summaryrefslogtreecommitdiff
path: root/gcc/fortran/trans-stmt.c
blob: 524412725ab6ca50ac6dc4cd051a7d1f6f388e82 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
/* Statement translation -- generate GCC trees from gfc_code.
   Copyright (C) 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
   Contributed by Paul Brook <paul@nowt.org>
   and Steven Bosscher <s.bosscher@student.tudelft.nl>

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 2, or (at your option) any later
version.

GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING.  If not, write to the Free
Software Foundation, 59 Temple Place - Suite 330, Boston, MA
02111-1307, USA.  */


#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tree.h"
#include "tree-gimple.h"
#include "ggc.h"
#include "toplev.h"
#include "real.h"
#include "gfortran.h"
#include "trans.h"
#include "trans-stmt.h"
#include "trans-types.h"
#include "trans-array.h"
#include "trans-const.h"
#include "arith.h"

int has_alternate_specifier;

typedef struct iter_info
{
  tree var;
  tree start;
  tree end;
  tree step;
  struct iter_info *next;
}
iter_info;

typedef  struct temporary_list
{
  tree temporary;
  struct temporary_list *next;
}
temporary_list;

typedef struct forall_info
{
  iter_info *this_loop;
  tree mask;
  tree pmask;
  tree maskindex;
  int nvar;
  tree size;
  struct forall_info  *outer;
  struct forall_info  *next_nest;
}
forall_info;

static void gfc_trans_where_2 (gfc_code *, tree, tree, forall_info *,
                               stmtblock_t *, temporary_list **temp);

/* Translate a F95 label number to a LABEL_EXPR.  */

tree
gfc_trans_label_here (gfc_code * code)
{
  return build1_v (LABEL_EXPR, gfc_get_label_decl (code->here));
}


/* Given a variable expression which has been ASSIGNed to, find the decl
   containing the auxiliary variables.  For variables in common blocks this
   is a field_decl.  */

void
gfc_conv_label_variable (gfc_se * se, gfc_expr * expr)
{
  gcc_assert (expr->symtree->n.sym->attr.assign == 1);
  gfc_conv_expr (se, expr);
  /* Deals with variable in common block. Get the field declaration.  */
  if (TREE_CODE (se->expr) == COMPONENT_REF)
    se->expr = TREE_OPERAND (se->expr, 1);
}

/* Translate a label assignment statement.  */

tree
gfc_trans_label_assign (gfc_code * code)
{
  tree label_tree;
  gfc_se se;
  tree len;
  tree addr;
  tree len_tree;
  char *label_str;
  int label_len;

  /* Start a new block.  */
  gfc_init_se (&se, NULL);
  gfc_start_block (&se.pre);
  gfc_conv_label_variable (&se, code->expr);

  len = GFC_DECL_STRING_LEN (se.expr);
  addr = GFC_DECL_ASSIGN_ADDR (se.expr);

  label_tree = gfc_get_label_decl (code->label);

  if (code->label->defined == ST_LABEL_TARGET)
    {
      label_tree = gfc_build_addr_expr (pvoid_type_node, label_tree);
      len_tree = integer_minus_one_node;
    }
  else
    {
      label_str = code->label->format->value.character.string;
      label_len = code->label->format->value.character.length;
      len_tree = build_int_cst (NULL_TREE, label_len);
      label_tree = gfc_build_string_const (label_len + 1, label_str);
      label_tree = gfc_build_addr_expr (pchar_type_node, label_tree);
    }

  gfc_add_modify_expr (&se.pre, len, len_tree);
  gfc_add_modify_expr (&se.pre, addr, label_tree);

  return gfc_finish_block (&se.pre);
}

/* Translate a GOTO statement.  */

tree
gfc_trans_goto (gfc_code * code)
{
  tree assigned_goto;
  tree target;
  tree tmp;
  tree assign_error;
  tree range_error;
  gfc_se se;


  if (code->label != NULL)
    return build1_v (GOTO_EXPR, gfc_get_label_decl (code->label));

  /* ASSIGNED GOTO.  */
  gfc_init_se (&se, NULL);
  gfc_start_block (&se.pre);
  gfc_conv_label_variable (&se, code->expr);
  assign_error =
    gfc_build_cstring_const ("Assigned label is not a target label");
  tmp = GFC_DECL_STRING_LEN (se.expr);
  tmp = build2 (NE_EXPR, boolean_type_node, tmp, integer_minus_one_node);
  gfc_trans_runtime_check (tmp, assign_error, &se.pre);

  assigned_goto = GFC_DECL_ASSIGN_ADDR (se.expr);
  target = build1 (GOTO_EXPR, void_type_node, assigned_goto);

  code = code->block;
  if (code == NULL)
    {
      gfc_add_expr_to_block (&se.pre, target);
      return gfc_finish_block (&se.pre);
    }

  /* Check the label list.  */
  range_error = gfc_build_cstring_const ("Assigned label is not in the list");

  do
    {
      tmp = gfc_get_label_decl (code->label);
      tmp = gfc_build_addr_expr (pvoid_type_node, tmp);
      tmp = build2 (EQ_EXPR, boolean_type_node, tmp, assigned_goto);
      tmp = build3_v (COND_EXPR, tmp, target, build_empty_stmt ());
      gfc_add_expr_to_block (&se.pre, tmp);
      code = code->block;
    }
  while (code != NULL);
  gfc_trans_runtime_check (boolean_true_node, range_error, &se.pre);
  return gfc_finish_block (&se.pre); 
}


/* Translate an ENTRY statement.  Just adds a label for this entry point.  */
tree
gfc_trans_entry (gfc_code * code)
{
  return build1_v (LABEL_EXPR, code->ext.entry->label);
}


/* Translate the CALL statement.  Builds a call to an F95 subroutine.  */

tree
gfc_trans_call (gfc_code * code)
{
  gfc_se se;

  /* A CALL starts a new block because the actual arguments may have to
     be evaluated first.  */
  gfc_init_se (&se, NULL);
  gfc_start_block (&se.pre);

  gcc_assert (code->resolved_sym);
  has_alternate_specifier = 0;

  /* Translate the call.  */
  gfc_conv_function_call (&se, code->resolved_sym, code->ext.actual);

  /* A subroutine without side-effect, by definition, does nothing!  */
  TREE_SIDE_EFFECTS (se.expr) = 1;

  /* Chain the pieces together and return the block.  */
  if (has_alternate_specifier)
    {
      gfc_code *select_code;
      gfc_symbol *sym;
      select_code = code->next;
      gcc_assert(select_code->op == EXEC_SELECT);
      sym = select_code->expr->symtree->n.sym;
      se.expr = convert (gfc_typenode_for_spec (&sym->ts), se.expr);
      gfc_add_modify_expr (&se.pre, sym->backend_decl, se.expr);
    }
  else
    gfc_add_expr_to_block (&se.pre, se.expr);

  gfc_add_block_to_block (&se.pre, &se.post);
  return gfc_finish_block (&se.pre);
}


/* Translate the RETURN statement.  */

tree
gfc_trans_return (gfc_code * code ATTRIBUTE_UNUSED)
{
  if (code->expr)
    {
      gfc_se se;
      tree tmp;
      tree result;

      /* if code->expr is not NULL, this return statement must appear
         in a subroutine and current_fake_result_decl has already
	 been generated.  */

      result = gfc_get_fake_result_decl (NULL);
      if (!result)
        {
          gfc_warning ("An alternate return at %L without a * dummy argument",
                        &code->expr->where);
          return build1_v (GOTO_EXPR, gfc_get_return_label ());
        }

      /* Start a new block for this statement.  */
      gfc_init_se (&se, NULL);
      gfc_start_block (&se.pre);

      gfc_conv_expr (&se, code->expr);

      tmp = build2 (MODIFY_EXPR, TREE_TYPE (result), result, se.expr);
      gfc_add_expr_to_block (&se.pre, tmp);

      tmp = build1_v (GOTO_EXPR, gfc_get_return_label ());
      gfc_add_expr_to_block (&se.pre, tmp);
      gfc_add_block_to_block (&se.pre, &se.post);
      return gfc_finish_block (&se.pre);
    }
  else
    return build1_v (GOTO_EXPR, gfc_get_return_label ());
}


/* Translate the PAUSE statement.  We have to translate this statement
   to a runtime library call.  */

tree
gfc_trans_pause (gfc_code * code)
{
  tree gfc_int4_type_node = gfc_get_int_type (4);
  gfc_se se;
  tree args;
  tree tmp;
  tree fndecl;

  /* Start a new block for this statement.  */
  gfc_init_se (&se, NULL);
  gfc_start_block (&se.pre);


  if (code->expr == NULL)
    {
      tmp = build_int_cst (gfc_int4_type_node, code->ext.stop_code);
      args = gfc_chainon_list (NULL_TREE, tmp);
      fndecl = gfor_fndecl_pause_numeric;
    }
  else
    {
      gfc_conv_expr_reference (&se, code->expr);
      args = gfc_chainon_list (NULL_TREE, se.expr);
      args = gfc_chainon_list (args, se.string_length);
      fndecl = gfor_fndecl_pause_string;
    }

  tmp = gfc_build_function_call (fndecl, args);
  gfc_add_expr_to_block (&se.pre, tmp);

  gfc_add_block_to_block (&se.pre, &se.post);

  return gfc_finish_block (&se.pre);
}


/* Translate the STOP statement.  We have to translate this statement
   to a runtime library call.  */

tree
gfc_trans_stop (gfc_code * code)
{
  tree gfc_int4_type_node = gfc_get_int_type (4);
  gfc_se se;
  tree args;
  tree tmp;
  tree fndecl;

  /* Start a new block for this statement.  */
  gfc_init_se (&se, NULL);
  gfc_start_block (&se.pre);


  if (code->expr == NULL)
    {
      tmp = build_int_cst (gfc_int4_type_node, code->ext.stop_code);
      args = gfc_chainon_list (NULL_TREE, tmp);
      fndecl = gfor_fndecl_stop_numeric;
    }
  else
    {
      gfc_conv_expr_reference (&se, code->expr);
      args = gfc_chainon_list (NULL_TREE, se.expr);
      args = gfc_chainon_list (args, se.string_length);
      fndecl = gfor_fndecl_stop_string;
    }

  tmp = gfc_build_function_call (fndecl, args);
  gfc_add_expr_to_block (&se.pre, tmp);

  gfc_add_block_to_block (&se.pre, &se.post);

  return gfc_finish_block (&se.pre);
}


/* Generate GENERIC for the IF construct. This function also deals with
   the simple IF statement, because the front end translates the IF
   statement into an IF construct.

   We translate:

        IF (cond) THEN
           then_clause
        ELSEIF (cond2)
           elseif_clause
        ELSE
           else_clause
        ENDIF

   into:

        pre_cond_s;
        if (cond_s)
          {
            then_clause;
          }
        else
          {
            pre_cond_s
            if (cond_s)
              {
                elseif_clause
              }
            else
              {
                else_clause;
              }
          }

   where COND_S is the simplified version of the predicate. PRE_COND_S
   are the pre side-effects produced by the translation of the
   conditional.
   We need to build the chain recursively otherwise we run into
   problems with folding incomplete statements.  */

static tree
gfc_trans_if_1 (gfc_code * code)
{
  gfc_se if_se;
  tree stmt, elsestmt;

  /* Check for an unconditional ELSE clause.  */
  if (!code->expr)
    return gfc_trans_code (code->next);

  /* Initialize a statement builder for each block. Puts in NULL_TREEs.  */
  gfc_init_se (&if_se, NULL);
  gfc_start_block (&if_se.pre);

  /* Calculate the IF condition expression.  */
  gfc_conv_expr_val (&if_se, code->expr);

  /* Translate the THEN clause.  */
  stmt = gfc_trans_code (code->next);

  /* Translate the ELSE clause.  */
  if (code->block)
    elsestmt = gfc_trans_if_1 (code->block);
  else
    elsestmt = build_empty_stmt ();

  /* Build the condition expression and add it to the condition block.  */
  stmt = build3_v (COND_EXPR, if_se.expr, stmt, elsestmt);
  
  gfc_add_expr_to_block (&if_se.pre, stmt);

  /* Finish off this statement.  */
  return gfc_finish_block (&if_se.pre);
}

tree
gfc_trans_if (gfc_code * code)
{
  /* Ignore the top EXEC_IF, it only announces an IF construct. The
     actual code we must translate is in code->block.  */

  return gfc_trans_if_1 (code->block);
}


/* Translage an arithmetic IF expression.

   IF (cond) label1, label2, label3 translates to

    if (cond <= 0)
      {
        if (cond < 0)
          goto label1;
        else // cond == 0
          goto label2;
      }
    else // cond > 0
      goto label3;
*/

tree
gfc_trans_arithmetic_if (gfc_code * code)
{
  gfc_se se;
  tree tmp;
  tree branch1;
  tree branch2;
  tree zero;

  /* Start a new block.  */
  gfc_init_se (&se, NULL);
  gfc_start_block (&se.pre);

  /* Pre-evaluate COND.  */
  gfc_conv_expr_val (&se, code->expr);

  /* Build something to compare with.  */
  zero = gfc_build_const (TREE_TYPE (se.expr), integer_zero_node);

  /* If (cond < 0) take branch1 else take branch2.
     First build jumps to the COND .LT. 0 and the COND .EQ. 0 cases.  */
  branch1 = build1_v (GOTO_EXPR, gfc_get_label_decl (code->label));
  branch2 = build1_v (GOTO_EXPR, gfc_get_label_decl (code->label2));

  tmp = build2 (LT_EXPR, boolean_type_node, se.expr, zero);
  branch1 = build3_v (COND_EXPR, tmp, branch1, branch2);

  /* if (cond <= 0) take branch1 else take branch2.  */
  branch2 = build1_v (GOTO_EXPR, gfc_get_label_decl (code->label3));
  tmp = build2 (LE_EXPR, boolean_type_node, se.expr, zero);
  branch1 = build3_v (COND_EXPR, tmp, branch1, branch2);

  /* Append the COND_EXPR to the evaluation of COND, and return.  */
  gfc_add_expr_to_block (&se.pre, branch1);
  return gfc_finish_block (&se.pre);
}


/* Translate the simple DO construct.  This is where the loop variable has
   integer type and step +-1.  We can't use this in the general case
   because integer overflow and floating point errors could give incorrect
   results.
   We translate a do loop from:

   DO dovar = from, to, step
      body
   END DO

   to:

   [Evaluate loop bounds and step]
   dovar = from;
   if ((step > 0) ? (dovar <= to) : (dovar => to))
    {
      for (;;)
        {
	  body;
   cycle_label:
	  cond = (dovar == to);
	  dovar += step;
	  if (cond) goto end_label;
	}
      }
   end_label:

   This helps the optimizers by avoiding the extra induction variable
   used in the general case.  */

static tree
gfc_trans_simple_do (gfc_code * code, stmtblock_t *pblock, tree dovar,
		     tree from, tree to, tree step)
{
  stmtblock_t body;
  tree type;
  tree cond;
  tree tmp;
  tree cycle_label;
  tree exit_label;
  
  type = TREE_TYPE (dovar);

  /* Initialize the DO variable: dovar = from.  */
  gfc_add_modify_expr (pblock, dovar, from);

  /* Cycle and exit statements are implemented with gotos.  */
  cycle_label = gfc_build_label_decl (NULL_TREE);
  exit_label = gfc_build_label_decl (NULL_TREE);

  /* Put the labels where they can be found later. See gfc_trans_do().  */
  code->block->backend_decl = tree_cons (cycle_label, exit_label, NULL);

  /* Loop body.  */
  gfc_start_block (&body);

  /* Main loop body.  */
  tmp = gfc_trans_code (code->block->next);
  gfc_add_expr_to_block (&body, tmp);

  /* Label for cycle statements (if needed).  */
  if (TREE_USED (cycle_label))
    {
      tmp = build1_v (LABEL_EXPR, cycle_label);
      gfc_add_expr_to_block (&body, tmp);
    }

  /* Evaluate the loop condition.  */
  cond = build2 (EQ_EXPR, boolean_type_node, dovar, to);
  cond = gfc_evaluate_now (cond, &body);

  /* Increment the loop variable.  */
  tmp = build2 (PLUS_EXPR, type, dovar, step);
  gfc_add_modify_expr (&body, dovar, tmp);

  /* The loop exit.  */
  tmp = build1_v (GOTO_EXPR, exit_label);
  TREE_USED (exit_label) = 1;
  tmp = build3_v (COND_EXPR, cond, tmp, build_empty_stmt ());
  gfc_add_expr_to_block (&body, tmp);

  /* Finish the loop body.  */
  tmp = gfc_finish_block (&body);
  tmp = build1_v (LOOP_EXPR, tmp);

  /* Only execute the loop if the number of iterations is positive.  */
  if (tree_int_cst_sgn (step) > 0)
    cond = fold (build2 (LE_EXPR, boolean_type_node, dovar, to));
  else
    cond = fold (build2 (GE_EXPR, boolean_type_node, dovar, to));
  tmp = build3_v (COND_EXPR, cond, tmp, build_empty_stmt ());
  gfc_add_expr_to_block (pblock, tmp);

  /* Add the exit label.  */
  tmp = build1_v (LABEL_EXPR, exit_label);
  gfc_add_expr_to_block (pblock, tmp);

  return gfc_finish_block (pblock);
}

/* Translate the DO construct.  This obviously is one of the most
   important ones to get right with any compiler, but especially
   so for Fortran.

   We special case some loop forms as described in gfc_trans_simple_do.
   For other cases we implement them with a separate loop count,
   as described in the standard.

   We translate a do loop from:

   DO dovar = from, to, step
      body
   END DO

   to:

   [evaluate loop bounds and step]
   count = to + step - from;
   dovar = from;
   for (;;)
     {
       body;
cycle_label:
       dovar += step
       count--;
       if (count <=0) goto exit_label;
     }
exit_label:

   TODO: Large loop counts
   The code above assumes the loop count fits into a signed integer kind,
   i.e. Does not work for loop counts > 2^31 for integer(kind=4) variables
   We must support the full range.  */

tree
gfc_trans_do (gfc_code * code)
{
  gfc_se se;
  tree dovar;
  tree from;
  tree to;
  tree step;
  tree count;
  tree count_one;
  tree type;
  tree cond;
  tree cycle_label;
  tree exit_label;
  tree tmp;
  stmtblock_t block;
  stmtblock_t body;

  gfc_start_block (&block);

  /* Evaluate all the expressions in the iterator.  */
  gfc_init_se (&se, NULL);
  gfc_conv_expr_lhs (&se, code->ext.iterator->var);
  gfc_add_block_to_block (&block, &se.pre);
  dovar = se.expr;
  type = TREE_TYPE (dovar);

  gfc_init_se (&se, NULL);
  gfc_conv_expr_val (&se, code->ext.iterator->start);
  gfc_add_block_to_block (&block, &se.pre);
  from = gfc_evaluate_now (se.expr, &block);

  gfc_init_se (&se, NULL);
  gfc_conv_expr_val (&se, code->ext.iterator->end);
  gfc_add_block_to_block (&block, &se.pre);
  to = gfc_evaluate_now (se.expr, &block);

  gfc_init_se (&se, NULL);
  gfc_conv_expr_val (&se, code->ext.iterator->step);
  gfc_add_block_to_block (&block, &se.pre);
  step = gfc_evaluate_now (se.expr, &block);

  /* Special case simple loops.  */
  if (TREE_CODE (type) == INTEGER_TYPE
      && (integer_onep (step)
	|| tree_int_cst_equal (step, integer_minus_one_node)))
    return gfc_trans_simple_do (code, &block, dovar, from, to, step);
      
  /* Initialize loop count. This code is executed before we enter the
     loop body. We generate: count = (to + step - from) / step.  */

  tmp = fold (build2 (MINUS_EXPR, type, step, from));
  tmp = fold (build2 (PLUS_EXPR, type, to, tmp));
  if (TREE_CODE (type) == INTEGER_TYPE)
    {
      tmp = fold (build2 (TRUNC_DIV_EXPR, type, tmp, step));
      count = gfc_create_var (type, "count");
    }
  else
    {
      /* TODO: We could use the same width as the real type.
	 This would probably cause more problems that it solves
	 when we implement "long double" types.  */
      tmp = fold (build2 (RDIV_EXPR, type, tmp, step));
      tmp = fold (build1 (FIX_TRUNC_EXPR, gfc_array_index_type, tmp));
      count = gfc_create_var (gfc_array_index_type, "count");
    }
  gfc_add_modify_expr (&block, count, tmp);

  count_one = convert (TREE_TYPE (count), integer_one_node);

  /* Initialize the DO variable: dovar = from.  */
  gfc_add_modify_expr (&block, dovar, from);

  /* Loop body.  */
  gfc_start_block (&body);

  /* Cycle and exit statements are implemented with gotos.  */
  cycle_label = gfc_build_label_decl (NULL_TREE);
  exit_label = gfc_build_label_decl (NULL_TREE);

  /* Start with the loop condition.  Loop until count <= 0.  */
  cond = build2 (LE_EXPR, boolean_type_node, count,
		convert (TREE_TYPE (count), integer_zero_node));
  tmp = build1_v (GOTO_EXPR, exit_label);
  TREE_USED (exit_label) = 1;
  tmp = build3_v (COND_EXPR, cond, tmp, build_empty_stmt ());
  gfc_add_expr_to_block (&body, tmp);

  /* Put these labels where they can be found later. We put the
     labels in a TREE_LIST node (because TREE_CHAIN is already
     used). cycle_label goes in TREE_PURPOSE (backend_decl), exit
     label in TREE_VALUE (backend_decl).  */

  code->block->backend_decl = tree_cons (cycle_label, exit_label, NULL);

  /* Main loop body.  */
  tmp = gfc_trans_code (code->block->next);
  gfc_add_expr_to_block (&body, tmp);

  /* Label for cycle statements (if needed).  */
  if (TREE_USED (cycle_label))
    {
      tmp = build1_v (LABEL_EXPR, cycle_label);
      gfc_add_expr_to_block (&body, tmp);
    }

  /* Increment the loop variable.  */
  tmp = build2 (PLUS_EXPR, type, dovar, step);
  gfc_add_modify_expr (&body, dovar, tmp);

  /* Decrement the loop count.  */
  tmp = build2 (MINUS_EXPR, TREE_TYPE (count), count, count_one);
  gfc_add_modify_expr (&body, count, tmp);

  /* End of loop body.  */
  tmp = gfc_finish_block (&body);

  /* The for loop itself.  */
  tmp = build1_v (LOOP_EXPR, tmp);
  gfc_add_expr_to_block (&block, tmp);

  /* Add the exit label.  */
  tmp = build1_v (LABEL_EXPR, exit_label);
  gfc_add_expr_to_block (&block, tmp);

  return gfc_finish_block (&block);
}


/* Translate the DO WHILE construct.

   We translate

   DO WHILE (cond)
      body
   END DO

   to:

   for ( ; ; )
     {
       pre_cond;
       if (! cond) goto exit_label;
       body;
cycle_label:
     }
exit_label:

   Because the evaluation of the exit condition `cond' may have side
   effects, we can't do much for empty loop bodies.  The backend optimizers
   should be smart enough to eliminate any dead loops.  */

tree
gfc_trans_do_while (gfc_code * code)
{
  gfc_se cond;
  tree tmp;
  tree cycle_label;
  tree exit_label;
  stmtblock_t block;

  /* Everything we build here is part of the loop body.  */
  gfc_start_block (&block);

  /* Cycle and exit statements are implemented with gotos.  */
  cycle_label = gfc_build_label_decl (NULL_TREE);
  exit_label = gfc_build_label_decl (NULL_TREE);

  /* Put the labels where they can be found later. See gfc_trans_do().  */
  code->block->backend_decl = tree_cons (cycle_label, exit_label, NULL);

  /* Create a GIMPLE version of the exit condition.  */
  gfc_init_se (&cond, NULL);
  gfc_conv_expr_val (&cond, code->expr);
  gfc_add_block_to_block (&block, &cond.pre);
  cond.expr = fold (build1 (TRUTH_NOT_EXPR, boolean_type_node, cond.expr));

  /* Build "IF (! cond) GOTO exit_label".  */
  tmp = build1_v (GOTO_EXPR, exit_label);
  TREE_USED (exit_label) = 1;
  tmp = build3_v (COND_EXPR, cond.expr, tmp, build_empty_stmt ());
  gfc_add_expr_to_block (&block, tmp);

  /* The main body of the loop.  */
  tmp = gfc_trans_code (code->block->next);
  gfc_add_expr_to_block (&block, tmp);

  /* Label for cycle statements (if needed).  */
  if (TREE_USED (cycle_label))
    {
      tmp = build1_v (LABEL_EXPR, cycle_label);
      gfc_add_expr_to_block (&block, tmp);
    }

  /* End of loop body.  */
  tmp = gfc_finish_block (&block);

  gfc_init_block (&block);
  /* Build the loop.  */
  tmp = build1_v (LOOP_EXPR, tmp);
  gfc_add_expr_to_block (&block, tmp);

  /* Add the exit label.  */
  tmp = build1_v (LABEL_EXPR, exit_label);
  gfc_add_expr_to_block (&block, tmp);

  return gfc_finish_block (&block);
}


/* Translate the SELECT CASE construct for INTEGER case expressions,
   without killing all potential optimizations.  The problem is that
   Fortran allows unbounded cases, but the back-end does not, so we
   need to intercept those before we enter the equivalent SWITCH_EXPR
   we can build.

   For example, we translate this,

   SELECT CASE (expr)
      CASE (:100,101,105:115)
	 block_1
      CASE (190:199,200:)
	 block_2
      CASE (300)
	 block_3
      CASE DEFAULT
	 block_4
   END SELECT

   to the GENERIC equivalent,

     switch (expr)
       {
	 case (minimum value for typeof(expr) ... 100:
	 case 101:
	 case 105 ... 114:
	   block1:
	   goto end_label;

	 case 200 ... (maximum value for typeof(expr):
	 case 190 ... 199:
	   block2;
	   goto end_label;

	 case 300:
	   block_3;
	   goto end_label;

	 default:
	   block_4;
	   goto end_label;
       }

     end_label:  */

static tree
gfc_trans_integer_select (gfc_code * code)
{
  gfc_code *c;
  gfc_case *cp;
  tree end_label;
  tree tmp;
  gfc_se se;
  stmtblock_t block;
  stmtblock_t body;

  gfc_start_block (&block);

  /* Calculate the switch expression.  */
  gfc_init_se (&se, NULL);
  gfc_conv_expr_val (&se, code->expr);
  gfc_add_block_to_block (&block, &se.pre);

  end_label = gfc_build_label_decl (NULL_TREE);

  gfc_init_block (&body);

  for (c = code->block; c; c = c->block)
    {
      for (cp = c->ext.case_list; cp; cp = cp->next)
	{
	  tree low, high;
          tree label;

	  /* Assume it's the default case.  */
	  low = high = NULL_TREE;

	  if (cp->low)
	    {
	      low = gfc_conv_constant_to_tree (cp->low);

	      /* If there's only a lower bound, set the high bound to the
		 maximum value of the case expression.  */
	      if (!cp->high)
		high = TYPE_MAX_VALUE (TREE_TYPE (se.expr));
	    }

	  if (cp->high)
	    {
	      /* Three cases are possible here:

		 1) There is no lower bound, e.g. CASE (:N).
		 2) There is a lower bound .NE. high bound, that is
		    a case range, e.g. CASE (N:M) where M>N (we make
		    sure that M>N during type resolution).
		 3) There is a lower bound, and it has the same value
		    as the high bound, e.g. CASE (N:N).  This is our
		    internal representation of CASE(N).

		 In the first and second case, we need to set a value for
		 high.  In the thirth case, we don't because the GCC middle
		 end represents a single case value by just letting high be
		 a NULL_TREE.  We can't do that because we need to be able
		 to represent unbounded cases.  */

	      if (!cp->low
		  || (cp->low
		      && mpz_cmp (cp->low->value.integer,
				  cp->high->value.integer) != 0))
		high = gfc_conv_constant_to_tree (cp->high);

	      /* Unbounded case.  */
	      if (!cp->low)
		low = TYPE_MIN_VALUE (TREE_TYPE (se.expr));
	    }

          /* Build a label.  */
          label = gfc_build_label_decl (NULL_TREE);

	  /* Add this case label.
             Add parameter 'label', make it match GCC backend.  */
	  tmp = build3 (CASE_LABEL_EXPR, void_type_node, low, high, label);
	  gfc_add_expr_to_block (&body, tmp);
	}

      /* Add the statements for this case.  */
      tmp = gfc_trans_code (c->next);
      gfc_add_expr_to_block (&body, tmp);

      /* Break to the end of the construct.  */
      tmp = build1_v (GOTO_EXPR, end_label);
      gfc_add_expr_to_block (&body, tmp);
    }

  tmp = gfc_finish_block (&body);
  tmp = build3_v (SWITCH_EXPR, se.expr, tmp, NULL_TREE);
  gfc_add_expr_to_block (&block, tmp);

  tmp = build1_v (LABEL_EXPR, end_label);
  gfc_add_expr_to_block (&block, tmp);

  return gfc_finish_block (&block);
}


/* Translate the SELECT CASE construct for LOGICAL case expressions.

   There are only two cases possible here, even though the standard
   does allow three cases in a LOGICAL SELECT CASE construct: .TRUE.,
   .FALSE., and DEFAULT.

   We never generate more than two blocks here.  Instead, we always
   try to eliminate the DEFAULT case.  This way, we can translate this
   kind of SELECT construct to a simple

   if {} else {};

   expression in GENERIC.  */

static tree
gfc_trans_logical_select (gfc_code * code)
{
  gfc_code *c;
  gfc_code *t, *f, *d;
  gfc_case *cp;
  gfc_se se;
  stmtblock_t block;

  /* Assume we don't have any cases at all.  */
  t = f = d = NULL;

  /* Now see which ones we actually do have.  We can have at most two
     cases in a single case list: one for .TRUE. and one for .FALSE.
     The default case is always separate.  If the cases for .TRUE. and
     .FALSE. are in the same case list, the block for that case list
     always executed, and we don't generate code a COND_EXPR.  */
  for (c = code->block; c; c = c->block)
    {
      for (cp = c->ext.case_list; cp; cp = cp->next)
	{
	  if (cp->low)
	    {
	      if (cp->low->value.logical == 0) /* .FALSE.  */
		f = c;
	      else /* if (cp->value.logical != 0), thus .TRUE.  */
		t = c;
	    }
	  else
	    d = c;
	}
    }

  /* Start a new block.  */
  gfc_start_block (&block);

  /* Calculate the switch expression.  We always need to do this
     because it may have side effects.  */
  gfc_init_se (&se, NULL);
  gfc_conv_expr_val (&se, code->expr);
  gfc_add_block_to_block (&block, &se.pre);

  if (t == f && t != NULL)
    {
      /* Cases for .TRUE. and .FALSE. are in the same block.  Just
         translate the code for these cases, append it to the current
         block.  */
      gfc_add_expr_to_block (&block, gfc_trans_code (t->next));
    }
  else
    {
      tree true_tree, false_tree;

      true_tree = build_empty_stmt ();
      false_tree = build_empty_stmt ();

      /* If we have a case for .TRUE. and for .FALSE., discard the default case.
          Otherwise, if .TRUE. or .FALSE. is missing and there is a default case,
          make the missing case the default case.  */
      if (t != NULL && f != NULL)
	d = NULL;
      else if (d != NULL)
        {
	  if (t == NULL)
	    t = d;
	  else
	    f = d;
	}

      /* Translate the code for each of these blocks, and append it to
         the current block.  */
      if (t != NULL)
        true_tree = gfc_trans_code (t->next);

      if (f != NULL)
	false_tree = gfc_trans_code (f->next);

      gfc_add_expr_to_block (&block, build3_v (COND_EXPR, se.expr,
					       true_tree, false_tree));
    }

  return gfc_finish_block (&block);
}


/* Translate the SELECT CASE construct for CHARACTER case expressions.
   Instead of generating compares and jumps, it is far simpler to
   generate a data structure describing the cases in order and call a
   library subroutine that locates the right case.
   This is particularly true because this is the only case where we
   might have to dispose of a temporary.
   The library subroutine returns a pointer to jump to or NULL if no
   branches are to be taken.  */

static tree
gfc_trans_character_select (gfc_code *code)
{
  tree init, node, end_label, tmp, type, args, *labels;
  stmtblock_t block, body;
  gfc_case *cp, *d;
  gfc_code *c;
  gfc_se se;
  int i, n;

  static tree select_struct;
  static tree ss_string1, ss_string1_len;
  static tree ss_string2, ss_string2_len;
  static tree ss_target;

  if (select_struct == NULL)
    {
      tree gfc_int4_type_node = gfc_get_int_type (4);

      select_struct = make_node (RECORD_TYPE);
      TYPE_NAME (select_struct) = get_identifier ("_jump_struct");

#undef ADD_FIELD
#define ADD_FIELD(NAME, TYPE)				\
  ss_##NAME = gfc_add_field_to_struct			\
     (&(TYPE_FIELDS (select_struct)), select_struct,	\
      get_identifier (stringize(NAME)), TYPE)

      ADD_FIELD (string1, pchar_type_node);
      ADD_FIELD (string1_len, gfc_int4_type_node);

      ADD_FIELD (string2, pchar_type_node);
      ADD_FIELD (string2_len, gfc_int4_type_node);

      ADD_FIELD (target, pvoid_type_node);
#undef ADD_FIELD

      gfc_finish_type (select_struct);
    }

  cp = code->block->ext.case_list;
  while (cp->left != NULL)
    cp = cp->left;

  n = 0;
  for (d = cp; d; d = d->right)
    d->n = n++;

  if (n != 0)
    labels = gfc_getmem (n * sizeof (tree));
  else
    labels = NULL;

  for(i = 0; i < n; i++)
    {
      labels[i] = gfc_build_label_decl (NULL_TREE);
      TREE_USED (labels[i]) = 1;
      /* TODO: The gimplifier should do this for us, but it has
         inadequacies when dealing with static initializers.  */
      FORCED_LABEL (labels[i]) = 1;
    }

  end_label = gfc_build_label_decl (NULL_TREE);

  /* Generate the body */
  gfc_start_block (&block);
  gfc_init_block (&body);

  for (c = code->block; c; c = c->block)
    {
      for (d = c->ext.case_list; d; d = d->next)
        {
          tmp = build1_v (LABEL_EXPR, labels[d->n]);
          gfc_add_expr_to_block (&body, tmp);
        }

      tmp = gfc_trans_code (c->next);
      gfc_add_expr_to_block (&body, tmp);

      tmp = build1_v (GOTO_EXPR, end_label);
      gfc_add_expr_to_block (&body, tmp);
    }

  /* Generate the structure describing the branches */
  init = NULL_TREE;
  i = 0;

  for(d = cp; d; d = d->right, i++)
    {
      node = NULL_TREE;

      gfc_init_se (&se, NULL);

      if (d->low == NULL)
        {
          node = tree_cons (ss_string1, null_pointer_node, node);
          node = tree_cons (ss_string1_len, integer_zero_node, node);
        }
      else
        {
          gfc_conv_expr_reference (&se, d->low);

          node = tree_cons (ss_string1, se.expr, node);
          node = tree_cons (ss_string1_len, se.string_length, node);
        }

      if (d->high == NULL)
        {
          node = tree_cons (ss_string2, null_pointer_node, node);
          node = tree_cons (ss_string2_len, integer_zero_node, node);
        }
      else
        {
          gfc_init_se (&se, NULL);
          gfc_conv_expr_reference (&se, d->high);

          node = tree_cons (ss_string2, se.expr, node);
          node = tree_cons (ss_string2_len, se.string_length, node);
        }

      tmp = gfc_build_addr_expr (pvoid_type_node, labels[i]);
      node = tree_cons (ss_target, tmp, node);

      tmp = build1 (CONSTRUCTOR, select_struct, nreverse (node));
      init = tree_cons (NULL_TREE, tmp, init);
    }

  type = build_array_type (select_struct, build_index_type
			   (build_int_cst (NULL_TREE, n - 1)));

  init = build1 (CONSTRUCTOR, type, nreverse(init));
  TREE_CONSTANT (init) = 1;
  TREE_INVARIANT (init) = 1;
  TREE_STATIC (init) = 1;
  /* Create a static variable to hold the jump table.  */
  tmp = gfc_create_var (type, "jumptable");
  TREE_CONSTANT (tmp) = 1;
  TREE_INVARIANT (tmp) = 1;
  TREE_STATIC (tmp) = 1;
  DECL_INITIAL (tmp) = init;
  init = tmp;

  /* Build an argument list for the library call */
  init = gfc_build_addr_expr (pvoid_type_node, init);
  args = gfc_chainon_list (NULL_TREE, init);

  tmp = build_int_cst (NULL_TREE, n);
  args = gfc_chainon_list (args, tmp);

  tmp = gfc_build_addr_expr (pvoid_type_node, end_label);
  args = gfc_chainon_list (args, tmp);

  gfc_init_se (&se, NULL);
  gfc_conv_expr_reference (&se, code->expr);

  args = gfc_chainon_list (args, se.expr);
  args = gfc_chainon_list (args, se.string_length);

  gfc_add_block_to_block (&block, &se.pre);

  tmp = gfc_build_function_call (gfor_fndecl_select_string, args);
  tmp = build1 (GOTO_EXPR, void_type_node, tmp);
  gfc_add_expr_to_block (&block, tmp);

  tmp = gfc_finish_block (&body);
  gfc_add_expr_to_block (&block, tmp);
  tmp = build1_v (LABEL_EXPR, end_label);
  gfc_add_expr_to_block (&block, tmp);

  if (n != 0)
    gfc_free (labels);

  return gfc_finish_block (&block);
}


/* Translate the three variants of the SELECT CASE construct.

   SELECT CASEs with INTEGER case expressions can be translated to an
   equivalent GENERIC switch statement, and for LOGICAL case
   expressions we build one or two if-else compares.

   SELECT CASEs with CHARACTER case expressions are a whole different
   story, because they don't exist in GENERIC.  So we sort them and
   do a binary search at runtime.

   Fortran has no BREAK statement, and it does not allow jumps from
   one case block to another.  That makes things a lot easier for
   the optimizers.  */

tree
gfc_trans_select (gfc_code * code)
{
  gcc_assert (code && code->expr);

  /* Empty SELECT constructs are legal.  */
  if (code->block == NULL)
    return build_empty_stmt ();

  /* Select the correct translation function.  */
  switch (code->expr->ts.type)
    {
    case BT_LOGICAL:	return gfc_trans_logical_select (code);
    case BT_INTEGER:	return gfc_trans_integer_select (code);
    case BT_CHARACTER:	return gfc_trans_character_select (code);
    default:
      gfc_internal_error ("gfc_trans_select(): Bad type for case expr.");
      /* Not reached */
    }
}


/* Generate the loops for a FORALL block.  The normal loop format:
    count = (end - start + step) / step
    loopvar = start
    while (1)
      {
        if (count <=0 )
          goto end_of_loop
        <body>
        loopvar += step
        count --
      }
    end_of_loop:  */

static tree
gfc_trans_forall_loop (forall_info *forall_tmp, int nvar, tree body, int mask_flag)
{
  int n;
  tree tmp;
  tree cond;
  stmtblock_t block;
  tree exit_label;
  tree count;
  tree var, start, end, step, mask, maskindex;
  iter_info *iter;

  iter = forall_tmp->this_loop;
  for (n = 0; n < nvar; n++)
    {
      var = iter->var;
      start = iter->start;
      end = iter->end;
      step = iter->step;

      exit_label = gfc_build_label_decl (NULL_TREE);
      TREE_USED (exit_label) = 1;

      /* The loop counter.  */
      count = gfc_create_var (TREE_TYPE (var), "count");

      /* The body of the loop.  */
      gfc_init_block (&block);

      /* The exit condition.  */
      cond = build2 (LE_EXPR, boolean_type_node, count, integer_zero_node);
      tmp = build1_v (GOTO_EXPR, exit_label);
      tmp = build3_v (COND_EXPR, cond, tmp, build_empty_stmt ());
      gfc_add_expr_to_block (&block, tmp);

      /* The main loop body.  */
      gfc_add_expr_to_block (&block, body);

      /* Increment the loop variable.  */
      tmp = build2 (PLUS_EXPR, TREE_TYPE (var), var, step);
      gfc_add_modify_expr (&block, var, tmp);

      /* Advance to the next mask element.  */
      if (mask_flag)
        {
          mask = forall_tmp->mask;
          maskindex = forall_tmp->maskindex;
          if (mask)
            {
              tmp = build2 (PLUS_EXPR, gfc_array_index_type,
			    maskindex, gfc_index_one_node);
              gfc_add_modify_expr (&block, maskindex, tmp);
            }
        }
      /* Decrement the loop counter.  */
      tmp = build2 (MINUS_EXPR, TREE_TYPE (var), count, gfc_index_one_node);
      gfc_add_modify_expr (&block, count, tmp);

      body = gfc_finish_block (&block);

      /* Loop var initialization.  */
      gfc_init_block (&block);
      gfc_add_modify_expr (&block, var, start);

      /* Initialize the loop counter.  */
      tmp = fold (build2 (MINUS_EXPR, TREE_TYPE (var), step, start));
      tmp = fold (build2 (PLUS_EXPR, TREE_TYPE (var), end, tmp));
      tmp = fold (build2 (TRUNC_DIV_EXPR, TREE_TYPE (var), tmp, step));
      gfc_add_modify_expr (&block, count, tmp);

      /* The loop expression.  */
      tmp = build1_v (LOOP_EXPR, body);
      gfc_add_expr_to_block (&block, tmp);

      /* The exit label.  */
      tmp = build1_v (LABEL_EXPR, exit_label);
      gfc_add_expr_to_block (&block, tmp);

      body = gfc_finish_block (&block);
      iter = iter->next;
    }
  return body;
}


/* Generate the body and loops according to MASK_FLAG and NEST_FLAG.
   if MASK_FLAG is nonzero, the body is controlled by maskes in forall
   nest, otherwise, the body is not controlled by maskes.
   if NEST_FLAG is nonzero, generate loops for nested forall, otherwise,
   only generate loops for the current forall level.  */

static tree
gfc_trans_nested_forall_loop (forall_info * nested_forall_info, tree body,
                              int mask_flag, int nest_flag)
{
  tree tmp;
  int nvar;
  forall_info *forall_tmp;
  tree pmask, mask, maskindex;

  forall_tmp = nested_forall_info;
  /* Generate loops for nested forall.  */
  if (nest_flag)
    {
      while (forall_tmp->next_nest != NULL)
        forall_tmp = forall_tmp->next_nest;
      while (forall_tmp != NULL)
        {
          /* Generate body with masks' control.  */
          if (mask_flag)
            {
              pmask = forall_tmp->pmask;
              mask = forall_tmp->mask;
              maskindex = forall_tmp->maskindex;

              if (mask)
                {
                  /* If a mask was specified make the assignment conditional.  */
                  if (pmask)
		    tmp = gfc_build_indirect_ref (mask);
                  else
                    tmp = mask;
                  tmp = gfc_build_array_ref (tmp, maskindex);

                  body = build3_v (COND_EXPR, tmp, body, build_empty_stmt ());
                }
            }
          nvar = forall_tmp->nvar;
          body = gfc_trans_forall_loop (forall_tmp, nvar, body, mask_flag);
          forall_tmp = forall_tmp->outer;
        }
    }
  else
    {
      nvar = forall_tmp->nvar;
      body = gfc_trans_forall_loop (forall_tmp, nvar, body, mask_flag);
    }

  return body;
}


/* Allocate data for holding a temporary array.  Returns either a local
   temporary array or a pointer variable.  */

static tree
gfc_do_allocate (tree bytesize, tree size, tree * pdata, stmtblock_t * pblock,
                 tree elem_type)
{
  tree tmpvar;
  tree type;
  tree tmp;
  tree args;

  if (INTEGER_CST_P (size))
    {
      tmp = fold (build2 (MINUS_EXPR, gfc_array_index_type, size,
			  gfc_index_one_node));
    }
  else
    tmp = NULL_TREE;

  type = build_range_type (gfc_array_index_type, gfc_index_zero_node, tmp);
  type = build_array_type (elem_type, type);
  if (gfc_can_put_var_on_stack (bytesize))
    {
      gcc_assert (INTEGER_CST_P (size));
      tmpvar = gfc_create_var (type, "temp");
      *pdata = NULL_TREE;
    }
  else
    {
      tmpvar = gfc_create_var (build_pointer_type (type), "temp");
      *pdata = convert (pvoid_type_node, tmpvar);

      args = gfc_chainon_list (NULL_TREE, bytesize);
      if (gfc_index_integer_kind == 4)
	tmp = gfor_fndecl_internal_malloc;
      else if (gfc_index_integer_kind == 8)
	tmp = gfor_fndecl_internal_malloc64;
      else
	gcc_unreachable ();
      tmp = gfc_build_function_call (tmp, args);
      tmp = convert (TREE_TYPE (tmpvar), tmp);
      gfc_add_modify_expr (pblock, tmpvar, tmp);
    }
  return tmpvar;
}


/* Generate codes to copy the temporary to the actual lhs.  */

static tree
generate_loop_for_temp_to_lhs (gfc_expr *expr, tree tmp1, tree size,
                          tree count3, tree count1, tree count2, tree wheremask)
{
  gfc_ss *lss;
  gfc_se lse, rse;
  stmtblock_t block, body;
  gfc_loopinfo loop1;
  tree tmp, tmp2;
  tree index;
  tree wheremaskexpr;

  /* Walk the lhs.  */
  lss = gfc_walk_expr (expr);

  if (lss == gfc_ss_terminator)
    {
      gfc_start_block (&block);

      gfc_init_se (&lse, NULL);

      /* Translate the expression.  */
      gfc_conv_expr (&lse, expr);

      /* Form the expression for the temporary.  */
      tmp = gfc_build_array_ref (tmp1, count1);

      /* Use the scalar assignment as is.  */
      gfc_add_block_to_block (&block, &lse.pre);
      gfc_add_modify_expr (&block, lse.expr, tmp);
      gfc_add_block_to_block (&block, &lse.post);

      /* Increment the count1.  */
      tmp = fold (build2 (PLUS_EXPR, TREE_TYPE (count1), count1, size));
      gfc_add_modify_expr (&block, count1, tmp);
      tmp = gfc_finish_block (&block);
    }
  else
    {
      gfc_start_block (&block);

      gfc_init_loopinfo (&loop1);
      gfc_init_se (&rse, NULL);
      gfc_init_se (&lse, NULL);

      /* Associate the lss with the loop.  */
      gfc_add_ss_to_loop (&loop1, lss);

      /* Calculate the bounds of the scalarization.  */
      gfc_conv_ss_startstride (&loop1);
      /* Setup the scalarizing loops.  */
      gfc_conv_loop_setup (&loop1);

      gfc_mark_ss_chain_used (lss, 1);
      /* Initialize count2.  */
      gfc_add_modify_expr (&block, count2, gfc_index_zero_node);

      /* Start the scalarized loop body.  */
      gfc_start_scalarized_body (&loop1, &body);

      /* Setup the gfc_se structures.  */
      gfc_copy_loopinfo_to_se (&lse, &loop1);
      lse.ss = lss;

      /* Form the expression of the temporary.  */
      if (lss != gfc_ss_terminator)
        {
          index = fold (build2 (PLUS_EXPR, gfc_array_index_type,
				count1, count2));
          rse.expr = gfc_build_array_ref (tmp1, index);
        }
      /* Translate expr.  */
      gfc_conv_expr (&lse, expr);

      /* Use the scalar assignment.  */
      tmp = gfc_trans_scalar_assign (&lse, &rse, expr->ts.type);

     /* Form the mask expression according to the mask tree list.  */
     if (wheremask)
       {
	 wheremaskexpr = gfc_build_array_ref (wheremask, count3);
         tmp2 = TREE_CHAIN (wheremask);
         while (tmp2)
           {
             tmp1 = gfc_build_array_ref (tmp2, count3);
             wheremaskexpr = build2 (TRUTH_AND_EXPR, TREE_TYPE (tmp1),
				     wheremaskexpr, tmp1);
             tmp2 = TREE_CHAIN (tmp2);
           }
         tmp = build3_v (COND_EXPR, wheremaskexpr, tmp, build_empty_stmt ());
       }

      gfc_add_expr_to_block (&body, tmp);

      /* Increment count2.  */
      tmp = fold (build2 (PLUS_EXPR, gfc_array_index_type,
			  count2, gfc_index_one_node));
      gfc_add_modify_expr (&body, count2, tmp);

      /* Increment count3.  */
      if (count3)
        {
          tmp = fold (build2 (PLUS_EXPR, gfc_array_index_type,
			      count3, gfc_index_one_node));
          gfc_add_modify_expr (&body, count3, tmp);
        }

      /* Generate the copying loops.  */
      gfc_trans_scalarizing_loops (&loop1, &body);
      gfc_add_block_to_block (&block, &loop1.pre);
      gfc_add_block_to_block (&block, &loop1.post);
      gfc_cleanup_loop (&loop1);

      /* Increment count1.  */
      tmp = fold (build2 (PLUS_EXPR, TREE_TYPE (count1), count1, size));
      gfc_add_modify_expr (&block, count1, tmp);
      tmp = gfc_finish_block (&block);
    }
  return tmp;
}


/* Generate codes to copy rhs to the temporary. TMP1 is the address of temporary
   LSS and RSS are formed in function compute_inner_temp_size(), and should
   not be freed.  */

static tree
generate_loop_for_rhs_to_temp (gfc_expr *expr2, tree tmp1, tree size,
			       tree count3, tree count1, tree count2,
			    gfc_ss *lss, gfc_ss *rss, tree wheremask)
{
  stmtblock_t block, body1;
  gfc_loopinfo loop;
  gfc_se lse;
  gfc_se rse;
  tree tmp, tmp2, index;
  tree wheremaskexpr;

  gfc_start_block (&block);

  gfc_init_se (&rse, NULL);
  gfc_init_se (&lse, NULL);

  if (lss == gfc_ss_terminator)
    {
      gfc_init_block (&body1);
      gfc_conv_expr (&rse, expr2);
      lse.expr = gfc_build_array_ref (tmp1, count1);
    }
  else
    {
      /* Initialize count2.  */
      gfc_add_modify_expr (&block, count2, gfc_index_zero_node);

      /* Initialize the loop.  */
      gfc_init_loopinfo (&loop);

      /* We may need LSS to determine the shape of the expression.  */
      gfc_add_ss_to_loop (&loop, lss);
      gfc_add_ss_to_loop (&loop, rss);

      gfc_conv_ss_startstride (&loop);
      gfc_conv_loop_setup (&loop);

      gfc_mark_ss_chain_used (rss, 1);
      /* Start the loop body.  */
      gfc_start_scalarized_body (&loop, &body1);

      /* Translate the expression.  */
      gfc_copy_loopinfo_to_se (&rse, &loop);
      rse.ss = rss;
      gfc_conv_expr (&rse, expr2);

      /* Form the expression of the temporary.  */
      index = fold (build2 (PLUS_EXPR, gfc_array_index_type, count1, count2));
      lse.expr = gfc_build_array_ref (tmp1, index);
    }

  /* Use the scalar assignment.  */
  tmp = gfc_trans_scalar_assign (&lse, &rse, expr2->ts.type);

  /* Form the mask expression according to the mask tree list.  */
  if (wheremask)
    {
      wheremaskexpr = gfc_build_array_ref (wheremask, count3);
      tmp2 = TREE_CHAIN (wheremask);
      while (tmp2)
        {
          tmp1 = gfc_build_array_ref (tmp2, count3);
          wheremaskexpr = build2 (TRUTH_AND_EXPR, TREE_TYPE (tmp1),
				  wheremaskexpr, tmp1);
          tmp2 = TREE_CHAIN (tmp2);
        }
      tmp = build3_v (COND_EXPR, wheremaskexpr, tmp, build_empty_stmt ());
    }

  gfc_add_expr_to_block (&body1, tmp);

  if (lss == gfc_ss_terminator)
    {
      gfc_add_block_to_block (&block, &body1);
    }
  else
    {
      /* Increment count2.  */
      tmp = fold (build2 (PLUS_EXPR, gfc_array_index_type,
			  count2, gfc_index_one_node));
      gfc_add_modify_expr (&body1, count2, tmp);

      /* Increment count3.  */
      if (count3)
        {
          tmp = fold (build2 (PLUS_EXPR, gfc_array_index_type,
			      count3, gfc_index_one_node));
          gfc_add_modify_expr (&body1, count3, tmp);
        }

      /* Generate the copying loops.  */
      gfc_trans_scalarizing_loops (&loop, &body1);

      gfc_add_block_to_block (&block, &loop.pre);
      gfc_add_block_to_block (&block, &loop.post);

      gfc_cleanup_loop (&loop);
      /* TODO: Reuse lss and rss when copying temp->lhs.  Need to be careful
         as tree nodes in SS may not be valid in different scope.  */
    }
  /* Increment count1.  */
  tmp = fold (build2 (PLUS_EXPR, TREE_TYPE (count1), count1, size));
  gfc_add_modify_expr (&block, count1, tmp);

  tmp = gfc_finish_block (&block);
  return tmp;
}


/* Calculate the size of temporary needed in the assignment inside forall.
   LSS and RSS are filled in this function.  */

static tree
compute_inner_temp_size (gfc_expr *expr1, gfc_expr *expr2,
			 stmtblock_t * pblock,
                         gfc_ss **lss, gfc_ss **rss)
{
  gfc_loopinfo loop;
  tree size;
  int i;
  tree tmp;

  *lss = gfc_walk_expr (expr1);
  *rss = NULL;

  size = gfc_index_one_node;
  if (*lss != gfc_ss_terminator)
    {
      gfc_init_loopinfo (&loop);

      /* Walk the RHS of the expression.  */
      *rss = gfc_walk_expr (expr2);
      if (*rss == gfc_ss_terminator)
        {
          /* The rhs is scalar.  Add a ss for the expression.  */
          *rss = gfc_get_ss ();
          (*rss)->next = gfc_ss_terminator;
          (*rss)->type = GFC_SS_SCALAR;
          (*rss)->expr = expr2;
        }

      /* Associate the SS with the loop.  */
      gfc_add_ss_to_loop (&loop, *lss);
      /* We don't actually need to add the rhs at this point, but it might
         make guessing the loop bounds a bit easier.  */
      gfc_add_ss_to_loop (&loop, *rss);

      /* We only want the shape of the expression, not rest of the junk
         generated by the scalarizer.  */
      loop.array_parameter = 1;

      /* Calculate the bounds of the scalarization.  */
      gfc_conv_ss_startstride (&loop);
      gfc_conv_loop_setup (&loop);

      /* Figure out how many elements we need.  */
      for (i = 0; i < loop.dimen; i++)
        {
	  tmp = fold (build2 (MINUS_EXPR, gfc_array_index_type,
			      gfc_index_one_node, loop.from[i]));
          tmp = fold (build2 (PLUS_EXPR, gfc_array_index_type,
			      tmp, loop.to[i]));
          size = fold (build2 (MULT_EXPR, gfc_array_index_type, size, tmp));
        }
      gfc_add_block_to_block (pblock, &loop.pre);
      size = gfc_evaluate_now (size, pblock);
      gfc_add_block_to_block (pblock, &loop.post);

      /* TODO: write a function that cleans up a loopinfo without freeing
         the SS chains.  Currently a NOP.  */
    }

  return size;
}


/* Calculate the overall iterator number of the nested forall construct.  */

static tree
compute_overall_iter_number (forall_info *nested_forall_info, tree inner_size,
                             stmtblock_t *block)
{
  tree tmp, number;
  stmtblock_t body;

  /* TODO: optimizing the computing process.  */
  number = gfc_create_var (gfc_array_index_type, "num");
  gfc_add_modify_expr (block, number, gfc_index_zero_node);

  gfc_start_block (&body);
  if (nested_forall_info)
    tmp = build2 (PLUS_EXPR, gfc_array_index_type, number,
		  inner_size);
  else
    tmp = inner_size;
  gfc_add_modify_expr (&body, number, tmp);
  tmp = gfc_finish_block (&body);

  /* Generate loops.  */
  if (nested_forall_info != NULL)
    tmp = gfc_trans_nested_forall_loop (nested_forall_info, tmp, 0, 1);

  gfc_add_expr_to_block (block, tmp);

  return number;
}


/* Allocate temporary for forall construct according to the information in
   nested_forall_info.  INNER_SIZE is the size of temporary needed in the
   assignment inside forall.  PTEMP1 is returned for space free.  */

static tree
allocate_temp_for_forall_nest (forall_info * nested_forall_info, tree type,
                               tree inner_size, stmtblock_t * block,
                               tree * ptemp1)
{
  tree unit;
  tree temp1;
  tree tmp;
  tree bytesize, size;

  /* Calculate the total size of temporary needed in forall construct.  */
  size = compute_overall_iter_number (nested_forall_info, inner_size, block);

  unit = TYPE_SIZE_UNIT (type);
  bytesize = fold (build2 (MULT_EXPR, gfc_array_index_type, size, unit));

  *ptemp1 = NULL;
  temp1 = gfc_do_allocate (bytesize, size, ptemp1, block, type);

  if (*ptemp1)
    tmp = gfc_build_indirect_ref (temp1);
  else
    tmp = temp1;

  return tmp;
}


/* Handle assignments inside forall which need temporary.  */
static void
gfc_trans_assign_need_temp (gfc_expr * expr1, gfc_expr * expr2, tree wheremask,
                            forall_info * nested_forall_info,
                            stmtblock_t * block)
{
  tree type;
  tree inner_size;
  gfc_ss *lss, *rss;
  tree count, count1, count2;
  tree tmp, tmp1;
  tree ptemp1;
  tree mask, maskindex;
  forall_info *forall_tmp;

  /* Create vars. count1 is the current iterator number of the nested forall.
     count2 is the current iterator number of the inner loops needed in the
     assignment.  */
  count1 = gfc_create_var (gfc_array_index_type, "count1");
  count2 = gfc_create_var (gfc_array_index_type, "count2");

  /* Count is the wheremask index.  */
  if (wheremask)
    {
      count = gfc_create_var (gfc_array_index_type, "count");
      gfc_add_modify_expr (block, count, gfc_index_zero_node);
    }
  else
    count = NULL;

  /* Initialize count1.  */
  gfc_add_modify_expr (block, count1, gfc_index_zero_node);

  /* Calculate the size of temporary needed in the assignment. Return loop, lss
     and rss which are used in function generate_loop_for_rhs_to_temp().  */
  inner_size = compute_inner_temp_size (expr1, expr2, block, &lss, &rss);

  /* The type of LHS. Used in function allocate_temp_for_forall_nest */
  type = gfc_typenode_for_spec (&expr1->ts);

  /* Allocate temporary for nested forall construct according to the
     information in nested_forall_info and inner_size.  */
  tmp1 = allocate_temp_for_forall_nest (nested_forall_info, type,
                                inner_size, block, &ptemp1);

  /* Initialize the maskindexes.  */
  forall_tmp = nested_forall_info;
  while (forall_tmp != NULL)
    {
      mask = forall_tmp->mask;
      maskindex = forall_tmp->maskindex;
      if (mask)
        gfc_add_modify_expr (block, maskindex, gfc_index_zero_node);
      forall_tmp = forall_tmp->next_nest;
    }

  /* Generate codes to copy rhs to the temporary .  */
  tmp = generate_loop_for_rhs_to_temp (expr2, tmp1, inner_size, count,
                                       count1, count2, lss, rss, wheremask);

  /* Generate body and loops according to the information in
     nested_forall_info.  */
  tmp = gfc_trans_nested_forall_loop (nested_forall_info, tmp, 1, 1);
  gfc_add_expr_to_block (block, tmp);

  /* Reset count1.  */
  gfc_add_modify_expr (block, count1, gfc_index_zero_node);

  /* Reset maskindexed.  */
  forall_tmp = nested_forall_info;
  while (forall_tmp != NULL)
    {
      mask = forall_tmp->mask;
      maskindex = forall_tmp->maskindex;
      if (mask)
        gfc_add_modify_expr (block, maskindex, gfc_index_zero_node);
      forall_tmp = forall_tmp->next_nest;
    }

  /* Reset count.  */
  if (wheremask)
    gfc_add_modify_expr (block, count, gfc_index_zero_node);

  /* Generate codes to copy the temporary to lhs.  */
  tmp = generate_loop_for_temp_to_lhs (expr1, tmp1, inner_size, count,
                                       count1, count2, wheremask);

  /* Generate body and loops according to the information in
     nested_forall_info.  */
  tmp = gfc_trans_nested_forall_loop (nested_forall_info, tmp, 1, 1);
  gfc_add_expr_to_block (block, tmp);

  if (ptemp1)
    {
      /* Free the temporary.  */
      tmp = gfc_chainon_list (NULL_TREE, ptemp1);
      tmp = gfc_build_function_call (gfor_fndecl_internal_free, tmp);
      gfc_add_expr_to_block (block, tmp);
    }
}


/* Translate pointer assignment inside FORALL which need temporary.  */

static void
gfc_trans_pointer_assign_need_temp (gfc_expr * expr1, gfc_expr * expr2,
                                    forall_info * nested_forall_info,
                                    stmtblock_t * block)
{
  tree type;
  tree inner_size;
  gfc_ss *lss, *rss;
  gfc_se lse;
  gfc_se rse;
  gfc_ss_info *info;
  gfc_loopinfo loop;
  tree desc;
  tree parm;
  tree parmtype;
  stmtblock_t body;
  tree count;
  tree tmp, tmp1, ptemp1;
  tree mask, maskindex;
  forall_info *forall_tmp;

  count = gfc_create_var (gfc_array_index_type, "count");
  gfc_add_modify_expr (block, count, gfc_index_zero_node);

  inner_size = integer_one_node;
  lss = gfc_walk_expr (expr1);
  rss = gfc_walk_expr (expr2);
  if (lss == gfc_ss_terminator)
    {
      type = gfc_typenode_for_spec (&expr1->ts);
      type = build_pointer_type (type);

      /* Allocate temporary for nested forall construct according to the
         information in nested_forall_info and inner_size.  */
      tmp1 = allocate_temp_for_forall_nest (nested_forall_info,
                                            type, inner_size, block, &ptemp1);
      gfc_start_block (&body);
      gfc_init_se (&lse, NULL);
      lse.expr = gfc_build_array_ref (tmp1, count);
      gfc_init_se (&rse, NULL);
      rse.want_pointer = 1;
      gfc_conv_expr (&rse, expr2);
      gfc_add_block_to_block (&body, &rse.pre);
      gfc_add_modify_expr (&body, lse.expr, rse.expr);
      gfc_add_block_to_block (&body, &rse.post);

      /* Increment count.  */
      tmp = fold (build2 (PLUS_EXPR, gfc_array_index_type,
			  count, gfc_index_one_node));
      gfc_add_modify_expr (&body, count, tmp);

      tmp = gfc_finish_block (&body);

      /* Initialize the maskindexes.  */
      forall_tmp = nested_forall_info;
      while (forall_tmp != NULL)
        {
          mask = forall_tmp->mask;
          maskindex = forall_tmp->maskindex;
          if (mask)
            gfc_add_modify_expr (block, maskindex, gfc_index_zero_node);
          forall_tmp = forall_tmp->next_nest;
        }

      /* Generate body and loops according to the information in
         nested_forall_info.  */
      tmp = gfc_trans_nested_forall_loop (nested_forall_info, tmp, 1, 1);
      gfc_add_expr_to_block (block, tmp);

      /* Reset count.  */
      gfc_add_modify_expr (block, count, gfc_index_zero_node);

      /* Reset maskindexes.  */
      forall_tmp = nested_forall_info;
      while (forall_tmp != NULL)
        {
          mask = forall_tmp->mask;
          maskindex = forall_tmp->maskindex;
          if (mask)
            gfc_add_modify_expr (block, maskindex, gfc_index_zero_node);
          forall_tmp = forall_tmp->next_nest;
        }
      gfc_start_block (&body);
      gfc_init_se (&lse, NULL);
      gfc_init_se (&rse, NULL);
      rse.expr = gfc_build_array_ref (tmp1, count);
      lse.want_pointer = 1;
      gfc_conv_expr (&lse, expr1);
      gfc_add_block_to_block (&body, &lse.pre);
      gfc_add_modify_expr (&body, lse.expr, rse.expr);
      gfc_add_block_to_block (&body, &lse.post);
      /* Increment count.  */
      tmp = fold (build2 (PLUS_EXPR, gfc_array_index_type,
			  count, gfc_index_one_node));
      gfc_add_modify_expr (&body, count, tmp);
      tmp = gfc_finish_block (&body);

      /* Generate body and loops according to the information in
         nested_forall_info.  */
      tmp = gfc_trans_nested_forall_loop (nested_forall_info, tmp, 1, 1);
      gfc_add_expr_to_block (block, tmp);
    }
  else
    {
      gfc_init_loopinfo (&loop);

      /* Associate the SS with the loop.  */
      gfc_add_ss_to_loop (&loop, rss);

      /* Setup the scalarizing loops and bounds.  */
      gfc_conv_ss_startstride (&loop);

      gfc_conv_loop_setup (&loop);

      info = &rss->data.info;
      desc = info->descriptor;

      /* Make a new descriptor.  */
      parmtype = gfc_get_element_type (TREE_TYPE (desc));
      parmtype = gfc_get_array_type_bounds (parmtype, loop.dimen,
                                            loop.from, loop.to, 1);

      /* Allocate temporary for nested forall construct.  */
      tmp1 = allocate_temp_for_forall_nest (nested_forall_info, parmtype,
                                            inner_size, block, &ptemp1);
      gfc_start_block (&body);
      gfc_init_se (&lse, NULL);
      lse.expr = gfc_build_array_ref (tmp1, count);
      lse.direct_byref = 1;
      rss = gfc_walk_expr (expr2);
      gfc_conv_expr_descriptor (&lse, expr2, rss);

      gfc_add_block_to_block (&body, &lse.pre);
      gfc_add_block_to_block (&body, &lse.post);

      /* Increment count.  */
      tmp = fold (build2 (PLUS_EXPR, gfc_array_index_type,
			  count, gfc_index_one_node));
      gfc_add_modify_expr (&body, count, tmp);

      tmp = gfc_finish_block (&body);

      /* Initialize the maskindexes.  */
      forall_tmp = nested_forall_info;
      while (forall_tmp != NULL)
        {
          mask = forall_tmp->mask;
          maskindex = forall_tmp->maskindex;
          if (mask)
            gfc_add_modify_expr (block, maskindex, gfc_index_zero_node);
          forall_tmp = forall_tmp->next_nest;
        }

      /* Generate body and loops according to the information in
         nested_forall_info.  */
      tmp = gfc_trans_nested_forall_loop (nested_forall_info, tmp, 1, 1);
      gfc_add_expr_to_block (block, tmp);

      /* Reset count.  */
      gfc_add_modify_expr (block, count, gfc_index_zero_node);

      /* Reset maskindexes.  */
      forall_tmp = nested_forall_info;
      while (forall_tmp != NULL)
        {
          mask = forall_tmp->mask;
          maskindex = forall_tmp->maskindex;
          if (mask)
            gfc_add_modify_expr (block, maskindex, gfc_index_zero_node);
          forall_tmp = forall_tmp->next_nest;
        }
      parm = gfc_build_array_ref (tmp1, count);
      lss = gfc_walk_expr (expr1);
      gfc_init_se (&lse, NULL);
      gfc_conv_expr_descriptor (&lse, expr1, lss);
      gfc_add_modify_expr (&lse.pre, lse.expr, parm);
      gfc_start_block (&body);
      gfc_add_block_to_block (&body, &lse.pre);
      gfc_add_block_to_block (&body, &lse.post);

      /* Increment count.  */
      tmp = fold (build2 (PLUS_EXPR, gfc_array_index_type,
			  count, gfc_index_one_node));
      gfc_add_modify_expr (&body, count, tmp);

      tmp = gfc_finish_block (&body);

      tmp = gfc_trans_nested_forall_loop (nested_forall_info, tmp, 1, 1);
      gfc_add_expr_to_block (block, tmp);
    }
  /* Free the temporary.  */
  if (ptemp1)
    {
      tmp = gfc_chainon_list (NULL_TREE, ptemp1);
      tmp = gfc_build_function_call (gfor_fndecl_internal_free, tmp);
      gfc_add_expr_to_block (block, tmp);
    }
}


/* FORALL and WHERE statements are really nasty, especially when you nest
   them. All the rhs of a forall assignment must be evaluated before the
   actual assignments are performed. Presumably this also applies to all the
   assignments in an inner where statement.  */

/* Generate code for a FORALL statement.  Any temporaries are allocated as a
   linear array, relying on the fact that we process in the same order in all
   loops.

    forall (i=start:end:stride; maskexpr)
      e<i> = f<i>
      g<i> = h<i>
    end forall
   (where e,f,g,h<i> are arbitrary expressions possibly involving i)
   Translates to:
    count = ((end + 1 - start) / staride)
    masktmp(:) = maskexpr(:)

    maskindex = 0;
    for (i = start; i <= end; i += stride)
      {
        if (masktmp[maskindex++])
          e<i> = f<i>
      }
    maskindex = 0;
    for (i = start; i <= end; i += stride)
      {
        if (masktmp[maskindex++])
          e<i> = f<i>
      }

    Note that this code only works when there are no dependencies.
    Forall loop with array assignments and data dependencies are a real pain,
    because the size of the temporary cannot always be determined before the
    loop is executed.  This problem is compounded by the presence of nested
    FORALL constructs.
 */

static tree
gfc_trans_forall_1 (gfc_code * code, forall_info * nested_forall_info)
{
  stmtblock_t block;
  stmtblock_t body;
  tree *var;
  tree *start;
  tree *end;
  tree *step;
  gfc_expr **varexpr;
  tree tmp;
  tree assign;
  tree size;
  tree bytesize;
  tree tmpvar;
  tree sizevar;
  tree lenvar;
  tree maskindex;
  tree mask;
  tree pmask;
  int n;
  int nvar;
  int need_temp;
  gfc_forall_iterator *fa;
  gfc_se se;
  gfc_code *c;
  gfc_saved_var *saved_vars;
  iter_info *this_forall, *iter_tmp;
  forall_info *info, *forall_tmp;
  temporary_list *temp;

  gfc_start_block (&block);

  n = 0;
  /* Count the FORALL index number.  */
  for (fa = code->ext.forall_iterator; fa; fa = fa->next)
    n++;
  nvar = n;

  /* Allocate the space for var, start, end, step, varexpr.  */
  var = (tree *) gfc_getmem (nvar * sizeof (tree));
  start = (tree *) gfc_getmem (nvar * sizeof (tree));
  end = (tree *) gfc_getmem (nvar * sizeof (tree));
  step = (tree *) gfc_getmem (nvar * sizeof (tree));
  varexpr = (gfc_expr **) gfc_getmem (nvar * sizeof (gfc_expr *));
  saved_vars = (gfc_saved_var *) gfc_getmem (nvar * sizeof (gfc_saved_var));

  /* Allocate the space for info.  */
  info = (forall_info *) gfc_getmem (sizeof (forall_info));
  n = 0;
  for (fa = code->ext.forall_iterator; fa; fa = fa->next)
    {
      gfc_symbol *sym = fa->var->symtree->n.sym;

      /* allocate space for this_forall.  */
      this_forall = (iter_info *) gfc_getmem (sizeof (iter_info));

      /* Create a temporary variable for the FORALL index.  */
      tmp = gfc_typenode_for_spec (&sym->ts);
      var[n] = gfc_create_var (tmp, sym->name);
      gfc_shadow_sym (sym, var[n], &saved_vars[n]);

      /* Record it in this_forall.  */
      this_forall->var = var[n];

      /* Replace the index symbol's backend_decl with the temporary decl.  */
      sym->backend_decl = var[n];

      /* Work out the start, end and stride for the loop.  */
      gfc_init_se (&se, NULL);
      gfc_conv_expr_val (&se, fa->start);
      /* Record it in this_forall.  */
      this_forall->start = se.expr;
      gfc_add_block_to_block (&block, &se.pre);
      start[n] = se.expr;

      gfc_init_se (&se, NULL);
      gfc_conv_expr_val (&se, fa->end);
      /* Record it in this_forall.  */
      this_forall->end = se.expr;
      gfc_make_safe_expr (&se);
      gfc_add_block_to_block (&block, &se.pre);
      end[n] = se.expr;

      gfc_init_se (&se, NULL);
      gfc_conv_expr_val (&se, fa->stride);
      /* Record it in this_forall.  */
      this_forall->step = se.expr;
      gfc_make_safe_expr (&se);
      gfc_add_block_to_block (&block, &se.pre);
      step[n] = se.expr;

      /* Set the NEXT field of this_forall to NULL.  */
      this_forall->next = NULL;
      /* Link this_forall to the info construct.  */
      if (info->this_loop == NULL)
        info->this_loop = this_forall;
      else
        {
          iter_tmp = info->this_loop;
          while (iter_tmp->next != NULL)
            iter_tmp = iter_tmp->next;
          iter_tmp->next = this_forall;
        }

      n++;
    }
  nvar = n;

  /* Work out the number of elements in the mask array.  */
  tmpvar = NULL_TREE;
  lenvar = NULL_TREE;
  size = gfc_index_one_node;
  sizevar = NULL_TREE;

  for (n = 0; n < nvar; n++)
    {
      if (lenvar && TREE_TYPE (lenvar) != TREE_TYPE (start[n]))
	lenvar = NULL_TREE;

      /* size = (end + step - start) / step.  */
      tmp = fold (build2 (MINUS_EXPR, TREE_TYPE (start[n]), 
			  step[n], start[n]));
      tmp = fold (build2 (PLUS_EXPR, TREE_TYPE (end[n]), end[n], tmp));

      tmp = fold (build2 (FLOOR_DIV_EXPR, TREE_TYPE (tmp), tmp, step[n]));
      tmp = convert (gfc_array_index_type, tmp);

      size = fold (build2 (MULT_EXPR, gfc_array_index_type, size, tmp));
    }

  /* Record the nvar and size of current forall level.  */
  info->nvar = nvar;
  info->size = size;

  /* Link the current forall level to nested_forall_info.  */
  forall_tmp = nested_forall_info;
  if (forall_tmp == NULL)
    nested_forall_info = info;
  else
    {
      while (forall_tmp->next_nest != NULL)
        forall_tmp = forall_tmp->next_nest;
      info->outer = forall_tmp;
      forall_tmp->next_nest = info;
    }

  /* Copy the mask into a temporary variable if required.
     For now we assume a mask temporary is needed.  */
  if (code->expr)
    {
      /* Allocate the mask temporary.  */
      bytesize = fold (build2 (MULT_EXPR, gfc_array_index_type, size,
			       TYPE_SIZE_UNIT (boolean_type_node)));

      mask = gfc_do_allocate (bytesize, size, &pmask, &block, boolean_type_node);

      maskindex = gfc_create_var_np (gfc_array_index_type, "mi");
      /* Record them in the info structure.  */
      info->pmask = pmask;
      info->mask = mask;
      info->maskindex = maskindex;

      gfc_add_modify_expr (&block, maskindex, gfc_index_zero_node);

      /* Start of mask assignment loop body.  */
      gfc_start_block (&body);

      /* Evaluate the mask expression.  */
      gfc_init_se (&se, NULL);
      gfc_conv_expr_val (&se, code->expr);
      gfc_add_block_to_block (&body, &se.pre);

      /* Store the mask.  */
      se.expr = convert (boolean_type_node, se.expr);

      if (pmask)
	tmp = gfc_build_indirect_ref (mask);
      else
	tmp = mask;
      tmp = gfc_build_array_ref (tmp, maskindex);
      gfc_add_modify_expr (&body, tmp, se.expr);

      /* Advance to the next mask element.  */
      tmp = build2 (PLUS_EXPR, gfc_array_index_type,
		   maskindex, gfc_index_one_node);
      gfc_add_modify_expr (&body, maskindex, tmp);

      /* Generate the loops.  */
      tmp = gfc_finish_block (&body);
      tmp = gfc_trans_nested_forall_loop (info, tmp, 0, 0);
      gfc_add_expr_to_block (&block, tmp);
    }
  else
    {
      /* No mask was specified.  */
      maskindex = NULL_TREE;
      mask = pmask = NULL_TREE;
    }

  c = code->block->next;

  /* TODO: loop merging in FORALL statements.  */
  /* Now that we've got a copy of the mask, generate the assignment loops.  */
  while (c)
    {
      switch (c->op)
	{
	case EXEC_ASSIGN:
          /* A scalar or array assignment.  */
	  need_temp = gfc_check_dependency (c->expr, c->expr2, varexpr, nvar);
          /* Teporaries due to array assignment data dependencies introduce
             no end of problems.  */
	  if (need_temp)
            gfc_trans_assign_need_temp (c->expr, c->expr2, NULL,
                                        nested_forall_info, &block);
          else
            {
              /* Use the normal assignment copying routines.  */
              assign = gfc_trans_assignment (c->expr, c->expr2);

              /* Reset the mask index.  */
              if (mask)
                gfc_add_modify_expr (&block, maskindex, gfc_index_zero_node);

              /* Generate body and loops.  */
              tmp = gfc_trans_nested_forall_loop (nested_forall_info, assign, 1, 1);
              gfc_add_expr_to_block (&block, tmp);
            }

	  break;

        case EXEC_WHERE:

	  /* Translate WHERE or WHERE construct nested in FORALL.  */
          temp = NULL;
	  gfc_trans_where_2 (c, NULL, NULL, nested_forall_info, &block, &temp);

          while (temp)
            {
              tree args;
              temporary_list *p;

              /* Free the temporary.  */
              args = gfc_chainon_list (NULL_TREE, temp->temporary);
              tmp = gfc_build_function_call (gfor_fndecl_internal_free, args);
              gfc_add_expr_to_block (&block, tmp);

              p = temp;
              temp = temp->next;
              gfc_free (p);
            }

          break;

        /* Pointer assignment inside FORALL.  */
	case EXEC_POINTER_ASSIGN:
          need_temp = gfc_check_dependency (c->expr, c->expr2, varexpr, nvar);
          if (need_temp)
            gfc_trans_pointer_assign_need_temp (c->expr, c->expr2,
                                                nested_forall_info, &block);
          else
            {
              /* Use the normal assignment copying routines.  */
              assign = gfc_trans_pointer_assignment (c->expr, c->expr2);

              /* Reset the mask index.  */
              if (mask)
                gfc_add_modify_expr (&block, maskindex, gfc_index_zero_node);

              /* Generate body and loops.  */
              tmp = gfc_trans_nested_forall_loop (nested_forall_info, assign,
                                                  1, 1);
              gfc_add_expr_to_block (&block, tmp);
            }
          break;

	case EXEC_FORALL:
	  tmp = gfc_trans_forall_1 (c, nested_forall_info);
          gfc_add_expr_to_block (&block, tmp);
          break;

	default:
	  gcc_unreachable ();
	}

      c = c->next;
    }

  /* Restore the original index variables.  */
  for (fa = code->ext.forall_iterator, n = 0; fa; fa = fa->next, n++)
    gfc_restore_sym (fa->var->symtree->n.sym, &saved_vars[n]);

  /* Free the space for var, start, end, step, varexpr.  */
  gfc_free (var);
  gfc_free (start);
  gfc_free (end);
  gfc_free (step);
  gfc_free (varexpr);
  gfc_free (saved_vars);

  if (pmask)
    {
      /* Free the temporary for the mask.  */
      tmp = gfc_chainon_list (NULL_TREE, pmask);
      tmp = gfc_build_function_call (gfor_fndecl_internal_free, tmp);
      gfc_add_expr_to_block (&block, tmp);
    }
  if (maskindex)
    pushdecl (maskindex);

  return gfc_finish_block (&block);
}


/* Translate the FORALL statement or construct.  */

tree gfc_trans_forall (gfc_code * code)
{
  return gfc_trans_forall_1 (code, NULL);
}


/* Evaluate the WHERE mask expression, copy its value to a temporary.
   If the WHERE construct is nested in FORALL, compute the overall temporary
   needed by the WHERE mask expression multiplied by the iterator number of
   the nested forall.
   ME is the WHERE mask expression.
   MASK is the temporary which value is mask's value.
   NMASK is another temporary which value is !mask.
   TEMP records the temporary's address allocated in this function in order to
   free them outside this function.
   MASK, NMASK and TEMP are all OUT arguments.  */

static tree
gfc_evaluate_where_mask (gfc_expr * me, forall_info * nested_forall_info,
                         tree * mask, tree * nmask, temporary_list ** temp,
                         stmtblock_t * block)
{
  tree tmp, tmp1;
  gfc_ss *lss, *rss;
  gfc_loopinfo loop;
  tree ptemp1, ntmp, ptemp2;
  tree inner_size;
  stmtblock_t body, body1;
  gfc_se lse, rse;
  tree count;
  tree tmpexpr;

  gfc_init_loopinfo (&loop);

  /* Calculate the size of temporary needed by the mask-expr.  */
  inner_size = compute_inner_temp_size (me, me, block, &lss, &rss);

  /* Allocate temporary for where mask.  */
  tmp = allocate_temp_for_forall_nest (nested_forall_info, boolean_type_node,
                                       inner_size, block, &ptemp1);
  /* Record the temporary address in order to free it later.  */
  if (ptemp1)
    {
      temporary_list *tempo;
      tempo = (temporary_list *) gfc_getmem (sizeof (temporary_list));
      tempo->temporary = ptemp1;
      tempo->next = *temp;
      *temp = tempo;
    }

  /* Allocate temporary for !mask.  */
  ntmp = allocate_temp_for_forall_nest (nested_forall_info, boolean_type_node,
                                        inner_size, block, &ptemp2);
  /* Record the temporary  in order to free it later.  */
  if (ptemp2)
    {
      temporary_list *tempo;
      tempo = (temporary_list *) gfc_getmem (sizeof (temporary_list));
      tempo->temporary = ptemp2;
      tempo->next = *temp;
      *temp = tempo;
    }

  /* Variable to index the temporary.  */
  count = gfc_create_var (gfc_array_index_type, "count");
  /* Initialize count.  */
  gfc_add_modify_expr (block, count, gfc_index_zero_node);

  gfc_start_block (&body);

  gfc_init_se (&rse, NULL);
  gfc_init_se (&lse, NULL);

  if (lss == gfc_ss_terminator)
    {
      gfc_init_block (&body1);
    }
  else
    {
      /* Initialize the loop.  */
      gfc_init_loopinfo (&loop);

      /* We may need LSS to determine the shape of the expression.  */
      gfc_add_ss_to_loop (&loop, lss);
      gfc_add_ss_to_loop (&loop, rss);

      gfc_conv_ss_startstride (&loop);
      gfc_conv_loop_setup (&loop);

      gfc_mark_ss_chain_used (rss, 1);
      /* Start the loop body.  */
      gfc_start_scalarized_body (&loop, &body1);

      /* Translate the expression.  */
      gfc_copy_loopinfo_to_se (&rse, &loop);
      rse.ss = rss;
      gfc_conv_expr (&rse, me);
    }
  /* Form the expression of the temporary.  */
  lse.expr = gfc_build_array_ref (tmp, count);
  tmpexpr = gfc_build_array_ref (ntmp, count);

  /* Use the scalar assignment to fill temporary TMP.  */
  tmp1 = gfc_trans_scalar_assign (&lse, &rse, me->ts.type);
  gfc_add_expr_to_block (&body1, tmp1);

  /* Fill temporary NTMP.  */
  tmp1 = build1 (TRUTH_NOT_EXPR, TREE_TYPE (lse.expr), lse.expr);
  gfc_add_modify_expr (&body1, tmpexpr, tmp1);

 if (lss == gfc_ss_terminator)
    {
      gfc_add_block_to_block (&body, &body1);
    }
  else
    {
      /* Increment count.  */
      tmp1 = fold (build2 (PLUS_EXPR, gfc_array_index_type, count,
                          gfc_index_one_node));
      gfc_add_modify_expr (&body1, count, tmp1);

      /* Generate the copying loops.  */
      gfc_trans_scalarizing_loops (&loop, &body1);

      gfc_add_block_to_block (&body, &loop.pre);
      gfc_add_block_to_block (&body, &loop.post);

      gfc_cleanup_loop (&loop);
      /* TODO: Reuse lss and rss when copying temp->lhs.  Need to be careful
         as tree nodes in SS may not be valid in different scope.  */
    }

  tmp1 = gfc_finish_block (&body);
  /* If the WHERE construct is inside FORALL, fill the full temporary.  */
  if (nested_forall_info != NULL)
    tmp1 = gfc_trans_nested_forall_loop (nested_forall_info, tmp1, 1, 1);


  gfc_add_expr_to_block (block, tmp1);

  *mask = tmp;
  *nmask = ntmp;

  return tmp1;
}


/* Translate an assignment statement in a WHERE statement or construct
   statement. The MASK expression is used to control which elements
   of EXPR1 shall be assigned.  */

static tree
gfc_trans_where_assign (gfc_expr *expr1, gfc_expr *expr2, tree mask,
                        tree count1, tree count2)
{
  gfc_se lse;
  gfc_se rse;
  gfc_ss *lss;
  gfc_ss *lss_section;
  gfc_ss *rss;

  gfc_loopinfo loop;
  tree tmp;
  stmtblock_t block;
  stmtblock_t body;
  tree index, maskexpr, tmp1;

#if 0
  /* TODO: handle this special case.
     Special case a single function returning an array.  */
  if (expr2->expr_type == EXPR_FUNCTION && expr2->rank > 0)
    {
      tmp = gfc_trans_arrayfunc_assign (expr1, expr2);
      if (tmp)
        return tmp;
    }
#endif

 /* Assignment of the form lhs = rhs.  */
  gfc_start_block (&block);

  gfc_init_se (&lse, NULL);
  gfc_init_se (&rse, NULL);

  /* Walk the lhs.  */
  lss = gfc_walk_expr (expr1);
  rss = NULL;

  /* In each where-assign-stmt, the mask-expr and the variable being
     defined shall be arrays of the same shape.  */
  gcc_assert (lss != gfc_ss_terminator);

  /* The assignment needs scalarization.  */
  lss_section = lss;

  /* Find a non-scalar SS from the lhs.  */
  while (lss_section != gfc_ss_terminator
         && lss_section->type != GFC_SS_SECTION)
    lss_section = lss_section->next;

  gcc_assert (lss_section != gfc_ss_terminator);

  /* Initialize the scalarizer.  */
  gfc_init_loopinfo (&loop);

  /* Walk the rhs.  */
  rss = gfc_walk_expr (expr2);
  if (rss == gfc_ss_terminator)
   {
     /* The rhs is scalar.  Add a ss for the expression.  */
     rss = gfc_get_ss ();
     rss->next = gfc_ss_terminator;
     rss->type = GFC_SS_SCALAR;
     rss->expr = expr2;
    }

  /* Associate the SS with the loop.  */
  gfc_add_ss_to_loop (&loop, lss);
  gfc_add_ss_to_loop (&loop, rss);

  /* Calculate the bounds of the scalarization.  */
  gfc_conv_ss_startstride (&loop);

  /* Resolve any data dependencies in the statement.  */
  gfc_conv_resolve_dependencies (&loop, lss_section, rss);

  /* Setup the scalarizing loops.  */
  gfc_conv_loop_setup (&loop);

  /* Setup the gfc_se structures.  */
  gfc_copy_loopinfo_to_se (&lse, &loop);
  gfc_copy_loopinfo_to_se (&rse, &loop);

  rse.ss = rss;
  gfc_mark_ss_chain_used (rss, 1);
  if (loop.temp_ss == NULL)
    {
      lse.ss = lss;
      gfc_mark_ss_chain_used (lss, 1);
    }
  else
    {
      lse.ss = loop.temp_ss;
      gfc_mark_ss_chain_used (lss, 3);
      gfc_mark_ss_chain_used (loop.temp_ss, 3);
    }

  /* Start the scalarized loop body.  */
  gfc_start_scalarized_body (&loop, &body);

  /* Translate the expression.  */
  gfc_conv_expr (&rse, expr2);
  if (lss != gfc_ss_terminator && loop.temp_ss != NULL)
    {
      gfc_conv_tmp_array_ref (&lse);
      gfc_advance_se_ss_chain (&lse);
    }
  else
    gfc_conv_expr (&lse, expr1);

  /* Form the mask expression according to the mask tree list.  */
  index = count1;
  tmp = mask;
  if (tmp != NULL)
    maskexpr = gfc_build_array_ref (tmp, index);
  else
    maskexpr = NULL;

  tmp = TREE_CHAIN (tmp);
  while (tmp)
    {
      tmp1 = gfc_build_array_ref (tmp, index);
      maskexpr = build2 (TRUTH_AND_EXPR, TREE_TYPE (tmp1), maskexpr, tmp1);
      tmp = TREE_CHAIN (tmp);
    }
  /* Use the scalar assignment as is.  */
  tmp = gfc_trans_scalar_assign (&lse, &rse, expr1->ts.type);
  tmp = build3_v (COND_EXPR, maskexpr, tmp, build_empty_stmt ());

  gfc_add_expr_to_block (&body, tmp);

  if (lss == gfc_ss_terminator)
    {
      /* Increment count1.  */
      tmp = fold (build2 (PLUS_EXPR, gfc_array_index_type,
			  count1, gfc_index_one_node));
      gfc_add_modify_expr (&body, count1, tmp);

      /* Use the scalar assignment as is.  */
      gfc_add_block_to_block (&block, &body);
    }
  else
    {
      gcc_assert (lse.ss == gfc_ss_terminator
		  && rse.ss == gfc_ss_terminator);

      if (loop.temp_ss != NULL)
        {
          /* Increment count1 before finish the main body of a scalarized
             expression.  */
          tmp = fold (build2 (PLUS_EXPR, gfc_array_index_type,
			      count1, gfc_index_one_node));
          gfc_add_modify_expr (&body, count1, tmp);
          gfc_trans_scalarized_loop_boundary (&loop, &body);

          /* We need to copy the temporary to the actual lhs.  */
          gfc_init_se (&lse, NULL);
          gfc_init_se (&rse, NULL);
          gfc_copy_loopinfo_to_se (&lse, &loop);
          gfc_copy_loopinfo_to_se (&rse, &loop);

          rse.ss = loop.temp_ss;
          lse.ss = lss;

          gfc_conv_tmp_array_ref (&rse);
          gfc_advance_se_ss_chain (&rse);
          gfc_conv_expr (&lse, expr1);

          gcc_assert (lse.ss == gfc_ss_terminator
		      && rse.ss == gfc_ss_terminator);

          /* Form the mask expression according to the mask tree list.  */
          index = count2;
          tmp = mask;
          if (tmp != NULL)
            maskexpr = gfc_build_array_ref (tmp, index);
          else
            maskexpr = NULL;

          tmp = TREE_CHAIN (tmp);
          while (tmp)
            {
              tmp1 = gfc_build_array_ref (tmp, index);
              maskexpr = build2 (TRUTH_AND_EXPR, TREE_TYPE (tmp1),
				 maskexpr, tmp1);
              tmp = TREE_CHAIN (tmp);
            }
          /* Use the scalar assignment as is.  */
          tmp = gfc_trans_scalar_assign (&lse, &rse, expr1->ts.type);
          tmp = build3_v (COND_EXPR, maskexpr, tmp, build_empty_stmt ());
          gfc_add_expr_to_block (&body, tmp);

          /* Increment count2.  */
          tmp = fold (build2 (PLUS_EXPR, gfc_array_index_type,
			      count2, gfc_index_one_node));
          gfc_add_modify_expr (&body, count2, tmp);
        }
      else
        {
          /* Increment count1.  */
          tmp = fold (build2 (PLUS_EXPR, gfc_array_index_type,
			      count1, gfc_index_one_node));
          gfc_add_modify_expr (&body, count1, tmp);
        }

      /* Generate the copying loops.  */
      gfc_trans_scalarizing_loops (&loop, &body);

      /* Wrap the whole thing up.  */
      gfc_add_block_to_block (&block, &loop.pre);
      gfc_add_block_to_block (&block, &loop.post);
      gfc_cleanup_loop (&loop);
    }

  return gfc_finish_block (&block);
}


/* Translate the WHERE construct or statement.
   This fuction can be called iteratively to translate the nested WHERE
   construct or statement.
   MASK is the control mask, and PMASK is the pending control mask.
   TEMP records the temporary address which must be freed later.  */

static void
gfc_trans_where_2 (gfc_code * code, tree mask, tree pmask,
                   forall_info * nested_forall_info, stmtblock_t * block,
                   temporary_list ** temp)
{
  gfc_expr *expr1;
  gfc_expr *expr2;
  gfc_code *cblock;
  gfc_code *cnext;
  tree tmp, tmp1, tmp2;
  tree count1, count2;
  tree mask_copy;
  int need_temp;

  /* the WHERE statement or the WHERE construct statement.  */
  cblock = code->block;
  while (cblock)
    {
      /* Has mask-expr.  */
      if (cblock->expr)
        {
          /* Ensure that the WHERE mask be evaluated only once.  */
          tmp2 = gfc_evaluate_where_mask (cblock->expr, nested_forall_info,
                                          &tmp, &tmp1, temp, block);

          /* Set the control mask and the pending control mask.  */
          /* It's a where-stmt.  */
          if (mask == NULL)
            {
              mask = tmp;
              pmask = tmp1;
            }
          /* It's a nested where-stmt.  */
          else if (mask && pmask == NULL)
            {
              tree tmp2;
              /* Use the TREE_CHAIN to list the masks.  */
              tmp2 = copy_list (mask);
              pmask = chainon (mask, tmp1);
              mask = chainon (tmp2, tmp);
            }
          /* It's a masked-elsewhere-stmt.  */
          else if (mask && cblock->expr)
            {
              tree tmp2;
              tmp2 = copy_list (pmask);

              mask = pmask;
              tmp2 = chainon (tmp2, tmp);
              pmask = chainon (mask, tmp1);
              mask = tmp2;
            }
        }
      /* It's a elsewhere-stmt. No mask-expr is present.  */
      else
        mask = pmask;

      /* Get the assignment statement of a WHERE statement, or the first
         statement in where-body-construct of a WHERE construct.  */
      cnext = cblock->next;
      while (cnext)
        {
          switch (cnext->op)
            {
            /* WHERE assignment statement.  */
            case EXEC_ASSIGN:
              expr1 = cnext->expr;
              expr2 = cnext->expr2;
              if (nested_forall_info != NULL)
                {
                  int nvar;
                  gfc_expr **varexpr;

                  nvar = nested_forall_info->nvar;
                  varexpr = (gfc_expr **)
                            gfc_getmem (nvar * sizeof (gfc_expr *));
                  need_temp = gfc_check_dependency (expr1, expr2, varexpr,
                                                    nvar);
                  if (need_temp)
                    gfc_trans_assign_need_temp (expr1, expr2, mask,
                                                nested_forall_info, block);
                  else
                    {
                      /* Variables to control maskexpr.  */
                      count1 = gfc_create_var (gfc_array_index_type, "count1");
                      count2 = gfc_create_var (gfc_array_index_type, "count2");
                      gfc_add_modify_expr (block, count1, gfc_index_zero_node);
                      gfc_add_modify_expr (block, count2, gfc_index_zero_node);

                      tmp = gfc_trans_where_assign (expr1, expr2, mask, count1,
                                                    count2);
                      tmp = gfc_trans_nested_forall_loop (nested_forall_info,
                                                          tmp, 1, 1);
                      gfc_add_expr_to_block (block, tmp);
                    }
                }
              else
                {
                  /* Variables to control maskexpr.  */
                  count1 = gfc_create_var (gfc_array_index_type, "count1");
                  count2 = gfc_create_var (gfc_array_index_type, "count2");
                  gfc_add_modify_expr (block, count1, gfc_index_zero_node);
                  gfc_add_modify_expr (block, count2, gfc_index_zero_node);

                  tmp = gfc_trans_where_assign (expr1, expr2, mask, count1,
                                                count2);
                  gfc_add_expr_to_block (block, tmp);

                }
              break;

            /* WHERE or WHERE construct is part of a where-body-construct.  */
            case EXEC_WHERE:
              /* Ensure that MASK is not modified by next gfc_trans_where_2.  */
              mask_copy = copy_list (mask);
              gfc_trans_where_2 (cnext, mask_copy, NULL, nested_forall_info,
                                 block, temp);
              break;

            default:
              gcc_unreachable ();
            }

         /* The next statement within the same where-body-construct.  */
         cnext = cnext->next;
       }
    /* The next masked-elsewhere-stmt, elsewhere-stmt, or end-where-stmt.  */
    cblock = cblock->block;
  }
}


/* As the WHERE or WHERE construct statement can be nested, we call
   gfc_trans_where_2 to do the translation, and pass the initial
   NULL values for both the control mask and the pending control mask.  */

tree
gfc_trans_where (gfc_code * code)
{
  stmtblock_t block;
  temporary_list *temp, *p;
  tree args;
  tree tmp;

  gfc_start_block (&block);
  temp = NULL;

  gfc_trans_where_2 (code, NULL, NULL, NULL, &block, &temp);

  /* Add calls to free temporaries which were dynamically allocated.  */
  while (temp)
    {
      args = gfc_chainon_list (NULL_TREE, temp->temporary);
      tmp = gfc_build_function_call (gfor_fndecl_internal_free, args);
      gfc_add_expr_to_block (&block, tmp);

      p = temp;
      temp = temp->next;
      gfc_free (p);
    }
  return gfc_finish_block (&block);
}


/* CYCLE a DO loop. The label decl has already been created by
   gfc_trans_do(), it's in TREE_PURPOSE (backend_decl) of the gfc_code
   node at the head of the loop. We must mark the label as used.  */

tree
gfc_trans_cycle (gfc_code * code)
{
  tree cycle_label;

  cycle_label = TREE_PURPOSE (code->ext.whichloop->backend_decl);
  TREE_USED (cycle_label) = 1;
  return build1_v (GOTO_EXPR, cycle_label);
}


/* EXIT a DO loop. Similar to CYCLE, but now the label is in
   TREE_VALUE (backend_decl) of the gfc_code node at the head of the
   loop.  */

tree
gfc_trans_exit (gfc_code * code)
{
  tree exit_label;

  exit_label = TREE_VALUE (code->ext.whichloop->backend_decl);
  TREE_USED (exit_label) = 1;
  return build1_v (GOTO_EXPR, exit_label);
}


/* Translate the ALLOCATE statement.  */

tree
gfc_trans_allocate (gfc_code * code)
{
  gfc_alloc *al;
  gfc_expr *expr;
  gfc_se se;
  tree tmp;
  tree parm;
  gfc_ref *ref;
  tree stat;
  tree pstat;
  tree error_label;
  stmtblock_t block;

  if (!code->ext.alloc_list)
    return NULL_TREE;

  gfc_start_block (&block);

  if (code->expr)
    {
      tree gfc_int4_type_node = gfc_get_int_type (4);

      stat = gfc_create_var (gfc_int4_type_node, "stat");
      pstat = gfc_build_addr_expr (NULL, stat);

      error_label = gfc_build_label_decl (NULL_TREE);
      TREE_USED (error_label) = 1;
    }
  else
    {
      pstat = integer_zero_node;
      stat = error_label = NULL_TREE;
    }


  for (al = code->ext.alloc_list; al != NULL; al = al->next)
    {
      expr = al->expr;

      gfc_init_se (&se, NULL);
      gfc_start_block (&se.pre);

      se.want_pointer = 1;
      se.descriptor_only = 1;
      gfc_conv_expr (&se, expr);

      ref = expr->ref;

      /* Find the last reference in the chain.  */
      while (ref && ref->next != NULL)
	{
	  gcc_assert (ref->type != REF_ARRAY || ref->u.ar.type == AR_ELEMENT);
	  ref = ref->next;
	}

      if (ref != NULL && ref->type == REF_ARRAY)
	{
	  /* An array.  */
	  gfc_array_allocate (&se, ref, pstat);
	}
      else
	{
	  /* A scalar or derived type.  */
	  tree val;

	  val = gfc_create_var (ppvoid_type_node, "ptr");
	  tmp = gfc_build_addr_expr (ppvoid_type_node, se.expr);
	  gfc_add_modify_expr (&se.pre, val, tmp);

	  tmp = TYPE_SIZE_UNIT (TREE_TYPE (TREE_TYPE (se.expr)));
	  parm = gfc_chainon_list (NULL_TREE, val);
	  parm = gfc_chainon_list (parm, tmp);
	  parm = gfc_chainon_list (parm, pstat);
	  tmp = gfc_build_function_call (gfor_fndecl_allocate, parm);
	  gfc_add_expr_to_block (&se.pre, tmp);

	  if (code->expr)
	    {
	      tmp = build1_v (GOTO_EXPR, error_label);
	      parm =
		build2 (NE_EXPR, boolean_type_node, stat, integer_zero_node);
	      tmp = build3_v (COND_EXPR, parm, tmp, build_empty_stmt ());
	      gfc_add_expr_to_block (&se.pre, tmp);
	    }
	}

      tmp = gfc_finish_block (&se.pre);
      gfc_add_expr_to_block (&block, tmp);
    }

  /* Assign the value to the status variable.  */
  if (code->expr)
    {
      tmp = build1_v (LABEL_EXPR, error_label);
      gfc_add_expr_to_block (&block, tmp);

      gfc_init_se (&se, NULL);
      gfc_conv_expr_lhs (&se, code->expr);
      tmp = convert (TREE_TYPE (se.expr), stat);
      gfc_add_modify_expr (&block, se.expr, tmp);
    }

  return gfc_finish_block (&block);
}


tree
gfc_trans_deallocate (gfc_code * code)
{
  gfc_se se;
  gfc_alloc *al;
  gfc_expr *expr;
  tree var;
  tree tmp;
  tree type;
  stmtblock_t block;

  gfc_start_block (&block);

  for (al = code->ext.alloc_list; al != NULL; al = al->next)
    {
      expr = al->expr;
      gcc_assert (expr->expr_type == EXPR_VARIABLE);

      gfc_init_se (&se, NULL);
      gfc_start_block (&se.pre);

      se.want_pointer = 1;
      se.descriptor_only = 1;
      gfc_conv_expr (&se, expr);

      if (expr->symtree->n.sym->attr.dimension)
	{
	  tmp = gfc_array_deallocate (se.expr);
	  gfc_add_expr_to_block (&se.pre, tmp);
	}
      else
	{
	  type = build_pointer_type (TREE_TYPE (se.expr));
	  var = gfc_create_var (type, "ptr");
	  tmp = gfc_build_addr_expr (type, se.expr);
	  gfc_add_modify_expr (&se.pre, var, tmp);

	  tmp = gfc_chainon_list (NULL_TREE, var);
	  tmp = gfc_chainon_list (tmp, integer_zero_node);
	  tmp = gfc_build_function_call (gfor_fndecl_deallocate, tmp);
	  gfc_add_expr_to_block (&se.pre, tmp);
	}
      tmp = gfc_finish_block (&se.pre);
      gfc_add_expr_to_block (&block, tmp);
    }

  return gfc_finish_block (&block);
}