summaryrefslogtreecommitdiff
path: root/gcc/function.c
blob: 4cff6bb7e7760942c45ab3c8d9818db229f48160 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
7288
7289
7290
7291
7292
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
7347
7348
7349
7350
7351
7352
7353
7354
7355
7356
7357
7358
7359
7360
7361
7362
7363
7364
7365
7366
7367
7368
7369
7370
7371
7372
7373
7374
7375
7376
7377
7378
7379
7380
7381
7382
7383
7384
7385
7386
7387
7388
7389
7390
7391
7392
7393
7394
7395
7396
7397
7398
7399
7400
7401
7402
7403
7404
7405
7406
7407
7408
7409
7410
7411
7412
7413
7414
7415
7416
7417
7418
7419
7420
7421
7422
7423
7424
7425
7426
7427
7428
7429
7430
7431
7432
7433
7434
7435
7436
7437
7438
7439
7440
7441
7442
7443
7444
7445
7446
7447
7448
7449
7450
7451
7452
7453
7454
7455
7456
7457
7458
7459
7460
7461
7462
7463
7464
7465
7466
7467
7468
7469
7470
7471
7472
7473
7474
7475
7476
7477
7478
7479
7480
7481
7482
7483
7484
7485
7486
7487
7488
7489
7490
7491
7492
7493
7494
7495
7496
7497
7498
7499
7500
7501
7502
7503
7504
7505
7506
7507
7508
7509
7510
7511
7512
7513
7514
7515
7516
7517
7518
7519
7520
7521
7522
7523
7524
7525
7526
7527
7528
7529
7530
7531
7532
7533
7534
7535
7536
7537
7538
7539
7540
7541
7542
7543
7544
7545
7546
7547
7548
7549
7550
7551
7552
7553
7554
7555
7556
7557
7558
7559
7560
7561
7562
7563
7564
7565
7566
7567
7568
7569
7570
7571
7572
7573
7574
7575
7576
7577
7578
7579
7580
7581
7582
7583
7584
7585
7586
7587
7588
7589
7590
7591
7592
7593
7594
7595
7596
7597
7598
7599
7600
7601
7602
7603
7604
7605
7606
7607
7608
7609
7610
7611
7612
7613
7614
7615
7616
7617
7618
7619
7620
7621
7622
7623
7624
7625
7626
7627
7628
7629
7630
7631
7632
7633
7634
7635
7636
7637
7638
7639
7640
7641
7642
7643
7644
7645
7646
7647
7648
7649
7650
7651
7652
7653
7654
7655
7656
7657
7658
7659
7660
7661
7662
7663
7664
7665
7666
7667
7668
7669
7670
7671
7672
7673
7674
7675
7676
7677
7678
7679
7680
7681
7682
7683
7684
7685
7686
7687
7688
7689
7690
7691
7692
7693
7694
7695
7696
7697
7698
7699
7700
7701
7702
7703
7704
7705
7706
7707
7708
7709
7710
7711
7712
7713
7714
7715
7716
7717
7718
7719
7720
7721
7722
7723
7724
7725
7726
7727
7728
7729
7730
7731
7732
7733
7734
7735
7736
7737
7738
7739
7740
7741
7742
7743
7744
7745
7746
7747
7748
7749
7750
7751
7752
7753
7754
7755
7756
7757
7758
7759
7760
7761
7762
7763
7764
7765
7766
7767
7768
7769
7770
7771
7772
7773
7774
7775
7776
7777
7778
7779
7780
7781
7782
7783
7784
7785
7786
7787
7788
7789
7790
7791
7792
7793
7794
7795
7796
7797
7798
7799
7800
7801
7802
7803
7804
7805
7806
7807
7808
7809
7810
7811
7812
7813
7814
7815
7816
7817
7818
7819
7820
7821
7822
7823
7824
7825
7826
7827
7828
7829
7830
7831
7832
7833
7834
7835
7836
7837
7838
7839
7840
7841
7842
7843
7844
7845
7846
7847
7848
7849
7850
7851
7852
7853
7854
7855
7856
7857
7858
7859
7860
7861
7862
7863
7864
7865
7866
7867
7868
7869
7870
7871
7872
7873
7874
7875
7876
7877
7878
7879
7880
7881
7882
7883
7884
7885
7886
7887
7888
7889
7890
7891
7892
7893
7894
7895
7896
7897
7898
7899
7900
7901
7902
7903
7904
7905
7906
7907
7908
7909
7910
7911
7912
7913
7914
7915
7916
7917
7918
7919
7920
7921
7922
7923
7924
7925
7926
7927
7928
7929
7930
7931
7932
7933
7934
7935
7936
7937
7938
7939
7940
7941
7942
7943
7944
7945
7946
7947
7948
7949
7950
7951
7952
7953
/* Expands front end tree to back end RTL for GNU C-Compiler
   Copyright (C) 1987, 1988, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
   1998, 1999, 2000, 2001, 2002 Free Software Foundation, Inc.

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 2, or (at your option) any later
version.

GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING.  If not, write to the Free
Software Foundation, 59 Temple Place - Suite 330, Boston, MA
02111-1307, USA.  */

/* This file handles the generation of rtl code from tree structure
   at the level of the function as a whole.
   It creates the rtl expressions for parameters and auto variables
   and has full responsibility for allocating stack slots.

   `expand_function_start' is called at the beginning of a function,
   before the function body is parsed, and `expand_function_end' is
   called after parsing the body.

   Call `assign_stack_local' to allocate a stack slot for a local variable.
   This is usually done during the RTL generation for the function body,
   but it can also be done in the reload pass when a pseudo-register does
   not get a hard register.

   Call `put_var_into_stack' when you learn, belatedly, that a variable
   previously given a pseudo-register must in fact go in the stack.
   This function changes the DECL_RTL to be a stack slot instead of a reg
   then scans all the RTL instructions so far generated to correct them.  */

#include "config.h"
#include "system.h"
#include "rtl.h"
#include "tree.h"
#include "flags.h"
#include "except.h"
#include "function.h"
#include "expr.h"
#include "libfuncs.h"
#include "regs.h"
#include "hard-reg-set.h"
#include "insn-config.h"
#include "recog.h"
#include "output.h"
#include "basic-block.h"
#include "obstack.h"
#include "toplev.h"
#include "hash.h"
#include "ggc.h"
#include "tm_p.h"
#include "integrate.h"

#ifndef TRAMPOLINE_ALIGNMENT
#define TRAMPOLINE_ALIGNMENT FUNCTION_BOUNDARY
#endif

#ifndef LOCAL_ALIGNMENT
#define LOCAL_ALIGNMENT(TYPE, ALIGNMENT) ALIGNMENT
#endif

/* Some systems use __main in a way incompatible with its use in gcc, in these
   cases use the macros NAME__MAIN to give a quoted symbol and SYMBOL__MAIN to
   give the same symbol without quotes for an alternative entry point.  You
   must define both, or neither.  */
#ifndef NAME__MAIN
#define NAME__MAIN "__main"
#define SYMBOL__MAIN __main
#endif

/* Round a value to the lowest integer less than it that is a multiple of
   the required alignment.  Avoid using division in case the value is
   negative.  Assume the alignment is a power of two.  */
#define FLOOR_ROUND(VALUE,ALIGN) ((VALUE) & ~((ALIGN) - 1))

/* Similar, but round to the next highest integer that meets the
   alignment.  */
#define CEIL_ROUND(VALUE,ALIGN)	(((VALUE) + (ALIGN) - 1) & ~((ALIGN)- 1))

/* NEED_SEPARATE_AP means that we cannot derive ap from the value of fp
   during rtl generation.  If they are different register numbers, this is
   always true.  It may also be true if
   FIRST_PARM_OFFSET - STARTING_FRAME_OFFSET is not a constant during rtl
   generation.  See fix_lexical_addr for details.  */

#if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
#define NEED_SEPARATE_AP
#endif

/* Nonzero if function being compiled doesn't contain any calls
   (ignoring the prologue and epilogue).  This is set prior to
   local register allocation and is valid for the remaining
   compiler passes.  */
int current_function_is_leaf;

/* Nonzero if function being compiled doesn't contain any instructions
   that can throw an exception.  This is set prior to final.  */

int current_function_nothrow;

/* Nonzero if function being compiled doesn't modify the stack pointer
   (ignoring the prologue and epilogue).  This is only valid after
   life_analysis has run.  */
int current_function_sp_is_unchanging;

/* Nonzero if the function being compiled is a leaf function which only
   uses leaf registers.  This is valid after reload (specifically after
   sched2) and is useful only if the port defines LEAF_REGISTERS.  */
int current_function_uses_only_leaf_regs;

/* Nonzero once virtual register instantiation has been done.
   assign_stack_local uses frame_pointer_rtx when this is nonzero.
   calls.c:emit_library_call_value_1 uses it to set up
   post-instantiation libcalls.  */
int virtuals_instantiated;

/* These variables hold pointers to functions to create and destroy
   target specific, per-function data structures.  */
void (*init_machine_status) PARAMS ((struct function *));
void (*free_machine_status) PARAMS ((struct function *));
/* This variable holds a pointer to a function to register any
   data items in the target specific, per-function data structure
   that will need garbage collection.  */
void (*mark_machine_status) PARAMS ((struct function *));

/* Likewise, but for language-specific data.  */
void (*init_lang_status) PARAMS ((struct function *));
void (*save_lang_status) PARAMS ((struct function *));
void (*restore_lang_status) PARAMS ((struct function *));
void (*mark_lang_status) PARAMS ((struct function *));
void (*free_lang_status) PARAMS ((struct function *));

/* The FUNCTION_DECL for an inline function currently being expanded.  */
tree inline_function_decl;

/* The currently compiled function.  */
struct function *cfun = 0;

/* These arrays record the INSN_UIDs of the prologue and epilogue insns.  */
static varray_type prologue;
static varray_type epilogue;

/* Array of INSN_UIDs to hold the INSN_UIDs for each sibcall epilogue
   in this function.  */
static varray_type sibcall_epilogue;

/* In order to evaluate some expressions, such as function calls returning
   structures in memory, we need to temporarily allocate stack locations.
   We record each allocated temporary in the following structure.

   Associated with each temporary slot is a nesting level.  When we pop up
   one level, all temporaries associated with the previous level are freed.
   Normally, all temporaries are freed after the execution of the statement
   in which they were created.  However, if we are inside a ({...}) grouping,
   the result may be in a temporary and hence must be preserved.  If the
   result could be in a temporary, we preserve it if we can determine which
   one it is in.  If we cannot determine which temporary may contain the
   result, all temporaries are preserved.  A temporary is preserved by
   pretending it was allocated at the previous nesting level.

   Automatic variables are also assigned temporary slots, at the nesting
   level where they are defined.  They are marked a "kept" so that
   free_temp_slots will not free them.  */

struct temp_slot
{
  /* Points to next temporary slot.  */
  struct temp_slot *next;
  /* The rtx to used to reference the slot.  */
  rtx slot;
  /* The rtx used to represent the address if not the address of the
     slot above.  May be an EXPR_LIST if multiple addresses exist.  */
  rtx address;
  /* The alignment (in bits) of the slot.  */
  unsigned int align;
  /* The size, in units, of the slot.  */
  HOST_WIDE_INT size;
  /* The type of the object in the slot, or zero if it doesn't correspond
     to a type.  We use this to determine whether a slot can be reused.
     It can be reused if objects of the type of the new slot will always
     conflict with objects of the type of the old slot.  */
  tree type;
  /* The value of `sequence_rtl_expr' when this temporary is allocated.  */
  tree rtl_expr;
  /* Non-zero if this temporary is currently in use.  */
  char in_use;
  /* Non-zero if this temporary has its address taken.  */
  char addr_taken;
  /* Nesting level at which this slot is being used.  */
  int level;
  /* Non-zero if this should survive a call to free_temp_slots.  */
  int keep;
  /* The offset of the slot from the frame_pointer, including extra space
     for alignment.  This info is for combine_temp_slots.  */
  HOST_WIDE_INT base_offset;
  /* The size of the slot, including extra space for alignment.  This
     info is for combine_temp_slots.  */
  HOST_WIDE_INT full_size;
};

/* This structure is used to record MEMs or pseudos used to replace VAR, any
   SUBREGs of VAR, and any MEMs containing VAR as an address.  We need to
   maintain this list in case two operands of an insn were required to match;
   in that case we must ensure we use the same replacement.  */

struct fixup_replacement
{
  rtx old;
  rtx new;
  struct fixup_replacement *next;
};

struct insns_for_mem_entry
{
  /* The KEY in HE will be a MEM.  */
  struct hash_entry he;
  /* These are the INSNS which reference the MEM.  */
  rtx insns;
};

/* Forward declarations.  */

static rtx assign_stack_local_1 PARAMS ((enum machine_mode, HOST_WIDE_INT,
					 int, struct function *));
static struct temp_slot *find_temp_slot_from_address  PARAMS ((rtx));
static void put_reg_into_stack	PARAMS ((struct function *, rtx, tree,
					 enum machine_mode, enum machine_mode,
					 int, unsigned int, int,
					 struct hash_table *));
static void schedule_fixup_var_refs PARAMS ((struct function *, rtx, tree,
					     enum machine_mode,
					     struct hash_table *));
static void fixup_var_refs	PARAMS ((rtx, enum machine_mode, int,
					 struct hash_table *));
static struct fixup_replacement
  *find_fixup_replacement	PARAMS ((struct fixup_replacement **, rtx));
static void fixup_var_refs_insns PARAMS ((rtx, rtx, enum machine_mode,
					  int, int));
static void fixup_var_refs_insns_with_hash
				PARAMS ((struct hash_table *, rtx,
					 enum machine_mode, int));
static void fixup_var_refs_insn PARAMS ((rtx, rtx, enum machine_mode,
					 int, int));
static void fixup_var_refs_1	PARAMS ((rtx, enum machine_mode, rtx *, rtx,
					 struct fixup_replacement **));
static rtx fixup_memory_subreg	PARAMS ((rtx, rtx, int));
static rtx walk_fixup_memory_subreg  PARAMS ((rtx, rtx, int));
static rtx fixup_stack_1	PARAMS ((rtx, rtx));
static void optimize_bit_field	PARAMS ((rtx, rtx, rtx *));
static void instantiate_decls	PARAMS ((tree, int));
static void instantiate_decls_1	PARAMS ((tree, int));
static void instantiate_decl	PARAMS ((rtx, HOST_WIDE_INT, int));
static rtx instantiate_new_reg	PARAMS ((rtx, HOST_WIDE_INT *));
static int instantiate_virtual_regs_1 PARAMS ((rtx *, rtx, int));
static void delete_handlers	PARAMS ((void));
static void pad_to_arg_alignment PARAMS ((struct args_size *, int,
					  struct args_size *));
#ifndef ARGS_GROW_DOWNWARD
static void pad_below		PARAMS ((struct args_size *, enum machine_mode,
					 tree));
#endif
static rtx round_trampoline_addr PARAMS ((rtx));
static rtx adjust_trampoline_addr PARAMS ((rtx));
static tree *identify_blocks_1	PARAMS ((rtx, tree *, tree *, tree *));
static void reorder_blocks_0	PARAMS ((tree));
static void reorder_blocks_1	PARAMS ((rtx, tree, varray_type *));
static void reorder_fix_fragments PARAMS ((tree));
static tree blocks_nreverse	PARAMS ((tree));
static int all_blocks		PARAMS ((tree, tree *));
static tree *get_block_vector   PARAMS ((tree, int *));
extern tree debug_find_var_in_block_tree PARAMS ((tree, tree));
/* We always define `record_insns' even if its not used so that we
   can always export `prologue_epilogue_contains'.  */
static void record_insns	PARAMS ((rtx, varray_type *)) ATTRIBUTE_UNUSED;
static int contains		PARAMS ((rtx, varray_type));
#ifdef HAVE_return
static void emit_return_into_block PARAMS ((basic_block, rtx));
#endif
static void put_addressof_into_stack PARAMS ((rtx, struct hash_table *));
static bool purge_addressof_1 PARAMS ((rtx *, rtx, int, int,
					  struct hash_table *));
static void purge_single_hard_subreg_set PARAMS ((rtx));
#if defined(HAVE_epilogue) && defined(INCOMING_RETURN_ADDR_RTX)
static rtx keep_stack_depressed PARAMS ((rtx));
#endif
static int is_addressof		PARAMS ((rtx *, void *));
static struct hash_entry *insns_for_mem_newfunc PARAMS ((struct hash_entry *,
							 struct hash_table *,
							 hash_table_key));
static unsigned long insns_for_mem_hash PARAMS ((hash_table_key));
static bool insns_for_mem_comp PARAMS ((hash_table_key, hash_table_key));
static int insns_for_mem_walk   PARAMS ((rtx *, void *));
static void compute_insns_for_mem PARAMS ((rtx, rtx, struct hash_table *));
static void mark_function_status PARAMS ((struct function *));
static void maybe_mark_struct_function PARAMS ((void *));
static void prepare_function_start PARAMS ((void));
static void do_clobber_return_reg PARAMS ((rtx, void *));
static void do_use_return_reg PARAMS ((rtx, void *));

/* Pointer to chain of `struct function' for containing functions.  */
static struct function *outer_function_chain;

/* Given a function decl for a containing function,
   return the `struct function' for it.  */

struct function *
find_function_data (decl)
     tree decl;
{
  struct function *p;

  for (p = outer_function_chain; p; p = p->outer)
    if (p->decl == decl)
      return p;

  abort ();
}

/* Save the current context for compilation of a nested function.
   This is called from language-specific code.  The caller should use
   the save_lang_status callback to save any language-specific state,
   since this function knows only about language-independent
   variables.  */

void
push_function_context_to (context)
     tree context;
{
  struct function *p;

  if (context)
    {
      if (context == current_function_decl)
	cfun->contains_functions = 1;
      else
	{
	  struct function *containing = find_function_data (context);
	  containing->contains_functions = 1;
	}
    }

  if (cfun == 0)
    init_dummy_function_start ();
  p = cfun;

  p->outer = outer_function_chain;
  outer_function_chain = p;
  p->fixup_var_refs_queue = 0;

  if (save_lang_status)
    (*save_lang_status) (p);

  cfun = 0;
}

void
push_function_context ()
{
  push_function_context_to (current_function_decl);
}

/* Restore the last saved context, at the end of a nested function.
   This function is called from language-specific code.  */

void
pop_function_context_from (context)
     tree context ATTRIBUTE_UNUSED;
{
  struct function *p = outer_function_chain;
  struct var_refs_queue *queue;

  cfun = p;
  outer_function_chain = p->outer;

  current_function_decl = p->decl;
  reg_renumber = 0;

  restore_emit_status (p);

  if (restore_lang_status)
    (*restore_lang_status) (p);

  /* Finish doing put_var_into_stack for any of our variables
     which became addressable during the nested function.  */
  for (queue = p->fixup_var_refs_queue; queue; queue = queue->next)
    fixup_var_refs (queue->modified, queue->promoted_mode,
		    queue->unsignedp, 0);

  p->fixup_var_refs_queue = 0;

  /* Reset variables that have known state during rtx generation.  */
  rtx_equal_function_value_matters = 1;
  virtuals_instantiated = 0;
  generating_concat_p = 1;
}

void
pop_function_context ()
{
  pop_function_context_from (current_function_decl);
}

/* Clear out all parts of the state in F that can safely be discarded
   after the function has been parsed, but not compiled, to let
   garbage collection reclaim the memory.  */

void
free_after_parsing (f)
     struct function *f;
{
  /* f->expr->forced_labels is used by code generation.  */
  /* f->emit->regno_reg_rtx is used by code generation.  */
  /* f->varasm is used by code generation.  */
  /* f->eh->eh_return_stub_label is used by code generation.  */

  if (free_lang_status)
    (*free_lang_status) (f);
  free_stmt_status (f);
}

/* Clear out all parts of the state in F that can safely be discarded
   after the function has been compiled, to let garbage collection
   reclaim the memory.  */

void
free_after_compilation (f)
     struct function *f;
{
  free_eh_status (f);
  free_expr_status (f);
  free_emit_status (f);
  free_varasm_status (f);

  if (free_machine_status)
    (*free_machine_status) (f);

  if (f->x_parm_reg_stack_loc)
    free (f->x_parm_reg_stack_loc);

  f->x_temp_slots = NULL;
  f->arg_offset_rtx = NULL;
  f->return_rtx = NULL;
  f->internal_arg_pointer = NULL;
  f->x_nonlocal_labels = NULL;
  f->x_nonlocal_goto_handler_slots = NULL;
  f->x_nonlocal_goto_handler_labels = NULL;
  f->x_nonlocal_goto_stack_level = NULL;
  f->x_cleanup_label = NULL;
  f->x_return_label = NULL;
  f->x_save_expr_regs = NULL;
  f->x_stack_slot_list = NULL;
  f->x_rtl_expr_chain = NULL;
  f->x_tail_recursion_label = NULL;
  f->x_tail_recursion_reentry = NULL;
  f->x_arg_pointer_save_area = NULL;
  f->x_clobber_return_insn = NULL;
  f->x_context_display = NULL;
  f->x_trampoline_list = NULL;
  f->x_parm_birth_insn = NULL;
  f->x_last_parm_insn = NULL;
  f->x_parm_reg_stack_loc = NULL;
  f->fixup_var_refs_queue = NULL;
  f->original_arg_vector = NULL;
  f->original_decl_initial = NULL;
  f->inl_last_parm_insn = NULL;
  f->epilogue_delay_list = NULL;
}

/* Allocate fixed slots in the stack frame of the current function.  */

/* Return size needed for stack frame based on slots so far allocated in
   function F.
   This size counts from zero.  It is not rounded to PREFERRED_STACK_BOUNDARY;
   the caller may have to do that.  */

HOST_WIDE_INT
get_func_frame_size (f)
     struct function *f;
{
#ifdef FRAME_GROWS_DOWNWARD
  return -f->x_frame_offset;
#else
  return f->x_frame_offset;
#endif
}

/* Return size needed for stack frame based on slots so far allocated.
   This size counts from zero.  It is not rounded to PREFERRED_STACK_BOUNDARY;
   the caller may have to do that.  */
HOST_WIDE_INT
get_frame_size ()
{
  return get_func_frame_size (cfun);
}

/* Allocate a stack slot of SIZE bytes and return a MEM rtx for it
   with machine mode MODE.

   ALIGN controls the amount of alignment for the address of the slot:
   0 means according to MODE,
   -1 means use BIGGEST_ALIGNMENT and round size to multiple of that,
   positive specifies alignment boundary in bits.

   We do not round to stack_boundary here.

   FUNCTION specifies the function to allocate in.  */

static rtx
assign_stack_local_1 (mode, size, align, function)
     enum machine_mode mode;
     HOST_WIDE_INT size;
     int align;
     struct function *function;
{
  rtx x, addr;
  int bigend_correction = 0;
  int alignment;

  if (align == 0)
    {
      tree type;

      if (mode == BLKmode)
	alignment = BIGGEST_ALIGNMENT;
      else
	alignment = GET_MODE_ALIGNMENT (mode);

      /* Allow the target to (possibly) increase the alignment of this
	 stack slot.  */
      type = type_for_mode (mode, 0);
      if (type)
	alignment = LOCAL_ALIGNMENT (type, alignment);

      alignment /= BITS_PER_UNIT;
    }
  else if (align == -1)
    {
      alignment = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
      size = CEIL_ROUND (size, alignment);
    }
  else
    alignment = align / BITS_PER_UNIT;

#ifdef FRAME_GROWS_DOWNWARD
  function->x_frame_offset -= size;
#endif

  /* Ignore alignment we can't do with expected alignment of the boundary.  */
  if (alignment * BITS_PER_UNIT > PREFERRED_STACK_BOUNDARY)
    alignment = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;

  if (function->stack_alignment_needed < alignment * BITS_PER_UNIT)
    function->stack_alignment_needed = alignment * BITS_PER_UNIT;

  /* Round frame offset to that alignment.
     We must be careful here, since FRAME_OFFSET might be negative and
     division with a negative dividend isn't as well defined as we might
     like.  So we instead assume that ALIGNMENT is a power of two and
     use logical operations which are unambiguous.  */
#ifdef FRAME_GROWS_DOWNWARD
  function->x_frame_offset = FLOOR_ROUND (function->x_frame_offset, alignment);
#else
  function->x_frame_offset = CEIL_ROUND (function->x_frame_offset, alignment);
#endif

  /* On a big-endian machine, if we are allocating more space than we will use,
     use the least significant bytes of those that are allocated.  */
  if (BYTES_BIG_ENDIAN && mode != BLKmode)
    bigend_correction = size - GET_MODE_SIZE (mode);

  /* If we have already instantiated virtual registers, return the actual
     address relative to the frame pointer.  */
  if (function == cfun && virtuals_instantiated)
    addr = plus_constant (frame_pointer_rtx,
			  (frame_offset + bigend_correction
			   + STARTING_FRAME_OFFSET));
  else
    addr = plus_constant (virtual_stack_vars_rtx,
			  function->x_frame_offset + bigend_correction);

#ifndef FRAME_GROWS_DOWNWARD
  function->x_frame_offset += size;
#endif

  x = gen_rtx_MEM (mode, addr);

  function->x_stack_slot_list
    = gen_rtx_EXPR_LIST (VOIDmode, x, function->x_stack_slot_list);

  return x;
}

/* Wrapper around assign_stack_local_1;  assign a local stack slot for the
   current function.  */

rtx
assign_stack_local (mode, size, align)
     enum machine_mode mode;
     HOST_WIDE_INT size;
     int align;
{
  return assign_stack_local_1 (mode, size, align, cfun);
}

/* Allocate a temporary stack slot and record it for possible later
   reuse.

   MODE is the machine mode to be given to the returned rtx.

   SIZE is the size in units of the space required.  We do no rounding here
   since assign_stack_local will do any required rounding.

   KEEP is 1 if this slot is to be retained after a call to
   free_temp_slots.  Automatic variables for a block are allocated
   with this flag.  KEEP is 2 if we allocate a longer term temporary,
   whose lifetime is controlled by CLEANUP_POINT_EXPRs.  KEEP is 3
   if we are to allocate something at an inner level to be treated as
   a variable in the block (e.g., a SAVE_EXPR).

   TYPE is the type that will be used for the stack slot.  */

rtx
assign_stack_temp_for_type (mode, size, keep, type)
     enum machine_mode mode;
     HOST_WIDE_INT size;
     int keep;
     tree type;
{
  unsigned int align;
  struct temp_slot *p, *best_p = 0;

  /* If SIZE is -1 it means that somebody tried to allocate a temporary
     of a variable size.  */
  if (size == -1)
    abort ();

  if (mode == BLKmode)
    align = BIGGEST_ALIGNMENT;
  else
    align = GET_MODE_ALIGNMENT (mode);

  if (! type)
    type = type_for_mode (mode, 0);

  if (type)
    align = LOCAL_ALIGNMENT (type, align);

  /* Try to find an available, already-allocated temporary of the proper
     mode which meets the size and alignment requirements.  Choose the
     smallest one with the closest alignment.  */
  for (p = temp_slots; p; p = p->next)
    if (p->align >= align && p->size >= size && GET_MODE (p->slot) == mode
	&& ! p->in_use
	&& objects_must_conflict_p (p->type, type)
	&& (best_p == 0 || best_p->size > p->size
	    || (best_p->size == p->size && best_p->align > p->align)))
      {
	if (p->align == align && p->size == size)
	  {
	    best_p = 0;
	    break;
	  }
	best_p = p;
      }

  /* Make our best, if any, the one to use.  */
  if (best_p)
    {
      /* If there are enough aligned bytes left over, make them into a new
	 temp_slot so that the extra bytes don't get wasted.  Do this only
	 for BLKmode slots, so that we can be sure of the alignment.  */
      if (GET_MODE (best_p->slot) == BLKmode)
	{
	  int alignment = best_p->align / BITS_PER_UNIT;
	  HOST_WIDE_INT rounded_size = CEIL_ROUND (size, alignment);

	  if (best_p->size - rounded_size >= alignment)
	    {
	      p = (struct temp_slot *) ggc_alloc (sizeof (struct temp_slot));
	      p->in_use = p->addr_taken = 0;
	      p->size = best_p->size - rounded_size;
	      p->base_offset = best_p->base_offset + rounded_size;
	      p->full_size = best_p->full_size - rounded_size;
	      p->slot = gen_rtx_MEM (BLKmode,
				     plus_constant (XEXP (best_p->slot, 0),
						    rounded_size));
	      p->align = best_p->align;
	      p->address = 0;
	      p->rtl_expr = 0;
	      p->type = best_p->type;
	      p->next = temp_slots;
	      temp_slots = p;

	      stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, p->slot,
						   stack_slot_list);

	      best_p->size = rounded_size;
	      best_p->full_size = rounded_size;
	    }
	}

      p = best_p;
    }

  /* If we still didn't find one, make a new temporary.  */
  if (p == 0)
    {
      HOST_WIDE_INT frame_offset_old = frame_offset;

      p = (struct temp_slot *) ggc_alloc (sizeof (struct temp_slot));

      /* We are passing an explicit alignment request to assign_stack_local.
	 One side effect of that is assign_stack_local will not round SIZE
	 to ensure the frame offset remains suitably aligned.

	 So for requests which depended on the rounding of SIZE, we go ahead
	 and round it now.  We also make sure ALIGNMENT is at least
	 BIGGEST_ALIGNMENT.  */
      if (mode == BLKmode && align < BIGGEST_ALIGNMENT)
	abort ();
      p->slot = assign_stack_local (mode,
				    (mode == BLKmode
				     ? CEIL_ROUND (size, align / BITS_PER_UNIT)
				     : size),
				    align);

      p->align = align;

      /* The following slot size computation is necessary because we don't
	 know the actual size of the temporary slot until assign_stack_local
	 has performed all the frame alignment and size rounding for the
	 requested temporary.  Note that extra space added for alignment
	 can be either above or below this stack slot depending on which
	 way the frame grows.  We include the extra space if and only if it
	 is above this slot.  */
#ifdef FRAME_GROWS_DOWNWARD
      p->size = frame_offset_old - frame_offset;
#else
      p->size = size;
#endif

      /* Now define the fields used by combine_temp_slots.  */
#ifdef FRAME_GROWS_DOWNWARD
      p->base_offset = frame_offset;
      p->full_size = frame_offset_old - frame_offset;
#else
      p->base_offset = frame_offset_old;
      p->full_size = frame_offset - frame_offset_old;
#endif
      p->address = 0;
      p->next = temp_slots;
      temp_slots = p;
    }

  p->in_use = 1;
  p->addr_taken = 0;
  p->rtl_expr = seq_rtl_expr;
  p->type = type;

  if (keep == 2)
    {
      p->level = target_temp_slot_level;
      p->keep = 0;
    }
  else if (keep == 3)
    {
      p->level = var_temp_slot_level;
      p->keep = 0;
    }
  else
    {
      p->level = temp_slot_level;
      p->keep = keep;
    }

  /* We may be reusing an old slot, so clear any MEM flags that may have been
     set from before.  */
  RTX_UNCHANGING_P (p->slot) = 0;
  MEM_IN_STRUCT_P (p->slot) = 0;
  MEM_SCALAR_P (p->slot) = 0;
  MEM_VOLATILE_P (p->slot) = 0;
  set_mem_alias_set (p->slot, 0);

  /* If we know the alias set for the memory that will be used, use
     it.  If there's no TYPE, then we don't know anything about the
     alias set for the memory.  */
  set_mem_alias_set (p->slot, type ? get_alias_set (type) : 0);
  set_mem_align (p->slot, align);

  /* If a type is specified, set the relevant flags.  */
  if (type != 0)
    {
      RTX_UNCHANGING_P (p->slot) = TYPE_READONLY (type);
      MEM_VOLATILE_P (p->slot) = TYPE_VOLATILE (type);
      MEM_SET_IN_STRUCT_P (p->slot, AGGREGATE_TYPE_P (type));
    }

  return p->slot;
}

/* Allocate a temporary stack slot and record it for possible later
   reuse.  First three arguments are same as in preceding function.  */

rtx
assign_stack_temp (mode, size, keep)
     enum machine_mode mode;
     HOST_WIDE_INT size;
     int keep;
{
  return assign_stack_temp_for_type (mode, size, keep, NULL_TREE);
}

/* Assign a temporary of given TYPE.
   KEEP is as for assign_stack_temp.
   MEMORY_REQUIRED is 1 if the result must be addressable stack memory;
   it is 0 if a register is OK.
   DONT_PROMOTE is 1 if we should not promote values in register
   to wider modes.  */

rtx
assign_temp (type, keep, memory_required, dont_promote)
     tree type;
     int keep;
     int memory_required;
     int dont_promote ATTRIBUTE_UNUSED;
{
  enum machine_mode mode = TYPE_MODE (type);
#ifndef PROMOTE_FOR_CALL_ONLY
  int unsignedp = TREE_UNSIGNED (type);
#endif

  if (mode == BLKmode || memory_required)
    {
      HOST_WIDE_INT size = int_size_in_bytes (type);
      rtx tmp;

      /* Zero sized arrays are GNU C extension.  Set size to 1 to avoid
	 problems with allocating the stack space.  */
      if (size == 0)
	size = 1;

      /* Unfortunately, we don't yet know how to allocate variable-sized
	 temporaries.  However, sometimes we have a fixed upper limit on
	 the size (which is stored in TYPE_ARRAY_MAX_SIZE) and can use that
	 instead.  This is the case for Chill variable-sized strings.  */
      if (size == -1 && TREE_CODE (type) == ARRAY_TYPE
	  && TYPE_ARRAY_MAX_SIZE (type) != NULL_TREE
	  && host_integerp (TYPE_ARRAY_MAX_SIZE (type), 1))
	size = tree_low_cst (TYPE_ARRAY_MAX_SIZE (type), 1);

      tmp = assign_stack_temp_for_type (mode, size, keep, type);
      return tmp;
    }

#ifndef PROMOTE_FOR_CALL_ONLY
  if (! dont_promote)
    mode = promote_mode (type, mode, &unsignedp, 0);
#endif

  return gen_reg_rtx (mode);
}

/* Combine temporary stack slots which are adjacent on the stack.

   This allows for better use of already allocated stack space.  This is only
   done for BLKmode slots because we can be sure that we won't have alignment
   problems in this case.  */

void
combine_temp_slots ()
{
  struct temp_slot *p, *q;
  struct temp_slot *prev_p, *prev_q;
  int num_slots;

  /* We can't combine slots, because the information about which slot
     is in which alias set will be lost.  */
  if (flag_strict_aliasing)
    return;

  /* If there are a lot of temp slots, don't do anything unless
     high levels of optimization.  */
  if (! flag_expensive_optimizations)
    for (p = temp_slots, num_slots = 0; p; p = p->next, num_slots++)
      if (num_slots > 100 || (num_slots > 10 && optimize == 0))
	return;

  for (p = temp_slots, prev_p = 0; p; p = prev_p ? prev_p->next : temp_slots)
    {
      int delete_p = 0;

      if (! p->in_use && GET_MODE (p->slot) == BLKmode)
	for (q = p->next, prev_q = p; q; q = prev_q->next)
	  {
	    int delete_q = 0;
	    if (! q->in_use && GET_MODE (q->slot) == BLKmode)
	      {
		if (p->base_offset + p->full_size == q->base_offset)
		  {
		    /* Q comes after P; combine Q into P.  */
		    p->size += q->size;
		    p->full_size += q->full_size;
		    delete_q = 1;
		  }
		else if (q->base_offset + q->full_size == p->base_offset)
		  {
		    /* P comes after Q; combine P into Q.  */
		    q->size += p->size;
		    q->full_size += p->full_size;
		    delete_p = 1;
		    break;
		  }
	      }
	    /* Either delete Q or advance past it.  */
	    if (delete_q)
	      prev_q->next = q->next;
	    else
	      prev_q = q;
	  }
      /* Either delete P or advance past it.  */
      if (delete_p)
	{
	  if (prev_p)
	    prev_p->next = p->next;
	  else
	    temp_slots = p->next;
	}
      else
	prev_p = p;
    }
}

/* Find the temp slot corresponding to the object at address X.  */

static struct temp_slot *
find_temp_slot_from_address (x)
     rtx x;
{
  struct temp_slot *p;
  rtx next;

  for (p = temp_slots; p; p = p->next)
    {
      if (! p->in_use)
	continue;

      else if (XEXP (p->slot, 0) == x
	       || p->address == x
	       || (GET_CODE (x) == PLUS
		   && XEXP (x, 0) == virtual_stack_vars_rtx
		   && GET_CODE (XEXP (x, 1)) == CONST_INT
		   && INTVAL (XEXP (x, 1)) >= p->base_offset
		   && INTVAL (XEXP (x, 1)) < p->base_offset + p->full_size))
	return p;

      else if (p->address != 0 && GET_CODE (p->address) == EXPR_LIST)
	for (next = p->address; next; next = XEXP (next, 1))
	  if (XEXP (next, 0) == x)
	    return p;
    }

  /* If we have a sum involving a register, see if it points to a temp
     slot.  */
  if (GET_CODE (x) == PLUS && GET_CODE (XEXP (x, 0)) == REG
      && (p = find_temp_slot_from_address (XEXP (x, 0))) != 0)
    return p;
  else if (GET_CODE (x) == PLUS && GET_CODE (XEXP (x, 1)) == REG
	   && (p = find_temp_slot_from_address (XEXP (x, 1))) != 0)
    return p;

  return 0;
}

/* Indicate that NEW is an alternate way of referring to the temp slot
   that previously was known by OLD.  */

void
update_temp_slot_address (old, new)
     rtx old, new;
{
  struct temp_slot *p;

  if (rtx_equal_p (old, new))
    return;

  p = find_temp_slot_from_address (old);

  /* If we didn't find one, see if both OLD is a PLUS.  If so, and NEW
     is a register, see if one operand of the PLUS is a temporary
     location.  If so, NEW points into it.  Otherwise, if both OLD and
     NEW are a PLUS and if there is a register in common between them.
     If so, try a recursive call on those values.  */
  if (p == 0)
    {
      if (GET_CODE (old) != PLUS)
	return;

      if (GET_CODE (new) == REG)
	{
	  update_temp_slot_address (XEXP (old, 0), new);
	  update_temp_slot_address (XEXP (old, 1), new);
	  return;
	}
      else if (GET_CODE (new) != PLUS)
	return;

      if (rtx_equal_p (XEXP (old, 0), XEXP (new, 0)))
	update_temp_slot_address (XEXP (old, 1), XEXP (new, 1));
      else if (rtx_equal_p (XEXP (old, 1), XEXP (new, 0)))
	update_temp_slot_address (XEXP (old, 0), XEXP (new, 1));
      else if (rtx_equal_p (XEXP (old, 0), XEXP (new, 1)))
	update_temp_slot_address (XEXP (old, 1), XEXP (new, 0));
      else if (rtx_equal_p (XEXP (old, 1), XEXP (new, 1)))
	update_temp_slot_address (XEXP (old, 0), XEXP (new, 0));

      return;
    }

  /* Otherwise add an alias for the temp's address.  */
  else if (p->address == 0)
    p->address = new;
  else
    {
      if (GET_CODE (p->address) != EXPR_LIST)
	p->address = gen_rtx_EXPR_LIST (VOIDmode, p->address, NULL_RTX);

      p->address = gen_rtx_EXPR_LIST (VOIDmode, new, p->address);
    }
}

/* If X could be a reference to a temporary slot, mark the fact that its
   address was taken.  */

void
mark_temp_addr_taken (x)
     rtx x;
{
  struct temp_slot *p;

  if (x == 0)
    return;

  /* If X is not in memory or is at a constant address, it cannot be in
     a temporary slot.  */
  if (GET_CODE (x) != MEM || CONSTANT_P (XEXP (x, 0)))
    return;

  p = find_temp_slot_from_address (XEXP (x, 0));
  if (p != 0)
    p->addr_taken = 1;
}

/* If X could be a reference to a temporary slot, mark that slot as
   belonging to the to one level higher than the current level.  If X
   matched one of our slots, just mark that one.  Otherwise, we can't
   easily predict which it is, so upgrade all of them.  Kept slots
   need not be touched.

   This is called when an ({...}) construct occurs and a statement
   returns a value in memory.  */

void
preserve_temp_slots (x)
     rtx x;
{
  struct temp_slot *p = 0;

  /* If there is no result, we still might have some objects whose address
     were taken, so we need to make sure they stay around.  */
  if (x == 0)
    {
      for (p = temp_slots; p; p = p->next)
	if (p->in_use && p->level == temp_slot_level && p->addr_taken)
	  p->level--;

      return;
    }

  /* If X is a register that is being used as a pointer, see if we have
     a temporary slot we know it points to.  To be consistent with
     the code below, we really should preserve all non-kept slots
     if we can't find a match, but that seems to be much too costly.  */
  if (GET_CODE (x) == REG && REG_POINTER (x))
    p = find_temp_slot_from_address (x);

  /* If X is not in memory or is at a constant address, it cannot be in
     a temporary slot, but it can contain something whose address was
     taken.  */
  if (p == 0 && (GET_CODE (x) != MEM || CONSTANT_P (XEXP (x, 0))))
    {
      for (p = temp_slots; p; p = p->next)
	if (p->in_use && p->level == temp_slot_level && p->addr_taken)
	  p->level--;

      return;
    }

  /* First see if we can find a match.  */
  if (p == 0)
    p = find_temp_slot_from_address (XEXP (x, 0));

  if (p != 0)
    {
      /* Move everything at our level whose address was taken to our new
	 level in case we used its address.  */
      struct temp_slot *q;

      if (p->level == temp_slot_level)
	{
	  for (q = temp_slots; q; q = q->next)
	    if (q != p && q->addr_taken && q->level == p->level)
	      q->level--;

	  p->level--;
	  p->addr_taken = 0;
	}
      return;
    }

  /* Otherwise, preserve all non-kept slots at this level.  */
  for (p = temp_slots; p; p = p->next)
    if (p->in_use && p->level == temp_slot_level && ! p->keep)
      p->level--;
}

/* X is the result of an RTL_EXPR.  If it is a temporary slot associated
   with that RTL_EXPR, promote it into a temporary slot at the present
   level so it will not be freed when we free slots made in the
   RTL_EXPR.  */

void
preserve_rtl_expr_result (x)
     rtx x;
{
  struct temp_slot *p;

  /* If X is not in memory or is at a constant address, it cannot be in
     a temporary slot.  */
  if (x == 0 || GET_CODE (x) != MEM || CONSTANT_P (XEXP (x, 0)))
    return;

  /* If we can find a match, move it to our level unless it is already at
     an upper level.  */
  p = find_temp_slot_from_address (XEXP (x, 0));
  if (p != 0)
    {
      p->level = MIN (p->level, temp_slot_level);
      p->rtl_expr = 0;
    }

  return;
}

/* Free all temporaries used so far.  This is normally called at the end
   of generating code for a statement.  Don't free any temporaries
   currently in use for an RTL_EXPR that hasn't yet been emitted.
   We could eventually do better than this since it can be reused while
   generating the same RTL_EXPR, but this is complex and probably not
   worthwhile.  */

void
free_temp_slots ()
{
  struct temp_slot *p;

  for (p = temp_slots; p; p = p->next)
    if (p->in_use && p->level == temp_slot_level && ! p->keep
	&& p->rtl_expr == 0)
      p->in_use = 0;

  combine_temp_slots ();
}

/* Free all temporary slots used in T, an RTL_EXPR node.  */

void
free_temps_for_rtl_expr (t)
     tree t;
{
  struct temp_slot *p;

  for (p = temp_slots; p; p = p->next)
    if (p->rtl_expr == t)
      {
	/* If this slot is below the current TEMP_SLOT_LEVEL, then it
	   needs to be preserved.  This can happen if a temporary in
	   the RTL_EXPR was addressed; preserve_temp_slots will move
	   the temporary into a higher level.  */
	if (temp_slot_level <= p->level)
	  p->in_use = 0;
	else
	  p->rtl_expr = NULL_TREE;
      }

  combine_temp_slots ();
}

/* Mark all temporaries ever allocated in this function as not suitable
   for reuse until the current level is exited.  */

void
mark_all_temps_used ()
{
  struct temp_slot *p;

  for (p = temp_slots; p; p = p->next)
    {
      p->in_use = p->keep = 1;
      p->level = MIN (p->level, temp_slot_level);
    }
}

/* Push deeper into the nesting level for stack temporaries.  */

void
push_temp_slots ()
{
  temp_slot_level++;
}

/* Likewise, but save the new level as the place to allocate variables
   for blocks.  */

#if 0
void
push_temp_slots_for_block ()
{
  push_temp_slots ();

  var_temp_slot_level = temp_slot_level;
}

/* Likewise, but save the new level as the place to allocate temporaries
   for TARGET_EXPRs.  */

void
push_temp_slots_for_target ()
{
  push_temp_slots ();

  target_temp_slot_level = temp_slot_level;
}

/* Set and get the value of target_temp_slot_level.  The only
   permitted use of these functions is to save and restore this value.  */

int
get_target_temp_slot_level ()
{
  return target_temp_slot_level;
}

void
set_target_temp_slot_level (level)
     int level;
{
  target_temp_slot_level = level;
}
#endif

/* Pop a temporary nesting level.  All slots in use in the current level
   are freed.  */

void
pop_temp_slots ()
{
  struct temp_slot *p;

  for (p = temp_slots; p; p = p->next)
    if (p->in_use && p->level == temp_slot_level && p->rtl_expr == 0)
      p->in_use = 0;

  combine_temp_slots ();

  temp_slot_level--;
}

/* Initialize temporary slots.  */

void
init_temp_slots ()
{
  /* We have not allocated any temporaries yet.  */
  temp_slots = 0;
  temp_slot_level = 0;
  var_temp_slot_level = 0;
  target_temp_slot_level = 0;
}

/* Retroactively move an auto variable from a register to a stack slot.
   This is done when an address-reference to the variable is seen.  */

void
put_var_into_stack (decl)
     tree decl;
{
  rtx reg;
  enum machine_mode promoted_mode, decl_mode;
  struct function *function = 0;
  tree context;
  int can_use_addressof;
  int volatilep = TREE_CODE (decl) != SAVE_EXPR && TREE_THIS_VOLATILE (decl);
  int usedp = (TREE_USED (decl)
	       || (TREE_CODE (decl) != SAVE_EXPR && DECL_INITIAL (decl) != 0));

  context = decl_function_context (decl);

  /* Get the current rtl used for this object and its original mode.  */
  reg = (TREE_CODE (decl) == SAVE_EXPR 
	 ? SAVE_EXPR_RTL (decl) 
	 : DECL_RTL_IF_SET (decl));

  /* No need to do anything if decl has no rtx yet
     since in that case caller is setting TREE_ADDRESSABLE
     and a stack slot will be assigned when the rtl is made.  */
  if (reg == 0)
    return;

  /* Get the declared mode for this object.  */
  decl_mode = (TREE_CODE (decl) == SAVE_EXPR ? TYPE_MODE (TREE_TYPE (decl))
	       : DECL_MODE (decl));
  /* Get the mode it's actually stored in.  */
  promoted_mode = GET_MODE (reg);

  /* If this variable comes from an outer function, find that
     function's saved context.  Don't use find_function_data here,
     because it might not be in any active function.
     FIXME: Is that really supposed to happen?
     It does in ObjC at least.  */
  if (context != current_function_decl && context != inline_function_decl)
    for (function = outer_function_chain; function; function = function->outer)
      if (function->decl == context)
	break;

  /* If this is a variable-size object with a pseudo to address it,
     put that pseudo into the stack, if the var is nonlocal.  */
  if (TREE_CODE (decl) != SAVE_EXPR && DECL_NONLOCAL (decl)
      && GET_CODE (reg) == MEM
      && GET_CODE (XEXP (reg, 0)) == REG
      && REGNO (XEXP (reg, 0)) > LAST_VIRTUAL_REGISTER)
    {
      reg = XEXP (reg, 0);
      decl_mode = promoted_mode = GET_MODE (reg);
    }

  can_use_addressof
    = (function == 0
       && optimize > 0
       /* FIXME make it work for promoted modes too */
       && decl_mode == promoted_mode
#ifdef NON_SAVING_SETJMP
       && ! (NON_SAVING_SETJMP && current_function_calls_setjmp)
#endif
       );

  /* If we can't use ADDRESSOF, make sure we see through one we already
     generated.  */
  if (! can_use_addressof && GET_CODE (reg) == MEM
      && GET_CODE (XEXP (reg, 0)) == ADDRESSOF)
    reg = XEXP (XEXP (reg, 0), 0);

  /* Now we should have a value that resides in one or more pseudo regs.  */

  if (GET_CODE (reg) == REG)
    {
      /* If this variable lives in the current function and we don't need
	 to put things in the stack for the sake of setjmp, try to keep it
	 in a register until we know we actually need the address.  */
      if (can_use_addressof)
	gen_mem_addressof (reg, decl);
      else
	put_reg_into_stack (function, reg, TREE_TYPE (decl), promoted_mode,
			    decl_mode, volatilep, 0, usedp, 0);
    }
  else if (GET_CODE (reg) == CONCAT)
    {
      /* A CONCAT contains two pseudos; put them both in the stack.
	 We do it so they end up consecutive.
	 We fixup references to the parts only after we fixup references
	 to the whole CONCAT, lest we do double fixups for the latter
	 references.  */
      enum machine_mode part_mode = GET_MODE (XEXP (reg, 0));
      tree part_type = type_for_mode (part_mode, 0);
      rtx lopart = XEXP (reg, 0);
      rtx hipart = XEXP (reg, 1);
#ifdef FRAME_GROWS_DOWNWARD
      /* Since part 0 should have a lower address, do it second.  */
      put_reg_into_stack (function, hipart, part_type, part_mode,
			  part_mode, volatilep, 0, 0, 0);
      put_reg_into_stack (function, lopart, part_type, part_mode,
			  part_mode, volatilep, 0, 0, 0);
#else
      put_reg_into_stack (function, lopart, part_type, part_mode,
			  part_mode, volatilep, 0, 0, 0);
      put_reg_into_stack (function, hipart, part_type, part_mode,
			  part_mode, volatilep, 0, 0, 0);
#endif

      /* Change the CONCAT into a combined MEM for both parts.  */
      PUT_CODE (reg, MEM);
      MEM_ATTRS (reg) = 0;

      /* set_mem_attributes uses DECL_RTL to avoid re-generating of
         already computed alias sets.  Here we want to re-generate.  */
      if (DECL_P (decl))
	SET_DECL_RTL (decl, NULL);
      set_mem_attributes (reg, decl, 1);
      if (DECL_P (decl))
	SET_DECL_RTL (decl, reg);

      /* The two parts are in memory order already.
	 Use the lower parts address as ours.  */
      XEXP (reg, 0) = XEXP (XEXP (reg, 0), 0);
      /* Prevent sharing of rtl that might lose.  */
      if (GET_CODE (XEXP (reg, 0)) == PLUS)
	XEXP (reg, 0) = copy_rtx (XEXP (reg, 0));
      if (usedp)
	{
	  schedule_fixup_var_refs (function, reg, TREE_TYPE (decl),
				   promoted_mode, 0);
	  schedule_fixup_var_refs (function, lopart, part_type, part_mode, 0);
	  schedule_fixup_var_refs (function, hipart, part_type, part_mode, 0);
	}
    }
  else
    return;
}

/* Subroutine of put_var_into_stack.  This puts a single pseudo reg REG
   into the stack frame of FUNCTION (0 means the current function).
   DECL_MODE is the machine mode of the user-level data type.
   PROMOTED_MODE is the machine mode of the register.
   VOLATILE_P is nonzero if this is for a "volatile" decl.
   USED_P is nonzero if this reg might have already been used in an insn.  */

static void
put_reg_into_stack (function, reg, type, promoted_mode, decl_mode, volatile_p,
		    original_regno, used_p, ht)
     struct function *function;
     rtx reg;
     tree type;
     enum machine_mode promoted_mode, decl_mode;
     int volatile_p;
     unsigned int original_regno;
     int used_p;
     struct hash_table *ht;
{
  struct function *func = function ? function : cfun;
  rtx new = 0;
  unsigned int regno = original_regno;

  if (regno == 0)
    regno = REGNO (reg);

  if (regno < func->x_max_parm_reg)
    new = func->x_parm_reg_stack_loc[regno];

  if (new == 0)
    new = assign_stack_local_1 (decl_mode, GET_MODE_SIZE (decl_mode), 0, func);

  PUT_CODE (reg, MEM);
  PUT_MODE (reg, decl_mode);
  XEXP (reg, 0) = XEXP (new, 0);
  MEM_ATTRS (reg) = 0;
  /* `volatil' bit means one thing for MEMs, another entirely for REGs.  */
  MEM_VOLATILE_P (reg) = volatile_p;

  /* If this is a memory ref that contains aggregate components,
     mark it as such for cse and loop optimize.  If we are reusing a
     previously generated stack slot, then we need to copy the bit in
     case it was set for other reasons.  For instance, it is set for
     __builtin_va_alist.  */
  if (type)
    {
      MEM_SET_IN_STRUCT_P (reg,
			   AGGREGATE_TYPE_P (type) || MEM_IN_STRUCT_P (new));
      set_mem_alias_set (reg, get_alias_set (type));
    }

  if (used_p)
    schedule_fixup_var_refs (function, reg, type, promoted_mode, ht);
}

/* Make sure that all refs to the variable, previously made
   when it was a register, are fixed up to be valid again.
   See function above for meaning of arguments.  */

static void
schedule_fixup_var_refs (function, reg, type, promoted_mode, ht)
     struct function *function;
     rtx reg;
     tree type;
     enum machine_mode promoted_mode;
     struct hash_table *ht;
{
  int unsigned_p = type ? TREE_UNSIGNED (type) : 0;

  if (function != 0)
    {
      struct var_refs_queue *temp;

      temp
	= (struct var_refs_queue *) ggc_alloc (sizeof (struct var_refs_queue));
      temp->modified = reg;
      temp->promoted_mode = promoted_mode;
      temp->unsignedp = unsigned_p;
      temp->next = function->fixup_var_refs_queue;
      function->fixup_var_refs_queue = temp;
    }
  else
    /* Variable is local; fix it up now.  */
    fixup_var_refs (reg, promoted_mode, unsigned_p, ht);
}

static void
fixup_var_refs (var, promoted_mode, unsignedp, ht)
     rtx var;
     enum machine_mode promoted_mode;
     int unsignedp;
     struct hash_table *ht;
{
  tree pending;
  rtx first_insn = get_insns ();
  struct sequence_stack *stack = seq_stack;
  tree rtl_exps = rtl_expr_chain;

  /* If there's a hash table, it must record all uses of VAR.  */
  if (ht)
    {
      if (stack != 0)
	abort ();
      fixup_var_refs_insns_with_hash (ht, var, promoted_mode, unsignedp);
      return;
    }

  fixup_var_refs_insns (first_insn, var, promoted_mode, unsignedp,
			stack == 0);

  /* Scan all pending sequences too.  */
  for (; stack; stack = stack->next)
    {
      push_to_full_sequence (stack->first, stack->last);
      fixup_var_refs_insns (stack->first, var, promoted_mode, unsignedp,
			    stack->next != 0);
      /* Update remembered end of sequence
	 in case we added an insn at the end.  */
      stack->last = get_last_insn ();
      end_sequence ();
    }

  /* Scan all waiting RTL_EXPRs too.  */
  for (pending = rtl_exps; pending; pending = TREE_CHAIN (pending))
    {
      rtx seq = RTL_EXPR_SEQUENCE (TREE_VALUE (pending));
      if (seq != const0_rtx && seq != 0)
	{
	  push_to_sequence (seq);
	  fixup_var_refs_insns (seq, var, promoted_mode, unsignedp, 0);
	  end_sequence ();
	}
    }
}

/* REPLACEMENTS is a pointer to a list of the struct fixup_replacement and X is
   some part of an insn.  Return a struct fixup_replacement whose OLD
   value is equal to X.  Allocate a new structure if no such entry exists.  */

static struct fixup_replacement *
find_fixup_replacement (replacements, x)
     struct fixup_replacement **replacements;
     rtx x;
{
  struct fixup_replacement *p;

  /* See if we have already replaced this.  */
  for (p = *replacements; p != 0 && ! rtx_equal_p (p->old, x); p = p->next)
    ;

  if (p == 0)
    {
      p = (struct fixup_replacement *) xmalloc (sizeof (struct fixup_replacement));
      p->old = x;
      p->new = 0;
      p->next = *replacements;
      *replacements = p;
    }

  return p;
}

/* Scan the insn-chain starting with INSN for refs to VAR
   and fix them up.  TOPLEVEL is nonzero if this chain is the
   main chain of insns for the current function.  */

static void
fixup_var_refs_insns (insn, var, promoted_mode, unsignedp, toplevel)
     rtx insn;
     rtx var;
     enum machine_mode promoted_mode;
     int unsignedp;
     int toplevel;
{
  while (insn)
    {
      /* fixup_var_refs_insn might modify insn, so save its next
         pointer now.  */
      rtx next = NEXT_INSN (insn);

      /* CALL_PLACEHOLDERs are special; we have to switch into each of
	 the three sequences they (potentially) contain, and process
	 them recursively.  The CALL_INSN itself is not interesting.  */

      if (GET_CODE (insn) == CALL_INSN
	  && GET_CODE (PATTERN (insn)) == CALL_PLACEHOLDER)
	{
	  int i;

	  /* Look at the Normal call, sibling call and tail recursion
	     sequences attached to the CALL_PLACEHOLDER.  */
	  for (i = 0; i < 3; i++)
	    {
	      rtx seq = XEXP (PATTERN (insn), i);
	      if (seq)
		{
		  push_to_sequence (seq);
		  fixup_var_refs_insns (seq, var, promoted_mode, unsignedp, 0);
		  XEXP (PATTERN (insn), i) = get_insns ();
		  end_sequence ();
		}
	    }
	}

      else if (INSN_P (insn))
	fixup_var_refs_insn (insn, var, promoted_mode, unsignedp, toplevel);

      insn = next;
    }
}

/* Look up the insns which reference VAR in HT and fix them up.  Other
   arguments are the same as fixup_var_refs_insns.

   N.B. No need for special processing of CALL_PLACEHOLDERs here,
   because the hash table will point straight to the interesting insn
   (inside the CALL_PLACEHOLDER).  */

static void
fixup_var_refs_insns_with_hash (ht, var, promoted_mode, unsignedp)
     struct hash_table *ht;
     rtx var;
     enum machine_mode promoted_mode;
     int unsignedp;
{
  struct insns_for_mem_entry *ime = (struct insns_for_mem_entry *)
    hash_lookup (ht, var, /*create=*/0, /*copy=*/0);
  rtx insn_list = ime->insns;

  while (insn_list)
    {
      rtx insn = XEXP (insn_list, 0);
	
      if (INSN_P (insn))
	fixup_var_refs_insn (insn, var, promoted_mode, unsignedp, 1);

      insn_list = XEXP (insn_list, 1);
    }
}


/* Per-insn processing by fixup_var_refs_insns(_with_hash).  INSN is
   the insn under examination, VAR is the variable to fix up
   references to, PROMOTED_MODE and UNSIGNEDP describe VAR, and
   TOPLEVEL is nonzero if this is the main insn chain for this
   function.  */

static void
fixup_var_refs_insn (insn, var, promoted_mode, unsignedp, toplevel)
     rtx insn;
     rtx var;
     enum machine_mode promoted_mode;
     int unsignedp;
     int toplevel;
{
  rtx call_dest = 0;
  rtx set, prev, prev_set;
  rtx note;

  /* Remember the notes in case we delete the insn.  */
  note = REG_NOTES (insn);

  /* If this is a CLOBBER of VAR, delete it.

     If it has a REG_LIBCALL note, delete the REG_LIBCALL
     and REG_RETVAL notes too.  */
  if (GET_CODE (PATTERN (insn)) == CLOBBER
      && (XEXP (PATTERN (insn), 0) == var
	  || (GET_CODE (XEXP (PATTERN (insn), 0)) == CONCAT
	      && (XEXP (XEXP (PATTERN (insn), 0), 0) == var
		  || XEXP (XEXP (PATTERN (insn), 0), 1) == var))))
    {
      if ((note = find_reg_note (insn, REG_LIBCALL, NULL_RTX)) != 0)
	/* The REG_LIBCALL note will go away since we are going to
	   turn INSN into a NOTE, so just delete the
	   corresponding REG_RETVAL note.  */
	remove_note (XEXP (note, 0),
		     find_reg_note (XEXP (note, 0), REG_RETVAL,
				    NULL_RTX));

      delete_insn (insn);
    }

  /* The insn to load VAR from a home in the arglist
     is now a no-op.  When we see it, just delete it.
     Similarly if this is storing VAR from a register from which
     it was loaded in the previous insn.  This will occur
     when an ADDRESSOF was made for an arglist slot.  */
  else if (toplevel
	   && (set = single_set (insn)) != 0
	   && SET_DEST (set) == var
	   /* If this represents the result of an insn group,
	      don't delete the insn.  */
	   && find_reg_note (insn, REG_RETVAL, NULL_RTX) == 0
	   && (rtx_equal_p (SET_SRC (set), var)
	       || (GET_CODE (SET_SRC (set)) == REG
		   && (prev = prev_nonnote_insn (insn)) != 0
		   && (prev_set = single_set (prev)) != 0
		   && SET_DEST (prev_set) == SET_SRC (set)
		   && rtx_equal_p (SET_SRC (prev_set), var))))
    {
      delete_insn (insn);
    }
  else
    {
      struct fixup_replacement *replacements = 0;
      rtx next_insn = NEXT_INSN (insn);

      if (SMALL_REGISTER_CLASSES)
	{
	  /* If the insn that copies the results of a CALL_INSN
	     into a pseudo now references VAR, we have to use an
	     intermediate pseudo since we want the life of the
	     return value register to be only a single insn.

	     If we don't use an intermediate pseudo, such things as
	     address computations to make the address of VAR valid
	     if it is not can be placed between the CALL_INSN and INSN.

	     To make sure this doesn't happen, we record the destination
	     of the CALL_INSN and see if the next insn uses both that
	     and VAR.  */

	  if (call_dest != 0 && GET_CODE (insn) == INSN
	      && reg_mentioned_p (var, PATTERN (insn))
	      && reg_mentioned_p (call_dest, PATTERN (insn)))
	    {
	      rtx temp = gen_reg_rtx (GET_MODE (call_dest));

	      emit_insn_before (gen_move_insn (temp, call_dest), insn);

	      PATTERN (insn) = replace_rtx (PATTERN (insn),
					    call_dest, temp);
	    }

	  if (GET_CODE (insn) == CALL_INSN
	      && GET_CODE (PATTERN (insn)) == SET)
	    call_dest = SET_DEST (PATTERN (insn));
	  else if (GET_CODE (insn) == CALL_INSN
		   && GET_CODE (PATTERN (insn)) == PARALLEL
		   && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
	    call_dest = SET_DEST (XVECEXP (PATTERN (insn), 0, 0));
	  else
	    call_dest = 0;
	}

      /* See if we have to do anything to INSN now that VAR is in
	 memory.  If it needs to be loaded into a pseudo, use a single
	 pseudo for the entire insn in case there is a MATCH_DUP
	 between two operands.  We pass a pointer to the head of
	 a list of struct fixup_replacements.  If fixup_var_refs_1
	 needs to allocate pseudos or replacement MEMs (for SUBREGs),
	 it will record them in this list.

	 If it allocated a pseudo for any replacement, we copy into
	 it here.  */

      fixup_var_refs_1 (var, promoted_mode, &PATTERN (insn), insn,
			&replacements);

      /* If this is last_parm_insn, and any instructions were output
	 after it to fix it up, then we must set last_parm_insn to
	 the last such instruction emitted.  */
      if (insn == last_parm_insn)
	last_parm_insn = PREV_INSN (next_insn);

      while (replacements)
	{
	  struct fixup_replacement *next;

	  if (GET_CODE (replacements->new) == REG)
	    {
	      rtx insert_before;
	      rtx seq;

	      /* OLD might be a (subreg (mem)).  */
	      if (GET_CODE (replacements->old) == SUBREG)
		replacements->old
		  = fixup_memory_subreg (replacements->old, insn, 0);
	      else
		replacements->old
		  = fixup_stack_1 (replacements->old, insn);

	      insert_before = insn;

	      /* If we are changing the mode, do a conversion.
		 This might be wasteful, but combine.c will
		 eliminate much of the waste.  */

	      if (GET_MODE (replacements->new)
		  != GET_MODE (replacements->old))
		{
		  start_sequence ();
		  convert_move (replacements->new,
				replacements->old, unsignedp);
		  seq = gen_sequence ();
		  end_sequence ();
		}
	      else
		seq = gen_move_insn (replacements->new,
				     replacements->old);

	      emit_insn_before (seq, insert_before);
	    }

	  next = replacements->next;
	  free (replacements);
	  replacements = next;
	}
    }

  /* Also fix up any invalid exprs in the REG_NOTES of this insn.
     But don't touch other insns referred to by reg-notes;
     we will get them elsewhere.  */
  while (note)
    {
      if (GET_CODE (note) != INSN_LIST)
	XEXP (note, 0)
	  = walk_fixup_memory_subreg (XEXP (note, 0), insn, 1);
      note = XEXP (note, 1);
    }
}

/* VAR is a MEM that used to be a pseudo register with mode PROMOTED_MODE.
   See if the rtx expression at *LOC in INSN needs to be changed.

   REPLACEMENTS is a pointer to a list head that starts out zero, but may
   contain a list of original rtx's and replacements. If we find that we need
   to modify this insn by replacing a memory reference with a pseudo or by
   making a new MEM to implement a SUBREG, we consult that list to see if
   we have already chosen a replacement. If none has already been allocated,
   we allocate it and update the list.  fixup_var_refs_insn will copy VAR
   or the SUBREG, as appropriate, to the pseudo.  */

static void
fixup_var_refs_1 (var, promoted_mode, loc, insn, replacements)
     rtx var;
     enum machine_mode promoted_mode;
     rtx *loc;
     rtx insn;
     struct fixup_replacement **replacements;
{
  int i;
  rtx x = *loc;
  RTX_CODE code = GET_CODE (x);
  const char *fmt;
  rtx tem, tem1;
  struct fixup_replacement *replacement;

  switch (code)
    {
    case ADDRESSOF:
      if (XEXP (x, 0) == var)
	{
	  /* Prevent sharing of rtl that might lose.  */
	  rtx sub = copy_rtx (XEXP (var, 0));

	  if (! validate_change (insn, loc, sub, 0))
	    {
	      rtx y = gen_reg_rtx (GET_MODE (sub));
	      rtx seq, new_insn;

	      /* We should be able to replace with a register or all is lost.
		 Note that we can't use validate_change to verify this, since
		 we're not caring for replacing all dups simultaneously.  */
	      if (! validate_replace_rtx (*loc, y, insn))
		abort ();

	      /* Careful!  First try to recognize a direct move of the
		 value, mimicking how things are done in gen_reload wrt
		 PLUS.  Consider what happens when insn is a conditional
		 move instruction and addsi3 clobbers flags.  */

	      start_sequence ();
	      new_insn = emit_insn (gen_rtx_SET (VOIDmode, y, sub));
	      seq = gen_sequence ();
	      end_sequence ();

	      if (recog_memoized (new_insn) < 0)
		{
		  /* That failed.  Fall back on force_operand and hope.  */

		  start_sequence ();
		  sub = force_operand (sub, y);
		  if (sub != y)
		    emit_insn (gen_move_insn (y, sub));
		  seq = gen_sequence ();
		  end_sequence ();
		}

#ifdef HAVE_cc0
	      /* Don't separate setter from user.  */
	      if (PREV_INSN (insn) && sets_cc0_p (PREV_INSN (insn)))
		insn = PREV_INSN (insn);
#endif

	      emit_insn_before (seq, insn);
	    }
	}
      return;

    case MEM:
      if (var == x)
	{
	  /* If we already have a replacement, use it.  Otherwise,
	     try to fix up this address in case it is invalid.  */

	  replacement = find_fixup_replacement (replacements, var);
	  if (replacement->new)
	    {
	      *loc = replacement->new;
	      return;
	    }

	  *loc = replacement->new = x = fixup_stack_1 (x, insn);

	  /* Unless we are forcing memory to register or we changed the mode,
	     we can leave things the way they are if the insn is valid.  */

	  INSN_CODE (insn) = -1;
	  if (! flag_force_mem && GET_MODE (x) == promoted_mode
	      && recog_memoized (insn) >= 0)
	    return;

	  *loc = replacement->new = gen_reg_rtx (promoted_mode);
	  return;
	}

      /* If X contains VAR, we need to unshare it here so that we update
	 each occurrence separately.  But all identical MEMs in one insn
	 must be replaced with the same rtx because of the possibility of
	 MATCH_DUPs.  */

      if (reg_mentioned_p (var, x))
	{
	  replacement = find_fixup_replacement (replacements, x);
	  if (replacement->new == 0)
	    replacement->new = copy_most_rtx (x, var);

	  *loc = x = replacement->new;
	  code = GET_CODE (x);
	}
      break;

    case REG:
    case CC0:
    case PC:
    case CONST_INT:
    case CONST:
    case SYMBOL_REF:
    case LABEL_REF:
    case CONST_DOUBLE:
      return;

    case SIGN_EXTRACT:
    case ZERO_EXTRACT:
      /* Note that in some cases those types of expressions are altered
	 by optimize_bit_field, and do not survive to get here.  */
      if (XEXP (x, 0) == var
	  || (GET_CODE (XEXP (x, 0)) == SUBREG
	      && SUBREG_REG (XEXP (x, 0)) == var))
	{
	  /* Get TEM as a valid MEM in the mode presently in the insn.

	     We don't worry about the possibility of MATCH_DUP here; it
	     is highly unlikely and would be tricky to handle.  */

	  tem = XEXP (x, 0);
	  if (GET_CODE (tem) == SUBREG)
	    {
	      if (GET_MODE_BITSIZE (GET_MODE (tem))
		  > GET_MODE_BITSIZE (GET_MODE (var)))
		{
		  replacement = find_fixup_replacement (replacements, var);
		  if (replacement->new == 0)
		    replacement->new = gen_reg_rtx (GET_MODE (var));
		  SUBREG_REG (tem) = replacement->new;

		  /* The following code works only if we have a MEM, so we
		     need to handle the subreg here.  We directly substitute
		     it assuming that a subreg must be OK here.  We already
		     scheduled a replacement to copy the mem into the
		     subreg.  */
		  XEXP (x, 0) = tem;
		  return;
		}
	      else
		tem = fixup_memory_subreg (tem, insn, 0);
	    }
	  else
	    tem = fixup_stack_1 (tem, insn);

	  /* Unless we want to load from memory, get TEM into the proper mode
	     for an extract from memory.  This can only be done if the
	     extract is at a constant position and length.  */

	  if (! flag_force_mem && GET_CODE (XEXP (x, 1)) == CONST_INT
	      && GET_CODE (XEXP (x, 2)) == CONST_INT
	      && ! mode_dependent_address_p (XEXP (tem, 0))
	      && ! MEM_VOLATILE_P (tem))
	    {
	      enum machine_mode wanted_mode = VOIDmode;
	      enum machine_mode is_mode = GET_MODE (tem);
	      HOST_WIDE_INT pos = INTVAL (XEXP (x, 2));

	      if (GET_CODE (x) == ZERO_EXTRACT)
		{
		  enum machine_mode new_mode
		    = mode_for_extraction (EP_extzv, 1);
		  if (new_mode != MAX_MACHINE_MODE)
		    wanted_mode = new_mode;
		}
	      else if (GET_CODE (x) == SIGN_EXTRACT)
		{
		  enum machine_mode new_mode
		    = mode_for_extraction (EP_extv, 1);
		  if (new_mode != MAX_MACHINE_MODE)
		    wanted_mode = new_mode;
		}

	      /* If we have a narrower mode, we can do something.  */
	      if (wanted_mode != VOIDmode
		  && GET_MODE_SIZE (wanted_mode) < GET_MODE_SIZE (is_mode))
		{
		  HOST_WIDE_INT offset = pos / BITS_PER_UNIT;
		  rtx old_pos = XEXP (x, 2);
		  rtx newmem;

		  /* If the bytes and bits are counted differently, we
		     must adjust the offset.  */
		  if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN)
		    offset = (GET_MODE_SIZE (is_mode)
			      - GET_MODE_SIZE (wanted_mode) - offset);

		  pos %= GET_MODE_BITSIZE (wanted_mode);

		  newmem = adjust_address_nv (tem, wanted_mode, offset);

		  /* Make the change and see if the insn remains valid.  */
		  INSN_CODE (insn) = -1;
		  XEXP (x, 0) = newmem;
		  XEXP (x, 2) = GEN_INT (pos);

		  if (recog_memoized (insn) >= 0)
		    return;

		  /* Otherwise, restore old position.  XEXP (x, 0) will be
		     restored later.  */
		  XEXP (x, 2) = old_pos;
		}
	    }

	  /* If we get here, the bitfield extract insn can't accept a memory
	     reference.  Copy the input into a register.  */

	  tem1 = gen_reg_rtx (GET_MODE (tem));
	  emit_insn_before (gen_move_insn (tem1, tem), insn);
	  XEXP (x, 0) = tem1;
	  return;
	}
      break;

    case SUBREG:
      if (SUBREG_REG (x) == var)
	{
	  /* If this is a special SUBREG made because VAR was promoted
	     from a wider mode, replace it with VAR and call ourself
	     recursively, this time saying that the object previously
	     had its current mode (by virtue of the SUBREG).  */

	  if (SUBREG_PROMOTED_VAR_P (x))
	    {
	      *loc = var;
	      fixup_var_refs_1 (var, GET_MODE (var), loc, insn, replacements);
	      return;
	    }

	  /* If this SUBREG makes VAR wider, it has become a paradoxical
	     SUBREG with VAR in memory, but these aren't allowed at this
	     stage of the compilation.  So load VAR into a pseudo and take
	     a SUBREG of that pseudo.  */
	  if (GET_MODE_SIZE (GET_MODE (x)) > GET_MODE_SIZE (GET_MODE (var)))
	    {
	      replacement = find_fixup_replacement (replacements, var);
	      if (replacement->new == 0)
		replacement->new = gen_reg_rtx (promoted_mode);
	      SUBREG_REG (x) = replacement->new;
	      return;
	    }

	  /* See if we have already found a replacement for this SUBREG.
	     If so, use it.  Otherwise, make a MEM and see if the insn
	     is recognized.  If not, or if we should force MEM into a register,
	     make a pseudo for this SUBREG.  */
	  replacement = find_fixup_replacement (replacements, x);
	  if (replacement->new)
	    {
	      *loc = replacement->new;
	      return;
	    }

	  replacement->new = *loc = fixup_memory_subreg (x, insn, 0);

	  INSN_CODE (insn) = -1;
	  if (! flag_force_mem && recog_memoized (insn) >= 0)
	    return;

	  *loc = replacement->new = gen_reg_rtx (GET_MODE (x));
	  return;
	}
      break;

    case SET:
      /* First do special simplification of bit-field references.  */
      if (GET_CODE (SET_DEST (x)) == SIGN_EXTRACT
	  || GET_CODE (SET_DEST (x)) == ZERO_EXTRACT)
	optimize_bit_field (x, insn, 0);
      if (GET_CODE (SET_SRC (x)) == SIGN_EXTRACT
	  || GET_CODE (SET_SRC (x)) == ZERO_EXTRACT)
	optimize_bit_field (x, insn, 0);

      /* For a paradoxical SUBREG inside a ZERO_EXTRACT, load the object
	 into a register and then store it back out.  */
      if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
	  && GET_CODE (XEXP (SET_DEST (x), 0)) == SUBREG
	  && SUBREG_REG (XEXP (SET_DEST (x), 0)) == var
	  && (GET_MODE_SIZE (GET_MODE (XEXP (SET_DEST (x), 0)))
	      > GET_MODE_SIZE (GET_MODE (var))))
	{
	  replacement = find_fixup_replacement (replacements, var);
	  if (replacement->new == 0)
	    replacement->new = gen_reg_rtx (GET_MODE (var));

	  SUBREG_REG (XEXP (SET_DEST (x), 0)) = replacement->new;
	  emit_insn_after (gen_move_insn (var, replacement->new), insn);
	}

      /* If SET_DEST is now a paradoxical SUBREG, put the result of this
	 insn into a pseudo and store the low part of the pseudo into VAR.  */
      if (GET_CODE (SET_DEST (x)) == SUBREG
	  && SUBREG_REG (SET_DEST (x)) == var
	  && (GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
	      > GET_MODE_SIZE (GET_MODE (var))))
	{
	  SET_DEST (x) = tem = gen_reg_rtx (GET_MODE (SET_DEST (x)));
	  emit_insn_after (gen_move_insn (var, gen_lowpart (GET_MODE (var),
							    tem)),
			   insn);
	  break;
	}

      {
	rtx dest = SET_DEST (x);
	rtx src = SET_SRC (x);
	rtx outerdest = dest;

	while (GET_CODE (dest) == SUBREG || GET_CODE (dest) == STRICT_LOW_PART
	       || GET_CODE (dest) == SIGN_EXTRACT
	       || GET_CODE (dest) == ZERO_EXTRACT)
	  dest = XEXP (dest, 0);

	if (GET_CODE (src) == SUBREG)
	  src = SUBREG_REG (src);

	/* If VAR does not appear at the top level of the SET
	   just scan the lower levels of the tree.  */

	if (src != var && dest != var)
	  break;

	/* We will need to rerecognize this insn.  */
	INSN_CODE (insn) = -1;

	if (GET_CODE (outerdest) == ZERO_EXTRACT && dest == var
	    && mode_for_extraction (EP_insv, -1) != MAX_MACHINE_MODE)
	  {
	    /* Since this case will return, ensure we fixup all the
	       operands here.  */
	    fixup_var_refs_1 (var, promoted_mode, &XEXP (outerdest, 1),
			      insn, replacements);
	    fixup_var_refs_1 (var, promoted_mode, &XEXP (outerdest, 2),
			      insn, replacements);
	    fixup_var_refs_1 (var, promoted_mode, &SET_SRC (x),
			      insn, replacements);

	    tem = XEXP (outerdest, 0);

	    /* Clean up (SUBREG:SI (MEM:mode ...) 0)
	       that may appear inside a ZERO_EXTRACT.
	       This was legitimate when the MEM was a REG.  */
	    if (GET_CODE (tem) == SUBREG
		&& SUBREG_REG (tem) == var)
	      tem = fixup_memory_subreg (tem, insn, 0);
	    else
	      tem = fixup_stack_1 (tem, insn);

	    if (GET_CODE (XEXP (outerdest, 1)) == CONST_INT
		&& GET_CODE (XEXP (outerdest, 2)) == CONST_INT
		&& ! mode_dependent_address_p (XEXP (tem, 0))
		&& ! MEM_VOLATILE_P (tem))
	      {
		enum machine_mode wanted_mode;
		enum machine_mode is_mode = GET_MODE (tem);
		HOST_WIDE_INT pos = INTVAL (XEXP (outerdest, 2));

		wanted_mode = mode_for_extraction (EP_insv, 0);

		/* If we have a narrower mode, we can do something.  */
		if (GET_MODE_SIZE (wanted_mode) < GET_MODE_SIZE (is_mode))
		  {
		    HOST_WIDE_INT offset = pos / BITS_PER_UNIT;
		    rtx old_pos = XEXP (outerdest, 2);
		    rtx newmem;

		    if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN)
		      offset = (GET_MODE_SIZE (is_mode)
				- GET_MODE_SIZE (wanted_mode) - offset);

		    pos %= GET_MODE_BITSIZE (wanted_mode);

		    newmem = adjust_address_nv (tem, wanted_mode, offset);

		    /* Make the change and see if the insn remains valid.  */
		    INSN_CODE (insn) = -1;
		    XEXP (outerdest, 0) = newmem;
		    XEXP (outerdest, 2) = GEN_INT (pos);

		    if (recog_memoized (insn) >= 0)
		      return;

		    /* Otherwise, restore old position.  XEXP (x, 0) will be
		       restored later.  */
		    XEXP (outerdest, 2) = old_pos;
		  }
	      }

	    /* If we get here, the bit-field store doesn't allow memory
	       or isn't located at a constant position.  Load the value into
	       a register, do the store, and put it back into memory.  */

	    tem1 = gen_reg_rtx (GET_MODE (tem));
	    emit_insn_before (gen_move_insn (tem1, tem), insn);
	    emit_insn_after (gen_move_insn (tem, tem1), insn);
	    XEXP (outerdest, 0) = tem1;
	    return;
	  }

	/* STRICT_LOW_PART is a no-op on memory references
	   and it can cause combinations to be unrecognizable,
	   so eliminate it.  */

	if (dest == var && GET_CODE (SET_DEST (x)) == STRICT_LOW_PART)
	  SET_DEST (x) = XEXP (SET_DEST (x), 0);

	/* A valid insn to copy VAR into or out of a register
	   must be left alone, to avoid an infinite loop here.
	   If the reference to VAR is by a subreg, fix that up,
	   since SUBREG is not valid for a memref.
	   Also fix up the address of the stack slot.

	   Note that we must not try to recognize the insn until
	   after we know that we have valid addresses and no
	   (subreg (mem ...) ...) constructs, since these interfere
	   with determining the validity of the insn.  */

	if ((SET_SRC (x) == var
	     || (GET_CODE (SET_SRC (x)) == SUBREG
		 && SUBREG_REG (SET_SRC (x)) == var))
	    && (GET_CODE (SET_DEST (x)) == REG
		|| (GET_CODE (SET_DEST (x)) == SUBREG
		    && GET_CODE (SUBREG_REG (SET_DEST (x))) == REG))
	    && GET_MODE (var) == promoted_mode
	    && x == single_set (insn))
	  {
	    rtx pat, last;

	    replacement = find_fixup_replacement (replacements, SET_SRC (x));
	    if (replacement->new)
	      SET_SRC (x) = replacement->new;
	    else if (GET_CODE (SET_SRC (x)) == SUBREG)
	      SET_SRC (x) = replacement->new
		= fixup_memory_subreg (SET_SRC (x), insn, 0);
	    else
	      SET_SRC (x) = replacement->new
		= fixup_stack_1 (SET_SRC (x), insn);

	    if (recog_memoized (insn) >= 0)
	      return;

	    /* INSN is not valid, but we know that we want to
	       copy SET_SRC (x) to SET_DEST (x) in some way.  So
	       we generate the move and see whether it requires more
	       than one insn.  If it does, we emit those insns and
	       delete INSN.  Otherwise, we an just replace the pattern
	       of INSN; we have already verified above that INSN has
	       no other function that to do X.  */

	    pat = gen_move_insn (SET_DEST (x), SET_SRC (x));
	    if (GET_CODE (pat) == SEQUENCE)
	      {
		last = emit_insn_before (pat, insn);

		/* INSN might have REG_RETVAL or other important notes, so
		   we need to store the pattern of the last insn in the
		   sequence into INSN similarly to the normal case.  LAST
		   should not have REG_NOTES, but we allow them if INSN has
		   no REG_NOTES.  */
		if (REG_NOTES (last) && REG_NOTES (insn))
		  abort ();
		if (REG_NOTES (last))
		  REG_NOTES (insn) = REG_NOTES (last);
		PATTERN (insn) = PATTERN (last);

		delete_insn (last);
	      }
	    else
	      PATTERN (insn) = pat;

	    return;
	  }

	if ((SET_DEST (x) == var
	     || (GET_CODE (SET_DEST (x)) == SUBREG
		 && SUBREG_REG (SET_DEST (x)) == var))
	    && (GET_CODE (SET_SRC (x)) == REG
		|| (GET_CODE (SET_SRC (x)) == SUBREG
		    && GET_CODE (SUBREG_REG (SET_SRC (x))) == REG))
	    && GET_MODE (var) == promoted_mode
	    && x == single_set (insn))
	  {
	    rtx pat, last;

	    if (GET_CODE (SET_DEST (x)) == SUBREG)
	      SET_DEST (x) = fixup_memory_subreg (SET_DEST (x), insn, 0);
	    else
	      SET_DEST (x) = fixup_stack_1 (SET_DEST (x), insn);

	    if (recog_memoized (insn) >= 0)
	      return;

	    pat = gen_move_insn (SET_DEST (x), SET_SRC (x));
	    if (GET_CODE (pat) == SEQUENCE)
	      {
		last = emit_insn_before (pat, insn);

		/* INSN might have REG_RETVAL or other important notes, so
		   we need to store the pattern of the last insn in the
		   sequence into INSN similarly to the normal case.  LAST
		   should not have REG_NOTES, but we allow them if INSN has
		   no REG_NOTES.  */
		if (REG_NOTES (last) && REG_NOTES (insn))
		  abort ();
		if (REG_NOTES (last))
		  REG_NOTES (insn) = REG_NOTES (last);
		PATTERN (insn) = PATTERN (last);

		delete_insn (last);
	      }
	    else
	      PATTERN (insn) = pat;

	    return;
	  }

	/* Otherwise, storing into VAR must be handled specially
	   by storing into a temporary and copying that into VAR
	   with a new insn after this one.  Note that this case
	   will be used when storing into a promoted scalar since
	   the insn will now have different modes on the input
	   and output and hence will be invalid (except for the case
	   of setting it to a constant, which does not need any
	   change if it is valid).  We generate extra code in that case,
	   but combine.c will eliminate it.  */

	if (dest == var)
	  {
	    rtx temp;
	    rtx fixeddest = SET_DEST (x);

	    /* STRICT_LOW_PART can be discarded, around a MEM.  */
	    if (GET_CODE (fixeddest) == STRICT_LOW_PART)
	      fixeddest = XEXP (fixeddest, 0);
	    /* Convert (SUBREG (MEM)) to a MEM in a changed mode.  */
	    if (GET_CODE (fixeddest) == SUBREG)
	      {
		fixeddest = fixup_memory_subreg (fixeddest, insn, 0);
		promoted_mode = GET_MODE (fixeddest);
	      }
	    else
	      fixeddest = fixup_stack_1 (fixeddest, insn);

	    temp = gen_reg_rtx (promoted_mode);

	    emit_insn_after (gen_move_insn (fixeddest,
					    gen_lowpart (GET_MODE (fixeddest),
							 temp)),
			     insn);

	    SET_DEST (x) = temp;
	  }
      }

    default:
      break;
    }

  /* Nothing special about this RTX; fix its operands.  */

  fmt = GET_RTX_FORMAT (code);
  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
    {
      if (fmt[i] == 'e')
	fixup_var_refs_1 (var, promoted_mode, &XEXP (x, i), insn, replacements);
      else if (fmt[i] == 'E')
	{
	  int j;
	  for (j = 0; j < XVECLEN (x, i); j++)
	    fixup_var_refs_1 (var, promoted_mode, &XVECEXP (x, i, j),
			      insn, replacements);
	}
    }
}

/* Given X, an rtx of the form (SUBREG:m1 (MEM:m2 addr)),
   return an rtx (MEM:m1 newaddr) which is equivalent.
   If any insns must be emitted to compute NEWADDR, put them before INSN.

   UNCRITICAL nonzero means accept paradoxical subregs.
   This is used for subregs found inside REG_NOTES.  */

static rtx
fixup_memory_subreg (x, insn, uncritical)
     rtx x;
     rtx insn;
     int uncritical;
{
  int offset = SUBREG_BYTE (x);
  rtx addr = XEXP (SUBREG_REG (x), 0);
  enum machine_mode mode = GET_MODE (x);
  rtx result;

  /* Paradoxical SUBREGs are usually invalid during RTL generation.  */
  if (GET_MODE_SIZE (mode) > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)))
      && ! uncritical)
    abort ();

  if (!flag_force_addr
      && memory_address_p (mode, plus_constant (addr, offset)))
    /* Shortcut if no insns need be emitted.  */
    return adjust_address (SUBREG_REG (x), mode, offset);

  start_sequence ();
  result = adjust_address (SUBREG_REG (x), mode, offset);
  emit_insn_before (gen_sequence (), insn);
  end_sequence ();
  return result;
}

/* Do fixup_memory_subreg on all (SUBREG (MEM ...) ...) contained in X.
   Replace subexpressions of X in place.
   If X itself is a (SUBREG (MEM ...) ...), return the replacement expression.
   Otherwise return X, with its contents possibly altered.

   If any insns must be emitted to compute NEWADDR, put them before INSN.

   UNCRITICAL is as in fixup_memory_subreg.  */

static rtx
walk_fixup_memory_subreg (x, insn, uncritical)
     rtx x;
     rtx insn;
     int uncritical;
{
  enum rtx_code code;
  const char *fmt;
  int i;

  if (x == 0)
    return 0;

  code = GET_CODE (x);

  if (code == SUBREG && GET_CODE (SUBREG_REG (x)) == MEM)
    return fixup_memory_subreg (x, insn, uncritical);

  /* Nothing special about this RTX; fix its operands.  */

  fmt = GET_RTX_FORMAT (code);
  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
    {
      if (fmt[i] == 'e')
	XEXP (x, i) = walk_fixup_memory_subreg (XEXP (x, i), insn, uncritical);
      else if (fmt[i] == 'E')
	{
	  int j;
	  for (j = 0; j < XVECLEN (x, i); j++)
	    XVECEXP (x, i, j)
	      = walk_fixup_memory_subreg (XVECEXP (x, i, j), insn, uncritical);
	}
    }
  return x;
}

/* For each memory ref within X, if it refers to a stack slot
   with an out of range displacement, put the address in a temp register
   (emitting new insns before INSN to load these registers)
   and alter the memory ref to use that register.
   Replace each such MEM rtx with a copy, to avoid clobberage.  */

static rtx
fixup_stack_1 (x, insn)
     rtx x;
     rtx insn;
{
  int i;
  RTX_CODE code = GET_CODE (x);
  const char *fmt;

  if (code == MEM)
    {
      rtx ad = XEXP (x, 0);
      /* If we have address of a stack slot but it's not valid
	 (displacement is too large), compute the sum in a register.  */
      if (GET_CODE (ad) == PLUS
	  && GET_CODE (XEXP (ad, 0)) == REG
	  && ((REGNO (XEXP (ad, 0)) >= FIRST_VIRTUAL_REGISTER
	       && REGNO (XEXP (ad, 0)) <= LAST_VIRTUAL_REGISTER)
	      || REGNO (XEXP (ad, 0)) == FRAME_POINTER_REGNUM
#if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
	      || REGNO (XEXP (ad, 0)) == HARD_FRAME_POINTER_REGNUM
#endif
	      || REGNO (XEXP (ad, 0)) == STACK_POINTER_REGNUM
	      || REGNO (XEXP (ad, 0)) == ARG_POINTER_REGNUM
	      || XEXP (ad, 0) == current_function_internal_arg_pointer)
	  && GET_CODE (XEXP (ad, 1)) == CONST_INT)
	{
	  rtx temp, seq;
	  if (memory_address_p (GET_MODE (x), ad))
	    return x;

	  start_sequence ();
	  temp = copy_to_reg (ad);
	  seq = gen_sequence ();
	  end_sequence ();
	  emit_insn_before (seq, insn);
	  return replace_equiv_address (x, temp);
	}
      return x;
    }

  fmt = GET_RTX_FORMAT (code);
  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
    {
      if (fmt[i] == 'e')
	XEXP (x, i) = fixup_stack_1 (XEXP (x, i), insn);
      else if (fmt[i] == 'E')
	{
	  int j;
	  for (j = 0; j < XVECLEN (x, i); j++)
	    XVECEXP (x, i, j) = fixup_stack_1 (XVECEXP (x, i, j), insn);
	}
    }
  return x;
}

/* Optimization: a bit-field instruction whose field
   happens to be a byte or halfword in memory
   can be changed to a move instruction.

   We call here when INSN is an insn to examine or store into a bit-field.
   BODY is the SET-rtx to be altered.

   EQUIV_MEM is the table `reg_equiv_mem' if that is available; else 0.
   (Currently this is called only from function.c, and EQUIV_MEM
   is always 0.)  */

static void
optimize_bit_field (body, insn, equiv_mem)
     rtx body;
     rtx insn;
     rtx *equiv_mem;
{
  rtx bitfield;
  int destflag;
  rtx seq = 0;
  enum machine_mode mode;

  if (GET_CODE (SET_DEST (body)) == SIGN_EXTRACT
      || GET_CODE (SET_DEST (body)) == ZERO_EXTRACT)
    bitfield = SET_DEST (body), destflag = 1;
  else
    bitfield = SET_SRC (body), destflag = 0;

  /* First check that the field being stored has constant size and position
     and is in fact a byte or halfword suitably aligned.  */

  if (GET_CODE (XEXP (bitfield, 1)) == CONST_INT
      && GET_CODE (XEXP (bitfield, 2)) == CONST_INT
      && ((mode = mode_for_size (INTVAL (XEXP (bitfield, 1)), MODE_INT, 1))
	  != BLKmode)
      && INTVAL (XEXP (bitfield, 2)) % INTVAL (XEXP (bitfield, 1)) == 0)
    {
      rtx memref = 0;

      /* Now check that the containing word is memory, not a register,
	 and that it is safe to change the machine mode.  */

      if (GET_CODE (XEXP (bitfield, 0)) == MEM)
	memref = XEXP (bitfield, 0);
      else if (GET_CODE (XEXP (bitfield, 0)) == REG
	       && equiv_mem != 0)
	memref = equiv_mem[REGNO (XEXP (bitfield, 0))];
      else if (GET_CODE (XEXP (bitfield, 0)) == SUBREG
	       && GET_CODE (SUBREG_REG (XEXP (bitfield, 0))) == MEM)
	memref = SUBREG_REG (XEXP (bitfield, 0));
      else if (GET_CODE (XEXP (bitfield, 0)) == SUBREG
	       && equiv_mem != 0
	       && GET_CODE (SUBREG_REG (XEXP (bitfield, 0))) == REG)
	memref = equiv_mem[REGNO (SUBREG_REG (XEXP (bitfield, 0)))];

      if (memref
	  && ! mode_dependent_address_p (XEXP (memref, 0))
	  && ! MEM_VOLATILE_P (memref))
	{
	  /* Now adjust the address, first for any subreg'ing
	     that we are now getting rid of,
	     and then for which byte of the word is wanted.  */

	  HOST_WIDE_INT offset = INTVAL (XEXP (bitfield, 2));
	  rtx insns;

	  /* Adjust OFFSET to count bits from low-address byte.  */
	  if (BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
	    offset = (GET_MODE_BITSIZE (GET_MODE (XEXP (bitfield, 0)))
		      - offset - INTVAL (XEXP (bitfield, 1)));

	  /* Adjust OFFSET to count bytes from low-address byte.  */
	  offset /= BITS_PER_UNIT;
	  if (GET_CODE (XEXP (bitfield, 0)) == SUBREG)
	    {
	      offset += (SUBREG_BYTE (XEXP (bitfield, 0))
			 / UNITS_PER_WORD) * UNITS_PER_WORD;
	      if (BYTES_BIG_ENDIAN)
		offset -= (MIN (UNITS_PER_WORD,
				GET_MODE_SIZE (GET_MODE (XEXP (bitfield, 0))))
			   - MIN (UNITS_PER_WORD,
				  GET_MODE_SIZE (GET_MODE (memref))));
	    }

	  start_sequence ();
	  memref = adjust_address (memref, mode, offset);
	  insns = get_insns ();
	  end_sequence ();
	  emit_insns_before (insns, insn);

	  /* Store this memory reference where
	     we found the bit field reference.  */

	  if (destflag)
	    {
	      validate_change (insn, &SET_DEST (body), memref, 1);
	      if (! CONSTANT_ADDRESS_P (SET_SRC (body)))
		{
		  rtx src = SET_SRC (body);
		  while (GET_CODE (src) == SUBREG
			 && SUBREG_BYTE (src) == 0)
		    src = SUBREG_REG (src);
		  if (GET_MODE (src) != GET_MODE (memref))
		    src = gen_lowpart (GET_MODE (memref), SET_SRC (body));
		  validate_change (insn, &SET_SRC (body), src, 1);
		}
	      else if (GET_MODE (SET_SRC (body)) != VOIDmode
		       && GET_MODE (SET_SRC (body)) != GET_MODE (memref))
		/* This shouldn't happen because anything that didn't have
		   one of these modes should have got converted explicitly
		   and then referenced through a subreg.
		   This is so because the original bit-field was
		   handled by agg_mode and so its tree structure had
		   the same mode that memref now has.  */
		abort ();
	    }
	  else
	    {
	      rtx dest = SET_DEST (body);

	      while (GET_CODE (dest) == SUBREG
		     && SUBREG_BYTE (dest) == 0
		     && (GET_MODE_CLASS (GET_MODE (dest))
			 == GET_MODE_CLASS (GET_MODE (SUBREG_REG (dest))))
		     && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
			 <= UNITS_PER_WORD))
		dest = SUBREG_REG (dest);

	      validate_change (insn, &SET_DEST (body), dest, 1);

	      if (GET_MODE (dest) == GET_MODE (memref))
		validate_change (insn, &SET_SRC (body), memref, 1);
	      else
		{
		  /* Convert the mem ref to the destination mode.  */
		  rtx newreg = gen_reg_rtx (GET_MODE (dest));

		  start_sequence ();
		  convert_move (newreg, memref,
				GET_CODE (SET_SRC (body)) == ZERO_EXTRACT);
		  seq = get_insns ();
		  end_sequence ();

		  validate_change (insn, &SET_SRC (body), newreg, 1);
		}
	    }

	  /* See if we can convert this extraction or insertion into
	     a simple move insn.  We might not be able to do so if this
	     was, for example, part of a PARALLEL.

	     If we succeed, write out any needed conversions.  If we fail,
	     it is hard to guess why we failed, so don't do anything
	     special; just let the optimization be suppressed.  */

	  if (apply_change_group () && seq)
	    emit_insns_before (seq, insn);
	}
    }
}

/* These routines are responsible for converting virtual register references
   to the actual hard register references once RTL generation is complete.

   The following four variables are used for communication between the
   routines.  They contain the offsets of the virtual registers from their
   respective hard registers.  */

static int in_arg_offset;
static int var_offset;
static int dynamic_offset;
static int out_arg_offset;
static int cfa_offset;

/* In most machines, the stack pointer register is equivalent to the bottom
   of the stack.  */

#ifndef STACK_POINTER_OFFSET
#define STACK_POINTER_OFFSET	0
#endif

/* If not defined, pick an appropriate default for the offset of dynamically
   allocated memory depending on the value of ACCUMULATE_OUTGOING_ARGS,
   REG_PARM_STACK_SPACE, and OUTGOING_REG_PARM_STACK_SPACE.  */

#ifndef STACK_DYNAMIC_OFFSET

/* The bottom of the stack points to the actual arguments.  If
   REG_PARM_STACK_SPACE is defined, this includes the space for the register
   parameters.  However, if OUTGOING_REG_PARM_STACK space is not defined,
   stack space for register parameters is not pushed by the caller, but
   rather part of the fixed stack areas and hence not included in
   `current_function_outgoing_args_size'.  Nevertheless, we must allow
   for it when allocating stack dynamic objects.  */

#if defined(REG_PARM_STACK_SPACE) && ! defined(OUTGOING_REG_PARM_STACK_SPACE)
#define STACK_DYNAMIC_OFFSET(FNDECL)	\
((ACCUMULATE_OUTGOING_ARGS						      \
  ? (current_function_outgoing_args_size + REG_PARM_STACK_SPACE (FNDECL)) : 0)\
 + (STACK_POINTER_OFFSET))						      \

#else
#define STACK_DYNAMIC_OFFSET(FNDECL)	\
((ACCUMULATE_OUTGOING_ARGS ? current_function_outgoing_args_size : 0)	      \
 + (STACK_POINTER_OFFSET))
#endif
#endif

/* On most machines, the CFA coincides with the first incoming parm.  */

#ifndef ARG_POINTER_CFA_OFFSET
#define ARG_POINTER_CFA_OFFSET(FNDECL) FIRST_PARM_OFFSET (FNDECL)
#endif

/* Build up a (MEM (ADDRESSOF (REG))) rtx for a register REG that just had its
   address taken.  DECL is the decl or SAVE_EXPR for the object stored in the
   register, for later use if we do need to force REG into the stack.  REG is
   overwritten by the MEM like in put_reg_into_stack.  */

rtx
gen_mem_addressof (reg, decl)
     rtx reg;
     tree decl;
{
  rtx r = gen_rtx_ADDRESSOF (Pmode, gen_reg_rtx (GET_MODE (reg)),
			     REGNO (reg), decl);

  /* Calculate this before we start messing with decl's RTL.  */
  HOST_WIDE_INT set = decl ? get_alias_set (decl) : 0;

  /* If the original REG was a user-variable, then so is the REG whose
     address is being taken.  Likewise for unchanging.  */
  REG_USERVAR_P (XEXP (r, 0)) = REG_USERVAR_P (reg);
  RTX_UNCHANGING_P (XEXP (r, 0)) = RTX_UNCHANGING_P (reg);

  PUT_CODE (reg, MEM);
  MEM_ATTRS (reg) = 0;
  XEXP (reg, 0) = r;

  if (decl)
    {
      tree type = TREE_TYPE (decl);
      enum machine_mode decl_mode
	= (DECL_P (decl) ? DECL_MODE (decl) : TYPE_MODE (TREE_TYPE (decl)));
      rtx decl_rtl = (TREE_CODE (decl) == SAVE_EXPR ? SAVE_EXPR_RTL (decl)
		      : DECL_RTL_IF_SET (decl));

      PUT_MODE (reg, decl_mode);

      /* Clear DECL_RTL momentarily so functions below will work
	 properly, then set it again.  */
      if (DECL_P (decl) && decl_rtl == reg)
	SET_DECL_RTL (decl, 0);

      set_mem_attributes (reg, decl, 1);
      set_mem_alias_set (reg, set);

      if (DECL_P (decl) && decl_rtl == reg)
	SET_DECL_RTL (decl, reg);

      if (TREE_USED (decl) || (DECL_P (decl) && DECL_INITIAL (decl) != 0))
	fixup_var_refs (reg, GET_MODE (reg), TREE_UNSIGNED (type), 0);
    }
  else
    fixup_var_refs (reg, GET_MODE (reg), 0, 0);

  return reg;
}

/* If DECL has an RTL that is an ADDRESSOF rtx, put it into the stack.  */

void
flush_addressof (decl)
     tree decl;
{
  if ((TREE_CODE (decl) == PARM_DECL || TREE_CODE (decl) == VAR_DECL)
      && DECL_RTL (decl) != 0
      && GET_CODE (DECL_RTL (decl)) == MEM
      && GET_CODE (XEXP (DECL_RTL (decl), 0)) == ADDRESSOF
      && GET_CODE (XEXP (XEXP (DECL_RTL (decl), 0), 0)) == REG)
    put_addressof_into_stack (XEXP (DECL_RTL (decl), 0), 0);
}

/* Force the register pointed to by R, an ADDRESSOF rtx, into the stack.  */

static void
put_addressof_into_stack (r, ht)
     rtx r;
     struct hash_table *ht;
{
  tree decl, type;
  int volatile_p, used_p;

  rtx reg = XEXP (r, 0);

  if (GET_CODE (reg) != REG)
    abort ();

  decl = ADDRESSOF_DECL (r);
  if (decl)
    {
      type = TREE_TYPE (decl);
      volatile_p = (TREE_CODE (decl) != SAVE_EXPR
		    && TREE_THIS_VOLATILE (decl));
      used_p = (TREE_USED (decl)
		|| (DECL_P (decl) && DECL_INITIAL (decl) != 0));
    }
  else
    {
      type = NULL_TREE;
      volatile_p = 0;
      used_p = 1;
    }

  put_reg_into_stack (0, reg, type, GET_MODE (reg), GET_MODE (reg),
		      volatile_p, ADDRESSOF_REGNO (r), used_p, ht);
}

/* List of replacements made below in purge_addressof_1 when creating
   bitfield insertions.  */
static rtx purge_bitfield_addressof_replacements;

/* List of replacements made below in purge_addressof_1 for patterns
   (MEM (ADDRESSOF (REG ...))).  The key of the list entry is the
   corresponding (ADDRESSOF (REG ...)) and value is a substitution for
   the all pattern.  List PURGE_BITFIELD_ADDRESSOF_REPLACEMENTS is not
   enough in complex cases, e.g. when some field values can be
   extracted by usage MEM with narrower mode.  */
static rtx purge_addressof_replacements;

/* Helper function for purge_addressof.  See if the rtx expression at *LOC
   in INSN needs to be changed.  If FORCE, always put any ADDRESSOFs into
   the stack.  If the function returns FALSE then the replacement could not
   be made.  */

static bool
purge_addressof_1 (loc, insn, force, store, ht)
     rtx *loc;
     rtx insn;
     int force, store;
     struct hash_table *ht;
{
  rtx x;
  RTX_CODE code;
  int i, j;
  const char *fmt;
  bool result = true;

  /* Re-start here to avoid recursion in common cases.  */
 restart:

  x = *loc;
  if (x == 0)
    return true;

  code = GET_CODE (x);

  /* If we don't return in any of the cases below, we will recurse inside
     the RTX, which will normally result in any ADDRESSOF being forced into
     memory.  */
  if (code == SET)
    {
      result = purge_addressof_1 (&SET_DEST (x), insn, force, 1, ht);
      result &= purge_addressof_1 (&SET_SRC (x), insn, force, 0, ht);
      return result;
    }
  else if (code == ADDRESSOF)
    {
      rtx sub, insns;

      if (GET_CODE (XEXP (x, 0)) != MEM)
	{
	  put_addressof_into_stack (x, ht);
	  return true;
	}
	  
      /* We must create a copy of the rtx because it was created by
	 overwriting a REG rtx which is always shared.  */
      sub = copy_rtx (XEXP (XEXP (x, 0), 0));
      if (validate_change (insn, loc, sub, 0)
	  || validate_replace_rtx (x, sub, insn))
	return true;

      start_sequence ();
      sub = force_operand (sub, NULL_RTX);
      if (! validate_change (insn, loc, sub, 0)
	  && ! validate_replace_rtx (x, sub, insn))
	abort ();

      insns = gen_sequence ();
      end_sequence ();
      emit_insn_before (insns, insn);
      return true;
    }

  else if (code == MEM && GET_CODE (XEXP (x, 0)) == ADDRESSOF && ! force)
    {
      rtx sub = XEXP (XEXP (x, 0), 0);

      if (GET_CODE (sub) == MEM)
	sub = adjust_address_nv (sub, GET_MODE (x), 0);
      else if (GET_CODE (sub) == REG
	       && (MEM_VOLATILE_P (x) || GET_MODE (x) == BLKmode))
	;
      else if (GET_CODE (sub) == REG && GET_MODE (x) != GET_MODE (sub))
	{
	  int size_x, size_sub;

	  if (!insn)
	    {
	      /* When processing REG_NOTES look at the list of
		 replacements done on the insn to find the register that X
		 was replaced by.  */
	      rtx tem;

	      for (tem = purge_bitfield_addressof_replacements;
		   tem != NULL_RTX;
		   tem = XEXP (XEXP (tem, 1), 1))
		if (rtx_equal_p (x, XEXP (tem, 0)))
		  {
		    *loc = XEXP (XEXP (tem, 1), 0);
		    return true;
		  }

	      /* See comment for purge_addressof_replacements.  */
	      for (tem = purge_addressof_replacements;
		   tem != NULL_RTX;
		   tem = XEXP (XEXP (tem, 1), 1))
		if (rtx_equal_p (XEXP (x, 0), XEXP (tem, 0)))
		  {
		    rtx z = XEXP (XEXP (tem, 1), 0);

		    if (GET_MODE (x) == GET_MODE (z)
			|| (GET_CODE (XEXP (XEXP (tem, 1), 0)) != REG
			    && GET_CODE (XEXP (XEXP (tem, 1), 0)) != SUBREG))
		      abort ();

		    /* It can happen that the note may speak of things
		       in a wider (or just different) mode than the
		       code did.  This is especially true of
		       REG_RETVAL.  */

		    if (GET_CODE (z) == SUBREG && SUBREG_BYTE (z) == 0)
		      z = SUBREG_REG (z);

		    if (GET_MODE_SIZE (GET_MODE (x)) > UNITS_PER_WORD
			&& (GET_MODE_SIZE (GET_MODE (x))
			    > GET_MODE_SIZE (GET_MODE (z))))
		      {
			/* This can occur as a result in invalid
			   pointer casts, e.g. float f; ...
			   *(long long int *)&f.
			   ??? We could emit a warning here, but
			   without a line number that wouldn't be
			   very helpful.  */
			z = gen_rtx_SUBREG (GET_MODE (x), z, 0);
		      }
		    else
		      z = gen_lowpart (GET_MODE (x), z);

		    *loc = z;
		    return true;
		  }

	      /* Sometimes we may not be able to find the replacement.  For
		 example when the original insn was a MEM in a wider mode,
		 and the note is part of a sign extension of a narrowed
		 version of that MEM.  Gcc testcase compile/990829-1.c can
		 generate an example of this situation.  Rather than complain
		 we return false, which will prompt our caller to remove the
		 offending note.  */
	      return false;
	    }

	  size_x = GET_MODE_BITSIZE (GET_MODE (x));
	  size_sub = GET_MODE_BITSIZE (GET_MODE (sub));

	  /* Don't even consider working with paradoxical subregs,
	     or the moral equivalent seen here.  */
	  if (size_x <= size_sub
	      && int_mode_for_mode (GET_MODE (sub)) != BLKmode)
	    {
	      /* Do a bitfield insertion to mirror what would happen
		 in memory.  */

	      rtx val, seq;

	      if (store)
		{
		  rtx p = PREV_INSN (insn);

		  start_sequence ();
		  val = gen_reg_rtx (GET_MODE (x));
		  if (! validate_change (insn, loc, val, 0))
		    {
		      /* Discard the current sequence and put the
			 ADDRESSOF on stack.  */
		      end_sequence ();
		      goto give_up;
		    }
		  seq = gen_sequence ();
		  end_sequence ();
		  emit_insn_before (seq, insn);
		  compute_insns_for_mem (p ? NEXT_INSN (p) : get_insns (),
					 insn, ht);

		  start_sequence ();
		  store_bit_field (sub, size_x, 0, GET_MODE (x),
				   val, GET_MODE_SIZE (GET_MODE (sub)));

		  /* Make sure to unshare any shared rtl that store_bit_field
		     might have created.  */
		  unshare_all_rtl_again (get_insns ());

		  seq = gen_sequence ();
		  end_sequence ();
		  p = emit_insn_after (seq, insn);
		  if (NEXT_INSN (insn))
		    compute_insns_for_mem (NEXT_INSN (insn),
					   p ? NEXT_INSN (p) : NULL_RTX,
					   ht);
		}
	      else
		{
		  rtx p = PREV_INSN (insn);

		  start_sequence ();
		  val = extract_bit_field (sub, size_x, 0, 1, NULL_RTX,
					   GET_MODE (x), GET_MODE (x),
					   GET_MODE_SIZE (GET_MODE (sub)));

		  if (! validate_change (insn, loc, val, 0))
		    {
		      /* Discard the current sequence and put the
			 ADDRESSOF on stack.  */
		      end_sequence ();
		      goto give_up;
		    }

		  seq = gen_sequence ();
		  end_sequence ();
		  emit_insn_before (seq, insn);
		  compute_insns_for_mem (p ? NEXT_INSN (p) : get_insns (),
					 insn, ht);
		}

	      /* Remember the replacement so that the same one can be done
		 on the REG_NOTES.  */
	      purge_bitfield_addressof_replacements
		= gen_rtx_EXPR_LIST (VOIDmode, x,
				     gen_rtx_EXPR_LIST
				     (VOIDmode, val,
				      purge_bitfield_addressof_replacements));

	      /* We replaced with a reg -- all done.  */
	      return true;
	    }
	}

      else if (validate_change (insn, loc, sub, 0))
	{
	  /* Remember the replacement so that the same one can be done
	     on the REG_NOTES.  */
	  if (GET_CODE (sub) == REG || GET_CODE (sub) == SUBREG)
	    {
	      rtx tem;

	      for (tem = purge_addressof_replacements;
		   tem != NULL_RTX;
		   tem = XEXP (XEXP (tem, 1), 1))
		if (rtx_equal_p (XEXP (x, 0), XEXP (tem, 0)))
		  {
		    XEXP (XEXP (tem, 1), 0) = sub;
		    return true;
		  }
	      purge_addressof_replacements
		= gen_rtx (EXPR_LIST, VOIDmode, XEXP (x, 0),
			   gen_rtx_EXPR_LIST (VOIDmode, sub,
					      purge_addressof_replacements));
	      return true;
	    }
	  goto restart;
	}
    }

 give_up:
  /* Scan all subexpressions.  */
  fmt = GET_RTX_FORMAT (code);
  for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
    {
      if (*fmt == 'e')
	result &= purge_addressof_1 (&XEXP (x, i), insn, force, 0, ht);
      else if (*fmt == 'E')
	for (j = 0; j < XVECLEN (x, i); j++)
	  result &= purge_addressof_1 (&XVECEXP (x, i, j), insn, force, 0, ht);
    }

  return result;
}

/* Return a new hash table entry in HT.  */

static struct hash_entry *
insns_for_mem_newfunc (he, ht, k)
     struct hash_entry *he;
     struct hash_table *ht;
     hash_table_key k ATTRIBUTE_UNUSED;
{
  struct insns_for_mem_entry *ifmhe;
  if (he)
    return he;

  ifmhe = ((struct insns_for_mem_entry *)
	   hash_allocate (ht, sizeof (struct insns_for_mem_entry)));
  ifmhe->insns = NULL_RTX;

  return &ifmhe->he;
}

/* Return a hash value for K, a REG.  */

static unsigned long
insns_for_mem_hash (k)
     hash_table_key k;
{
  /* K is really a RTX.  Just use the address as the hash value.  */
  return (unsigned long) k;
}

/* Return non-zero if K1 and K2 (two REGs) are the same.  */

static bool
insns_for_mem_comp (k1, k2)
     hash_table_key k1;
     hash_table_key k2;
{
  return k1 == k2;
}

struct insns_for_mem_walk_info
{
  /* The hash table that we are using to record which INSNs use which
     MEMs.  */
  struct hash_table *ht;

  /* The INSN we are currently processing.  */
  rtx insn;

  /* Zero if we are walking to find ADDRESSOFs, one if we are walking
     to find the insns that use the REGs in the ADDRESSOFs.  */
  int pass;
};

/* Called from compute_insns_for_mem via for_each_rtx.  If R is a REG
   that might be used in an ADDRESSOF expression, record this INSN in
   the hash table given by DATA (which is really a pointer to an
   insns_for_mem_walk_info structure).  */

static int
insns_for_mem_walk (r, data)
     rtx *r;
     void *data;
{
  struct insns_for_mem_walk_info *ifmwi
    = (struct insns_for_mem_walk_info *) data;

  if (ifmwi->pass == 0 && *r && GET_CODE (*r) == ADDRESSOF
      && GET_CODE (XEXP (*r, 0)) == REG)
    hash_lookup (ifmwi->ht, XEXP (*r, 0), /*create=*/1, /*copy=*/0);
  else if (ifmwi->pass == 1 && *r && GET_CODE (*r) == REG)
    {
      /* Lookup this MEM in the hashtable, creating it if necessary.  */
      struct insns_for_mem_entry *ifme
	= (struct insns_for_mem_entry *) hash_lookup (ifmwi->ht,
						      *r,
						      /*create=*/0,
						      /*copy=*/0);

      /* If we have not already recorded this INSN, do so now.  Since
	 we process the INSNs in order, we know that if we have
	 recorded it it must be at the front of the list.  */
      if (ifme && (!ifme->insns || XEXP (ifme->insns, 0) != ifmwi->insn))
	ifme->insns = gen_rtx_EXPR_LIST (VOIDmode, ifmwi->insn,
					 ifme->insns);
    }

  return 0;
}

/* Walk the INSNS, until we reach LAST_INSN, recording which INSNs use
   which REGs in HT.  */

static void
compute_insns_for_mem (insns, last_insn, ht)
     rtx insns;
     rtx last_insn;
     struct hash_table *ht;
{
  rtx insn;
  struct insns_for_mem_walk_info ifmwi;
  ifmwi.ht = ht;

  for (ifmwi.pass = 0; ifmwi.pass < 2; ++ifmwi.pass)
    for (insn = insns; insn != last_insn; insn = NEXT_INSN (insn))
      if (INSN_P (insn))
	{
	  ifmwi.insn = insn;
	  for_each_rtx (&insn, insns_for_mem_walk, &ifmwi);
	}
}

/* Helper function for purge_addressof called through for_each_rtx.
   Returns true iff the rtl is an ADDRESSOF.  */

static int
is_addressof (rtl, data)
     rtx *rtl;
     void *data ATTRIBUTE_UNUSED;
{
  return GET_CODE (*rtl) == ADDRESSOF;
}

/* Eliminate all occurrences of ADDRESSOF from INSNS.  Elide any remaining
   (MEM (ADDRESSOF)) patterns, and force any needed registers into the
   stack.  */

void
purge_addressof (insns)
     rtx insns;
{
  rtx insn;
  struct hash_table ht;

  /* When we actually purge ADDRESSOFs, we turn REGs into MEMs.  That
     requires a fixup pass over the instruction stream to correct
     INSNs that depended on the REG being a REG, and not a MEM.  But,
     these fixup passes are slow.  Furthermore, most MEMs are not
     mentioned in very many instructions.  So, we speed up the process
     by pre-calculating which REGs occur in which INSNs; that allows
     us to perform the fixup passes much more quickly.  */
  hash_table_init (&ht,
		   insns_for_mem_newfunc,
		   insns_for_mem_hash,
		   insns_for_mem_comp);
  compute_insns_for_mem (insns, NULL_RTX, &ht);

  for (insn = insns; insn; insn = NEXT_INSN (insn))
    if (GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN
	|| GET_CODE (insn) == CALL_INSN)
      {
	if (! purge_addressof_1 (&PATTERN (insn), insn,
				 asm_noperands (PATTERN (insn)) > 0, 0, &ht))
	  /* If we could not replace the ADDRESSOFs in the insn,
	     something is wrong.  */
	  abort ();

	if (! purge_addressof_1 (&REG_NOTES (insn), NULL_RTX, 0, 0, &ht))
	  {
	    /* If we could not replace the ADDRESSOFs in the insn's notes,
	       we can just remove the offending notes instead.  */
	    rtx note;

	    for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
	      {
		/* If we find a REG_RETVAL note then the insn is a libcall.
		   Such insns must have REG_EQUAL notes as well, in order
		   for later passes of the compiler to work.  So it is not
		   safe to delete the notes here, and instead we abort.  */
		if (REG_NOTE_KIND (note) == REG_RETVAL)
		  abort ();
		if (for_each_rtx (&note, is_addressof, NULL))
		  remove_note (insn, note);
	      }
	  }
      }

  /* Clean up.  */
  hash_table_free (&ht);
  purge_bitfield_addressof_replacements = 0;
  purge_addressof_replacements = 0;

  /* REGs are shared.  purge_addressof will destructively replace a REG
     with a MEM, which creates shared MEMs.

     Unfortunately, the children of put_reg_into_stack assume that MEMs
     referring to the same stack slot are shared (fixup_var_refs and
     the associated hash table code).

     So, we have to do another unsharing pass after we have flushed any
     REGs that had their address taken into the stack.

     It may be worth tracking whether or not we converted any REGs into
     MEMs to avoid this overhead when it is not needed.  */
  unshare_all_rtl_again (get_insns ());
}

/* Convert a SET of a hard subreg to a set of the appropriate hard
   register.  A subroutine of purge_hard_subreg_sets.  */

static void
purge_single_hard_subreg_set (pattern)
     rtx pattern;
{
  rtx reg = SET_DEST (pattern);
  enum machine_mode mode = GET_MODE (SET_DEST (pattern));
  int offset = 0;

  if (GET_CODE (reg) == SUBREG && GET_CODE (SUBREG_REG (reg)) == REG
      && REGNO (SUBREG_REG (reg)) < FIRST_PSEUDO_REGISTER)
    {
      offset = subreg_regno_offset (REGNO (SUBREG_REG (reg)),
				    GET_MODE (SUBREG_REG (reg)),
				    SUBREG_BYTE (reg),
				    GET_MODE (reg));
      reg = SUBREG_REG (reg);
    }

		  
  if (GET_CODE (reg) == REG && REGNO (reg) < FIRST_PSEUDO_REGISTER)
    {
      reg = gen_rtx_REG (mode, REGNO (reg) + offset);
      SET_DEST (pattern) = reg;
    }
}

/* Eliminate all occurrences of SETs of hard subregs from INSNS.  The
   only such SETs that we expect to see are those left in because
   integrate can't handle sets of parts of a return value register.

   We don't use alter_subreg because we only want to eliminate subregs
   of hard registers.  */

void
purge_hard_subreg_sets (insn)
     rtx insn;
{
  for (; insn; insn = NEXT_INSN (insn))
    {
      if (INSN_P (insn))
	{
	  rtx pattern = PATTERN (insn);
	  switch (GET_CODE (pattern))
	    {
	    case SET:
	      if (GET_CODE (SET_DEST (pattern)) == SUBREG)
		purge_single_hard_subreg_set (pattern);
	      break;	      
	    case PARALLEL:
	      {
		int j;
		for (j = XVECLEN (pattern, 0) - 1; j >= 0; j--)
		  {
		    rtx inner_pattern = XVECEXP (pattern, 0, j);
		    if (GET_CODE (inner_pattern) == SET
			&& GET_CODE (SET_DEST (inner_pattern)) == SUBREG)
		      purge_single_hard_subreg_set (inner_pattern);
		  }
	      }
	      break;
	    default:
	      break;
	    }
	}
    }
}

/* Pass through the INSNS of function FNDECL and convert virtual register
   references to hard register references.  */

void
instantiate_virtual_regs (fndecl, insns)
     tree fndecl;
     rtx insns;
{
  rtx insn;
  unsigned int i;

  /* Compute the offsets to use for this function.  */
  in_arg_offset = FIRST_PARM_OFFSET (fndecl);
  var_offset = STARTING_FRAME_OFFSET;
  dynamic_offset = STACK_DYNAMIC_OFFSET (fndecl);
  out_arg_offset = STACK_POINTER_OFFSET;
  cfa_offset = ARG_POINTER_CFA_OFFSET (fndecl);

  /* Scan all variables and parameters of this function.  For each that is
     in memory, instantiate all virtual registers if the result is a valid
     address.  If not, we do it later.  That will handle most uses of virtual
     regs on many machines.  */
  instantiate_decls (fndecl, 1);

  /* Initialize recognition, indicating that volatile is OK.  */
  init_recog ();

  /* Scan through all the insns, instantiating every virtual register still
     present.  */
  for (insn = insns; insn; insn = NEXT_INSN (insn))
    if (GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN
	|| GET_CODE (insn) == CALL_INSN)
      {
	instantiate_virtual_regs_1 (&PATTERN (insn), insn, 1);
	instantiate_virtual_regs_1 (&REG_NOTES (insn), NULL_RTX, 0);
	/* Instantiate any virtual registers in CALL_INSN_FUNCTION_USAGE.  */
	if (GET_CODE (insn) == CALL_INSN)
	  instantiate_virtual_regs_1 (&CALL_INSN_FUNCTION_USAGE (insn),
				      NULL_RTX, 0);
      }

  /* Instantiate the stack slots for the parm registers, for later use in
     addressof elimination.  */
  for (i = 0; i < max_parm_reg; ++i)
    if (parm_reg_stack_loc[i])
      instantiate_virtual_regs_1 (&parm_reg_stack_loc[i], NULL_RTX, 0);

  /* Now instantiate the remaining register equivalences for debugging info.
     These will not be valid addresses.  */
  instantiate_decls (fndecl, 0);

  /* Indicate that, from now on, assign_stack_local should use
     frame_pointer_rtx.  */
  virtuals_instantiated = 1;
}

/* Scan all decls in FNDECL (both variables and parameters) and instantiate
   all virtual registers in their DECL_RTL's.

   If VALID_ONLY, do this only if the resulting address is still valid.
   Otherwise, always do it.  */

static void
instantiate_decls (fndecl, valid_only)
     tree fndecl;
     int valid_only;
{
  tree decl;

  /* Process all parameters of the function.  */
  for (decl = DECL_ARGUMENTS (fndecl); decl; decl = TREE_CHAIN (decl))
    {
      HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (decl));
      HOST_WIDE_INT size_rtl;

      instantiate_decl (DECL_RTL (decl), size, valid_only);

      /* If the parameter was promoted, then the incoming RTL mode may be
	 larger than the declared type size.  We must use the larger of
	 the two sizes.  */
      size_rtl = GET_MODE_SIZE (GET_MODE (DECL_INCOMING_RTL (decl)));
      size = MAX (size_rtl, size);
      instantiate_decl (DECL_INCOMING_RTL (decl), size, valid_only);
    }

  /* Now process all variables defined in the function or its subblocks.  */
  instantiate_decls_1 (DECL_INITIAL (fndecl), valid_only);
}

/* Subroutine of instantiate_decls: Process all decls in the given
   BLOCK node and all its subblocks.  */

static void
instantiate_decls_1 (let, valid_only)
     tree let;
     int valid_only;
{
  tree t;

  for (t = BLOCK_VARS (let); t; t = TREE_CHAIN (t))
    if (DECL_RTL_SET_P (t))
      instantiate_decl (DECL_RTL (t), 
			int_size_in_bytes (TREE_TYPE (t)),
			valid_only);

  /* Process all subblocks.  */
  for (t = BLOCK_SUBBLOCKS (let); t; t = TREE_CHAIN (t))
    instantiate_decls_1 (t, valid_only);
}

/* Subroutine of the preceding procedures: Given RTL representing a
   decl and the size of the object, do any instantiation required.

   If VALID_ONLY is non-zero, it means that the RTL should only be
   changed if the new address is valid.  */

static void
instantiate_decl (x, size, valid_only)
     rtx x;
     HOST_WIDE_INT size;
     int valid_only;
{
  enum machine_mode mode;
  rtx addr;

  /* If this is not a MEM, no need to do anything.  Similarly if the
     address is a constant or a register that is not a virtual register.  */

  if (x == 0 || GET_CODE (x) != MEM)
    return;

  addr = XEXP (x, 0);
  if (CONSTANT_P (addr)
      || (GET_CODE (addr) == ADDRESSOF && GET_CODE (XEXP (addr, 0)) == REG)
      || (GET_CODE (addr) == REG
	  && (REGNO (addr) < FIRST_VIRTUAL_REGISTER
	      || REGNO (addr) > LAST_VIRTUAL_REGISTER)))
    return;

  /* If we should only do this if the address is valid, copy the address.
     We need to do this so we can undo any changes that might make the
     address invalid.  This copy is unfortunate, but probably can't be
     avoided.  */

  if (valid_only)
    addr = copy_rtx (addr);

  instantiate_virtual_regs_1 (&addr, NULL_RTX, 0);

  if (valid_only && size >= 0)
    {
      unsigned HOST_WIDE_INT decl_size = size;

      /* Now verify that the resulting address is valid for every integer or
	 floating-point mode up to and including SIZE bytes long.  We do this
	 since the object might be accessed in any mode and frame addresses
	 are shared.  */

      for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
	   mode != VOIDmode && GET_MODE_SIZE (mode) <= decl_size;
	   mode = GET_MODE_WIDER_MODE (mode))
	if (! memory_address_p (mode, addr))
	  return;

      for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
	   mode != VOIDmode && GET_MODE_SIZE (mode) <= decl_size;
	   mode = GET_MODE_WIDER_MODE (mode))
	if (! memory_address_p (mode, addr))
	  return;
    }

  /* Put back the address now that we have updated it and we either know
     it is valid or we don't care whether it is valid.  */

  XEXP (x, 0) = addr;
}

/* Given a piece of RTX and a pointer to a HOST_WIDE_INT, if the RTX
   is a virtual register, return the equivalent hard register and set the
   offset indirectly through the pointer.  Otherwise, return 0.  */

static rtx
instantiate_new_reg (x, poffset)
     rtx x;
     HOST_WIDE_INT *poffset;
{
  rtx new;
  HOST_WIDE_INT offset;

  if (x == virtual_incoming_args_rtx)
    new = arg_pointer_rtx, offset = in_arg_offset;
  else if (x == virtual_stack_vars_rtx)
    new = frame_pointer_rtx, offset = var_offset;
  else if (x == virtual_stack_dynamic_rtx)
    new = stack_pointer_rtx, offset = dynamic_offset;
  else if (x == virtual_outgoing_args_rtx)
    new = stack_pointer_rtx, offset = out_arg_offset;
  else if (x == virtual_cfa_rtx)
    new = arg_pointer_rtx, offset = cfa_offset;
  else
    return 0;

  *poffset = offset;
  return new;
}

/* Given a pointer to a piece of rtx and an optional pointer to the
   containing object, instantiate any virtual registers present in it.

   If EXTRA_INSNS, we always do the replacement and generate
   any extra insns before OBJECT.  If it zero, we do nothing if replacement
   is not valid.

   Return 1 if we either had nothing to do or if we were able to do the
   needed replacement.  Return 0 otherwise; we only return zero if
   EXTRA_INSNS is zero.

   We first try some simple transformations to avoid the creation of extra
   pseudos.  */

static int
instantiate_virtual_regs_1 (loc, object, extra_insns)
     rtx *loc;
     rtx object;
     int extra_insns;
{
  rtx x;
  RTX_CODE code;
  rtx new = 0;
  HOST_WIDE_INT offset = 0;
  rtx temp;
  rtx seq;
  int i, j;
  const char *fmt;

  /* Re-start here to avoid recursion in common cases.  */
 restart:

  x = *loc;
  if (x == 0)
    return 1;

  code = GET_CODE (x);

  /* Check for some special cases.  */
  switch (code)
    {
    case CONST_INT:
    case CONST_DOUBLE:
    case CONST:
    case SYMBOL_REF:
    case CODE_LABEL:
    case PC:
    case CC0:
    case ASM_INPUT:
    case ADDR_VEC:
    case ADDR_DIFF_VEC:
    case RETURN:
      return 1;

    case SET:
      /* We are allowed to set the virtual registers.  This means that
	 the actual register should receive the source minus the
	 appropriate offset.  This is used, for example, in the handling
	 of non-local gotos.  */
      if ((new = instantiate_new_reg (SET_DEST (x), &offset)) != 0)
	{
	  rtx src = SET_SRC (x);

	  /* We are setting the register, not using it, so the relevant
	     offset is the negative of the offset to use were we using
	     the register.  */
	  offset = - offset;
	  instantiate_virtual_regs_1 (&src, NULL_RTX, 0);

	  /* The only valid sources here are PLUS or REG.  Just do
	     the simplest possible thing to handle them.  */
	  if (GET_CODE (src) != REG && GET_CODE (src) != PLUS)
	    abort ();

	  start_sequence ();
	  if (GET_CODE (src) != REG)
	    temp = force_operand (src, NULL_RTX);
	  else
	    temp = src;
	  temp = force_operand (plus_constant (temp, offset), NULL_RTX);
	  seq = get_insns ();
	  end_sequence ();

	  emit_insns_before (seq, object);
	  SET_DEST (x) = new;

	  if (! validate_change (object, &SET_SRC (x), temp, 0)
	      || ! extra_insns)
	    abort ();

	  return 1;
	}

      instantiate_virtual_regs_1 (&SET_DEST (x), object, extra_insns);
      loc = &SET_SRC (x);
      goto restart;

    case PLUS:
      /* Handle special case of virtual register plus constant.  */
      if (CONSTANT_P (XEXP (x, 1)))
	{
	  rtx old, new_offset;

	  /* Check for (plus (plus VIRT foo) (const_int)) first.  */
	  if (GET_CODE (XEXP (x, 0)) == PLUS)
	    {
	      if ((new = instantiate_new_reg (XEXP (XEXP (x, 0), 0), &offset)))
		{
		  instantiate_virtual_regs_1 (&XEXP (XEXP (x, 0), 1), object,
					      extra_insns);
		  new = gen_rtx_PLUS (Pmode, new, XEXP (XEXP (x, 0), 1));
		}
	      else
		{
		  loc = &XEXP (x, 0);
		  goto restart;
		}
	    }

#ifdef POINTERS_EXTEND_UNSIGNED
	  /* If we have (plus (subreg (virtual-reg)) (const_int)), we know
	     we can commute the PLUS and SUBREG because pointers into the
	     frame are well-behaved.  */
	  else if (GET_CODE (XEXP (x, 0)) == SUBREG && GET_MODE (x) == ptr_mode
		   && GET_CODE (XEXP (x, 1)) == CONST_INT
		   && 0 != (new
			    = instantiate_new_reg (SUBREG_REG (XEXP (x, 0)),
						   &offset))
		   && validate_change (object, loc,
				       plus_constant (gen_lowpart (ptr_mode,
								   new),
						      offset
						      + INTVAL (XEXP (x, 1))),
				       0))
		return 1;
#endif
	  else if ((new = instantiate_new_reg (XEXP (x, 0), &offset)) == 0)
	    {
	      /* We know the second operand is a constant.  Unless the
		 first operand is a REG (which has been already checked),
		 it needs to be checked.  */
	      if (GET_CODE (XEXP (x, 0)) != REG)
		{
		  loc = &XEXP (x, 0);
		  goto restart;
		}
	      return 1;
	    }

	  new_offset = plus_constant (XEXP (x, 1), offset);

	  /* If the new constant is zero, try to replace the sum with just
	     the register.  */
	  if (new_offset == const0_rtx
	      && validate_change (object, loc, new, 0))
	    return 1;

	  /* Next try to replace the register and new offset.
	     There are two changes to validate here and we can't assume that
	     in the case of old offset equals new just changing the register
	     will yield a valid insn.  In the interests of a little efficiency,
	     however, we only call validate change once (we don't queue up the
	     changes and then call apply_change_group).  */

	  old = XEXP (x, 0);
	  if (offset == 0
	      ? ! validate_change (object, &XEXP (x, 0), new, 0)
	      : (XEXP (x, 0) = new,
		 ! validate_change (object, &XEXP (x, 1), new_offset, 0)))
	    {
	      if (! extra_insns)
		{
		  XEXP (x, 0) = old;
		  return 0;
		}

	      /* Otherwise copy the new constant into a register and replace
		 constant with that register.  */
	      temp = gen_reg_rtx (Pmode);
	      XEXP (x, 0) = new;
	      if (validate_change (object, &XEXP (x, 1), temp, 0))
		emit_insn_before (gen_move_insn (temp, new_offset), object);
	      else
		{
		  /* If that didn't work, replace this expression with a
		     register containing the sum.  */

		  XEXP (x, 0) = old;
		  new = gen_rtx_PLUS (Pmode, new, new_offset);

		  start_sequence ();
		  temp = force_operand (new, NULL_RTX);
		  seq = get_insns ();
		  end_sequence ();

		  emit_insns_before (seq, object);
		  if (! validate_change (object, loc, temp, 0)
		      && ! validate_replace_rtx (x, temp, object))
		    abort ();
		}
	    }

	  return 1;
	}

      /* Fall through to generic two-operand expression case.  */
    case EXPR_LIST:
    case CALL:
    case COMPARE:
    case MINUS:
    case MULT:
    case DIV:      case UDIV:
    case MOD:      case UMOD:
    case AND:      case IOR:      case XOR:
    case ROTATERT: case ROTATE:
    case ASHIFTRT: case LSHIFTRT: case ASHIFT:
    case NE:       case EQ:
    case GE:       case GT:       case GEU:    case GTU:
    case LE:       case LT:       case LEU:    case LTU:
      if (XEXP (x, 1) && ! CONSTANT_P (XEXP (x, 1)))
	instantiate_virtual_regs_1 (&XEXP (x, 1), object, extra_insns);
      loc = &XEXP (x, 0);
      goto restart;

    case MEM:
      /* Most cases of MEM that convert to valid addresses have already been
	 handled by our scan of decls.  The only special handling we
	 need here is to make a copy of the rtx to ensure it isn't being
	 shared if we have to change it to a pseudo.

	 If the rtx is a simple reference to an address via a virtual register,
	 it can potentially be shared.  In such cases, first try to make it
	 a valid address, which can also be shared.  Otherwise, copy it and
	 proceed normally.

	 First check for common cases that need no processing.  These are
	 usually due to instantiation already being done on a previous instance
	 of a shared rtx.  */

      temp = XEXP (x, 0);
      if (CONSTANT_ADDRESS_P (temp)
#if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
	  || temp == arg_pointer_rtx
#endif
#if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
	  || temp == hard_frame_pointer_rtx
#endif
	  || temp == frame_pointer_rtx)
	return 1;

      if (GET_CODE (temp) == PLUS
	  && CONSTANT_ADDRESS_P (XEXP (temp, 1))
	  && (XEXP (temp, 0) == frame_pointer_rtx
#if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
	      || XEXP (temp, 0) == hard_frame_pointer_rtx
#endif
#if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
	      || XEXP (temp, 0) == arg_pointer_rtx
#endif
	      ))
	return 1;

      if (temp == virtual_stack_vars_rtx
	  || temp == virtual_incoming_args_rtx
	  || (GET_CODE (temp) == PLUS
	      && CONSTANT_ADDRESS_P (XEXP (temp, 1))
	      && (XEXP (temp, 0) == virtual_stack_vars_rtx
		  || XEXP (temp, 0) == virtual_incoming_args_rtx)))
	{
	  /* This MEM may be shared.  If the substitution can be done without
	     the need to generate new pseudos, we want to do it in place
	     so all copies of the shared rtx benefit.  The call below will
	     only make substitutions if the resulting address is still
	     valid.

	     Note that we cannot pass X as the object in the recursive call
	     since the insn being processed may not allow all valid
	     addresses.  However, if we were not passed on object, we can
	     only modify X without copying it if X will have a valid
	     address.

	     ??? Also note that this can still lose if OBJECT is an insn that
	     has less restrictions on an address that some other insn.
	     In that case, we will modify the shared address.  This case
	     doesn't seem very likely, though.  One case where this could
	     happen is in the case of a USE or CLOBBER reference, but we
	     take care of that below.  */

	  if (instantiate_virtual_regs_1 (&XEXP (x, 0),
					  object ? object : x, 0))
	    return 1;

	  /* Otherwise make a copy and process that copy.  We copy the entire
	     RTL expression since it might be a PLUS which could also be
	     shared.  */
	  *loc = x = copy_rtx (x);
	}

      /* Fall through to generic unary operation case.  */
    case PREFETCH:
    case SUBREG:
    case STRICT_LOW_PART:
    case NEG:          case NOT:
    case PRE_DEC:      case PRE_INC:      case POST_DEC:    case POST_INC:
    case SIGN_EXTEND:  case ZERO_EXTEND:
    case TRUNCATE:     case FLOAT_EXTEND: case FLOAT_TRUNCATE:
    case FLOAT:        case FIX:
    case UNSIGNED_FIX: case UNSIGNED_FLOAT:
    case ABS:
    case SQRT:
    case FFS:
      /* These case either have just one operand or we know that we need not
	 check the rest of the operands.  */
      loc = &XEXP (x, 0);
      goto restart;

    case USE:
    case CLOBBER:
      /* If the operand is a MEM, see if the change is a valid MEM.  If not,
	 go ahead and make the invalid one, but do it to a copy.  For a REG,
	 just make the recursive call, since there's no chance of a problem.  */

      if ((GET_CODE (XEXP (x, 0)) == MEM
	   && instantiate_virtual_regs_1 (&XEXP (XEXP (x, 0), 0), XEXP (x, 0),
					  0))
	  || (GET_CODE (XEXP (x, 0)) == REG
	      && instantiate_virtual_regs_1 (&XEXP (x, 0), object, 0)))
	return 1;

      XEXP (x, 0) = copy_rtx (XEXP (x, 0));
      loc = &XEXP (x, 0);
      goto restart;

    case REG:
      /* Try to replace with a PLUS.  If that doesn't work, compute the sum
	 in front of this insn and substitute the temporary.  */
      if ((new = instantiate_new_reg (x, &offset)) != 0)
	{
	  temp = plus_constant (new, offset);
	  if (!validate_change (object, loc, temp, 0))
	    {
	      if (! extra_insns)
		return 0;

	      start_sequence ();
	      temp = force_operand (temp, NULL_RTX);
	      seq = get_insns ();
	      end_sequence ();

	      emit_insns_before (seq, object);
	      if (! validate_change (object, loc, temp, 0)
		  && ! validate_replace_rtx (x, temp, object))
		abort ();
	    }
	}

      return 1;

    case ADDRESSOF:
      if (GET_CODE (XEXP (x, 0)) == REG)
	return 1;

      else if (GET_CODE (XEXP (x, 0)) == MEM)
	{
	  /* If we have a (addressof (mem ..)), do any instantiation inside
	     since we know we'll be making the inside valid when we finally
	     remove the ADDRESSOF.  */
	  instantiate_virtual_regs_1 (&XEXP (XEXP (x, 0), 0), NULL_RTX, 0);
	  return 1;
	}
      break;

    default:
      break;
    }

  /* Scan all subexpressions.  */
  fmt = GET_RTX_FORMAT (code);
  for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
    if (*fmt == 'e')
      {
	if (!instantiate_virtual_regs_1 (&XEXP (x, i), object, extra_insns))
	  return 0;
      }
    else if (*fmt == 'E')
      for (j = 0; j < XVECLEN (x, i); j++)
	if (! instantiate_virtual_regs_1 (&XVECEXP (x, i, j), object,
					  extra_insns))
	  return 0;

  return 1;
}

/* Optimization: assuming this function does not receive nonlocal gotos,
   delete the handlers for such, as well as the insns to establish
   and disestablish them.  */

static void
delete_handlers ()
{
  rtx insn;
  for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
    {
      /* Delete the handler by turning off the flag that would
	 prevent jump_optimize from deleting it.
	 Also permit deletion of the nonlocal labels themselves
	 if nothing local refers to them.  */
      if (GET_CODE (insn) == CODE_LABEL)
	{
	  tree t, last_t;

	  LABEL_PRESERVE_P (insn) = 0;

	  /* Remove it from the nonlocal_label list, to avoid confusing
	     flow.  */
	  for (t = nonlocal_labels, last_t = 0; t;
	       last_t = t, t = TREE_CHAIN (t))
	    if (DECL_RTL (TREE_VALUE (t)) == insn)
	      break;
	  if (t)
	    {
	      if (! last_t)
		nonlocal_labels = TREE_CHAIN (nonlocal_labels);
	      else
		TREE_CHAIN (last_t) = TREE_CHAIN (t);
	    }
	}
      if (GET_CODE (insn) == INSN)
	{
	  int can_delete = 0;
	  rtx t;
	  for (t = nonlocal_goto_handler_slots; t != 0; t = XEXP (t, 1))
	    if (reg_mentioned_p (t, PATTERN (insn)))
	      {
		can_delete = 1;
		break;
	      }
	  if (can_delete
	      || (nonlocal_goto_stack_level != 0
		  && reg_mentioned_p (nonlocal_goto_stack_level,
				      PATTERN (insn))))
	    delete_related_insns (insn);
	}
    }
}

int
max_parm_reg_num ()
{
  return max_parm_reg;
}

/* Return the first insn following those generated by `assign_parms'.  */

rtx
get_first_nonparm_insn ()
{
  if (last_parm_insn)
    return NEXT_INSN (last_parm_insn);
  return get_insns ();
}

/* Return the first NOTE_INSN_BLOCK_BEG note in the function.
   Crash if there is none.  */

rtx
get_first_block_beg ()
{
  rtx searcher;
  rtx insn = get_first_nonparm_insn ();

  for (searcher = insn; searcher; searcher = NEXT_INSN (searcher))
    if (GET_CODE (searcher) == NOTE
	&& NOTE_LINE_NUMBER (searcher) == NOTE_INSN_BLOCK_BEG)
      return searcher;

  abort ();	/* Invalid call to this function.  (See comments above.)  */
  return NULL_RTX;
}

/* Return 1 if EXP is an aggregate type (or a value with aggregate type).
   This means a type for which function calls must pass an address to the
   function or get an address back from the function.
   EXP may be a type node or an expression (whose type is tested).  */

int
aggregate_value_p (exp)
     tree exp;
{
  int i, regno, nregs;
  rtx reg;

  tree type = (TYPE_P (exp)) ? exp : TREE_TYPE (exp);

  if (TREE_CODE (type) == VOID_TYPE)
    return 0;
  if (RETURN_IN_MEMORY (type))
    return 1;
  /* Types that are TREE_ADDRESSABLE must be constructed in memory,
     and thus can't be returned in registers.  */
  if (TREE_ADDRESSABLE (type))
    return 1;
  if (flag_pcc_struct_return && AGGREGATE_TYPE_P (type))
    return 1;
  /* Make sure we have suitable call-clobbered regs to return
     the value in; if not, we must return it in memory.  */
  reg = hard_function_value (type, 0, 0);

  /* If we have something other than a REG (e.g. a PARALLEL), then assume
     it is OK.  */
  if (GET_CODE (reg) != REG)
    return 0;

  regno = REGNO (reg);
  nregs = HARD_REGNO_NREGS (regno, TYPE_MODE (type));
  for (i = 0; i < nregs; i++)
    if (! call_used_regs[regno + i])
      return 1;
  return 0;
}

/* Assign RTL expressions to the function's parameters.
   This may involve copying them into registers and using
   those registers as the RTL for them.  */

void
assign_parms (fndecl)
     tree fndecl;
{
  tree parm;
  rtx entry_parm = 0;
  rtx stack_parm = 0;
  CUMULATIVE_ARGS args_so_far;
  enum machine_mode promoted_mode, passed_mode;
  enum machine_mode nominal_mode, promoted_nominal_mode;
  int unsignedp;
  /* Total space needed so far for args on the stack,
     given as a constant and a tree-expression.  */
  struct args_size stack_args_size;
  tree fntype = TREE_TYPE (fndecl);
  tree fnargs = DECL_ARGUMENTS (fndecl);
  /* This is used for the arg pointer when referring to stack args.  */
  rtx internal_arg_pointer;
  /* This is a dummy PARM_DECL that we used for the function result if
     the function returns a structure.  */
  tree function_result_decl = 0;
#ifdef SETUP_INCOMING_VARARGS
  int varargs_setup = 0;
#endif
  rtx conversion_insns = 0;
  struct args_size alignment_pad;

  /* Nonzero if the last arg is named `__builtin_va_alist',
     which is used on some machines for old-fashioned non-ANSI varargs.h;
     this should be stuck onto the stack as if it had arrived there.  */
  int hide_last_arg
    = (current_function_varargs
       && fnargs
       && (parm = tree_last (fnargs)) != 0
       && DECL_NAME (parm)
       && (! strcmp (IDENTIFIER_POINTER (DECL_NAME (parm)),
		     "__builtin_va_alist")));

  /* Nonzero if function takes extra anonymous args.
     This means the last named arg must be on the stack
     right before the anonymous ones.  */
  int stdarg
    = (TYPE_ARG_TYPES (fntype) != 0
       && (TREE_VALUE (tree_last (TYPE_ARG_TYPES (fntype)))
	   != void_type_node));

  current_function_stdarg = stdarg;

  /* If the reg that the virtual arg pointer will be translated into is
     not a fixed reg or is the stack pointer, make a copy of the virtual
     arg pointer, and address parms via the copy.  The frame pointer is
     considered fixed even though it is not marked as such.

     The second time through, simply use ap to avoid generating rtx.  */

  if ((ARG_POINTER_REGNUM == STACK_POINTER_REGNUM
       || ! (fixed_regs[ARG_POINTER_REGNUM]
	     || ARG_POINTER_REGNUM == FRAME_POINTER_REGNUM)))
    internal_arg_pointer = copy_to_reg (virtual_incoming_args_rtx);
  else
    internal_arg_pointer = virtual_incoming_args_rtx;
  current_function_internal_arg_pointer = internal_arg_pointer;

  stack_args_size.constant = 0;
  stack_args_size.var = 0;

  /* If struct value address is treated as the first argument, make it so.  */
  if (aggregate_value_p (DECL_RESULT (fndecl))
      && ! current_function_returns_pcc_struct
      && struct_value_incoming_rtx == 0)
    {
      tree type = build_pointer_type (TREE_TYPE (fntype));

      function_result_decl = build_decl (PARM_DECL, NULL_TREE, type);

      DECL_ARG_TYPE (function_result_decl) = type;
      TREE_CHAIN (function_result_decl) = fnargs;
      fnargs = function_result_decl;
    }

  max_parm_reg = LAST_VIRTUAL_REGISTER + 1;
  parm_reg_stack_loc = (rtx *) xcalloc (max_parm_reg, sizeof (rtx));

#ifdef INIT_CUMULATIVE_INCOMING_ARGS
  INIT_CUMULATIVE_INCOMING_ARGS (args_so_far, fntype, NULL_RTX);
#else
  INIT_CUMULATIVE_ARGS (args_so_far, fntype, NULL_RTX, 0);
#endif

  /* We haven't yet found an argument that we must push and pretend the
     caller did.  */
  current_function_pretend_args_size = 0;

  for (parm = fnargs; parm; parm = TREE_CHAIN (parm))
    {
      struct args_size stack_offset;
      struct args_size arg_size;
      int passed_pointer = 0;
      int did_conversion = 0;
      tree passed_type = DECL_ARG_TYPE (parm);
      tree nominal_type = TREE_TYPE (parm);
      int pretend_named;
      int last_named = 0, named_arg;

      /* Set LAST_NAMED if this is last named arg before last
	 anonymous args.  */
      if (stdarg || current_function_varargs)
	{
	  tree tem;

	  for (tem = TREE_CHAIN (parm); tem; tem = TREE_CHAIN (tem))
	    if (DECL_NAME (tem))
	      break;

	  if (tem == 0)
	    last_named = 1;
	}
      /* Set NAMED_ARG if this arg should be treated as a named arg.  For
	 most machines, if this is a varargs/stdarg function, then we treat
	 the last named arg as if it were anonymous too.  */
      named_arg = STRICT_ARGUMENT_NAMING ? 1 : ! last_named;

      if (TREE_TYPE (parm) == error_mark_node
	  /* This can happen after weird syntax errors
	     or if an enum type is defined among the parms.  */
	  || TREE_CODE (parm) != PARM_DECL
	  || passed_type == NULL)
	{
	  SET_DECL_RTL (parm, gen_rtx_MEM (BLKmode, const0_rtx));
	  DECL_INCOMING_RTL (parm) = DECL_RTL (parm);
	  TREE_USED (parm) = 1;
	  continue;
	}

      /* For varargs.h function, save info about regs and stack space
	 used by the individual args, not including the va_alist arg.  */
      if (hide_last_arg && last_named)
	current_function_args_info = args_so_far;

      /* Find mode of arg as it is passed, and mode of arg
	 as it should be during execution of this function.  */
      passed_mode = TYPE_MODE (passed_type);
      nominal_mode = TYPE_MODE (nominal_type);

      /* If the parm's mode is VOID, its value doesn't matter,
	 and avoid the usual things like emit_move_insn that could crash.  */
      if (nominal_mode == VOIDmode)
	{
	  SET_DECL_RTL (parm, const0_rtx);
	  DECL_INCOMING_RTL (parm) = DECL_RTL (parm);
	  continue;
	}

      /* If the parm is to be passed as a transparent union, use the
	 type of the first field for the tests below.  We have already
	 verified that the modes are the same.  */
      if (DECL_TRANSPARENT_UNION (parm)
	  || (TREE_CODE (passed_type) == UNION_TYPE
	      && TYPE_TRANSPARENT_UNION (passed_type)))
	passed_type = TREE_TYPE (TYPE_FIELDS (passed_type));

      /* See if this arg was passed by invisible reference.  It is if
	 it is an object whose size depends on the contents of the
	 object itself or if the machine requires these objects be passed
	 that way.  */

      if ((TREE_CODE (TYPE_SIZE (passed_type)) != INTEGER_CST
	   && contains_placeholder_p (TYPE_SIZE (passed_type)))
	  || TREE_ADDRESSABLE (passed_type)
#ifdef FUNCTION_ARG_PASS_BY_REFERENCE
	  || FUNCTION_ARG_PASS_BY_REFERENCE (args_so_far, passed_mode,
					      passed_type, named_arg)
#endif
	  )
	{
	  passed_type = nominal_type = build_pointer_type (passed_type);
	  passed_pointer = 1;
	  passed_mode = nominal_mode = Pmode;
	}

      promoted_mode = passed_mode;

#ifdef PROMOTE_FUNCTION_ARGS
      /* Compute the mode in which the arg is actually extended to.  */
      unsignedp = TREE_UNSIGNED (passed_type);
      promoted_mode = promote_mode (passed_type, promoted_mode, &unsignedp, 1);
#endif

      /* Let machine desc say which reg (if any) the parm arrives in.
	 0 means it arrives on the stack.  */
#ifdef FUNCTION_INCOMING_ARG
      entry_parm = FUNCTION_INCOMING_ARG (args_so_far, promoted_mode,
					  passed_type, named_arg);
#else
      entry_parm = FUNCTION_ARG (args_so_far, promoted_mode,
				 passed_type, named_arg);
#endif

      if (entry_parm == 0)
	promoted_mode = passed_mode;

#ifdef SETUP_INCOMING_VARARGS
      /* If this is the last named parameter, do any required setup for
	 varargs or stdargs.  We need to know about the case of this being an
	 addressable type, in which case we skip the registers it
	 would have arrived in.

	 For stdargs, LAST_NAMED will be set for two parameters, the one that
	 is actually the last named, and the dummy parameter.  We only
	 want to do this action once.

	 Also, indicate when RTL generation is to be suppressed.  */
      if (last_named && !varargs_setup)
	{
	  SETUP_INCOMING_VARARGS (args_so_far, promoted_mode, passed_type,
				  current_function_pretend_args_size, 0);
	  varargs_setup = 1;
	}
#endif

      /* Determine parm's home in the stack,
	 in case it arrives in the stack or we should pretend it did.

	 Compute the stack position and rtx where the argument arrives
	 and its size.

	 There is one complexity here:  If this was a parameter that would
	 have been passed in registers, but wasn't only because it is
	 __builtin_va_alist, we want locate_and_pad_parm to treat it as if
	 it came in a register so that REG_PARM_STACK_SPACE isn't skipped.
	 In this case, we call FUNCTION_ARG with NAMED set to 1 instead of
	 0 as it was the previous time.  */

      pretend_named = named_arg || PRETEND_OUTGOING_VARARGS_NAMED;
      locate_and_pad_parm (promoted_mode, passed_type,
#ifdef STACK_PARMS_IN_REG_PARM_AREA
			   1,
#else
#ifdef FUNCTION_INCOMING_ARG
			   FUNCTION_INCOMING_ARG (args_so_far, promoted_mode,
						  passed_type,
						  pretend_named) != 0,
#else
			   FUNCTION_ARG (args_so_far, promoted_mode,
					 passed_type,
					 pretend_named) != 0,
#endif
#endif
			   fndecl, &stack_args_size, &stack_offset, &arg_size,
			   &alignment_pad);

      {
	rtx offset_rtx = ARGS_SIZE_RTX (stack_offset);

	if (offset_rtx == const0_rtx)
	  stack_parm = gen_rtx_MEM (promoted_mode, internal_arg_pointer);
	else
	  stack_parm = gen_rtx_MEM (promoted_mode,
				    gen_rtx_PLUS (Pmode,
						  internal_arg_pointer,
						  offset_rtx));

	set_mem_attributes (stack_parm, parm, 1);
      }

      /* If this parameter was passed both in registers and in the stack,
	 use the copy on the stack.  */
      if (MUST_PASS_IN_STACK (promoted_mode, passed_type))
	entry_parm = 0;

#ifdef FUNCTION_ARG_PARTIAL_NREGS
      /* If this parm was passed part in regs and part in memory,
	 pretend it arrived entirely in memory
	 by pushing the register-part onto the stack.

	 In the special case of a DImode or DFmode that is split,
	 we could put it together in a pseudoreg directly,
	 but for now that's not worth bothering with.  */

      if (entry_parm)
	{
	  int nregs = FUNCTION_ARG_PARTIAL_NREGS (args_so_far, promoted_mode,
						  passed_type, named_arg);

	  if (nregs > 0)
	    {
	      current_function_pretend_args_size
		= (((nregs * UNITS_PER_WORD) + (PARM_BOUNDARY / BITS_PER_UNIT) - 1)
		   / (PARM_BOUNDARY / BITS_PER_UNIT)
		   * (PARM_BOUNDARY / BITS_PER_UNIT));

	      /* Handle calls that pass values in multiple non-contiguous
		 locations.  The Irix 6 ABI has examples of this.  */
	      if (GET_CODE (entry_parm) == PARALLEL)
		emit_group_store (validize_mem (stack_parm), entry_parm,
				  int_size_in_bytes (TREE_TYPE (parm)));

	      else
		move_block_from_reg (REGNO (entry_parm),
				     validize_mem (stack_parm), nregs,
				     int_size_in_bytes (TREE_TYPE (parm)));

	      entry_parm = stack_parm;
	    }
	}
#endif

      /* If we didn't decide this parm came in a register,
	 by default it came on the stack.  */
      if (entry_parm == 0)
	entry_parm = stack_parm;

      /* Record permanently how this parm was passed.  */
      DECL_INCOMING_RTL (parm) = entry_parm;

      /* If there is actually space on the stack for this parm,
	 count it in stack_args_size; otherwise set stack_parm to 0
	 to indicate there is no preallocated stack slot for the parm.  */

      if (entry_parm == stack_parm
          || (GET_CODE (entry_parm) == PARALLEL
              && XEXP (XVECEXP (entry_parm, 0, 0), 0) == NULL_RTX)
#if defined (REG_PARM_STACK_SPACE) && ! defined (MAYBE_REG_PARM_STACK_SPACE)
	  /* On some machines, even if a parm value arrives in a register
	     there is still an (uninitialized) stack slot allocated for it.

	     ??? When MAYBE_REG_PARM_STACK_SPACE is defined, we can't tell
	     whether this parameter already has a stack slot allocated,
	     because an arg block exists only if current_function_args_size
	     is larger than some threshold, and we haven't calculated that
	     yet.  So, for now, we just assume that stack slots never exist
	     in this case.  */
	  || REG_PARM_STACK_SPACE (fndecl) > 0
#endif
	  )
	{
	  stack_args_size.constant += arg_size.constant;
	  if (arg_size.var)
	    ADD_PARM_SIZE (stack_args_size, arg_size.var);
	}
      else
	/* No stack slot was pushed for this parm.  */
	stack_parm = 0;

      /* Update info on where next arg arrives in registers.  */

      FUNCTION_ARG_ADVANCE (args_so_far, promoted_mode,
			    passed_type, named_arg);

      /* If we can't trust the parm stack slot to be aligned enough
	 for its ultimate type, don't use that slot after entry.
	 We'll make another stack slot, if we need one.  */
      {
	unsigned int thisparm_boundary
	  = FUNCTION_ARG_BOUNDARY (promoted_mode, passed_type);

	if (GET_MODE_ALIGNMENT (nominal_mode) > thisparm_boundary)
	  stack_parm = 0;
      }

      /* If parm was passed in memory, and we need to convert it on entry,
	 don't store it back in that same slot.  */
      if (entry_parm != 0
	  && nominal_mode != BLKmode && nominal_mode != passed_mode)
	stack_parm = 0;

      /* When an argument is passed in multiple locations, we can't
	 make use of this information, but we can save some copying if
	 the whole argument is passed in a single register.  */
      if (GET_CODE (entry_parm) == PARALLEL
	  && nominal_mode != BLKmode && passed_mode != BLKmode)
	{
	  int i, len = XVECLEN (entry_parm, 0);

	  for (i = 0; i < len; i++)
	    if (XEXP (XVECEXP (entry_parm, 0, i), 0) != NULL_RTX
		&& GET_CODE (XEXP (XVECEXP (entry_parm, 0, i), 0)) == REG
		&& (GET_MODE (XEXP (XVECEXP (entry_parm, 0, i), 0))
		    == passed_mode)
		&& INTVAL (XEXP (XVECEXP (entry_parm, 0, i), 1)) == 0)
	      {
		entry_parm = XEXP (XVECEXP (entry_parm, 0, i), 0);
		DECL_INCOMING_RTL (parm) = entry_parm;
		break;
	      }
	}

      /* ENTRY_PARM is an RTX for the parameter as it arrives,
	 in the mode in which it arrives.
	 STACK_PARM is an RTX for a stack slot where the parameter can live
	 during the function (in case we want to put it there).
	 STACK_PARM is 0 if no stack slot was pushed for it.

	 Now output code if necessary to convert ENTRY_PARM to
	 the type in which this function declares it,
	 and store that result in an appropriate place,
	 which may be a pseudo reg, may be STACK_PARM,
	 or may be a local stack slot if STACK_PARM is 0.

	 Set DECL_RTL to that place.  */

      if (nominal_mode == BLKmode || GET_CODE (entry_parm) == PARALLEL)
	{
	  /* If a BLKmode arrives in registers, copy it to a stack slot.
	     Handle calls that pass values in multiple non-contiguous
	     locations.  The Irix 6 ABI has examples of this.  */
	  if (GET_CODE (entry_parm) == REG
	      || GET_CODE (entry_parm) == PARALLEL)
	    {
	      int size_stored
		= CEIL_ROUND (int_size_in_bytes (TREE_TYPE (parm)),
			      UNITS_PER_WORD);

	      /* Note that we will be storing an integral number of words.
		 So we have to be careful to ensure that we allocate an
		 integral number of words.  We do this below in the
		 assign_stack_local if space was not allocated in the argument
		 list.  If it was, this will not work if PARM_BOUNDARY is not
		 a multiple of BITS_PER_WORD.  It isn't clear how to fix this
		 if it becomes a problem.  */

	      if (stack_parm == 0)
		{
		  stack_parm
		    = assign_stack_local (GET_MODE (entry_parm),
					  size_stored, 0);
		  set_mem_attributes (stack_parm, parm, 1);
		}

	      else if (PARM_BOUNDARY % BITS_PER_WORD != 0)
		abort ();

	      /* Handle calls that pass values in multiple non-contiguous
		 locations.  The Irix 6 ABI has examples of this.  */
	      if (GET_CODE (entry_parm) == PARALLEL)
		emit_group_store (validize_mem (stack_parm), entry_parm,
				  int_size_in_bytes (TREE_TYPE (parm)));
	      else
		move_block_from_reg (REGNO (entry_parm),
				     validize_mem (stack_parm),
				     size_stored / UNITS_PER_WORD,
				     int_size_in_bytes (TREE_TYPE (parm)));
	    }
	  SET_DECL_RTL (parm, stack_parm);
	}
      else if (! ((! optimize
		   && ! DECL_REGISTER (parm)
		   && ! DECL_INLINE (fndecl))
		  || TREE_SIDE_EFFECTS (parm)
		  /* If -ffloat-store specified, don't put explicit
		     float variables into registers.  */
		  || (flag_float_store
		      && TREE_CODE (TREE_TYPE (parm)) == REAL_TYPE))
	       /* Always assign pseudo to structure return or item passed
		  by invisible reference.  */
	       || passed_pointer || parm == function_result_decl)
	{
	  /* Store the parm in a pseudoregister during the function, but we
	     may need to do it in a wider mode.  */

	  rtx parmreg;
	  unsigned int regno, regnoi = 0, regnor = 0;

	  unsignedp = TREE_UNSIGNED (TREE_TYPE (parm));

	  promoted_nominal_mode
	    = promote_mode (TREE_TYPE (parm), nominal_mode, &unsignedp, 0);

	  parmreg = gen_reg_rtx (promoted_nominal_mode);
	  mark_user_reg (parmreg);

	  /* If this was an item that we received a pointer to, set DECL_RTL
	     appropriately.  */
	  if (passed_pointer)
	    {
	      rtx x = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (passed_type)),
			     	   parmreg);
	      set_mem_attributes (x, parm, 1);
	      SET_DECL_RTL (parm, x);
	    }
	  else
	    {
	      SET_DECL_RTL (parm, parmreg);
	      maybe_set_unchanging (DECL_RTL (parm), parm);
	    }
	      
	  /* Copy the value into the register.  */
	  if (nominal_mode != passed_mode
	      || promoted_nominal_mode != promoted_mode)
	    {
	      int save_tree_used;
	      /* ENTRY_PARM has been converted to PROMOTED_MODE, its
		 mode, by the caller.  We now have to convert it to
		 NOMINAL_MODE, if different.  However, PARMREG may be in
		 a different mode than NOMINAL_MODE if it is being stored
		 promoted.

		 If ENTRY_PARM is a hard register, it might be in a register
		 not valid for operating in its mode (e.g., an odd-numbered
		 register for a DFmode).  In that case, moves are the only
		 thing valid, so we can't do a convert from there.  This
		 occurs when the calling sequence allow such misaligned
		 usages.

		 In addition, the conversion may involve a call, which could
		 clobber parameters which haven't been copied to pseudo
		 registers yet.  Therefore, we must first copy the parm to
		 a pseudo reg here, and save the conversion until after all
		 parameters have been moved.  */

	      rtx tempreg = gen_reg_rtx (GET_MODE (entry_parm));

	      emit_move_insn (tempreg, validize_mem (entry_parm));

	      push_to_sequence (conversion_insns);
	      tempreg = convert_to_mode (nominal_mode, tempreg, unsignedp);

	      if (GET_CODE (tempreg) == SUBREG
		  && GET_MODE (tempreg) == nominal_mode
		  && GET_CODE (SUBREG_REG (tempreg)) == REG
		  && nominal_mode == passed_mode
		  && GET_MODE (SUBREG_REG (tempreg)) == GET_MODE (entry_parm)
		  && GET_MODE_SIZE (GET_MODE (tempreg))
		     < GET_MODE_SIZE (GET_MODE (entry_parm)))
		{
		  /* The argument is already sign/zero extended, so note it
		     into the subreg.  */
		  SUBREG_PROMOTED_VAR_P (tempreg) = 1;
		  SUBREG_PROMOTED_UNSIGNED_P (tempreg) = unsignedp;
		}

	      /* TREE_USED gets set erroneously during expand_assignment.  */
	      save_tree_used = TREE_USED (parm);
	      expand_assignment (parm,
				 make_tree (nominal_type, tempreg), 0, 0);
	      TREE_USED (parm) = save_tree_used;
	      conversion_insns = get_insns ();
	      did_conversion = 1;
	      end_sequence ();
	    }
	  else
	    emit_move_insn (parmreg, validize_mem (entry_parm));

	  /* If we were passed a pointer but the actual value
	     can safely live in a register, put it in one.  */
	  if (passed_pointer && TYPE_MODE (TREE_TYPE (parm)) != BLKmode
	      && ! ((! optimize
		     && ! DECL_REGISTER (parm)
		     && ! DECL_INLINE (fndecl))
		    || TREE_SIDE_EFFECTS (parm)
		    /* If -ffloat-store specified, don't put explicit
		       float variables into registers.  */
		    || (flag_float_store
			&& TREE_CODE (TREE_TYPE (parm)) == REAL_TYPE)))
	    {
	      /* We can't use nominal_mode, because it will have been set to
		 Pmode above.  We must use the actual mode of the parm.  */
	      parmreg = gen_reg_rtx (TYPE_MODE (TREE_TYPE (parm)));
	      mark_user_reg (parmreg);
	      if (GET_MODE (parmreg) != GET_MODE (DECL_RTL (parm)))
		{
		  rtx tempreg = gen_reg_rtx (GET_MODE (DECL_RTL (parm)));
		  int unsigned_p = TREE_UNSIGNED (TREE_TYPE (parm));
		  push_to_sequence (conversion_insns);
		  emit_move_insn (tempreg, DECL_RTL (parm));
		  SET_DECL_RTL (parm,
				convert_to_mode (GET_MODE (parmreg), 
						 tempreg,
						 unsigned_p));
		  emit_move_insn (parmreg, DECL_RTL (parm));
		  conversion_insns = get_insns();
		  did_conversion = 1;
		  end_sequence ();
		}
	      else
		emit_move_insn (parmreg, DECL_RTL (parm));
	      SET_DECL_RTL (parm, parmreg);
	      /* STACK_PARM is the pointer, not the parm, and PARMREG is
		 now the parm.  */
	      stack_parm = 0;
	    }
#ifdef FUNCTION_ARG_CALLEE_COPIES
	  /* If we are passed an arg by reference and it is our responsibility
	     to make a copy, do it now.
	     PASSED_TYPE and PASSED mode now refer to the pointer, not the
	     original argument, so we must recreate them in the call to
	     FUNCTION_ARG_CALLEE_COPIES.  */
	  /* ??? Later add code to handle the case that if the argument isn't
	     modified, don't do the copy.  */

	  else if (passed_pointer
		   && FUNCTION_ARG_CALLEE_COPIES (args_so_far,
						  TYPE_MODE (DECL_ARG_TYPE (parm)),
						  DECL_ARG_TYPE (parm),
						  named_arg)
		   && ! TREE_ADDRESSABLE (DECL_ARG_TYPE (parm)))
	    {
	      rtx copy;
	      tree type = DECL_ARG_TYPE (parm);

	      /* This sequence may involve a library call perhaps clobbering
		 registers that haven't been copied to pseudos yet.  */

	      push_to_sequence (conversion_insns);

	      if (!COMPLETE_TYPE_P (type)
		  || TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
		/* This is a variable sized object.  */
		copy = gen_rtx_MEM (BLKmode,
				    allocate_dynamic_stack_space
				    (expr_size (parm), NULL_RTX,
				     TYPE_ALIGN (type)));
	      else
		copy = assign_stack_temp (TYPE_MODE (type),
					  int_size_in_bytes (type), 1);
	      set_mem_attributes (copy, parm, 1);

	      store_expr (parm, copy, 0);
	      emit_move_insn (parmreg, XEXP (copy, 0));
	      conversion_insns = get_insns ();
	      did_conversion = 1;
	      end_sequence ();
	    }
#endif /* FUNCTION_ARG_CALLEE_COPIES */

	  /* In any case, record the parm's desired stack location
	     in case we later discover it must live in the stack.

	     If it is a COMPLEX value, store the stack location for both
	     halves.  */

	  if (GET_CODE (parmreg) == CONCAT)
	    regno = MAX (REGNO (XEXP (parmreg, 0)), REGNO (XEXP (parmreg, 1)));
	  else
	    regno = REGNO (parmreg);

	  if (regno >= max_parm_reg)
	    {
	      rtx *new;
	      int old_max_parm_reg = max_parm_reg;

	      /* It's slow to expand this one register at a time,
		 but it's also rare and we need max_parm_reg to be
		 precisely correct.  */
	      max_parm_reg = regno + 1;
	      new = (rtx *) xrealloc (parm_reg_stack_loc,
				      max_parm_reg * sizeof (rtx));
	      memset ((char *) (new + old_max_parm_reg), 0,
		     (max_parm_reg - old_max_parm_reg) * sizeof (rtx));
	      parm_reg_stack_loc = new;
	    }

	  if (GET_CODE (parmreg) == CONCAT)
	    {
	      enum machine_mode submode = GET_MODE (XEXP (parmreg, 0));

	      regnor = REGNO (gen_realpart (submode, parmreg));
	      regnoi = REGNO (gen_imagpart (submode, parmreg));

	      if (stack_parm != 0)
		{
		  parm_reg_stack_loc[regnor]
		    = gen_realpart (submode, stack_parm);
		  parm_reg_stack_loc[regnoi]
		    = gen_imagpart (submode, stack_parm);
		}
	      else
		{
		  parm_reg_stack_loc[regnor] = 0;
		  parm_reg_stack_loc[regnoi] = 0;
		}
	    }
	  else
	    parm_reg_stack_loc[REGNO (parmreg)] = stack_parm;

	  /* Mark the register as eliminable if we did no conversion
	     and it was copied from memory at a fixed offset,
	     and the arg pointer was not copied to a pseudo-reg.
	     If the arg pointer is a pseudo reg or the offset formed
	     an invalid address, such memory-equivalences
	     as we make here would screw up life analysis for it.  */
	  if (nominal_mode == passed_mode
	      && ! did_conversion
	      && stack_parm != 0
	      && GET_CODE (stack_parm) == MEM
	      && stack_offset.var == 0
	      && reg_mentioned_p (virtual_incoming_args_rtx,
				  XEXP (stack_parm, 0)))
	    {
	      rtx linsn = get_last_insn ();
	      rtx sinsn, set;

	      /* Mark complex types separately.  */
	      if (GET_CODE (parmreg) == CONCAT)
		/* Scan backwards for the set of the real and
		   imaginary parts.  */
		for (sinsn = linsn; sinsn != 0;
		     sinsn = prev_nonnote_insn (sinsn))
		  {
		    set = single_set (sinsn);
		    if (set != 0
			&& SET_DEST (set) == regno_reg_rtx [regnoi])
		      REG_NOTES (sinsn)
			= gen_rtx_EXPR_LIST (REG_EQUIV,
					     parm_reg_stack_loc[regnoi],
					     REG_NOTES (sinsn));
		    else if (set != 0
			     && SET_DEST (set) == regno_reg_rtx [regnor])
		      REG_NOTES (sinsn)
			= gen_rtx_EXPR_LIST (REG_EQUIV,
					     parm_reg_stack_loc[regnor],
					     REG_NOTES (sinsn));
		  }
	      else if ((set = single_set (linsn)) != 0
		       && SET_DEST (set) == parmreg)
		REG_NOTES (linsn)
		  = gen_rtx_EXPR_LIST (REG_EQUIV,
				       stack_parm, REG_NOTES (linsn));
	    }

	  /* For pointer data type, suggest pointer register.  */
	  if (POINTER_TYPE_P (TREE_TYPE (parm)))
	    mark_reg_pointer (parmreg,
			      TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));

	  /* If something wants our address, try to use ADDRESSOF.  */
	  if (TREE_ADDRESSABLE (parm))
	    {
	      /* If we end up putting something into the stack,
		 fixup_var_refs_insns will need to make a pass over
		 all the instructions.  It looks through the pending
		 sequences -- but it can't see the ones in the
		 CONVERSION_INSNS, if they're not on the sequence
		 stack.  So, we go back to that sequence, just so that
		 the fixups will happen.  */
	      push_to_sequence (conversion_insns);
	      put_var_into_stack (parm);
	      conversion_insns = get_insns ();
	      end_sequence ();
	    }
	}
      else
	{
	  /* Value must be stored in the stack slot STACK_PARM
	     during function execution.  */

	  if (promoted_mode != nominal_mode)
	    {
	      /* Conversion is required.  */
	      rtx tempreg = gen_reg_rtx (GET_MODE (entry_parm));

	      emit_move_insn (tempreg, validize_mem (entry_parm));

	      push_to_sequence (conversion_insns);
	      entry_parm = convert_to_mode (nominal_mode, tempreg,
					    TREE_UNSIGNED (TREE_TYPE (parm)));
	      if (stack_parm)
		/* ??? This may need a big-endian conversion on sparc64.  */
		stack_parm = adjust_address (stack_parm, nominal_mode, 0);

	      conversion_insns = get_insns ();
	      did_conversion = 1;
	      end_sequence ();
	    }

	  if (entry_parm != stack_parm)
	    {
	      if (stack_parm == 0)
		{
		  stack_parm
		    = assign_stack_local (GET_MODE (entry_parm),
					  GET_MODE_SIZE (GET_MODE (entry_parm)), 0);
		  set_mem_attributes (stack_parm, parm, 1);
		}

	      if (promoted_mode != nominal_mode)
		{
		  push_to_sequence (conversion_insns);
		  emit_move_insn (validize_mem (stack_parm),
				  validize_mem (entry_parm));
		  conversion_insns = get_insns ();
		  end_sequence ();
		}
	      else
		emit_move_insn (validize_mem (stack_parm),
				validize_mem (entry_parm));
	    }

	  SET_DECL_RTL (parm, stack_parm);
	}

      /* If this "parameter" was the place where we are receiving the
	 function's incoming structure pointer, set up the result.  */
      if (parm == function_result_decl)
	{
	  tree result = DECL_RESULT (fndecl);
	  rtx addr = DECL_RTL (parm);
	  rtx x;

#ifdef POINTERS_EXTEND_UNSIGNED
	  if (GET_MODE (addr) != Pmode)
	    addr = convert_memory_address (Pmode, addr);
#endif

	  x = gen_rtx_MEM (DECL_MODE (result), addr);
	  set_mem_attributes (x, result, 1);
	  SET_DECL_RTL (result, x);
	}

      if (GET_CODE (DECL_RTL (parm)) == REG)
	REGNO_DECL (REGNO (DECL_RTL (parm))) = parm;
      else if (GET_CODE (DECL_RTL (parm)) == CONCAT)
	{
	  REGNO_DECL (REGNO (XEXP (DECL_RTL (parm), 0))) = parm;
	  REGNO_DECL (REGNO (XEXP (DECL_RTL (parm), 1))) = parm;
	}

    }

  /* Output all parameter conversion instructions (possibly including calls)
     now that all parameters have been copied out of hard registers.  */
  emit_insns (conversion_insns);

  last_parm_insn = get_last_insn ();

  current_function_args_size = stack_args_size.constant;

  /* Adjust function incoming argument size for alignment and
     minimum length.  */

#ifdef REG_PARM_STACK_SPACE
#ifndef MAYBE_REG_PARM_STACK_SPACE
  current_function_args_size = MAX (current_function_args_size,
				    REG_PARM_STACK_SPACE (fndecl));
#endif
#endif

#define STACK_BYTES (STACK_BOUNDARY / BITS_PER_UNIT)

  current_function_args_size
    = ((current_function_args_size + STACK_BYTES - 1)
       / STACK_BYTES) * STACK_BYTES;

#ifdef ARGS_GROW_DOWNWARD
  current_function_arg_offset_rtx
    = (stack_args_size.var == 0 ? GEN_INT (-stack_args_size.constant)
       : expand_expr (size_diffop (stack_args_size.var,
				   size_int (-stack_args_size.constant)),
		      NULL_RTX, VOIDmode, 0));
#else
  current_function_arg_offset_rtx = ARGS_SIZE_RTX (stack_args_size);
#endif

  /* See how many bytes, if any, of its args a function should try to pop
     on return.  */

  current_function_pops_args = RETURN_POPS_ARGS (fndecl, TREE_TYPE (fndecl),
						 current_function_args_size);

  /* For stdarg.h function, save info about
     regs and stack space used by the named args.  */

  if (!hide_last_arg)
    current_function_args_info = args_so_far;

  /* Set the rtx used for the function return value.  Put this in its
     own variable so any optimizers that need this information don't have
     to include tree.h.  Do this here so it gets done when an inlined
     function gets output.  */

  current_function_return_rtx
    = (DECL_RTL_SET_P (DECL_RESULT (fndecl))
       ? DECL_RTL (DECL_RESULT (fndecl)) : NULL_RTX);
}

/* Indicate whether REGNO is an incoming argument to the current function
   that was promoted to a wider mode.  If so, return the RTX for the
   register (to get its mode).  PMODE and PUNSIGNEDP are set to the mode
   that REGNO is promoted from and whether the promotion was signed or
   unsigned.  */

#ifdef PROMOTE_FUNCTION_ARGS

rtx
promoted_input_arg (regno, pmode, punsignedp)
     unsigned int regno;
     enum machine_mode *pmode;
     int *punsignedp;
{
  tree arg;

  for (arg = DECL_ARGUMENTS (current_function_decl); arg;
       arg = TREE_CHAIN (arg))
    if (GET_CODE (DECL_INCOMING_RTL (arg)) == REG
	&& REGNO (DECL_INCOMING_RTL (arg)) == regno
	&& TYPE_MODE (DECL_ARG_TYPE (arg)) == TYPE_MODE (TREE_TYPE (arg)))
      {
	enum machine_mode mode = TYPE_MODE (TREE_TYPE (arg));
	int unsignedp = TREE_UNSIGNED (TREE_TYPE (arg));

	mode = promote_mode (TREE_TYPE (arg), mode, &unsignedp, 1);
	if (mode == GET_MODE (DECL_INCOMING_RTL (arg))
	    && mode != DECL_MODE (arg))
	  {
	    *pmode = DECL_MODE (arg);
	    *punsignedp = unsignedp;
	    return DECL_INCOMING_RTL (arg);
	  }
      }

  return 0;
}

#endif

/* Compute the size and offset from the start of the stacked arguments for a
   parm passed in mode PASSED_MODE and with type TYPE.

   INITIAL_OFFSET_PTR points to the current offset into the stacked
   arguments.

   The starting offset and size for this parm are returned in *OFFSET_PTR
   and *ARG_SIZE_PTR, respectively.

   IN_REGS is non-zero if the argument will be passed in registers.  It will
   never be set if REG_PARM_STACK_SPACE is not defined.

   FNDECL is the function in which the argument was defined.

   There are two types of rounding that are done.  The first, controlled by
   FUNCTION_ARG_BOUNDARY, forces the offset from the start of the argument
   list to be aligned to the specific boundary (in bits).  This rounding
   affects the initial and starting offsets, but not the argument size.

   The second, controlled by FUNCTION_ARG_PADDING and PARM_BOUNDARY,
   optionally rounds the size of the parm to PARM_BOUNDARY.  The
   initial offset is not affected by this rounding, while the size always
   is and the starting offset may be.  */

/*  offset_ptr will be negative for ARGS_GROW_DOWNWARD case;
    initial_offset_ptr is positive because locate_and_pad_parm's
    callers pass in the total size of args so far as
    initial_offset_ptr. arg_size_ptr is always positive.  */

void
locate_and_pad_parm (passed_mode, type, in_regs, fndecl,
		     initial_offset_ptr, offset_ptr, arg_size_ptr,
		     alignment_pad)
     enum machine_mode passed_mode;
     tree type;
     int in_regs ATTRIBUTE_UNUSED;
     tree fndecl ATTRIBUTE_UNUSED;
     struct args_size *initial_offset_ptr;
     struct args_size *offset_ptr;
     struct args_size *arg_size_ptr;
     struct args_size *alignment_pad;

{
  tree sizetree
    = type ? size_in_bytes (type) : size_int (GET_MODE_SIZE (passed_mode));
  enum direction where_pad = FUNCTION_ARG_PADDING (passed_mode, type);
  int boundary = FUNCTION_ARG_BOUNDARY (passed_mode, type);

#ifdef REG_PARM_STACK_SPACE
  /* If we have found a stack parm before we reach the end of the
     area reserved for registers, skip that area.  */
  if (! in_regs)
    {
      int reg_parm_stack_space = 0;

#ifdef MAYBE_REG_PARM_STACK_SPACE
      reg_parm_stack_space = MAYBE_REG_PARM_STACK_SPACE;
#else
      reg_parm_stack_space = REG_PARM_STACK_SPACE (fndecl);
#endif
      if (reg_parm_stack_space > 0)
	{
	  if (initial_offset_ptr->var)
	    {
	      initial_offset_ptr->var
		= size_binop (MAX_EXPR, ARGS_SIZE_TREE (*initial_offset_ptr),
			      ssize_int (reg_parm_stack_space));
	      initial_offset_ptr->constant = 0;
	    }
	  else if (initial_offset_ptr->constant < reg_parm_stack_space)
	    initial_offset_ptr->constant = reg_parm_stack_space;
	}
    }
#endif /* REG_PARM_STACK_SPACE */

  arg_size_ptr->var = 0;
  arg_size_ptr->constant = 0;
  alignment_pad->var = 0;
  alignment_pad->constant = 0;

#ifdef ARGS_GROW_DOWNWARD
  if (initial_offset_ptr->var)
    {
      offset_ptr->constant = 0;
      offset_ptr->var = size_binop (MINUS_EXPR, ssize_int (0),
				    initial_offset_ptr->var);
    }
  else
    {
      offset_ptr->constant = -initial_offset_ptr->constant;
      offset_ptr->var = 0;
    }
  if (where_pad != none
      && (!host_integerp (sizetree, 1)
	  || (tree_low_cst (sizetree, 1) * BITS_PER_UNIT) % PARM_BOUNDARY))
    sizetree = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
  SUB_PARM_SIZE (*offset_ptr, sizetree);
  if (where_pad != downward)
    pad_to_arg_alignment (offset_ptr, boundary, alignment_pad);
  if (initial_offset_ptr->var)
    arg_size_ptr->var = size_binop (MINUS_EXPR,
				    size_binop (MINUS_EXPR,
						ssize_int (0),
						initial_offset_ptr->var),
				    offset_ptr->var);

  else
    arg_size_ptr->constant = (-initial_offset_ptr->constant
			      - offset_ptr->constant);

#else /* !ARGS_GROW_DOWNWARD */
  if (!in_regs
#ifdef REG_PARM_STACK_SPACE
      || REG_PARM_STACK_SPACE (fndecl) > 0
#endif
      )
    pad_to_arg_alignment (initial_offset_ptr, boundary, alignment_pad);
  *offset_ptr = *initial_offset_ptr;

#ifdef PUSH_ROUNDING
  if (passed_mode != BLKmode)
    sizetree = size_int (PUSH_ROUNDING (TREE_INT_CST_LOW (sizetree)));
#endif

  /* Pad_below needs the pre-rounded size to know how much to pad below
     so this must be done before rounding up.  */
  if (where_pad == downward
    /* However, BLKmode args passed in regs have their padding done elsewhere.
       The stack slot must be able to hold the entire register.  */
      && !(in_regs && passed_mode == BLKmode))
    pad_below (offset_ptr, passed_mode, sizetree);

  if (where_pad != none
      && (!host_integerp (sizetree, 1)
	  || (tree_low_cst (sizetree, 1) * BITS_PER_UNIT) % PARM_BOUNDARY))
    sizetree = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);

  ADD_PARM_SIZE (*arg_size_ptr, sizetree);
#endif /* ARGS_GROW_DOWNWARD */
}

/* Round the stack offset in *OFFSET_PTR up to a multiple of BOUNDARY.
   BOUNDARY is measured in bits, but must be a multiple of a storage unit.  */

static void
pad_to_arg_alignment (offset_ptr, boundary, alignment_pad)
     struct args_size *offset_ptr;
     int boundary;
     struct args_size *alignment_pad;
{
  tree save_var = NULL_TREE;
  HOST_WIDE_INT save_constant = 0;

  int boundary_in_bytes = boundary / BITS_PER_UNIT;

  if (boundary > PARM_BOUNDARY && boundary > STACK_BOUNDARY)
    {
      save_var = offset_ptr->var;
      save_constant = offset_ptr->constant;
    }

  alignment_pad->var = NULL_TREE;
  alignment_pad->constant = 0;

  if (boundary > BITS_PER_UNIT)
    {
      if (offset_ptr->var)
	{
	  offset_ptr->var =
#ifdef ARGS_GROW_DOWNWARD
	    round_down
#else
	    round_up
#endif
	      (ARGS_SIZE_TREE (*offset_ptr),
	       boundary / BITS_PER_UNIT);
	  offset_ptr->constant = 0; /*?*/
          if (boundary > PARM_BOUNDARY && boundary > STACK_BOUNDARY)
            alignment_pad->var = size_binop (MINUS_EXPR, offset_ptr->var,
					     save_var);
	}
      else
	{
	  offset_ptr->constant =
#ifdef ARGS_GROW_DOWNWARD
	    FLOOR_ROUND (offset_ptr->constant, boundary_in_bytes);
#else
	    CEIL_ROUND (offset_ptr->constant, boundary_in_bytes);
#endif
	    if (boundary > PARM_BOUNDARY && boundary > STACK_BOUNDARY)
	      alignment_pad->constant = offset_ptr->constant - save_constant;
	}
    }
}

#ifndef ARGS_GROW_DOWNWARD
static void
pad_below (offset_ptr, passed_mode, sizetree)
     struct args_size *offset_ptr;
     enum machine_mode passed_mode;
     tree sizetree;
{
  if (passed_mode != BLKmode)
    {
      if (GET_MODE_BITSIZE (passed_mode) % PARM_BOUNDARY)
	offset_ptr->constant
	  += (((GET_MODE_BITSIZE (passed_mode) + PARM_BOUNDARY - 1)
	       / PARM_BOUNDARY * PARM_BOUNDARY / BITS_PER_UNIT)
	      - GET_MODE_SIZE (passed_mode));
    }
  else
    {
      if (TREE_CODE (sizetree) != INTEGER_CST
	  || (TREE_INT_CST_LOW (sizetree) * BITS_PER_UNIT) % PARM_BOUNDARY)
	{
	  /* Round the size up to multiple of PARM_BOUNDARY bits.  */
	  tree s2 = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
	  /* Add it in.  */
	  ADD_PARM_SIZE (*offset_ptr, s2);
	  SUB_PARM_SIZE (*offset_ptr, sizetree);
	}
    }
}
#endif

/* Walk the tree of blocks describing the binding levels within a function
   and warn about uninitialized variables.
   This is done after calling flow_analysis and before global_alloc
   clobbers the pseudo-regs to hard regs.  */

void
uninitialized_vars_warning (block)
     tree block;
{
  tree decl, sub;
  for (decl = BLOCK_VARS (block); decl; decl = TREE_CHAIN (decl))
    {
      if (warn_uninitialized
          && TREE_CODE (decl) == VAR_DECL
	  /* These warnings are unreliable for and aggregates
	     because assigning the fields one by one can fail to convince
	     flow.c that the entire aggregate was initialized.
	     Unions are troublesome because members may be shorter.  */
	  && ! AGGREGATE_TYPE_P (TREE_TYPE (decl))
	  && DECL_RTL (decl) != 0
	  && GET_CODE (DECL_RTL (decl)) == REG
	  /* Global optimizations can make it difficult to determine if a
	     particular variable has been initialized.  However, a VAR_DECL
	     with a nonzero DECL_INITIAL had an initializer, so do not
	     claim it is potentially uninitialized.

	     We do not care about the actual value in DECL_INITIAL, so we do
	     not worry that it may be a dangling pointer.  */
	  && DECL_INITIAL (decl) == NULL_TREE
	  && regno_uninitialized (REGNO (DECL_RTL (decl))))
	warning_with_decl (decl,
			   "`%s' might be used uninitialized in this function");
      if (extra_warnings
          && TREE_CODE (decl) == VAR_DECL
	  && DECL_RTL (decl) != 0
	  && GET_CODE (DECL_RTL (decl)) == REG
	  && regno_clobbered_at_setjmp (REGNO (DECL_RTL (decl))))
	warning_with_decl (decl,
			   "variable `%s' might be clobbered by `longjmp' or `vfork'");
    }
  for (sub = BLOCK_SUBBLOCKS (block); sub; sub = TREE_CHAIN (sub))
    uninitialized_vars_warning (sub);
}

/* Do the appropriate part of uninitialized_vars_warning
   but for arguments instead of local variables.  */

void
setjmp_args_warning ()
{
  tree decl;
  for (decl = DECL_ARGUMENTS (current_function_decl);
       decl; decl = TREE_CHAIN (decl))
    if (DECL_RTL (decl) != 0
	&& GET_CODE (DECL_RTL (decl)) == REG
	&& regno_clobbered_at_setjmp (REGNO (DECL_RTL (decl))))
      warning_with_decl (decl,
			 "argument `%s' might be clobbered by `longjmp' or `vfork'");
}

/* If this function call setjmp, put all vars into the stack
   unless they were declared `register'.  */

void
setjmp_protect (block)
     tree block;
{
  tree decl, sub;
  for (decl = BLOCK_VARS (block); decl; decl = TREE_CHAIN (decl))
    if ((TREE_CODE (decl) == VAR_DECL
	 || TREE_CODE (decl) == PARM_DECL)
	&& DECL_RTL (decl) != 0
	&& (GET_CODE (DECL_RTL (decl)) == REG
	    || (GET_CODE (DECL_RTL (decl)) == MEM
		&& GET_CODE (XEXP (DECL_RTL (decl), 0)) == ADDRESSOF))
	/* If this variable came from an inline function, it must be
	   that its life doesn't overlap the setjmp.  If there was a
	   setjmp in the function, it would already be in memory.  We
	   must exclude such variable because their DECL_RTL might be
	   set to strange things such as virtual_stack_vars_rtx.  */
	&& ! DECL_FROM_INLINE (decl)
	&& (
#ifdef NON_SAVING_SETJMP
	    /* If longjmp doesn't restore the registers,
	       don't put anything in them.  */
	    NON_SAVING_SETJMP
	    ||
#endif
	    ! DECL_REGISTER (decl)))
      put_var_into_stack (decl);
  for (sub = BLOCK_SUBBLOCKS (block); sub; sub = TREE_CHAIN (sub))
    setjmp_protect (sub);
}

/* Like the previous function, but for args instead of local variables.  */

void
setjmp_protect_args ()
{
  tree decl;
  for (decl = DECL_ARGUMENTS (current_function_decl);
       decl; decl = TREE_CHAIN (decl))
    if ((TREE_CODE (decl) == VAR_DECL
	 || TREE_CODE (decl) == PARM_DECL)
	&& DECL_RTL (decl) != 0
	&& (GET_CODE (DECL_RTL (decl)) == REG
	    || (GET_CODE (DECL_RTL (decl)) == MEM
		&& GET_CODE (XEXP (DECL_RTL (decl), 0)) == ADDRESSOF))
	&& (
	    /* If longjmp doesn't restore the registers,
	       don't put anything in them.  */
#ifdef NON_SAVING_SETJMP
	    NON_SAVING_SETJMP
	    ||
#endif
	    ! DECL_REGISTER (decl)))
      put_var_into_stack (decl);
}

/* Return the context-pointer register corresponding to DECL,
   or 0 if it does not need one.  */

rtx
lookup_static_chain (decl)
     tree decl;
{
  tree context = decl_function_context (decl);
  tree link;

  if (context == 0
      || (TREE_CODE (decl) == FUNCTION_DECL && DECL_NO_STATIC_CHAIN (decl)))
    return 0;

  /* We treat inline_function_decl as an alias for the current function
     because that is the inline function whose vars, types, etc.
     are being merged into the current function.
     See expand_inline_function.  */
  if (context == current_function_decl || context == inline_function_decl)
    return virtual_stack_vars_rtx;

  for (link = context_display; link; link = TREE_CHAIN (link))
    if (TREE_PURPOSE (link) == context)
      return RTL_EXPR_RTL (TREE_VALUE (link));

  abort ();
}

/* Convert a stack slot address ADDR for variable VAR
   (from a containing function)
   into an address valid in this function (using a static chain).  */

rtx
fix_lexical_addr (addr, var)
     rtx addr;
     tree var;
{
  rtx basereg;
  HOST_WIDE_INT displacement;
  tree context = decl_function_context (var);
  struct function *fp;
  rtx base = 0;

  /* If this is the present function, we need not do anything.  */
  if (context == current_function_decl || context == inline_function_decl)
    return addr;

  fp = find_function_data (context);

  if (GET_CODE (addr) == ADDRESSOF && GET_CODE (XEXP (addr, 0)) == MEM)
    addr = XEXP (XEXP (addr, 0), 0);

  /* Decode given address as base reg plus displacement.  */
  if (GET_CODE (addr) == REG)
    basereg = addr, displacement = 0;
  else if (GET_CODE (addr) == PLUS && GET_CODE (XEXP (addr, 1)) == CONST_INT)
    basereg = XEXP (addr, 0), displacement = INTVAL (XEXP (addr, 1));
  else
    abort ();

  /* We accept vars reached via the containing function's
     incoming arg pointer and via its stack variables pointer.  */
  if (basereg == fp->internal_arg_pointer)
    {
      /* If reached via arg pointer, get the arg pointer value
	 out of that function's stack frame.

	 There are two cases:  If a separate ap is needed, allocate a
	 slot in the outer function for it and dereference it that way.
	 This is correct even if the real ap is actually a pseudo.
	 Otherwise, just adjust the offset from the frame pointer to
	 compensate.  */

#ifdef NEED_SEPARATE_AP
      rtx addr;

      addr = get_arg_pointer_save_area (fp);
      addr = fix_lexical_addr (XEXP (addr, 0), var);
      addr = memory_address (Pmode, addr);

      base = gen_rtx_MEM (Pmode, addr);
      set_mem_alias_set (base, get_frame_alias_set ());
      base = copy_to_reg (base);
#else
      displacement += (FIRST_PARM_OFFSET (context) - STARTING_FRAME_OFFSET);
      base = lookup_static_chain (var);
#endif
    }

  else if (basereg == virtual_stack_vars_rtx)
    {
      /* This is the same code as lookup_static_chain, duplicated here to
	 avoid an extra call to decl_function_context.  */
      tree link;

      for (link = context_display; link; link = TREE_CHAIN (link))
	if (TREE_PURPOSE (link) == context)
	  {
	    base = RTL_EXPR_RTL (TREE_VALUE (link));
	    break;
	  }
    }

  if (base == 0)
    abort ();

  /* Use same offset, relative to appropriate static chain or argument
     pointer.  */
  return plus_constant (base, displacement);
}

/* Return the address of the trampoline for entering nested fn FUNCTION.
   If necessary, allocate a trampoline (in the stack frame)
   and emit rtl to initialize its contents (at entry to this function).  */

rtx
trampoline_address (function)
     tree function;
{
  tree link;
  tree rtlexp;
  rtx tramp;
  struct function *fp;
  tree fn_context;

  /* Find an existing trampoline and return it.  */
  for (link = trampoline_list; link; link = TREE_CHAIN (link))
    if (TREE_PURPOSE (link) == function)
      return
	adjust_trampoline_addr (XEXP (RTL_EXPR_RTL (TREE_VALUE (link)), 0));

  for (fp = outer_function_chain; fp; fp = fp->outer)
    for (link = fp->x_trampoline_list; link; link = TREE_CHAIN (link))
      if (TREE_PURPOSE (link) == function)
	{
	  tramp = fix_lexical_addr (XEXP (RTL_EXPR_RTL (TREE_VALUE (link)), 0),
				    function);
	  return adjust_trampoline_addr (tramp);
	}

  /* None exists; we must make one.  */

  /* Find the `struct function' for the function containing FUNCTION.  */
  fp = 0;
  fn_context = decl_function_context (function);
  if (fn_context != current_function_decl
      && fn_context != inline_function_decl)
    fp = find_function_data (fn_context);

  /* Allocate run-time space for this trampoline
     (usually in the defining function's stack frame).  */
#ifdef ALLOCATE_TRAMPOLINE
  tramp = ALLOCATE_TRAMPOLINE (fp);
#else
  /* If rounding needed, allocate extra space
     to ensure we have TRAMPOLINE_SIZE bytes left after rounding up.  */
#ifdef TRAMPOLINE_ALIGNMENT
#define TRAMPOLINE_REAL_SIZE \
  (TRAMPOLINE_SIZE + (TRAMPOLINE_ALIGNMENT / BITS_PER_UNIT) - 1)
#else
#define TRAMPOLINE_REAL_SIZE (TRAMPOLINE_SIZE)
#endif
  tramp = assign_stack_local_1 (BLKmode, TRAMPOLINE_REAL_SIZE, 0,
				fp ? fp : cfun);
#endif

  /* Record the trampoline for reuse and note it for later initialization
     by expand_function_end.  */
  if (fp != 0)
    {
      rtlexp = make_node (RTL_EXPR);
      RTL_EXPR_RTL (rtlexp) = tramp;
      fp->x_trampoline_list = tree_cons (function, rtlexp,
					 fp->x_trampoline_list);
    }
  else
    {
      /* Make the RTL_EXPR node temporary, not momentary, so that the
	 trampoline_list doesn't become garbage.  */
      rtlexp = make_node (RTL_EXPR);

      RTL_EXPR_RTL (rtlexp) = tramp;
      trampoline_list = tree_cons (function, rtlexp, trampoline_list);
    }

  tramp = fix_lexical_addr (XEXP (tramp, 0), function);
  return adjust_trampoline_addr (tramp);
}

/* Given a trampoline address,
   round it to multiple of TRAMPOLINE_ALIGNMENT.  */

static rtx
round_trampoline_addr (tramp)
     rtx tramp;
{
#ifdef TRAMPOLINE_ALIGNMENT
  /* Round address up to desired boundary.  */
  rtx temp = gen_reg_rtx (Pmode);
  rtx addend = GEN_INT (TRAMPOLINE_ALIGNMENT / BITS_PER_UNIT - 1);
  rtx mask = GEN_INT (-TRAMPOLINE_ALIGNMENT / BITS_PER_UNIT);

  temp  = expand_simple_binop (Pmode, PLUS, tramp, addend,
			       temp, 0, OPTAB_LIB_WIDEN);
  tramp = expand_simple_binop (Pmode, AND, temp, mask,
			       temp, 0, OPTAB_LIB_WIDEN);
#endif
  return tramp;
}

/* Given a trampoline address, round it then apply any
   platform-specific adjustments so that the result can be used for a
   function call .  */

static rtx
adjust_trampoline_addr (tramp)
     rtx tramp;
{
  tramp = round_trampoline_addr (tramp);
#ifdef TRAMPOLINE_ADJUST_ADDRESS
  TRAMPOLINE_ADJUST_ADDRESS (tramp);
#endif
  return tramp;
}

/* Put all this function's BLOCK nodes including those that are chained
   onto the first block into a vector, and return it.
   Also store in each NOTE for the beginning or end of a block
   the index of that block in the vector.
   The arguments are BLOCK, the chain of top-level blocks of the function,
   and INSNS, the insn chain of the function.  */

void
identify_blocks ()
{
  int n_blocks;
  tree *block_vector, *last_block_vector;
  tree *block_stack;
  tree block = DECL_INITIAL (current_function_decl);

  if (block == 0)
    return;

  /* Fill the BLOCK_VECTOR with all of the BLOCKs in this function, in
     depth-first order.  */
  block_vector = get_block_vector (block, &n_blocks);
  block_stack = (tree *) xmalloc (n_blocks * sizeof (tree));

  last_block_vector = identify_blocks_1 (get_insns (),
					 block_vector + 1,
					 block_vector + n_blocks,
					 block_stack);

  /* If we didn't use all of the subblocks, we've misplaced block notes.  */
  /* ??? This appears to happen all the time.  Latent bugs elsewhere?  */
  if (0 && last_block_vector != block_vector + n_blocks)
    abort ();

  free (block_vector);
  free (block_stack);
}

/* Subroutine of identify_blocks.  Do the block substitution on the
   insn chain beginning with INSNS.  Recurse for CALL_PLACEHOLDER chains.

   BLOCK_STACK is pushed and popped for each BLOCK_BEGIN/BLOCK_END pair.
   BLOCK_VECTOR is incremented for each block seen.  */

static tree *
identify_blocks_1 (insns, block_vector, end_block_vector, orig_block_stack)
     rtx insns;
     tree *block_vector;
     tree *end_block_vector;
     tree *orig_block_stack;
{
  rtx insn;
  tree *block_stack = orig_block_stack;

  for (insn = insns; insn; insn = NEXT_INSN (insn))
    {
      if (GET_CODE (insn) == NOTE)
	{
	  if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_BEG)
	    {
	      tree b;

	      /* If there are more block notes than BLOCKs, something
		 is badly wrong.  */
	      if (block_vector == end_block_vector)
		abort ();

	      b = *block_vector++;
	      NOTE_BLOCK (insn) = b;
	      *block_stack++ = b;
	    }
	  else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_END)
	    {
	      /* If there are more NOTE_INSN_BLOCK_ENDs than
		 NOTE_INSN_BLOCK_BEGs, something is badly wrong.  */
	      if (block_stack == orig_block_stack)
		abort ();

	      NOTE_BLOCK (insn) = *--block_stack;
	    }
	}
      else if (GET_CODE (insn) == CALL_INSN
	       && GET_CODE (PATTERN (insn)) == CALL_PLACEHOLDER)
	{
	  rtx cp = PATTERN (insn);

	  block_vector = identify_blocks_1 (XEXP (cp, 0), block_vector,
					    end_block_vector, block_stack);
	  if (XEXP (cp, 1))
	    block_vector = identify_blocks_1 (XEXP (cp, 1), block_vector,
					      end_block_vector, block_stack);
	  if (XEXP (cp, 2))
	    block_vector = identify_blocks_1 (XEXP (cp, 2), block_vector,
					      end_block_vector, block_stack);
	}
    }

  /* If there are more NOTE_INSN_BLOCK_BEGINs than NOTE_INSN_BLOCK_ENDs,
     something is badly wrong.  */
  if (block_stack != orig_block_stack)
    abort ();

  return block_vector;
}

/* Identify BLOCKs referenced by more than one NOTE_INSN_BLOCK_{BEG,END},
   and create duplicate blocks.  */
/* ??? Need an option to either create block fragments or to create
   abstract origin duplicates of a source block.  It really depends
   on what optimization has been performed.  */

void
reorder_blocks ()
{
  tree block = DECL_INITIAL (current_function_decl);
  varray_type block_stack;

  if (block == NULL_TREE)
    return;

  VARRAY_TREE_INIT (block_stack, 10, "block_stack");

  /* Reset the TREE_ASM_WRITTEN bit for all blocks.  */
  reorder_blocks_0 (block);

  /* Prune the old trees away, so that they don't get in the way.  */
  BLOCK_SUBBLOCKS (block) = NULL_TREE;
  BLOCK_CHAIN (block) = NULL_TREE;

  /* Recreate the block tree from the note nesting.  */
  reorder_blocks_1 (get_insns (), block, &block_stack);
  BLOCK_SUBBLOCKS (block) = blocks_nreverse (BLOCK_SUBBLOCKS (block));

  /* Remove deleted blocks from the block fragment chains.  */
  reorder_fix_fragments (block);

  VARRAY_FREE (block_stack);
}

/* Helper function for reorder_blocks.  Reset TREE_ASM_WRITTEN.  */

static void
reorder_blocks_0 (block)
     tree block;
{
  while (block)
    {
      TREE_ASM_WRITTEN (block) = 0;
      reorder_blocks_0 (BLOCK_SUBBLOCKS (block));
      block = BLOCK_CHAIN (block);
    }
}

static void
reorder_blocks_1 (insns, current_block, p_block_stack)
     rtx insns;
     tree current_block;
     varray_type *p_block_stack;
{
  rtx insn;

  for (insn = insns; insn; insn = NEXT_INSN (insn))
    {
      if (GET_CODE (insn) == NOTE)
	{
	  if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_BEG)
	    {
	      tree block = NOTE_BLOCK (insn);

	      /* If we have seen this block before, that means it now
		 spans multiple address regions.  Create a new fragment.  */
	      if (TREE_ASM_WRITTEN (block))
		{
		  tree new_block = copy_node (block);
		  tree origin;

		  origin = (BLOCK_FRAGMENT_ORIGIN (block)
			    ? BLOCK_FRAGMENT_ORIGIN (block)
			    : block);
		  BLOCK_FRAGMENT_ORIGIN (new_block) = origin;
		  BLOCK_FRAGMENT_CHAIN (new_block)
		    = BLOCK_FRAGMENT_CHAIN (origin);
		  BLOCK_FRAGMENT_CHAIN (origin) = new_block;

		  NOTE_BLOCK (insn) = new_block;
		  block = new_block;
		}

	      BLOCK_SUBBLOCKS (block) = 0;
	      TREE_ASM_WRITTEN (block) = 1;
	      BLOCK_SUPERCONTEXT (block) = current_block;
	      BLOCK_CHAIN (block) = BLOCK_SUBBLOCKS (current_block);
	      BLOCK_SUBBLOCKS (current_block) = block;
	      current_block = block;
	      VARRAY_PUSH_TREE (*p_block_stack, block);
	    }
	  else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_END)
	    {
	      NOTE_BLOCK (insn) = VARRAY_TOP_TREE (*p_block_stack);
	      VARRAY_POP (*p_block_stack);
	      BLOCK_SUBBLOCKS (current_block)
		= blocks_nreverse (BLOCK_SUBBLOCKS (current_block));
	      current_block = BLOCK_SUPERCONTEXT (current_block);
	    }
	}
      else if (GET_CODE (insn) == CALL_INSN
	       && GET_CODE (PATTERN (insn)) == CALL_PLACEHOLDER)
	{
	  rtx cp = PATTERN (insn);
	  reorder_blocks_1 (XEXP (cp, 0), current_block, p_block_stack);
	  if (XEXP (cp, 1))
	    reorder_blocks_1 (XEXP (cp, 1), current_block, p_block_stack);
	  if (XEXP (cp, 2))
	    reorder_blocks_1 (XEXP (cp, 2), current_block, p_block_stack);
	}
    }
}

/* Rationalize BLOCK_FRAGMENT_ORIGIN.  If an origin block no longer
   appears in the block tree, select one of the fragments to become
   the new origin block.  */

static void
reorder_fix_fragments (block)
    tree block;
{
  while (block)
    {
      tree dup_origin = BLOCK_FRAGMENT_ORIGIN (block);
      tree new_origin = NULL_TREE;

      if (dup_origin)
	{
	  if (! TREE_ASM_WRITTEN (dup_origin))
	    {
	      new_origin = BLOCK_FRAGMENT_CHAIN (dup_origin);
	      
	      /* Find the first of the remaining fragments.  There must
		 be at least one -- the current block.  */
	      while (! TREE_ASM_WRITTEN (new_origin))
		new_origin = BLOCK_FRAGMENT_CHAIN (new_origin);
	      BLOCK_FRAGMENT_ORIGIN (new_origin) = NULL_TREE;
	    }
	}
      else if (! dup_origin)
	new_origin = block;

      /* Re-root the rest of the fragments to the new origin.  In the
	 case that DUP_ORIGIN was null, that means BLOCK was the origin
	 of a chain of fragments and we want to remove those fragments
	 that didn't make it to the output.  */
      if (new_origin)
	{
	  tree *pp = &BLOCK_FRAGMENT_CHAIN (new_origin);
	  tree chain = *pp;

	  while (chain)
	    {
	      if (TREE_ASM_WRITTEN (chain))
		{
		  BLOCK_FRAGMENT_ORIGIN (chain) = new_origin;
		  *pp = chain;
		  pp = &BLOCK_FRAGMENT_CHAIN (chain);
		}
	      chain = BLOCK_FRAGMENT_CHAIN (chain);
	    }
	  *pp = NULL_TREE;
	}

      reorder_fix_fragments (BLOCK_SUBBLOCKS (block));
      block = BLOCK_CHAIN (block);
    }
}

/* Reverse the order of elements in the chain T of blocks,
   and return the new head of the chain (old last element).  */

static tree
blocks_nreverse (t)
     tree t;
{
  tree prev = 0, decl, next;
  for (decl = t; decl; decl = next)
    {
      next = BLOCK_CHAIN (decl);
      BLOCK_CHAIN (decl) = prev;
      prev = decl;
    }
  return prev;
}

/* Count the subblocks of the list starting with BLOCK.  If VECTOR is
   non-NULL, list them all into VECTOR, in a depth-first preorder
   traversal of the block tree.  Also clear TREE_ASM_WRITTEN in all
   blocks.  */

static int
all_blocks (block, vector)
     tree block;
     tree *vector;
{
  int n_blocks = 0;

  while (block)
    {
      TREE_ASM_WRITTEN (block) = 0;

      /* Record this block.  */
      if (vector)
	vector[n_blocks] = block;

      ++n_blocks;

      /* Record the subblocks, and their subblocks...  */
      n_blocks += all_blocks (BLOCK_SUBBLOCKS (block),
			      vector ? vector + n_blocks : 0);
      block = BLOCK_CHAIN (block);
    }

  return n_blocks;
}

/* Return a vector containing all the blocks rooted at BLOCK.  The
   number of elements in the vector is stored in N_BLOCKS_P.  The
   vector is dynamically allocated; it is the caller's responsibility
   to call `free' on the pointer returned.  */

static tree *
get_block_vector (block, n_blocks_p)
     tree block;
     int *n_blocks_p;
{
  tree *block_vector;

  *n_blocks_p = all_blocks (block, NULL);
  block_vector = (tree *) xmalloc (*n_blocks_p * sizeof (tree));
  all_blocks (block, block_vector);

  return block_vector;
}

static int next_block_index = 2;

/* Set BLOCK_NUMBER for all the blocks in FN.  */

void
number_blocks (fn)
     tree fn;
{
  int i;
  int n_blocks;
  tree *block_vector;

  /* For SDB and XCOFF debugging output, we start numbering the blocks
     from 1 within each function, rather than keeping a running
     count.  */
#if defined (SDB_DEBUGGING_INFO) || defined (XCOFF_DEBUGGING_INFO)
  if (write_symbols == SDB_DEBUG || write_symbols == XCOFF_DEBUG)
    next_block_index = 1;
#endif

  block_vector = get_block_vector (DECL_INITIAL (fn), &n_blocks);

  /* The top-level BLOCK isn't numbered at all.  */
  for (i = 1; i < n_blocks; ++i)
    /* We number the blocks from two.  */
    BLOCK_NUMBER (block_vector[i]) = next_block_index++;

  free (block_vector);

  return;
}

/* If VAR is present in a subblock of BLOCK, return the subblock.  */

tree
debug_find_var_in_block_tree (var, block)
     tree var;
     tree block;
{
  tree t;

  for (t = BLOCK_VARS (block); t; t = TREE_CHAIN (t))
    if (t == var)
      return block;

  for (t = BLOCK_SUBBLOCKS (block); t; t = TREE_CHAIN (t))
    {
      tree ret = debug_find_var_in_block_tree (var, t);
      if (ret)
	return ret;
    }

  return NULL_TREE;
}

/* Allocate a function structure and reset its contents to the defaults.  */

static void
prepare_function_start ()
{
  cfun = (struct function *) ggc_alloc_cleared (sizeof (struct function));

  init_stmt_for_function ();
  init_eh_for_function ();

  cse_not_expected = ! optimize;

  /* Caller save not needed yet.  */
  caller_save_needed = 0;

  /* No stack slots have been made yet.  */
  stack_slot_list = 0;

  current_function_has_nonlocal_label = 0;
  current_function_has_nonlocal_goto = 0;

  /* There is no stack slot for handling nonlocal gotos.  */
  nonlocal_goto_handler_slots = 0;
  nonlocal_goto_stack_level = 0;

  /* No labels have been declared for nonlocal use.  */
  nonlocal_labels = 0;
  nonlocal_goto_handler_labels = 0;

  /* No function calls so far in this function.  */
  function_call_count = 0;

  /* No parm regs have been allocated.
     (This is important for output_inline_function.)  */
  max_parm_reg = LAST_VIRTUAL_REGISTER + 1;

  /* Initialize the RTL mechanism.  */
  init_emit ();

  /* Initialize the queue of pending postincrement and postdecrements,
     and some other info in expr.c.  */
  init_expr ();

  /* We haven't done register allocation yet.  */
  reg_renumber = 0;

  init_varasm_status (cfun);

  /* Clear out data used for inlining.  */
  cfun->inlinable = 0;
  cfun->original_decl_initial = 0;
  cfun->original_arg_vector = 0;

  cfun->stack_alignment_needed = STACK_BOUNDARY;
  cfun->preferred_stack_boundary = STACK_BOUNDARY;

  /* Set if a call to setjmp is seen.  */
  current_function_calls_setjmp = 0;

  /* Set if a call to longjmp is seen.  */
  current_function_calls_longjmp = 0;

  current_function_calls_alloca = 0;
  current_function_contains_functions = 0;
  current_function_is_leaf = 0;
  current_function_nothrow = 0;
  current_function_sp_is_unchanging = 0;
  current_function_uses_only_leaf_regs = 0;
  current_function_has_computed_jump = 0;
  current_function_is_thunk = 0;

  current_function_returns_pcc_struct = 0;
  current_function_returns_struct = 0;
  current_function_epilogue_delay_list = 0;
  current_function_uses_const_pool = 0;
  current_function_uses_pic_offset_table = 0;
  current_function_cannot_inline = 0;

  /* We have not yet needed to make a label to jump to for tail-recursion.  */
  tail_recursion_label = 0;

  /* We haven't had a need to make a save area for ap yet.  */
  arg_pointer_save_area = 0;

  /* No stack slots allocated yet.  */
  frame_offset = 0;

  /* No SAVE_EXPRs in this function yet.  */
  save_expr_regs = 0;

  /* No RTL_EXPRs in this function yet.  */
  rtl_expr_chain = 0;

  /* Set up to allocate temporaries.  */
  init_temp_slots ();

  /* Indicate that we need to distinguish between the return value of the
     present function and the return value of a function being called.  */
  rtx_equal_function_value_matters = 1;

  /* Indicate that we have not instantiated virtual registers yet.  */
  virtuals_instantiated = 0;

  /* Indicate that we want CONCATs now.  */
  generating_concat_p = 1;

  /* Indicate we have no need of a frame pointer yet.  */
  frame_pointer_needed = 0;

  /* By default assume not varargs or stdarg.  */
  current_function_varargs = 0;
  current_function_stdarg = 0;

  /* We haven't made any trampolines for this function yet.  */
  trampoline_list = 0;

  init_pending_stack_adjust ();
  inhibit_defer_pop = 0;

  current_function_outgoing_args_size = 0;

  if (init_lang_status)
    (*init_lang_status) (cfun);
  if (init_machine_status)
    (*init_machine_status) (cfun);
}

/* Initialize the rtl expansion mechanism so that we can do simple things
   like generate sequences.  This is used to provide a context during global
   initialization of some passes.  */
void
init_dummy_function_start ()
{
  prepare_function_start ();
}

/* Generate RTL for the start of the function SUBR (a FUNCTION_DECL tree node)
   and initialize static variables for generating RTL for the statements
   of the function.  */

void
init_function_start (subr, filename, line)
     tree subr;
     const char *filename;
     int line;
{
  prepare_function_start ();

  current_function_name = (*decl_printable_name) (subr, 2);
  cfun->decl = subr;

  /* Nonzero if this is a nested function that uses a static chain.  */

  current_function_needs_context
    = (decl_function_context (current_function_decl) != 0
       && ! DECL_NO_STATIC_CHAIN (current_function_decl));

  /* Within function body, compute a type's size as soon it is laid out.  */
  immediate_size_expand++;

  /* Prevent ever trying to delete the first instruction of a function.
     Also tell final how to output a linenum before the function prologue.
     Note linenums could be missing, e.g. when compiling a Java .class file.  */
  if (line > 0)
    emit_line_note (filename, line);

  /* Make sure first insn is a note even if we don't want linenums.
     This makes sure the first insn will never be deleted.
     Also, final expects a note to appear there.  */
  emit_note (NULL, NOTE_INSN_DELETED);

  /* Set flags used by final.c.  */
  if (aggregate_value_p (DECL_RESULT (subr)))
    {
#ifdef PCC_STATIC_STRUCT_RETURN
      current_function_returns_pcc_struct = 1;
#endif
      current_function_returns_struct = 1;
    }

  /* Warn if this value is an aggregate type,
     regardless of which calling convention we are using for it.  */
  if (warn_aggregate_return
      && AGGREGATE_TYPE_P (TREE_TYPE (DECL_RESULT (subr))))
    warning ("function returns an aggregate");

  current_function_returns_pointer
    = POINTER_TYPE_P (TREE_TYPE (DECL_RESULT (subr)));
}

/* Make sure all values used by the optimization passes have sane
   defaults.  */
void
init_function_for_compilation ()
{
  reg_renumber = 0;

  /* No prologue/epilogue insns yet.  */
  VARRAY_GROW (prologue, 0);
  VARRAY_GROW (epilogue, 0);
  VARRAY_GROW (sibcall_epilogue, 0);
}

/* Indicate that the current function uses extra args
   not explicitly mentioned in the argument list in any fashion.  */

void
mark_varargs ()
{
  current_function_varargs = 1;
}

/* Expand a call to __main at the beginning of a possible main function.  */

#if defined(INIT_SECTION_ASM_OP) && !defined(INVOKE__main)
#undef HAS_INIT_SECTION
#define HAS_INIT_SECTION
#endif

void
expand_main_function ()
{
#ifdef FORCE_PREFERRED_STACK_BOUNDARY_IN_MAIN
  if (FORCE_PREFERRED_STACK_BOUNDARY_IN_MAIN)
    {
      int align = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
      rtx tmp, seq;

      start_sequence ();
      /* Forcibly align the stack.  */
#ifdef STACK_GROWS_DOWNWARD
      tmp = expand_simple_binop (Pmode, AND, stack_pointer_rtx, GEN_INT(-align),
				 stack_pointer_rtx, 1, OPTAB_WIDEN);
#else
      tmp = expand_simple_binop (Pmode, PLUS, stack_pointer_rtx,
				 GEN_INT (align - 1), NULL_RTX, 1, OPTAB_WIDEN);
      tmp = expand_simple_binop (Pmode, AND, tmp, GEN_INT (-align),
				 stack_pointer_rtx, 1, OPTAB_WIDEN);
#endif
      if (tmp != stack_pointer_rtx)
	emit_move_insn (stack_pointer_rtx, tmp);
      
      /* Enlist allocate_dynamic_stack_space to pick up the pieces.  */
      tmp = force_reg (Pmode, const0_rtx);
      allocate_dynamic_stack_space (tmp, NULL_RTX, BIGGEST_ALIGNMENT);
      seq = gen_sequence ();
      end_sequence ();

      for (tmp = get_last_insn (); tmp; tmp = PREV_INSN (tmp))
	if (NOTE_P (tmp) && NOTE_LINE_NUMBER (tmp) == NOTE_INSN_FUNCTION_BEG)
	  break;
      if (tmp)
	emit_insn_before (seq, tmp);
      else
	emit_insn (seq);
    }
#endif

#ifndef HAS_INIT_SECTION
  emit_library_call (gen_rtx_SYMBOL_REF (Pmode, NAME__MAIN), LCT_NORMAL,
		     VOIDmode, 0);
#endif
}

extern struct obstack permanent_obstack;

/* The PENDING_SIZES represent the sizes of variable-sized types.
   Create RTL for the various sizes now (using temporary variables),
   so that we can refer to the sizes from the RTL we are generating
   for the current function.  The PENDING_SIZES are a TREE_LIST.  The
   TREE_VALUE of each node is a SAVE_EXPR.  */

void
expand_pending_sizes (pending_sizes)
     tree pending_sizes;
{
  tree tem;

  /* Evaluate now the sizes of any types declared among the arguments.  */
  for (tem = pending_sizes; tem; tem = TREE_CHAIN (tem))
    {
      expand_expr (TREE_VALUE (tem), const0_rtx, VOIDmode, 0);
      /* Flush the queue in case this parameter declaration has
	 side-effects.  */
      emit_queue ();
    }
}

/* Start the RTL for a new function, and set variables used for
   emitting RTL.
   SUBR is the FUNCTION_DECL node.
   PARMS_HAVE_CLEANUPS is nonzero if there are cleanups associated with
   the function's parameters, which must be run at any return statement.  */

void
expand_function_start (subr, parms_have_cleanups)
     tree subr;
     int parms_have_cleanups;
{
  tree tem;
  rtx last_ptr = NULL_RTX;

  /* Make sure volatile mem refs aren't considered
     valid operands of arithmetic insns.  */
  init_recog_no_volatile ();

  current_function_instrument_entry_exit
    = (flag_instrument_function_entry_exit
       && ! DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (subr));

  current_function_profile
    = (profile_flag
       && ! DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (subr));

  current_function_limit_stack
    = (stack_limit_rtx != NULL_RTX && ! DECL_NO_LIMIT_STACK (subr));

  /* If function gets a static chain arg, store it in the stack frame.
     Do this first, so it gets the first stack slot offset.  */
  if (current_function_needs_context)
    {
      last_ptr = assign_stack_local (Pmode, GET_MODE_SIZE (Pmode), 0);

      /* Delay copying static chain if it is not a register to avoid
	 conflicts with regs used for parameters.  */
      if (! SMALL_REGISTER_CLASSES
	  || GET_CODE (static_chain_incoming_rtx) == REG)
	emit_move_insn (last_ptr, static_chain_incoming_rtx);
    }

  /* If the parameters of this function need cleaning up, get a label
     for the beginning of the code which executes those cleanups.  This must
     be done before doing anything with return_label.  */
  if (parms_have_cleanups)
    cleanup_label = gen_label_rtx ();
  else
    cleanup_label = 0;

  /* Make the label for return statements to jump to.  Do not special
     case machines with special return instructions -- they will be
     handled later during jump, ifcvt, or epilogue creation.  */
  return_label = gen_label_rtx ();

  /* Initialize rtx used to return the value.  */
  /* Do this before assign_parms so that we copy the struct value address
     before any library calls that assign parms might generate.  */

  /* Decide whether to return the value in memory or in a register.  */
  if (aggregate_value_p (DECL_RESULT (subr)))
    {
      /* Returning something that won't go in a register.  */
      rtx value_address = 0;

#ifdef PCC_STATIC_STRUCT_RETURN
      if (current_function_returns_pcc_struct)
	{
	  int size = int_size_in_bytes (TREE_TYPE (DECL_RESULT (subr)));
	  value_address = assemble_static_space (size);
	}
      else
#endif
	{
	  /* Expect to be passed the address of a place to store the value.
	     If it is passed as an argument, assign_parms will take care of
	     it.  */
	  if (struct_value_incoming_rtx)
	    {
	      value_address = gen_reg_rtx (Pmode);
	      emit_move_insn (value_address, struct_value_incoming_rtx);
	    }
	}
      if (value_address)
	{
	  rtx x = gen_rtx_MEM (DECL_MODE (DECL_RESULT (subr)), value_address);
	  set_mem_attributes (x, DECL_RESULT (subr), 1);
	  SET_DECL_RTL (DECL_RESULT (subr), x);
	}
    }
  else if (DECL_MODE (DECL_RESULT (subr)) == VOIDmode)
    /* If return mode is void, this decl rtl should not be used.  */
    SET_DECL_RTL (DECL_RESULT (subr), NULL_RTX);
  else
    {
      /* Compute the return values into a pseudo reg, which we will copy
	 into the true return register after the cleanups are done.  */

      /* In order to figure out what mode to use for the pseudo, we
	 figure out what the mode of the eventual return register will
	 actually be, and use that.  */
      rtx hard_reg
	= hard_function_value (TREE_TYPE (DECL_RESULT (subr)),
			       subr, 1);

      /* Structures that are returned in registers are not aggregate_value_p,
	 so we may see a PARALLEL.  Don't play pseudo games with this.  */
      if (! REG_P (hard_reg))
	SET_DECL_RTL (DECL_RESULT (subr), hard_reg);
      else
	{
	  /* Create the pseudo.  */
	  SET_DECL_RTL (DECL_RESULT (subr), gen_reg_rtx (GET_MODE (hard_reg)));

	  /* Needed because we may need to move this to memory
	     in case it's a named return value whose address is taken.  */
	  DECL_REGISTER (DECL_RESULT (subr)) = 1;
	}
    }

  /* Initialize rtx for parameters and local variables.
     In some cases this requires emitting insns.  */

  assign_parms (subr);

  /* Copy the static chain now if it wasn't a register.  The delay is to
     avoid conflicts with the parameter passing registers.  */

  if (SMALL_REGISTER_CLASSES && current_function_needs_context)
      if (GET_CODE (static_chain_incoming_rtx) != REG)
        emit_move_insn (last_ptr, static_chain_incoming_rtx);

  /* The following was moved from init_function_start.
     The move is supposed to make sdb output more accurate.  */
  /* Indicate the beginning of the function body,
     as opposed to parm setup.  */
  emit_note (NULL, NOTE_INSN_FUNCTION_BEG);

  if (GET_CODE (get_last_insn ()) != NOTE)
    emit_note (NULL, NOTE_INSN_DELETED);
  parm_birth_insn = get_last_insn ();

  context_display = 0;
  if (current_function_needs_context)
    {
      /* Fetch static chain values for containing functions.  */
      tem = decl_function_context (current_function_decl);
      /* Copy the static chain pointer into a pseudo.  If we have
	 small register classes, copy the value from memory if
	 static_chain_incoming_rtx is a REG.  */
      if (tem)
	{
	  /* If the static chain originally came in a register, put it back
	     there, then move it out in the next insn.  The reason for
	     this peculiar code is to satisfy function integration.  */
	  if (SMALL_REGISTER_CLASSES
	      && GET_CODE (static_chain_incoming_rtx) == REG)
	    emit_move_insn (static_chain_incoming_rtx, last_ptr);
	  last_ptr = copy_to_reg (static_chain_incoming_rtx);
	}

      while (tem)
	{
	  tree rtlexp = make_node (RTL_EXPR);

	  RTL_EXPR_RTL (rtlexp) = last_ptr;
	  context_display = tree_cons (tem, rtlexp, context_display);
	  tem = decl_function_context (tem);
	  if (tem == 0)
	    break;
	  /* Chain thru stack frames, assuming pointer to next lexical frame
	     is found at the place we always store it.  */
#ifdef FRAME_GROWS_DOWNWARD
	  last_ptr = plus_constant (last_ptr,
				    -(HOST_WIDE_INT) GET_MODE_SIZE (Pmode));
#endif
	  last_ptr = gen_rtx_MEM (Pmode, memory_address (Pmode, last_ptr));
	  set_mem_alias_set (last_ptr, get_frame_alias_set ());
	  last_ptr = copy_to_reg (last_ptr);

	  /* If we are not optimizing, ensure that we know that this
	     piece of context is live over the entire function.  */
	  if (! optimize)
	    save_expr_regs = gen_rtx_EXPR_LIST (VOIDmode, last_ptr,
						save_expr_regs);
	}
    }

  if (current_function_instrument_entry_exit)
    {
      rtx fun = DECL_RTL (current_function_decl);
      if (GET_CODE (fun) == MEM)
	fun = XEXP (fun, 0);
      else
	abort ();
      emit_library_call (profile_function_entry_libfunc, LCT_NORMAL, VOIDmode,
			 2, fun, Pmode,
			 expand_builtin_return_addr (BUILT_IN_RETURN_ADDRESS,
						     0,
						     hard_frame_pointer_rtx),
			 Pmode);
    }

#ifdef PROFILE_HOOK
  if (current_function_profile)
    PROFILE_HOOK (profile_label_no);
#endif

  /* After the display initializations is where the tail-recursion label
     should go, if we end up needing one.   Ensure we have a NOTE here
     since some things (like trampolines) get placed before this.  */
  tail_recursion_reentry = emit_note (NULL, NOTE_INSN_DELETED);

  /* Evaluate now the sizes of any types declared among the arguments.  */
  expand_pending_sizes (nreverse (get_pending_sizes ()));

  /* Make sure there is a line number after the function entry setup code.  */
  force_next_line_note ();
}

/* Undo the effects of init_dummy_function_start.  */
void
expand_dummy_function_end ()
{
  /* End any sequences that failed to be closed due to syntax errors.  */
  while (in_sequence_p ())
    end_sequence ();

  /* Outside function body, can't compute type's actual size
     until next function's body starts.  */

  free_after_parsing (cfun);
  free_after_compilation (cfun);
  cfun = 0;
}

/* Call DOIT for each hard register used as a return value from
   the current function.  */

void
diddle_return_value (doit, arg)
     void (*doit) PARAMS ((rtx, void *));
     void *arg;
{
  rtx outgoing = current_function_return_rtx;

  if (! outgoing)
    return;

  if (GET_CODE (outgoing) == REG)
    (*doit) (outgoing, arg);
  else if (GET_CODE (outgoing) == PARALLEL)
    {
      int i;

      for (i = 0; i < XVECLEN (outgoing, 0); i++)
	{
	  rtx x = XEXP (XVECEXP (outgoing, 0, i), 0);

	  if (GET_CODE (x) == REG && REGNO (x) < FIRST_PSEUDO_REGISTER)
	    (*doit) (x, arg);
	}
    }
}

static void
do_clobber_return_reg (reg, arg)
     rtx reg;
     void *arg ATTRIBUTE_UNUSED;
{
  emit_insn (gen_rtx_CLOBBER (VOIDmode, reg));
}

void
clobber_return_register ()
{
  diddle_return_value (do_clobber_return_reg, NULL);

  /* In case we do use pseudo to return value, clobber it too.  */
  if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
    {
      tree decl_result = DECL_RESULT (current_function_decl);
      rtx decl_rtl = DECL_RTL (decl_result);
      if (REG_P (decl_rtl) && REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER)
	{
	  do_clobber_return_reg (decl_rtl, NULL);
	}
    }
}

static void
do_use_return_reg (reg, arg)
     rtx reg;
     void *arg ATTRIBUTE_UNUSED;
{
  emit_insn (gen_rtx_USE (VOIDmode, reg));
}

void
use_return_register ()
{
  diddle_return_value (do_use_return_reg, NULL);
}

/* Generate RTL for the end of the current function.
   FILENAME and LINE are the current position in the source file.

   It is up to language-specific callers to do cleanups for parameters--
   or else, supply 1 for END_BINDINGS and we will call expand_end_bindings.  */

void
expand_function_end (filename, line, end_bindings)
     const char *filename;
     int line;
     int end_bindings;
{
  tree link;
  rtx clobber_after;

#ifdef TRAMPOLINE_TEMPLATE
  static rtx initial_trampoline;
#endif

  finish_expr_for_function ();

  /* If arg_pointer_save_area was referenced only from a nested
     function, we will not have initialized it yet.  Do that now.  */
  if (arg_pointer_save_area && ! cfun->arg_pointer_save_area_init)
    get_arg_pointer_save_area (cfun);

#ifdef NON_SAVING_SETJMP
  /* Don't put any variables in registers if we call setjmp
     on a machine that fails to restore the registers.  */
  if (NON_SAVING_SETJMP && current_function_calls_setjmp)
    {
      if (DECL_INITIAL (current_function_decl) != error_mark_node)
	setjmp_protect (DECL_INITIAL (current_function_decl));

      setjmp_protect_args ();
    }
#endif

  /* Initialize any trampolines required by this function.  */
  for (link = trampoline_list; link; link = TREE_CHAIN (link))
    {
      tree function = TREE_PURPOSE (link);
      rtx context ATTRIBUTE_UNUSED = lookup_static_chain (function);
      rtx tramp = RTL_EXPR_RTL (TREE_VALUE (link));
#ifdef TRAMPOLINE_TEMPLATE
      rtx blktramp;
#endif
      rtx seq;

#ifdef TRAMPOLINE_TEMPLATE
      /* First make sure this compilation has a template for
	 initializing trampolines.  */
      if (initial_trampoline == 0)
	{
	  initial_trampoline
	    = gen_rtx_MEM (BLKmode, assemble_trampoline_template ());
	  set_mem_align (initial_trampoline, TRAMPOLINE_ALIGNMENT);

	  ggc_add_rtx_root (&initial_trampoline, 1);
	}
#endif

      /* Generate insns to initialize the trampoline.  */
      start_sequence ();
      tramp = round_trampoline_addr (XEXP (tramp, 0));
#ifdef TRAMPOLINE_TEMPLATE
      blktramp = replace_equiv_address (initial_trampoline, tramp);
      emit_block_move (blktramp, initial_trampoline,
		       GEN_INT (TRAMPOLINE_SIZE));
#endif
      INITIALIZE_TRAMPOLINE (tramp, XEXP (DECL_RTL (function), 0), context);
      seq = get_insns ();
      end_sequence ();

      /* Put those insns at entry to the containing function (this one).  */
      emit_insns_before (seq, tail_recursion_reentry);
    }

  /* If we are doing stack checking and this function makes calls,
     do a stack probe at the start of the function to ensure we have enough
     space for another stack frame.  */
  if (flag_stack_check && ! STACK_CHECK_BUILTIN)
    {
      rtx insn, seq;

      for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
	if (GET_CODE (insn) == CALL_INSN)
	  {
	    start_sequence ();
	    probe_stack_range (STACK_CHECK_PROTECT,
			       GEN_INT (STACK_CHECK_MAX_FRAME_SIZE));
	    seq = get_insns ();
	    end_sequence ();
	    emit_insns_before (seq, tail_recursion_reentry);
	    break;
	  }
    }

  /* Warn about unused parms if extra warnings were specified.  */
  /* Either ``-W -Wunused'' or ``-Wunused-parameter'' enables this
     warning.  WARN_UNUSED_PARAMETER is negative when set by
     -Wunused.  */
  if (warn_unused_parameter > 0
      || (warn_unused_parameter < 0 && extra_warnings))
    {
      tree decl;

      for (decl = DECL_ARGUMENTS (current_function_decl);
	   decl; decl = TREE_CHAIN (decl))
	if (! TREE_USED (decl) && TREE_CODE (decl) == PARM_DECL
	    && DECL_NAME (decl) && ! DECL_ARTIFICIAL (decl))
	  warning_with_decl (decl, "unused parameter `%s'");
    }

  /* Delete handlers for nonlocal gotos if nothing uses them.  */
  if (nonlocal_goto_handler_slots != 0
      && ! current_function_has_nonlocal_label)
    delete_handlers ();

  /* End any sequences that failed to be closed due to syntax errors.  */
  while (in_sequence_p ())
    end_sequence ();

  /* Outside function body, can't compute type's actual size
     until next function's body starts.  */
  immediate_size_expand--;

  clear_pending_stack_adjust ();
  do_pending_stack_adjust ();

  /* Mark the end of the function body.
     If control reaches this insn, the function can drop through
     without returning a value.  */
  emit_note (NULL, NOTE_INSN_FUNCTION_END);

  /* Must mark the last line number note in the function, so that the test
     coverage code can avoid counting the last line twice.  This just tells
     the code to ignore the immediately following line note, since there
     already exists a copy of this note somewhere above.  This line number
     note is still needed for debugging though, so we can't delete it.  */
  if (flag_test_coverage)
    emit_note (NULL, NOTE_INSN_REPEATED_LINE_NUMBER);

  /* Output a linenumber for the end of the function.
     SDB depends on this.  */
  emit_line_note_force (filename, line);

  /* Before the return label (if any), clobber the return
     registers so that they are not propagated live to the rest of
     the function.  This can only happen with functions that drop
     through; if there had been a return statement, there would
     have either been a return rtx, or a jump to the return label.

     We delay actual code generation after the current_function_value_rtx
     is computed.  */
  clobber_after = get_last_insn ();

  /* Output the label for the actual return from the function,
     if one is expected.  This happens either because a function epilogue
     is used instead of a return instruction, or because a return was done
     with a goto in order to run local cleanups, or because of pcc-style
     structure returning.  */
  if (return_label)
    emit_label (return_label);

  /* C++ uses this.  */
  if (end_bindings)
    expand_end_bindings (0, 0, 0);

  if (current_function_instrument_entry_exit)
    {
      rtx fun = DECL_RTL (current_function_decl);
      if (GET_CODE (fun) == MEM)
	fun = XEXP (fun, 0);
      else
	abort ();
      emit_library_call (profile_function_exit_libfunc, LCT_NORMAL, VOIDmode,
			 2, fun, Pmode,
			 expand_builtin_return_addr (BUILT_IN_RETURN_ADDRESS,
						     0,
						     hard_frame_pointer_rtx),
			 Pmode);
    }

  /* Let except.c know where it should emit the call to unregister
     the function context for sjlj exceptions.  */
  if (flag_exceptions && USING_SJLJ_EXCEPTIONS)
    sjlj_emit_function_exit_after (get_last_insn ());

  /* If we had calls to alloca, and this machine needs
     an accurate stack pointer to exit the function,
     insert some code to save and restore the stack pointer.  */
#ifdef EXIT_IGNORE_STACK
  if (! EXIT_IGNORE_STACK)
#endif
    if (current_function_calls_alloca)
      {
	rtx tem = 0;

	emit_stack_save (SAVE_FUNCTION, &tem, parm_birth_insn);
	emit_stack_restore (SAVE_FUNCTION, tem, NULL_RTX);
      }

  /* If scalar return value was computed in a pseudo-reg, or was a named
     return value that got dumped to the stack, copy that to the hard
     return register.  */
  if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
    {
      tree decl_result = DECL_RESULT (current_function_decl);
      rtx decl_rtl = DECL_RTL (decl_result);

      if (REG_P (decl_rtl)
	  ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
	  : DECL_REGISTER (decl_result))
	{
	  rtx real_decl_rtl;

#ifdef FUNCTION_OUTGOING_VALUE
	  real_decl_rtl = FUNCTION_OUTGOING_VALUE (TREE_TYPE (decl_result),
						   current_function_decl);
#else
	  real_decl_rtl = FUNCTION_VALUE (TREE_TYPE (decl_result),
					  current_function_decl);
#endif
	  REG_FUNCTION_VALUE_P (real_decl_rtl) = 1;

	  /* If this is a BLKmode structure being returned in registers,
	     then use the mode computed in expand_return.  Note that if
	     decl_rtl is memory, then its mode may have been changed, 
	     but that current_function_return_rtx has not.  */
	  if (GET_MODE (real_decl_rtl) == BLKmode)
	    PUT_MODE (real_decl_rtl, GET_MODE (current_function_return_rtx));

	  /* If a named return value dumped decl_return to memory, then
	     we may need to re-do the PROMOTE_MODE signed/unsigned 
	     extension.  */
	  if (GET_MODE (real_decl_rtl) != GET_MODE (decl_rtl))
	    {
	      int unsignedp = TREE_UNSIGNED (TREE_TYPE (decl_result));

#ifdef PROMOTE_FUNCTION_RETURN
	      promote_mode (TREE_TYPE (decl_result), GET_MODE (decl_rtl),
			    &unsignedp, 1);
#endif

	      convert_move (real_decl_rtl, decl_rtl, unsignedp);
	    }
	  else if (GET_CODE (real_decl_rtl) == PARALLEL)
	    emit_group_load (real_decl_rtl, decl_rtl,
			     int_size_in_bytes (TREE_TYPE (decl_result)));
	  else
	    emit_move_insn (real_decl_rtl, decl_rtl);

	  /* The delay slot scheduler assumes that current_function_return_rtx
	     holds the hard register containing the return value, not a
	     temporary pseudo.  */
	  current_function_return_rtx = real_decl_rtl;
	}
    }

  /* If returning a structure, arrange to return the address of the value
     in a place where debuggers expect to find it.

     If returning a structure PCC style,
     the caller also depends on this value.
     And current_function_returns_pcc_struct is not necessarily set.  */
  if (current_function_returns_struct
      || current_function_returns_pcc_struct)
    {
      rtx value_address
	= XEXP (DECL_RTL (DECL_RESULT (current_function_decl)), 0);
      tree type = TREE_TYPE (DECL_RESULT (current_function_decl));
#ifdef FUNCTION_OUTGOING_VALUE
      rtx outgoing
	= FUNCTION_OUTGOING_VALUE (build_pointer_type (type),
				   current_function_decl);
#else
      rtx outgoing
	= FUNCTION_VALUE (build_pointer_type (type), current_function_decl);
#endif

      /* Mark this as a function return value so integrate will delete the
	 assignment and USE below when inlining this function.  */
      REG_FUNCTION_VALUE_P (outgoing) = 1;

#ifdef POINTERS_EXTEND_UNSIGNED
      /* The address may be ptr_mode and OUTGOING may be Pmode.  */
      if (GET_MODE (outgoing) != GET_MODE (value_address))
	value_address = convert_memory_address (GET_MODE (outgoing),
						value_address);
#endif

      emit_move_insn (outgoing, value_address);

      /* Show return register used to hold result (in this case the address
	 of the result.  */
      current_function_return_rtx = outgoing;
    }

  /* If this is an implementation of throw, do what's necessary to
     communicate between __builtin_eh_return and the epilogue.  */
  expand_eh_return ();

  /* Emit the actual code to clobber return register.  */
  {
    rtx seq, after;
    
    start_sequence ();
    clobber_return_register ();
    seq = gen_sequence ();
    end_sequence ();

    after = emit_insn_after (seq, clobber_after);
    
    if (clobber_after != after)
      cfun->x_clobber_return_insn = after;
  }

  /* ??? This should no longer be necessary since stupid is no longer with
     us, but there are some parts of the compiler (eg reload_combine, and
     sh mach_dep_reorg) that still try and compute their own lifetime info
     instead of using the general framework.  */
  use_return_register ();

  /* Fix up any gotos that jumped out to the outermost
     binding level of the function.
     Must follow emitting RETURN_LABEL.  */

  /* If you have any cleanups to do at this point,
     and they need to create temporary variables,
     then you will lose.  */
  expand_fixups (get_insns ());
}

rtx
get_arg_pointer_save_area (f)
     struct function *f;
{
  rtx ret = f->x_arg_pointer_save_area;

  if (! ret)
    {
      ret = assign_stack_local_1 (Pmode, GET_MODE_SIZE (Pmode), 0, f);
      f->x_arg_pointer_save_area = ret;
    }

  if (f == cfun && ! f->arg_pointer_save_area_init)
    {
      rtx seq;

      /* Save the arg pointer at the beginning of the function.  The 
	 generated stack slot may not be a valid memory address, so we
	 have to check it and fix it if necessary.  */
      start_sequence ();
      emit_move_insn (validize_mem (ret), virtual_incoming_args_rtx);
      seq = gen_sequence ();
      end_sequence ();

      push_topmost_sequence ();
      emit_insn_after (seq, get_insns ());
      pop_topmost_sequence ();
    }

  return ret;
}

/* Extend a vector that records the INSN_UIDs of INSNS (either a
   sequence or a single insn).  */

static void
record_insns (insns, vecp)
     rtx insns;
     varray_type *vecp;
{
  if (GET_CODE (insns) == SEQUENCE)
    {
      int len = XVECLEN (insns, 0);
      int i = VARRAY_SIZE (*vecp);

      VARRAY_GROW (*vecp, i + len);
      while (--len >= 0)
	{
	  VARRAY_INT (*vecp, i) = INSN_UID (XVECEXP (insns, 0, len));
	  ++i;
	}
    }
  else
    {
      int i = VARRAY_SIZE (*vecp);
      VARRAY_GROW (*vecp, i + 1);
      VARRAY_INT (*vecp, i) = INSN_UID (insns);
    }
}

/* Determine how many INSN_UIDs in VEC are part of INSN.  */

static int
contains (insn, vec)
     rtx insn;
     varray_type vec;
{
  int i, j;

  if (GET_CODE (insn) == INSN
      && GET_CODE (PATTERN (insn)) == SEQUENCE)
    {
      int count = 0;
      for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
	for (j = VARRAY_SIZE (vec) - 1; j >= 0; --j)
	  if (INSN_UID (XVECEXP (PATTERN (insn), 0, i)) == VARRAY_INT (vec, j))
	    count++;
      return count;
    }
  else
    {
      for (j = VARRAY_SIZE (vec) - 1; j >= 0; --j)
	if (INSN_UID (insn) == VARRAY_INT (vec, j))
	  return 1;
    }
  return 0;
}

int
prologue_epilogue_contains (insn)
     rtx insn;
{
  if (contains (insn, prologue))
    return 1;
  if (contains (insn, epilogue))
    return 1;
  return 0;
}

int
sibcall_epilogue_contains (insn)
     rtx insn;
{
  if (sibcall_epilogue)
    return contains (insn, sibcall_epilogue);
  return 0;
}

#ifdef HAVE_return
/* Insert gen_return at the end of block BB.  This also means updating
   block_for_insn appropriately.  */

static void
emit_return_into_block (bb, line_note)
     basic_block bb;
     rtx line_note;
{
  rtx p, end;

  p = NEXT_INSN (bb->end);
  end = emit_jump_insn_after (gen_return (), bb->end);
  if (line_note)
    emit_line_note_after (NOTE_SOURCE_FILE (line_note),
			  NOTE_LINE_NUMBER (line_note), PREV_INSN (bb->end));
}
#endif /* HAVE_return */

#if defined(HAVE_epilogue) && defined(INCOMING_RETURN_ADDR_RTX)

/* These functions convert the epilogue into a variant that does not modify the
   stack pointer.  This is used in cases where a function returns an object
   whose size is not known until it is computed.  The called function leaves the
   object on the stack, leaves the stack depressed, and returns a pointer to
   the object.

   What we need to do is track all modifications and references to the stack
   pointer, deleting the modifications and changing the references to point to
   the location the stack pointer would have pointed to had the modifications
   taken place.

   These functions need to be portable so we need to make as few assumptions
   about the epilogue as we can.  However, the epilogue basically contains
   three things: instructions to reset the stack pointer, instructions to
   reload registers, possibly including the frame pointer, and an
   instruction to return to the caller.

   If we can't be sure of what a relevant epilogue insn is doing, we abort.
   We also make no attempt to validate the insns we make since if they are
   invalid, we probably can't do anything valid.  The intent is that these
   routines get "smarter" as more and more machines start to use them and
   they try operating on different epilogues.

   We use the following structure to track what the part of the epilogue that
   we've already processed has done.  We keep two copies of the SP equivalence,
   one for use during the insn we are processing and one for use in the next
   insn.  The difference is because one part of a PARALLEL may adjust SP
   and the other may use it.  */

struct epi_info
{
  rtx sp_equiv_reg;		/* REG that SP is set from, perhaps SP.  */
  HOST_WIDE_INT sp_offset;	/* Offset from SP_EQUIV_REG of present SP.  */
  rtx new_sp_equiv_reg;		/* REG to be used at end of insn.  */
  HOST_WIDE_INT new_sp_offset;	/* Offset to be used at end of insn.  */
  rtx equiv_reg_src;		/* If nonzero, the value that SP_EQUIV_REG
				   should be set to once we no longer need
				   its value.  */
};

static void handle_epilogue_set PARAMS ((rtx, struct epi_info *));
static void emit_equiv_load PARAMS ((struct epi_info *));

/* Modify SEQ, a SEQUENCE that is part of the epilogue, to no modifications
   to the stack pointer.  Return the new sequence.  */

static rtx
keep_stack_depressed (seq)
     rtx seq;
{
  int i, j;
  struct epi_info info;

  /* If the epilogue is just a single instruction, it ust be OK as is.  */

  if (GET_CODE (seq) != SEQUENCE)
    return seq;

  /* Otherwise, start a sequence, initialize the information we have, and
     process all the insns we were given.  */
  start_sequence ();

  info.sp_equiv_reg = stack_pointer_rtx;
  info.sp_offset = 0;
  info.equiv_reg_src = 0;

  for (i = 0; i < XVECLEN (seq, 0); i++)
    {
      rtx insn = XVECEXP (seq, 0, i);

      if (!INSN_P (insn))
	{
	  add_insn (insn);
	  continue;
	}

      /* If this insn references the register that SP is equivalent to and
	 we have a pending load to that register, we must force out the load
	 first and then indicate we no longer know what SP's equivalent is.  */
      if (info.equiv_reg_src != 0
	  && reg_referenced_p (info.sp_equiv_reg, PATTERN (insn)))
	{
	  emit_equiv_load (&info);
	  info.sp_equiv_reg = 0;
	}

      info.new_sp_equiv_reg = info.sp_equiv_reg;
      info.new_sp_offset = info.sp_offset;

      /* If this is a (RETURN) and the return address is on the stack,
	 update the address and change to an indirect jump.  */
      if (GET_CODE (PATTERN (insn)) == RETURN
	  || (GET_CODE (PATTERN (insn)) == PARALLEL
	      && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == RETURN))
	{
	  rtx retaddr = INCOMING_RETURN_ADDR_RTX;
	  rtx base = 0;
	  HOST_WIDE_INT offset = 0;
	  rtx jump_insn, jump_set;

	  /* If the return address is in a register, we can emit the insn
	     unchanged.  Otherwise, it must be a MEM and we see what the
	     base register and offset are.  In any case, we have to emit any
	     pending load to the equivalent reg of SP, if any.  */
	  if (GET_CODE (retaddr) == REG)
	    {
	      emit_equiv_load (&info);
	      add_insn (insn);
	      continue;
	    }
	  else if (GET_CODE (retaddr) == MEM
		   && GET_CODE (XEXP (retaddr, 0)) == REG)
	    base = gen_rtx_REG (Pmode, REGNO (XEXP (retaddr, 0))), offset = 0;
	  else if (GET_CODE (retaddr) == MEM
		   && GET_CODE (XEXP (retaddr, 0)) == PLUS
		   && GET_CODE (XEXP (XEXP (retaddr, 0), 0)) == REG
		   && GET_CODE (XEXP (XEXP (retaddr, 0), 1)) == CONST_INT)
	    {
	      base = gen_rtx_REG (Pmode, REGNO (XEXP (XEXP (retaddr, 0), 0)));
	      offset = INTVAL (XEXP (XEXP (retaddr, 0), 1));
	    }
	  else
	    abort ();

	  /* If the base of the location containing the return pointer
	     is SP, we must update it with the replacement address.  Otherwise,
	     just build the necessary MEM.  */
	  retaddr = plus_constant (base, offset);
	  if (base == stack_pointer_rtx)
	    retaddr = simplify_replace_rtx (retaddr, stack_pointer_rtx,
					    plus_constant (info.sp_equiv_reg,
							   info.sp_offset));

	  retaddr = gen_rtx_MEM (Pmode, retaddr);

	  /* If there is a pending load to the equivalent register for SP
	     and we reference that register, we must load our address into
	     a scratch register and then do that load.  */
	  if (info.equiv_reg_src
	      && reg_overlap_mentioned_p (info.equiv_reg_src, retaddr))
	    {
	      unsigned int regno;
	      rtx reg;

	      for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
		if (HARD_REGNO_MODE_OK (regno, Pmode)
		    && !fixed_regs[regno]
		    && TEST_HARD_REG_BIT (regs_invalidated_by_call, regno)
		    && !REGNO_REG_SET_P (EXIT_BLOCK_PTR->global_live_at_start,
					 regno)
		    && !refers_to_regno_p (regno,
					   regno + HARD_REGNO_NREGS (regno,
								     Pmode),
					   info.equiv_reg_src, NULL))
		  break;

	      if (regno == FIRST_PSEUDO_REGISTER)
		abort ();

	      reg = gen_rtx_REG (Pmode, regno);
	      emit_move_insn (reg, retaddr);
	      retaddr = reg;
	    }

	  emit_equiv_load (&info);
	  jump_insn = emit_jump_insn (gen_indirect_jump (retaddr));

	  /* Show the SET in the above insn is a RETURN.  */
	  jump_set = single_set (jump_insn);
	  if (jump_set == 0)
	    abort ();
	  else
	    SET_IS_RETURN_P (jump_set) = 1;
	}

      /* If SP is not mentioned in the pattern and its equivalent register, if
	 any, is not modified, just emit it.  Otherwise, if neither is set,
	 replace the reference to SP and emit the insn.  If none of those are
	 true, handle each SET individually.  */
      else if (!reg_mentioned_p (stack_pointer_rtx, PATTERN (insn))
	       && (info.sp_equiv_reg == stack_pointer_rtx
		   || !reg_set_p (info.sp_equiv_reg, insn)))
	add_insn (insn);
      else if (! reg_set_p (stack_pointer_rtx, insn)
	       && (info.sp_equiv_reg == stack_pointer_rtx
		   || !reg_set_p (info.sp_equiv_reg, insn)))
	{
	  if (! validate_replace_rtx (stack_pointer_rtx,
				      plus_constant (info.sp_equiv_reg,
						     info.sp_offset),
				      insn))
	    abort ();

	  add_insn (insn);
	}
      else if (GET_CODE (PATTERN (insn)) == SET)
	handle_epilogue_set (PATTERN (insn), &info);
      else if (GET_CODE (PATTERN (insn)) == PARALLEL)
	{
	  for (j = 0; j < XVECLEN (PATTERN (insn), 0); j++)
	    if (GET_CODE (XVECEXP (PATTERN (insn), 0, j)) == SET)
	      handle_epilogue_set (XVECEXP (PATTERN (insn), 0, j), &info);
	}
      else
	add_insn (insn);

      info.sp_equiv_reg = info.new_sp_equiv_reg;
      info.sp_offset = info.new_sp_offset;
    }

  seq = gen_sequence ();
  end_sequence ();
  return seq;
}

/* SET is a SET from an insn in the epilogue.  P is a pointer to the epi_info
   structure that contains information about what we've seen so far.  We
   process this SET by either updating that data or by emitting one or 
   more insns.  */

static void
handle_epilogue_set (set, p)
     rtx set;
     struct epi_info *p;
{
  /* First handle the case where we are setting SP.  Record what it is being
     set from.  If unknown, abort.  */
  if (reg_set_p (stack_pointer_rtx, set))
    {
      if (SET_DEST (set) != stack_pointer_rtx)
	abort ();

      if (GET_CODE (SET_SRC (set)) == PLUS
	  && GET_CODE (XEXP (SET_SRC (set), 1)) == CONST_INT)
	{
	  p->new_sp_equiv_reg = XEXP (SET_SRC (set), 0);
	  p->new_sp_offset = INTVAL (XEXP (SET_SRC (set), 1));
	}
      else
	p->new_sp_equiv_reg = SET_SRC (set), p->new_sp_offset = 0;

      /* If we are adjusting SP, we adjust from the old data.  */
      if (p->new_sp_equiv_reg == stack_pointer_rtx)
	{
	  p->new_sp_equiv_reg = p->sp_equiv_reg;
	  p->new_sp_offset += p->sp_offset;
	}

      if (p->new_sp_equiv_reg == 0 || GET_CODE (p->new_sp_equiv_reg) != REG)
	abort ();

      return;
    }

  /* Next handle the case where we are setting SP's equivalent register.
     If we already have a value to set it to, abort.  We could update, but
     there seems little point in handling that case.  Note that we have
     to allow for the case where we are setting the register set in
     the previous part of a PARALLEL inside a single insn.  But use the
     old offset for any updates within this insn.  */
  else if (p->new_sp_equiv_reg != 0 && reg_set_p (p->new_sp_equiv_reg, set))
    {
      if (!rtx_equal_p (p->new_sp_equiv_reg, SET_DEST (set))
	  || p->equiv_reg_src != 0)
	abort ();
      else
	p->equiv_reg_src
	  = simplify_replace_rtx (SET_SRC (set), stack_pointer_rtx,
				  plus_constant (p->sp_equiv_reg,
						 p->sp_offset));
    }

  /* Otherwise, replace any references to SP in the insn to its new value
     and emit the insn.  */
  else
    {
      SET_SRC (set) = simplify_replace_rtx (SET_SRC (set), stack_pointer_rtx,
					    plus_constant (p->sp_equiv_reg,
							   p->sp_offset));
      SET_DEST (set) = simplify_replace_rtx (SET_DEST (set), stack_pointer_rtx,
					     plus_constant (p->sp_equiv_reg,
							    p->sp_offset));
      emit_insn (set);
    }
}

/* Emit an insn to do the load shown in p->equiv_reg_src, if needed.  */

static void
emit_equiv_load (p)
     struct epi_info *p;
{
  if (p->equiv_reg_src != 0)
    emit_move_insn (p->sp_equiv_reg, p->equiv_reg_src);

  p->equiv_reg_src = 0;
}
#endif

/* Generate the prologue and epilogue RTL if the machine supports it.  Thread
   this into place with notes indicating where the prologue ends and where
   the epilogue begins.  Update the basic block information when possible.  */

void
thread_prologue_and_epilogue_insns (f)
     rtx f ATTRIBUTE_UNUSED;
{
  int inserted = 0;
  edge e;
#if defined (HAVE_sibcall_epilogue) || defined (HAVE_epilogue) || defined (HAVE_return) || defined (HAVE_prologue)
  rtx seq;
#endif
#ifdef HAVE_prologue
  rtx prologue_end = NULL_RTX;
#endif
#if defined (HAVE_epilogue) || defined(HAVE_return)
  rtx epilogue_end = NULL_RTX;
#endif

#ifdef HAVE_prologue
  if (HAVE_prologue)
    {
      start_sequence ();
      seq = gen_prologue ();
      emit_insn (seq);

      /* Retain a map of the prologue insns.  */
      if (GET_CODE (seq) != SEQUENCE)
	seq = get_insns ();
      record_insns (seq, &prologue);
      prologue_end = emit_note (NULL, NOTE_INSN_PROLOGUE_END);

      seq = gen_sequence ();
      end_sequence ();

      /* Can't deal with multiple successors of the entry block
         at the moment.  Function should always have at least one
         entry point.  */
      if (!ENTRY_BLOCK_PTR->succ || ENTRY_BLOCK_PTR->succ->succ_next)
	abort ();

      insert_insn_on_edge (seq, ENTRY_BLOCK_PTR->succ);
      inserted = 1;
    }
#endif

  /* If the exit block has no non-fake predecessors, we don't need
     an epilogue.  */
  for (e = EXIT_BLOCK_PTR->pred; e; e = e->pred_next)
    if ((e->flags & EDGE_FAKE) == 0)
      break;
  if (e == NULL)
    goto epilogue_done;

#ifdef HAVE_return
  if (optimize && HAVE_return)
    {
      /* If we're allowed to generate a simple return instruction,
	 then by definition we don't need a full epilogue.  Examine
	 the block that falls through to EXIT.   If it does not
	 contain any code, examine its predecessors and try to
	 emit (conditional) return instructions.  */

      basic_block last;
      edge e_next;
      rtx label;

      for (e = EXIT_BLOCK_PTR->pred; e; e = e->pred_next)
	if (e->flags & EDGE_FALLTHRU)
	  break;
      if (e == NULL)
	goto epilogue_done;
      last = e->src;

      /* Verify that there are no active instructions in the last block.  */
      label = last->end;
      while (label && GET_CODE (label) != CODE_LABEL)
	{
	  if (active_insn_p (label))
	    break;
	  label = PREV_INSN (label);
	}

      if (last->head == label && GET_CODE (label) == CODE_LABEL)
	{
	  rtx epilogue_line_note = NULL_RTX;

	  /* Locate the line number associated with the closing brace,
	     if we can find one.  */
	  for (seq = get_last_insn ();
	       seq && ! active_insn_p (seq);
	       seq = PREV_INSN (seq))
	    if (GET_CODE (seq) == NOTE && NOTE_LINE_NUMBER (seq) > 0)
	      {
		epilogue_line_note = seq;
		break;
	      }

	  for (e = last->pred; e; e = e_next)
	    {
	      basic_block bb = e->src;
	      rtx jump;

	      e_next = e->pred_next;
	      if (bb == ENTRY_BLOCK_PTR)
		continue;

	      jump = bb->end;
	      if ((GET_CODE (jump) != JUMP_INSN) || JUMP_LABEL (jump) != label)
		continue;

	      /* If we have an unconditional jump, we can replace that
		 with a simple return instruction.  */
	      if (simplejump_p (jump))
		{
		  emit_return_into_block (bb, epilogue_line_note);
		  delete_insn (jump);
		}

	      /* If we have a conditional jump, we can try to replace
		 that with a conditional return instruction.  */
	      else if (condjump_p (jump))
		{
		  rtx ret, *loc;

		  ret = SET_SRC (PATTERN (jump));
		  if (GET_CODE (XEXP (ret, 1)) == LABEL_REF)
		    loc = &XEXP (ret, 1);
		  else
		    loc = &XEXP (ret, 2);
		  ret = gen_rtx_RETURN (VOIDmode);

		  if (! validate_change (jump, loc, ret, 0))
		    continue;
		  if (JUMP_LABEL (jump))
		    LABEL_NUSES (JUMP_LABEL (jump))--;

		  /* If this block has only one successor, it both jumps
		     and falls through to the fallthru block, so we can't
		     delete the edge.  */
		  if (bb->succ->succ_next == NULL)
		    continue;
		}
	      else
		continue;

	      /* Fix up the CFG for the successful change we just made.  */
	      redirect_edge_succ (e, EXIT_BLOCK_PTR);
	    }

	  /* Emit a return insn for the exit fallthru block.  Whether
	     this is still reachable will be determined later.  */

	  emit_barrier_after (last->end);
	  emit_return_into_block (last, epilogue_line_note);
	  epilogue_end = last->end;
	  last->succ->flags &= ~EDGE_FALLTHRU;
	  goto epilogue_done;
	}
    }
#endif
#ifdef HAVE_epilogue
  if (HAVE_epilogue)
    {
      /* Find the edge that falls through to EXIT.  Other edges may exist
	 due to RETURN instructions, but those don't need epilogues.
	 There really shouldn't be a mixture -- either all should have
	 been converted or none, however...  */

      for (e = EXIT_BLOCK_PTR->pred; e; e = e->pred_next)
	if (e->flags & EDGE_FALLTHRU)
	  break;
      if (e == NULL)
	goto epilogue_done;

      start_sequence ();
      epilogue_end = emit_note (NULL, NOTE_INSN_EPILOGUE_BEG);

      seq = gen_epilogue ();

#ifdef INCOMING_RETURN_ADDR_RTX
      /* If this function returns with the stack depressed and we can support
	 it, massage the epilogue to actually do that.  */
      if (TREE_CODE (TREE_TYPE (current_function_decl)) == FUNCTION_TYPE
	  && TYPE_RETURNS_STACK_DEPRESSED (TREE_TYPE (current_function_decl)))
	seq = keep_stack_depressed (seq);
#endif

      emit_jump_insn (seq);

      /* Retain a map of the epilogue insns.  */
      if (GET_CODE (seq) != SEQUENCE)
	seq = get_insns ();
      record_insns (seq, &epilogue);

      seq = gen_sequence ();
      end_sequence ();

      insert_insn_on_edge (seq, e);
      inserted = 1;
    }
#endif
epilogue_done:

  if (inserted)
    commit_edge_insertions ();

#ifdef HAVE_sibcall_epilogue
  /* Emit sibling epilogues before any sibling call sites.  */
  for (e = EXIT_BLOCK_PTR->pred; e; e = e->pred_next)
    {
      basic_block bb = e->src;
      rtx insn = bb->end;
      rtx i;
      rtx newinsn;

      if (GET_CODE (insn) != CALL_INSN
	  || ! SIBLING_CALL_P (insn))
	continue;

      start_sequence ();
      seq = gen_sibcall_epilogue ();
      end_sequence ();

      i = PREV_INSN (insn);
      newinsn = emit_insn_before (seq, insn);

      /* Retain a map of the epilogue insns.  Used in life analysis to
	 avoid getting rid of sibcall epilogue insns.  */
      record_insns (GET_CODE (seq) == SEQUENCE
		    ? seq : newinsn, &sibcall_epilogue);
    }
#endif

#ifdef HAVE_prologue
  if (prologue_end)
    {
      rtx insn, prev;

      /* GDB handles `break f' by setting a breakpoint on the first
	 line note after the prologue.  Which means (1) that if
	 there are line number notes before where we inserted the
	 prologue we should move them, and (2) we should generate a
	 note before the end of the first basic block, if there isn't
	 one already there.

	 ??? This behaviour is completely broken when dealing with
	 multiple entry functions.  We simply place the note always
	 into first basic block and let alternate entry points
	 to be missed.
       */

      for (insn = prologue_end; insn; insn = prev)
	{
	  prev = PREV_INSN (insn);
	  if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > 0)
	    {
	      /* Note that we cannot reorder the first insn in the
		 chain, since rest_of_compilation relies on that
		 remaining constant.  */
	      if (prev == NULL)
		break;
	      reorder_insns (insn, insn, prologue_end);
	    }
	}

      /* Find the last line number note in the first block.  */
      for (insn = BASIC_BLOCK (0)->end;
	   insn != prologue_end && insn;
	   insn = PREV_INSN (insn))
	if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > 0)
	  break;

      /* If we didn't find one, make a copy of the first line number
	 we run across.  */
      if (! insn)
	{
	  for (insn = next_active_insn (prologue_end);
	       insn;
	       insn = PREV_INSN (insn))
	    if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > 0)
	      {
		emit_line_note_after (NOTE_SOURCE_FILE (insn),
				      NOTE_LINE_NUMBER (insn),
				      prologue_end);
		break;
	      }
	}
    }
#endif
#ifdef HAVE_epilogue
  if (epilogue_end)
    {
      rtx insn, next;

      /* Similarly, move any line notes that appear after the epilogue.
         There is no need, however, to be quite so anal about the existence
	 of such a note.  */
      for (insn = epilogue_end; insn; insn = next)
	{
	  next = NEXT_INSN (insn);
	  if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > 0)
	    reorder_insns (insn, insn, PREV_INSN (epilogue_end));
	}
    }
#endif
}

/* Reposition the prologue-end and epilogue-begin notes after instruction
   scheduling and delayed branch scheduling.  */

void
reposition_prologue_and_epilogue_notes (f)
     rtx f ATTRIBUTE_UNUSED;
{
#if defined (HAVE_prologue) || defined (HAVE_epilogue)
  int len;

  if ((len = VARRAY_SIZE (prologue)) > 0)
    {
      rtx insn, note = 0;

      /* Scan from the beginning until we reach the last prologue insn.
	 We apparently can't depend on basic_block_{head,end} after
	 reorg has run.  */
      for (insn = f; len && insn; insn = NEXT_INSN (insn))
	{
	  if (GET_CODE (insn) == NOTE)
	    {
	      if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_PROLOGUE_END)
		note = insn;
	    }
	  else if ((len -= contains (insn, prologue)) == 0)
	    {
	      rtx next;
	      /* Find the prologue-end note if we haven't already, and
		 move it to just after the last prologue insn.  */
	      if (note == 0)
		{
		  for (note = insn; (note = NEXT_INSN (note));)
		    if (GET_CODE (note) == NOTE
			&& NOTE_LINE_NUMBER (note) == NOTE_INSN_PROLOGUE_END)
		      break;
		}

	      next = NEXT_INSN (note);

	      /* Whether or not we can depend on BLOCK_HEAD,
		 attempt to keep it up-to-date.  */
	      if (BLOCK_HEAD (0) == note)
		BLOCK_HEAD (0) = next;

	      remove_insn (note);
	      /* Avoid placing note between CODE_LABEL and BASIC_BLOCK note.  */
	      if (GET_CODE (insn) == CODE_LABEL)
		insn = NEXT_INSN (insn);
	      add_insn_after (note, insn);
	    }
	}
    }

  if ((len = VARRAY_SIZE (epilogue)) > 0)
    {
      rtx insn, note = 0;

      /* Scan from the end until we reach the first epilogue insn.
	 We apparently can't depend on basic_block_{head,end} after
	 reorg has run.  */
      for (insn = get_last_insn (); len && insn; insn = PREV_INSN (insn))
	{
	  if (GET_CODE (insn) == NOTE)
	    {
	      if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_EPILOGUE_BEG)
		note = insn;
	    }
	  else if ((len -= contains (insn, epilogue)) == 0)
	    {
	      /* Find the epilogue-begin note if we haven't already, and
		 move it to just before the first epilogue insn.  */
	      if (note == 0)
		{
		  for (note = insn; (note = PREV_INSN (note));)
		    if (GET_CODE (note) == NOTE
			&& NOTE_LINE_NUMBER (note) == NOTE_INSN_EPILOGUE_BEG)
		      break;
		}

	      /* Whether or not we can depend on BLOCK_HEAD,
		 attempt to keep it up-to-date.  */
	      if (n_basic_blocks
		  && BLOCK_HEAD (n_basic_blocks-1) == insn)
		BLOCK_HEAD (n_basic_blocks-1) = note;

	      remove_insn (note);
	      add_insn_before (note, insn);
	    }
	}
    }
#endif /* HAVE_prologue or HAVE_epilogue */
}

/* Mark P for GC.  */

static void
mark_function_status (p)
     struct function *p;
{
  struct var_refs_queue *q;
  struct temp_slot *t;
  int i;
  rtx *r;

  if (p == 0)
    return;

  ggc_mark_rtx (p->arg_offset_rtx);

  if (p->x_parm_reg_stack_loc)
    for (i = p->x_max_parm_reg, r = p->x_parm_reg_stack_loc;
	 i > 0; --i, ++r)
      ggc_mark_rtx (*r);

  ggc_mark_rtx (p->return_rtx);
  ggc_mark_rtx (p->x_cleanup_label);
  ggc_mark_rtx (p->x_return_label);
  ggc_mark_rtx (p->x_save_expr_regs);
  ggc_mark_rtx (p->x_stack_slot_list);
  ggc_mark_rtx (p->x_parm_birth_insn);
  ggc_mark_rtx (p->x_tail_recursion_label);
  ggc_mark_rtx (p->x_tail_recursion_reentry);
  ggc_mark_rtx (p->internal_arg_pointer);
  ggc_mark_rtx (p->x_arg_pointer_save_area);
  ggc_mark_tree (p->x_rtl_expr_chain);
  ggc_mark_rtx (p->x_last_parm_insn);
  ggc_mark_tree (p->x_context_display);
  ggc_mark_tree (p->x_trampoline_list);
  ggc_mark_rtx (p->epilogue_delay_list);
  ggc_mark_rtx (p->x_clobber_return_insn);

  for (t = p->x_temp_slots; t != 0; t = t->next)
    {
      ggc_mark (t);
      ggc_mark_rtx (t->slot);
      ggc_mark_rtx (t->address);
      ggc_mark_tree (t->rtl_expr);
      ggc_mark_tree (t->type);
    }

  for (q = p->fixup_var_refs_queue; q != 0; q = q->next)
    {
      ggc_mark (q);
      ggc_mark_rtx (q->modified);
      }

  ggc_mark_rtx (p->x_nonlocal_goto_handler_slots);
  ggc_mark_rtx (p->x_nonlocal_goto_handler_labels);
  ggc_mark_rtx (p->x_nonlocal_goto_stack_level);
  ggc_mark_tree (p->x_nonlocal_labels);

  mark_hard_reg_initial_vals (p);
}

/* Mark the struct function pointed to by *ARG for GC, if it is not
   NULL.  This is used to mark the current function and the outer
   function chain.  */

static void
maybe_mark_struct_function (arg)
     void *arg;
{
  struct function *f = *(struct function **) arg;

  if (f == 0)
    return;

  ggc_mark_struct_function (f);
}

/* Mark a struct function * for GC.  This is called from ggc-common.c.  */

void
ggc_mark_struct_function (f)
     struct function *f;
{
  ggc_mark (f);
  ggc_mark_tree (f->decl);

  mark_function_status (f);
  mark_eh_status (f->eh);
  mark_stmt_status (f->stmt);
  mark_expr_status (f->expr);
  mark_emit_status (f->emit);
  mark_varasm_status (f->varasm);

  if (mark_machine_status)
    (*mark_machine_status) (f);
  if (mark_lang_status)
    (*mark_lang_status) (f);

  if (f->original_arg_vector)
    ggc_mark_rtvec ((rtvec) f->original_arg_vector);
  if (f->original_decl_initial)
    ggc_mark_tree (f->original_decl_initial);
  if (f->outer)
    ggc_mark_struct_function (f->outer);
}

/* Called once, at initialization, to initialize function.c.  */

void
init_function_once ()
{
  ggc_add_root (&cfun, 1, sizeof cfun, maybe_mark_struct_function);
  ggc_add_root (&outer_function_chain, 1, sizeof outer_function_chain,
		maybe_mark_struct_function);

  VARRAY_INT_INIT (prologue, 0, "prologue");
  VARRAY_INT_INIT (epilogue, 0, "epilogue");
  VARRAY_INT_INIT (sibcall_epilogue, 0, "sibcall_epilogue");
}