ref (arg1->expr, "$data");
  arg2 = arg1->next;
  ss1 = gfc_walk_expr (arg1->expr);

  if (!arg2->expr)
    {
      /* No optional target.  */
      if (ss1 == gfc_ss_terminator)
        {
          /* A pointer to a scalar.  */
          arg1se.want_pointer = 1;
          gfc_conv_expr (&arg1se, arg1->expr);
          tmp2 = arg1se.expr;
        }
      else
        {
          /* A pointer to an array.  */
          gfc_conv_expr_descriptor (&arg1se, arg1->expr, ss1);
          tmp2 = gfc_conv_descriptor_data_get (arg1se.expr);
        }
      gfc_add_block_to_block (&se->pre, &arg1se.pre);
      gfc_add_block_to_block (&se->post, &arg1se.post);
      tmp = fold_build2 (NE_EXPR, boolean_type_node, tmp2,
			 fold_convert (TREE_TYPE (tmp2), null_pointer_node));
      se->expr = tmp;
    }
  else
    {
      /* An optional target.  */
      ss2 = gfc_walk_expr (arg2->expr);

      nonzero_charlen = NULL_TREE;
      if (arg1->expr->ts.type == BT_CHARACTER)
	nonzero_charlen = fold_build2 (NE_EXPR, boolean_type_node,
				       arg1->expr->ts.u.cl->backend_decl,
				       integer_zero_node);

      if (ss1 == gfc_ss_terminator)
        {
          /* A pointer to a scalar.  */
          gcc_assert (ss2 == gfc_ss_terminator);
          arg1se.want_pointer = 1;
          gfc_conv_expr (&arg1se, arg1->expr);
          arg2se.want_pointer = 1;
          gfc_conv_expr (&arg2se, arg2->expr);
	  gfc_add_block_to_block (&se->pre, &arg1se.pre);
	  gfc_add_block_to_block (&se->post, &arg1se.post);
          tmp = fold_build2 (EQ_EXPR, boolean_type_node,
			     arg1se.expr, arg2se.expr);
          tmp2 = fold_build2 (NE_EXPR, boolean_type_node,
			      arg1se.expr, null_pointer_node);
          se->expr = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
				  tmp, tmp2);
        }
      else
        {
	  /* An array pointer of zero length is not associated if target is
	     present.  */
	  arg1se.descriptor_only = 1;
	  gfc_conv_expr_lhs (&arg1se, arg1->expr);
	  tmp = gfc_conv_descriptor_stride_get (arg1se.expr,
					    gfc_rank_cst[arg1->expr->rank - 1]);
	  nonzero_arraylen = fold_build2 (NE_EXPR, boolean_type_node, tmp,
					  build_int_cst (TREE_TYPE (tmp), 0));

          /* A pointer to an array, call library function _gfor_associated.  */
          gcc_assert (ss2 != gfc_ss_terminator);
          arg1se.want_pointer = 1;
          gfc_conv_expr_descriptor (&arg1se, arg1->expr, ss1);

          arg2se.want_pointer = 1;
          gfc_conv_expr_descriptor (&arg2se, arg2->expr, ss2);
          gfc_add_block_to_block (&se->pre, &arg2se.pre);
          gfc_add_block_to_block (&se->post, &arg2se.post);
          se->expr = build_call_expr_loc (input_location,
				      gfor_fndecl_associated, 2,
				      arg1se.expr, arg2se.expr);
	  se->expr = convert (boolean_type_node, se->expr);
	  se->expr = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
				  se->expr, nonzero_arraylen);
        }

      /* If target is present zero character length pointers cannot
	 be associated.  */
      if (nonzero_charlen != NULL_TREE)
	se->expr = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
				se->expr, nonzero_charlen);
    }

  se->expr = convert (gfc_typenode_for_spec (&expr->ts), se->expr);
}


/* Generate code for the SAME_TYPE_AS intrinsic.
   Generate inline code that directly checks the vindices.  */

static void
gfc_conv_same_type_as (gfc_se *se, gfc_expr *expr)
{
  gfc_expr *a, *b;
  gfc_se se1, se2;
  tree tmp;

  gfc_init_se (&se1, NULL);
  gfc_init_se (&se2, NULL);

  a = expr->value.function.actual->expr;
  b = expr->value.function.actual->next->expr;

  if (a->ts.type == BT_CLASS)
    gfc_add_component_ref (a, "$vindex");
  else if (a->ts.type == BT_DERIVED)
    a = gfc_int_expr (a->ts.u.derived->vindex);

  if (b->ts.type == BT_CLASS)
    gfc_add_component_ref (b, "$vindex");
  else if (b->ts.type == BT_DERIVED)
    b = gfc_int_expr (b->ts.u.derived->vindex);

  gfc_conv_expr (&se1, a);
  gfc_conv_expr (&se2, b);

  tmp = fold_build2 (EQ_EXPR, boolean_type_node,
		     se1.expr, fold_convert (TREE_TYPE (se1.expr), se2.expr));
  se->expr = convert (gfc_typenode_for_spec (&expr->ts), tmp);
}


/* Generate code for the EXTENDS_TYPE_OF intrinsic.  */

static void
gfc_conv_extends_type_of (gfc_se *se, gfc_expr *expr)
{
  gfc_expr *e;
  /* TODO: Implement EXTENDS_TYPE_OF.  */
  gfc_error ("Intrinsic EXTENDS_TYPE_OF at %L not yet implemented",
	     &expr->where);
  /* Just return 'false' for now.  */
  e = gfc_logical_expr (false, &expr->where);
  gfc_conv_expr (se, e);
}


/* Generate code for SELECTED_CHAR_KIND (NAME) intrinsic function.  */

static void
gfc_conv_intrinsic_sc_kind (gfc_se *se, gfc_expr *expr)
{
  tree args[2];

  gfc_conv_intrinsic_function_args (se, expr, args, 2);
  se->expr = build_call_expr_loc (input_location,
			      gfor_fndecl_sc_kind, 2, args[0], args[1]);
  se->expr = fold_convert (gfc_typenode_for_spec (&expr->ts), se->expr);
}


/* Generate code for SELECTED_INT_KIND (R) intrinsic function.  */

static void
gfc_conv_intrinsic_si_kind (gfc_se *se, gfc_expr *expr)
{
  tree arg, type;

  gfc_conv_intrinsic_function_args (se, expr, &arg, 1);

  /* The argument to SELECTED_INT_KIND is INTEGER(4).  */
  type = gfc_get_int_type (4); 
  arg = gfc_build_addr_expr (NULL_TREE, fold_convert (type, arg));

  /* Convert it to the required type.  */
  type = gfc_typenode_for_spec (&expr->ts);
  se->expr = build_call_expr_loc (input_location,
			      gfor_fndecl_si_kind, 1, arg);
  se->expr = fold_convert (type, se->expr);
}


/* Generate code for SELECTED_REAL_KIND (P, R) intrinsic function.  */

static void
gfc_conv_intrinsic_sr_kind (gfc_se *se, gfc_expr *expr)
{
  gfc_actual_arglist *actual;
  tree args, type;
  gfc_se argse;

  args = NULL_TREE;
  for (actual = expr->value.function.actual; actual; actual = actual->next)
    {
      gfc_init_se (&argse, se);

      /* Pass a NULL pointer for an absent arg.  */
      if (actual->expr == NULL)
        argse.expr = null_pointer_node;
      else
	{
	  gfc_typespec ts;
          gfc_clear_ts (&ts);

	  if (actual->expr->ts.kind != gfc_c_int_kind)
	    {
  	      /* The arguments to SELECTED_REAL_KIND are INTEGER(4).  */
	      ts.type = BT_INTEGER;
	      ts.kind = gfc_c_int_kind;
	      gfc_convert_type (actual->expr, &ts, 2);
	    }
	  gfc_conv_expr_reference (&argse, actual->expr);
	} 

      gfc_add_block_to_block (&se->pre, &argse.pre);
      gfc_add_block_to_block (&se->post, &argse.post);
      args = gfc_chainon_list (args, argse.expr);
    }

  /* Convert it to the required type.  */
  type = gfc_typenode_for_spec (&expr->ts);
  se->expr = build_function_call_expr (input_location,
				       gfor_fndecl_sr_kind, args);
  se->expr = fold_convert (type, se->expr);
}


/* Generate code for TRIM (A) intrinsic function.  */

static void
gfc_conv_intrinsic_trim (gfc_se * se, gfc_expr * expr)
{
  tree var;
  tree len;
  tree addr;
  tree tmp;
  tree cond;
  tree fndecl;
  tree function;
  tree *args;
  unsigned int num_args;

  num_args = gfc_intrinsic_argument_list_length (expr) + 2;
  args = (tree *) alloca (sizeof (tree) * num_args);

  var = gfc_create_var (gfc_get_pchar_type (expr->ts.kind), "pstr");
  addr = gfc_build_addr_expr (ppvoid_type_node, var);
  len = gfc_create_var (gfc_get_int_type (4), "len");

  gfc_conv_intrinsic_function_args (se, expr, &args[2], num_args - 2);
  args[0] = gfc_build_addr_expr (NULL_TREE, len);
  args[1] = addr;

  if (expr->ts.kind == 1)
    function = gfor_fndecl_string_trim;
  else if (expr->ts.kind == 4)
    function = gfor_fndecl_string_trim_char4;
  else
    gcc_unreachable ();

  fndecl = build_addr (function, current_function_decl);
  tmp = build_call_array_loc (input_location,
			  TREE_TYPE (TREE_TYPE (function)), fndecl,
			  num_args, args);
  gfc_add_expr_to_block (&se->pre, tmp);

  /* Free the temporary afterwards, if necessary.  */
  cond = fold_build2 (GT_EXPR, boolean_type_node,
		      len, build_int_cst (TREE_TYPE (len), 0));
  tmp = gfc_call_free (var);
  tmp = build3_v (COND_EXPR, cond, tmp, build_empty_stmt (input_location));
  gfc_add_expr_to_block (&se->post, tmp);

  se->expr = var;
  se->string_length = len;
}


/* Generate code for REPEAT (STRING, NCOPIES) intrinsic function.  */

static void
gfc_conv_intrinsic_repeat (gfc_se * se, gfc_expr * expr)
{
  tree args[3], ncopies, dest, dlen, src, slen, ncopies_type;
  tree type, cond, tmp, count, exit_label, n, max, largest;
  tree size;
  stmtblock_t block, body;
  int i;

  /* We store in charsize the size of a character.  */
  i = gfc_validate_kind (BT_CHARACTER, expr->ts.kind, false);
  size = build_int_cst (size_type_node, gfc_character_kinds[i].bit_size / 8);

  /* Get the arguments.  */
  gfc_conv_intrinsic_function_args (se, expr, args, 3);
  slen = fold_convert (size_type_node, gfc_evaluate_now (args[0], &se->pre));
  src = args[1];
  ncopies = gfc_evaluate_now (args[2], &se->pre);
  ncopies_type = TREE_TYPE (ncopies);

  /* Check that NCOPIES is not negative.  */
  cond = fold_build2 (LT_EXPR, boolean_type_node, ncopies,
		      build_int_cst (ncopies_type, 0));
  gfc_trans_runtime_check (true, false, cond, &se->pre, &expr->where,
			   "Argument NCOPIES of REPEAT intrinsic is negative "
			   "(its value is %lld)",
			   fold_convert (long_integer_type_node, ncopies));

  /* If the source length is zero, any non negative value of NCOPIES
     is valid, and nothing happens.  */
  n = gfc_create_var (ncopies_type, "ncopies");
  cond = fold_build2 (EQ_EXPR, boolean_type_node, slen,
		      build_int_cst (size_type_node, 0));
  tmp = fold_build3 (COND_EXPR, ncopies_type, cond,
		     build_int_cst (ncopies_type, 0), ncopies);
  gfc_add_modify (&se->pre, n, tmp);
  ncopies = n;

  /* Check that ncopies is not too large: ncopies should be less than
     (or equal to) MAX / slen, where MAX is the maximal integer of
     the gfc_charlen_type_node type.  If slen == 0, we need a special
     case to avoid the division by zero.  */
  i = gfc_validate_kind (BT_INTEGER, gfc_charlen_int_kind, false);
  max = gfc_conv_mpz_to_tree (gfc_integer_kinds[i].huge, gfc_charlen_int_kind);
  max = fold_build2 (TRUNC_DIV_EXPR, size_type_node,
		     fold_convert (size_type_node, max), slen);
  largest = TYPE_PRECISION (size_type_node) > TYPE_PRECISION (ncopies_type)
	      ? size_type_node : ncopies_type;
  cond = fold_build2 (GT_EXPR, boolean_type_node,
		      fold_convert (largest, ncopies),
		      fold_convert (largest, max));
  tmp = fold_build2 (EQ_EXPR, boolean_type_node, slen,
		     build_int_cst (size_type_node, 0));
  cond = fold_build3 (COND_EXPR, boolean_type_node, tmp, boolean_false_node,
		      cond);
  gfc_trans_runtime_check (true, false, cond, &se->pre, &expr->where,
			   "Argument NCOPIES of REPEAT intrinsic is too large");

  /* Compute the destination length.  */
  dlen = fold_build2 (MULT_EXPR, gfc_charlen_type_node,
		      fold_convert (gfc_charlen_type_node, slen),
		      fold_convert (gfc_charlen_type_node, ncopies));
  type = gfc_get_character_type (expr->ts.kind, expr->ts.u.cl);
  dest = gfc_conv_string_tmp (se, build_pointer_type (type), dlen);

  /* Generate the code to do the repeat operation:
       for (i = 0; i < ncopies; i++)
         memmove (dest + (i * slen * size), src, slen*size);  */
  gfc_start_block (&block);
  count = gfc_create_var (ncopies_type, "count");
  gfc_add_modify (&block, count, build_int_cst (ncopies_type, 0));
  exit_label = gfc_build_label_decl (NULL_TREE);

  /* Start the loop body.  */
  gfc_start_block (&body);

  /* Exit the loop if count >= ncopies.  */
  cond = fold_build2 (GE_EXPR, boolean_type_node, count, ncopies);
  tmp = build1_v (GOTO_EXPR, exit_label);
  TREE_USED (exit_label) = 1;
  tmp = fold_build3 (COND_EXPR, void_type_node, cond, tmp,
		     build_empty_stmt (input_location));
  gfc_add_expr_to_block (&body, tmp);

  /* Call memmove (dest + (i*slen*size), src, slen*size).  */
  tmp = fold_build2 (MULT_EXPR, gfc_charlen_type_node,
		     fold_convert (gfc_charlen_type_node, slen),
		     fold_convert (gfc_charlen_type_node, count));
  tmp = fold_build2 (MULT_EXPR, gfc_charlen_type_node,
		     tmp, fold_convert (gfc_charlen_type_node, size));
  tmp = fold_build2 (POINTER_PLUS_EXPR, pvoid_type_node,
		     fold_convert (pvoid_type_node, dest),
		     fold_convert (sizetype, tmp));
  tmp = build_call_expr_loc (input_location,
			 built_in_decls[BUILT_IN_MEMMOVE], 3, tmp, src,
			 fold_build2 (MULT_EXPR, size_type_node, slen,
				      fold_convert (size_type_node, size)));
  gfc_add_expr_to_block (&body, tmp);

  /* Increment count.  */
  tmp = fold_build2 (PLUS_EXPR, ncopies_type,
		     count, build_int_cst (TREE_TYPE (count), 1));
  gfc_add_modify (&body, count, tmp);

  /* Build the loop.  */
  tmp = build1_v (LOOP_EXPR, gfc_finish_block (&body));
  gfc_add_expr_to_block (&block, tmp);

  /* Add the exit label.  */
  tmp = build1_v (LABEL_EXPR, exit_label);
  gfc_add_expr_to_block (&block, tmp);

  /* Finish the block.  */
  tmp = gfc_finish_block (&block);
  gfc_add_expr_to_block (&se->pre, tmp);

  /* Set the result value.  */
  se->expr = dest;
  se->string_length = dlen;
}


/* Generate code for the IARGC intrinsic.  */

static void
gfc_conv_intrinsic_iargc (gfc_se * se, gfc_expr * expr)
{
  tree tmp;
  tree fndecl;
  tree type;

  /* Call the library function.  This always returns an INTEGER(4).  */
  fndecl = gfor_fndecl_iargc;
  tmp = build_call_expr_loc (input_location,
			 fndecl, 0);

  /* Convert it to the required type.  */
  type = gfc_typenode_for_spec (&expr->ts);
  tmp = fold_convert (type, tmp);

  se->expr = tmp;
}


/* The loc intrinsic returns the address of its argument as
   gfc_index_integer_kind integer.  */

static void
gfc_conv_intrinsic_loc (gfc_se * se, gfc_expr * expr)
{
  tree temp_var;
  gfc_expr *arg_expr;
  gfc_ss *ss;

  gcc_assert (!se->ss);

  arg_expr = expr->value.function.actual->expr;
  ss = gfc_walk_expr (arg_expr);
  if (ss == gfc_ss_terminator)
    gfc_conv_expr_reference (se, arg_expr);
  else
    gfc_conv_array_parameter (se, arg_expr, ss, 1, NULL, NULL, NULL);
  se->expr= convert (gfc_get_int_type (gfc_index_integer_kind), se->expr);
   
  /* Create a temporary variable for loc return value.  Without this, 
     we get an error an ICE in gcc/expr.c(expand_expr_addr_expr_1).  */
  temp_var = gfc_create_var (gfc_get_int_type (gfc_index_integer_kind), NULL);
  gfc_add_modify (&se->pre, temp_var, se->expr);
  se->expr = temp_var;
}

/* Generate code for an intrinsic function.  Some map directly to library
   calls, others get special handling.  In some cases the name of the function
   used depends on the type specifiers.  */

void
gfc_conv_intrinsic_function (gfc_se * se, gfc_expr * expr)
{
  const char *name;
  int lib, kind;
  tree fndecl;

  name = &expr->value.function.name[2];

  if (expr->rank > 0 && !expr->inline_noncopying_intrinsic)
    {
      lib = gfc_is_intrinsic_libcall (expr);
      if (lib != 0)
	{
	  if (lib == 1)
	    se->ignore_optional = 1;

	  switch (expr->value.function.isym->id)
	    {
	    case GFC_ISYM_EOSHIFT:
	    case GFC_ISYM_PACK:
	    case GFC_ISYM_RESHAPE:
	      /* For all of those the first argument specifies the type and the
		 third is optional.  */
	      conv_generic_with_optional_char_arg (se, expr, 1, 3);
	      break;

	    default:
	      gfc_conv_intrinsic_funcall (se, expr);
	      break;
	    }

	  return;
	}
    }

  switch (expr->value.function.isym->id)
    {
    case GFC_ISYM_NONE:
      gcc_unreachable ();

    case GFC_ISYM_REPEAT:
      gfc_conv_intrinsic_repeat (se, expr);
      break;

    case GFC_ISYM_TRIM:
      gfc_conv_intrinsic_trim (se, expr);
      break;

    case GFC_ISYM_SC_KIND:
      gfc_conv_intrinsic_sc_kind (se, expr);
      break;

    case GFC_ISYM_SI_KIND:
      gfc_conv_intrinsic_si_kind (se, expr);
      break;

    case GFC_ISYM_SR_KIND:
      gfc_conv_intrinsic_sr_kind (se, expr);
      break;

    case GFC_ISYM_EXPONENT:
      gfc_conv_intrinsic_exponent (se, expr);
      break;

    case GFC_ISYM_SCAN:
      kind = expr->value.function.actual->expr->ts.kind;
      if (kind == 1)
       fndecl = gfor_fndecl_string_scan;
      else if (kind == 4)
       fndecl = gfor_fndecl_string_scan_char4;
      else
       gcc_unreachable ();

      gfc_conv_intrinsic_index_scan_verify (se, expr, fndecl);
      break;

    case GFC_ISYM_VERIFY:
      kind = expr->value.function.actual->expr->ts.kind;
      if (kind == 1)
       fndecl = gfor_fndecl_string_verify;
      else if (kind == 4)
       fndecl = gfor_fndecl_string_verify_char4;
      else
       gcc_unreachable ();

      gfc_conv_intrinsic_index_scan_verify (se, expr, fndecl);
      break;

    case GFC_ISYM_ALLOCATED:
      gfc_conv_allocated (se, expr);
      break;

    case GFC_ISYM_ASSOCIATED:
      gfc_conv_associated(se, expr);
      break;

    case GFC_ISYM_SAME_TYPE_AS:
      gfc_conv_same_type_as (se, expr);
      break;

    case GFC_ISYM_EXTENDS_TYPE_OF:
      gfc_conv_extends_type_of (se, expr);
      break;

    case GFC_ISYM_ABS:
      gfc_conv_intrinsic_abs (se, expr);
      break;

    case GFC_ISYM_ADJUSTL:
      if (expr->ts.kind == 1)
       fndecl = gfor_fndecl_adjustl;
      else if (expr->ts.kind == 4)
       fndecl = gfor_fndecl_adjustl_char4;
      else
       gcc_unreachable ();

      gfc_conv_intrinsic_adjust (se, expr, fndecl);
      break;

    case GFC_ISYM_ADJUSTR:
      if (expr->ts.kind == 1)
       fndecl = gfor_fndecl_adjustr;
      else if (expr->ts.kind == 4)
       fndecl = gfor_fndecl_adjustr_char4;
      else
       gcc_unreachable ();

      gfc_conv_intrinsic_adjust (se, expr, fndecl);
      break;

    case GFC_ISYM_AIMAG:
      gfc_conv_intrinsic_imagpart (se, expr);
      break;

    case GFC_ISYM_AINT:
      gfc_conv_intrinsic_aint (se, expr, RND_TRUNC);
      break;

    case GFC_ISYM_ALL:
      gfc_conv_intrinsic_anyall (se, expr, EQ_EXPR);
      break;

    case GFC_ISYM_ANINT:
      gfc_conv_intrinsic_aint (se, expr, RND_ROUND);
      break;

    case GFC_ISYM_AND:
      gfc_conv_intrinsic_bitop (se, expr, BIT_AND_EXPR);
      break;

    case GFC_ISYM_ANY:
      gfc_conv_intrinsic_anyall (se, expr, NE_EXPR);
      break;

    case GFC_ISYM_BTEST:
      gfc_conv_intrinsic_btest (se, expr);
      break;

    case GFC_ISYM_ACHAR:
    case GFC_ISYM_CHAR:
      gfc_conv_intrinsic_char (se, expr);
      break;

    case GFC_ISYM_CONVERSION:
    case GFC_ISYM_REAL:
    case GFC_ISYM_LOGICAL:
    case GFC_ISYM_DBLE:
      gfc_conv_intrinsic_conversion (se, expr);
      break;

      /* Integer conversions are handled separately to make sure we get the
         correct rounding mode.  */
    case GFC_ISYM_INT:
    case GFC_ISYM_INT2:
    case GFC_ISYM_INT8:
    case GFC_ISYM_LONG:
      gfc_conv_intrinsic_int (se, expr, RND_TRUNC);
      break;

    case GFC_ISYM_NINT:
      gfc_conv_intrinsic_int (se, expr, RND_ROUND);
      break;

    case GFC_ISYM_CEILING:
      gfc_conv_intrinsic_int (se, expr, RND_CEIL);
      break;

    case GFC_ISYM_FLOOR:
      gfc_conv_intrinsic_int (se, expr, RND_FLOOR);
      break;

    case GFC_ISYM_MOD:
      gfc_conv_intrinsic_mod (se, expr, 0);
      break;

    case GFC_ISYM_MODULO:
      gfc_conv_intrinsic_mod (se, expr, 1);
      break;

    case GFC_ISYM_CMPLX:
      gfc_conv_intrinsic_cmplx (se, expr, name[5] == '1');
      break;

    case GFC_ISYM_COMMAND_ARGUMENT_COUNT:
      gfc_conv_intrinsic_iargc (se, expr);
      break;

    case GFC_ISYM_COMPLEX:
      gfc_conv_intrinsic_cmplx (se, expr, 1);
      break;

    case GFC_ISYM_CONJG:
      gfc_conv_intrinsic_conjg (se, expr);
      break;

    case GFC_ISYM_COUNT:
      gfc_conv_intrinsic_count (se, expr);
      break;

    case GFC_ISYM_CTIME:
      gfc_conv_intrinsic_ctime (se, expr);
      break;

    case GFC_ISYM_DIM:
      gfc_conv_intrinsic_dim (se, expr);
      break;

    case GFC_ISYM_DOT_PRODUCT:
      gfc_conv_intrinsic_dot_product (se, expr);
      break;

    case GFC_ISYM_DPROD:
      gfc_conv_intrinsic_dprod (se, expr);
      break;

    case GFC_ISYM_FDATE:
      gfc_conv_intrinsic_fdate (se, expr);
      break;

    case GFC_ISYM_FRACTION:
      gfc_conv_intrinsic_fraction (se, expr);
      break;

    case GFC_ISYM_IAND:
      gfc_conv_intrinsic_bitop (se, expr, BIT_AND_EXPR);
      break;

    case GFC_ISYM_IBCLR:
      gfc_conv_intrinsic_singlebitop (se, expr, 0);
      break;

    case GFC_ISYM_IBITS:
      gfc_conv_intrinsic_ibits (se, expr);
      break;

    case GFC_ISYM_IBSET:
      gfc_conv_intrinsic_singlebitop (se, expr, 1);
      break;

    case GFC_ISYM_IACHAR:
    case GFC_ISYM_ICHAR:
      /* We assume ASCII character sequence.  */
      gfc_conv_intrinsic_ichar (se, expr);
      break;

    case GFC_ISYM_IARGC:
      gfc_conv_intrinsic_iargc (se, expr);
      break;

    case GFC_ISYM_IEOR:
      gfc_conv_intrinsic_bitop (se, expr, BIT_XOR_EXPR);
      break;

    case GFC_ISYM_INDEX:
      kind = expr->value.function.actual->expr->ts.kind;
      if (kind == 1)
       fndecl = gfor_fndecl_string_index;
      else if (kind == 4)
       fndecl = gfor_fndecl_string_index_char4;
      else
       gcc_unreachable ();

      gfc_conv_intrinsic_index_scan_verify (se, expr, fndecl);
      break;

    case GFC_ISYM_IOR:
      gfc_conv_intrinsic_bitop (se, expr, BIT_IOR_EXPR);
      break;

    case GFC_ISYM_IS_IOSTAT_END:
      gfc_conv_has_intvalue (se, expr, LIBERROR_END);
      break;

    case GFC_ISYM_IS_IOSTAT_EOR:
      gfc_conv_has_intvalue (se, expr, LIBERROR_EOR);
      break;

    case GFC_ISYM_ISNAN:
      gfc_conv_intrinsic_isnan (se, expr);
      break;

    case GFC_ISYM_LSHIFT:
      gfc_conv_intrinsic_rlshift (se, expr, 0);
      break;

    case GFC_ISYM_RSHIFT:
      gfc_conv_intrinsic_rlshift (se, expr, 1);
      break;

    case GFC_ISYM_ISHFT:
      gfc_conv_intrinsic_ishft (se, expr);
      break;

    case GFC_ISYM_ISHFTC:
      gfc_conv_intrinsic_ishftc (se, expr);
      break;

    case GFC_ISYM_LEADZ:
      gfc_conv_intrinsic_leadz (se, expr);
      break;

    case GFC_ISYM_TRAILZ:
      gfc_conv_intrinsic_trailz (se, expr);
      break;

    case GFC_ISYM_LBOUND:
      gfc_conv_intrinsic_bound (se, expr, 0);
      break;

    case GFC_ISYM_TRANSPOSE:
      if (se->ss && se->ss->useflags)
	{
	  gfc_conv_tmp_array_ref (se);
	  gfc_advance_se_ss_chain (se);
	}
      else
	gfc_conv_array_transpose (se, expr->value.function.actual->expr);
      break;

    case GFC_ISYM_LEN:
      gfc_conv_intrinsic_len (se, expr);
      break;

    case GFC_ISYM_LEN_TRIM:
      gfc_conv_intrinsic_len_trim (se, expr);
      break;

    case GFC_ISYM_LGE:
      gfc_conv_intrinsic_strcmp (se, expr, GE_EXPR);
      break;

    case GFC_ISYM_LGT:
      gfc_conv_intrinsic_strcmp (se, expr, GT_EXPR);
      break;

    case GFC_ISYM_LLE:
      gfc_conv_intrinsic_strcmp (se, expr, LE_EXPR);
      break;

    case GFC_ISYM_LLT:
      gfc_conv_intrinsic_strcmp (se, expr, LT_EXPR);
      break;

    case GFC_ISYM_MAX:
      if (expr->ts.type == BT_CHARACTER)
	gfc_conv_intrinsic_minmax_char (se, expr, 1);
      else
	gfc_conv_intrinsic_minmax (se, expr, GT_EXPR);
      break;

    case GFC_ISYM_MAXLOC:
      gfc_conv_intrinsic_minmaxloc (se, expr, GT_EXPR);
      break;

    case GFC_ISYM_MAXVAL:
      gfc_conv_intrinsic_minmaxval (se, expr, GT_EXPR);
      break;

    case GFC_ISYM_MERGE:
      gfc_conv_intrinsic_merge (se, expr);
      break;

    case GFC_ISYM_MIN:
      if (expr->ts.type == BT_CHARACTER)
	gfc_conv_intrinsic_minmax_char (se, expr, -1);
      else
	gfc_conv_intrinsic_minmax (se, expr, LT_EXPR);
      break;

    case GFC_ISYM_MINLOC:
      gfc_conv_intrinsic_minmaxloc (se, expr, LT_EXPR);
      break;

    case GFC_ISYM_MINVAL:
      gfc_conv_intrinsic_minmaxval (se, expr, LT_EXPR);
      break;

    case GFC_ISYM_NEAREST:
      gfc_conv_intrinsic_nearest (se, expr);
      break;

    case GFC_ISYM_NOT:
      gfc_conv_intrinsic_not (se, expr);
      break;

    case GFC_ISYM_OR:
      gfc_conv_intrinsic_bitop (se, expr, BIT_IOR_EXPR);
      break;

    case GFC_ISYM_PRESENT:
      gfc_conv_intrinsic_present (se, expr);
      break;

    case GFC_ISYM_PRODUCT:
      gfc_conv_intrinsic_arith (se, expr, MULT_EXPR);
      break;

    case GFC_ISYM_RRSPACING:
      gfc_conv_intrinsic_rrspacing (se, expr);
      break;

    case GFC_ISYM_SET_EXPONENT:
      gfc_conv_intrinsic_set_exponent (se, expr);
      break;

    case GFC_ISYM_SCALE:
      gfc_conv_intrinsic_scale (se, expr);
      break;

    case GFC_ISYM_SIGN:
      gfc_conv_intrinsic_sign (se, expr);
      break;

    case GFC_ISYM_SIZE:
      gfc_conv_intrinsic_size (se, expr);
      break;

    case GFC_ISYM_SIZEOF:
      gfc_conv_intrinsic_sizeof (se, expr);
      break;

    case GFC_ISYM_SPACING:
      gfc_conv_intrinsic_spacing (se, expr);
      break;

    case GFC_ISYM_SUM:
      gfc_conv_intrinsic_arith (se, expr, PLUS_EXPR);
      break;

    case GFC_ISYM_TRANSFER:
      if (se->ss && se->ss->useflags)
	{
	  /* Access the previously obtained result.  */
	  gfc_conv_tmp_array_ref (se);
	  gfc_advance_se_ss_chain (se);
	}
      else
	gfc_conv_intrinsic_transfer (se, expr);
      break;

    case GFC_ISYM_TTYNAM:
      gfc_conv_intrinsic_ttynam (se, expr);
      break;

    case GFC_ISYM_UBOUND:
      gfc_conv_intrinsic_bound (se, expr, 1);
      break;

    case GFC_ISYM_XOR:
      gfc_conv_intrinsic_bitop (se, expr, BIT_XOR_EXPR);
      break;

    case GFC_ISYM_LOC:
      gfc_conv_intrinsic_loc (se, expr);
      break;

    case GFC_ISYM_ACCESS:
    case GFC_ISYM_CHDIR:
    case GFC_ISYM_CHMOD:
    case GFC_ISYM_DTIME:
    case GFC_ISYM_ETIME:
    case GFC_ISYM_FGET:
    case GFC_ISYM_FGETC:
    case GFC_ISYM_FNUM:
    case GFC_ISYM_FPUT:
    case GFC_ISYM_FPUTC:
    case GFC_ISYM_FSTAT:
    case GFC_ISYM_FTELL:
    case GFC_ISYM_GETCWD:
    case GFC_ISYM_GETGID:
    case GFC_ISYM_GETPID:
    case GFC_ISYM_GETUID:
    case GFC_ISYM_HOSTNM:
    case GFC_ISYM_KILL:
    case GFC_ISYM_IERRNO:
    case GFC_ISYM_IRAND:
    case GFC_ISYM_ISATTY:
    case GFC_ISYM_LINK:
    case GFC_ISYM_LSTAT:
    case GFC_ISYM_MALLOC:
    case GFC_ISYM_MATMUL:
    case GFC_ISYM_MCLOCK:
    case GFC_ISYM_MCLOCK8:
    case GFC_ISYM_RAND:
    case GFC_ISYM_RENAME:
    case GFC_ISYM_SECOND:
    case GFC_ISYM_SECNDS:
    case GFC_ISYM_SIGNAL:
    case GFC_ISYM_STAT:
    case GFC_ISYM_SYMLNK:
    case GFC_ISYM_SYSTEM:
    case GFC_ISYM_TIME:
    case GFC_ISYM_TIME8:
    case GFC_ISYM_UMASK:
    case GFC_ISYM_UNLINK:
      gfc_conv_intrinsic_funcall (se, expr);
      break;

    case GFC_ISYM_EOSHIFT:
    case GFC_ISYM_PACK:
    case GFC_ISYM_RESHAPE:
      /* For those, expr->rank should always be >0 and thus the if above the
	 switch should have matched.  */
      gcc_unreachable ();
      break;

    default:
      gfc_conv_intrinsic_lib_function (se, expr);
      break;
    }
}


/* This generates code to execute before entering the scalarization loop.
   Currently does nothing.  */

void
gfc_add_intrinsic_ss_code (gfc_loopinfo * loop ATTRIBUTE_UNUSED, gfc_ss * ss)
{
  switch (ss->expr->value.function.isym->id)
    {
    case GFC_ISYM_UBOUND:
    case GFC_ISYM_LBOUND:
      break;

    default:
      gcc_unreachable ();
    }
}


/* UBOUND and LBOUND intrinsics with one parameter are expanded into code
   inside the scalarization loop.  */

static gfc_ss *
gfc_walk_intrinsic_bound (gfc_ss * ss, gfc_expr * expr)
{
  gfc_ss *newss;

  /* The two argument version returns a scalar.  */
  if (expr->value.function.actual->next->expr)
    return ss;

  newss = gfc_get_ss ();
  newss->type = GFC_SS_INTRINSIC;
  newss->expr = expr;
  newss->next = ss;
  newss->data.info.dimen = 1;

  return newss;
}


/* Walk an intrinsic array libcall.  */

static gfc_ss *
gfc_walk_intrinsic_libfunc (gfc_ss * ss, gfc_expr * expr)
{
  gfc_ss *newss;

  gcc_assert (expr->rank > 0);

  newss = gfc_get_ss ();
  newss->type = GFC_SS_FUNCTION;
  newss->expr = expr;
  newss->next = ss;
  newss->data.info.dimen = expr->rank;

  return newss;
}


/* Returns nonzero if the specified intrinsic function call maps directly to
   an external library call.  Should only be used for functions that return
   arrays.  */

int
gfc_is_intrinsic_libcall (gfc_expr * expr)
{
  gcc_assert (expr->expr_type == EXPR_FUNCTION && expr->value.function.isym);
  gcc_assert (expr->rank > 0);

  switch (expr->value.function.isym->id)
    {
    case GFC_ISYM_ALL:
    case GFC_ISYM_ANY:
    case GFC_ISYM_COUNT:
    case GFC_ISYM_MATMUL:
    case GFC_ISYM_MAXLOC:
    case GFC_ISYM_MAXVAL:
    case GFC_ISYM_MINLOC:
    case GFC_ISYM_MINVAL:
    case GFC_ISYM_PRODUCT:
    case GFC_ISYM_SUM:
    case GFC_ISYM_SHAPE:
    case GFC_ISYM_SPREAD:
    case GFC_ISYM_TRANSPOSE:
      /* Ignore absent optional parameters.  */
      return 1;

    case GFC_ISYM_RESHAPE:
    case GFC_ISYM_CSHIFT:
    case GFC_ISYM_EOSHIFT:
    case GFC_ISYM_PACK:
    case GFC_ISYM_UNPACK:
      /* Pass absent optional parameters.  */
      return 2;

    default:
      return 0;
    }
}

/* Walk an intrinsic function.  */
gfc_ss *
gfc_walk_intrinsic_function (gfc_ss * ss, gfc_expr * expr,
			     gfc_intrinsic_sym * isym)
{
  gcc_assert (isym);

  if (isym->elemental)
    return gfc_walk_elemental_function_args (ss, expr->value.function.actual, GFC_SS_SCALAR);

  if (expr->rank == 0)
    return ss;

  if (gfc_is_intrinsic_libcall (expr))
    return gfc_walk_intrinsic_libfunc (ss, expr);

  /* Special cases.  */
  switch (isym->id)
    {
    case GFC_ISYM_LBOUND:
    case GFC_ISYM_UBOUND:
      return gfc_walk_intrinsic_bound (ss, expr);

    case GFC_ISYM_TRANSFER:
      return gfc_walk_intrinsic_libfunc (ss, expr);

    default:
      /* This probably meant someone forgot to add an intrinsic to the above
         list(s) when they implemented it, or something's gone horribly
	 wrong.  */
      gcc_unreachable ();
    }
}

#include "gt-fortran-trans-intrinsic.h"