summaryrefslogtreecommitdiff
path: root/gcc/frame.c
blob: 4c387210c1545598c60036194218d79d600af652 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
/* Subroutines needed for unwinding stack frames for exception handling.  */
/* Compile this one with gcc.  */
/* Copyright (C) 1997 Free Software Foundation, Inc.
   Contributed by Jason Merrill <jason@cygnus.com>.

This file is part of GNU CC.

GNU CC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.

GNU CC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with GNU CC; see the file COPYING.  If not, write to
the Free Software Foundation, 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA.  */

/* As a special exception, if you link this library with other files,
   some of which are compiled with GCC, to produce an executable,
   this library does not by itself cause the resulting executable
   to be covered by the GNU General Public License.
   This exception does not however invalidate any other reasons why
   the executable file might be covered by the GNU General Public License.  */

/* It is incorrect to include config.h here, because this file is being
   compiled for the target, and hence definitions concerning only the host
   do not apply.  */

#include "tconfig.h"
#include "defaults.h"

#ifdef DWARF2_UNWIND_INFO
#include "gansidecl.h"
#include "dwarf2.h"
#include <stddef.h>
#include "frame.h"
#include "gthr.h"

#ifdef __GTHREAD_MUTEX_INIT
static __gthread_mutex_t object_mutex = __GTHREAD_MUTEX_INIT;
#else
static __gthread_mutex_t object_mutex;
#endif

/* Don't use `fancy_abort' here even if config.h says to use it.  */
#ifdef abort
#undef abort
#endif

/* Some types used by the DWARF 2 spec.  */

typedef          int  sword __attribute__ ((mode (SI)));
typedef unsigned int  uword __attribute__ ((mode (SI)));
typedef unsigned int  uaddr __attribute__ ((mode (pointer)));
typedef          int  saddr __attribute__ ((mode (pointer)));
typedef unsigned char ubyte;

/* The first few fields of a CIE.  The CIE_id field is 0 for a CIE,
   to distinguish it from a valid FDE.  FDEs are aligned to an addressing
   unit boundary, but the fields within are unaligned.  */

struct dwarf_cie {
  uword length;
  sword CIE_id;
  ubyte version;
  char augmentation[0];
} __attribute__ ((packed, aligned (__alignof__ (void *))));

/* The first few fields of an FDE.  */

struct dwarf_fde {
  uword length;
  sword CIE_delta;
  void* pc_begin;
  uaddr pc_range;
} __attribute__ ((packed, aligned (__alignof__ (void *))));

typedef struct dwarf_fde fde;

/* Objects to be searched for frame unwind info.  */

static struct object *objects;

/* The information we care about from a CIE.  */

struct cie_info {
  char *augmentation;
  void *eh_ptr;
  int code_align;
  int data_align;
  unsigned ra_regno;
};

/* The current unwind state, plus a saved copy for DW_CFA_remember_state.  */

struct frame_state_internal
{
  struct frame_state s;
  struct frame_state_internal *saved_state;
};
  
/* Decode the unsigned LEB128 constant at BUF into the variable pointed to
   by R, and return the new value of BUF.  */

static void *
decode_uleb128 (unsigned char *buf, unsigned *r)
{
  unsigned shift = 0;
  unsigned result = 0;

  while (1)
    {
      unsigned byte = *buf++;
      result |= (byte & 0x7f) << shift;
      if ((byte & 0x80) == 0)
	break;
      shift += 7;
    }
  *r = result;
  return buf;
}

/* Decode the signed LEB128 constant at BUF into the variable pointed to
   by R, and return the new value of BUF.  */

static void *
decode_sleb128 (unsigned char *buf, int *r)
{
  unsigned shift = 0;
  unsigned result = 0;
  unsigned byte;

  while (1)
    {
      byte = *buf++;
      result |= (byte & 0x7f) << shift;
      shift += 7;
      if ((byte & 0x80) == 0)
	break;
    }
  if (shift < (sizeof (*r) * 8) && (byte & 0x40) != 0)
    result |= - (1 << shift);

  *r = result;
  return buf;
}

/* Read unaligned data from the instruction buffer.  */

union unaligned {
  void *p;
  unsigned b2 __attribute__ ((mode (HI)));
  unsigned b4 __attribute__ ((mode (SI)));
  unsigned b8 __attribute__ ((mode (DI)));
} __attribute__ ((packed));
static inline void *
read_pointer (void *p)
{ union unaligned *up = p; return up->p; }
static inline unsigned
read_1byte (void *p)
{ return *(unsigned char *)p; }
static inline unsigned
read_2byte (void *p)
{ union unaligned *up = p; return up->b2; }
static inline unsigned
read_4byte (void *p)
{ union unaligned *up = p; return up->b4; }
static inline unsigned long
read_8byte (void *p)
{ union unaligned *up = p; return up->b8; }

/* Ordering function for FDEs.  Functions can't overlap, so we just compare
   their starting addresses.  */

static inline saddr
fde_compare (fde *x, fde *y)
{
  return (saddr)x->pc_begin - (saddr)y->pc_begin;
}

/* Return the address of the FDE after P.  */

static inline fde *
next_fde (fde *p)
{
  return (fde *)(((char *)p) + p->length + sizeof (p->length));
}

/* Sorting an array of FDEs by address.
   (Ideally we would have the linker sort the FDEs so we don't have to do
   it at run time. But the linkers are not yet prepared for this.)  */

/* This is a special mix of insertion sort and heap sort, optimized for
   the data sets that actually occur. They look like
   101 102 103 127 128 105 108 110 190 111 115 119 125 160 126 129 130.
   I.e. a linearly increasing sequence (coming from functions in the text
   section), with additionally a few unordered elements (coming from functions
   in gnu_linkonce sections) whose values are higher than the values in the
   surrounding linear sequence (but not necessarily higher than the values
   at the end of the linear sequence!).
   The worst-case total run time is O(N) + O(n log (n)), where N is the
   total number of FDEs and n is the number of erratic ones.  */

typedef struct fde_vector
{
  fde **array;
  size_t count;
} fde_vector;

typedef struct fde_accumulator
{
  fde_vector linear;
  fde_vector erratic;
} fde_accumulator;

static inline void
start_fde_sort (fde_accumulator *accu, size_t count)
{
  accu->linear.array = (fde **) malloc (sizeof (fde *) * count);
  accu->erratic.array = (fde **) malloc (sizeof (fde *) * count);
  accu->linear.count = 0;
  accu->erratic.count = 0;
}

static inline void
fde_insert (fde_accumulator *accu, fde *this_fde)
{
  accu->linear.array[accu->linear.count++] = this_fde;
}

/* Split LINEAR into a linear sequence with low values and an erratic
   sequence with high values, put the linear one (of longest possible
   length) into LINEAR and the erratic one into ERRATIC. This is O(N).  */
static inline void
fde_split (fde_vector *linear, fde_vector *erratic)
{
  size_t count = linear->count;
  size_t linear_max = (size_t) -1;
  size_t previous_max[count];
  size_t i, j;

  for (i = 0; i < count; i++)
    {
      for (j = linear_max;
           j != (size_t) -1
           && fde_compare (linear->array[i], linear->array[j]) < 0;
           j = previous_max[j])
        {
          erratic->array[erratic->count++] = linear->array[j];
          linear->array[j] = (fde *) NULL;
        }
      previous_max[i] = j;
      linear_max = i;
    }

  for (i = 0, j = 0; i < count; i++)
    if (linear->array[i] != (fde *) NULL)
      linear->array[j++] = linear->array[i];
  linear->count = j;
}

/* This is O(n log(n)). */
static inline void
heapsort (fde_vector *erratic)
{
  /* For a description of this algorithm, see:
     Samuel P. Harbison, Guy L. Steele Jr.: C, a reference manual, 2nd ed.,
     p. 60-61. */
  fde ** a = erratic->array;
  /* A portion of the array is called a "heap" if for all i>=0:
     If i and 2i+1 are valid indices, then a[i] >= a[2i+1].
     If i and 2i+2 are valid indices, then a[i] >= a[2i+2]. */
#define SWAP(x,y) do { fde * tmp = x; x = y; y = tmp; } while (0)
  size_t n = erratic->count;
  size_t m = n;
  size_t i;

  while (m > 0)
    {
      /* Invariant: a[m..n-1] is a heap. */
      m--;
      for (i = m; 2*i+1 < n; )
        {
          if (2*i+2 < n
              && fde_compare (a[2*i+2], a[2*i+1]) > 0
              && fde_compare (a[2*i+2], a[i]) > 0)
            {
              SWAP (a[i], a[2*i+2]);
              i = 2*i+2;
            }
          else if (fde_compare (a[2*i+1], a[i]) > 0)
            {
              SWAP (a[i], a[2*i+1]);
              i = 2*i+1;
            }
          else
            break;
        }
    }
  while (n > 1)
    {
      /* Invariant: a[0..n-1] is a heap. */
      n--;
      SWAP (a[0], a[n]);
      for (i = 0; 2*i+1 < n; )
        {
          if (2*i+2 < n
              && fde_compare (a[2*i+2], a[2*i+1]) > 0
              && fde_compare (a[2*i+2], a[i]) > 0)
            {
              SWAP (a[i], a[2*i+2]);
              i = 2*i+2;
            }
          else if (fde_compare (a[2*i+1], a[i]) > 0)
            {
              SWAP (a[i], a[2*i+1]);
              i = 2*i+1;
            }
          else
            break;
        }
    }
#undef SWAP
}

/* Merge V1 and V2, both sorted, and put the result into V1. */
static void
fde_merge (fde_vector *v1, const fde_vector *v2)
{
  size_t i1, i2;
  fde * fde2;

  i2 = v2->count;
  if (i2 > 0)
    {
      i1 = v1->count;
      do {
        i2--;
        fde2 = v2->array[i2];
        while (i1 > 0 && fde_compare (v1->array[i1-1], fde2) > 0)
          {
            v1->array[i1+i2] = v1->array[i1-1];
            i1--;
          }
        v1->array[i1+i2] = fde2;
      } while (i2 > 0);
      v1->count += v2->count;
    }
}

static fde **
end_fde_sort (fde_accumulator *accu, size_t count)
{
  if (accu->linear.count != count)
    abort ();
  fde_split (&accu->linear, &accu->erratic);
  if (accu->linear.count + accu->erratic.count != count)
    abort ();
  heapsort (&accu->erratic);
  fde_merge (&accu->linear, &accu->erratic);
  free (accu->erratic.array);
  return accu->linear.array;
}

static size_t
count_fdes (fde *this_fde)
{
  size_t count;

  for (count = 0; this_fde->length != 0; this_fde = next_fde (this_fde))
    {
      /* Skip CIEs and linked once FDE entries.  */
      if (this_fde->CIE_delta == 0 || this_fde->pc_begin == 0)
	continue;

      ++count;
    }

  return count;
}

static void
add_fdes (fde *this_fde, fde_accumulator *accu, void **beg_ptr, void **end_ptr)
{
  void *pc_begin = *beg_ptr;
  void *pc_end = *end_ptr;

  for (; this_fde->length != 0; this_fde = next_fde (this_fde))
    {
      /* Skip CIEs and linked once FDE entries.  */
      if (this_fde->CIE_delta == 0 || this_fde->pc_begin == 0)
	continue;

      fde_insert (accu, this_fde);

      if (this_fde->pc_begin < pc_begin)
	pc_begin = this_fde->pc_begin;
      if (this_fde->pc_begin + this_fde->pc_range > pc_end)
	pc_end = this_fde->pc_begin + this_fde->pc_range;
    }

  *beg_ptr = pc_begin;
  *end_ptr = pc_end;
}

/* Set up a sorted array of pointers to FDEs for a loaded object.  We
   count up the entries before allocating the array because it's likely to
   be faster.  */

static void
frame_init (struct object* ob)
{
  size_t count;
  fde_accumulator accu;
  void *pc_begin, *pc_end;

  if (ob->fde_array)
    {
      fde **p = ob->fde_array;
      for (count = 0; *p; ++p)
	count += count_fdes (*p);
    }
  else
    count = count_fdes (ob->fde_begin);

  ob->count = count;

  start_fde_sort (&accu, count);
  pc_begin = (void*)(uaddr)-1;
  pc_end = 0;

  if (ob->fde_array)
    {
      fde **p = ob->fde_array;
      for (; *p; ++p)
	add_fdes (*p, &accu, &pc_begin, &pc_end);
    }
  else
    add_fdes (ob->fde_begin, &accu, &pc_begin, &pc_end);

  ob->fde_array = end_fde_sort (&accu, count);
  ob->pc_begin = pc_begin;
  ob->pc_end = pc_end;
}

/* Return a pointer to the FDE for the function containing PC.  */

static fde *
find_fde (void *pc)
{
  struct object *ob;
  size_t lo, hi;

  __gthread_mutex_lock (&object_mutex);

  for (ob = objects; ob; ob = ob->next)
    {
      if (ob->pc_begin == 0)
	frame_init (ob);
      if (pc >= ob->pc_begin && pc < ob->pc_end)
	break;
    }

  __gthread_mutex_unlock (&object_mutex);

  if (ob == 0)
    return 0;

  /* Standard binary search algorithm.  */
  for (lo = 0, hi = ob->count; lo < hi; )
    {
      size_t i = (lo + hi) / 2;
      fde *f = ob->fde_array[i];

      if (pc < f->pc_begin)
	hi = i;
      else if (pc >= f->pc_begin + f->pc_range)
	lo = i + 1;
      else
	return f;
    }

  return 0;
}

static inline struct dwarf_cie *
get_cie (fde *f)
{
  return ((void *)&f->CIE_delta) - f->CIE_delta;
}

/* Extract any interesting information from the CIE for the translation
   unit F belongs to.  */

static void *
extract_cie_info (fde *f, struct cie_info *c)
{
  void *p;
  int i;

  c->augmentation = get_cie (f)->augmentation;

  if (strcmp (c->augmentation, "") != 0
      && strcmp (c->augmentation, "eh") != 0
      && c->augmentation[0] != 'z')
    return 0;

  p = c->augmentation + strlen (c->augmentation) + 1;

  if (strcmp (c->augmentation, "eh") == 0)
    {
      c->eh_ptr = read_pointer (p);
      p += sizeof (void *);
    }
  else
    c->eh_ptr = 0;

  p = decode_uleb128 (p, &c->code_align);
  p = decode_sleb128 (p, &c->data_align);
  c->ra_regno = *(unsigned char *)p++;

  /* If the augmentation starts with 'z', we now see the length of the
     augmentation fields.  */
  if (c->augmentation[0] == 'z')
    {
      p = decode_uleb128 (p, &i);
      p += i;
    }

  return p;
}

/* Decode one instruction's worth of of DWARF 2 call frame information.
   Used by __frame_state_for.  Takes pointers P to the instruction to
   decode, STATE to the current register unwind information, INFO to the
   current CIE information, and PC to the current PC value.  Returns a
   pointer to the next instruction.  */

static void *
execute_cfa_insn (void *p, struct frame_state_internal *state,
		  struct cie_info *info, void **pc)
{
  unsigned insn = *(unsigned char *)p++;
  unsigned reg;
  int offset;

  if (insn & DW_CFA_advance_loc)
    *pc += ((insn & 0x3f) * info->code_align);
  else if (insn & DW_CFA_offset)
    {
      reg = (insn & 0x3f);
      p = decode_uleb128 (p, &offset);
      offset *= info->data_align;
      state->s.saved[reg] = REG_SAVED_OFFSET;
      state->s.reg_or_offset[reg] = offset;
    }
  else if (insn & DW_CFA_restore)
    {
      reg = (insn & 0x3f);
      state->s.saved[reg] = REG_UNSAVED;
    }
  else switch (insn)
    {
    case DW_CFA_set_loc:
      *pc = read_pointer (p);
      p += sizeof (void *);
      break;
    case DW_CFA_advance_loc1:
      *pc += read_1byte (p);
      p += 1;
      break;
    case DW_CFA_advance_loc2:
      *pc += read_2byte (p);
      p += 2;
      break;
    case DW_CFA_advance_loc4:
      *pc += read_4byte (p);
      p += 4;
      break;

    case DW_CFA_offset_extended:
      p = decode_uleb128 (p, &reg);
      p = decode_uleb128 (p, &offset);
      offset *= info->data_align;
      state->s.saved[reg] = REG_SAVED_OFFSET;
      state->s.reg_or_offset[reg] = offset;
      break;
    case DW_CFA_restore_extended:
      p = decode_uleb128 (p, &reg);
      state->s.saved[reg] = REG_UNSAVED;
      break;

    case DW_CFA_undefined:
    case DW_CFA_same_value:
    case DW_CFA_nop:
      break;

    case DW_CFA_register:
      {
	unsigned reg2;
	p = decode_uleb128 (p, &reg);
	p = decode_uleb128 (p, &reg2);
	state->s.saved[reg] = REG_SAVED_REG;
	state->s.reg_or_offset[reg] = reg2;
      }
      break;

    case DW_CFA_def_cfa:
      p = decode_uleb128 (p, &reg);
      p = decode_uleb128 (p, &offset);
      state->s.cfa_reg = reg;
      state->s.cfa_offset = offset;
      break;
    case DW_CFA_def_cfa_register:
      p = decode_uleb128 (p, &reg);
      state->s.cfa_reg = reg;
      break;
    case DW_CFA_def_cfa_offset:
      p = decode_uleb128 (p, &offset);
      state->s.cfa_offset = offset;
      break;
      
    case DW_CFA_remember_state:
      {
	struct frame_state_internal *save =
	  (struct frame_state_internal *)
	  malloc (sizeof (struct frame_state_internal));
	memcpy (save, state, sizeof (struct frame_state_internal));
	state->saved_state = save;
      }
      break;
    case DW_CFA_restore_state:
      {
	struct frame_state_internal *save = state->saved_state;
	memcpy (state, save, sizeof (struct frame_state_internal));
	free (save);
      }
      break;

      /* FIXME: Hardcoded for SPARC register window configuration.  */
    case DW_CFA_GNU_window_save:
      for (reg = 16; reg < 32; ++reg)
	{
	  state->s.saved[reg] = REG_SAVED_OFFSET;
	  state->s.reg_or_offset[reg] = (reg - 16) * sizeof (void *);
	}
      break;

    case DW_CFA_GNU_args_size:
      p = decode_uleb128 (p, &offset);
      state->s.args_size = offset;
      break;

    default:
      abort ();
    }
  return p;
}

/* Called from crtbegin.o to register the unwind info for an object.  */

void
__register_frame_info (void *begin, struct object *ob)
{
  ob->fde_begin = begin;

  ob->pc_begin = ob->pc_end = 0;
  ob->fde_array = 0;
  ob->count = 0;

  __gthread_mutex_lock (&object_mutex);

  ob->next = objects;
  objects = ob;

  __gthread_mutex_unlock (&object_mutex);
}

void
__register_frame (void *begin)
{
  struct object *ob = (struct object *) malloc (sizeof (struct object));
  __register_frame_info (begin, ob);                       
}

/* Similar, but BEGIN is actually a pointer to a table of unwind entries
   for different translation units.  Called from the file generated by
   collect2.  */

void
__register_frame_info_table (void *begin, struct object *ob)
{
  ob->fde_begin = begin;
  ob->fde_array = begin;

  ob->pc_begin = ob->pc_end = 0;
  ob->count = 0;

  __gthread_mutex_lock (&object_mutex);

  ob->next = objects;
  objects = ob;

  __gthread_mutex_unlock (&object_mutex);
}

void
__register_frame_table (void *begin)
{
  struct object *ob = (struct object *) malloc (sizeof (struct object));
  __register_frame_info_table (begin, ob);
}

/* Called from crtbegin.o to deregister the unwind info for an object.  */

void *
__deregister_frame_info (void *begin)
{
  struct object **p;

  __gthread_mutex_lock (&object_mutex);

  p = &objects;
  while (*p)
    {
      if ((*p)->fde_begin == begin)
	{
	  struct object *ob = *p;
	  *p = (*p)->next;

	  /* If we've run init_frame for this object, free the FDE array.  */
	  if (ob->pc_begin)
	    free (ob->fde_array);

	  __gthread_mutex_unlock (&object_mutex);
	  return (void *) ob;
	}
      p = &((*p)->next);
    }

  __gthread_mutex_unlock (&object_mutex);
  abort ();
}

void
__deregister_frame (void *begin)
{
  free (__deregister_frame_info (begin));
}

/* Called from __throw to find the registers to restore for a given
   PC_TARGET.  The caller should allocate a local variable of `struct
   frame_state' (declared in frame.h) and pass its address to STATE_IN.  */

struct frame_state *
__frame_state_for (void *pc_target, struct frame_state *state_in)
{
  fde *f;
  void *insn, *end, *pc;
  struct cie_info info;
  struct frame_state_internal state;

  f = find_fde (pc_target);
  if (f == 0)
    return 0;

  insn = extract_cie_info (f, &info);
  if (insn == 0)
    return 0;

  memset (&state, 0, sizeof (state));
  state.s.retaddr_column = info.ra_regno;
  state.s.eh_ptr = info.eh_ptr;

  /* First decode all the insns in the CIE.  */
  end = next_fde ((fde*) get_cie (f));
  while (insn < end)
    insn = execute_cfa_insn (insn, &state, &info, 0);

  insn = ((fde *)f) + 1;

  if (info.augmentation[0] == 'z')
    {
      int i;
      insn = decode_uleb128 (insn, &i);
      insn += i;
    }

  /* Then the insns in the FDE up to our target PC.  */
  end = next_fde (f);
  pc = f->pc_begin;
  while (insn < end && pc <= pc_target)
    insn = execute_cfa_insn (insn, &state, &info, &pc);

  memcpy (state_in, &state.s, sizeof (state.s));
  return state_in;
}
#endif /* DWARF2_UNWIND_INFO */