summaryrefslogtreecommitdiff
path: root/gcc/gcse.c
blob: e554dd867a69fb98a547da775c91d329bc8d8033 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
7288
7289
7290
7291
7292
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
7347
7348
7349
7350
7351
7352
7353
7354
7355
7356
7357
7358
7359
7360
7361
7362
7363
7364
7365
7366
7367
7368
7369
7370
7371
7372
7373
7374
7375
7376
7377
7378
7379
7380
7381
7382
7383
7384
7385
7386
7387
7388
7389
7390
7391
7392
7393
7394
7395
7396
7397
7398
7399
7400
7401
7402
7403
7404
7405
7406
7407
7408
7409
7410
7411
7412
7413
7414
7415
7416
7417
7418
7419
7420
7421
7422
7423
7424
7425
7426
7427
7428
7429
7430
7431
7432
7433
7434
7435
7436
7437
7438
7439
7440
7441
7442
7443
7444
7445
7446
7447
7448
7449
7450
7451
7452
7453
7454
7455
7456
7457
7458
7459
7460
7461
7462
7463
7464
7465
7466
7467
7468
7469
7470
7471
7472
7473
7474
7475
7476
7477
7478
7479
7480
7481
7482
7483
7484
7485
7486
7487
7488
7489
7490
7491
7492
7493
7494
7495
7496
7497
7498
7499
7500
7501
7502
7503
7504
7505
7506
7507
7508
7509
7510
7511
7512
7513
7514
7515
7516
7517
7518
7519
7520
7521
7522
7523
7524
7525
7526
7527
7528
7529
7530
7531
7532
7533
7534
7535
7536
7537
7538
7539
7540
7541
7542
7543
7544
7545
7546
7547
7548
7549
7550
7551
7552
7553
7554
7555
7556
7557
7558
7559
7560
7561
7562
7563
7564
7565
7566
7567
7568
7569
7570
7571
7572
7573
7574
7575
7576
7577
7578
7579
7580
7581
7582
7583
7584
7585
7586
7587
7588
7589
7590
7591
7592
7593
7594
7595
7596
7597
7598
7599
7600
7601
7602
7603
7604
7605
7606
7607
7608
7609
7610
7611
7612
7613
7614
7615
7616
7617
7618
7619
7620
7621
7622
7623
7624
7625
7626
7627
7628
7629
7630
7631
7632
7633
7634
7635
7636
7637
7638
7639
7640
7641
7642
7643
7644
7645
7646
7647
7648
7649
7650
7651
7652
7653
7654
7655
7656
7657
7658
7659
7660
7661
7662
7663
7664
7665
7666
7667
7668
7669
7670
7671
7672
7673
7674
7675
7676
7677
7678
7679
7680
7681
7682
7683
7684
7685
7686
7687
7688
7689
7690
7691
7692
7693
7694
7695
7696
7697
7698
7699
7700
7701
7702
7703
7704
7705
7706
7707
7708
7709
7710
7711
7712
7713
7714
7715
7716
7717
7718
7719
7720
7721
7722
7723
7724
7725
7726
7727
7728
7729
7730
7731
7732
7733
7734
7735
7736
7737
7738
7739
7740
7741
7742
7743
7744
7745
7746
7747
7748
7749
7750
7751
7752
7753
7754
7755
7756
7757
7758
7759
7760
7761
7762
7763
7764
7765
7766
7767
7768
7769
7770
7771
7772
7773
7774
7775
7776
7777
7778
7779
7780
7781
7782
7783
7784
7785
7786
7787
7788
7789
7790
7791
7792
7793
7794
7795
7796
7797
7798
7799
7800
7801
7802
7803
7804
7805
7806
7807
7808
7809
7810
7811
7812
7813
7814
7815
7816
7817
7818
7819
7820
7821
7822
7823
7824
7825
7826
7827
7828
7829
7830
7831
7832
7833
7834
7835
7836
7837
7838
7839
7840
7841
7842
7843
7844
7845
7846
7847
7848
7849
7850
7851
7852
7853
7854
7855
7856
7857
7858
7859
7860
7861
7862
7863
7864
7865
7866
7867
7868
7869
7870
7871
7872
7873
7874
7875
7876
7877
7878
7879
7880
7881
7882
7883
7884
7885
7886
7887
7888
7889
7890
7891
7892
7893
7894
7895
7896
7897
7898
7899
7900
7901
7902
7903
7904
7905
7906
7907
7908
7909
7910
7911
7912
7913
7914
7915
7916
7917
7918
7919
7920
7921
7922
7923
7924
7925
7926
7927
7928
7929
7930
7931
7932
7933
7934
7935
7936
7937
7938
7939
7940
7941
7942
7943
7944
7945
7946
7947
7948
7949
7950
7951
7952
7953
7954
7955
7956
7957
7958
7959
7960
7961
7962
7963
7964
7965
7966
7967
7968
7969
7970
/* Global common subexpression elimination/Partial redundancy elimination
   and global constant/copy propagation for GNU compiler.
   Copyright (C) 1997, 1998, 1999, 2000, 2001, 2002, 2003
   Free Software Foundation, Inc.

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 2, or (at your option) any later
version.

GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING.  If not, write to the Free
Software Foundation, 59 Temple Place - Suite 330, Boston, MA
02111-1307, USA.  */

/* TODO
   - reordering of memory allocation and freeing to be more space efficient
   - do rough calc of how many regs are needed in each block, and a rough
     calc of how many regs are available in each class and use that to
     throttle back the code in cases where RTX_COST is minimal.
   - a store to the same address as a load does not kill the load if the
     source of the store is also the destination of the load.  Handling this
     allows more load motion, particularly out of loops.
   - ability to realloc sbitmap vectors would allow one initial computation
     of reg_set_in_block with only subsequent additions, rather than
     recomputing it for each pass

*/

/* References searched while implementing this.

   Compilers Principles, Techniques and Tools
   Aho, Sethi, Ullman
   Addison-Wesley, 1988

   Global Optimization by Suppression of Partial Redundancies
   E. Morel, C. Renvoise
   communications of the acm, Vol. 22, Num. 2, Feb. 1979

   A Portable Machine-Independent Global Optimizer - Design and Measurements
   Frederick Chow
   Stanford Ph.D. thesis, Dec. 1983

   A Fast Algorithm for Code Movement Optimization
   D.M. Dhamdhere
   SIGPLAN Notices, Vol. 23, Num. 10, Oct. 1988

   A Solution to a Problem with Morel and Renvoise's
   Global Optimization by Suppression of Partial Redundancies
   K-H Drechsler, M.P. Stadel
   ACM TOPLAS, Vol. 10, Num. 4, Oct. 1988

   Practical Adaptation of the Global Optimization
   Algorithm of Morel and Renvoise
   D.M. Dhamdhere
   ACM TOPLAS, Vol. 13, Num. 2. Apr. 1991

   Efficiently Computing Static Single Assignment Form and the Control
   Dependence Graph
   R. Cytron, J. Ferrante, B.K. Rosen, M.N. Wegman, and F.K. Zadeck
   ACM TOPLAS, Vol. 13, Num. 4, Oct. 1991

   Lazy Code Motion
   J. Knoop, O. Ruthing, B. Steffen
   ACM SIGPLAN Notices Vol. 27, Num. 7, Jul. 1992, '92 Conference on PLDI

   What's In a Region?  Or Computing Control Dependence Regions in Near-Linear
   Time for Reducible Flow Control
   Thomas Ball
   ACM Letters on Programming Languages and Systems,
   Vol. 2, Num. 1-4, Mar-Dec 1993

   An Efficient Representation for Sparse Sets
   Preston Briggs, Linda Torczon
   ACM Letters on Programming Languages and Systems,
   Vol. 2, Num. 1-4, Mar-Dec 1993

   A Variation of Knoop, Ruthing, and Steffen's Lazy Code Motion
   K-H Drechsler, M.P. Stadel
   ACM SIGPLAN Notices, Vol. 28, Num. 5, May 1993

   Partial Dead Code Elimination
   J. Knoop, O. Ruthing, B. Steffen
   ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994

   Effective Partial Redundancy Elimination
   P. Briggs, K.D. Cooper
   ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994

   The Program Structure Tree: Computing Control Regions in Linear Time
   R. Johnson, D. Pearson, K. Pingali
   ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994

   Optimal Code Motion: Theory and Practice
   J. Knoop, O. Ruthing, B. Steffen
   ACM TOPLAS, Vol. 16, Num. 4, Jul. 1994

   The power of assignment motion
   J. Knoop, O. Ruthing, B. Steffen
   ACM SIGPLAN Notices Vol. 30, Num. 6, Jun. 1995, '95 Conference on PLDI

   Global code motion / global value numbering
   C. Click
   ACM SIGPLAN Notices Vol. 30, Num. 6, Jun. 1995, '95 Conference on PLDI

   Value Driven Redundancy Elimination
   L.T. Simpson
   Rice University Ph.D. thesis, Apr. 1996

   Value Numbering
   L.T. Simpson
   Massively Scalar Compiler Project, Rice University, Sep. 1996

   High Performance Compilers for Parallel Computing
   Michael Wolfe
   Addison-Wesley, 1996

   Advanced Compiler Design and Implementation
   Steven Muchnick
   Morgan Kaufmann, 1997

   Building an Optimizing Compiler
   Robert Morgan
   Digital Press, 1998

   People wishing to speed up the code here should read:
     Elimination Algorithms for Data Flow Analysis
     B.G. Ryder, M.C. Paull
     ACM Computing Surveys, Vol. 18, Num. 3, Sep. 1986

     How to Analyze Large Programs Efficiently and Informatively
     D.M. Dhamdhere, B.K. Rosen, F.K. Zadeck
     ACM SIGPLAN Notices Vol. 27, Num. 7, Jul. 1992, '92 Conference on PLDI

   People wishing to do something different can find various possibilities
   in the above papers and elsewhere.
*/

#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "toplev.h"

#include "rtl.h"
#include "tm_p.h"
#include "regs.h"
#include "hard-reg-set.h"
#include "flags.h"
#include "real.h"
#include "insn-config.h"
#include "recog.h"
#include "basic-block.h"
#include "output.h"
#include "function.h"
#include "expr.h"
#include "except.h"
#include "ggc.h"
#include "params.h"
#include "cselib.h"

#include "obstack.h"

/* Propagate flow information through back edges and thus enable PRE's
   moving loop invariant calculations out of loops.

   Originally this tended to create worse overall code, but several
   improvements during the development of PRE seem to have made following
   back edges generally a win.

   Note much of the loop invariant code motion done here would normally
   be done by loop.c, which has more heuristics for when to move invariants
   out of loops.  At some point we might need to move some of those
   heuristics into gcse.c.  */

/* We support GCSE via Partial Redundancy Elimination.  PRE optimizations
   are a superset of those done by GCSE.

   We perform the following steps:

   1) Compute basic block information.

   2) Compute table of places where registers are set.

   3) Perform copy/constant propagation.

   4) Perform global cse.

   5) Perform another pass of copy/constant propagation.

   Two passes of copy/constant propagation are done because the first one
   enables more GCSE and the second one helps to clean up the copies that
   GCSE creates.  This is needed more for PRE than for Classic because Classic
   GCSE will try to use an existing register containing the common
   subexpression rather than create a new one.  This is harder to do for PRE
   because of the code motion (which Classic GCSE doesn't do).

   Expressions we are interested in GCSE-ing are of the form
   (set (pseudo-reg) (expression)).
   Function want_to_gcse_p says what these are.

   PRE handles moving invariant expressions out of loops (by treating them as
   partially redundant).

   Eventually it would be nice to replace cse.c/gcse.c with SSA (static single
   assignment) based GVN (global value numbering).  L. T. Simpson's paper
   (Rice University) on value numbering is a useful reference for this.

   **********************

   We used to support multiple passes but there are diminishing returns in
   doing so.  The first pass usually makes 90% of the changes that are doable.
   A second pass can make a few more changes made possible by the first pass.
   Experiments show any further passes don't make enough changes to justify
   the expense.

   A study of spec92 using an unlimited number of passes:
   [1 pass] = 1208 substitutions, [2] = 577, [3] = 202, [4] = 192, [5] = 83,
   [6] = 34, [7] = 17, [8] = 9, [9] = 4, [10] = 4, [11] = 2,
   [12] = 2, [13] = 1, [15] = 1, [16] = 2, [41] = 1

   It was found doing copy propagation between each pass enables further
   substitutions.

   PRE is quite expensive in complicated functions because the DFA can take
   awhile to converge.  Hence we only perform one pass.  The parameter max-gcse-passes can
   be modified if one wants to experiment.

   **********************

   The steps for PRE are:

   1) Build the hash table of expressions we wish to GCSE (expr_hash_table).

   2) Perform the data flow analysis for PRE.

   3) Delete the redundant instructions

   4) Insert the required copies [if any] that make the partially
      redundant instructions fully redundant.

   5) For other reaching expressions, insert an instruction to copy the value
      to a newly created pseudo that will reach the redundant instruction.

   The deletion is done first so that when we do insertions we
   know which pseudo reg to use.

   Various papers have argued that PRE DFA is expensive (O(n^2)) and others
   argue it is not.  The number of iterations for the algorithm to converge
   is typically 2-4 so I don't view it as that expensive (relatively speaking).

   PRE GCSE depends heavily on the second CSE pass to clean up the copies
   we create.  To make an expression reach the place where it's redundant,
   the result of the expression is copied to a new register, and the redundant
   expression is deleted by replacing it with this new register.  Classic GCSE
   doesn't have this problem as much as it computes the reaching defs of
   each register in each block and thus can try to use an existing register.

   **********************

   A fair bit of simplicity is created by creating small functions for simple
   tasks, even when the function is only called in one place.  This may
   measurably slow things down [or may not] by creating more function call
   overhead than is necessary.  The source is laid out so that it's trivial
   to make the affected functions inline so that one can measure what speed
   up, if any, can be achieved, and maybe later when things settle things can
   be rearranged.

   Help stamp out big monolithic functions!  */

/* GCSE global vars.  */

/* -dG dump file.  */
static FILE *gcse_file;

/* Note whether or not we should run jump optimization after gcse.  We
   want to do this for two cases.

    * If we changed any jumps via cprop.

    * If we added any labels via edge splitting.  */

static int run_jump_opt_after_gcse;

/* Bitmaps are normally not included in debugging dumps.
   However it's useful to be able to print them from GDB.
   We could create special functions for this, but it's simpler to
   just allow passing stderr to the dump_foo fns.  Since stderr can
   be a macro, we store a copy here.  */
static FILE *debug_stderr;

/* An obstack for our working variables.  */
static struct obstack gcse_obstack;

struct reg_use {rtx reg_rtx; };

/* Hash table of expressions.  */

struct expr
{
  /* The expression (SET_SRC for expressions, PATTERN for assignments).  */
  rtx expr;
  /* Index in the available expression bitmaps.  */
  int bitmap_index;
  /* Next entry with the same hash.  */
  struct expr *next_same_hash;
  /* List of anticipatable occurrences in basic blocks in the function.
     An "anticipatable occurrence" is one that is the first occurrence in the
     basic block, the operands are not modified in the basic block prior
     to the occurrence and the output is not used between the start of
     the block and the occurrence.  */
  struct occr *antic_occr;
  /* List of available occurrence in basic blocks in the function.
     An "available occurrence" is one that is the last occurrence in the
     basic block and the operands are not modified by following statements in
     the basic block [including this insn].  */
  struct occr *avail_occr;
  /* Non-null if the computation is PRE redundant.
     The value is the newly created pseudo-reg to record a copy of the
     expression in all the places that reach the redundant copy.  */
  rtx reaching_reg;
};

/* Occurrence of an expression.
   There is one per basic block.  If a pattern appears more than once the
   last appearance is used [or first for anticipatable expressions].  */

struct occr
{
  /* Next occurrence of this expression.  */
  struct occr *next;
  /* The insn that computes the expression.  */
  rtx insn;
  /* Nonzero if this [anticipatable] occurrence has been deleted.  */
  char deleted_p;
  /* Nonzero if this [available] occurrence has been copied to
     reaching_reg.  */
  /* ??? This is mutually exclusive with deleted_p, so they could share
     the same byte.  */
  char copied_p;
};

/* Expression and copy propagation hash tables.
   Each hash table is an array of buckets.
   ??? It is known that if it were an array of entries, structure elements
   `next_same_hash' and `bitmap_index' wouldn't be necessary.  However, it is
   not clear whether in the final analysis a sufficient amount of memory would
   be saved as the size of the available expression bitmaps would be larger
   [one could build a mapping table without holes afterwards though].
   Someday I'll perform the computation and figure it out.  */

struct hash_table
{
  /* The table itself.
     This is an array of `expr_hash_table_size' elements.  */
  struct expr **table;

  /* Size of the hash table, in elements.  */
  unsigned int size;

  /* Number of hash table elements.  */
  unsigned int n_elems;

  /* Whether the table is expression of copy propagation one.  */
  int set_p;
};

/* Expression hash table.  */
static struct hash_table expr_hash_table;

/* Copy propagation hash table.  */
static struct hash_table set_hash_table;

/* Mapping of uids to cuids.
   Only real insns get cuids.  */
static int *uid_cuid;

/* Highest UID in UID_CUID.  */
static int max_uid;

/* Get the cuid of an insn.  */
#ifdef ENABLE_CHECKING
#define INSN_CUID(INSN) (INSN_UID (INSN) > max_uid ? (abort (), 0) : uid_cuid[INSN_UID (INSN)])
#else
#define INSN_CUID(INSN) (uid_cuid[INSN_UID (INSN)])
#endif

/* Number of cuids.  */
static int max_cuid;

/* Mapping of cuids to insns.  */
static rtx *cuid_insn;

/* Get insn from cuid.  */
#define CUID_INSN(CUID) (cuid_insn[CUID])

/* Maximum register number in function prior to doing gcse + 1.
   Registers created during this pass have regno >= max_gcse_regno.
   This is named with "gcse" to not collide with global of same name.  */
static unsigned int max_gcse_regno;

/* Table of registers that are modified.

   For each register, each element is a list of places where the pseudo-reg
   is set.

   For simplicity, GCSE is done on sets of pseudo-regs only.  PRE GCSE only
   requires knowledge of which blocks kill which regs [and thus could use
   a bitmap instead of the lists `reg_set_table' uses].

   `reg_set_table' and could be turned into an array of bitmaps (num-bbs x
   num-regs) [however perhaps it may be useful to keep the data as is].  One
   advantage of recording things this way is that `reg_set_table' is fairly
   sparse with respect to pseudo regs but for hard regs could be fairly dense
   [relatively speaking].  And recording sets of pseudo-regs in lists speeds
   up functions like compute_transp since in the case of pseudo-regs we only
   need to iterate over the number of times a pseudo-reg is set, not over the
   number of basic blocks [clearly there is a bit of a slow down in the cases
   where a pseudo is set more than once in a block, however it is believed
   that the net effect is to speed things up].  This isn't done for hard-regs
   because recording call-clobbered hard-regs in `reg_set_table' at each
   function call can consume a fair bit of memory, and iterating over
   hard-regs stored this way in compute_transp will be more expensive.  */

typedef struct reg_set
{
  /* The next setting of this register.  */
  struct reg_set *next;
  /* The insn where it was set.  */
  rtx insn;
} reg_set;

static reg_set **reg_set_table;

/* Size of `reg_set_table'.
   The table starts out at max_gcse_regno + slop, and is enlarged as
   necessary.  */
static int reg_set_table_size;

/* Amount to grow `reg_set_table' by when it's full.  */
#define REG_SET_TABLE_SLOP 100

/* This is a list of expressions which are MEMs and will be used by load
   or store motion.
   Load motion tracks MEMs which aren't killed by
   anything except itself. (ie, loads and stores to a single location).
   We can then allow movement of these MEM refs with a little special
   allowance. (all stores copy the same value to the reaching reg used
   for the loads).  This means all values used to store into memory must have
   no side effects so we can re-issue the setter value.
   Store Motion uses this structure as an expression table to track stores
   which look interesting, and might be moveable towards the exit block.  */

struct ls_expr
{
  struct expr * expr;		/* Gcse expression reference for LM.  */
  rtx pattern;			/* Pattern of this mem.  */
  rtx pattern_regs;		/* List of registers mentioned by the mem.  */
  rtx loads;			/* INSN list of loads seen.  */
  rtx stores;			/* INSN list of stores seen.  */
  struct ls_expr * next;	/* Next in the list.  */
  int invalid;			/* Invalid for some reason.  */
  int index;			/* If it maps to a bitmap index.  */
  int hash_index;		/* Index when in a hash table.  */
  rtx reaching_reg;		/* Register to use when re-writing.  */
};

/* Array of implicit set patterns indexed by basic block index.  */
static rtx *implicit_sets;

/* Head of the list of load/store memory refs.  */
static struct ls_expr * pre_ldst_mems = NULL;

/* Bitmap containing one bit for each register in the program.
   Used when performing GCSE to track which registers have been set since
   the start of the basic block.  */
static regset reg_set_bitmap;

/* For each block, a bitmap of registers set in the block.
   This is used by expr_killed_p and compute_transp.
   It is computed during hash table computation and not by compute_sets
   as it includes registers added since the last pass (or between cprop and
   gcse) and it's currently not easy to realloc sbitmap vectors.  */
static sbitmap *reg_set_in_block;

/* Array, indexed by basic block number for a list of insns which modify
   memory within that block.  */
static rtx * modify_mem_list;
bitmap modify_mem_list_set;

/* This array parallels modify_mem_list, but is kept canonicalized.  */
static rtx * canon_modify_mem_list;
bitmap canon_modify_mem_list_set;
/* Various variables for statistics gathering.  */

/* Memory used in a pass.
   This isn't intended to be absolutely precise.  Its intent is only
   to keep an eye on memory usage.  */
static int bytes_used;

/* GCSE substitutions made.  */
static int gcse_subst_count;
/* Number of copy instructions created.  */
static int gcse_create_count;
/* Number of constants propagated.  */
static int const_prop_count;
/* Number of copys propagated.  */
static int copy_prop_count;

/* These variables are used by classic GCSE.
   Normally they'd be defined a bit later, but `rd_gen' needs to
   be declared sooner.  */

/* Each block has a bitmap of each type.
   The length of each blocks bitmap is:

       max_cuid  - for reaching definitions
       n_exprs - for available expressions

   Thus we view the bitmaps as 2 dimensional arrays.  i.e.
   rd_kill[block_num][cuid_num]
   ae_kill[block_num][expr_num]			 */

/* For reaching defs */
static sbitmap *rd_kill, *rd_gen, *reaching_defs, *rd_out;

/* for available exprs */
static sbitmap *ae_kill, *ae_gen, *ae_in, *ae_out;

/* Objects of this type are passed around by the null-pointer check
   removal routines.  */
struct null_pointer_info
{
  /* The basic block being processed.  */
  basic_block current_block;
  /* The first register to be handled in this pass.  */
  unsigned int min_reg;
  /* One greater than the last register to be handled in this pass.  */
  unsigned int max_reg;
  sbitmap *nonnull_local;
  sbitmap *nonnull_killed;
};

static void compute_can_copy	PARAMS ((void));
static char *gmalloc		PARAMS ((unsigned int));
static char *grealloc		PARAMS ((char *, unsigned int));
static char *gcse_alloc		PARAMS ((unsigned long));
static void alloc_gcse_mem	PARAMS ((rtx));
static void free_gcse_mem	PARAMS ((void));
static void alloc_reg_set_mem	PARAMS ((int));
static void free_reg_set_mem	PARAMS ((void));
static int get_bitmap_width     PARAMS ((int, int, int));
static void record_one_set	PARAMS ((int, rtx));
static void record_set_info	PARAMS ((rtx, rtx, void *));
static void compute_sets	PARAMS ((rtx));
static void hash_scan_insn	PARAMS ((rtx, struct hash_table *, int));
static void hash_scan_set	PARAMS ((rtx, rtx, struct hash_table *));
static void hash_scan_clobber	PARAMS ((rtx, rtx, struct hash_table *));
static void hash_scan_call	PARAMS ((rtx, rtx, struct hash_table *));
static int want_to_gcse_p	PARAMS ((rtx));
static bool gcse_constant_p	PARAMS ((rtx));
static int oprs_unchanged_p	PARAMS ((rtx, rtx, int));
static int oprs_anticipatable_p PARAMS ((rtx, rtx));
static int oprs_available_p	PARAMS ((rtx, rtx));
static void insert_expr_in_table PARAMS ((rtx, enum machine_mode, rtx,
					  int, int, struct hash_table *));
static void insert_set_in_table PARAMS ((rtx, rtx, struct hash_table *));
static unsigned int hash_expr	PARAMS ((rtx, enum machine_mode, int *, int));
static unsigned int hash_expr_1 PARAMS ((rtx, enum machine_mode, int *));
static unsigned int hash_string_1 PARAMS ((const char *));
static unsigned int hash_set	PARAMS ((int, int));
static int expr_equiv_p	        PARAMS ((rtx, rtx));
static void record_last_reg_set_info PARAMS ((rtx, int));
static void record_last_mem_set_info PARAMS ((rtx));
static void record_last_set_info PARAMS ((rtx, rtx, void *));
static void compute_hash_table	PARAMS ((struct hash_table *));
static void alloc_hash_table PARAMS ((int, struct hash_table *, int));
static void free_hash_table PARAMS ((struct hash_table *));
static void compute_hash_table_work PARAMS ((struct hash_table *));
static void dump_hash_table	PARAMS ((FILE *, const char *,
					struct hash_table *));
static struct expr *lookup_expr	PARAMS ((rtx, struct hash_table *));
static struct expr *lookup_set	PARAMS ((unsigned int, struct hash_table *));
static struct expr *next_set	PARAMS ((unsigned int, struct expr *));
static void reset_opr_set_tables PARAMS ((void));
static int oprs_not_set_p	PARAMS ((rtx, rtx));
static void mark_call		PARAMS ((rtx));
static void mark_set		PARAMS ((rtx, rtx));
static void mark_clobber	PARAMS ((rtx, rtx));
static void mark_oprs_set	PARAMS ((rtx));
static void alloc_cprop_mem	PARAMS ((int, int));
static void free_cprop_mem	PARAMS ((void));
static void compute_transp	PARAMS ((rtx, int, sbitmap *, int));
static void compute_transpout	PARAMS ((void));
static void compute_local_properties PARAMS ((sbitmap *, sbitmap *, sbitmap *,
					      struct hash_table *));
static void compute_cprop_data	PARAMS ((void));
static void find_used_regs	PARAMS ((rtx *, void *));
static int try_replace_reg	PARAMS ((rtx, rtx, rtx));
static struct expr *find_avail_set PARAMS ((int, rtx));
static int cprop_jump		PARAMS ((basic_block, rtx, rtx, rtx, rtx));
static void mems_conflict_for_gcse_p PARAMS ((rtx, rtx, void *));
static int load_killed_in_block_p    PARAMS ((basic_block, int, rtx, int));
static void canon_list_insert        PARAMS ((rtx, rtx, void *));
static int cprop_insn		PARAMS ((rtx, int));
static int cprop		PARAMS ((int));
static void find_implicit_sets	PARAMS ((void));
static int one_cprop_pass	PARAMS ((int, int, int));
static bool constprop_register	PARAMS ((rtx, rtx, rtx, int));
static struct expr *find_bypass_set PARAMS ((int, int));
static bool reg_killed_on_edge	    PARAMS ((rtx, edge));
static int bypass_block		    PARAMS ((basic_block, rtx, rtx));
static int bypass_conditional_jumps PARAMS ((void));
static void alloc_pre_mem	PARAMS ((int, int));
static void free_pre_mem	PARAMS ((void));
static void compute_pre_data	PARAMS ((void));
static int pre_expr_reaches_here_p PARAMS ((basic_block, struct expr *,
					    basic_block));
static void insert_insn_end_bb	PARAMS ((struct expr *, basic_block, int));
static void pre_insert_copy_insn PARAMS ((struct expr *, rtx));
static void pre_insert_copies	PARAMS ((void));
static int pre_delete		PARAMS ((void));
static int pre_gcse		PARAMS ((void));
static int one_pre_gcse_pass	PARAMS ((int));
static void add_label_notes	PARAMS ((rtx, rtx));
static void alloc_code_hoist_mem PARAMS ((int, int));
static void free_code_hoist_mem	PARAMS ((void));
static void compute_code_hoist_vbeinout	PARAMS ((void));
static void compute_code_hoist_data PARAMS ((void));
static int hoist_expr_reaches_here_p PARAMS ((basic_block, int, basic_block,
					      char *));
static void hoist_code		PARAMS ((void));
static int one_code_hoisting_pass PARAMS ((void));
static void alloc_rd_mem	PARAMS ((int, int));
static void free_rd_mem		PARAMS ((void));
static void handle_rd_kill_set	PARAMS ((rtx, int, basic_block));
static void compute_kill_rd	PARAMS ((void));
static void compute_rd		PARAMS ((void));
static void alloc_avail_expr_mem PARAMS ((int, int));
static void free_avail_expr_mem PARAMS ((void));
static void compute_ae_gen	PARAMS ((struct hash_table *));
static int expr_killed_p	PARAMS ((rtx, basic_block));
static void compute_ae_kill	PARAMS ((sbitmap *, sbitmap *, struct hash_table *));
static int expr_reaches_here_p	PARAMS ((struct occr *, struct expr *,
					 basic_block, int));
static rtx computing_insn	PARAMS ((struct expr *, rtx));
static int def_reaches_here_p	PARAMS ((rtx, rtx));
static int can_disregard_other_sets PARAMS ((struct reg_set **, rtx, int));
static int handle_avail_expr	PARAMS ((rtx, struct expr *));
static int classic_gcse		PARAMS ((void));
static int one_classic_gcse_pass PARAMS ((int));
static void invalidate_nonnull_info PARAMS ((rtx, rtx, void *));
static int delete_null_pointer_checks_1 PARAMS ((unsigned int *,
						  sbitmap *, sbitmap *,
						  struct null_pointer_info *));
static rtx process_insert_insn	PARAMS ((struct expr *));
static int pre_edge_insert	PARAMS ((struct edge_list *, struct expr **));
static int expr_reaches_here_p_work PARAMS ((struct occr *, struct expr *,
					     basic_block, int, char *));
static int pre_expr_reaches_here_p_work	PARAMS ((basic_block, struct expr *,
						 basic_block, char *));
static struct ls_expr * ldst_entry 	PARAMS ((rtx));
static void free_ldst_entry 		PARAMS ((struct ls_expr *));
static void free_ldst_mems		PARAMS ((void));
static void print_ldst_list 		PARAMS ((FILE *));
static struct ls_expr * find_rtx_in_ldst PARAMS ((rtx));
static int enumerate_ldsts		PARAMS ((void));
static inline struct ls_expr * first_ls_expr PARAMS ((void));
static inline struct ls_expr * next_ls_expr  PARAMS ((struct ls_expr *));
static int simple_mem			PARAMS ((rtx));
static void invalidate_any_buried_refs	PARAMS ((rtx));
static void compute_ld_motion_mems	PARAMS ((void));
static void trim_ld_motion_mems		PARAMS ((void));
static void update_ld_motion_stores	PARAMS ((struct expr *));
static void reg_set_info		PARAMS ((rtx, rtx, void *));
static bool store_ops_ok		PARAMS ((rtx, int *));
static rtx extract_mentioned_regs	PARAMS ((rtx));
static rtx extract_mentioned_regs_helper PARAMS ((rtx, rtx));
static void find_moveable_store		PARAMS ((rtx, int *, int *));
static int compute_store_table		PARAMS ((void));
static bool load_kills_store		PARAMS ((rtx, rtx));
static bool find_loads			PARAMS ((rtx, rtx));
static bool store_killed_in_insn	PARAMS ((rtx, rtx, rtx));
static bool store_killed_after		PARAMS ((rtx, rtx, rtx, basic_block,
						 int *, rtx *));
static bool store_killed_before		PARAMS ((rtx, rtx, rtx, basic_block,
						 int *));
static void build_store_vectors		PARAMS ((void));
static void insert_insn_start_bb	PARAMS ((rtx, basic_block));
static int insert_store			PARAMS ((struct ls_expr *, edge));
static void replace_store_insn		PARAMS ((rtx, rtx, basic_block));
static void delete_store		PARAMS ((struct ls_expr *,
						 basic_block));
static void free_store_memory		PARAMS ((void));
static void store_motion		PARAMS ((void));
static void free_insn_expr_list_list	PARAMS ((rtx *));
static void clear_modify_mem_tables	PARAMS ((void));
static void free_modify_mem_tables	PARAMS ((void));
static rtx gcse_emit_move_after		PARAMS ((rtx, rtx, rtx));
static void local_cprop_find_used_regs	PARAMS ((rtx *, void *));
static bool do_local_cprop		PARAMS ((rtx, rtx, int, rtx*));
static bool adjust_libcall_notes	PARAMS ((rtx, rtx, rtx, rtx*));
static void local_cprop_pass		PARAMS ((int));

/* Entry point for global common subexpression elimination.
   F is the first instruction in the function.  */

int
gcse_main (f, file)
     rtx f;
     FILE *file;
{
  int changed, pass;
  /* Bytes used at start of pass.  */
  int initial_bytes_used;
  /* Maximum number of bytes used by a pass.  */
  int max_pass_bytes;
  /* Point to release obstack data from for each pass.  */
  char *gcse_obstack_bottom;

  /* We do not construct an accurate cfg in functions which call
     setjmp, so just punt to be safe.  */
  if (current_function_calls_setjmp)
    return 0;

  /* Assume that we do not need to run jump optimizations after gcse.  */
  run_jump_opt_after_gcse = 0;

  /* For calling dump_foo fns from gdb.  */
  debug_stderr = stderr;
  gcse_file = file;

  /* Identify the basic block information for this function, including
     successors and predecessors.  */
  max_gcse_regno = max_reg_num ();

  if (file)
    dump_flow_info (file);

  /* Return if there's nothing to do.  */
  if (n_basic_blocks <= 1)
    return 0;

  /* Trying to perform global optimizations on flow graphs which have
     a high connectivity will take a long time and is unlikely to be
     particularly useful.

     In normal circumstances a cfg should have about twice as many edges
     as blocks.  But we do not want to punish small functions which have
     a couple switch statements.  So we require a relatively large number
     of basic blocks and the ratio of edges to blocks to be high.  */
  if (n_basic_blocks > 1000 && n_edges / n_basic_blocks >= 20)
    {
      if (warn_disabled_optimization)
	warning ("GCSE disabled: %d > 1000 basic blocks and %d >= 20 edges/basic block",
		 n_basic_blocks, n_edges / n_basic_blocks);
      return 0;
    }

  /* If allocating memory for the cprop bitmap would take up too much
     storage it's better just to disable the optimization.  */
  if ((n_basic_blocks
       * SBITMAP_SET_SIZE (max_gcse_regno)
       * sizeof (SBITMAP_ELT_TYPE)) > MAX_GCSE_MEMORY)
    {
      if (warn_disabled_optimization)
	warning ("GCSE disabled: %d basic blocks and %d registers",
		 n_basic_blocks, max_gcse_regno);

      return 0;
    }

  gcc_obstack_init (&gcse_obstack);
  bytes_used = 0;

  /* We need alias.  */
  init_alias_analysis ();
  /* Record where pseudo-registers are set.  This data is kept accurate
     during each pass.  ??? We could also record hard-reg information here
     [since it's unchanging], however it is currently done during hash table
     computation.

     It may be tempting to compute MEM set information here too, but MEM sets
     will be subject to code motion one day and thus we need to compute
     information about memory sets when we build the hash tables.  */

  alloc_reg_set_mem (max_gcse_regno);
  compute_sets (f);

  pass = 0;
  initial_bytes_used = bytes_used;
  max_pass_bytes = 0;
  gcse_obstack_bottom = gcse_alloc (1);
  changed = 1;
  while (changed && pass < MAX_GCSE_PASSES)
    {
      changed = 0;
      if (file)
	fprintf (file, "GCSE pass %d\n\n", pass + 1);

      /* Initialize bytes_used to the space for the pred/succ lists,
	 and the reg_set_table data.  */
      bytes_used = initial_bytes_used;

      /* Each pass may create new registers, so recalculate each time.  */
      max_gcse_regno = max_reg_num ();

      alloc_gcse_mem (f);

      /* Don't allow constant propagation to modify jumps
	 during this pass.  */
      changed = one_cprop_pass (pass + 1, 0, 0);

      if (optimize_size)
	changed |= one_classic_gcse_pass (pass + 1);
      else
	{
	  changed |= one_pre_gcse_pass (pass + 1);
	  /* We may have just created new basic blocks.  Release and
	     recompute various things which are sized on the number of
	     basic blocks.  */
	  if (changed)
	    {
	      free_modify_mem_tables ();
	      modify_mem_list
		= (rtx *) gmalloc (last_basic_block * sizeof (rtx));
	      canon_modify_mem_list
		= (rtx *) gmalloc (last_basic_block * sizeof (rtx));
	      memset ((char *) modify_mem_list, 0, last_basic_block * sizeof (rtx));
	      memset ((char *) canon_modify_mem_list, 0, last_basic_block * sizeof (rtx));
	    }
	  free_reg_set_mem ();
	  alloc_reg_set_mem (max_reg_num ());
	  compute_sets (f);
	  run_jump_opt_after_gcse = 1;
	}

      if (max_pass_bytes < bytes_used)
	max_pass_bytes = bytes_used;

      /* Free up memory, then reallocate for code hoisting.  We can
	 not re-use the existing allocated memory because the tables
	 will not have info for the insns or registers created by
	 partial redundancy elimination.  */
      free_gcse_mem ();

      /* It does not make sense to run code hoisting unless we optimizing
	 for code size -- it rarely makes programs faster, and can make
	 them bigger if we did partial redundancy elimination (when optimizing
	 for space, we use a classic gcse algorithm instead of partial
	 redundancy algorithms).  */
      if (optimize_size)
	{
	  max_gcse_regno = max_reg_num ();
	  alloc_gcse_mem (f);
	  changed |= one_code_hoisting_pass ();
	  free_gcse_mem ();

	  if (max_pass_bytes < bytes_used)
	    max_pass_bytes = bytes_used;
	}

      if (file)
	{
	  fprintf (file, "\n");
	  fflush (file);
	}

      obstack_free (&gcse_obstack, gcse_obstack_bottom);
      pass++;
    }

  /* Do one last pass of copy propagation, including cprop into
     conditional jumps.  */

  max_gcse_regno = max_reg_num ();
  alloc_gcse_mem (f);
  /* This time, go ahead and allow cprop to alter jumps.  */
  one_cprop_pass (pass + 1, 1, 0);
  free_gcse_mem ();

  if (file)
    {
      fprintf (file, "GCSE of %s: %d basic blocks, ",
	       current_function_name, n_basic_blocks);
      fprintf (file, "%d pass%s, %d bytes\n\n",
	       pass, pass > 1 ? "es" : "", max_pass_bytes);
    }

  obstack_free (&gcse_obstack, NULL);
  free_reg_set_mem ();
  /* We are finished with alias.  */
  end_alias_analysis ();
  allocate_reg_info (max_reg_num (), FALSE, FALSE);

  if (!optimize_size && flag_gcse_sm)
    store_motion ();

  /* Record where pseudo-registers are set.  */
  return run_jump_opt_after_gcse;
}

/* Misc. utilities.  */

/* Nonzero for each mode that supports (set (reg) (reg)).
   This is trivially true for integer and floating point values.
   It may or may not be true for condition codes.  */
static char can_copy[(int) NUM_MACHINE_MODES];

/* Compute which modes support reg/reg copy operations.  */

static void
compute_can_copy ()
{
  int i;
#ifndef AVOID_CCMODE_COPIES
  rtx reg, insn;
#endif
  memset (can_copy, 0, NUM_MACHINE_MODES);

  start_sequence ();
  for (i = 0; i < NUM_MACHINE_MODES; i++)
    if (GET_MODE_CLASS (i) == MODE_CC)
      {
#ifdef AVOID_CCMODE_COPIES
	can_copy[i] = 0;
#else
	reg = gen_rtx_REG ((enum machine_mode) i, LAST_VIRTUAL_REGISTER + 1);
	insn = emit_insn (gen_rtx_SET (VOIDmode, reg, reg));
	if (recog (PATTERN (insn), insn, NULL) >= 0)
	  can_copy[i] = 1;
#endif
      }
    else
      can_copy[i] = 1;

  end_sequence ();
}

/* Returns whether the mode supports reg/reg copy operations.  */

bool
can_copy_p (mode)
     enum machine_mode mode;
{
  static bool can_copy_init_p = false;

  if (! can_copy_init_p)
    {
      compute_can_copy ();
      can_copy_init_p = true;
    }

  return can_copy[mode] != 0;
}

/* Cover function to xmalloc to record bytes allocated.  */

static char *
gmalloc (size)
     unsigned int size;
{
  bytes_used += size;
  return xmalloc (size);
}

/* Cover function to xrealloc.
   We don't record the additional size since we don't know it.
   It won't affect memory usage stats much anyway.  */

static char *
grealloc (ptr, size)
     char *ptr;
     unsigned int size;
{
  return xrealloc (ptr, size);
}

/* Cover function to obstack_alloc.  */

static char *
gcse_alloc (size)
     unsigned long size;
{
  bytes_used += size;
  return (char *) obstack_alloc (&gcse_obstack, size);
}

/* Allocate memory for the cuid mapping array,
   and reg/memory set tracking tables.

   This is called at the start of each pass.  */

static void
alloc_gcse_mem (f)
     rtx f;
{
  int i, n;
  rtx insn;

  /* Find the largest UID and create a mapping from UIDs to CUIDs.
     CUIDs are like UIDs except they increase monotonically, have no gaps,
     and only apply to real insns.  */

  max_uid = get_max_uid ();
  n = (max_uid + 1) * sizeof (int);
  uid_cuid = (int *) gmalloc (n);
  memset ((char *) uid_cuid, 0, n);
  for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
    {
      if (INSN_P (insn))
	uid_cuid[INSN_UID (insn)] = i++;
      else
	uid_cuid[INSN_UID (insn)] = i;
    }

  /* Create a table mapping cuids to insns.  */

  max_cuid = i;
  n = (max_cuid + 1) * sizeof (rtx);
  cuid_insn = (rtx *) gmalloc (n);
  memset ((char *) cuid_insn, 0, n);
  for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
    if (INSN_P (insn))
      CUID_INSN (i++) = insn;

  /* Allocate vars to track sets of regs.  */
  reg_set_bitmap = BITMAP_XMALLOC ();

  /* Allocate vars to track sets of regs, memory per block.  */
  reg_set_in_block = (sbitmap *) sbitmap_vector_alloc (last_basic_block,
						       max_gcse_regno);
  /* Allocate array to keep a list of insns which modify memory in each
     basic block.  */
  modify_mem_list = (rtx *) gmalloc (last_basic_block * sizeof (rtx));
  canon_modify_mem_list = (rtx *) gmalloc (last_basic_block * sizeof (rtx));
  memset ((char *) modify_mem_list, 0, last_basic_block * sizeof (rtx));
  memset ((char *) canon_modify_mem_list, 0, last_basic_block * sizeof (rtx));
  modify_mem_list_set = BITMAP_XMALLOC ();
  canon_modify_mem_list_set = BITMAP_XMALLOC ();
}

/* Free memory allocated by alloc_gcse_mem.  */

static void
free_gcse_mem ()
{
  free (uid_cuid);
  free (cuid_insn);

  BITMAP_XFREE (reg_set_bitmap);

  sbitmap_vector_free (reg_set_in_block);
  free_modify_mem_tables ();
  BITMAP_XFREE (modify_mem_list_set);
  BITMAP_XFREE (canon_modify_mem_list_set);
}

/* Many of the global optimization algorithms work by solving dataflow
   equations for various expressions.  Initially, some local value is
   computed for each expression in each block.  Then, the values across the
   various blocks are combined (by following flow graph edges) to arrive at
   global values.  Conceptually, each set of equations is independent.  We
   may therefore solve all the equations in parallel, solve them one at a
   time, or pick any intermediate approach.

   When you're going to need N two-dimensional bitmaps, each X (say, the
   number of blocks) by Y (say, the number of expressions), call this
   function.  It's not important what X and Y represent; only that Y
   correspond to the things that can be done in parallel.  This function will
   return an appropriate chunking factor C; you should solve C sets of
   equations in parallel.  By going through this function, we can easily
   trade space against time; by solving fewer equations in parallel we use
   less space.  */

static int
get_bitmap_width (n, x, y)
     int n;
     int x;
     int y;
{
  /* It's not really worth figuring out *exactly* how much memory will
     be used by a particular choice.  The important thing is to get
     something approximately right.  */
  size_t max_bitmap_memory = 10 * 1024 * 1024;

  /* The number of bytes we'd use for a single column of minimum
     width.  */
  size_t column_size = n * x * sizeof (SBITMAP_ELT_TYPE);

  /* Often, it's reasonable just to solve all the equations in
     parallel.  */
  if (column_size * SBITMAP_SET_SIZE (y) <= max_bitmap_memory)
    return y;

  /* Otherwise, pick the largest width we can, without going over the
     limit.  */
  return SBITMAP_ELT_BITS * ((max_bitmap_memory + column_size - 1)
			     / column_size);
}

/* Compute the local properties of each recorded expression.

   Local properties are those that are defined by the block, irrespective of
   other blocks.

   An expression is transparent in a block if its operands are not modified
   in the block.

   An expression is computed (locally available) in a block if it is computed
   at least once and expression would contain the same value if the
   computation was moved to the end of the block.

   An expression is locally anticipatable in a block if it is computed at
   least once and expression would contain the same value if the computation
   was moved to the beginning of the block.

   We call this routine for cprop, pre and code hoisting.  They all compute
   basically the same information and thus can easily share this code.

   TRANSP, COMP, and ANTLOC are destination sbitmaps for recording local
   properties.  If NULL, then it is not necessary to compute or record that
   particular property.

   TABLE controls which hash table to look at.  If it is  set hash table,
   additionally, TRANSP is computed as ~TRANSP, since this is really cprop's
   ABSALTERED.  */

static void
compute_local_properties (transp, comp, antloc, table)
     sbitmap *transp;
     sbitmap *comp;
     sbitmap *antloc;
     struct hash_table *table;
{
  unsigned int i;

  /* Initialize any bitmaps that were passed in.  */
  if (transp)
    {
      if (table->set_p)
	sbitmap_vector_zero (transp, last_basic_block);
      else
	sbitmap_vector_ones (transp, last_basic_block);
    }

  if (comp)
    sbitmap_vector_zero (comp, last_basic_block);
  if (antloc)
    sbitmap_vector_zero (antloc, last_basic_block);

  for (i = 0; i < table->size; i++)
    {
      struct expr *expr;

      for (expr = table->table[i]; expr != NULL; expr = expr->next_same_hash)
	{
	  int indx = expr->bitmap_index;
	  struct occr *occr;

	  /* The expression is transparent in this block if it is not killed.
	     We start by assuming all are transparent [none are killed], and
	     then reset the bits for those that are.  */
	  if (transp)
	    compute_transp (expr->expr, indx, transp, table->set_p);

	  /* The occurrences recorded in antic_occr are exactly those that
	     we want to set to nonzero in ANTLOC.  */
	  if (antloc)
	    for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
	      {
		SET_BIT (antloc[BLOCK_NUM (occr->insn)], indx);

		/* While we're scanning the table, this is a good place to
		   initialize this.  */
		occr->deleted_p = 0;
	      }

	  /* The occurrences recorded in avail_occr are exactly those that
	     we want to set to nonzero in COMP.  */
	  if (comp)
	    for (occr = expr->avail_occr; occr != NULL; occr = occr->next)
	      {
		SET_BIT (comp[BLOCK_NUM (occr->insn)], indx);

		/* While we're scanning the table, this is a good place to
		   initialize this.  */
		occr->copied_p = 0;
	      }

	  /* While we're scanning the table, this is a good place to
	     initialize this.  */
	  expr->reaching_reg = 0;
	}
    }
}

/* Register set information.

   `reg_set_table' records where each register is set or otherwise
   modified.  */

static struct obstack reg_set_obstack;

static void
alloc_reg_set_mem (n_regs)
     int n_regs;
{
  unsigned int n;

  reg_set_table_size = n_regs + REG_SET_TABLE_SLOP;
  n = reg_set_table_size * sizeof (struct reg_set *);
  reg_set_table = (struct reg_set **) gmalloc (n);
  memset ((char *) reg_set_table, 0, n);

  gcc_obstack_init (&reg_set_obstack);
}

static void
free_reg_set_mem ()
{
  free (reg_set_table);
  obstack_free (&reg_set_obstack, NULL);
}

/* Record REGNO in the reg_set table.  */

static void
record_one_set (regno, insn)
     int regno;
     rtx insn;
{
  /* Allocate a new reg_set element and link it onto the list.  */
  struct reg_set *new_reg_info;

  /* If the table isn't big enough, enlarge it.  */
  if (regno >= reg_set_table_size)
    {
      int new_size = regno + REG_SET_TABLE_SLOP;

      reg_set_table
	= (struct reg_set **) grealloc ((char *) reg_set_table,
					new_size * sizeof (struct reg_set *));
      memset ((char *) (reg_set_table + reg_set_table_size), 0,
	      (new_size - reg_set_table_size) * sizeof (struct reg_set *));
      reg_set_table_size = new_size;
    }

  new_reg_info = (struct reg_set *) obstack_alloc (&reg_set_obstack,
						   sizeof (struct reg_set));
  bytes_used += sizeof (struct reg_set);
  new_reg_info->insn = insn;
  new_reg_info->next = reg_set_table[regno];
  reg_set_table[regno] = new_reg_info;
}

/* Called from compute_sets via note_stores to handle one SET or CLOBBER in
   an insn.  The DATA is really the instruction in which the SET is
   occurring.  */

static void
record_set_info (dest, setter, data)
     rtx dest, setter ATTRIBUTE_UNUSED;
     void *data;
{
  rtx record_set_insn = (rtx) data;

  if (GET_CODE (dest) == REG && REGNO (dest) >= FIRST_PSEUDO_REGISTER)
    record_one_set (REGNO (dest), record_set_insn);
}

/* Scan the function and record each set of each pseudo-register.

   This is called once, at the start of the gcse pass.  See the comments for
   `reg_set_table' for further documentation.  */

static void
compute_sets (f)
     rtx f;
{
  rtx insn;

  for (insn = f; insn != 0; insn = NEXT_INSN (insn))
    if (INSN_P (insn))
      note_stores (PATTERN (insn), record_set_info, insn);
}

/* Hash table support.  */

struct reg_avail_info
{
  basic_block last_bb;
  int first_set;
  int last_set;
};

static struct reg_avail_info *reg_avail_info;
static basic_block current_bb;


/* See whether X, the source of a set, is something we want to consider for
   GCSE.  */

static GTY(()) rtx test_insn;
static int
want_to_gcse_p (x)
     rtx x;
{
  int num_clobbers = 0;
  int icode;

  switch (GET_CODE (x))
    {
    case REG:
    case SUBREG:
    case CONST_INT:
    case CONST_DOUBLE:
    case CONST_VECTOR:
    case CALL:
    case CONSTANT_P_RTX:
      return 0;

    default:
      break;
    }

  /* If this is a valid operand, we are OK.  If it's VOIDmode, we aren't.  */
  if (general_operand (x, GET_MODE (x)))
    return 1;
  else if (GET_MODE (x) == VOIDmode)
    return 0;

  /* Otherwise, check if we can make a valid insn from it.  First initialize
     our test insn if we haven't already.  */
  if (test_insn == 0)
    {
      test_insn
	= make_insn_raw (gen_rtx_SET (VOIDmode,
				      gen_rtx_REG (word_mode,
						   FIRST_PSEUDO_REGISTER * 2),
				      const0_rtx));
      NEXT_INSN (test_insn) = PREV_INSN (test_insn) = 0;
    }

  /* Now make an insn like the one we would make when GCSE'ing and see if
     valid.  */
  PUT_MODE (SET_DEST (PATTERN (test_insn)), GET_MODE (x));
  SET_SRC (PATTERN (test_insn)) = x;
  return ((icode = recog (PATTERN (test_insn), test_insn, &num_clobbers)) >= 0
	  && (num_clobbers == 0 || ! added_clobbers_hard_reg_p (icode)));
}

/* Return nonzero if the operands of expression X are unchanged from the
   start of INSN's basic block up to but not including INSN (if AVAIL_P == 0),
   or from INSN to the end of INSN's basic block (if AVAIL_P != 0).  */

static int
oprs_unchanged_p (x, insn, avail_p)
     rtx x, insn;
     int avail_p;
{
  int i, j;
  enum rtx_code code;
  const char *fmt;

  if (x == 0)
    return 1;

  code = GET_CODE (x);
  switch (code)
    {
    case REG:
      {
	struct reg_avail_info *info = &reg_avail_info[REGNO (x)];

	if (info->last_bb != current_bb)
	  return 1;
	if (avail_p)
	  return info->last_set < INSN_CUID (insn);
	else
	  return info->first_set >= INSN_CUID (insn);
      }

    case MEM:
      if (load_killed_in_block_p (current_bb, INSN_CUID (insn),
				  x, avail_p))
	return 0;
      else
	return oprs_unchanged_p (XEXP (x, 0), insn, avail_p);

    case PRE_DEC:
    case PRE_INC:
    case POST_DEC:
    case POST_INC:
    case PRE_MODIFY:
    case POST_MODIFY:
      return 0;

    case PC:
    case CC0: /*FIXME*/
    case CONST:
    case CONST_INT:
    case CONST_DOUBLE:
    case CONST_VECTOR:
    case SYMBOL_REF:
    case LABEL_REF:
    case ADDR_VEC:
    case ADDR_DIFF_VEC:
      return 1;

    default:
      break;
    }

  for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
    {
      if (fmt[i] == 'e')
	{
	  /* If we are about to do the last recursive call needed at this
	     level, change it into iteration.  This function is called enough
	     to be worth it.  */
	  if (i == 0)
	    return oprs_unchanged_p (XEXP (x, i), insn, avail_p);

	  else if (! oprs_unchanged_p (XEXP (x, i), insn, avail_p))
	    return 0;
	}
      else if (fmt[i] == 'E')
	for (j = 0; j < XVECLEN (x, i); j++)
	  if (! oprs_unchanged_p (XVECEXP (x, i, j), insn, avail_p))
	    return 0;
    }

  return 1;
}

/* Used for communication between mems_conflict_for_gcse_p and
   load_killed_in_block_p.  Nonzero if mems_conflict_for_gcse_p finds a
   conflict between two memory references.  */
static int gcse_mems_conflict_p;

/* Used for communication between mems_conflict_for_gcse_p and
   load_killed_in_block_p.  A memory reference for a load instruction,
   mems_conflict_for_gcse_p will see if a memory store conflicts with
   this memory load.  */
static rtx gcse_mem_operand;

/* DEST is the output of an instruction.  If it is a memory reference, and
   possibly conflicts with the load found in gcse_mem_operand, then set
   gcse_mems_conflict_p to a nonzero value.  */

static void
mems_conflict_for_gcse_p (dest, setter, data)
     rtx dest, setter ATTRIBUTE_UNUSED;
     void *data ATTRIBUTE_UNUSED;
{
  while (GET_CODE (dest) == SUBREG
	 || GET_CODE (dest) == ZERO_EXTRACT
	 || GET_CODE (dest) == SIGN_EXTRACT
	 || GET_CODE (dest) == STRICT_LOW_PART)
    dest = XEXP (dest, 0);

  /* If DEST is not a MEM, then it will not conflict with the load.  Note
     that function calls are assumed to clobber memory, but are handled
     elsewhere.  */
  if (GET_CODE (dest) != MEM)
    return;

  /* If we are setting a MEM in our list of specially recognized MEMs,
     don't mark as killed this time.  */

  if (expr_equiv_p (dest, gcse_mem_operand) && pre_ldst_mems != NULL)
    {
      if (!find_rtx_in_ldst (dest))
	gcse_mems_conflict_p = 1;
      return;
    }

  if (true_dependence (dest, GET_MODE (dest), gcse_mem_operand,
		       rtx_addr_varies_p))
    gcse_mems_conflict_p = 1;
}

/* Return nonzero if the expression in X (a memory reference) is killed
   in block BB before or after the insn with the CUID in UID_LIMIT.
   AVAIL_P is nonzero for kills after UID_LIMIT, and zero for kills
   before UID_LIMIT.

   To check the entire block, set UID_LIMIT to max_uid + 1 and
   AVAIL_P to 0.  */

static int
load_killed_in_block_p (bb, uid_limit, x, avail_p)
     basic_block bb;
     int uid_limit;
     rtx x;
     int avail_p;
{
  rtx list_entry = modify_mem_list[bb->index];
  while (list_entry)
    {
      rtx setter;
      /* Ignore entries in the list that do not apply.  */
      if ((avail_p
	   && INSN_CUID (XEXP (list_entry, 0)) < uid_limit)
	  || (! avail_p
	      && INSN_CUID (XEXP (list_entry, 0)) > uid_limit))
	{
	  list_entry = XEXP (list_entry, 1);
	  continue;
	}

      setter = XEXP (list_entry, 0);

      /* If SETTER is a call everything is clobbered.  Note that calls
	 to pure functions are never put on the list, so we need not
	 worry about them.  */
      if (GET_CODE (setter) == CALL_INSN)
	return 1;

      /* SETTER must be an INSN of some kind that sets memory.  Call
	 note_stores to examine each hunk of memory that is modified.

	 The note_stores interface is pretty limited, so we have to
	 communicate via global variables.  Yuk.  */
      gcse_mem_operand = x;
      gcse_mems_conflict_p = 0;
      note_stores (PATTERN (setter), mems_conflict_for_gcse_p, NULL);
      if (gcse_mems_conflict_p)
	return 1;
      list_entry = XEXP (list_entry, 1);
    }
  return 0;
}

/* Return nonzero if the operands of expression X are unchanged from
   the start of INSN's basic block up to but not including INSN.  */

static int
oprs_anticipatable_p (x, insn)
     rtx x, insn;
{
  return oprs_unchanged_p (x, insn, 0);
}

/* Return nonzero if the operands of expression X are unchanged from
   INSN to the end of INSN's basic block.  */

static int
oprs_available_p (x, insn)
     rtx x, insn;
{
  return oprs_unchanged_p (x, insn, 1);
}

/* Hash expression X.

   MODE is only used if X is a CONST_INT.  DO_NOT_RECORD_P is a boolean
   indicating if a volatile operand is found or if the expression contains
   something we don't want to insert in the table.

   ??? One might want to merge this with canon_hash.  Later.  */

static unsigned int
hash_expr (x, mode, do_not_record_p, hash_table_size)
     rtx x;
     enum machine_mode mode;
     int *do_not_record_p;
     int hash_table_size;
{
  unsigned int hash;

  *do_not_record_p = 0;

  hash = hash_expr_1 (x, mode, do_not_record_p);
  return hash % hash_table_size;
}

/* Hash a string.  Just add its bytes up.  */

static inline unsigned
hash_string_1 (ps)
     const char *ps;
{
  unsigned hash = 0;
  const unsigned char *p = (const unsigned char *) ps;

  if (p)
    while (*p)
      hash += *p++;

  return hash;
}

/* Subroutine of hash_expr to do the actual work.  */

static unsigned int
hash_expr_1 (x, mode, do_not_record_p)
     rtx x;
     enum machine_mode mode;
     int *do_not_record_p;
{
  int i, j;
  unsigned hash = 0;
  enum rtx_code code;
  const char *fmt;

  /* Used to turn recursion into iteration.  We can't rely on GCC's
     tail-recursion elimination since we need to keep accumulating values
     in HASH.  */

  if (x == 0)
    return hash;

 repeat:
  code = GET_CODE (x);
  switch (code)
    {
    case REG:
      hash += ((unsigned int) REG << 7) + REGNO (x);
      return hash;

    case CONST_INT:
      hash += (((unsigned int) CONST_INT << 7) + (unsigned int) mode
	       + (unsigned int) INTVAL (x));
      return hash;

    case CONST_DOUBLE:
      /* This is like the general case, except that it only counts
	 the integers representing the constant.  */
      hash += (unsigned int) code + (unsigned int) GET_MODE (x);
      if (GET_MODE (x) != VOIDmode)
	for (i = 2; i < GET_RTX_LENGTH (CONST_DOUBLE); i++)
	  hash += (unsigned int) XWINT (x, i);
      else
	hash += ((unsigned int) CONST_DOUBLE_LOW (x)
		 + (unsigned int) CONST_DOUBLE_HIGH (x));
      return hash;

    case CONST_VECTOR:
      {
	int units;
	rtx elt;

	units = CONST_VECTOR_NUNITS (x);

	for (i = 0; i < units; ++i)
	  {
	    elt = CONST_VECTOR_ELT (x, i);
	    hash += hash_expr_1 (elt, GET_MODE (elt), do_not_record_p);
	  }

	return hash;
      }

      /* Assume there is only one rtx object for any given label.  */
    case LABEL_REF:
      /* We don't hash on the address of the CODE_LABEL to avoid bootstrap
	 differences and differences between each stage's debugging dumps.  */
      hash += (((unsigned int) LABEL_REF << 7)
	       + CODE_LABEL_NUMBER (XEXP (x, 0)));
      return hash;

    case SYMBOL_REF:
      {
	/* Don't hash on the symbol's address to avoid bootstrap differences.
	   Different hash values may cause expressions to be recorded in
	   different orders and thus different registers to be used in the
	   final assembler.  This also avoids differences in the dump files
	   between various stages.  */
	unsigned int h = 0;
	const unsigned char *p = (const unsigned char *) XSTR (x, 0);

	while (*p)
	  h += (h << 7) + *p++; /* ??? revisit */

	hash += ((unsigned int) SYMBOL_REF << 7) + h;
	return hash;
      }

    case MEM:
      if (MEM_VOLATILE_P (x))
	{
	  *do_not_record_p = 1;
	  return 0;
	}

      hash += (unsigned int) MEM;
      /* We used alias set for hashing, but this is not good, since the alias
	 set may differ in -fprofile-arcs and -fbranch-probabilities compilation
	 causing the profiles to fail to match.  */
      x = XEXP (x, 0);
      goto repeat;

    case PRE_DEC:
    case PRE_INC:
    case POST_DEC:
    case POST_INC:
    case PC:
    case CC0:
    case CALL:
    case UNSPEC_VOLATILE:
      *do_not_record_p = 1;
      return 0;

    case ASM_OPERANDS:
      if (MEM_VOLATILE_P (x))
	{
	  *do_not_record_p = 1;
	  return 0;
	}
      else
	{
	  /* We don't want to take the filename and line into account.  */
	  hash += (unsigned) code + (unsigned) GET_MODE (x)
	    + hash_string_1 (ASM_OPERANDS_TEMPLATE (x))
	    + hash_string_1 (ASM_OPERANDS_OUTPUT_CONSTRAINT (x))
	    + (unsigned) ASM_OPERANDS_OUTPUT_IDX (x);

	  if (ASM_OPERANDS_INPUT_LENGTH (x))
	    {
	      for (i = 1; i < ASM_OPERANDS_INPUT_LENGTH (x); i++)
		{
		  hash += (hash_expr_1 (ASM_OPERANDS_INPUT (x, i),
					GET_MODE (ASM_OPERANDS_INPUT (x, i)),
					do_not_record_p)
			   + hash_string_1 (ASM_OPERANDS_INPUT_CONSTRAINT
					    (x, i)));
		}

	      hash += hash_string_1 (ASM_OPERANDS_INPUT_CONSTRAINT (x, 0));
	      x = ASM_OPERANDS_INPUT (x, 0);
	      mode = GET_MODE (x);
	      goto repeat;
	    }
	  return hash;
	}

    default:
      break;
    }

  hash += (unsigned) code + (unsigned) GET_MODE (x);
  for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
    {
      if (fmt[i] == 'e')
	{
	  /* If we are about to do the last recursive call
	     needed at this level, change it into iteration.
	     This function is called enough to be worth it.  */
	  if (i == 0)
	    {
	      x = XEXP (x, i);
	      goto repeat;
	    }

	  hash += hash_expr_1 (XEXP (x, i), 0, do_not_record_p);
	  if (*do_not_record_p)
	    return 0;
	}

      else if (fmt[i] == 'E')
	for (j = 0; j < XVECLEN (x, i); j++)
	  {
	    hash += hash_expr_1 (XVECEXP (x, i, j), 0, do_not_record_p);
	    if (*do_not_record_p)
	      return 0;
	  }

      else if (fmt[i] == 's')
	hash += hash_string_1 (XSTR (x, i));
      else if (fmt[i] == 'i')
	hash += (unsigned int) XINT (x, i);
      else
	abort ();
    }

  return hash;
}

/* Hash a set of register REGNO.

   Sets are hashed on the register that is set.  This simplifies the PRE copy
   propagation code.

   ??? May need to make things more elaborate.  Later, as necessary.  */

static unsigned int
hash_set (regno, hash_table_size)
     int regno;
     int hash_table_size;
{
  unsigned int hash;

  hash = regno;
  return hash % hash_table_size;
}

/* Return nonzero if exp1 is equivalent to exp2.
   ??? Borrowed from cse.c.  Might want to remerge with cse.c.  Later.  */

static int
expr_equiv_p (x, y)
     rtx x, y;
{
  int i, j;
  enum rtx_code code;
  const char *fmt;

  if (x == y)
    return 1;

  if (x == 0 || y == 0)
    return 0;

  code = GET_CODE (x);
  if (code != GET_CODE (y))
    return 0;

  /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent.  */
  if (GET_MODE (x) != GET_MODE (y))
    return 0;

  switch (code)
    {
    case PC:
    case CC0:
    case CONST_INT:
      return 0;

    case LABEL_REF:
      return XEXP (x, 0) == XEXP (y, 0);

    case SYMBOL_REF:
      return XSTR (x, 0) == XSTR (y, 0);

    case REG:
      return REGNO (x) == REGNO (y);

    case MEM:
      /* Can't merge two expressions in different alias sets, since we can
	 decide that the expression is transparent in a block when it isn't,
	 due to it being set with the different alias set.  */
      if (MEM_ALIAS_SET (x) != MEM_ALIAS_SET (y))
	return 0;
      break;

    /*  For commutative operations, check both orders.  */
    case PLUS:
    case MULT:
    case AND:
    case IOR:
    case XOR:
    case NE:
    case EQ:
      return ((expr_equiv_p (XEXP (x, 0), XEXP (y, 0))
	       && expr_equiv_p (XEXP (x, 1), XEXP (y, 1)))
	      || (expr_equiv_p (XEXP (x, 0), XEXP (y, 1))
		  && expr_equiv_p (XEXP (x, 1), XEXP (y, 0))));

    case ASM_OPERANDS:
      /* We don't use the generic code below because we want to
	 disregard filename and line numbers.  */

      /* A volatile asm isn't equivalent to any other.  */
      if (MEM_VOLATILE_P (x) || MEM_VOLATILE_P (y))
	return 0;

      if (GET_MODE (x) != GET_MODE (y)
	  || strcmp (ASM_OPERANDS_TEMPLATE (x), ASM_OPERANDS_TEMPLATE (y))
	  || strcmp (ASM_OPERANDS_OUTPUT_CONSTRAINT (x),
		     ASM_OPERANDS_OUTPUT_CONSTRAINT (y))
	  || ASM_OPERANDS_OUTPUT_IDX (x) != ASM_OPERANDS_OUTPUT_IDX (y)
	  || ASM_OPERANDS_INPUT_LENGTH (x) != ASM_OPERANDS_INPUT_LENGTH (y))
	return 0;

      if (ASM_OPERANDS_INPUT_LENGTH (x))
	{
	  for (i = ASM_OPERANDS_INPUT_LENGTH (x) - 1; i >= 0; i--)
	    if (! expr_equiv_p (ASM_OPERANDS_INPUT (x, i),
				ASM_OPERANDS_INPUT (y, i))
		|| strcmp (ASM_OPERANDS_INPUT_CONSTRAINT (x, i),
			   ASM_OPERANDS_INPUT_CONSTRAINT (y, i)))
	      return 0;
	}

      return 1;

    default:
      break;
    }

  /* Compare the elements.  If any pair of corresponding elements
     fail to match, return 0 for the whole thing.  */

  fmt = GET_RTX_FORMAT (code);
  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
    {
      switch (fmt[i])
	{
	case 'e':
	  if (! expr_equiv_p (XEXP (x, i), XEXP (y, i)))
	    return 0;
	  break;

	case 'E':
	  if (XVECLEN (x, i) != XVECLEN (y, i))
	    return 0;
	  for (j = 0; j < XVECLEN (x, i); j++)
	    if (! expr_equiv_p (XVECEXP (x, i, j), XVECEXP (y, i, j)))
	      return 0;
	  break;

	case 's':
	  if (strcmp (XSTR (x, i), XSTR (y, i)))
	    return 0;
	  break;

	case 'i':
	  if (XINT (x, i) != XINT (y, i))
	    return 0;
	  break;

	case 'w':
	  if (XWINT (x, i) != XWINT (y, i))
	    return 0;
	break;

	case '0':
	  break;

	default:
	  abort ();
	}
    }

  return 1;
}

/* Insert expression X in INSN in the hash TABLE.
   If it is already present, record it as the last occurrence in INSN's
   basic block.

   MODE is the mode of the value X is being stored into.
   It is only used if X is a CONST_INT.

   ANTIC_P is nonzero if X is an anticipatable expression.
   AVAIL_P is nonzero if X is an available expression.  */

static void
insert_expr_in_table (x, mode, insn, antic_p, avail_p, table)
     rtx x;
     enum machine_mode mode;
     rtx insn;
     int antic_p, avail_p;
     struct hash_table *table;
{
  int found, do_not_record_p;
  unsigned int hash;
  struct expr *cur_expr, *last_expr = NULL;
  struct occr *antic_occr, *avail_occr;
  struct occr *last_occr = NULL;

  hash = hash_expr (x, mode, &do_not_record_p, table->size);

  /* Do not insert expression in table if it contains volatile operands,
     or if hash_expr determines the expression is something we don't want
     to or can't handle.  */
  if (do_not_record_p)
    return;

  cur_expr = table->table[hash];
  found = 0;

  while (cur_expr && 0 == (found = expr_equiv_p (cur_expr->expr, x)))
    {
      /* If the expression isn't found, save a pointer to the end of
	 the list.  */
      last_expr = cur_expr;
      cur_expr = cur_expr->next_same_hash;
    }

  if (! found)
    {
      cur_expr = (struct expr *) gcse_alloc (sizeof (struct expr));
      bytes_used += sizeof (struct expr);
      if (table->table[hash] == NULL)
	/* This is the first pattern that hashed to this index.  */
	table->table[hash] = cur_expr;
      else
	/* Add EXPR to end of this hash chain.  */
	last_expr->next_same_hash = cur_expr;

      /* Set the fields of the expr element.  */
      cur_expr->expr = x;
      cur_expr->bitmap_index = table->n_elems++;
      cur_expr->next_same_hash = NULL;
      cur_expr->antic_occr = NULL;
      cur_expr->avail_occr = NULL;
    }

  /* Now record the occurrence(s).  */
  if (antic_p)
    {
      antic_occr = cur_expr->antic_occr;

      /* Search for another occurrence in the same basic block.  */
      while (antic_occr && BLOCK_NUM (antic_occr->insn) != BLOCK_NUM (insn))
	{
	  /* If an occurrence isn't found, save a pointer to the end of
	     the list.  */
	  last_occr = antic_occr;
	  antic_occr = antic_occr->next;
	}

      if (antic_occr)
	/* Found another instance of the expression in the same basic block.
	   Prefer the currently recorded one.  We want the first one in the
	   block and the block is scanned from start to end.  */
	; /* nothing to do */
      else
	{
	  /* First occurrence of this expression in this basic block.  */
	  antic_occr = (struct occr *) gcse_alloc (sizeof (struct occr));
	  bytes_used += sizeof (struct occr);
	  /* First occurrence of this expression in any block?  */
	  if (cur_expr->antic_occr == NULL)
	    cur_expr->antic_occr = antic_occr;
	  else
	    last_occr->next = antic_occr;

	  antic_occr->insn = insn;
	  antic_occr->next = NULL;
	}
    }

  if (avail_p)
    {
      avail_occr = cur_expr->avail_occr;

      /* Search for another occurrence in the same basic block.  */
      while (avail_occr && BLOCK_NUM (avail_occr->insn) != BLOCK_NUM (insn))
	{
	  /* If an occurrence isn't found, save a pointer to the end of
	     the list.  */
	  last_occr = avail_occr;
	  avail_occr = avail_occr->next;
	}

      if (avail_occr)
	/* Found another instance of the expression in the same basic block.
	   Prefer this occurrence to the currently recorded one.  We want
	   the last one in the block and the block is scanned from start
	   to end.  */
	avail_occr->insn = insn;
      else
	{
	  /* First occurrence of this expression in this basic block.  */
	  avail_occr = (struct occr *) gcse_alloc (sizeof (struct occr));
	  bytes_used += sizeof (struct occr);

	  /* First occurrence of this expression in any block?  */
	  if (cur_expr->avail_occr == NULL)
	    cur_expr->avail_occr = avail_occr;
	  else
	    last_occr->next = avail_occr;

	  avail_occr->insn = insn;
	  avail_occr->next = NULL;
	}
    }
}

/* Insert pattern X in INSN in the hash table.
   X is a SET of a reg to either another reg or a constant.
   If it is already present, record it as the last occurrence in INSN's
   basic block.  */

static void
insert_set_in_table (x, insn, table)
     rtx x;
     rtx insn;
     struct hash_table *table;
{
  int found;
  unsigned int hash;
  struct expr *cur_expr, *last_expr = NULL;
  struct occr *cur_occr, *last_occr = NULL;

  if (GET_CODE (x) != SET
      || GET_CODE (SET_DEST (x)) != REG)
    abort ();

  hash = hash_set (REGNO (SET_DEST (x)), table->size);

  cur_expr = table->table[hash];
  found = 0;

  while (cur_expr && 0 == (found = expr_equiv_p (cur_expr->expr, x)))
    {
      /* If the expression isn't found, save a pointer to the end of
	 the list.  */
      last_expr = cur_expr;
      cur_expr = cur_expr->next_same_hash;
    }

  if (! found)
    {
      cur_expr = (struct expr *) gcse_alloc (sizeof (struct expr));
      bytes_used += sizeof (struct expr);
      if (table->table[hash] == NULL)
	/* This is the first pattern that hashed to this index.  */
	table->table[hash] = cur_expr;
      else
	/* Add EXPR to end of this hash chain.  */
	last_expr->next_same_hash = cur_expr;

      /* Set the fields of the expr element.
	 We must copy X because it can be modified when copy propagation is
	 performed on its operands.  */
      cur_expr->expr = copy_rtx (x);
      cur_expr->bitmap_index = table->n_elems++;
      cur_expr->next_same_hash = NULL;
      cur_expr->antic_occr = NULL;
      cur_expr->avail_occr = NULL;
    }

  /* Now record the occurrence.  */
  cur_occr = cur_expr->avail_occr;

  /* Search for another occurrence in the same basic block.  */
  while (cur_occr && BLOCK_NUM (cur_occr->insn) != BLOCK_NUM (insn))
    {
      /* If an occurrence isn't found, save a pointer to the end of
	 the list.  */
      last_occr = cur_occr;
      cur_occr = cur_occr->next;
    }

  if (cur_occr)
    /* Found another instance of the expression in the same basic block.
       Prefer this occurrence to the currently recorded one.  We want the
       last one in the block and the block is scanned from start to end.  */
    cur_occr->insn = insn;
  else
    {
      /* First occurrence of this expression in this basic block.  */
      cur_occr = (struct occr *) gcse_alloc (sizeof (struct occr));
      bytes_used += sizeof (struct occr);

      /* First occurrence of this expression in any block?  */
      if (cur_expr->avail_occr == NULL)
	cur_expr->avail_occr = cur_occr;
      else
	last_occr->next = cur_occr;

      cur_occr->insn = insn;
      cur_occr->next = NULL;
    }
}

/* Determine whether the rtx X should be treated as a constant for
   the purposes of GCSE's constant propagation.  */

static bool
gcse_constant_p (x)
     rtx x;
{
  /* Consider a COMPARE of two integers constant.  */
  if (GET_CODE (x) == COMPARE
      && GET_CODE (XEXP (x, 0)) == CONST_INT
      && GET_CODE (XEXP (x, 1)) == CONST_INT)
    return true;

  if (GET_CODE (x) == CONSTANT_P_RTX)
    return false;

  return CONSTANT_P (x);
}

/* Scan pattern PAT of INSN and add an entry to the hash TABLE (set or
   expression one).  */

static void
hash_scan_set (pat, insn, table)
     rtx pat, insn;
     struct hash_table *table;
{
  rtx src = SET_SRC (pat);
  rtx dest = SET_DEST (pat);
  rtx note;

  if (GET_CODE (src) == CALL)
    hash_scan_call (src, insn, table);

  else if (GET_CODE (dest) == REG)
    {
      unsigned int regno = REGNO (dest);
      rtx tmp;

      /* If this is a single set and we are doing constant propagation,
	 see if a REG_NOTE shows this equivalent to a constant.  */
      if (table->set_p && (note = find_reg_equal_equiv_note (insn)) != 0
	  && gcse_constant_p (XEXP (note, 0)))
	src = XEXP (note, 0), pat = gen_rtx_SET (VOIDmode, dest, src);

      /* Only record sets of pseudo-regs in the hash table.  */
      if (! table->set_p
	  && regno >= FIRST_PSEUDO_REGISTER
	  /* Don't GCSE something if we can't do a reg/reg copy.  */
	  && can_copy_p (GET_MODE (dest))
	  /* GCSE commonly inserts instruction after the insn.  We can't
	     do that easily for EH_REGION notes so disable GCSE on these
	     for now.  */
	  && !find_reg_note (insn, REG_EH_REGION, NULL_RTX)
	  /* Is SET_SRC something we want to gcse?  */
	  && want_to_gcse_p (src)
	  /* Don't CSE a nop.  */
	  && ! set_noop_p (pat)
	  /* Don't GCSE if it has attached REG_EQUIV note.
	     At this point this only function parameters should have
	     REG_EQUIV notes and if the argument slot is used somewhere
	     explicitly, it means address of parameter has been taken,
	     so we should not extend the lifetime of the pseudo.  */
	  && ((note = find_reg_note (insn, REG_EQUIV, NULL_RTX)) == 0
	      || GET_CODE (XEXP (note, 0)) != MEM))
	{
	  /* An expression is not anticipatable if its operands are
	     modified before this insn or if this is not the only SET in
	     this insn.  */
	  int antic_p = oprs_anticipatable_p (src, insn) && single_set (insn);
	  /* An expression is not available if its operands are
	     subsequently modified, including this insn.  It's also not
	     available if this is a branch, because we can't insert
	     a set after the branch.  */
	  int avail_p = (oprs_available_p (src, insn)
			 && ! JUMP_P (insn));

	  insert_expr_in_table (src, GET_MODE (dest), insn, antic_p, avail_p, table);
	}

      /* Record sets for constant/copy propagation.  */
      else if (table->set_p
	       && regno >= FIRST_PSEUDO_REGISTER
	       && ((GET_CODE (src) == REG
		    && REGNO (src) >= FIRST_PSEUDO_REGISTER
		    && can_copy_p (GET_MODE (dest))
		    && REGNO (src) != regno)
		   || gcse_constant_p (src))
	       /* A copy is not available if its src or dest is subsequently
		  modified.  Here we want to search from INSN+1 on, but
		  oprs_available_p searches from INSN on.  */
	       && (insn == BLOCK_END (BLOCK_NUM (insn))
		   || ((tmp = next_nonnote_insn (insn)) != NULL_RTX
		       && oprs_available_p (pat, tmp))))
	insert_set_in_table (pat, insn, table);
    }
}

static void
hash_scan_clobber (x, insn, table)
     rtx x ATTRIBUTE_UNUSED, insn ATTRIBUTE_UNUSED;
     struct hash_table *table ATTRIBUTE_UNUSED;
{
  /* Currently nothing to do.  */
}

static void
hash_scan_call (x, insn, table)
     rtx x ATTRIBUTE_UNUSED, insn ATTRIBUTE_UNUSED;
     struct hash_table *table ATTRIBUTE_UNUSED;
{
  /* Currently nothing to do.  */
}

/* Process INSN and add hash table entries as appropriate.

   Only available expressions that set a single pseudo-reg are recorded.

   Single sets in a PARALLEL could be handled, but it's an extra complication
   that isn't dealt with right now.  The trick is handling the CLOBBERs that
   are also in the PARALLEL.  Later.

   If SET_P is nonzero, this is for the assignment hash table,
   otherwise it is for the expression hash table.
   If IN_LIBCALL_BLOCK nonzero, we are in a libcall block, and should
   not record any expressions.  */

static void
hash_scan_insn (insn, table, in_libcall_block)
     rtx insn;
     struct hash_table *table;
     int in_libcall_block;
{
  rtx pat = PATTERN (insn);
  int i;

  if (in_libcall_block)
    return;

  /* Pick out the sets of INSN and for other forms of instructions record
     what's been modified.  */

  if (GET_CODE (pat) == SET)
    hash_scan_set (pat, insn, table);
  else if (GET_CODE (pat) == PARALLEL)
    for (i = 0; i < XVECLEN (pat, 0); i++)
      {
	rtx x = XVECEXP (pat, 0, i);

	if (GET_CODE (x) == SET)
	  hash_scan_set (x, insn, table);
	else if (GET_CODE (x) == CLOBBER)
	  hash_scan_clobber (x, insn, table);
	else if (GET_CODE (x) == CALL)
	  hash_scan_call (x, insn, table);
      }

  else if (GET_CODE (pat) == CLOBBER)
    hash_scan_clobber (pat, insn, table);
  else if (GET_CODE (pat) == CALL)
    hash_scan_call (pat, insn, table);
}

static void
dump_hash_table (file, name, table)
     FILE *file;
     const char *name;
     struct hash_table *table;
{
  int i;
  /* Flattened out table, so it's printed in proper order.  */
  struct expr **flat_table;
  unsigned int *hash_val;
  struct expr *expr;

  flat_table
    = (struct expr **) xcalloc (table->n_elems, sizeof (struct expr *));
  hash_val = (unsigned int *) xmalloc (table->n_elems * sizeof (unsigned int));

  for (i = 0; i < (int) table->size; i++)
    for (expr = table->table[i]; expr != NULL; expr = expr->next_same_hash)
      {
	flat_table[expr->bitmap_index] = expr;
	hash_val[expr->bitmap_index] = i;
      }

  fprintf (file, "%s hash table (%d buckets, %d entries)\n",
	   name, table->size, table->n_elems);

  for (i = 0; i < (int) table->n_elems; i++)
    if (flat_table[i] != 0)
      {
	expr = flat_table[i];
	fprintf (file, "Index %d (hash value %d)\n  ",
		 expr->bitmap_index, hash_val[i]);
	print_rtl (file, expr->expr);
	fprintf (file, "\n");
      }

  fprintf (file, "\n");

  free (flat_table);
  free (hash_val);
}

/* Record register first/last/block set information for REGNO in INSN.

   first_set records the first place in the block where the register
   is set and is used to compute "anticipatability".

   last_set records the last place in the block where the register
   is set and is used to compute "availability".

   last_bb records the block for which first_set and last_set are
   valid, as a quick test to invalidate them.

   reg_set_in_block records whether the register is set in the block
   and is used to compute "transparency".  */

static void
record_last_reg_set_info (insn, regno)
     rtx insn;
     int regno;
{
  struct reg_avail_info *info = &reg_avail_info[regno];
  int cuid = INSN_CUID (insn);

  info->last_set = cuid;
  if (info->last_bb != current_bb)
    {
      info->last_bb = current_bb;
      info->first_set = cuid;
      SET_BIT (reg_set_in_block[current_bb->index], regno);
    }
}


/* Record all of the canonicalized MEMs of record_last_mem_set_info's insn.
   Note we store a pair of elements in the list, so they have to be
   taken off pairwise.  */

static void
canon_list_insert (dest, unused1, v_insn)
     rtx    dest ATTRIBUTE_UNUSED;
     rtx    unused1 ATTRIBUTE_UNUSED;
     void * v_insn;
{
  rtx dest_addr, insn;
  int bb;

  while (GET_CODE (dest) == SUBREG
      || GET_CODE (dest) == ZERO_EXTRACT
      || GET_CODE (dest) == SIGN_EXTRACT
      || GET_CODE (dest) == STRICT_LOW_PART)
    dest = XEXP (dest, 0);

  /* If DEST is not a MEM, then it will not conflict with a load.  Note
     that function calls are assumed to clobber memory, but are handled
     elsewhere.  */

  if (GET_CODE (dest) != MEM)
    return;

  dest_addr = get_addr (XEXP (dest, 0));
  dest_addr = canon_rtx (dest_addr);
  insn = (rtx) v_insn;
  bb = BLOCK_NUM (insn);

  canon_modify_mem_list[bb] =
    alloc_EXPR_LIST (VOIDmode, dest_addr, canon_modify_mem_list[bb]);
  canon_modify_mem_list[bb] =
    alloc_EXPR_LIST (VOIDmode, dest, canon_modify_mem_list[bb]);
  bitmap_set_bit (canon_modify_mem_list_set, bb);
}

/* Record memory modification information for INSN.  We do not actually care
   about the memory location(s) that are set, or even how they are set (consider
   a CALL_INSN).  We merely need to record which insns modify memory.  */

static void
record_last_mem_set_info (insn)
     rtx insn;
{
  int bb = BLOCK_NUM (insn);

  /* load_killed_in_block_p will handle the case of calls clobbering
     everything.  */
  modify_mem_list[bb] = alloc_INSN_LIST (insn, modify_mem_list[bb]);
  bitmap_set_bit (modify_mem_list_set, bb);

  if (GET_CODE (insn) == CALL_INSN)
    {
      /* Note that traversals of this loop (other than for free-ing)
	 will break after encountering a CALL_INSN.  So, there's no
	 need to insert a pair of items, as canon_list_insert does.  */
      canon_modify_mem_list[bb] =
	alloc_INSN_LIST (insn, canon_modify_mem_list[bb]);
      bitmap_set_bit (canon_modify_mem_list_set, bb);
    }
  else
    note_stores (PATTERN (insn), canon_list_insert, (void*) insn);
}

/* Called from compute_hash_table via note_stores to handle one
   SET or CLOBBER in an insn.  DATA is really the instruction in which
   the SET is taking place.  */

static void
record_last_set_info (dest, setter, data)
     rtx dest, setter ATTRIBUTE_UNUSED;
     void *data;
{
  rtx last_set_insn = (rtx) data;

  if (GET_CODE (dest) == SUBREG)
    dest = SUBREG_REG (dest);

  if (GET_CODE (dest) == REG)
    record_last_reg_set_info (last_set_insn, REGNO (dest));
  else if (GET_CODE (dest) == MEM
	   /* Ignore pushes, they clobber nothing.  */
	   && ! push_operand (dest, GET_MODE (dest)))
    record_last_mem_set_info (last_set_insn);
}

/* Top level function to create an expression or assignment hash table.

   Expression entries are placed in the hash table if
   - they are of the form (set (pseudo-reg) src),
   - src is something we want to perform GCSE on,
   - none of the operands are subsequently modified in the block

   Assignment entries are placed in the hash table if
   - they are of the form (set (pseudo-reg) src),
   - src is something we want to perform const/copy propagation on,
   - none of the operands or target are subsequently modified in the block

   Currently src must be a pseudo-reg or a const_int.

   TABLE is the table computed.  */

static void
compute_hash_table_work (table)
     struct hash_table *table;
{
  unsigned int i;

  /* While we compute the hash table we also compute a bit array of which
     registers are set in which blocks.
     ??? This isn't needed during const/copy propagation, but it's cheap to
     compute.  Later.  */
  sbitmap_vector_zero (reg_set_in_block, last_basic_block);

  /* re-Cache any INSN_LIST nodes we have allocated.  */
  clear_modify_mem_tables ();
  /* Some working arrays used to track first and last set in each block.  */
  reg_avail_info = (struct reg_avail_info*)
    gmalloc (max_gcse_regno * sizeof (struct reg_avail_info));

  for (i = 0; i < max_gcse_regno; ++i)
    reg_avail_info[i].last_bb = NULL;

  FOR_EACH_BB (current_bb)
    {
      rtx insn;
      unsigned int regno;
      int in_libcall_block;

      /* First pass over the instructions records information used to
	 determine when registers and memory are first and last set.
	 ??? hard-reg reg_set_in_block computation
	 could be moved to compute_sets since they currently don't change.  */

      for (insn = current_bb->head;
	   insn && insn != NEXT_INSN (current_bb->end);
	   insn = NEXT_INSN (insn))
	{
	  if (! INSN_P (insn))
	    continue;

	  if (GET_CODE (insn) == CALL_INSN)
	    {
	      bool clobbers_all = false;
#ifdef NON_SAVING_SETJMP
	      if (NON_SAVING_SETJMP
		  && find_reg_note (insn, REG_SETJMP, NULL_RTX))
		clobbers_all = true;
#endif

	      for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
		if (clobbers_all
		    || TEST_HARD_REG_BIT (regs_invalidated_by_call, regno))
		  record_last_reg_set_info (insn, regno);

	      mark_call (insn);
	    }

	  note_stores (PATTERN (insn), record_last_set_info, insn);
	}

      /* Insert implicit sets in the hash table.  */
      if (table->set_p
	  && implicit_sets[current_bb->index] != NULL_RTX)
	hash_scan_set (implicit_sets[current_bb->index],
		       current_bb->head, table);

      /* The next pass builds the hash table.  */

      for (insn = current_bb->head, in_libcall_block = 0;
	   insn && insn != NEXT_INSN (current_bb->end);
	   insn = NEXT_INSN (insn))
	if (INSN_P (insn))
	  {
	    if (find_reg_note (insn, REG_LIBCALL, NULL_RTX))
	      in_libcall_block = 1;
	    else if (table->set_p && find_reg_note (insn, REG_RETVAL, NULL_RTX))
	      in_libcall_block = 0;
	    hash_scan_insn (insn, table, in_libcall_block);
	    if (!table->set_p && find_reg_note (insn, REG_RETVAL, NULL_RTX))
	      in_libcall_block = 0;
	  }
    }

  free (reg_avail_info);
  reg_avail_info = NULL;
}

/* Allocate space for the set/expr hash TABLE.
   N_INSNS is the number of instructions in the function.
   It is used to determine the number of buckets to use.
   SET_P determines whether set or expression table will
   be created.  */

static void
alloc_hash_table (n_insns, table, set_p)
     int n_insns;
     struct hash_table *table;
     int set_p;
{
  int n;

  table->size = n_insns / 4;
  if (table->size < 11)
    table->size = 11;

  /* Attempt to maintain efficient use of hash table.
     Making it an odd number is simplest for now.
     ??? Later take some measurements.  */
  table->size |= 1;
  n = table->size * sizeof (struct expr *);
  table->table = (struct expr **) gmalloc (n);
  table->set_p = set_p;
}

/* Free things allocated by alloc_hash_table.  */

static void
free_hash_table (table)
     struct hash_table *table;
{
  free (table->table);
}

/* Compute the hash TABLE for doing copy/const propagation or
   expression hash table.  */

static void
compute_hash_table (table)
    struct hash_table *table;
{
  /* Initialize count of number of entries in hash table.  */
  table->n_elems = 0;
  memset ((char *) table->table, 0,
	  table->size * sizeof (struct expr *));

  compute_hash_table_work (table);
}

/* Expression tracking support.  */

/* Lookup pattern PAT in the expression TABLE.
   The result is a pointer to the table entry, or NULL if not found.  */

static struct expr *
lookup_expr (pat, table)
     rtx pat;
     struct hash_table *table;
{
  int do_not_record_p;
  unsigned int hash = hash_expr (pat, GET_MODE (pat), &do_not_record_p,
				 table->size);
  struct expr *expr;

  if (do_not_record_p)
    return NULL;

  expr = table->table[hash];

  while (expr && ! expr_equiv_p (expr->expr, pat))
    expr = expr->next_same_hash;

  return expr;
}

/* Lookup REGNO in the set TABLE.  The result is a pointer to the
   table entry, or NULL if not found.  */

static struct expr *
lookup_set (regno, table)
     unsigned int regno;
     struct hash_table *table;
{
  unsigned int hash = hash_set (regno, table->size);
  struct expr *expr;

  expr = table->table[hash];

  while (expr && REGNO (SET_DEST (expr->expr)) != regno)
    expr = expr->next_same_hash;

  return expr;
}

/* Return the next entry for REGNO in list EXPR.  */

static struct expr *
next_set (regno, expr)
     unsigned int regno;
     struct expr *expr;
{
  do
    expr = expr->next_same_hash;
  while (expr && REGNO (SET_DEST (expr->expr)) != regno);

  return expr;
}

/* Like free_INSN_LIST_list or free_EXPR_LIST_list, except that the node
   types may be mixed.  */

static void
free_insn_expr_list_list (listp)
     rtx *listp;
{
  rtx list, next;

  for (list = *listp; list ; list = next)
    {
      next = XEXP (list, 1);
      if (GET_CODE (list) == EXPR_LIST)
	free_EXPR_LIST_node (list);
      else
	free_INSN_LIST_node (list);
    }

  *listp = NULL;
}

/* Clear canon_modify_mem_list and modify_mem_list tables.  */
static void
clear_modify_mem_tables ()
{
  int i;

  EXECUTE_IF_SET_IN_BITMAP
    (modify_mem_list_set, 0, i, free_INSN_LIST_list (modify_mem_list + i));
  bitmap_clear (modify_mem_list_set);

  EXECUTE_IF_SET_IN_BITMAP
    (canon_modify_mem_list_set, 0, i,
     free_insn_expr_list_list (canon_modify_mem_list + i));
  bitmap_clear (canon_modify_mem_list_set);
}

/* Release memory used by modify_mem_list_set and canon_modify_mem_list_set.  */

static void
free_modify_mem_tables ()
{
  clear_modify_mem_tables ();
  free (modify_mem_list);
  free (canon_modify_mem_list);
  modify_mem_list = 0;
  canon_modify_mem_list = 0;
}

/* Reset tables used to keep track of what's still available [since the
   start of the block].  */

static void
reset_opr_set_tables ()
{
  /* Maintain a bitmap of which regs have been set since beginning of
     the block.  */
  CLEAR_REG_SET (reg_set_bitmap);

  /* Also keep a record of the last instruction to modify memory.
     For now this is very trivial, we only record whether any memory
     location has been modified.  */
  clear_modify_mem_tables ();
}

/* Return nonzero if the operands of X are not set before INSN in
   INSN's basic block.  */

static int
oprs_not_set_p (x, insn)
     rtx x, insn;
{
  int i, j;
  enum rtx_code code;
  const char *fmt;

  if (x == 0)
    return 1;

  code = GET_CODE (x);
  switch (code)
    {
    case PC:
    case CC0:
    case CONST:
    case CONST_INT:
    case CONST_DOUBLE:
    case CONST_VECTOR:
    case SYMBOL_REF:
    case LABEL_REF:
    case ADDR_VEC:
    case ADDR_DIFF_VEC:
      return 1;

    case MEM:
      if (load_killed_in_block_p (BLOCK_FOR_INSN (insn),
				  INSN_CUID (insn), x, 0))
	return 0;
      else
	return oprs_not_set_p (XEXP (x, 0), insn);

    case REG:
      return ! REGNO_REG_SET_P (reg_set_bitmap, REGNO (x));

    default:
      break;
    }

  for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
    {
      if (fmt[i] == 'e')
	{
	  /* If we are about to do the last recursive call
	     needed at this level, change it into iteration.
	     This function is called enough to be worth it.  */
	  if (i == 0)
	    return oprs_not_set_p (XEXP (x, i), insn);

	  if (! oprs_not_set_p (XEXP (x, i), insn))
	    return 0;
	}
      else if (fmt[i] == 'E')
	for (j = 0; j < XVECLEN (x, i); j++)
	  if (! oprs_not_set_p (XVECEXP (x, i, j), insn))
	    return 0;
    }

  return 1;
}

/* Mark things set by a CALL.  */

static void
mark_call (insn)
     rtx insn;
{
  if (! CONST_OR_PURE_CALL_P (insn))
    record_last_mem_set_info (insn);
}

/* Mark things set by a SET.  */

static void
mark_set (pat, insn)
     rtx pat, insn;
{
  rtx dest = SET_DEST (pat);

  while (GET_CODE (dest) == SUBREG
	 || GET_CODE (dest) == ZERO_EXTRACT
	 || GET_CODE (dest) == SIGN_EXTRACT
	 || GET_CODE (dest) == STRICT_LOW_PART)
    dest = XEXP (dest, 0);

  if (GET_CODE (dest) == REG)
    SET_REGNO_REG_SET (reg_set_bitmap, REGNO (dest));
  else if (GET_CODE (dest) == MEM)
    record_last_mem_set_info (insn);

  if (GET_CODE (SET_SRC (pat)) == CALL)
    mark_call (insn);
}

/* Record things set by a CLOBBER.  */

static void
mark_clobber (pat, insn)
     rtx pat, insn;
{
  rtx clob = XEXP (pat, 0);

  while (GET_CODE (clob) == SUBREG || GET_CODE (clob) == STRICT_LOW_PART)
    clob = XEXP (clob, 0);

  if (GET_CODE (clob) == REG)
    SET_REGNO_REG_SET (reg_set_bitmap, REGNO (clob));
  else
    record_last_mem_set_info (insn);
}

/* Record things set by INSN.
   This data is used by oprs_not_set_p.  */

static void
mark_oprs_set (insn)
     rtx insn;
{
  rtx pat = PATTERN (insn);
  int i;

  if (GET_CODE (pat) == SET)
    mark_set (pat, insn);
  else if (GET_CODE (pat) == PARALLEL)
    for (i = 0; i < XVECLEN (pat, 0); i++)
      {
	rtx x = XVECEXP (pat, 0, i);

	if (GET_CODE (x) == SET)
	  mark_set (x, insn);
	else if (GET_CODE (x) == CLOBBER)
	  mark_clobber (x, insn);
	else if (GET_CODE (x) == CALL)
	  mark_call (insn);
      }

  else if (GET_CODE (pat) == CLOBBER)
    mark_clobber (pat, insn);
  else if (GET_CODE (pat) == CALL)
    mark_call (insn);
}


/* Classic GCSE reaching definition support.  */

/* Allocate reaching def variables.  */

static void
alloc_rd_mem (n_blocks, n_insns)
     int n_blocks, n_insns;
{
  rd_kill = (sbitmap *) sbitmap_vector_alloc (n_blocks, n_insns);
  sbitmap_vector_zero (rd_kill, n_blocks);

  rd_gen = (sbitmap *) sbitmap_vector_alloc (n_blocks, n_insns);
  sbitmap_vector_zero (rd_gen, n_blocks);

  reaching_defs = (sbitmap *) sbitmap_vector_alloc (n_blocks, n_insns);
  sbitmap_vector_zero (reaching_defs, n_blocks);

  rd_out = (sbitmap *) sbitmap_vector_alloc (n_blocks, n_insns);
  sbitmap_vector_zero (rd_out, n_blocks);
}

/* Free reaching def variables.  */

static void
free_rd_mem ()
{
  sbitmap_vector_free (rd_kill);
  sbitmap_vector_free (rd_gen);
  sbitmap_vector_free (reaching_defs);
  sbitmap_vector_free (rd_out);
}

/* Add INSN to the kills of BB.  REGNO, set in BB, is killed by INSN.  */

static void
handle_rd_kill_set (insn, regno, bb)
     rtx insn;
     int regno;
     basic_block bb;
{
  struct reg_set *this_reg;

  for (this_reg = reg_set_table[regno]; this_reg; this_reg = this_reg ->next)
    if (BLOCK_NUM (this_reg->insn) != BLOCK_NUM (insn))
      SET_BIT (rd_kill[bb->index], INSN_CUID (this_reg->insn));
}

/* Compute the set of kill's for reaching definitions.  */

static void
compute_kill_rd ()
{
  int cuid;
  unsigned int regno;
  int i;
  basic_block bb;

  /* For each block
       For each set bit in `gen' of the block (i.e each insn which
	   generates a definition in the block)
	 Call the reg set by the insn corresponding to that bit regx
	 Look at the linked list starting at reg_set_table[regx]
	 For each setting of regx in the linked list, which is not in
	     this block
	   Set the bit in `kill' corresponding to that insn.  */
  FOR_EACH_BB (bb)
    for (cuid = 0; cuid < max_cuid; cuid++)
      if (TEST_BIT (rd_gen[bb->index], cuid))
	{
	  rtx insn = CUID_INSN (cuid);
	  rtx pat = PATTERN (insn);

	  if (GET_CODE (insn) == CALL_INSN)
	    {
	      for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
		if (TEST_HARD_REG_BIT (regs_invalidated_by_call, regno))
		  handle_rd_kill_set (insn, regno, bb);
	    }

	  if (GET_CODE (pat) == PARALLEL)
	    {
	      for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
		{
		  enum rtx_code code = GET_CODE (XVECEXP (pat, 0, i));

		  if ((code == SET || code == CLOBBER)
		      && GET_CODE (XEXP (XVECEXP (pat, 0, i), 0)) == REG)
		    handle_rd_kill_set (insn,
					REGNO (XEXP (XVECEXP (pat, 0, i), 0)),
					bb);
		}
	    }
	  else if (GET_CODE (pat) == SET && GET_CODE (SET_DEST (pat)) == REG)
	    /* Each setting of this register outside of this block
	       must be marked in the set of kills in this block.  */
	    handle_rd_kill_set (insn, REGNO (SET_DEST (pat)), bb);
	}
}

/* Compute the reaching definitions as in
   Compilers Principles, Techniques, and Tools. Aho, Sethi, Ullman,
   Chapter 10.  It is the same algorithm as used for computing available
   expressions but applied to the gens and kills of reaching definitions.  */

static void
compute_rd ()
{
  int changed, passes;
  basic_block bb;

  FOR_EACH_BB (bb)
    sbitmap_copy (rd_out[bb->index] /*dst*/, rd_gen[bb->index] /*src*/);

  passes = 0;
  changed = 1;
  while (changed)
    {
      changed = 0;
      FOR_EACH_BB (bb)
	{
	  sbitmap_union_of_preds (reaching_defs[bb->index], rd_out, bb->index);
	  changed |= sbitmap_union_of_diff_cg (rd_out[bb->index], rd_gen[bb->index],
					       reaching_defs[bb->index], rd_kill[bb->index]);
	}
      passes++;
    }

  if (gcse_file)
    fprintf (gcse_file, "reaching def computation: %d passes\n", passes);
}

/* Classic GCSE available expression support.  */

/* Allocate memory for available expression computation.  */

static void
alloc_avail_expr_mem (n_blocks, n_exprs)
     int n_blocks, n_exprs;
{
  ae_kill = (sbitmap *) sbitmap_vector_alloc (n_blocks, n_exprs);
  sbitmap_vector_zero (ae_kill, n_blocks);

  ae_gen = (sbitmap *) sbitmap_vector_alloc (n_blocks, n_exprs);
  sbitmap_vector_zero (ae_gen, n_blocks);

  ae_in = (sbitmap *) sbitmap_vector_alloc (n_blocks, n_exprs);
  sbitmap_vector_zero (ae_in, n_blocks);

  ae_out = (sbitmap *) sbitmap_vector_alloc (n_blocks, n_exprs);
  sbitmap_vector_zero (ae_out, n_blocks);
}

static void
free_avail_expr_mem ()
{
  sbitmap_vector_free (ae_kill);
  sbitmap_vector_free (ae_gen);
  sbitmap_vector_free (ae_in);
  sbitmap_vector_free (ae_out);
}

/* Compute the set of available expressions generated in each basic block.  */

static void
compute_ae_gen (expr_hash_table)
     struct hash_table *expr_hash_table;
{
  unsigned int i;
  struct expr *expr;
  struct occr *occr;

  /* For each recorded occurrence of each expression, set ae_gen[bb][expr].
     This is all we have to do because an expression is not recorded if it
     is not available, and the only expressions we want to work with are the
     ones that are recorded.  */
  for (i = 0; i < expr_hash_table->size; i++)
    for (expr = expr_hash_table->table[i]; expr != 0; expr = expr->next_same_hash)
      for (occr = expr->avail_occr; occr != 0; occr = occr->next)
	SET_BIT (ae_gen[BLOCK_NUM (occr->insn)], expr->bitmap_index);
}

/* Return nonzero if expression X is killed in BB.  */

static int
expr_killed_p (x, bb)
     rtx x;
     basic_block bb;
{
  int i, j;
  enum rtx_code code;
  const char *fmt;

  if (x == 0)
    return 1;

  code = GET_CODE (x);
  switch (code)
    {
    case REG:
      return TEST_BIT (reg_set_in_block[bb->index], REGNO (x));

    case MEM:
      if (load_killed_in_block_p (bb, get_max_uid () + 1, x, 0))
	return 1;
      else
	return expr_killed_p (XEXP (x, 0), bb);

    case PC:
    case CC0: /*FIXME*/
    case CONST:
    case CONST_INT:
    case CONST_DOUBLE:
    case CONST_VECTOR:
    case SYMBOL_REF:
    case LABEL_REF:
    case ADDR_VEC:
    case ADDR_DIFF_VEC:
      return 0;

    default:
      break;
    }

  for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
    {
      if (fmt[i] == 'e')
	{
	  /* If we are about to do the last recursive call
	     needed at this level, change it into iteration.
	     This function is called enough to be worth it.  */
	  if (i == 0)
	    return expr_killed_p (XEXP (x, i), bb);
	  else if (expr_killed_p (XEXP (x, i), bb))
	    return 1;
	}
      else if (fmt[i] == 'E')
	for (j = 0; j < XVECLEN (x, i); j++)
	  if (expr_killed_p (XVECEXP (x, i, j), bb))
	    return 1;
    }

  return 0;
}

/* Compute the set of available expressions killed in each basic block.  */

static void
compute_ae_kill (ae_gen, ae_kill, expr_hash_table)
     sbitmap *ae_gen, *ae_kill;
     struct hash_table *expr_hash_table;
{
  basic_block bb;
  unsigned int i;
  struct expr *expr;

  FOR_EACH_BB (bb)
    for (i = 0; i < expr_hash_table->size; i++)
      for (expr = expr_hash_table->table[i]; expr; expr = expr->next_same_hash)
	{
	  /* Skip EXPR if generated in this block.  */
	  if (TEST_BIT (ae_gen[bb->index], expr->bitmap_index))
	    continue;

	  if (expr_killed_p (expr->expr, bb))
	    SET_BIT (ae_kill[bb->index], expr->bitmap_index);
	}
}

/* Actually perform the Classic GCSE optimizations.  */

/* Return nonzero if occurrence OCCR of expression EXPR reaches block BB.

   CHECK_SELF_LOOP is nonzero if we should consider a block reaching itself
   as a positive reach.  We want to do this when there are two computations
   of the expression in the block.

   VISITED is a pointer to a working buffer for tracking which BB's have
   been visited.  It is NULL for the top-level call.

   We treat reaching expressions that go through blocks containing the same
   reaching expression as "not reaching".  E.g. if EXPR is generated in blocks
   2 and 3, INSN is in block 4, and 2->3->4, we treat the expression in block
   2 as not reaching.  The intent is to improve the probability of finding
   only one reaching expression and to reduce register lifetimes by picking
   the closest such expression.  */

static int
expr_reaches_here_p_work (occr, expr, bb, check_self_loop, visited)
     struct occr *occr;
     struct expr *expr;
     basic_block bb;
     int check_self_loop;
     char *visited;
{
  edge pred;

  for (pred = bb->pred; pred != NULL; pred = pred->pred_next)
    {
      basic_block pred_bb = pred->src;

      if (visited[pred_bb->index])
	/* This predecessor has already been visited. Nothing to do.  */
	  ;
      else if (pred_bb == bb)
	{
	  /* BB loops on itself.  */
	  if (check_self_loop
	      && TEST_BIT (ae_gen[pred_bb->index], expr->bitmap_index)
	      && BLOCK_NUM (occr->insn) == pred_bb->index)
	    return 1;

	  visited[pred_bb->index] = 1;
	}

      /* Ignore this predecessor if it kills the expression.  */
      else if (TEST_BIT (ae_kill[pred_bb->index], expr->bitmap_index))
	visited[pred_bb->index] = 1;

      /* Does this predecessor generate this expression?  */
      else if (TEST_BIT (ae_gen[pred_bb->index], expr->bitmap_index))
	{
	  /* Is this the occurrence we're looking for?
	     Note that there's only one generating occurrence per block
	     so we just need to check the block number.  */
	  if (BLOCK_NUM (occr->insn) == pred_bb->index)
	    return 1;

	  visited[pred_bb->index] = 1;
	}

      /* Neither gen nor kill.  */
      else
	{
	  visited[pred_bb->index] = 1;
	  if (expr_reaches_here_p_work (occr, expr, pred_bb, check_self_loop,
	      visited))

	    return 1;
	}
    }

  /* All paths have been checked.  */
  return 0;
}

/* This wrapper for expr_reaches_here_p_work() is to ensure that any
   memory allocated for that function is returned.  */

static int
expr_reaches_here_p (occr, expr, bb, check_self_loop)
     struct occr *occr;
     struct expr *expr;
     basic_block bb;
     int check_self_loop;
{
  int rval;
  char *visited = (char *) xcalloc (last_basic_block, 1);

  rval = expr_reaches_here_p_work (occr, expr, bb, check_self_loop, visited);

  free (visited);
  return rval;
}

/* Return the instruction that computes EXPR that reaches INSN's basic block.
   If there is more than one such instruction, return NULL.

   Called only by handle_avail_expr.  */

static rtx
computing_insn (expr, insn)
     struct expr *expr;
     rtx insn;
{
  basic_block bb = BLOCK_FOR_INSN (insn);

  if (expr->avail_occr->next == NULL)
    {
      if (BLOCK_FOR_INSN (expr->avail_occr->insn) == bb)
	/* The available expression is actually itself
	   (i.e. a loop in the flow graph) so do nothing.  */
	return NULL;

      /* (FIXME) Case that we found a pattern that was created by
	 a substitution that took place.  */
      return expr->avail_occr->insn;
    }
  else
    {
      /* Pattern is computed more than once.
	 Search backwards from this insn to see how many of these
	 computations actually reach this insn.  */
      struct occr *occr;
      rtx insn_computes_expr = NULL;
      int can_reach = 0;

      for (occr = expr->avail_occr; occr != NULL; occr = occr->next)
	{
	  if (BLOCK_FOR_INSN (occr->insn) == bb)
	    {
	      /* The expression is generated in this block.
		 The only time we care about this is when the expression
		 is generated later in the block [and thus there's a loop].
		 We let the normal cse pass handle the other cases.  */
	      if (INSN_CUID (insn) < INSN_CUID (occr->insn)
		  && expr_reaches_here_p (occr, expr, bb, 1))
		{
		  can_reach++;
		  if (can_reach > 1)
		    return NULL;

		  insn_computes_expr = occr->insn;
		}
	    }
	  else if (expr_reaches_here_p (occr, expr, bb, 0))
	    {
	      can_reach++;
	      if (can_reach > 1)
		return NULL;

	      insn_computes_expr = occr->insn;
	    }
	}

      if (insn_computes_expr == NULL)
	abort ();

      return insn_computes_expr;
    }
}

/* Return nonzero if the definition in DEF_INSN can reach INSN.
   Only called by can_disregard_other_sets.  */

static int
def_reaches_here_p (insn, def_insn)
     rtx insn, def_insn;
{
  rtx reg;

  if (TEST_BIT (reaching_defs[BLOCK_NUM (insn)], INSN_CUID (def_insn)))
    return 1;

  if (BLOCK_NUM (insn) == BLOCK_NUM (def_insn))
    {
      if (INSN_CUID (def_insn) < INSN_CUID (insn))
	{
	  if (GET_CODE (PATTERN (def_insn)) == PARALLEL)
	    return 1;
	  else if (GET_CODE (PATTERN (def_insn)) == CLOBBER)
	    reg = XEXP (PATTERN (def_insn), 0);
	  else if (GET_CODE (PATTERN (def_insn)) == SET)
	    reg = SET_DEST (PATTERN (def_insn));
	  else
	    abort ();

	  return ! reg_set_between_p (reg, NEXT_INSN (def_insn), insn);
	}
      else
	return 0;
    }

  return 0;
}

/* Return nonzero if *ADDR_THIS_REG can only have one value at INSN.  The
   value returned is the number of definitions that reach INSN.  Returning a
   value of zero means that [maybe] more than one definition reaches INSN and
   the caller can't perform whatever optimization it is trying.  i.e. it is
   always safe to return zero.  */

static int
can_disregard_other_sets (addr_this_reg, insn, for_combine)
     struct reg_set **addr_this_reg;
     rtx insn;
     int for_combine;
{
  int number_of_reaching_defs = 0;
  struct reg_set *this_reg;

  for (this_reg = *addr_this_reg; this_reg != 0; this_reg = this_reg->next)
    if (def_reaches_here_p (insn, this_reg->insn))
      {
	number_of_reaching_defs++;
	/* Ignore parallels for now.  */
	if (GET_CODE (PATTERN (this_reg->insn)) == PARALLEL)
	  return 0;

	if (!for_combine
	    && (GET_CODE (PATTERN (this_reg->insn)) == CLOBBER
		|| ! rtx_equal_p (SET_SRC (PATTERN (this_reg->insn)),
				  SET_SRC (PATTERN (insn)))))
	  /* A setting of the reg to a different value reaches INSN.  */
	  return 0;

	if (number_of_reaching_defs > 1)
	  {
	    /* If in this setting the value the register is being set to is
	       equal to the previous value the register was set to and this
	       setting reaches the insn we are trying to do the substitution
	       on then we are ok.  */
	    if (GET_CODE (PATTERN (this_reg->insn)) == CLOBBER)
	      return 0;
	    else if (! rtx_equal_p (SET_SRC (PATTERN (this_reg->insn)),
				    SET_SRC (PATTERN (insn))))
	      return 0;
	  }

	*addr_this_reg = this_reg;
      }

  return number_of_reaching_defs;
}

/* Expression computed by insn is available and the substitution is legal,
   so try to perform the substitution.

   The result is nonzero if any changes were made.  */

static int
handle_avail_expr (insn, expr)
     rtx insn;
     struct expr *expr;
{
  rtx pat, insn_computes_expr, expr_set;
  rtx to;
  struct reg_set *this_reg;
  int found_setting, use_src;
  int changed = 0;

  /* We only handle the case where one computation of the expression
     reaches this instruction.  */
  insn_computes_expr = computing_insn (expr, insn);
  if (insn_computes_expr == NULL)
    return 0;
  expr_set = single_set (insn_computes_expr);
  if (!expr_set)
    abort ();

  found_setting = 0;
  use_src = 0;

  /* At this point we know only one computation of EXPR outside of this
     block reaches this insn.  Now try to find a register that the
     expression is computed into.  */
  if (GET_CODE (SET_SRC (expr_set)) == REG)
    {
      /* This is the case when the available expression that reaches
	 here has already been handled as an available expression.  */
      unsigned int regnum_for_replacing
	= REGNO (SET_SRC (expr_set));

      /* If the register was created by GCSE we can't use `reg_set_table',
	 however we know it's set only once.  */
      if (regnum_for_replacing >= max_gcse_regno
	  /* If the register the expression is computed into is set only once,
	     or only one set reaches this insn, we can use it.  */
	  || (((this_reg = reg_set_table[regnum_for_replacing]),
	       this_reg->next == NULL)
	      || can_disregard_other_sets (&this_reg, insn, 0)))
	{
	  use_src = 1;
	  found_setting = 1;
	}
    }

  if (!found_setting)
    {
      unsigned int regnum_for_replacing
	= REGNO (SET_DEST (expr_set));

      /* This shouldn't happen.  */
      if (regnum_for_replacing >= max_gcse_regno)
	abort ();

      this_reg = reg_set_table[regnum_for_replacing];

      /* If the register the expression is computed into is set only once,
	 or only one set reaches this insn, use it.  */
      if (this_reg->next == NULL
	  || can_disregard_other_sets (&this_reg, insn, 0))
	found_setting = 1;
    }

  if (found_setting)
    {
      pat = PATTERN (insn);
      if (use_src)
	to = SET_SRC (expr_set);
      else
	to = SET_DEST (expr_set);
      changed = validate_change (insn, &SET_SRC (pat), to, 0);

      /* We should be able to ignore the return code from validate_change but
	 to play it safe we check.  */
      if (changed)
	{
	  gcse_subst_count++;
	  if (gcse_file != NULL)
	    {
	      fprintf (gcse_file, "GCSE: Replacing the source in insn %d with",
		       INSN_UID (insn));
	      fprintf (gcse_file, " reg %d %s insn %d\n",
		       REGNO (to), use_src ? "from" : "set in",
		       INSN_UID (insn_computes_expr));
	    }
	}
    }

  /* The register that the expr is computed into is set more than once.  */
  else if (1 /*expensive_op(this_pattrn->op) && do_expensive_gcse)*/)
    {
      /* Insert an insn after insnx that copies the reg set in insnx
	 into a new pseudo register call this new register REGN.
	 From insnb until end of basic block or until REGB is set
	 replace all uses of REGB with REGN.  */
      rtx new_insn;

      to = gen_reg_rtx (GET_MODE (SET_DEST (expr_set)));

      /* Generate the new insn.  */
      /* ??? If the change fails, we return 0, even though we created
	 an insn.  I think this is ok.  */
      new_insn
	= emit_insn_after (gen_rtx_SET (VOIDmode, to,
					SET_DEST (expr_set)),
			   insn_computes_expr);

      /* Keep register set table up to date.  */
      record_one_set (REGNO (to), new_insn);

      gcse_create_count++;
      if (gcse_file != NULL)
	{
	  fprintf (gcse_file, "GCSE: Creating insn %d to copy value of reg %d",
		   INSN_UID (NEXT_INSN (insn_computes_expr)),
		   REGNO (SET_SRC (PATTERN (NEXT_INSN (insn_computes_expr)))));
	  fprintf (gcse_file, ", computed in insn %d,\n",
		   INSN_UID (insn_computes_expr));
	  fprintf (gcse_file, "      into newly allocated reg %d\n",
		   REGNO (to));
	}

      pat = PATTERN (insn);

      /* Do register replacement for INSN.  */
      changed = validate_change (insn, &SET_SRC (pat),
				 SET_DEST (PATTERN
					   (NEXT_INSN (insn_computes_expr))),
				 0);

      /* We should be able to ignore the return code from validate_change but
	 to play it safe we check.  */
      if (changed)
	{
	  gcse_subst_count++;
	  if (gcse_file != NULL)
	    {
	      fprintf (gcse_file,
		       "GCSE: Replacing the source in insn %d with reg %d ",
		       INSN_UID (insn),
		       REGNO (SET_DEST (PATTERN (NEXT_INSN
						 (insn_computes_expr)))));
	      fprintf (gcse_file, "set in insn %d\n",
		       INSN_UID (insn_computes_expr));
	    }
	}
    }

  return changed;
}

/* Perform classic GCSE.  This is called by one_classic_gcse_pass after all
   the dataflow analysis has been done.

   The result is nonzero if a change was made.  */

static int
classic_gcse ()
{
  int changed;
  rtx insn;
  basic_block bb;

  /* Note we start at block 1.  */

  if (ENTRY_BLOCK_PTR->next_bb == EXIT_BLOCK_PTR)
    return 0;

  changed = 0;
  FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR->next_bb->next_bb, EXIT_BLOCK_PTR, next_bb)
    {
      /* Reset tables used to keep track of what's still valid [since the
	 start of the block].  */
      reset_opr_set_tables ();

      for (insn = bb->head;
	   insn != NULL && insn != NEXT_INSN (bb->end);
	   insn = NEXT_INSN (insn))
	{
	  /* Is insn of form (set (pseudo-reg) ...)?  */
	  if (GET_CODE (insn) == INSN
	      && GET_CODE (PATTERN (insn)) == SET
	      && GET_CODE (SET_DEST (PATTERN (insn))) == REG
	      && REGNO (SET_DEST (PATTERN (insn))) >= FIRST_PSEUDO_REGISTER)
	    {
	      rtx pat = PATTERN (insn);
	      rtx src = SET_SRC (pat);
	      struct expr *expr;

	      if (want_to_gcse_p (src)
		  /* Is the expression recorded?  */
		  && ((expr = lookup_expr (src, &expr_hash_table)) != NULL)
		  /* Is the expression available [at the start of the
		     block]?  */
		  && TEST_BIT (ae_in[bb->index], expr->bitmap_index)
		  /* Are the operands unchanged since the start of the
		     block?  */
		  && oprs_not_set_p (src, insn))
		changed |= handle_avail_expr (insn, expr);
	    }

	  /* Keep track of everything modified by this insn.  */
	  /* ??? Need to be careful w.r.t. mods done to INSN.  */
	  if (INSN_P (insn))
	    mark_oprs_set (insn);
	}
    }

  return changed;
}

/* Top level routine to perform one classic GCSE pass.

   Return nonzero if a change was made.  */

static int
one_classic_gcse_pass (pass)
     int pass;
{
  int changed = 0;

  gcse_subst_count = 0;
  gcse_create_count = 0;

  alloc_hash_table (max_cuid, &expr_hash_table, 0);
  alloc_rd_mem (last_basic_block, max_cuid);
  compute_hash_table (&expr_hash_table);
  if (gcse_file)
    dump_hash_table (gcse_file, "Expression", &expr_hash_table);

  if (expr_hash_table.n_elems > 0)
    {
      compute_kill_rd ();
      compute_rd ();
      alloc_avail_expr_mem (last_basic_block, expr_hash_table.n_elems);
      compute_ae_gen (&expr_hash_table);
      compute_ae_kill (ae_gen, ae_kill, &expr_hash_table);
      compute_available (ae_gen, ae_kill, ae_out, ae_in);
      changed = classic_gcse ();
      free_avail_expr_mem ();
    }

  free_rd_mem ();
  free_hash_table (&expr_hash_table);

  if (gcse_file)
    {
      fprintf (gcse_file, "\n");
      fprintf (gcse_file, "GCSE of %s, pass %d: %d bytes needed, %d substs,",
	       current_function_name, pass, bytes_used, gcse_subst_count);
      fprintf (gcse_file, "%d insns created\n", gcse_create_count);
    }

  return changed;
}

/* Compute copy/constant propagation working variables.  */

/* Local properties of assignments.  */
static sbitmap *cprop_pavloc;
static sbitmap *cprop_absaltered;

/* Global properties of assignments (computed from the local properties).  */
static sbitmap *cprop_avin;
static sbitmap *cprop_avout;

/* Allocate vars used for copy/const propagation.  N_BLOCKS is the number of
   basic blocks.  N_SETS is the number of sets.  */

static void
alloc_cprop_mem (n_blocks, n_sets)
     int n_blocks, n_sets;
{
  cprop_pavloc = sbitmap_vector_alloc (n_blocks, n_sets);
  cprop_absaltered = sbitmap_vector_alloc (n_blocks, n_sets);

  cprop_avin = sbitmap_vector_alloc (n_blocks, n_sets);
  cprop_avout = sbitmap_vector_alloc (n_blocks, n_sets);
}

/* Free vars used by copy/const propagation.  */

static void
free_cprop_mem ()
{
  sbitmap_vector_free (cprop_pavloc);
  sbitmap_vector_free (cprop_absaltered);
  sbitmap_vector_free (cprop_avin);
  sbitmap_vector_free (cprop_avout);
}

/* For each block, compute whether X is transparent.  X is either an
   expression or an assignment [though we don't care which, for this context
   an assignment is treated as an expression].  For each block where an
   element of X is modified, set (SET_P == 1) or reset (SET_P == 0) the INDX
   bit in BMAP.  */

static void
compute_transp (x, indx, bmap, set_p)
     rtx x;
     int indx;
     sbitmap *bmap;
     int set_p;
{
  int i, j;
  basic_block bb;
  enum rtx_code code;
  reg_set *r;
  const char *fmt;

  /* repeat is used to turn tail-recursion into iteration since GCC
     can't do it when there's no return value.  */
 repeat:

  if (x == 0)
    return;

  code = GET_CODE (x);
  switch (code)
    {
    case REG:
      if (set_p)
	{
	  if (REGNO (x) < FIRST_PSEUDO_REGISTER)
	    {
	      FOR_EACH_BB (bb)
		if (TEST_BIT (reg_set_in_block[bb->index], REGNO (x)))
		  SET_BIT (bmap[bb->index], indx);
	    }
	  else
	    {
	      for (r = reg_set_table[REGNO (x)]; r != NULL; r = r->next)
		SET_BIT (bmap[BLOCK_NUM (r->insn)], indx);
	    }
	}
      else
	{
	  if (REGNO (x) < FIRST_PSEUDO_REGISTER)
	    {
	      FOR_EACH_BB (bb)
		if (TEST_BIT (reg_set_in_block[bb->index], REGNO (x)))
		  RESET_BIT (bmap[bb->index], indx);
	    }
	  else
	    {
	      for (r = reg_set_table[REGNO (x)]; r != NULL; r = r->next)
		RESET_BIT (bmap[BLOCK_NUM (r->insn)], indx);
	    }
	}

      return;

    case MEM:
      FOR_EACH_BB (bb)
	{
	  rtx list_entry = canon_modify_mem_list[bb->index];

	  while (list_entry)
	    {
	      rtx dest, dest_addr;

	      if (GET_CODE (XEXP (list_entry, 0)) == CALL_INSN)
		{
		  if (set_p)
		    SET_BIT (bmap[bb->index], indx);
		  else
		    RESET_BIT (bmap[bb->index], indx);
		  break;
		}
	      /* LIST_ENTRY must be an INSN of some kind that sets memory.
		 Examine each hunk of memory that is modified.  */

	      dest = XEXP (list_entry, 0);
	      list_entry = XEXP (list_entry, 1);
	      dest_addr = XEXP (list_entry, 0);

	      if (canon_true_dependence (dest, GET_MODE (dest), dest_addr,
					 x, rtx_addr_varies_p))
		{
		  if (set_p)
		    SET_BIT (bmap[bb->index], indx);
		  else
		    RESET_BIT (bmap[bb->index], indx);
		  break;
		}
	      list_entry = XEXP (list_entry, 1);
	    }
	}

      x = XEXP (x, 0);
      goto repeat;

    case PC:
    case CC0: /*FIXME*/
    case CONST:
    case CONST_INT:
    case CONST_DOUBLE:
    case CONST_VECTOR:
    case SYMBOL_REF:
    case LABEL_REF:
    case ADDR_VEC:
    case ADDR_DIFF_VEC:
      return;

    default:
      break;
    }

  for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
    {
      if (fmt[i] == 'e')
	{
	  /* If we are about to do the last recursive call
	     needed at this level, change it into iteration.
	     This function is called enough to be worth it.  */
	  if (i == 0)
	    {
	      x = XEXP (x, i);
	      goto repeat;
	    }

	  compute_transp (XEXP (x, i), indx, bmap, set_p);
	}
      else if (fmt[i] == 'E')
	for (j = 0; j < XVECLEN (x, i); j++)
	  compute_transp (XVECEXP (x, i, j), indx, bmap, set_p);
    }
}

/* Top level routine to do the dataflow analysis needed by copy/const
   propagation.  */

static void
compute_cprop_data ()
{
  compute_local_properties (cprop_absaltered, cprop_pavloc, NULL, &set_hash_table);
  compute_available (cprop_pavloc, cprop_absaltered,
		     cprop_avout, cprop_avin);
}

/* Copy/constant propagation.  */

/* Maximum number of register uses in an insn that we handle.  */
#define MAX_USES 8

/* Table of uses found in an insn.
   Allocated statically to avoid alloc/free complexity and overhead.  */
static struct reg_use reg_use_table[MAX_USES];

/* Index into `reg_use_table' while building it.  */
static int reg_use_count;

/* Set up a list of register numbers used in INSN.  The found uses are stored
   in `reg_use_table'.  `reg_use_count' is initialized to zero before entry,
   and contains the number of uses in the table upon exit.

   ??? If a register appears multiple times we will record it multiple times.
   This doesn't hurt anything but it will slow things down.  */

static void
find_used_regs (xptr, data)
     rtx *xptr;
     void *data ATTRIBUTE_UNUSED;
{
  int i, j;
  enum rtx_code code;
  const char *fmt;
  rtx x = *xptr;

  /* repeat is used to turn tail-recursion into iteration since GCC
     can't do it when there's no return value.  */
 repeat:
  if (x == 0)
    return;

  code = GET_CODE (x);
  if (REG_P (x))
    {
      if (reg_use_count == MAX_USES)
	return;

      reg_use_table[reg_use_count].reg_rtx = x;
      reg_use_count++;
    }

  /* Recursively scan the operands of this expression.  */

  for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
    {
      if (fmt[i] == 'e')
	{
	  /* If we are about to do the last recursive call
	     needed at this level, change it into iteration.
	     This function is called enough to be worth it.  */
	  if (i == 0)
	    {
	      x = XEXP (x, 0);
	      goto repeat;
	    }

	  find_used_regs (&XEXP (x, i), data);
	}
      else if (fmt[i] == 'E')
	for (j = 0; j < XVECLEN (x, i); j++)
	  find_used_regs (&XVECEXP (x, i, j), data);
    }
}

/* Try to replace all non-SET_DEST occurrences of FROM in INSN with TO.
   Returns nonzero is successful.  */

static int
try_replace_reg (from, to, insn)
     rtx from, to, insn;
{
  rtx note = find_reg_equal_equiv_note (insn);
  rtx src = 0;
  int success = 0;
  rtx set = single_set (insn);

  validate_replace_src_group (from, to, insn);
  if (num_changes_pending () && apply_change_group ())
    success = 1;

  /* Try to simplify SET_SRC if we have substituted a constant.  */
  if (success && set && CONSTANT_P (to))
    {
      src = simplify_rtx (SET_SRC (set));

      if (src)
	validate_change (insn, &SET_SRC (set), src, 0);
    }

  if (!success && set && reg_mentioned_p (from, SET_SRC (set)))
    {
      /* If above failed and this is a single set, try to simplify the source of
	 the set given our substitution.  We could perhaps try this for multiple
	 SETs, but it probably won't buy us anything.  */
      src = simplify_replace_rtx (SET_SRC (set), from, to);

      if (!rtx_equal_p (src, SET_SRC (set))
	  && validate_change (insn, &SET_SRC (set), src, 0))
	success = 1;

      /* If we've failed to do replacement, have a single SET, and don't already
	 have a note, add a REG_EQUAL note to not lose information.  */
      if (!success && note == 0 && set != 0)
	note = set_unique_reg_note (insn, REG_EQUAL, copy_rtx (src));
    }

  /* If there is already a NOTE, update the expression in it with our
     replacement.  */
  else if (note != 0)
    XEXP (note, 0) = simplify_replace_rtx (XEXP (note, 0), from, to);

  /* REG_EQUAL may get simplified into register.
     We don't allow that. Remove that note. This code ought
     not to happen, because previous code ought to synthesize
     reg-reg move, but be on the safe side.  */
  if (note && REG_P (XEXP (note, 0)))
    remove_note (insn, note);

  return success;
}

/* Find a set of REGNOs that are available on entry to INSN's block.  Returns
   NULL no such set is found.  */

static struct expr *
find_avail_set (regno, insn)
     int regno;
     rtx insn;
{
  /* SET1 contains the last set found that can be returned to the caller for
     use in a substitution.  */
  struct expr *set1 = 0;

  /* Loops are not possible here.  To get a loop we would need two sets
     available at the start of the block containing INSN.  ie we would
     need two sets like this available at the start of the block:

       (set (reg X) (reg Y))
       (set (reg Y) (reg X))

     This can not happen since the set of (reg Y) would have killed the
     set of (reg X) making it unavailable at the start of this block.  */
  while (1)
    {
      rtx src;
      struct expr *set = lookup_set (regno, &set_hash_table);

      /* Find a set that is available at the start of the block
	 which contains INSN.  */
      while (set)
	{
	  if (TEST_BIT (cprop_avin[BLOCK_NUM (insn)], set->bitmap_index))
	    break;
	  set = next_set (regno, set);
	}

      /* If no available set was found we've reached the end of the
	 (possibly empty) copy chain.  */
      if (set == 0)
	break;

      if (GET_CODE (set->expr) != SET)
	abort ();

      src = SET_SRC (set->expr);

      /* We know the set is available.
	 Now check that SRC is ANTLOC (i.e. none of the source operands
	 have changed since the start of the block).

         If the source operand changed, we may still use it for the next
         iteration of this loop, but we may not use it for substitutions.  */

      if (gcse_constant_p (src) || oprs_not_set_p (src, insn))
	set1 = set;

      /* If the source of the set is anything except a register, then
	 we have reached the end of the copy chain.  */
      if (GET_CODE (src) != REG)
	break;

      /* Follow the copy chain, ie start another iteration of the loop
	 and see if we have an available copy into SRC.  */
      regno = REGNO (src);
    }

  /* SET1 holds the last set that was available and anticipatable at
     INSN.  */
  return set1;
}

/* Subroutine of cprop_insn that tries to propagate constants into
   JUMP_INSNS.  JUMP must be a conditional jump.  If SETCC is non-NULL
   it is the instruction that immediately precedes JUMP, and must be a
   single SET of a register.  FROM is what we will try to replace,
   SRC is the constant we will try to substitute for it.  Returns nonzero
   if a change was made.  */

static int
cprop_jump (bb, setcc, jump, from, src)
     basic_block bb;
     rtx setcc;
     rtx jump;
     rtx from;
     rtx src;
{
  rtx new, set_src, note_src;
  rtx set = pc_set (jump);
  rtx note = find_reg_equal_equiv_note (jump);

  if (note)
    {
      note_src = XEXP (note, 0);
      if (GET_CODE (note_src) == EXPR_LIST)
	note_src = NULL_RTX;
    }
  else note_src = NULL_RTX;

  /* Prefer REG_EQUAL notes except those containing EXPR_LISTs.  */
  set_src = note_src ? note_src : SET_SRC (set);

  /* First substitute the SETCC condition into the JUMP instruction,
     then substitute that given values into this expanded JUMP.  */
  if (setcc != NULL_RTX
      && !modified_between_p (from, setcc, jump)
      && !modified_between_p (src, setcc, jump))
    {
      rtx setcc_src;
      rtx setcc_set = single_set (setcc);
      rtx setcc_note = find_reg_equal_equiv_note (setcc);
      setcc_src = (setcc_note && GET_CODE (XEXP (setcc_note, 0)) != EXPR_LIST)
		? XEXP (setcc_note, 0) : SET_SRC (setcc_set);
      set_src = simplify_replace_rtx (set_src, SET_DEST (setcc_set),
				      setcc_src);
    }
  else
    setcc = NULL_RTX;

  new = simplify_replace_rtx (set_src, from, src);

  /* If no simplification can be made, then try the next register.  */
  if (rtx_equal_p (new, SET_SRC (set)))
    return 0;

  /* If this is now a no-op delete it, otherwise this must be a valid insn.  */
  if (new == pc_rtx)
    delete_insn (jump);
  else
    {
      /* Ensure the value computed inside the jump insn to be equivalent
         to one computed by setcc.  */
      if (setcc && modified_in_p (new, setcc))
	return 0;
      if (! validate_change (jump, &SET_SRC (set), new, 0))
	{
	  /* When (some) constants are not valid in a comparison, and there
	     are two registers to be replaced by constants before the entire
	     comparison can be folded into a constant, we need to keep
	     intermediate information in REG_EQUAL notes.  For targets with
	     separate compare insns, such notes are added by try_replace_reg.
	     When we have a combined compare-and-branch instruction, however,
	     we need to attach a note to the branch itself to make this
	     optimization work.  */

	  if (!rtx_equal_p (new, note_src))
	    set_unique_reg_note (jump, REG_EQUAL, copy_rtx (new));
	  return 0;
	}

      /* Remove REG_EQUAL note after simplification.  */
      if (note_src)
	remove_note (jump, note);

      /* If this has turned into an unconditional jump,
	 then put a barrier after it so that the unreachable
	 code will be deleted.  */
      if (GET_CODE (SET_SRC (set)) == LABEL_REF)
	emit_barrier_after (jump);
     }

#ifdef HAVE_cc0
  /* Delete the cc0 setter.  */
  if (setcc != NULL && CC0_P (SET_DEST (single_set (setcc))))
    delete_insn (setcc);
#endif

  run_jump_opt_after_gcse = 1;

  const_prop_count++;
  if (gcse_file != NULL)
    {
      fprintf (gcse_file,
	       "CONST-PROP: Replacing reg %d in jump_insn %d with constant ",
	       REGNO (from), INSN_UID (jump));
      print_rtl (gcse_file, src);
      fprintf (gcse_file, "\n");
    }
  purge_dead_edges (bb);

  return 1;
}

static bool
constprop_register (insn, from, to, alter_jumps)
     rtx insn;
     rtx from;
     rtx to;
     int alter_jumps;
{
  rtx sset;

  /* Check for reg or cc0 setting instructions followed by
     conditional branch instructions first.  */
  if (alter_jumps
      && (sset = single_set (insn)) != NULL
      && NEXT_INSN (insn)
      && any_condjump_p (NEXT_INSN (insn)) && onlyjump_p (NEXT_INSN (insn)))
    {
      rtx dest = SET_DEST (sset);
      if ((REG_P (dest) || CC0_P (dest))
	  && cprop_jump (BLOCK_FOR_INSN (insn), insn, NEXT_INSN (insn), from, to))
	return 1;
    }

  /* Handle normal insns next.  */
  if (GET_CODE (insn) == INSN
      && try_replace_reg (from, to, insn))
    return 1;

  /* Try to propagate a CONST_INT into a conditional jump.
     We're pretty specific about what we will handle in this
     code, we can extend this as necessary over time.

     Right now the insn in question must look like
     (set (pc) (if_then_else ...))  */
  else if (alter_jumps && any_condjump_p (insn) && onlyjump_p (insn))
    return cprop_jump (BLOCK_FOR_INSN (insn), NULL, insn, from, to);
  return 0;
}

/* Perform constant and copy propagation on INSN.
   The result is nonzero if a change was made.  */

static int
cprop_insn (insn, alter_jumps)
     rtx insn;
     int alter_jumps;
{
  struct reg_use *reg_used;
  int changed = 0;
  rtx note;

  if (!INSN_P (insn))
    return 0;

  reg_use_count = 0;
  note_uses (&PATTERN (insn), find_used_regs, NULL);

  note = find_reg_equal_equiv_note (insn);

  /* We may win even when propagating constants into notes.  */
  if (note)
    find_used_regs (&XEXP (note, 0), NULL);

  for (reg_used = &reg_use_table[0]; reg_use_count > 0;
       reg_used++, reg_use_count--)
    {
      unsigned int regno = REGNO (reg_used->reg_rtx);
      rtx pat, src;
      struct expr *set;

      /* Ignore registers created by GCSE.
	 We do this because ...  */
      if (regno >= max_gcse_regno)
	continue;

      /* If the register has already been set in this block, there's
	 nothing we can do.  */
      if (! oprs_not_set_p (reg_used->reg_rtx, insn))
	continue;

      /* Find an assignment that sets reg_used and is available
	 at the start of the block.  */
      set = find_avail_set (regno, insn);
      if (! set)
	continue;

      pat = set->expr;
      /* ??? We might be able to handle PARALLELs.  Later.  */
      if (GET_CODE (pat) != SET)
	abort ();

      src = SET_SRC (pat);

      /* Constant propagation.  */
      if (gcse_constant_p (src))
	{
          if (constprop_register (insn, reg_used->reg_rtx, src, alter_jumps))
	    {
	      changed = 1;
	      const_prop_count++;
	      if (gcse_file != NULL)
		{
		  fprintf (gcse_file, "GLOBAL CONST-PROP: Replacing reg %d in ", regno);
		  fprintf (gcse_file, "insn %d with constant ", INSN_UID (insn));
		  print_rtl (gcse_file, src);
		  fprintf (gcse_file, "\n");
		}
	      if (INSN_DELETED_P (insn))
		return 1;
	    }
	}
      else if (GET_CODE (src) == REG
	       && REGNO (src) >= FIRST_PSEUDO_REGISTER
	       && REGNO (src) != regno)
	{
	  if (try_replace_reg (reg_used->reg_rtx, src, insn))
	    {
	      changed = 1;
	      copy_prop_count++;
	      if (gcse_file != NULL)
		{
		  fprintf (gcse_file, "GLOBAL COPY-PROP: Replacing reg %d in insn %d",
			   regno, INSN_UID (insn));
		  fprintf (gcse_file, " with reg %d\n", REGNO (src));
		}

	      /* The original insn setting reg_used may or may not now be
		 deletable.  We leave the deletion to flow.  */
	      /* FIXME: If it turns out that the insn isn't deletable,
		 then we may have unnecessarily extended register lifetimes
		 and made things worse.  */
	    }
	}
    }

  return changed;
}

/* Like find_used_regs, but avoid recording uses that appear in
   input-output contexts such as zero_extract or pre_dec.  This
   restricts the cases we consider to those for which local cprop
   can legitimately make replacements.  */

static void
local_cprop_find_used_regs (xptr, data)
     rtx *xptr;
     void *data;
{
  rtx x = *xptr;

  if (x == 0)
    return;

  switch (GET_CODE (x))
    {
    case ZERO_EXTRACT:
    case SIGN_EXTRACT:
    case STRICT_LOW_PART:
      return;

    case PRE_DEC:
    case PRE_INC:
    case POST_DEC:
    case POST_INC:
    case PRE_MODIFY:
    case POST_MODIFY:
      /* Can only legitimately appear this early in the context of
	 stack pushes for function arguments, but handle all of the
	 codes nonetheless.  */
      return;

    case SUBREG:
      /* Setting a subreg of a register larger than word_mode leaves
	 the non-written words unchanged.  */
      if (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))) > BITS_PER_WORD)
	return;
      break;

    default:
      break;
    }

  find_used_regs (xptr, data);
}
  
/* LIBCALL_SP is a zero-terminated array of insns at the end of a libcall;
   their REG_EQUAL notes need updating.  */

static bool
do_local_cprop (x, insn, alter_jumps, libcall_sp)
     rtx x;
     rtx insn;
     int alter_jumps;
     rtx *libcall_sp;
{
  rtx newreg = NULL, newcnst = NULL;

  /* Rule out USE instructions and ASM statements as we don't want to
     change the hard registers mentioned.  */
  if (GET_CODE (x) == REG
      && (REGNO (x) >= FIRST_PSEUDO_REGISTER
          || (GET_CODE (PATTERN (insn)) != USE
	      && asm_noperands (PATTERN (insn)) < 0)))
    {
      cselib_val *val = cselib_lookup (x, GET_MODE (x), 0);
      struct elt_loc_list *l;

      if (!val)
	return false;
      for (l = val->locs; l; l = l->next)
	{
	  rtx this_rtx = l->loc;
	  rtx note;

	  if (l->in_libcall)
	    continue;

	  if (gcse_constant_p (this_rtx))
	    newcnst = this_rtx;
	  if (REG_P (this_rtx) && REGNO (this_rtx) >= FIRST_PSEUDO_REGISTER
	      /* Don't copy propagate if it has attached REG_EQUIV note.
		 At this point this only function parameters should have
		 REG_EQUIV notes and if the argument slot is used somewhere
		 explicitly, it means address of parameter has been taken,
		 so we should not extend the lifetime of the pseudo.  */
	      && (!(note = find_reg_note (l->setting_insn, REG_EQUIV, NULL_RTX))
		  || GET_CODE (XEXP (note, 0)) != MEM))
	    newreg = this_rtx;
	}
      if (newcnst && constprop_register (insn, x, newcnst, alter_jumps))
	{
	  /* If we find a case where we can't fix the retval REG_EQUAL notes
	     match the new register, we either have to abandon this replacement
	     or fix delete_trivially_dead_insns to preserve the setting insn,
	     or make it delete the REG_EUAQL note, and fix up all passes that
	     require the REG_EQUAL note there.  */
	  if (!adjust_libcall_notes (x, newcnst, insn, libcall_sp))
	    abort ();
	  if (gcse_file != NULL)
	    {
	      fprintf (gcse_file, "LOCAL CONST-PROP: Replacing reg %d in ",
		       REGNO (x));
	      fprintf (gcse_file, "insn %d with constant ",
		       INSN_UID (insn));
	      print_rtl (gcse_file, newcnst);
	      fprintf (gcse_file, "\n");
	    }
	  const_prop_count++;
	  return true;
	}
      else if (newreg && newreg != x && try_replace_reg (x, newreg, insn))
	{
	  adjust_libcall_notes (x, newreg, insn, libcall_sp);
	  if (gcse_file != NULL)
	    {
	      fprintf (gcse_file,
		       "LOCAL COPY-PROP: Replacing reg %d in insn %d",
		       REGNO (x), INSN_UID (insn));
	      fprintf (gcse_file, " with reg %d\n", REGNO (newreg));
	    }
	  copy_prop_count++;
	  return true;
	}
    }
  return false;
}

/* LIBCALL_SP is a zero-terminated array of insns at the end of a libcall;
   their REG_EQUAL notes need updating to reflect that OLDREG has been
   replaced with NEWVAL in INSN.  Return true if all substitutions could
   be made.  */
static bool
adjust_libcall_notes (oldreg, newval, insn, libcall_sp)
     rtx oldreg, newval, insn, *libcall_sp;
{
  rtx end;

  while ((end = *libcall_sp++))
    {
      rtx note = find_reg_equal_equiv_note (end);

      if (! note)
	continue;

      if (REG_P (newval))
	{
	  if (reg_set_between_p (newval, PREV_INSN (insn), end))
	    {
	      do
		{
		  note = find_reg_equal_equiv_note (end);
		  if (! note)
		    continue;
		  if (reg_mentioned_p (newval, XEXP (note, 0)))
		    return false;
		}
	      while ((end = *libcall_sp++));
	      return true;
	    }
	}
      XEXP (note, 0) = replace_rtx (XEXP (note, 0), oldreg, newval);
      insn = end;
    }
  return true;
}

#define MAX_NESTED_LIBCALLS 9

static void
local_cprop_pass (alter_jumps)
     int alter_jumps;
{
  rtx insn;
  struct reg_use *reg_used;
  rtx libcall_stack[MAX_NESTED_LIBCALLS + 1], *libcall_sp;
  bool changed = false;

  cselib_init ();
  libcall_sp = &libcall_stack[MAX_NESTED_LIBCALLS];
  *libcall_sp = 0;
  for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
    {
      if (INSN_P (insn))
	{
	  rtx note = find_reg_note (insn, REG_LIBCALL, NULL_RTX);

	  if (note)
	    {
	      if (libcall_sp == libcall_stack)
		abort ();
	      *--libcall_sp = XEXP (note, 0);
	    }
	  note = find_reg_note (insn, REG_RETVAL, NULL_RTX);
	  if (note)
	    libcall_sp++;
	  note = find_reg_equal_equiv_note (insn);
	  do
	    {
	      reg_use_count = 0;
	      note_uses (&PATTERN (insn), local_cprop_find_used_regs, NULL);
	      if (note)
		local_cprop_find_used_regs (&XEXP (note, 0), NULL);

	      for (reg_used = &reg_use_table[0]; reg_use_count > 0;
		   reg_used++, reg_use_count--)
		if (do_local_cprop (reg_used->reg_rtx, insn, alter_jumps,
		    libcall_sp))
		  {
		    changed = true;
		    break;
		  }
	      if (INSN_DELETED_P (insn))
		break;
	    }
	  while (reg_use_count);
	}
      cselib_process_insn (insn);
    }
  cselib_finish ();
  /* Global analysis may get into infinite loops for unreachable blocks.  */
  if (changed && alter_jumps)
    {
      delete_unreachable_blocks ();
      free_reg_set_mem ();
      alloc_reg_set_mem (max_reg_num ());
      compute_sets (get_insns ());
    }
}

/* Forward propagate copies.  This includes copies and constants.  Return
   nonzero if a change was made.  */

static int
cprop (alter_jumps)
     int alter_jumps;
{
  int changed;
  basic_block bb;
  rtx insn;

  /* Note we start at block 1.  */
  if (ENTRY_BLOCK_PTR->next_bb == EXIT_BLOCK_PTR)
    {
      if (gcse_file != NULL)
	fprintf (gcse_file, "\n");
      return 0;
    }

  changed = 0;
  FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR->next_bb->next_bb, EXIT_BLOCK_PTR, next_bb)
    {
      /* Reset tables used to keep track of what's still valid [since the
	 start of the block].  */
      reset_opr_set_tables ();

      for (insn = bb->head;
	   insn != NULL && insn != NEXT_INSN (bb->end);
	   insn = NEXT_INSN (insn))
	if (INSN_P (insn))
	  {
	    changed |= cprop_insn (insn, alter_jumps);

	    /* Keep track of everything modified by this insn.  */
	    /* ??? Need to be careful w.r.t. mods done to INSN.  Don't
	       call mark_oprs_set if we turned the insn into a NOTE.  */
	    if (GET_CODE (insn) != NOTE)
	      mark_oprs_set (insn);
	  }
    }

  if (gcse_file != NULL)
    fprintf (gcse_file, "\n");

  return changed;
}

/* Similar to get_condition, only the resulting condition must be
   valid at JUMP, instead of at EARLIEST.

   This differs from noce_get_condition in ifcvt.c in that we prefer not to
   settle for the condition variable in the jump instruction being integral.
   We prefer to be able to record the value of a user variable, rather than
   the value of a temporary used in a condition.  This could be solved by
   recording the value of *every* register scaned by canonicalize_condition,
   but this would require some code reorganization.  */

rtx
fis_get_condition (jump)
     rtx jump;
{
  rtx cond, set, tmp, insn, earliest;
  bool reverse;

  if (! any_condjump_p (jump))
    return NULL_RTX;

  set = pc_set (jump);
  cond = XEXP (SET_SRC (set), 0);

  /* If this branches to JUMP_LABEL when the condition is false,
     reverse the condition.  */
  reverse = (GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
	     && XEXP (XEXP (SET_SRC (set), 2), 0) == JUMP_LABEL (jump));

  /* Use canonicalize_condition to do the dirty work of manipulating
     MODE_CC values and COMPARE rtx codes.  */
  tmp = canonicalize_condition (jump, cond, reverse, &earliest, NULL_RTX);
  if (!tmp)
    return NULL_RTX;

  /* Verify that the given condition is valid at JUMP by virtue of not
     having been modified since EARLIEST.  */
  for (insn = earliest; insn != jump; insn = NEXT_INSN (insn))
    if (INSN_P (insn) && modified_in_p (tmp, insn))
      break;
  if (insn == jump)
    return tmp;

  /* The condition was modified.  See if we can get a partial result
     that doesn't follow all the reversals.  Perhaps combine can fold
     them together later.  */
  tmp = XEXP (tmp, 0);
  if (!REG_P (tmp) || GET_MODE_CLASS (GET_MODE (tmp)) != MODE_INT)
    return NULL_RTX;
  tmp = canonicalize_condition (jump, cond, reverse, &earliest, tmp);
  if (!tmp)
    return NULL_RTX;

  /* For sanity's sake, re-validate the new result.  */
  for (insn = earliest; insn != jump; insn = NEXT_INSN (insn))
    if (INSN_P (insn) && modified_in_p (tmp, insn))
      return NULL_RTX;

  return tmp;
}

/* Find the implicit sets of a function.  An "implicit set" is a constraint
   on the value of a variable, implied by a conditional jump.  For example,
   following "if (x == 2)", the then branch may be optimized as though the
   conditional performed an "explicit set", in this example, "x = 2".  This
   function records the set patterns that are implicit at the start of each
   basic block.  */

static void
find_implicit_sets ()
{
  basic_block bb, dest;
  unsigned int count;
  rtx cond, new;

  count = 0;
  FOR_EACH_BB (bb)
    /* Check for more than one sucessor.  */
    if (bb->succ && bb->succ->succ_next)
      {
	cond = fis_get_condition (bb->end);

	if (cond
	    && (GET_CODE (cond) == EQ || GET_CODE (cond) == NE)
	    && GET_CODE (XEXP (cond, 0)) == REG
	    && REGNO (XEXP (cond, 0)) >= FIRST_PSEUDO_REGISTER
	    && gcse_constant_p (XEXP (cond, 1)))
	  {
	    dest = GET_CODE (cond) == EQ ? BRANCH_EDGE (bb)->dest
					 : FALLTHRU_EDGE (bb)->dest;

	    if (dest && ! dest->pred->pred_next
		&& dest != EXIT_BLOCK_PTR)
	      {
		new = gen_rtx_SET (VOIDmode, XEXP (cond, 0),
					     XEXP (cond, 1));
		implicit_sets[dest->index] = new;
		if (gcse_file)
		  {
		    fprintf(gcse_file, "Implicit set of reg %d in ",
			    REGNO (XEXP (cond, 0)));
		    fprintf(gcse_file, "basic block %d\n", dest->index);
		  }
		count++;
	      }
	  }
      }

  if (gcse_file)
    fprintf (gcse_file, "Found %d implicit sets\n", count);
}

/* Perform one copy/constant propagation pass.
   PASS is the pass count.  If CPROP_JUMPS is true, perform constant
   propagation into conditional jumps.  If BYPASS_JUMPS is true,
   perform conditional jump bypassing optimizations.  */

static int
one_cprop_pass (pass, cprop_jumps, bypass_jumps)
     int pass;
     int cprop_jumps;
     int bypass_jumps;
{
  int changed = 0;

  const_prop_count = 0;
  copy_prop_count = 0;

  local_cprop_pass (cprop_jumps);

  /* Determine implicit sets.  */
  implicit_sets = (rtx *) xcalloc (last_basic_block, sizeof (rtx));
  find_implicit_sets ();

  alloc_hash_table (max_cuid, &set_hash_table, 1);
  compute_hash_table (&set_hash_table);

  /* Free implicit_sets before peak usage.  */
  free (implicit_sets);
  implicit_sets = NULL;

  if (gcse_file)
    dump_hash_table (gcse_file, "SET", &set_hash_table);
  if (set_hash_table.n_elems > 0)
    {
      alloc_cprop_mem (last_basic_block, set_hash_table.n_elems);
      compute_cprop_data ();
      changed = cprop (cprop_jumps);
      if (bypass_jumps)
	changed |= bypass_conditional_jumps ();
      free_cprop_mem ();
    }

  free_hash_table (&set_hash_table);

  if (gcse_file)
    {
      fprintf (gcse_file, "CPROP of %s, pass %d: %d bytes needed, ",
	       current_function_name, pass, bytes_used);
      fprintf (gcse_file, "%d const props, %d copy props\n\n",
	       const_prop_count, copy_prop_count);
    }
  /* Global analysis may get into infinite loops for unreachable blocks.  */
  if (changed && cprop_jumps)
    delete_unreachable_blocks ();

  return changed;
}

/* Bypass conditional jumps.  */

/* The value of last_basic_block at the beginning of the jump_bypass
   pass.  The use of redirect_edge_and_branch_force may introduce new
   basic blocks, but the data flow analysis is only valid for basic
   block indices less than bypass_last_basic_block.  */

static int bypass_last_basic_block;

/* Find a set of REGNO to a constant that is available at the end of basic
   block BB.  Returns NULL if no such set is found.  Based heavily upon
   find_avail_set.  */

static struct expr *
find_bypass_set (regno, bb)
     int regno;
     int bb;
{
  struct expr *result = 0;

  for (;;)
    {
      rtx src;
      struct expr *set = lookup_set (regno, &set_hash_table);

      while (set)
	{
	  if (TEST_BIT (cprop_avout[bb], set->bitmap_index))
	    break;
	  set = next_set (regno, set);
	}

      if (set == 0)
	break;

      if (GET_CODE (set->expr) != SET)
	abort ();

      src = SET_SRC (set->expr);
      if (gcse_constant_p (src))
	result = set;

      if (GET_CODE (src) != REG)
	break;

      regno = REGNO (src);
    }
  return result;
}


/* Subroutine of bypass_block that checks whether a pseudo is killed by
   any of the instructions inserted on an edge.  Jump bypassing places
   condition code setters on CFG edges using insert_insn_on_edge.  This
   function is required to check that our data flow analysis is still
   valid prior to commit_edge_insertions.  */

static bool
reg_killed_on_edge (reg, e)
     rtx reg;
     edge e;
{
  rtx insn;

  for (insn = e->insns; insn; insn = NEXT_INSN (insn))
    if (INSN_P (insn) && reg_set_p (reg, insn))
      return true;

  return false;
}

/* Subroutine of bypass_conditional_jumps that attempts to bypass the given
   basic block BB which has more than one predecessor.  If not NULL, SETCC
   is the first instruction of BB, which is immediately followed by JUMP_INSN
   JUMP.  Otherwise, SETCC is NULL, and JUMP is the first insn of BB.
   Returns nonzero if a change was made.

   During the jump bypassing pass, we may place copies of SETCC instructions
   on CFG edges.  The following routine must be careful to pay attention to
   these inserted insns when performing its transformations.  */

static int
bypass_block (bb, setcc, jump)
     basic_block bb;
     rtx setcc, jump;
{
  rtx insn, note;
  edge e, enext, edest;
  int i, change;
  int may_be_loop_header;

  insn = (setcc != NULL) ? setcc : jump;

  /* Determine set of register uses in INSN.  */
  reg_use_count = 0;
  note_uses (&PATTERN (insn), find_used_regs, NULL);
  note = find_reg_equal_equiv_note (insn);
  if (note)
    find_used_regs (&XEXP (note, 0), NULL);

  may_be_loop_header = false;
  for (e = bb->pred; e; e = e->pred_next)
    if (e->flags & EDGE_DFS_BACK)
      {
	may_be_loop_header = true;
	break;
      }

  change = 0;
  for (e = bb->pred; e; e = enext)
    {
      enext = e->pred_next;
      if (e->flags & EDGE_COMPLEX)
	continue;

      /* We can't redirect edges from new basic blocks.  */
      if (e->src->index >= bypass_last_basic_block)
	continue;

      /* The irreducible loops created by redirecting of edges entering the
	 loop from outside would decrease effectiveness of some of the following
	 optimizations, so prevent this.  */
      if (may_be_loop_header
	  && !(e->flags & EDGE_DFS_BACK))
	continue;

      for (i = 0; i < reg_use_count; i++)
	{
	  struct reg_use *reg_used = &reg_use_table[i];
	  unsigned int regno = REGNO (reg_used->reg_rtx);
	  basic_block dest, old_dest;
	  struct expr *set;
	  rtx src, new;

	  if (regno >= max_gcse_regno)
	    continue;

	  set = find_bypass_set (regno, e->src->index);

	  if (! set)
	    continue;

	  /* Check the data flow is valid after edge insertions.  */
	  if (e->insns && reg_killed_on_edge (reg_used->reg_rtx, e))
	    continue;

	  src = SET_SRC (pc_set (jump));

	  if (setcc != NULL)
	      src = simplify_replace_rtx (src,
					  SET_DEST (PATTERN (setcc)),
					  SET_SRC (PATTERN (setcc)));

	  new = simplify_replace_rtx (src, reg_used->reg_rtx,
				      SET_SRC (set->expr));

	  /* Jump bypassing may have already placed instructions on 
	     edges of the CFG.  We can't bypass an outgoing edge that
	     has instructions associated with it, as these insns won't
	     get executed if the incoming edge is redirected.  */

	  if (new == pc_rtx)
	    {
	      edest = FALLTHRU_EDGE (bb);
	      dest = edest->insns ? NULL : edest->dest;
	    }
	  else if (GET_CODE (new) == LABEL_REF)
	    {
	      dest = BLOCK_FOR_INSN (XEXP (new, 0));
	      /* Don't bypass edges containing instructions.  */
	      for (edest = bb->succ; edest; edest = edest->succ_next)
		if (edest->dest == dest && edest->insns)
		  {
		    dest = NULL;
		    break;
		  }
	    }
	  else
	    dest = NULL;

	  old_dest = e->dest;
	  if (dest != NULL
	      && dest != old_dest
	      && dest != EXIT_BLOCK_PTR)
            {
	      redirect_edge_and_branch_force (e, dest);

	      /* Copy the register setter to the redirected edge.
		 Don't copy CC0 setters, as CC0 is dead after jump.  */
	      if (setcc)
		{
		  rtx pat = PATTERN (setcc);
		  if (!CC0_P (SET_DEST (pat)))
		    insert_insn_on_edge (copy_insn (pat), e);
		}

	      if (gcse_file != NULL)
		{
		  fprintf (gcse_file, "JUMP-BYPASS: Proved reg %d in jump_insn %d equals constant ",
			   regno, INSN_UID (jump));
		  print_rtl (gcse_file, SET_SRC (set->expr));
		  fprintf (gcse_file, "\nBypass edge from %d->%d to %d\n",
			   e->src->index, old_dest->index, dest->index);
		}
	      change = 1;
	      break;
	    }
	}
    }
  return change;
}

/* Find basic blocks with more than one predecessor that only contain a
   single conditional jump.  If the result of the comparison is known at
   compile-time from any incoming edge, redirect that edge to the
   appropriate target.  Returns nonzero if a change was made.

   This function is now mis-named, because we also handle indirect jumps.  */

static int
bypass_conditional_jumps ()
{
  basic_block bb;
  int changed;
  rtx setcc;
  rtx insn;
  rtx dest;

  /* Note we start at block 1.  */
  if (ENTRY_BLOCK_PTR->next_bb == EXIT_BLOCK_PTR)
    return 0;

  bypass_last_basic_block = last_basic_block;
  mark_dfs_back_edges ();

  changed = 0;
  FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR->next_bb->next_bb,
		  EXIT_BLOCK_PTR, next_bb)
    {
      /* Check for more than one predecessor.  */
      if (bb->pred && bb->pred->pred_next)
	{
	  setcc = NULL_RTX;
	  for (insn = bb->head;
	       insn != NULL && insn != NEXT_INSN (bb->end);
	       insn = NEXT_INSN (insn))
	    if (GET_CODE (insn) == INSN)
	      {
		if (setcc)
		  break;
		if (GET_CODE (PATTERN (insn)) != SET)
		  break;

		dest = SET_DEST (PATTERN (insn));
		if (REG_P (dest) || CC0_P (dest))
		  setcc = insn;
		else
		  break;
	      }
	    else if (GET_CODE (insn) == JUMP_INSN)
	      {
		if ((any_condjump_p (insn) || computed_jump_p (insn))
		    && onlyjump_p (insn))
		  changed |= bypass_block (bb, setcc, insn);
		break;
	      }
	    else if (INSN_P (insn))
	      break;
	}
    }

  /* If we bypassed any register setting insns, we inserted a
     copy on the redirected edge.  These need to be committed.  */
  if (changed)
    commit_edge_insertions();

  return changed;
}

/* Compute PRE+LCM working variables.  */

/* Local properties of expressions.  */
/* Nonzero for expressions that are transparent in the block.  */
static sbitmap *transp;

/* Nonzero for expressions that are transparent at the end of the block.
   This is only zero for expressions killed by abnormal critical edge
   created by a calls.  */
static sbitmap *transpout;

/* Nonzero for expressions that are computed (available) in the block.  */
static sbitmap *comp;

/* Nonzero for expressions that are locally anticipatable in the block.  */
static sbitmap *antloc;

/* Nonzero for expressions where this block is an optimal computation
   point.  */
static sbitmap *pre_optimal;

/* Nonzero for expressions which are redundant in a particular block.  */
static sbitmap *pre_redundant;

/* Nonzero for expressions which should be inserted on a specific edge.  */
static sbitmap *pre_insert_map;

/* Nonzero for expressions which should be deleted in a specific block.  */
static sbitmap *pre_delete_map;

/* Contains the edge_list returned by pre_edge_lcm.  */
static struct edge_list *edge_list;

/* Redundant insns.  */
static sbitmap pre_redundant_insns;

/* Allocate vars used for PRE analysis.  */

static void
alloc_pre_mem (n_blocks, n_exprs)
     int n_blocks, n_exprs;
{
  transp = sbitmap_vector_alloc (n_blocks, n_exprs);
  comp = sbitmap_vector_alloc (n_blocks, n_exprs);
  antloc = sbitmap_vector_alloc (n_blocks, n_exprs);

  pre_optimal = NULL;
  pre_redundant = NULL;
  pre_insert_map = NULL;
  pre_delete_map = NULL;
  ae_in = NULL;
  ae_out = NULL;
  ae_kill = sbitmap_vector_alloc (n_blocks, n_exprs);

  /* pre_insert and pre_delete are allocated later.  */
}

/* Free vars used for PRE analysis.  */

static void
free_pre_mem ()
{
  sbitmap_vector_free (transp);
  sbitmap_vector_free (comp);

  /* ANTLOC and AE_KILL are freed just after pre_lcm finishes.  */

  if (pre_optimal)
    sbitmap_vector_free (pre_optimal);
  if (pre_redundant)
    sbitmap_vector_free (pre_redundant);
  if (pre_insert_map)
    sbitmap_vector_free (pre_insert_map);
  if (pre_delete_map)
    sbitmap_vector_free (pre_delete_map);
  if (ae_in)
    sbitmap_vector_free (ae_in);
  if (ae_out)
    sbitmap_vector_free (ae_out);

  transp = comp = NULL;
  pre_optimal = pre_redundant = pre_insert_map = pre_delete_map = NULL;
  ae_in = ae_out = NULL;
}

/* Top level routine to do the dataflow analysis needed by PRE.  */

static void
compute_pre_data ()
{
  sbitmap trapping_expr;
  basic_block bb;
  unsigned int ui;

  compute_local_properties (transp, comp, antloc, &expr_hash_table);
  sbitmap_vector_zero (ae_kill, last_basic_block);

  /* Collect expressions which might trap.  */
  trapping_expr = sbitmap_alloc (expr_hash_table.n_elems);
  sbitmap_zero (trapping_expr);
  for (ui = 0; ui < expr_hash_table.size; ui++)
    {
      struct expr *e;
      for (e = expr_hash_table.table[ui]; e != NULL; e = e->next_same_hash)
	if (may_trap_p (e->expr))
	  SET_BIT (trapping_expr, e->bitmap_index);
    }

  /* Compute ae_kill for each basic block using:

     ~(TRANSP | COMP)

     This is significantly faster than compute_ae_kill.  */

  FOR_EACH_BB (bb)
    {
      edge e;

      /* If the current block is the destination of an abnormal edge, we
	 kill all trapping expressions because we won't be able to properly
	 place the instruction on the edge.  So make them neither
	 anticipatable nor transparent.  This is fairly conservative.  */
      for (e = bb->pred; e ; e = e->pred_next)
	if (e->flags & EDGE_ABNORMAL)
	  {
	    sbitmap_difference (antloc[bb->index], antloc[bb->index], trapping_expr);
	    sbitmap_difference (transp[bb->index], transp[bb->index], trapping_expr);
	    break;
	  }

      sbitmap_a_or_b (ae_kill[bb->index], transp[bb->index], comp[bb->index]);
      sbitmap_not (ae_kill[bb->index], ae_kill[bb->index]);
    }

  edge_list = pre_edge_lcm (gcse_file, expr_hash_table.n_elems, transp, comp, antloc,
			    ae_kill, &pre_insert_map, &pre_delete_map);
  sbitmap_vector_free (antloc);
  antloc = NULL;
  sbitmap_vector_free (ae_kill);
  ae_kill = NULL;
  sbitmap_free (trapping_expr);
}

/* PRE utilities */

/* Return nonzero if an occurrence of expression EXPR in OCCR_BB would reach
   block BB.

   VISITED is a pointer to a working buffer for tracking which BB's have
   been visited.  It is NULL for the top-level call.

   We treat reaching expressions that go through blocks containing the same
   reaching expression as "not reaching".  E.g. if EXPR is generated in blocks
   2 and 3, INSN is in block 4, and 2->3->4, we treat the expression in block
   2 as not reaching.  The intent is to improve the probability of finding
   only one reaching expression and to reduce register lifetimes by picking
   the closest such expression.  */

static int
pre_expr_reaches_here_p_work (occr_bb, expr, bb, visited)
     basic_block occr_bb;
     struct expr *expr;
     basic_block bb;
     char *visited;
{
  edge pred;

  for (pred = bb->pred; pred != NULL; pred = pred->pred_next)
    {
      basic_block pred_bb = pred->src;

      if (pred->src == ENTRY_BLOCK_PTR
	  /* Has predecessor has already been visited?  */
	  || visited[pred_bb->index])
	;/* Nothing to do.  */

      /* Does this predecessor generate this expression?  */
      else if (TEST_BIT (comp[pred_bb->index], expr->bitmap_index))
	{
	  /* Is this the occurrence we're looking for?
	     Note that there's only one generating occurrence per block
	     so we just need to check the block number.  */
	  if (occr_bb == pred_bb)
	    return 1;

	  visited[pred_bb->index] = 1;
	}
      /* Ignore this predecessor if it kills the expression.  */
      else if (! TEST_BIT (transp[pred_bb->index], expr->bitmap_index))
	visited[pred_bb->index] = 1;

      /* Neither gen nor kill.  */
      else
	{
	  visited[pred_bb->index] = 1;
	  if (pre_expr_reaches_here_p_work (occr_bb, expr, pred_bb, visited))
	    return 1;
	}
    }

  /* All paths have been checked.  */
  return 0;
}

/* The wrapper for pre_expr_reaches_here_work that ensures that any
   memory allocated for that function is returned.  */

static int
pre_expr_reaches_here_p (occr_bb, expr, bb)
     basic_block occr_bb;
     struct expr *expr;
     basic_block bb;
{
  int rval;
  char *visited = (char *) xcalloc (last_basic_block, 1);

  rval = pre_expr_reaches_here_p_work (occr_bb, expr, bb, visited);

  free (visited);
  return rval;
}


/* Given an expr, generate RTL which we can insert at the end of a BB,
   or on an edge.  Set the block number of any insns generated to
   the value of BB.  */

static rtx
process_insert_insn (expr)
     struct expr *expr;
{
  rtx reg = expr->reaching_reg;
  rtx exp = copy_rtx (expr->expr);
  rtx pat;

  start_sequence ();

  /* If the expression is something that's an operand, like a constant,
     just copy it to a register.  */
  if (general_operand (exp, GET_MODE (reg)))
    emit_move_insn (reg, exp);

  /* Otherwise, make a new insn to compute this expression and make sure the
     insn will be recognized (this also adds any needed CLOBBERs).  Copy the
     expression to make sure we don't have any sharing issues.  */
  else if (insn_invalid_p (emit_insn (gen_rtx_SET (VOIDmode, reg, exp))))
    abort ();

  pat = get_insns ();
  end_sequence ();

  return pat;
}

/* Add EXPR to the end of basic block BB.

   This is used by both the PRE and code hoisting.

   For PRE, we want to verify that the expr is either transparent
   or locally anticipatable in the target block.  This check makes
   no sense for code hoisting.  */

static void
insert_insn_end_bb (expr, bb, pre)
     struct expr *expr;
     basic_block bb;
     int pre;
{
  rtx insn = bb->end;
  rtx new_insn;
  rtx reg = expr->reaching_reg;
  int regno = REGNO (reg);
  rtx pat, pat_end;

  pat = process_insert_insn (expr);
  if (pat == NULL_RTX || ! INSN_P (pat))
    abort ();

  pat_end = pat;
  while (NEXT_INSN (pat_end) != NULL_RTX)
    pat_end = NEXT_INSN (pat_end);

  /* If the last insn is a jump, insert EXPR in front [taking care to
     handle cc0, etc. properly].  Similary we need to care trapping
     instructions in presence of non-call exceptions.  */

  if (GET_CODE (insn) == JUMP_INSN
      || (GET_CODE (insn) == INSN
	  && (bb->succ->succ_next || (bb->succ->flags & EDGE_ABNORMAL))))
    {
#ifdef HAVE_cc0
      rtx note;
#endif
      /* It should always be the case that we can put these instructions
	 anywhere in the basic block with performing PRE optimizations.
	 Check this.  */
      if (GET_CODE (insn) == INSN && pre
	  && !TEST_BIT (antloc[bb->index], expr->bitmap_index)
	  && !TEST_BIT (transp[bb->index], expr->bitmap_index))
	abort ();

      /* If this is a jump table, then we can't insert stuff here.  Since
	 we know the previous real insn must be the tablejump, we insert
	 the new instruction just before the tablejump.  */
      if (GET_CODE (PATTERN (insn)) == ADDR_VEC
	  || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC)
	insn = prev_real_insn (insn);

#ifdef HAVE_cc0
      /* FIXME: 'twould be nice to call prev_cc0_setter here but it aborts
	 if cc0 isn't set.  */
      note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
      if (note)
	insn = XEXP (note, 0);
      else
	{
	  rtx maybe_cc0_setter = prev_nonnote_insn (insn);
	  if (maybe_cc0_setter
	      && INSN_P (maybe_cc0_setter)
	      && sets_cc0_p (PATTERN (maybe_cc0_setter)))
	    insn = maybe_cc0_setter;
	}
#endif
      /* FIXME: What if something in cc0/jump uses value set in new insn?  */
      new_insn = emit_insn_before (pat, insn);
    }

  /* Likewise if the last insn is a call, as will happen in the presence
     of exception handling.  */
  else if (GET_CODE (insn) == CALL_INSN
	   && (bb->succ->succ_next || (bb->succ->flags & EDGE_ABNORMAL)))
    {
      /* Keeping in mind SMALL_REGISTER_CLASSES and parameters in registers,
	 we search backward and place the instructions before the first
	 parameter is loaded.  Do this for everyone for consistency and a
	 presumption that we'll get better code elsewhere as well.

	 It should always be the case that we can put these instructions
	 anywhere in the basic block with performing PRE optimizations.
	 Check this.  */

      if (pre
	  && !TEST_BIT (antloc[bb->index], expr->bitmap_index)
	  && !TEST_BIT (transp[bb->index], expr->bitmap_index))
	abort ();

      /* Since different machines initialize their parameter registers
	 in different orders, assume nothing.  Collect the set of all
	 parameter registers.  */
      insn = find_first_parameter_load (insn, bb->head);

      /* If we found all the parameter loads, then we want to insert
	 before the first parameter load.

	 If we did not find all the parameter loads, then we might have
	 stopped on the head of the block, which could be a CODE_LABEL.
	 If we inserted before the CODE_LABEL, then we would be putting
	 the insn in the wrong basic block.  In that case, put the insn
	 after the CODE_LABEL.  Also, respect NOTE_INSN_BASIC_BLOCK.  */
      while (GET_CODE (insn) == CODE_LABEL
	     || NOTE_INSN_BASIC_BLOCK_P (insn))
	insn = NEXT_INSN (insn);

      new_insn = emit_insn_before (pat, insn);
    }
  else
    new_insn = emit_insn_after (pat, insn);

  while (1)
    {
      if (INSN_P (pat))
	{
	  add_label_notes (PATTERN (pat), new_insn);
	  note_stores (PATTERN (pat), record_set_info, pat);
	}
      if (pat == pat_end)
	break;
      pat = NEXT_INSN (pat);
    }

  gcse_create_count++;

  if (gcse_file)
    {
      fprintf (gcse_file, "PRE/HOIST: end of bb %d, insn %d, ",
	       bb->index, INSN_UID (new_insn));
      fprintf (gcse_file, "copying expression %d to reg %d\n",
	       expr->bitmap_index, regno);
    }
}

/* Insert partially redundant expressions on edges in the CFG to make
   the expressions fully redundant.  */

static int
pre_edge_insert (edge_list, index_map)
     struct edge_list *edge_list;
     struct expr **index_map;
{
  int e, i, j, num_edges, set_size, did_insert = 0;
  sbitmap *inserted;

  /* Where PRE_INSERT_MAP is nonzero, we add the expression on that edge
     if it reaches any of the deleted expressions.  */

  set_size = pre_insert_map[0]->size;
  num_edges = NUM_EDGES (edge_list);
  inserted = sbitmap_vector_alloc (num_edges, expr_hash_table.n_elems);
  sbitmap_vector_zero (inserted, num_edges);

  for (e = 0; e < num_edges; e++)
    {
      int indx;
      basic_block bb = INDEX_EDGE_PRED_BB (edge_list, e);

      for (i = indx = 0; i < set_size; i++, indx += SBITMAP_ELT_BITS)
	{
	  SBITMAP_ELT_TYPE insert = pre_insert_map[e]->elms[i];

	  for (j = indx; insert && j < (int) expr_hash_table.n_elems; j++, insert >>= 1)
	    if ((insert & 1) != 0 && index_map[j]->reaching_reg != NULL_RTX)
	      {
		struct expr *expr = index_map[j];
		struct occr *occr;

		/* Now look at each deleted occurrence of this expression.  */
		for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
		  {
		    if (! occr->deleted_p)
		      continue;

		    /* Insert this expression on this edge if if it would
		       reach the deleted occurrence in BB.  */
		    if (!TEST_BIT (inserted[e], j))
		      {
			rtx insn;
			edge eg = INDEX_EDGE (edge_list, e);

			/* We can't insert anything on an abnormal and
			   critical edge, so we insert the insn at the end of
			   the previous block. There are several alternatives
			   detailed in Morgans book P277 (sec 10.5) for
			   handling this situation.  This one is easiest for
			   now.  */

			if ((eg->flags & EDGE_ABNORMAL) == EDGE_ABNORMAL)
			  insert_insn_end_bb (index_map[j], bb, 0);
			else
			  {
			    insn = process_insert_insn (index_map[j]);
			    insert_insn_on_edge (insn, eg);
			  }

			if (gcse_file)
			  {
			    fprintf (gcse_file, "PRE/HOIST: edge (%d,%d), ",
				     bb->index,
				     INDEX_EDGE_SUCC_BB (edge_list, e)->index);
			    fprintf (gcse_file, "copy expression %d\n",
				     expr->bitmap_index);
			  }

			update_ld_motion_stores (expr);
			SET_BIT (inserted[e], j);
			did_insert = 1;
			gcse_create_count++;
		      }
		  }
	      }
	}
    }

  sbitmap_vector_free (inserted);
  return did_insert;
}

/* Copy the result of INSN to REG.  INDX is the expression number.  */

static void
pre_insert_copy_insn (expr, insn)
     struct expr *expr;
     rtx insn;
{
  rtx reg = expr->reaching_reg;
  int regno = REGNO (reg);
  int indx = expr->bitmap_index;
  rtx set = single_set (insn);
  rtx new_insn;

  if (!set)
    abort ();

  new_insn = emit_insn_after (gen_move_insn (reg, copy_rtx (SET_DEST (set))), insn);

  /* Keep register set table up to date.  */
  record_one_set (regno, new_insn);

  gcse_create_count++;

  if (gcse_file)
    fprintf (gcse_file,
	     "PRE: bb %d, insn %d, copy expression %d in insn %d to reg %d\n",
	      BLOCK_NUM (insn), INSN_UID (new_insn), indx,
	      INSN_UID (insn), regno);
  update_ld_motion_stores (expr);
}

/* Copy available expressions that reach the redundant expression
   to `reaching_reg'.  */

static void
pre_insert_copies ()
{
  unsigned int i;
  struct expr *expr;
  struct occr *occr;
  struct occr *avail;

  /* For each available expression in the table, copy the result to
     `reaching_reg' if the expression reaches a deleted one.

     ??? The current algorithm is rather brute force.
     Need to do some profiling.  */

  for (i = 0; i < expr_hash_table.size; i++)
    for (expr = expr_hash_table.table[i]; expr != NULL; expr = expr->next_same_hash)
      {
	/* If the basic block isn't reachable, PPOUT will be TRUE.  However,
	   we don't want to insert a copy here because the expression may not
	   really be redundant.  So only insert an insn if the expression was
	   deleted.  This test also avoids further processing if the
	   expression wasn't deleted anywhere.  */
	if (expr->reaching_reg == NULL)
	  continue;

	for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
	  {
	    if (! occr->deleted_p)
	      continue;

	    for (avail = expr->avail_occr; avail != NULL; avail = avail->next)
	      {
		rtx insn = avail->insn;

		/* No need to handle this one if handled already.  */
		if (avail->copied_p)
		  continue;

		/* Don't handle this one if it's a redundant one.  */
		if (TEST_BIT (pre_redundant_insns, INSN_CUID (insn)))
		  continue;

		/* Or if the expression doesn't reach the deleted one.  */
		if (! pre_expr_reaches_here_p (BLOCK_FOR_INSN (avail->insn),
					       expr,
					       BLOCK_FOR_INSN (occr->insn)))
		  continue;

		/* Copy the result of avail to reaching_reg.  */
		pre_insert_copy_insn (expr, insn);
		avail->copied_p = 1;
	      }
	  }
      }
}

/* Emit move from SRC to DEST noting the equivalence with expression computed
   in INSN.  */
static rtx
gcse_emit_move_after (src, dest, insn)
     rtx src, dest, insn;
{
  rtx new;
  rtx set = single_set (insn), set2;
  rtx note;
  rtx eqv;

  /* This should never fail since we're creating a reg->reg copy
     we've verified to be valid.  */

  new = emit_insn_after (gen_move_insn (dest, src), insn);

  /* Note the equivalence for local CSE pass.  */
  set2 = single_set (new);
  if (!set2 || !rtx_equal_p (SET_DEST (set2), dest))
    return new;
  if ((note = find_reg_equal_equiv_note (insn)))
    eqv = XEXP (note, 0);
  else
    eqv = SET_SRC (set);

  set_unique_reg_note (new, REG_EQUAL, copy_insn_1 (eqv));

  return new;
}

/* Delete redundant computations.
   Deletion is done by changing the insn to copy the `reaching_reg' of
   the expression into the result of the SET.  It is left to later passes
   (cprop, cse2, flow, combine, regmove) to propagate the copy or eliminate it.

   Returns nonzero if a change is made.  */

static int
pre_delete ()
{
  unsigned int i;
  int changed;
  struct expr *expr;
  struct occr *occr;

  changed = 0;
  for (i = 0; i < expr_hash_table.size; i++)
    for (expr = expr_hash_table.table[i]; expr != NULL; expr = expr->next_same_hash)
      {
	int indx = expr->bitmap_index;

	/* We only need to search antic_occr since we require
	   ANTLOC != 0.  */

	for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
	  {
	    rtx insn = occr->insn;
	    rtx set;
	    basic_block bb = BLOCK_FOR_INSN (insn);

	    if (TEST_BIT (pre_delete_map[bb->index], indx))
	      {
		set = single_set (insn);
		if (! set)
		  abort ();

		/* Create a pseudo-reg to store the result of reaching
		   expressions into.  Get the mode for the new pseudo from
		   the mode of the original destination pseudo.  */
		if (expr->reaching_reg == NULL)
		  expr->reaching_reg
		    = gen_reg_rtx (GET_MODE (SET_DEST (set)));

		gcse_emit_move_after (expr->reaching_reg, SET_DEST (set), insn);
		delete_insn (insn);
		occr->deleted_p = 1;
		SET_BIT (pre_redundant_insns, INSN_CUID (insn));
		changed = 1;
		gcse_subst_count++;

		if (gcse_file)
		  {
		    fprintf (gcse_file,
			     "PRE: redundant insn %d (expression %d) in ",
			       INSN_UID (insn), indx);
		    fprintf (gcse_file, "bb %d, reaching reg is %d\n",
			     bb->index, REGNO (expr->reaching_reg));
		  }
	      }
	  }
      }

  return changed;
}

/* Perform GCSE optimizations using PRE.
   This is called by one_pre_gcse_pass after all the dataflow analysis
   has been done.

   This is based on the original Morel-Renvoise paper Fred Chow's thesis, and
   lazy code motion from Knoop, Ruthing and Steffen as described in Advanced
   Compiler Design and Implementation.

   ??? A new pseudo reg is created to hold the reaching expression.  The nice
   thing about the classical approach is that it would try to use an existing
   reg.  If the register can't be adequately optimized [i.e. we introduce
   reload problems], one could add a pass here to propagate the new register
   through the block.

   ??? We don't handle single sets in PARALLELs because we're [currently] not
   able to copy the rest of the parallel when we insert copies to create full
   redundancies from partial redundancies.  However, there's no reason why we
   can't handle PARALLELs in the cases where there are no partial
   redundancies.  */

static int
pre_gcse ()
{
  unsigned int i;
  int did_insert, changed;
  struct expr **index_map;
  struct expr *expr;

  /* Compute a mapping from expression number (`bitmap_index') to
     hash table entry.  */

  index_map = (struct expr **) xcalloc (expr_hash_table.n_elems, sizeof (struct expr *));
  for (i = 0; i < expr_hash_table.size; i++)
    for (expr = expr_hash_table.table[i]; expr != NULL; expr = expr->next_same_hash)
      index_map[expr->bitmap_index] = expr;

  /* Reset bitmap used to track which insns are redundant.  */
  pre_redundant_insns = sbitmap_alloc (max_cuid);
  sbitmap_zero (pre_redundant_insns);

  /* Delete the redundant insns first so that
     - we know what register to use for the new insns and for the other
       ones with reaching expressions
     - we know which insns are redundant when we go to create copies  */

  changed = pre_delete ();

  did_insert = pre_edge_insert (edge_list, index_map);

  /* In other places with reaching expressions, copy the expression to the
     specially allocated pseudo-reg that reaches the redundant expr.  */
  pre_insert_copies ();
  if (did_insert)
    {
      commit_edge_insertions ();
      changed = 1;
    }

  free (index_map);
  sbitmap_free (pre_redundant_insns);
  return changed;
}

/* Top level routine to perform one PRE GCSE pass.

   Return nonzero if a change was made.  */

static int
one_pre_gcse_pass (pass)
     int pass;
{
  int changed = 0;

  gcse_subst_count = 0;
  gcse_create_count = 0;

  alloc_hash_table (max_cuid, &expr_hash_table, 0);
  add_noreturn_fake_exit_edges ();
  if (flag_gcse_lm)
    compute_ld_motion_mems ();

  compute_hash_table (&expr_hash_table);
  trim_ld_motion_mems ();
  if (gcse_file)
    dump_hash_table (gcse_file, "Expression", &expr_hash_table);

  if (expr_hash_table.n_elems > 0)
    {
      alloc_pre_mem (last_basic_block, expr_hash_table.n_elems);
      compute_pre_data ();
      changed |= pre_gcse ();
      free_edge_list (edge_list);
      free_pre_mem ();
    }

  free_ldst_mems ();
  remove_fake_edges ();
  free_hash_table (&expr_hash_table);

  if (gcse_file)
    {
      fprintf (gcse_file, "\nPRE GCSE of %s, pass %d: %d bytes needed, ",
	       current_function_name, pass, bytes_used);
      fprintf (gcse_file, "%d substs, %d insns created\n",
	       gcse_subst_count, gcse_create_count);
    }

  return changed;
}

/* If X contains any LABEL_REF's, add REG_LABEL notes for them to INSN.
   If notes are added to an insn which references a CODE_LABEL, the
   LABEL_NUSES count is incremented.  We have to add REG_LABEL notes,
   because the following loop optimization pass requires them.  */

/* ??? This is very similar to the loop.c add_label_notes function.  We
   could probably share code here.  */

/* ??? If there was a jump optimization pass after gcse and before loop,
   then we would not need to do this here, because jump would add the
   necessary REG_LABEL notes.  */

static void
add_label_notes (x, insn)
     rtx x;
     rtx insn;
{
  enum rtx_code code = GET_CODE (x);
  int i, j;
  const char *fmt;

  if (code == LABEL_REF && !LABEL_REF_NONLOCAL_P (x))
    {
      /* This code used to ignore labels that referred to dispatch tables to
	 avoid flow generating (slightly) worse code.

	 We no longer ignore such label references (see LABEL_REF handling in
	 mark_jump_label for additional information).  */

      REG_NOTES (insn) = gen_rtx_INSN_LIST (REG_LABEL, XEXP (x, 0),
					    REG_NOTES (insn));
      if (LABEL_P (XEXP (x, 0)))
	LABEL_NUSES (XEXP (x, 0))++;
      return;
    }

  for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
    {
      if (fmt[i] == 'e')
	add_label_notes (XEXP (x, i), insn);
      else if (fmt[i] == 'E')
	for (j = XVECLEN (x, i) - 1; j >= 0; j--)
	  add_label_notes (XVECEXP (x, i, j), insn);
    }
}

/* Compute transparent outgoing information for each block.

   An expression is transparent to an edge unless it is killed by
   the edge itself.  This can only happen with abnormal control flow,
   when the edge is traversed through a call.  This happens with
   non-local labels and exceptions.

   This would not be necessary if we split the edge.  While this is
   normally impossible for abnormal critical edges, with some effort
   it should be possible with exception handling, since we still have
   control over which handler should be invoked.  But due to increased
   EH table sizes, this may not be worthwhile.  */

static void
compute_transpout ()
{
  basic_block bb;
  unsigned int i;
  struct expr *expr;

  sbitmap_vector_ones (transpout, last_basic_block);

  FOR_EACH_BB (bb)
    {
      /* Note that flow inserted a nop a the end of basic blocks that
	 end in call instructions for reasons other than abnormal
	 control flow.  */
      if (GET_CODE (bb->end) != CALL_INSN)
	continue;

      for (i = 0; i < expr_hash_table.size; i++)
	for (expr = expr_hash_table.table[i]; expr ; expr = expr->next_same_hash)
	  if (GET_CODE (expr->expr) == MEM)
	    {
	      if (GET_CODE (XEXP (expr->expr, 0)) == SYMBOL_REF
		  && CONSTANT_POOL_ADDRESS_P (XEXP (expr->expr, 0)))
		continue;

	      /* ??? Optimally, we would use interprocedural alias
		 analysis to determine if this mem is actually killed
		 by this call.  */
	      RESET_BIT (transpout[bb->index], expr->bitmap_index);
	    }
    }
}

/* Removal of useless null pointer checks */

/* Called via note_stores.  X is set by SETTER.  If X is a register we must
   invalidate nonnull_local and set nonnull_killed.  DATA is really a
   `null_pointer_info *'.

   We ignore hard registers.  */

static void
invalidate_nonnull_info (x, setter, data)
     rtx x;
     rtx setter ATTRIBUTE_UNUSED;
     void *data;
{
  unsigned int regno;
  struct null_pointer_info *npi = (struct null_pointer_info *) data;

  while (GET_CODE (x) == SUBREG)
    x = SUBREG_REG (x);

  /* Ignore anything that is not a register or is a hard register.  */
  if (GET_CODE (x) != REG
      || REGNO (x) < npi->min_reg
      || REGNO (x) >= npi->max_reg)
    return;

  regno = REGNO (x) - npi->min_reg;

  RESET_BIT (npi->nonnull_local[npi->current_block->index], regno);
  SET_BIT (npi->nonnull_killed[npi->current_block->index], regno);
}

/* Do null-pointer check elimination for the registers indicated in
   NPI.  NONNULL_AVIN and NONNULL_AVOUT are pre-allocated sbitmaps;
   they are not our responsibility to free.  */

static int
delete_null_pointer_checks_1 (block_reg, nonnull_avin,
			      nonnull_avout, npi)
     unsigned int *block_reg;
     sbitmap *nonnull_avin;
     sbitmap *nonnull_avout;
     struct null_pointer_info *npi;
{
  basic_block bb, current_block;
  sbitmap *nonnull_local = npi->nonnull_local;
  sbitmap *nonnull_killed = npi->nonnull_killed;
  int something_changed = 0;

  /* Compute local properties, nonnull and killed.  A register will have
     the nonnull property if at the end of the current block its value is
     known to be nonnull.  The killed property indicates that somewhere in
     the block any information we had about the register is killed.

     Note that a register can have both properties in a single block.  That
     indicates that it's killed, then later in the block a new value is
     computed.  */
  sbitmap_vector_zero (nonnull_local, last_basic_block);
  sbitmap_vector_zero (nonnull_killed, last_basic_block);

  FOR_EACH_BB (current_block)
    {
      rtx insn, stop_insn;

      /* Set the current block for invalidate_nonnull_info.  */
      npi->current_block = current_block;

      /* Scan each insn in the basic block looking for memory references and
	 register sets.  */
      stop_insn = NEXT_INSN (current_block->end);
      for (insn = current_block->head;
	   insn != stop_insn;
	   insn = NEXT_INSN (insn))
	{
	  rtx set;
	  rtx reg;

	  /* Ignore anything that is not a normal insn.  */
	  if (! INSN_P (insn))
	    continue;

	  /* Basically ignore anything that is not a simple SET.  We do have
	     to make sure to invalidate nonnull_local and set nonnull_killed
	     for such insns though.  */
	  set = single_set (insn);
	  if (!set)
	    {
	      note_stores (PATTERN (insn), invalidate_nonnull_info, npi);
	      continue;
	    }

	  /* See if we've got a usable memory load.  We handle it first
	     in case it uses its address register as a dest (which kills
	     the nonnull property).  */
	  if (GET_CODE (SET_SRC (set)) == MEM
	      && GET_CODE ((reg = XEXP (SET_SRC (set), 0))) == REG
	      && REGNO (reg) >= npi->min_reg
	      && REGNO (reg) < npi->max_reg)
	    SET_BIT (nonnull_local[current_block->index],
		     REGNO (reg) - npi->min_reg);

	  /* Now invalidate stuff clobbered by this insn.  */
	  note_stores (PATTERN (insn), invalidate_nonnull_info, npi);

	  /* And handle stores, we do these last since any sets in INSN can
	     not kill the nonnull property if it is derived from a MEM
	     appearing in a SET_DEST.  */
	  if (GET_CODE (SET_DEST (set)) == MEM
	      && GET_CODE ((reg = XEXP (SET_DEST (set), 0))) == REG
	      && REGNO (reg) >= npi->min_reg
	      && REGNO (reg) < npi->max_reg)
	    SET_BIT (nonnull_local[current_block->index],
		     REGNO (reg) - npi->min_reg);
	}
    }

  /* Now compute global properties based on the local properties.   This
     is a classic global availability algorithm.  */
  compute_available (nonnull_local, nonnull_killed,
		     nonnull_avout, nonnull_avin);

  /* Now look at each bb and see if it ends with a compare of a value
     against zero.  */
  FOR_EACH_BB (bb)
    {
      rtx last_insn = bb->end;
      rtx condition, earliest;
      int compare_and_branch;

      /* Since MIN_REG is always at least FIRST_PSEUDO_REGISTER, and
	 since BLOCK_REG[BB] is zero if this block did not end with a
	 comparison against zero, this condition works.  */
      if (block_reg[bb->index] < npi->min_reg
	  || block_reg[bb->index] >= npi->max_reg)
	continue;

      /* LAST_INSN is a conditional jump.  Get its condition.  */
      condition = get_condition (last_insn, &earliest);

      /* If we can't determine the condition then skip.  */
      if (! condition)
	continue;

      /* Is the register known to have a nonzero value?  */
      if (!TEST_BIT (nonnull_avout[bb->index], block_reg[bb->index] - npi->min_reg))
	continue;

      /* Try to compute whether the compare/branch at the loop end is one or
	 two instructions.  */
      if (earliest == last_insn)
	compare_and_branch = 1;
      else if (earliest == prev_nonnote_insn (last_insn))
	compare_and_branch = 2;
      else
	continue;

      /* We know the register in this comparison is nonnull at exit from
	 this block.  We can optimize this comparison.  */
      if (GET_CODE (condition) == NE)
	{
	  rtx new_jump;

	  new_jump = emit_jump_insn_after (gen_jump (JUMP_LABEL (last_insn)),
					   last_insn);
	  JUMP_LABEL (new_jump) = JUMP_LABEL (last_insn);
	  LABEL_NUSES (JUMP_LABEL (new_jump))++;
	  emit_barrier_after (new_jump);
	}

      something_changed = 1;
      delete_insn (last_insn);
      if (compare_and_branch == 2)
	delete_insn (earliest);
      purge_dead_edges (bb);

      /* Don't check this block again.  (Note that BLOCK_END is
	 invalid here; we deleted the last instruction in the
	 block.)  */
      block_reg[bb->index] = 0;
    }

  return something_changed;
}

/* Find EQ/NE comparisons against zero which can be (indirectly) evaluated
   at compile time.

   This is conceptually similar to global constant/copy propagation and
   classic global CSE (it even uses the same dataflow equations as cprop).

   If a register is used as memory address with the form (mem (reg)), then we
   know that REG can not be zero at that point in the program.  Any instruction
   which sets REG "kills" this property.

   So, if every path leading to a conditional branch has an available memory
   reference of that form, then we know the register can not have the value
   zero at the conditional branch.

   So we merely need to compute the local properties and propagate that data
   around the cfg, then optimize where possible.

   We run this pass two times.  Once before CSE, then again after CSE.  This
   has proven to be the most profitable approach.  It is rare for new
   optimization opportunities of this nature to appear after the first CSE
   pass.

   This could probably be integrated with global cprop with a little work.  */

int
delete_null_pointer_checks (f)
     rtx f ATTRIBUTE_UNUSED;
{
  sbitmap *nonnull_avin, *nonnull_avout;
  unsigned int *block_reg;
  basic_block bb;
  int reg;
  int regs_per_pass;
  int max_reg;
  struct null_pointer_info npi;
  int something_changed = 0;

  /* If we have only a single block, then there's nothing to do.  */
  if (n_basic_blocks <= 1)
    return 0;

  /* Trying to perform global optimizations on flow graphs which have
     a high connectivity will take a long time and is unlikely to be
     particularly useful.

     In normal circumstances a cfg should have about twice as many edges
     as blocks.  But we do not want to punish small functions which have
     a couple switch statements.  So we require a relatively large number
     of basic blocks and the ratio of edges to blocks to be high.  */
  if (n_basic_blocks > 1000 && n_edges / n_basic_blocks >= 20)
    return 0;

  /* We need four bitmaps, each with a bit for each register in each
     basic block.  */
  max_reg = max_reg_num ();
  regs_per_pass = get_bitmap_width (4, last_basic_block, max_reg);

  /* Allocate bitmaps to hold local and global properties.  */
  npi.nonnull_local = sbitmap_vector_alloc (last_basic_block, regs_per_pass);
  npi.nonnull_killed = sbitmap_vector_alloc (last_basic_block, regs_per_pass);
  nonnull_avin = sbitmap_vector_alloc (last_basic_block, regs_per_pass);
  nonnull_avout = sbitmap_vector_alloc (last_basic_block, regs_per_pass);

  /* Go through the basic blocks, seeing whether or not each block
     ends with a conditional branch whose condition is a comparison
     against zero.  Record the register compared in BLOCK_REG.  */
  block_reg = (unsigned int *) xcalloc (last_basic_block, sizeof (int));
  FOR_EACH_BB (bb)
    {
      rtx last_insn = bb->end;
      rtx condition, earliest, reg;

      /* We only want conditional branches.  */
      if (GET_CODE (last_insn) != JUMP_INSN
	  || !any_condjump_p (last_insn)
	  || !onlyjump_p (last_insn))
	continue;

      /* LAST_INSN is a conditional jump.  Get its condition.  */
      condition = get_condition (last_insn, &earliest);

      /* If we were unable to get the condition, or it is not an equality
	 comparison against zero then there's nothing we can do.  */
      if (!condition
	  || (GET_CODE (condition) != NE && GET_CODE (condition) != EQ)
	  || GET_CODE (XEXP (condition, 1)) != CONST_INT
	  || (XEXP (condition, 1)
	      != CONST0_RTX (GET_MODE (XEXP (condition, 0)))))
	continue;

      /* We must be checking a register against zero.  */
      reg = XEXP (condition, 0);
      if (GET_CODE (reg) != REG)
	continue;

      block_reg[bb->index] = REGNO (reg);
    }

  /* Go through the algorithm for each block of registers.  */
  for (reg = FIRST_PSEUDO_REGISTER; reg < max_reg; reg += regs_per_pass)
    {
      npi.min_reg = reg;
      npi.max_reg = MIN (reg + regs_per_pass, max_reg);
      something_changed |= delete_null_pointer_checks_1 (block_reg,
							 nonnull_avin,
							 nonnull_avout,
							 &npi);
    }

  /* Free the table of registers compared at the end of every block.  */
  free (block_reg);

  /* Free bitmaps.  */
  sbitmap_vector_free (npi.nonnull_local);
  sbitmap_vector_free (npi.nonnull_killed);
  sbitmap_vector_free (nonnull_avin);
  sbitmap_vector_free (nonnull_avout);

  return something_changed;
}

/* Code Hoisting variables and subroutines.  */

/* Very busy expressions.  */
static sbitmap *hoist_vbein;
static sbitmap *hoist_vbeout;

/* Hoistable expressions.  */
static sbitmap *hoist_exprs;

/* Dominator bitmaps.  */
dominance_info dominators;

/* ??? We could compute post dominators and run this algorithm in
   reverse to perform tail merging, doing so would probably be
   more effective than the tail merging code in jump.c.

   It's unclear if tail merging could be run in parallel with
   code hoisting.  It would be nice.  */

/* Allocate vars used for code hoisting analysis.  */

static void
alloc_code_hoist_mem (n_blocks, n_exprs)
     int n_blocks, n_exprs;
{
  antloc = sbitmap_vector_alloc (n_blocks, n_exprs);
  transp = sbitmap_vector_alloc (n_blocks, n_exprs);
  comp = sbitmap_vector_alloc (n_blocks, n_exprs);

  hoist_vbein = sbitmap_vector_alloc (n_blocks, n_exprs);
  hoist_vbeout = sbitmap_vector_alloc (n_blocks, n_exprs);
  hoist_exprs = sbitmap_vector_alloc (n_blocks, n_exprs);
  transpout = sbitmap_vector_alloc (n_blocks, n_exprs);
}

/* Free vars used for code hoisting analysis.  */

static void
free_code_hoist_mem ()
{
  sbitmap_vector_free (antloc);
  sbitmap_vector_free (transp);
  sbitmap_vector_free (comp);

  sbitmap_vector_free (hoist_vbein);
  sbitmap_vector_free (hoist_vbeout);
  sbitmap_vector_free (hoist_exprs);
  sbitmap_vector_free (transpout);

  free_dominance_info (dominators);
}

/* Compute the very busy expressions at entry/exit from each block.

   An expression is very busy if all paths from a given point
   compute the expression.  */

static void
compute_code_hoist_vbeinout ()
{
  int changed, passes;
  basic_block bb;

  sbitmap_vector_zero (hoist_vbeout, last_basic_block);
  sbitmap_vector_zero (hoist_vbein, last_basic_block);

  passes = 0;
  changed = 1;

  while (changed)
    {
      changed = 0;

      /* We scan the blocks in the reverse order to speed up
	 the convergence.  */
      FOR_EACH_BB_REVERSE (bb)
	{
	  changed |= sbitmap_a_or_b_and_c_cg (hoist_vbein[bb->index], antloc[bb->index],
					      hoist_vbeout[bb->index], transp[bb->index]);
	  if (bb->next_bb != EXIT_BLOCK_PTR)
	    sbitmap_intersection_of_succs (hoist_vbeout[bb->index], hoist_vbein, bb->index);
	}

      passes++;
    }

  if (gcse_file)
    fprintf (gcse_file, "hoisting vbeinout computation: %d passes\n", passes);
}

/* Top level routine to do the dataflow analysis needed by code hoisting.  */

static void
compute_code_hoist_data ()
{
  compute_local_properties (transp, comp, antloc, &expr_hash_table);
  compute_transpout ();
  compute_code_hoist_vbeinout ();
  dominators = calculate_dominance_info (CDI_DOMINATORS);
  if (gcse_file)
    fprintf (gcse_file, "\n");
}

/* Determine if the expression identified by EXPR_INDEX would
   reach BB unimpared if it was placed at the end of EXPR_BB.

   It's unclear exactly what Muchnick meant by "unimpared".  It seems
   to me that the expression must either be computed or transparent in
   *every* block in the path(s) from EXPR_BB to BB.  Any other definition
   would allow the expression to be hoisted out of loops, even if
   the expression wasn't a loop invariant.

   Contrast this to reachability for PRE where an expression is
   considered reachable if *any* path reaches instead of *all*
   paths.  */

static int
hoist_expr_reaches_here_p (expr_bb, expr_index, bb, visited)
     basic_block expr_bb;
     int expr_index;
     basic_block bb;
     char *visited;
{
  edge pred;
  int visited_allocated_locally = 0;


  if (visited == NULL)
    {
      visited_allocated_locally = 1;
      visited = xcalloc (last_basic_block, 1);
    }

  for (pred = bb->pred; pred != NULL; pred = pred->pred_next)
    {
      basic_block pred_bb = pred->src;

      if (pred->src == ENTRY_BLOCK_PTR)
	break;
      else if (pred_bb == expr_bb)
	continue;
      else if (visited[pred_bb->index])
	continue;

      /* Does this predecessor generate this expression?  */
      else if (TEST_BIT (comp[pred_bb->index], expr_index))
	break;
      else if (! TEST_BIT (transp[pred_bb->index], expr_index))
	break;

      /* Not killed.  */
      else
	{
	  visited[pred_bb->index] = 1;
	  if (! hoist_expr_reaches_here_p (expr_bb, expr_index,
					   pred_bb, visited))
	    break;
	}
    }
  if (visited_allocated_locally)
    free (visited);

  return (pred == NULL);
}

/* Actually perform code hoisting.  */

static void
hoist_code ()
{
  basic_block bb, dominated;
  basic_block *domby;
  unsigned int domby_len;
  unsigned int i,j;
  struct expr **index_map;
  struct expr *expr;

  sbitmap_vector_zero (hoist_exprs, last_basic_block);

  /* Compute a mapping from expression number (`bitmap_index') to
     hash table entry.  */

  index_map = (struct expr **) xcalloc (expr_hash_table.n_elems, sizeof (struct expr *));
  for (i = 0; i < expr_hash_table.size; i++)
    for (expr = expr_hash_table.table[i]; expr != NULL; expr = expr->next_same_hash)
      index_map[expr->bitmap_index] = expr;

  /* Walk over each basic block looking for potentially hoistable
     expressions, nothing gets hoisted from the entry block.  */
  FOR_EACH_BB (bb)
    {
      int found = 0;
      int insn_inserted_p;

      domby_len = get_dominated_by (dominators, bb, &domby);
      /* Examine each expression that is very busy at the exit of this
	 block.  These are the potentially hoistable expressions.  */
      for (i = 0; i < hoist_vbeout[bb->index]->n_bits; i++)
	{
	  int hoistable = 0;

	  if (TEST_BIT (hoist_vbeout[bb->index], i)
	      && TEST_BIT (transpout[bb->index], i))
	    {
	      /* We've found a potentially hoistable expression, now
		 we look at every block BB dominates to see if it
		 computes the expression.  */
	      for (j = 0; j < domby_len; j++)
		{
		  dominated = domby[j];
		  /* Ignore self dominance.  */
		  if (bb == dominated)
		    continue;
		  /* We've found a dominated block, now see if it computes
		     the busy expression and whether or not moving that
		     expression to the "beginning" of that block is safe.  */
		  if (!TEST_BIT (antloc[dominated->index], i))
		    continue;

		  /* Note if the expression would reach the dominated block
		     unimpared if it was placed at the end of BB.

		     Keep track of how many times this expression is hoistable
		     from a dominated block into BB.  */
		  if (hoist_expr_reaches_here_p (bb, i, dominated, NULL))
		    hoistable++;
		}

	      /* If we found more than one hoistable occurrence of this
		 expression, then note it in the bitmap of expressions to
		 hoist.  It makes no sense to hoist things which are computed
		 in only one BB, and doing so tends to pessimize register
		 allocation.  One could increase this value to try harder
		 to avoid any possible code expansion due to register
		 allocation issues; however experiments have shown that
		 the vast majority of hoistable expressions are only movable
		 from two successors, so raising this threshold is likely
		 to nullify any benefit we get from code hoisting.  */
	      if (hoistable > 1)
		{
		  SET_BIT (hoist_exprs[bb->index], i);
		  found = 1;
		}
	    }
	}
      /* If we found nothing to hoist, then quit now.  */
      if (! found)
        {
  	  free (domby);
	continue;
	}

      /* Loop over all the hoistable expressions.  */
      for (i = 0; i < hoist_exprs[bb->index]->n_bits; i++)
	{
	  /* We want to insert the expression into BB only once, so
	     note when we've inserted it.  */
	  insn_inserted_p = 0;

	  /* These tests should be the same as the tests above.  */
	  if (TEST_BIT (hoist_vbeout[bb->index], i))
	    {
	      /* We've found a potentially hoistable expression, now
		 we look at every block BB dominates to see if it
		 computes the expression.  */
	      for (j = 0; j < domby_len; j++)
		{
		  dominated = domby[j];
		  /* Ignore self dominance.  */
		  if (bb == dominated)
		    continue;

		  /* We've found a dominated block, now see if it computes
		     the busy expression and whether or not moving that
		     expression to the "beginning" of that block is safe.  */
		  if (!TEST_BIT (antloc[dominated->index], i))
		    continue;

		  /* The expression is computed in the dominated block and
		     it would be safe to compute it at the start of the
		     dominated block.  Now we have to determine if the
		     expression would reach the dominated block if it was
		     placed at the end of BB.  */
		  if (hoist_expr_reaches_here_p (bb, i, dominated, NULL))
		    {
		      struct expr *expr = index_map[i];
		      struct occr *occr = expr->antic_occr;
		      rtx insn;
		      rtx set;

		      /* Find the right occurrence of this expression.  */
		      while (BLOCK_FOR_INSN (occr->insn) != dominated && occr)
			occr = occr->next;

		      /* Should never happen.  */
		      if (!occr)
			abort ();

		      insn = occr->insn;

		      set = single_set (insn);
		      if (! set)
			abort ();

		      /* Create a pseudo-reg to store the result of reaching
			 expressions into.  Get the mode for the new pseudo
			 from the mode of the original destination pseudo.  */
		      if (expr->reaching_reg == NULL)
			expr->reaching_reg
			  = gen_reg_rtx (GET_MODE (SET_DEST (set)));

		      gcse_emit_move_after (expr->reaching_reg, SET_DEST (set), insn);
		      delete_insn (insn);
		      occr->deleted_p = 1;
		      if (!insn_inserted_p)
			{
			  insert_insn_end_bb (index_map[i], bb, 0);
			  insn_inserted_p = 1;
			}
		    }
		}
	    }
	}
      free (domby);
    }

  free (index_map);
}

/* Top level routine to perform one code hoisting (aka unification) pass

   Return nonzero if a change was made.  */

static int
one_code_hoisting_pass ()
{
  int changed = 0;

  alloc_hash_table (max_cuid, &expr_hash_table, 0);
  compute_hash_table (&expr_hash_table);
  if (gcse_file)
    dump_hash_table (gcse_file, "Code Hosting Expressions", &expr_hash_table);

  if (expr_hash_table.n_elems > 0)
    {
      alloc_code_hoist_mem (last_basic_block, expr_hash_table.n_elems);
      compute_code_hoist_data ();
      hoist_code ();
      free_code_hoist_mem ();
    }

  free_hash_table (&expr_hash_table);

  return changed;
}

/*  Here we provide the things required to do store motion towards
    the exit. In order for this to be effective, gcse also needed to
    be taught how to move a load when it is kill only by a store to itself.

	    int i;
	    float a[10];

	    void foo(float scale)
	    {
	      for (i=0; i<10; i++)
		a[i] *= scale;
	    }

    'i' is both loaded and stored to in the loop. Normally, gcse cannot move
    the load out since its live around the loop, and stored at the bottom
    of the loop.

      The 'Load Motion' referred to and implemented in this file is
    an enhancement to gcse which when using edge based lcm, recognizes
    this situation and allows gcse to move the load out of the loop.

      Once gcse has hoisted the load, store motion can then push this
    load towards the exit, and we end up with no loads or stores of 'i'
    in the loop.  */

/* This will search the ldst list for a matching expression. If it
   doesn't find one, we create one and initialize it.  */

static struct ls_expr *
ldst_entry (x)
     rtx x;
{
  struct ls_expr * ptr;

  for (ptr = first_ls_expr(); ptr != NULL; ptr = next_ls_expr (ptr))
    if (expr_equiv_p (ptr->pattern, x))
      break;

  if (!ptr)
    {
      ptr = (struct ls_expr *) xmalloc (sizeof (struct ls_expr));

      ptr->next         = pre_ldst_mems;
      ptr->expr         = NULL;
      ptr->pattern      = x;
      ptr->pattern_regs	= NULL_RTX;
      ptr->loads        = NULL_RTX;
      ptr->stores       = NULL_RTX;
      ptr->reaching_reg = NULL_RTX;
      ptr->invalid      = 0;
      ptr->index        = 0;
      ptr->hash_index   = 0;
      pre_ldst_mems     = ptr;
    }

  return ptr;
}

/* Free up an individual ldst entry.  */

static void
free_ldst_entry (ptr)
     struct ls_expr * ptr;
{
  free_INSN_LIST_list (& ptr->loads);
  free_INSN_LIST_list (& ptr->stores);

  free (ptr);
}

/* Free up all memory associated with the ldst list.  */

static void
free_ldst_mems ()
{
  while (pre_ldst_mems)
    {
      struct ls_expr * tmp = pre_ldst_mems;

      pre_ldst_mems = pre_ldst_mems->next;

      free_ldst_entry (tmp);
    }

  pre_ldst_mems = NULL;
}

/* Dump debugging info about the ldst list.  */

static void
print_ldst_list (file)
     FILE * file;
{
  struct ls_expr * ptr;

  fprintf (file, "LDST list: \n");

  for (ptr = first_ls_expr(); ptr != NULL; ptr = next_ls_expr (ptr))
    {
      fprintf (file, "  Pattern (%3d): ", ptr->index);

      print_rtl (file, ptr->pattern);

      fprintf (file, "\n	 Loads : ");

      if (ptr->loads)
	print_rtl (file, ptr->loads);
      else
	fprintf (file, "(nil)");

      fprintf (file, "\n	Stores : ");

      if (ptr->stores)
	print_rtl (file, ptr->stores);
      else
	fprintf (file, "(nil)");

      fprintf (file, "\n\n");
    }

  fprintf (file, "\n");
}

/* Returns 1 if X is in the list of ldst only expressions.  */

static struct ls_expr *
find_rtx_in_ldst (x)
     rtx x;
{
  struct ls_expr * ptr;

  for (ptr = pre_ldst_mems; ptr != NULL; ptr = ptr->next)
    if (expr_equiv_p (ptr->pattern, x) && ! ptr->invalid)
      return ptr;

  return NULL;
}

/* Assign each element of the list of mems a monotonically increasing value.  */

static int
enumerate_ldsts ()
{
  struct ls_expr * ptr;
  int n = 0;

  for (ptr = pre_ldst_mems; ptr != NULL; ptr = ptr->next)
    ptr->index = n++;

  return n;
}

/* Return first item in the list.  */

static inline struct ls_expr *
first_ls_expr ()
{
  return pre_ldst_mems;
}

/* Return the next item in the list after the specified one.  */

static inline struct ls_expr *
next_ls_expr (ptr)
     struct ls_expr * ptr;
{
  return ptr->next;
}

/* Load Motion for loads which only kill themselves.  */

/* Return true if x is a simple MEM operation, with no registers or
   side effects. These are the types of loads we consider for the
   ld_motion list, otherwise we let the usual aliasing take care of it.  */

static int
simple_mem (x)
     rtx x;
{
  if (GET_CODE (x) != MEM)
    return 0;

  if (MEM_VOLATILE_P (x))
    return 0;

  if (GET_MODE (x) == BLKmode)
    return 0;

  /* If we are handling exceptions, we must be careful with memory references
     that may trap. If we are not, the behavior is undefined, so we may just
     continue.  */
  if (flag_non_call_exceptions && may_trap_p (x))
    return 0;

  if (side_effects_p (x))
    return 0;

  /* Do not consider function arguments passed on stack.  */
  if (reg_mentioned_p (stack_pointer_rtx, x))
    return 0;

  if (flag_float_store && FLOAT_MODE_P (GET_MODE (x)))
    return 0;

  return 1;
}

/* Make sure there isn't a buried reference in this pattern anywhere.
   If there is, invalidate the entry for it since we're not capable
   of fixing it up just yet.. We have to be sure we know about ALL
   loads since the aliasing code will allow all entries in the
   ld_motion list to not-alias itself.  If we miss a load, we will get
   the wrong value since gcse might common it and we won't know to
   fix it up.  */

static void
invalidate_any_buried_refs (x)
     rtx x;
{
  const char * fmt;
  int i, j;
  struct ls_expr * ptr;

  /* Invalidate it in the list.  */
  if (GET_CODE (x) == MEM && simple_mem (x))
    {
      ptr = ldst_entry (x);
      ptr->invalid = 1;
    }

  /* Recursively process the insn.  */
  fmt = GET_RTX_FORMAT (GET_CODE (x));

  for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
    {
      if (fmt[i] == 'e')
	invalidate_any_buried_refs (XEXP (x, i));
      else if (fmt[i] == 'E')
	for (j = XVECLEN (x, i) - 1; j >= 0; j--)
	  invalidate_any_buried_refs (XVECEXP (x, i, j));
    }
}

/* Find all the 'simple' MEMs which are used in LOADs and STORES.  Simple
   being defined as MEM loads and stores to symbols, with no side effects
   and no registers in the expression.  For a MEM destination, we also
   check that the insn is still valid if we replace the destination with a
   REG, as is done in update_ld_motion_stores.  If there are any uses/defs
   which don't match this criteria, they are invalidated and trimmed out
   later.  */

static void
compute_ld_motion_mems ()
{
  struct ls_expr * ptr;
  basic_block bb;
  rtx insn;

  pre_ldst_mems = NULL;

  FOR_EACH_BB (bb)
    {
      for (insn = bb->head;
	   insn && insn != NEXT_INSN (bb->end);
	   insn = NEXT_INSN (insn))
	{
	  if (INSN_P (insn))
	    {
	      if (GET_CODE (PATTERN (insn)) == SET)
		{
		  rtx src = SET_SRC (PATTERN (insn));
		  rtx dest = SET_DEST (PATTERN (insn));

		  /* Check for a simple LOAD...  */
		  if (GET_CODE (src) == MEM && simple_mem (src))
		    {
		      ptr = ldst_entry (src);
		      if (GET_CODE (dest) == REG)
			ptr->loads = alloc_INSN_LIST (insn, ptr->loads);
		      else
			ptr->invalid = 1;
		    }
		  else
		    {
		      /* Make sure there isn't a buried load somewhere.  */
		      invalidate_any_buried_refs (src);
		    }

		  /* Check for stores. Don't worry about aliased ones, they
		     will block any movement we might do later. We only care
		     about this exact pattern since those are the only
		     circumstance that we will ignore the aliasing info.  */
		  if (GET_CODE (dest) == MEM && simple_mem (dest))
		    {
		      ptr = ldst_entry (dest);

		      if (GET_CODE (src) != MEM
			  && GET_CODE (src) != ASM_OPERANDS
			  /* Check for REG manually since want_to_gcse_p
			     returns 0 for all REGs.  */
			  && (REG_P (src) || want_to_gcse_p (src)))
			ptr->stores = alloc_INSN_LIST (insn, ptr->stores);
		      else
			ptr->invalid = 1;
		    }
		}
	      else
		invalidate_any_buried_refs (PATTERN (insn));
	    }
	}
    }
}

/* Remove any references that have been either invalidated or are not in the
   expression list for pre gcse.  */

static void
trim_ld_motion_mems ()
{
  struct ls_expr * last = NULL;
  struct ls_expr * ptr = first_ls_expr ();

  while (ptr != NULL)
    {
      int del = ptr->invalid;
      struct expr * expr = NULL;

      /* Delete if entry has been made invalid.  */
      if (!del)
	{
	  unsigned int i;

	  del = 1;
	  /* Delete if we cannot find this mem in the expression list.  */
	  for (i = 0; i < expr_hash_table.size && del; i++)
	    {
	      for (expr = expr_hash_table.table[i];
		   expr != NULL;
		   expr = expr->next_same_hash)
		if (expr_equiv_p (expr->expr, ptr->pattern))
		  {
		    del = 0;
		    break;
		  }
	    }
	}

      if (del)
	{
	  if (last != NULL)
	    {
	      last->next = ptr->next;
	      free_ldst_entry (ptr);
	      ptr = last->next;
	    }
	  else
	    {
	      pre_ldst_mems = pre_ldst_mems->next;
	      free_ldst_entry (ptr);
	      ptr = pre_ldst_mems;
	    }
	}
      else
	{
	  /* Set the expression field if we are keeping it.  */
	  last = ptr;
	  ptr->expr = expr;
	  ptr = ptr->next;
	}
    }

  /* Show the world what we've found.  */
  if (gcse_file && pre_ldst_mems != NULL)
    print_ldst_list (gcse_file);
}

/* This routine will take an expression which we are replacing with
   a reaching register, and update any stores that are needed if
   that expression is in the ld_motion list.  Stores are updated by
   copying their SRC to the reaching register, and then storeing
   the reaching register into the store location. These keeps the
   correct value in the reaching register for the loads.  */

static void
update_ld_motion_stores (expr)
     struct expr * expr;
{
  struct ls_expr * mem_ptr;

  if ((mem_ptr = find_rtx_in_ldst (expr->expr)))
    {
      /* We can try to find just the REACHED stores, but is shouldn't
	 matter to set the reaching reg everywhere...  some might be
	 dead and should be eliminated later.  */

      /* We replace (set mem expr) with (set reg expr) (set mem reg)
	 where reg is the reaching reg used in the load.  We checked in
	 compute_ld_motion_mems that we can replace (set mem expr) with
	 (set reg expr) in that insn.  */
      rtx list = mem_ptr->stores;

      for ( ; list != NULL_RTX; list = XEXP (list, 1))
	{
	  rtx insn = XEXP (list, 0);
	  rtx pat = PATTERN (insn);
	  rtx src = SET_SRC (pat);
	  rtx reg = expr->reaching_reg;
	  rtx copy, new;

	  /* If we've already copied it, continue.  */
	  if (expr->reaching_reg == src)
	    continue;

	  if (gcse_file)
	    {
	      fprintf (gcse_file, "PRE:  store updated with reaching reg ");
	      print_rtl (gcse_file, expr->reaching_reg);
	      fprintf (gcse_file, ":\n	");
	      print_inline_rtx (gcse_file, insn, 8);
	      fprintf (gcse_file, "\n");
	    }

	  copy = gen_move_insn ( reg, copy_rtx (SET_SRC (pat)));
	  new = emit_insn_before (copy, insn);
	  record_one_set (REGNO (reg), new);
	  SET_SRC (pat) = reg;

	  /* un-recognize this pattern since it's probably different now.  */
	  INSN_CODE (insn) = -1;
	  gcse_create_count++;
	}
    }
}

/* Store motion code.  */

#define ANTIC_STORE_LIST(x)		((x)->loads)
#define AVAIL_STORE_LIST(x)		((x)->stores)
#define LAST_AVAIL_CHECK_FAILURE(x)	((x)->reaching_reg)

/* This is used to communicate the target bitvector we want to use in the
   reg_set_info routine when called via the note_stores mechanism.  */
static int * regvec;

/* And current insn, for the same routine.  */
static rtx compute_store_table_current_insn;

/* Used in computing the reverse edge graph bit vectors.  */
static sbitmap * st_antloc;

/* Global holding the number of store expressions we are dealing with.  */
static int num_stores;

/* Checks to set if we need to mark a register set. Called from note_stores.  */

static void
reg_set_info (dest, setter, data)
     rtx dest, setter ATTRIBUTE_UNUSED;
     void * data ATTRIBUTE_UNUSED;
{
  if (GET_CODE (dest) == SUBREG)
    dest = SUBREG_REG (dest);

  if (GET_CODE (dest) == REG)
    regvec[REGNO (dest)] = INSN_UID (compute_store_table_current_insn);
}

/* Return zero if some of the registers in list X are killed
   due to set of registers in bitmap REGS_SET.  */
  
static bool
store_ops_ok (x, regs_set)
     rtx x;
     int *regs_set;
{
  rtx reg;

  for (; x; x = XEXP (x, 1))
    {
      reg = XEXP (x, 0);
      if (regs_set[REGNO(reg)])
	return false; 
    }

  return true;
}

/* Returns a list of registers mentioned in X.  */
static rtx
extract_mentioned_regs (x)
     rtx x;
{
  return extract_mentioned_regs_helper (x, NULL_RTX);
}

/* Helper for extract_mentioned_regs; ACCUM is used to accumulate used
   registers.  */
static rtx
extract_mentioned_regs_helper (x, accum)
     rtx x;
     rtx accum;
{
  int i;
  enum rtx_code code;
  const char * fmt;

  /* Repeat is used to turn tail-recursion into iteration.  */
 repeat:

  if (x == 0)
    return accum;

  code = GET_CODE (x);
  switch (code)
    {
    case REG:
      return alloc_EXPR_LIST (0, x, accum);

    case MEM:
      x = XEXP (x, 0);
      goto repeat;

    case PRE_DEC:
    case PRE_INC:
    case POST_DEC:
    case POST_INC:
      /* We do not run this function with arguments having side effects.  */
      abort ();

    case PC:
    case CC0: /*FIXME*/
    case CONST:
    case CONST_INT:
    case CONST_DOUBLE:
    case CONST_VECTOR:
    case SYMBOL_REF:
    case LABEL_REF:
    case ADDR_VEC:
    case ADDR_DIFF_VEC:
      return accum;

    default:
      break;
    }

  i = GET_RTX_LENGTH (code) - 1;
  fmt = GET_RTX_FORMAT (code);

  for (; i >= 0; i--)
    {
      if (fmt[i] == 'e')
	{
	  rtx tem = XEXP (x, i);

	  /* If we are about to do the last recursive call
	     needed at this level, change it into iteration.  */
	  if (i == 0)
	    {
	      x = tem;
	      goto repeat;
	    }

	  accum = extract_mentioned_regs_helper (tem, accum);
	}
      else if (fmt[i] == 'E')
	{
	  int j;

	  for (j = 0; j < XVECLEN (x, i); j++)
	    accum = extract_mentioned_regs_helper (XVECEXP (x, i, j), accum);
	}
    }

  return accum;
}

/* Determine whether INSN is MEM store pattern that we will consider moving.
   REGS_SET_BEFORE is bitmap of registers set before (and including) the
   current insn, REGS_SET_AFTER is bitmap of registers set after (and
   including) the insn in this basic block.  We must be passing through BB from
   head to end, as we are using this fact to speed things up.
   
   The results are stored this way:

   -- the first anticipatable expression is added into ANTIC_STORE_LIST
   -- if the processed expression is not anticipatable, NULL_RTX is added
      there instead, so that we can use it as indicator that no further
      expression of this type may be anticipatable
   -- if the expression is available, it is added as head of AVAIL_STORE_LIST;
      consequently, all of them but this head are dead and may be deleted.
   -- if the expression is not available, the insn due to that it fails to be
      available is stored in reaching_reg.

   The things are complicated a bit by fact that there already may be stores
   to the same MEM from other blocks; also caller must take care of the
   necessary cleanup of the temporary markers after end of the basic block.
   */

static void
find_moveable_store (insn, regs_set_before, regs_set_after)
     rtx insn;
     int *regs_set_before;
     int *regs_set_after;
{
  struct ls_expr * ptr;
  rtx dest, set, tmp;
  int check_anticipatable, check_available;
  basic_block bb = BLOCK_FOR_INSN (insn);

  set = single_set (insn);
  if (!set)
    return;

  dest = SET_DEST (set);

  if (GET_CODE (dest) != MEM || MEM_VOLATILE_P (dest)
      || GET_MODE (dest) == BLKmode)
    return;

  if (side_effects_p (dest))
    return;

  /* If we are handling exceptions, we must be careful with memory references
     that may trap. If we are not, the behavior is undefined, so we may just
     continue.  */
  if (flag_non_call_exceptions && may_trap_p (dest))
    return;
    
  ptr = ldst_entry (dest);
  if (!ptr->pattern_regs)
    ptr->pattern_regs = extract_mentioned_regs (dest);

  /* Do not check for anticipatability if we either found one anticipatable
     store already, or tested for one and found out that it was killed.  */
  check_anticipatable = 0;
  if (!ANTIC_STORE_LIST (ptr))
    check_anticipatable = 1;
  else
    {
      tmp = XEXP (ANTIC_STORE_LIST (ptr), 0);
      if (tmp != NULL_RTX
	  && BLOCK_FOR_INSN (tmp) != bb)
	check_anticipatable = 1;
    }
  if (check_anticipatable)
    {
      if (store_killed_before (dest, ptr->pattern_regs, insn, bb, regs_set_before))
	tmp = NULL_RTX;
      else
	tmp = insn;
      ANTIC_STORE_LIST (ptr) = alloc_INSN_LIST (tmp,
						ANTIC_STORE_LIST (ptr));
    }

  /* It is not necessary to check whether store is available if we did
     it successfully before; if we failed before, do not bother to check
     until we reach the insn that caused us to fail.  */
  check_available = 0;
  if (!AVAIL_STORE_LIST (ptr))
    check_available = 1;
  else
    {
      tmp = XEXP (AVAIL_STORE_LIST (ptr), 0);
      if (BLOCK_FOR_INSN (tmp) != bb)
	check_available = 1;
    }
  if (check_available)
    {
      /* Check that we have already reached the insn at that the check
	 failed last time.  */
      if (LAST_AVAIL_CHECK_FAILURE (ptr))
	{
	  for (tmp = bb->end;
	       tmp != insn && tmp != LAST_AVAIL_CHECK_FAILURE (ptr);
	       tmp = PREV_INSN (tmp))
	    continue;
	  if (tmp == insn)
	    check_available = 0;
	}
      else
	check_available = store_killed_after (dest, ptr->pattern_regs, insn,
					      bb, regs_set_after,
					      &LAST_AVAIL_CHECK_FAILURE (ptr));
    }
  if (!check_available)
    AVAIL_STORE_LIST (ptr) = alloc_INSN_LIST (insn, AVAIL_STORE_LIST (ptr));
}
  
/* Find available and anticipatable stores.  */

static int
compute_store_table ()
{
  int ret;
  basic_block bb;
  unsigned regno;
  rtx insn, pat, tmp;
  int *last_set_in, *already_set;
  struct ls_expr * ptr, **prev_next_ptr_ptr;

  max_gcse_regno = max_reg_num ();

  reg_set_in_block = (sbitmap *) sbitmap_vector_alloc (last_basic_block,
						       max_gcse_regno);
  sbitmap_vector_zero (reg_set_in_block, last_basic_block);
  pre_ldst_mems = 0;
  last_set_in = xmalloc (sizeof (int) * max_gcse_regno);
  already_set = xmalloc (sizeof (int) * max_gcse_regno);

  /* Find all the stores we care about.  */
  FOR_EACH_BB (bb)
    {
      /* First compute the registers set in this block.  */
      memset (last_set_in, 0, sizeof (int) * max_gcse_regno);
      regvec = last_set_in;

      for (insn = bb->head;
	   insn != NEXT_INSN (bb->end);
	   insn = NEXT_INSN (insn))
	{
	  if (! INSN_P (insn))
	    continue;

	  if (GET_CODE (insn) == CALL_INSN)
	    {
	      bool clobbers_all = false;
#ifdef NON_SAVING_SETJMP
	      if (NON_SAVING_SETJMP
		  && find_reg_note (insn, REG_SETJMP, NULL_RTX))
		clobbers_all = true;
#endif

	      for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
		if (clobbers_all
		    || TEST_HARD_REG_BIT (regs_invalidated_by_call, regno))
		  last_set_in[regno] = INSN_UID (insn);
	    }

	  pat = PATTERN (insn);
	  compute_store_table_current_insn = insn;
	  note_stores (pat, reg_set_info, NULL);
	}

      /* Record the set registers.  */
      for (regno = 0; regno < max_gcse_regno; regno++)
	if (last_set_in[regno])
	  SET_BIT (reg_set_in_block[bb->index], regno);

      /* Now find the stores.  */
      memset (already_set, 0, sizeof (int) * max_gcse_regno);
      regvec = already_set;
      for (insn = bb->head;
	   insn != NEXT_INSN (bb->end);
	   insn = NEXT_INSN (insn))
	{
	  if (! INSN_P (insn))
	    continue;

	  if (GET_CODE (insn) == CALL_INSN)
	    {
	      bool clobbers_all = false;
#ifdef NON_SAVING_SETJMP
	      if (NON_SAVING_SETJMP
		  && find_reg_note (insn, REG_SETJMP, NULL_RTX))
		clobbers_all = true;
#endif

	      for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
		if (clobbers_all
		    || TEST_HARD_REG_BIT (regs_invalidated_by_call, regno))
		  already_set[regno] = 1;
	    }

	  pat = PATTERN (insn);
	  note_stores (pat, reg_set_info, NULL);

	  /* Now that we've marked regs, look for stores.  */
	  find_moveable_store (insn, already_set, last_set_in);

	  /* Unmark regs that are no longer set.  */
	  for (regno = 0; regno < max_gcse_regno; regno++)
	    if (last_set_in[regno] == INSN_UID (insn))
	      last_set_in[regno] = 0;
	}

      /* Clear temporary marks.  */
      for (ptr = first_ls_expr (); ptr != NULL; ptr = next_ls_expr (ptr))
	{
	  LAST_AVAIL_CHECK_FAILURE(ptr) = NULL_RTX;
	  if (ANTIC_STORE_LIST (ptr)
	      && (tmp = XEXP (ANTIC_STORE_LIST (ptr), 0)) == NULL_RTX)
	    ANTIC_STORE_LIST (ptr) = XEXP (ANTIC_STORE_LIST (ptr), 1);
	}
    }

  /* Remove the stores that are not available anywhere, as there will
     be no opportunity to optimize them.  */
  for (ptr = pre_ldst_mems, prev_next_ptr_ptr = &pre_ldst_mems;
       ptr != NULL;
       ptr = *prev_next_ptr_ptr)
    {
      if (!AVAIL_STORE_LIST (ptr))
	{
	  *prev_next_ptr_ptr = ptr->next;
	  free_ldst_entry (ptr);
	}
      else
	prev_next_ptr_ptr = &ptr->next;
    }

  ret = enumerate_ldsts ();

  if (gcse_file)
    {
      fprintf (gcse_file, "ST_avail and ST_antic (shown under loads..)\n");
      print_ldst_list (gcse_file);
    }

  free (last_set_in);
  free (already_set);
  return ret;
}

/* Check to see if the load X is aliased with STORE_PATTERN.  */

static bool
load_kills_store (x, store_pattern)
     rtx x, store_pattern;
{
  if (true_dependence (x, GET_MODE (x), store_pattern, rtx_addr_varies_p))
    return true;
  return false;
}

/* Go through the entire insn X, looking for any loads which might alias
   STORE_PATTERN.  Return true if found.  */

static bool
find_loads (x, store_pattern)
     rtx x, store_pattern;
{
  const char * fmt;
  int i, j;
  int ret = false;

  if (!x)
    return false;

  if (GET_CODE (x) == SET)
    x = SET_SRC (x);

  if (GET_CODE (x) == MEM)
    {
      if (load_kills_store (x, store_pattern))
	return true;
    }

  /* Recursively process the insn.  */
  fmt = GET_RTX_FORMAT (GET_CODE (x));

  for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0 && !ret; i--)
    {
      if (fmt[i] == 'e')
	ret |= find_loads (XEXP (x, i), store_pattern);
      else if (fmt[i] == 'E')
	for (j = XVECLEN (x, i) - 1; j >= 0; j--)
	  ret |= find_loads (XVECEXP (x, i, j), store_pattern);
    }
  return ret;
}

/* Check if INSN kills the store pattern X (is aliased with it).
   Return true if it it does.  */

static bool
store_killed_in_insn (x, x_regs, insn)
     rtx x, x_regs, insn;
{
  rtx reg, base;

  if (!INSN_P (insn))
    return false;

  if (GET_CODE (insn) == CALL_INSN)
    {
      /* A normal or pure call might read from pattern,
	 but a const call will not.  */
      if (! CONST_OR_PURE_CALL_P (insn) || pure_call_p (insn))
	return true;

      /* But even a const call reads its parameters.  Check whether the
	 base of some of registers used in mem is stack pointer.  */
      for (reg = x_regs; reg; reg = XEXP (reg, 1))
	{
	  base = find_base_term (XEXP (reg, 0));
	  if (!base
	      || (GET_CODE (base) == ADDRESS
		  && GET_MODE (base) == Pmode
		  && XEXP (base, 0) == stack_pointer_rtx))
	    return true;
	}

      return false;
    }

  if (GET_CODE (PATTERN (insn)) == SET)
    {
      rtx pat = PATTERN (insn);
      /* Check for memory stores to aliased objects.  */
      if (GET_CODE (SET_DEST (pat)) == MEM && !expr_equiv_p (SET_DEST (pat), x))
	/* pretend its a load and check for aliasing.  */
	if (find_loads (SET_DEST (pat), x))
	  return true;
      return find_loads (SET_SRC (pat), x);
    }
  else
    return find_loads (PATTERN (insn), x);
}

/* Returns true if the expression X is loaded or clobbered on or after INSN
   within basic block BB.  REGS_SET_AFTER is bitmap of registers set in
   or after the insn.  X_REGS is list of registers mentioned in X. If the store
   is killed, return the last insn in that it occurs in FAIL_INSN.  */

static bool
store_killed_after (x, x_regs, insn, bb, regs_set_after, fail_insn)
     rtx x, x_regs, insn;
     basic_block bb;
     int *regs_set_after;
     rtx *fail_insn;
{
  rtx last = bb->end, act;

  if (!store_ops_ok (x_regs, regs_set_after))
    { 
      /* We do not know where it will happen.  */
      if (fail_insn)
	*fail_insn = NULL_RTX;
      return true;
    }

  /* Scan from the end, so that fail_insn is determined correctly.  */
  for (act = last; act != PREV_INSN (insn); act = PREV_INSN (act))
    if (store_killed_in_insn (x, x_regs, act))
      {
	if (fail_insn)
	  *fail_insn = act;
	return true;
      }

  return false;
}
  
/* Returns true if the expression X is loaded or clobbered on or before INSN
   within basic block BB. X_REGS is list of registers mentioned in X.
   REGS_SET_BEFORE is bitmap of registers set before or in this insn.  */
static bool
store_killed_before (x, x_regs, insn, bb, regs_set_before)
     rtx x, x_regs, insn;
     basic_block bb;
     int *regs_set_before;
{
  rtx first = bb->head;

  if (!store_ops_ok (x_regs, regs_set_before))
    return true;

  for ( ; insn != PREV_INSN (first); insn = PREV_INSN (insn))
    if (store_killed_in_insn (x, x_regs, insn))
      return true;

  return false;
}
  
/* Fill in available, anticipatable, transparent and kill vectors in
   STORE_DATA, based on lists of available and anticipatable stores.  */
static void
build_store_vectors ()
{
  basic_block bb;
  int *regs_set_in_block;
  rtx insn, st;
  struct ls_expr * ptr;
  unsigned regno;

  /* Build the gen_vector. This is any store in the table which is not killed
     by aliasing later in its block.  */
  ae_gen = (sbitmap *) sbitmap_vector_alloc (last_basic_block, num_stores);
  sbitmap_vector_zero (ae_gen, last_basic_block);

  st_antloc = (sbitmap *) sbitmap_vector_alloc (last_basic_block, num_stores);
  sbitmap_vector_zero (st_antloc, last_basic_block);

  for (ptr = first_ls_expr (); ptr != NULL; ptr = next_ls_expr (ptr))
    {
      for (st = AVAIL_STORE_LIST (ptr); st != NULL; st = XEXP (st, 1))
	{
	  insn = XEXP (st, 0);
	  bb = BLOCK_FOR_INSN (insn);

	  /* If we've already seen an available expression in this block,
	     we can delete this one (It occurs earlier in the block). We'll
	     copy the SRC expression to an unused register in case there
	     are any side effects.  */
	  if (TEST_BIT (ae_gen[bb->index], ptr->index))
	    {
	      rtx r = gen_reg_rtx (GET_MODE (ptr->pattern));
	      if (gcse_file)
		fprintf (gcse_file, "Removing redundant store:\n");
	      replace_store_insn (r, XEXP (st, 0), bb);
	      continue;
	    }
	  SET_BIT (ae_gen[bb->index], ptr->index);
	}

      for (st = ANTIC_STORE_LIST (ptr); st != NULL; st = XEXP (st, 1))
	{
	  insn = XEXP (st, 0);
	  bb = BLOCK_FOR_INSN (insn);
	  SET_BIT (st_antloc[bb->index], ptr->index);
	}
    }

  ae_kill = (sbitmap *) sbitmap_vector_alloc (last_basic_block, num_stores);
  sbitmap_vector_zero (ae_kill, last_basic_block);

  transp = (sbitmap *) sbitmap_vector_alloc (last_basic_block, num_stores);
  sbitmap_vector_zero (transp, last_basic_block);
  regs_set_in_block = xmalloc (sizeof (int) * max_gcse_regno);

  FOR_EACH_BB (bb)
    {
      for (regno = 0; regno < max_gcse_regno; regno++)
	regs_set_in_block[regno] = TEST_BIT (reg_set_in_block[bb->index], regno);

      for (ptr = first_ls_expr (); ptr != NULL; ptr = next_ls_expr (ptr))
	{
	  if (store_killed_after (ptr->pattern, ptr->pattern_regs, bb->head,
				  bb, regs_set_in_block, NULL))
	    {
	      /* It should not be necessary to consider the expression
		 killed if it is both anticipatable and available.  */
	      if (!TEST_BIT (st_antloc[bb->index], ptr->index)
		  || !TEST_BIT (ae_gen[bb->index], ptr->index))
		SET_BIT (ae_kill[bb->index], ptr->index);
  	    }
  	  else
  	    SET_BIT (transp[bb->index], ptr->index);
       	}
    }

  free (regs_set_in_block);

  if (gcse_file)
    {
      dump_sbitmap_vector (gcse_file, "st_antloc", "", st_antloc, last_basic_block);
      dump_sbitmap_vector (gcse_file, "st_kill", "", ae_kill, last_basic_block);
      dump_sbitmap_vector (gcse_file, "Transpt", "", transp, last_basic_block);
      dump_sbitmap_vector (gcse_file, "st_avloc", "", ae_gen, last_basic_block);
    }
}

/* Insert an instruction at the beginning of a basic block, and update
   the BLOCK_HEAD if needed.  */

static void
insert_insn_start_bb (insn, bb)
     rtx insn;
     basic_block bb;
{
  /* Insert at start of successor block.  */
  rtx prev = PREV_INSN (bb->head);
  rtx before = bb->head;
  while (before != 0)
    {
      if (GET_CODE (before) != CODE_LABEL
	  && (GET_CODE (before) != NOTE
	      || NOTE_LINE_NUMBER (before) != NOTE_INSN_BASIC_BLOCK))
	break;
      prev = before;
      if (prev == bb->end)
	break;
      before = NEXT_INSN (before);
    }

  insn = emit_insn_after (insn, prev);

  if (gcse_file)
    {
      fprintf (gcse_file, "STORE_MOTION  insert store at start of BB %d:\n",
	       bb->index);
      print_inline_rtx (gcse_file, insn, 6);
      fprintf (gcse_file, "\n");
    }
}

/* This routine will insert a store on an edge. EXPR is the ldst entry for
   the memory reference, and E is the edge to insert it on.  Returns nonzero
   if an edge insertion was performed.  */

static int
insert_store (expr, e)
     struct ls_expr * expr;
     edge e;
{
  rtx reg, insn;
  basic_block bb;
  edge tmp;

  /* We did all the deleted before this insert, so if we didn't delete a
     store, then we haven't set the reaching reg yet either.  */
  if (expr->reaching_reg == NULL_RTX)
    return 0;

  reg = expr->reaching_reg;
  insn = gen_move_insn (copy_rtx (expr->pattern), reg);

  /* If we are inserting this expression on ALL predecessor edges of a BB,
     insert it at the start of the BB, and reset the insert bits on the other
     edges so we don't try to insert it on the other edges.  */
  bb = e->dest;
  for (tmp = e->dest->pred; tmp ; tmp = tmp->pred_next)
    {
      int index = EDGE_INDEX (edge_list, tmp->src, tmp->dest);
      if (index == EDGE_INDEX_NO_EDGE)
	abort ();
      if (! TEST_BIT (pre_insert_map[index], expr->index))
	break;
    }

  /* If tmp is NULL, we found an insertion on every edge, blank the
     insertion vector for these edges, and insert at the start of the BB.  */
  if (!tmp && bb != EXIT_BLOCK_PTR)
    {
      for (tmp = e->dest->pred; tmp ; tmp = tmp->pred_next)
	{
	  int index = EDGE_INDEX (edge_list, tmp->src, tmp->dest);
	  RESET_BIT (pre_insert_map[index], expr->index);
	}
      insert_insn_start_bb (insn, bb);
      return 0;
    }

  /* We can't insert on this edge, so we'll insert at the head of the
     successors block.  See Morgan, sec 10.5.  */
  if ((e->flags & EDGE_ABNORMAL) == EDGE_ABNORMAL)
    {
      insert_insn_start_bb (insn, bb);
      return 0;
    }

  insert_insn_on_edge (insn, e);

  if (gcse_file)
    {
      fprintf (gcse_file, "STORE_MOTION  insert insn on edge (%d, %d):\n",
	       e->src->index, e->dest->index);
      print_inline_rtx (gcse_file, insn, 6);
      fprintf (gcse_file, "\n");
    }

  return 1;
}

/* This routine will replace a store with a SET to a specified register.  */

static void
replace_store_insn (reg, del, bb)
     rtx reg, del;
     basic_block bb;
{
  rtx insn;

  insn = gen_move_insn (reg, SET_SRC (single_set (del)));
  insn = emit_insn_after (insn, del);

  if (gcse_file)
    {
      fprintf (gcse_file,
	       "STORE_MOTION  delete insn in BB %d:\n      ", bb->index);
      print_inline_rtx (gcse_file, del, 6);
      fprintf (gcse_file, "\nSTORE MOTION  replaced with insn:\n      ");
      print_inline_rtx (gcse_file, insn, 6);
      fprintf (gcse_file, "\n");
    }

  delete_insn (del);
}


/* Delete a store, but copy the value that would have been stored into
   the reaching_reg for later storing.  */

static void
delete_store (expr, bb)
     struct ls_expr * expr;
     basic_block bb;
{
  rtx reg, i, del;

  if (expr->reaching_reg == NULL_RTX)
    expr->reaching_reg = gen_reg_rtx (GET_MODE (expr->pattern));

  reg = expr->reaching_reg;

  for (i = AVAIL_STORE_LIST (expr); i; i = XEXP (i, 1))
    {
      del = XEXP (i, 0);
      if (BLOCK_FOR_INSN (del) == bb)
	{
	  /* We know there is only one since we deleted redundant
	     ones during the available computation.  */
	  replace_store_insn (reg, del, bb);
	  break;
	}
    }
}

/* Free memory used by store motion.  */

static void
free_store_memory ()
{
  free_ldst_mems ();

  if (ae_gen)
    sbitmap_vector_free (ae_gen);
  if (ae_kill)
    sbitmap_vector_free (ae_kill);
  if (transp)
    sbitmap_vector_free (transp);
  if (st_antloc)
    sbitmap_vector_free (st_antloc);
  if (pre_insert_map)
    sbitmap_vector_free (pre_insert_map);
  if (pre_delete_map)
    sbitmap_vector_free (pre_delete_map);
  if (reg_set_in_block)
    sbitmap_vector_free (reg_set_in_block);

  ae_gen = ae_kill = transp = st_antloc = NULL;
  pre_insert_map = pre_delete_map = reg_set_in_block = NULL;
}

/* Perform store motion. Much like gcse, except we move expressions the
   other way by looking at the flowgraph in reverse.  */

static void
store_motion ()
{
  basic_block bb;
  int x;
  struct ls_expr * ptr;
  int update_flow = 0;

  if (gcse_file)
    {
      fprintf (gcse_file, "before store motion\n");
      print_rtl (gcse_file, get_insns ());
    }

  init_alias_analysis ();

  /* Find all the available and anticipatable stores.  */
  num_stores = compute_store_table ();
  if (num_stores == 0)
    {
      sbitmap_vector_free (reg_set_in_block);
      end_alias_analysis ();
      return;
    }

  /* Now compute kill & transp vectors.  */
  build_store_vectors ();
  add_noreturn_fake_exit_edges ();

  edge_list = pre_edge_rev_lcm (gcse_file, num_stores, transp, ae_gen,
				st_antloc, ae_kill, &pre_insert_map,
				&pre_delete_map);

  /* Now we want to insert the new stores which are going to be needed.  */
  for (ptr = first_ls_expr (); ptr != NULL; ptr = next_ls_expr (ptr))
    {
      FOR_EACH_BB (bb)
	if (TEST_BIT (pre_delete_map[bb->index], ptr->index))
	  delete_store (ptr, bb);

      for (x = 0; x < NUM_EDGES (edge_list); x++)
	if (TEST_BIT (pre_insert_map[x], ptr->index))
	  update_flow |= insert_store (ptr, INDEX_EDGE (edge_list, x));
    }

  if (update_flow)
    commit_edge_insertions ();

  free_store_memory ();
  free_edge_list (edge_list);
  remove_fake_edges ();
  end_alias_analysis ();
}


/* Entry point for jump bypassing optimization pass.  */

int
bypass_jumps (file)
     FILE *file;
{
  int changed;

  /* We do not construct an accurate cfg in functions which call
     setjmp, so just punt to be safe.  */
  if (current_function_calls_setjmp)
    return 0;

  /* For calling dump_foo fns from gdb.  */
  debug_stderr = stderr;
  gcse_file = file;

  /* Identify the basic block information for this function, including
     successors and predecessors.  */
  max_gcse_regno = max_reg_num ();

  if (file)
    dump_flow_info (file);

  /* Return if there's nothing to do.  */
  if (n_basic_blocks <= 1)
    return 0;

  /* Trying to perform global optimizations on flow graphs which have
     a high connectivity will take a long time and is unlikely to be
     particularly useful.

     In normal circumstances a cfg should have about twice as many edges
     as blocks.  But we do not want to punish small functions which have
     a couple switch statements.  So we require a relatively large number
     of basic blocks and the ratio of edges to blocks to be high.  */
  if (n_basic_blocks > 1000 && n_edges / n_basic_blocks >= 20)
    {
      if (warn_disabled_optimization)
        warning ("BYPASS disabled: %d > 1000 basic blocks and %d >= 20 edges/basic block",
                 n_basic_blocks, n_edges / n_basic_blocks);
      return 0;
    }

  /* If allocating memory for the cprop bitmap would take up too much
     storage it's better just to disable the optimization.  */
  if ((n_basic_blocks
       * SBITMAP_SET_SIZE (max_gcse_regno)
       * sizeof (SBITMAP_ELT_TYPE)) > MAX_GCSE_MEMORY)
    {
      if (warn_disabled_optimization)
        warning ("GCSE disabled: %d basic blocks and %d registers",
                 n_basic_blocks, max_gcse_regno);

      return 0;
    }

  gcc_obstack_init (&gcse_obstack);
  bytes_used = 0;

  /* We need alias.  */
  init_alias_analysis ();

  /* Record where pseudo-registers are set.  This data is kept accurate
     during each pass.  ??? We could also record hard-reg information here
     [since it's unchanging], however it is currently done during hash table
     computation.

     It may be tempting to compute MEM set information here too, but MEM sets
     will be subject to code motion one day and thus we need to compute
     information about memory sets when we build the hash tables.  */

  alloc_reg_set_mem (max_gcse_regno);
  compute_sets (get_insns ());

  max_gcse_regno = max_reg_num ();
  alloc_gcse_mem (get_insns ());
  changed = one_cprop_pass (1, 1, 1);
  free_gcse_mem ();

  if (file)
    {
      fprintf (file, "BYPASS of %s: %d basic blocks, ",
	       current_function_name, n_basic_blocks);
      fprintf (file, "%d bytes\n\n", bytes_used);
    }

  obstack_free (&gcse_obstack, NULL);
  free_reg_set_mem ();

  /* We are finished with alias.  */
  end_alias_analysis ();
  allocate_reg_info (max_reg_num (), FALSE, FALSE);

  return changed;
}

#include "gt-gcse.h"