summaryrefslogtreecommitdiff
path: root/gcc/genrecog.c
blob: f36e8796576808fa0ef7f8f9e6c0db50b9564e38 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
/* Generate code from machine description to recognize rtl as insns.
   Copyright (C) 1987, 88, 92-95, 97-98, 1999 Free Software Foundation, Inc.

   This file is part of GNU CC.

   GNU CC is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 2, or (at your option)
   any later version.

   GNU CC is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with GNU CC; see the file COPYING.  If not, write to
   the Free Software Foundation, 59 Temple Place - Suite 330,
   Boston, MA 02111-1307, USA.  */


/* This program is used to produce insn-recog.c, which contains a
   function called `recog' plus its subroutines.  These functions
   contain a decision tree that recognizes whether an rtx, the
   argument given to recog, is a valid instruction.

   recog returns -1 if the rtx is not valid.  If the rtx is valid,
   recog returns a nonnegative number which is the insn code number
   for the pattern that matched.  This is the same as the order in the
   machine description of the entry that matched.  This number can be
   used as an index into various insn_* tables, such as insn_template,
   insn_outfun, and insn_n_operands (found in insn-output.c).

   The third argument to recog is an optional pointer to an int.  If
   present, recog will accept a pattern if it matches except for
   missing CLOBBER expressions at the end.  In that case, the value
   pointed to by the optional pointer will be set to the number of
   CLOBBERs that need to be added (it should be initialized to zero by
   the caller).  If it is set nonzero, the caller should allocate a
   PARALLEL of the appropriate size, copy the initial entries, and
   call add_clobbers (found in insn-emit.c) to fill in the CLOBBERs.

   This program also generates the function `split_insns', which
   returns 0 if the rtl could not be split, or it returns the split
   rtl in a SEQUENCE.

   This program also generates the function `peephole2_insns', which
   returns 0 if the rtl could not be matched.  If there was a match,
   the new rtl is returned in a SEQUENCE, and LAST_INSN will point
   to the last recognized insn in the old sequence.  */

#include "hconfig.h"
#include "system.h"
#include "rtl.h"
#include "obstack.h"
#include "errors.h"

#define OUTPUT_LABEL(INDENT_STRING, LABEL_NUMBER) \
  printf("%sL%d: ATTRIBUTE_UNUSED_LABEL\n", (INDENT_STRING), (LABEL_NUMBER))

static struct obstack obstack;
struct obstack *rtl_obstack = &obstack;

#define obstack_chunk_alloc xmalloc
#define obstack_chunk_free free

/* Holds an array of names indexed by insn_code_number.  */
static char **insn_name_ptr = 0;
static int insn_name_ptr_size = 0;

/* A listhead of decision trees.  The alternatives to a node are kept
   in a doublely-linked list so we can easily add nodes to the proper
   place when merging.  */

struct decision_head
{
  struct decision *first;
  struct decision *last;
};
    
/* A single test.  The two accept types aren't tests per-se, but
   their equality (or lack thereof) does affect tree merging so
   it is convenient to keep them here.  */

struct decision_test
{
  /* A linked list through the tests attached to a node.  */
  struct decision_test *next;

  /* These types are roughly in the order in which we'd like to test them.  */
  enum decision_type {
    DT_mode, DT_code, DT_veclen,
    DT_elt_zero_int, DT_elt_one_int, DT_elt_zero_wide,
    DT_dup, DT_pred, DT_c_test, 
    DT_accept_op, DT_accept_insn
  } type;

  union
  {
    enum machine_mode mode;	/* Machine mode of node.  */
    RTX_CODE code;		/* Code to test.  */

    struct
    {
      const char *name;		/* Predicate to call.  */
      int index;		/* Index into `preds' or -1.  */
      enum machine_mode mode;	/* Machine mode for node.  */
    } pred;

    const char *c_test;		/* Additional test to perform.  */
    int veclen;			/* Length of vector.  */
    int dup;			/* Number of operand to compare against.  */
    HOST_WIDE_INT intval;	/* Value for XINT for XWINT.  */
    int opno;			/* Operand number matched.  */

    struct {
      int code_number;		/* Insn number matched.  */
      int lineno;		/* Line number of the insn.  */
      int num_clobbers_to_add;	/* Number of CLOBBERs to be added.  */
    } insn;
  } u;
};

/* Data structure for decision tree for recognizing legitimate insns.  */

struct decision
{
  struct decision_head success;	/* Nodes to test on success.  */
  struct decision *next;	/* Node to test on failure.  */
  struct decision *prev;	/* Node whose failure tests us.  */
  struct decision *afterward;	/* Node to test on success,
				   but failure of successor nodes.  */

  const char *position;		/* String denoting position in pattern.  */

  struct decision_test *tests;	/* The tests for this node.  */

  int number;			/* Node number, used for labels */
  int subroutine_number;	/* Number of subroutine this node starts */
  int need_label;		/* Label needs to be output.  */
};

#define SUBROUTINE_THRESHOLD	100

static int next_subroutine_number;

/* We can write three types of subroutines: One for insn recognition,
   one to split insns, and one for peephole-type optimizations.  This
   defines which type is being written.  */

enum routine_type {
  RECOG, SPLIT, PEEPHOLE2
};

#define IS_SPLIT(X) ((X) != RECOG)

/* Next available node number for tree nodes.  */

static int next_number;

/* Next number to use as an insn_code.  */

static int next_insn_code;

/* Similar, but counts all expressions in the MD file; used for
   error messages.  */

static int next_index;

/* Record the highest depth we ever have so we know how many variables to
   allocate in each subroutine we make.  */

static int max_depth;

/* The line number of the start of the pattern currently being processed.  */
static int pattern_lineno;

/* Count of errors.  */
static int error_count;

/* This table contains a list of the rtl codes that can possibly match a
   predicate defined in recog.c.  The function `maybe_both_true' uses it to
   deduce that there are no expressions that can be matches by certain pairs
   of tree nodes.  Also, if a predicate can match only one code, we can
   hardwire that code into the node testing the predicate.  */

static struct pred_table
{
  const char *name;
  RTX_CODE codes[NUM_RTX_CODE];
} preds[] = {
  {"general_operand", {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF,
		       LABEL_REF, SUBREG, REG, MEM}},
#ifdef PREDICATE_CODES
  PREDICATE_CODES
#endif
  {"address_operand", {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF,
		       LABEL_REF, SUBREG, REG, MEM, PLUS, MINUS, MULT}},
  {"register_operand", {SUBREG, REG}},
  {"scratch_operand", {SCRATCH, REG}},
  {"immediate_operand", {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF,
			 LABEL_REF}},
  {"const_int_operand", {CONST_INT}},
  {"const_double_operand", {CONST_INT, CONST_DOUBLE}},
  {"nonimmediate_operand", {SUBREG, REG, MEM}},
  {"nonmemory_operand", {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF,
			 LABEL_REF, SUBREG, REG}},
  {"push_operand", {MEM}},
  {"pop_operand", {MEM}},
  {"memory_operand", {SUBREG, MEM}},
  {"indirect_operand", {SUBREG, MEM}},
  {"comparison_operator", {EQ, NE, LE, LT, GE, GT, LEU, LTU, GEU, GTU}},
  {"mode_independent_operand", {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF,
				LABEL_REF, SUBREG, REG, MEM}}
};

#define NUM_KNOWN_PREDS (sizeof preds / sizeof preds[0])

static const char * special_mode_pred_table[] = {
#ifdef SPECIAL_MODE_PREDICATES
  SPECIAL_MODE_PREDICATES
#endif
  NULL
};

#define NUM_SPECIAL_MODE_PREDS \
  (sizeof (special_mode_pred_table) / sizeof (const char *) - 1)

static struct decision *new_decision
  PROTO((const char *, struct decision_head *));
static struct decision_test *new_decision_test
  PROTO((enum decision_type, struct decision_test ***));
static rtx find_operand
  PROTO((rtx, int));
static void validate_pattern
  PROTO((rtx, rtx, int));
static struct decision *add_to_sequence
  PROTO((rtx, struct decision_head *, const char *, enum routine_type, int));

static int maybe_both_true_2
  PROTO((struct decision_test *, struct decision_test *));
static int maybe_both_true_1
  PROTO((struct decision_test *, struct decision_test *));
static int maybe_both_true
  PROTO((struct decision *, struct decision *, int));

static int nodes_identical_1
  PROTO((struct decision_test *, struct decision_test *));
static int nodes_identical
  PROTO((struct decision *, struct decision *));
static void merge_accept_insn
  PROTO((struct decision *, struct decision *));
static void merge_trees
  PROTO((struct decision_head *, struct decision_head *));

static void factor_tests
  PROTO((struct decision_head *));
static void simplify_tests
  PROTO((struct decision_head *));
static int break_out_subroutines
  PROTO((struct decision_head *, int));
static void find_afterward
  PROTO((struct decision_head *, struct decision *));

static void change_state
  PROTO((const char *, const char *, struct decision *, const char *));
static void print_code
  PROTO((enum rtx_code));
static void write_afterward
  PROTO((struct decision *, struct decision *, const char *));
static struct decision *write_switch
  PROTO((struct decision *, int));
static void write_cond
  PROTO((struct decision_test *, int, enum routine_type));
static void write_action
  PROTO((struct decision_test *, int, int, struct decision *,
	 enum routine_type));
static int is_unconditional
  PROTO((struct decision_test *, enum routine_type));
static int write_node
  PROTO((struct decision *, int, enum routine_type));
static void write_tree_1
  PROTO((struct decision_head *, int, enum routine_type));
static void write_tree
  PROTO((struct decision_head *, const char *, enum routine_type, int));
static void write_subroutine
  PROTO((struct decision_head *, enum routine_type));
static void write_subroutines
  PROTO((struct decision_head *, enum routine_type));
static void write_header
  PROTO((void));

static struct decision_head make_insn_sequence
  PROTO((rtx, enum routine_type));
static void process_tree
  PROTO((struct decision_head *, enum routine_type));
  
static void record_insn_name
  PROTO((int, const char *));

static void debug_decision_1
  PROTO((struct decision *, int));
static void debug_decision_2
  PROTO((struct decision_test *));
extern void debug_decision
  PROTO((struct decision *));

static void
message_with_line VPROTO ((int lineno, const char *msg, ...))
{
#ifndef ANSI_PROTOTYPES
  int lineno;
  const char *msg;
#endif
  va_list ap;

  VA_START (ap, msg);

#ifndef ANSI_PROTOTYPES
  lineno = va_arg (ap, int);
  msg = va_arg (ap, const char *);
#endif

  fprintf (stderr, "%s:%d: ", read_rtx_filename, lineno);
  vfprintf (stderr, msg, ap);
  fputc ('\n', stderr);

  va_end (ap);
}

/* Create a new node in sequence after LAST.  */

static struct decision *
new_decision (position, last)
     const char *position;
     struct decision_head *last;
{
  register struct decision *new
    = (struct decision *) xmalloc (sizeof (struct decision));

  memset (new, 0, sizeof (*new));
  new->success = *last;
  new->position = xstrdup (position);
  new->number = next_number++;

  last->first = last->last = new;
  return new;
}

/* Create a new test and link it in at PLACE.  */

static struct decision_test *
new_decision_test (type, pplace)
     enum decision_type type;
     struct decision_test ***pplace;
{
  struct decision_test **place = *pplace;
  struct decision_test *test;

  test = (struct decision_test *) xmalloc (sizeof (*test));
  test->next = *place;
  test->type = type;
  *place = test;

  place = &test->next;
  *pplace = place;

  return test;
}

/* Search for and return operand N.  */

static rtx
find_operand (pattern, n)
     rtx pattern;
     int n;
{
  const char *fmt;
  RTX_CODE code;
  int i, j, len;
  rtx r;

  code = GET_CODE (pattern);
  if ((code == MATCH_SCRATCH
       || code == MATCH_INSN
       || code == MATCH_OPERAND
       || code == MATCH_OPERATOR
       || code == MATCH_PARALLEL)
      && XINT (pattern, 0) == n)
    return pattern;

  fmt = GET_RTX_FORMAT (code);
  len = GET_RTX_LENGTH (code);
  for (i = 0; i < len; i++)
    {
      switch (fmt[i])
	{
	case 'e': case 'u':
	  if ((r = find_operand (XEXP (pattern, i), n)) != NULL_RTX)
	    return r;
	  break;

	case 'E':
	  for (j = 0; j < XVECLEN (pattern, i); j++)
	    if ((r = find_operand (XVECEXP (pattern, i, j), n)) != NULL_RTX)
	      return r;
	  break;

	case 'i': case 'w': case '0': case 's':
	  break;

	default:
	  abort ();
	}
    }

  return NULL;
}

/* Check for various errors in patterns.  */

static void
validate_pattern (pattern, insn, set_dest)
     rtx pattern;
     rtx insn;
     int set_dest;
{
  const char *fmt;
  RTX_CODE code;
  size_t i, len;
  int j;

  code = GET_CODE (pattern);
  switch (code)
    {
    case MATCH_SCRATCH:
      return;

    case MATCH_INSN:
    case MATCH_OPERAND:
    case MATCH_OPERATOR:
      {
	const char *pred_name = XSTR (pattern, 1);
	int allows_non_lvalue = 1, allows_non_const = 1;
	int special_mode_pred = 0;
	const char *c_test;

	if (GET_CODE (insn) == DEFINE_INSN)
	  c_test = XSTR (insn, 2);
	else
	  c_test = XSTR (insn, 1);

	if (pred_name[0] != 0)
	  {
	    for (i = 0; i < NUM_KNOWN_PREDS; i++)
	      if (! strcmp (preds[i].name, pred_name))
		break;

	    if (i < NUM_KNOWN_PREDS)
	      {
		int j;

		allows_non_lvalue = allows_non_const = 0;
		for (j = 0; preds[i].codes[j] != 0; j++)
		  {
		    RTX_CODE c = preds[i].codes[j];
		    if (c != LABEL_REF
			&& c != SYMBOL_REF
			&& c != CONST_INT
			&& c != CONST_DOUBLE
			&& c != CONST
			&& c != HIGH
			&& c != CONSTANT_P_RTX)
		      allows_non_const = 1;

		    if (c != REG
			&& c != SUBREG
			&& c != MEM
			&& c != CONCAT
			&& c != PARALLEL
			&& c != STRICT_LOW_PART)
		      allows_non_lvalue = 1;
		  }
	      }
	    else
	      {
#ifdef PREDICATE_CODES
		/* If the port has a list of the predicates it uses but
		   omits one, warn.  */
		message_with_line (pattern_lineno,
				   "warning: `%s' not in PREDICATE_CODES",
				   pred_name);
#endif
	      }

	    for (i = 0; i < NUM_SPECIAL_MODE_PREDS; ++i)
	      if (strcmp (pred_name, special_mode_pred_table[i]) == 0)
		{
		  special_mode_pred = 1;
		  break;
		}
	  }

	/* Allowing non-lvalues in destinations -- particularly CONST_INT --
	   while not likely to occur at runtime, results in less efficient
	   code from insn-recog.c.  */
	if (set_dest
	    && pred_name[0] != '\0'
	    && allows_non_lvalue)
	  {
	    message_with_line (pattern_lineno,
			       "warning: `%s' allows non-lvalue,",
			       pred_name);
	    message_with_line (pattern_lineno,
			       "  and used as destination of a set");
	  }

	/* A modeless MATCH_OPERAND can be handy when we can
	   check for multiple modes in the c_test.  In most other cases,
	   it is a mistake.  Only DEFINE_INSN is eligible, since SPLIT
	   and PEEP2 can FAIL within the output pattern.  */

	if (GET_MODE (pattern) == VOIDmode
	    && code == MATCH_OPERAND
	    && pred_name[0] != '\0'
	    && allows_non_const
	    && ! special_mode_pred
	    && strstr (c_test, "operands") != NULL
	    && GET_CODE (insn) == DEFINE_INSN)
	  {
	    message_with_line (pattern_lineno,
			       "warning: operand %d missing mode?",
			       XINT (pattern, 0));
	  }

	return;
      }

    case SET:
      {
	enum machine_mode dmode, smode;
	rtx dest, src;

	dest = SET_DEST (pattern);
	src = SET_SRC (pattern);

	/* Find the referant for a DUP.  */

	if (GET_CODE (dest) == MATCH_DUP
	    || GET_CODE (dest) == MATCH_OP_DUP
	    || GET_CODE (dest) == MATCH_PAR_DUP)
	  dest = find_operand (insn, XINT (dest, 0));

	if (GET_CODE (src) == MATCH_DUP
	    || GET_CODE (src) == MATCH_OP_DUP
	    || GET_CODE (src) == MATCH_PAR_DUP)
	  src = find_operand (insn, XINT (src, 0));

	/* STRICT_LOW_PART is a wrapper.  Its argument is the real
	   destination, and it's mode should match the source.  */
	if (GET_CODE (dest) == STRICT_LOW_PART)
	  dest = XEXP (dest, 0);

	dmode = GET_MODE (dest);
	smode = GET_MODE (src);

	/* The mode of an ADDRESS_OPERAND is the mode of the memory
	   reference, not the mode of the address.  */
	if (GET_CODE (src) == MATCH_OPERAND
	    && ! strcmp (XSTR (src, 1), "address_operand"))
	  ;

        /* The operands of a SET must have the same mode unless one
	   is VOIDmode.  */
        else if (dmode != VOIDmode && smode != VOIDmode && dmode != smode)
	  {
	    message_with_line (pattern_lineno,
			       "mode mismatch in set: %smode vs %smode",
			       GET_MODE_NAME (dmode), GET_MODE_NAME (smode));
	    error_count++;
	  }

	/* If only one of the operands is VOIDmode, and PC or CC0 is 
	   not involved, it's probably a mistake.  */
	else if (dmode != smode
		 && GET_CODE (dest) != PC
		 && GET_CODE (dest) != CC0
		 && GET_CODE (src) != CONST_INT)
	  {
	    const char *which;
	    which = (dmode == VOIDmode ? "destination" : "source");
	    message_with_line (pattern_lineno,
			       "warning: %s missing a mode?", which);
	  }

	if (dest != SET_DEST (pattern))
	  validate_pattern (dest, insn, 1);
	validate_pattern (SET_DEST (pattern), insn, 1);
        validate_pattern (SET_SRC (pattern), insn, 0);
        return;
      }

    case CLOBBER:
      validate_pattern (SET_DEST (pattern), insn, 1);
      return;

    case LABEL_REF:
      if (GET_MODE (XEXP (pattern, 0)) != VOIDmode)
	{
	  message_with_line (pattern_lineno,
			     "operand to label_ref %smode not VOIDmode",
			     GET_MODE_NAME (GET_MODE (XEXP (pattern, 0))));
	  error_count++;
	}
      break;

    default:
      break;
    }

  fmt = GET_RTX_FORMAT (code);
  len = GET_RTX_LENGTH (code);
  for (i = 0; i < len; i++)
    {
      switch (fmt[i])
	{
	case 'e': case 'u':
	  validate_pattern (XEXP (pattern, i), insn, 0);
	  break;

	case 'E':
	  for (j = 0; j < XVECLEN (pattern, i); j++)
	    validate_pattern (XVECEXP (pattern, i, j), insn, 0);
	  break;

	case 'i': case 'w': case '0': case 's':
	  break;

	default:
	  abort ();
	}
    }
}

/* Create a chain of nodes to verify that an rtl expression matches
   PATTERN.

   LAST is a pointer to the listhead in the previous node in the chain (or
   in the calling function, for the first node).

   POSITION is the string representing the current position in the insn.

   INSN_TYPE is the type of insn for which we are emitting code.

   A pointer to the final node in the chain is returned.  */

static struct decision *
add_to_sequence (pattern, last, position, insn_type, top)
     rtx pattern;
     struct decision_head *last;
     const char *position;
     enum routine_type insn_type;
     int top;
{
  RTX_CODE code;
  struct decision *this, *sub;
  struct decision_test *test;
  struct decision_test **place;
  char *subpos;
  register size_t i;
  register const char *fmt;
  int depth = strlen (position);
  int len;
  enum machine_mode mode;

  if (depth > max_depth)
    max_depth = depth;

  subpos = (char *) alloca (depth + 2);
  strcpy (subpos, position);
  subpos[depth + 1] = 0;

  sub = this = new_decision (position, last);
  place = &this->tests;

 restart:
  mode = GET_MODE (pattern);
  code = GET_CODE (pattern);

  switch (code)
    {
    case PARALLEL:
      /* Toplevel peephole pattern. */
      if (insn_type == PEEPHOLE2 && top)
	{
	  /* We don't need the node we just created -- unlink it.  */
	  last->first = last->last = NULL;

	  for (i = 0; i < (size_t) XVECLEN (pattern, 0); i++)
	    {
	      /* Which insn we're looking at is represented by A-Z. We don't
	         ever use 'A', however; it is always implied. */

	      subpos[depth] = (i > 0 ? 'A' + i : 0);
	      sub = add_to_sequence (XVECEXP (pattern, 0, i),
				     last, subpos, insn_type, 0);
	      last = &sub->success;
	    }
	  return sub;
	}

      /* Else nothing special.  */
      break;

    case MATCH_OPERAND:
    case MATCH_SCRATCH:
    case MATCH_OPERATOR:
    case MATCH_PARALLEL:
    case MATCH_INSN:
      {
	const char *pred_name;
	RTX_CODE was_code = code;
	int allows_const_int = 1;

	if (code == MATCH_SCRATCH)
	  {
	    pred_name = "scratch_operand";
	    code = UNKNOWN;
	  }
	else
	  {
	    pred_name = XSTR (pattern, 1);
	    if (code == MATCH_PARALLEL)
	      code = PARALLEL;
	    else
	      code = UNKNOWN;
	  }

	/* We know exactly what const_int_operand matches -- any CONST_INT.  */
	if (strcmp ("const_int_operand", pred_name) == 0)
	  {
	    code = CONST_INT;
	    mode = VOIDmode;
	  }
	else if (pred_name[0] != 0)
	  {
	    test = new_decision_test (DT_pred, &place);
	    test->u.pred.name = pred_name;
	    test->u.pred.mode = mode;

	    /* See if we know about this predicate and save its number.  If
	       we do, and it only accepts one code, note that fact.  The
	       predicate `const_int_operand' only tests for a CONST_INT, so
	       if we do so we can avoid calling it at all.

	       Finally, if we know that the predicate does not allow
	       CONST_INT, we know that the only way the predicate can match
	       is if the modes match (here we use the kludge of relying on
	       the fact that "address_operand" accepts CONST_INT; otherwise,
	       it would have to be a special case), so we can test the mode
	       (but we need not).  This fact should considerably simplify the
	       generated code.  */

	    for (i = 0; i < NUM_KNOWN_PREDS; i++)
	      if (! strcmp (preds[i].name, pred_name))
		break;

	    if (i < NUM_KNOWN_PREDS)
	      {
		int j;

		test->u.pred.index = i;

		if (preds[i].codes[1] == 0 && code == UNKNOWN)
		  code = preds[i].codes[0];

		allows_const_int = 0;
		for (j = 0; preds[i].codes[j] != 0; j++)
		  if (preds[i].codes[j] == CONST_INT)
		    {
		      allows_const_int = 1;
		      break;
		    }
	      }
	    else
	      test->u.pred.index = -1;
	  }

	/* Can't enforce a mode if we allow const_int.  */
	if (allows_const_int)
	  mode = VOIDmode;

	/* Accept the operand, ie. record it in `operands'.  */
	test = new_decision_test (DT_accept_op, &place);
	test->u.opno = XINT (pattern, 0);

	if (was_code == MATCH_OPERATOR || was_code == MATCH_PARALLEL)
	  {
	    char base = (was_code == MATCH_OPERATOR ? '0' : 'a');
	    for (i = 0; i < (size_t) XVECLEN (pattern, 2); i++)
	      {
		subpos[depth] = i + base;
		sub = add_to_sequence (XVECEXP (pattern, 2, i),
				       &sub->success, subpos, insn_type, 0);
	      }
	  }
	goto fini;
      }

    case MATCH_OP_DUP:
      code = UNKNOWN;

      test = new_decision_test (DT_dup, &place);
      test->u.dup = XINT (pattern, 0);

      test = new_decision_test (DT_accept_op, &place);
      test->u.opno = XINT (pattern, 0);

      for (i = 0; i < (size_t) XVECLEN (pattern, 1); i++)
	{
	  subpos[depth] = i + '0';
	  sub = add_to_sequence (XVECEXP (pattern, 1, i),
				 &sub->success, subpos, insn_type, 0);
	}
      goto fini;

    case MATCH_DUP:
    case MATCH_PAR_DUP:
      code = UNKNOWN;

      test = new_decision_test (DT_dup, &place);
      test->u.dup = XINT (pattern, 0);
      goto fini;

    case ADDRESS:
      pattern = XEXP (pattern, 0);
      goto restart;

    default:
      break;
    }

  fmt = GET_RTX_FORMAT (code);
  len = GET_RTX_LENGTH (code);

  /* Do tests against the current node first.  */
  for (i = 0; i < (size_t) len; i++)
    {
      if (fmt[i] == 'i')
	{
	  if (i == 0)
	    {
	      test = new_decision_test (DT_elt_zero_int, &place);
	      test->u.intval = XINT (pattern, i);
	    }
	  else if (i == 1)
	    {
	      test = new_decision_test (DT_elt_one_int, &place);
	      test->u.intval = XINT (pattern, i);
	    }
	  else
	    abort ();
	}
      else if (fmt[i] == 'w')
	{
	  if (i != 0)
	    abort ();

	  test = new_decision_test (DT_elt_zero_wide, &place);
	  test->u.intval = XWINT (pattern, i);
	}
      else if (fmt[i] == 'E')
	{
	  if (i != 0)
	    abort ();

	  test = new_decision_test (DT_veclen, &place);
	  test->u.veclen = XVECLEN (pattern, i);
	}
    }

  /* Now test our sub-patterns.  */
  for (i = 0; i < (size_t) len; i++)
    {
      switch (fmt[i])
	{
	case 'e': case 'u':
	  subpos[depth] = '0' + i;
	  sub = add_to_sequence (XEXP (pattern, i), &sub->success,
				 subpos, insn_type, 0);
	  break;

	case 'E':
	  {
	    register int j;
	    for (j = 0; j < XVECLEN (pattern, i); j++)
	      {
		subpos[depth] = 'a' + j;
		sub = add_to_sequence (XVECEXP (pattern, i, j),
				       &sub->success, subpos, insn_type, 0);
	      }
	    break;
	  }

	case 'i': case 'w':
	  /* Handled above.  */
	  break;
	case '0':
	  break;

	default:
	  abort ();
	}
    }

 fini:
  /* Insert nodes testing mode and code, if they're still relevant,
     before any of the nodes we may have added above.  */
  if (code != UNKNOWN)
    {
      place = &this->tests;
      test = new_decision_test (DT_code, &place);
      test->u.code = code;
    }

  if (mode != VOIDmode)
    {
      place = &this->tests;
      test = new_decision_test (DT_mode, &place);
      test->u.mode = mode;
    }

  /* If we didn't insert any tests or accept nodes, hork.  */
  if (this->tests == NULL)
    abort ();

  return sub;
}

/* A subroutine of maybe_both_true; examines only one test.
   Returns > 0 for "definitely both true" and < 0 for "maybe both true".  */

static int
maybe_both_true_2 (d1, d2)
     struct decision_test *d1, *d2;
{
  if (d1->type == d2->type)
    {
      switch (d1->type)
	{
	case DT_mode:
	  return d1->u.mode == d2->u.mode;

	case DT_code:
	  return d1->u.code == d2->u.code;

	case DT_veclen:
	  return d1->u.veclen == d2->u.veclen;

	case DT_elt_zero_int:
	case DT_elt_one_int:
	case DT_elt_zero_wide:
	  return d1->u.intval == d2->u.intval;

	default:
	  break;
	}
    }

  /* If either has a predicate that we know something about, set
     things up so that D1 is the one that always has a known
     predicate.  Then see if they have any codes in common.  */

  if (d1->type == DT_pred || d2->type == DT_pred)
    {
      if (d2->type == DT_pred)
	{
	  struct decision_test *tmp;
	  tmp = d1, d1 = d2, d2 = tmp;
	}

      /* If D2 tests a mode, see if it matches D1.  */
      if (d1->u.pred.mode != VOIDmode)
	{
	  if (d2->type == DT_mode)
	    {
	      if (d1->u.pred.mode != d2->u.mode)
		return 0;
	    }
	  /* Don't check two predicate modes here, because if both predicates
	     accept CONST_INT, then both can still be true even if the modes
	     are different.  If they don't accept CONST_INT, there will be a
	     separate DT_mode that will make maybe_both_true_1 return 0.  */
	}

      if (d1->u.pred.index >= 0)
	{
	  /* If D2 tests a code, see if it is in the list of valid
	     codes for D1's predicate.  */
	  if (d2->type == DT_code)
	    {
	      const RTX_CODE *c = &preds[d1->u.pred.index].codes[0];
	      while (*c != 0)
		{
		  if (*c == d2->u.code)
		    break;
		  ++c;
		}
	      if (*c == 0)
		return 0;
	    }

	  /* Otherwise see if the predicates have any codes in common.  */
	  else if (d2->type == DT_pred && d2->u.pred.index >= 0)
	    {
	      const RTX_CODE *c1 = &preds[d1->u.pred.index].codes[0];
	      int common = 0;

	      while (*c1 != 0 && !common)
		{
		  const RTX_CODE *c2 = &preds[d2->u.pred.index].codes[0];
		  while (*c2 != 0 && !common)
		    {
		      common = (*c1 == *c2);
		      ++c2;
		    }
		  ++c1;
		}

	      if (!common)
		return 0;
	    }
	}
    }

  return -1;
}

/* A subroutine of maybe_both_true; examines all the tests for a given node.
   Returns > 0 for "definitely both true" and < 0 for "maybe both true".  */

static int
maybe_both_true_1 (d1, d2)
     struct decision_test *d1, *d2;
{
  struct decision_test *t1, *t2;

  /* A match_operand with no predicate can match anything.  Recognize
     this by the existance of a lone DT_accept_op test.  */
  if (d1->type == DT_accept_op || d2->type == DT_accept_op)
    return 1;

  /* Eliminate pairs of tests while they can exactly match.  */
  while (d1 && d2 && d1->type == d2->type)
    {
      if (maybe_both_true_2 (d1, d2) == 0)
	return 0;
      d1 = d1->next, d2 = d2->next;
    }

  /* After that, consider all pairs.  */
  for (t1 = d1; t1 ; t1 = t1->next)
    for (t2 = d2; t2 ; t2 = t2->next)
      if (maybe_both_true_2 (t1, t2) == 0)
	return 0;

  return -1;
}

/* Return 0 if we can prove that there is no RTL that can match both
   D1 and D2.  Otherwise, return 1 (it may be that there is an RTL that
   can match both or just that we couldn't prove there wasn't such an RTL).

   TOPLEVEL is non-zero if we are to only look at the top level and not
   recursively descend.  */

static int
maybe_both_true (d1, d2, toplevel)
     struct decision *d1, *d2;
     int toplevel;
{
  struct decision *p1, *p2;
  int cmp;

  /* Don't compare strings on the different positions in insn.  Doing so
     is incorrect and results in false matches from constructs like

	[(set (subreg:HI (match_operand:SI "register_operand" "r") 0)
	      (subreg:HI (match_operand:SI "register_operand" "r") 0))]
     vs
	[(set (match_operand:HI "register_operand" "r")
	      (match_operand:HI "register_operand" "r"))]

     If we are presented with such, we are recursing through the remainder
     of a node's success nodes (from the loop at the end of this function).
     Skip forward until we come to a position that matches.

     Due to the way position strings are constructed, we know that iterating
     forward from the lexically lower position (e.g. "00") will run into
     the lexically higher position (e.g. "1") and not the other way around.
     This saves a bit of effort.  */

  cmp = strcmp (d1->position, d2->position);
  if (cmp != 0)
    {
      if (toplevel)
	abort();

      /* If the d2->position was lexically lower, swap.  */
      if (cmp > 0)
	p1 = d1, d1 = d2, d2 = p1;

      if (d1->success.first == 0)
	return 0;
      for (p1 = d1->success.first; p1; p1 = p1->next)
	if (maybe_both_true (p1, d2, 0))
	  return 1;

      return 0;
    }

  /* Test the current level.  */
  cmp = maybe_both_true_1 (d1->tests, d2->tests);
  if (cmp >= 0)
    return cmp;

  /* We can't prove that D1 and D2 cannot both be true.  If we are only
     to check the top level, return 1.  Otherwise, see if we can prove
     that all choices in both successors are mutually exclusive.  If
     either does not have any successors, we can't prove they can't both
     be true.  */

  if (toplevel || d1->success.first == 0 || d2->success.first == 0)
    return 1;

  for (p1 = d1->success.first; p1; p1 = p1->next)
    for (p2 = d2->success.first; p2; p2 = p2->next)
      if (maybe_both_true (p1, p2, 0))
	return 1;

  return 0;
}

/* A subroutine of nodes_identical.  Examine two tests for equivalence.  */

static int
nodes_identical_1 (d1, d2)
     struct decision_test *d1, *d2;
{
  switch (d1->type)
    {
    case DT_mode:
      return d1->u.mode == d2->u.mode;

    case DT_code:
      return d1->u.code == d2->u.code;

    case DT_pred:
      return (d1->u.pred.mode == d2->u.pred.mode
	      && strcmp (d1->u.pred.name, d2->u.pred.name) == 0);

    case DT_c_test:
      return strcmp (d1->u.c_test, d2->u.c_test) == 0;

    case DT_veclen:
      return d1->u.veclen == d2->u.veclen;

    case DT_dup:
      return d1->u.dup == d2->u.dup;

    case DT_elt_zero_int:
    case DT_elt_one_int:
    case DT_elt_zero_wide:
      return d1->u.intval == d2->u.intval;

    case DT_accept_op:
      return d1->u.opno == d2->u.opno;

    case DT_accept_insn:
      /* Differences will be handled in merge_accept_insn.  */
      return 1;

    default:
      abort ();
    }
}

/* True iff the two nodes are identical (on one level only).  Due
   to the way these lists are constructed, we shouldn't have to 
   consider different orderings on the tests.  */

static int
nodes_identical (d1, d2)
     struct decision *d1, *d2;
{
  struct decision_test *t1, *t2;

  for (t1 = d1->tests, t2 = d2->tests; t1 && t2; t1 = t1->next, t2 = t2->next)
    {
      if (t1->type != t2->type)
	return 0;
      if (! nodes_identical_1 (t1, t2))
	return 0;
    }

  /* For success, they should now both be null.  */
  return t1 == t2;
}

/* A subroutine of merge_trees; given two nodes that have been declared
   identical, cope with two insn accept states.  If they differ in the
   number of clobbers, then the conflict was created by make_insn_sequence
   and we can drop the with-clobbers version on the floor.  If both 
   nodes have no additional clobbers, we have found an ambiguity in the
   source machine description.  */

static void
merge_accept_insn (oldd, addd)
     struct decision *oldd, *addd;
{
  struct decision_test *old, *add;

  for (old = oldd->tests; old; old = old->next)
    if (old->type == DT_accept_insn)
      break;
  if (old == NULL)
    return;

  for (add = addd->tests; add; add = add->next)
    if (add->type == DT_accept_insn)
      break;
  if (add == NULL)
    return;

  /* If one node is for a normal insn and the second is for the base
     insn with clobbers stripped off, the second node should be ignored.  */

  if (old->u.insn.num_clobbers_to_add == 0
      && add->u.insn.num_clobbers_to_add > 0)
    {
      /* Nothing to do here.  */
    }
  else if (old->u.insn.num_clobbers_to_add > 0
	   && add->u.insn.num_clobbers_to_add == 0)
    {
      /* In this case, replace OLD with ADD.  */
      old->u.insn = add->u.insn;
    }
  else
    {
      message_with_line (add->u.insn.lineno, "`%s' matches `%s'",
			 get_insn_name (add->u.insn.code_number),
			 get_insn_name (old->u.insn.code_number));
      message_with_line (old->u.insn.lineno, "previous definition of `%s'",
			 get_insn_name (old->u.insn.code_number));
      error_count++;
    }
}

/* Merge two decision trees OLDH and ADDH, modifying OLDH destructively.  */

static void
merge_trees (oldh, addh)
     struct decision_head *oldh, *addh;
{
  struct decision *next, *add;

  if (addh->first == 0)
    return;
  if (oldh->first == 0)
    {
      *oldh = *addh;
      return;
    }

  /* Trying to merge bits at different positions isn't possible.  */
  if (strcmp (oldh->first->position, addh->first->position))
    abort ();

  for (add = addh->first; add ; add = next)
    {
      struct decision *old, *insert_before = NULL;

      next = add->next;

      /* The semantics of pattern matching state that the tests are
	 done in the order given in the MD file so that if an insn
	 matches two patterns, the first one will be used.  However,
	 in practice, most, if not all, patterns are unambiguous so
	 that their order is independent.  In that case, we can merge
	 identical tests and group all similar modes and codes together.

	 Scan starting from the end of OLDH until we reach a point
	 where we reach the head of the list or where we pass a
	 pattern that could also be true if NEW is true.  If we find
	 an identical pattern, we can merge them.  Also, record the
	 last node that tests the same code and mode and the last one
	 that tests just the same mode.

	 If we have no match, place NEW after the closest match we found.  */
	 
      for (old = oldh->last; old; old = old->prev)
	{
	  if (nodes_identical (old, add))
	    {
	      merge_accept_insn (old, add);
	      merge_trees (&old->success, &add->success);
	      goto merged_nodes;
	    }

	  if (maybe_both_true (old, add, 0))
	    break;

	  /* Insert the nodes in DT test type order, which is roughly
	     how expensive/important the test is.  Given that the tests
	     are also ordered within the list, examining the first is
	     sufficient.  */
	  if (add->tests->type < old->tests->type)
	    insert_before = old;
	}

      if (insert_before == NULL)
	{
	  add->next = NULL;
	  add->prev = oldh->last;
	  oldh->last->next = add;
	  oldh->last = add;
	}
      else
	{
	  if ((add->prev = insert_before->prev) != NULL)
	    add->prev->next = add;
	  else
	    oldh->first = add;
	  add->next = insert_before;
	  insert_before->prev = add;
	}

    merged_nodes:;
    }
}

/* Walk the tree looking for sub-nodes that perform common tests.  
   Factor out the common test into a new node.  This enables us
   (depending on the test type) to emit switch statements later.  */

static void
factor_tests (head)
     struct decision_head *head;
{
  struct decision *first, *next;

  for (first = head->first; first && first->next; first = next)
    {
      enum decision_type type;
      struct decision *new, *old_last;

      type = first->tests->type;
      next = first->next;

      /* Want at least two compatible sequential nodes.  */
      if (next->tests->type != type)
	continue;

      /* Don't want all node types, just those we can turn into 
	 switch statements.  */
      if (type != DT_mode
	  && type != DT_code
	  && type != DT_veclen
	  && type != DT_elt_zero_int
	  && type != DT_elt_one_int
	  && type != DT_elt_zero_wide)
	continue;

      /* If we'd been performing more than one test, create a new node
         below our first test.  */
      if (first->tests->next != NULL)
	{
	  new = new_decision (first->position, &first->success);
	  new->tests = first->tests->next;
	  first->tests->next = NULL;
	}
	
      /* Crop the node tree off after our first test.  */
      first->next = NULL;
      old_last = head->last;
      head->last = first;

      /* For each compatible test, adjust to perform only one test in
	 the top level node, then merge the node back into the tree.  */
      do
	{
	  struct decision_head h;

	  if (next->tests->next != NULL)
	    {
	      new = new_decision (next->position, &next->success);
	      new->tests = next->tests->next;
	      next->tests->next = NULL;
	    }
	  new = next;
	  next = next->next;
	  new->next = NULL;
	  h.first = h.last = new;

	  merge_trees (head, &h);
	}
      while (next && next->tests->type == type);

      /* After we run out of compatible tests, graft the remaining nodes
	 back onto the tree.  */
      if (next)
	{
	  next->prev = head->last;
	  head->last->next = next;
	  head->last = old_last;
	}
    }

  /* Recurse.  */
  for (first = head->first; first; first = first->next)
    factor_tests (&first->success);
}

/* After factoring, try to simplify the tests on any one node.
   Tests that are useful for switch statements are recognizable
   by having only a single test on a node -- we'll be manipulating
   nodes with multiple tests:

   If we have mode tests or code tests that are redundant with
   predicates, remove them.  */

static void
simplify_tests (head)
     struct decision_head *head;
{
  struct decision *tree;

  for (tree = head->first; tree; tree = tree->next)
    {
      struct decision_test *a, *b;

      a = tree->tests;
      b = a->next;
      if (b == NULL)
	continue;

      /* Find a predicate node.  */
      while (b && b->type != DT_pred)
	b = b->next;
      if (b)
	{
	  /* Due to how these tests are constructed, we don't even need
	     to check that the mode and code are compatible -- they were
	     generated from the predicate in the first place.  */
	  while (a->type == DT_mode || a->type == DT_code)
	    a = a->next;
	  tree->tests = a;
	}
    }

  /* Recurse.  */
  for (tree = head->first; tree; tree = tree->next)
    simplify_tests (&tree->success);
}

/* Count the number of subnodes of HEAD.  If the number is high enough,
   make the first node in HEAD start a separate subroutine in the C code
   that is generated.  */

static int
break_out_subroutines (head, initial)
     struct decision_head *head;
     int initial;
{
  int size = 0;
  struct decision *sub;

  for (sub = head->first; sub; sub = sub->next)
    size += 1 + break_out_subroutines (&sub->success, 0);

  if (size > SUBROUTINE_THRESHOLD && ! initial)
    {
      head->first->subroutine_number = ++next_subroutine_number;
      size = 1;
    }
  return size;
}

/* For each node p, find the next alternative that might be true
   when p is true.  */

static void
find_afterward (head, real_afterward)
     struct decision_head *head;
     struct decision *real_afterward;
{
  struct decision *p, *q, *afterward;

  /* We can't propogate alternatives across subroutine boundaries. 
     This is not incorrect, merely a minor optimization loss.  */

  p = head->first;
  afterward = (p->subroutine_number > 0 ? NULL : real_afterward);

  for ( ; p ; p = p->next)
    {
      /* Find the next node that might be true if this one fails.  */
      for (q = p->next; q ; q = q->next)
	if (maybe_both_true (p, q, 1))
	  break;

      /* If we reached the end of the list without finding one, 
	 use the incoming afterward position.  */
      if (!q)
	q = afterward;
      p->afterward = q;
      if (q)
	q->need_label = 1;
    }

  /* Recurse.  */
  for (p = head->first; p ; p = p->next)
    if (p->success.first)
      find_afterward (&p->success, p->afterward);

  /* When we are generating a subroutine, record the real afterward
     position in the first node where write_tree can find it, and we
     can do the right thing at the subroutine call site.  */
  p = head->first;
  if (p->subroutine_number > 0)
    p->afterward = real_afterward;
}

/* Assuming that the state of argument is denoted by OLDPOS, take whatever
   actions are necessary to move to NEWPOS.  If we fail to move to the
   new state, branch to node AFTERWARD if non-zero, otherwise return.

   Failure to move to the new state can only occur if we are trying to
   match multiple insns and we try to step past the end of the stream. */

static void
change_state (oldpos, newpos, afterward, indent)
     const char *oldpos;
     const char *newpos;
     struct decision *afterward;
     const char *indent;
{
  int odepth = strlen (oldpos);
  int ndepth = strlen (newpos);
  int depth;
  int old_has_insn, new_has_insn;

  /* Pop up as many levels as necessary.  */
  for (depth = odepth; strncmp (oldpos, newpos, depth) != 0; --depth)
    continue;

  /* Hunt for the last [A-Z] in both strings.  */
  for (old_has_insn = odepth - 1; old_has_insn >= 0; --old_has_insn)
    if (oldpos[old_has_insn] >= 'A' && oldpos[old_has_insn] <= 'Z')
      break;
  for (new_has_insn = odepth - 1; new_has_insn >= 0; --new_has_insn)
    if (newpos[new_has_insn] >= 'A' && newpos[new_has_insn] <= 'Z')
      break;

  /* Make sure to reset the _last_insn pointer when popping back up.  */
  if (old_has_insn >= 0 && new_has_insn < 0)
    printf ("%s_last_insn = insn;\n", indent);

  /* Go down to desired level.  */
  while (depth < ndepth)
    {
      /* It's a different insn from the first one. */
      if (newpos[depth] >= 'A' && newpos[depth] <= 'Z')
	{
	  /* We can only fail if we're moving down the tree.  */
	  if (old_has_insn >= 0 && oldpos[old_has_insn] >= newpos[depth])
	    {
	      printf ("%s_last_insn = recog_next_insn (insn, %d);\n", 
		      indent, newpos[depth] - 'A');
	    }
	  else
	    {
	      printf ("%stem = recog_next_insn (insn, %d);\n", 
		      indent, newpos[depth] - 'A');
	      printf ("%sif (tem == NULL_RTX)\n", indent);
	      if (afterward)
		printf ("%s  goto L%d;\n", indent, afterward->number);
	      else
		printf ("%s  goto ret0;\n", indent);
	      printf ("%s_last_insn = tem;\n", indent);
	    }
	  printf ("%sx%d = PATTERN (_last_insn);\n", indent, depth + 1);
	}
      else if (newpos[depth] >= 'a' && newpos[depth] <= 'z')
	printf ("%sx%d = XVECEXP (x%d, 0, %d);\n",
		indent, depth + 1, depth, newpos[depth] - 'a');
      else
	printf ("%sx%d = XEXP (x%d, %c);\n",
		indent, depth + 1, depth, newpos[depth]);
      ++depth;
    }
}

/* Print the enumerator constant for CODE -- the upcase version of
   the name.  */

static void
print_code (code)
     enum rtx_code code;
{
  register const char *p;
  for (p = GET_RTX_NAME (code); *p; p++)
    putchar (TOUPPER (*p));
}

/* Emit code to cross an afterward link -- change state and branch.  */

static void
write_afterward (start, afterward, indent)
     struct decision *start;
     struct decision *afterward;
     const char *indent;
{
  if (!afterward || start->subroutine_number > 0)
    printf("%sgoto ret0;\n", indent);
  else
    {
      change_state (start->position, afterward->position, NULL, indent);
      printf ("%sgoto L%d;\n", indent, afterward->number);
    }
}

/* Emit a switch statement, if possible, for an initial sequence of 
   nodes at START.  Return the first node yet untested.  */

static struct decision *
write_switch (start, depth)
     struct decision *start;
     int depth;
{
  struct decision *p = start;
  enum decision_type type = p->tests->type;

  /* If we have two or more nodes in sequence that test the same one
     thing, we may be able to use a switch statement.  */

  if (!p->next
      || p->tests->next
      || p->next->tests->type != type
      || p->next->tests->next)
    return p;

  /* DT_code is special in that we can do interesting things with
     known predicates at the same time.  */
  if (type == DT_code)
    {
      char codemap[NUM_RTX_CODE];
      struct decision *ret;

      memset (codemap, 0, sizeof(codemap));

      printf ("  switch (GET_CODE (x%d))\n    {\n", depth);
      do 
	{
	  RTX_CODE code = p->tests->u.code;
	  printf ("    case ");
	  print_code (code);
	  printf (":\n      goto L%d;\n", p->success.first->number);
	  p->success.first->need_label = 1;

	  codemap[code] = 1;
	  p = p->next;
	}
      while (p && p->tests->type == DT_code && !p->tests->next);

      /* If P is testing a predicate that we know about and we haven't
	 seen any of the codes that are valid for the predicate, we can
	 write a series of "case" statement, one for each possible code.
	 Since we are already in a switch, these redundant tests are very
	 cheap and will reduce the number of predicates called.  */

      /* Note that while we write out cases for these predicates here,
	 we don't actually write the test here, as it gets kinda messy.
	 It is trivial to leave this to later by telling our caller that
	 we only processed the CODE tests.  */
      ret = p;

      while (p && p->tests->type == DT_pred
	     && p->tests->u.pred.index >= 0)
	{
	  const RTX_CODE *c;

	  for (c = &preds[p->tests->u.pred.index].codes[0]; *c ; ++c)
	    if (codemap[(int) *c] != 0)
	      goto pred_done;

	  for (c = &preds[p->tests->u.pred.index].codes[0]; *c ; ++c)
	    {
	      printf ("    case ");
	      print_code (*c);
	      printf (":\n");
	      codemap[(int) *c] = 1;
	    }

	  printf ("      goto L%d;\n", p->number);
	  p->need_label = 1;
	  p = p->next;
	}

    pred_done:
      /* Make the default case skip the predicates we managed to match.  */

      printf ("    default:\n");
      if (p != ret)
	{
	  if (p)
	    {
	      printf ("      goto L%d;\n", p->number);
	      p->need_label = 1;
	    }
	  else
	    write_afterward (start, start->afterward, "      ");
	}
      else
	printf ("     break;\n");
      printf ("   }\n");

      return ret;
    }
  else if (type == DT_mode
	   || type == DT_veclen
	   || type == DT_elt_zero_int
	   || type == DT_elt_one_int
	   || type == DT_elt_zero_wide)
    {
      const char *str;

      printf ("  switch (");
      switch (type)
	{
	case DT_mode:
	  str = "GET_MODE (x%d)";
	  break;
	case DT_veclen:
	  str = "XVECLEN (x%d, 0)";
	  break;
	case DT_elt_zero_int:
	  str = "XINT (x%d, 0)";
	  break;
	case DT_elt_one_int:
	  str = "XINT (x%d, 1)";
	  break;
	case DT_elt_zero_wide:
	  str = "XWINT (x%d, 0)";
	  break;
	default:
	  abort ();
	}
      printf (str, depth);
      printf (")\n    {\n");

      do
	{
	  printf ("    case ");
	  switch (type)
	    {
	    case DT_mode:
	      printf ("%smode", GET_MODE_NAME (p->tests->u.mode));
	      break;
	    case DT_veclen:
	      printf ("%d", p->tests->u.veclen);
	      break;
	    case DT_elt_zero_int:
	    case DT_elt_one_int:
	    case DT_elt_zero_wide:
	      printf (HOST_WIDE_INT_PRINT_DEC, p->tests->u.intval);
	      break;
	    default:
	      abort ();
	    }
	  printf (":\n      goto L%d;\n", p->success.first->number);
	  p->success.first->need_label = 1;

	  p = p->next;
	}
      while (p && p->tests->type == type && !p->tests->next);
      
      printf ("    default:\n      break;\n    }\n");

      return p;
    }
  else
    {
      /* None of the other tests are ameanable.  */
      return p;
    }
}

/* Emit code for one test.  */

static void
write_cond (p, depth, subroutine_type)
     struct decision_test *p;
     int depth;
     enum routine_type subroutine_type;
{
  switch (p->type)
    {
    case DT_mode:
      printf ("GET_MODE (x%d) == %smode", depth, GET_MODE_NAME (p->u.mode));
      break;

    case DT_code:
      printf ("GET_CODE (x%d) == ", depth);
      print_code (p->u.code);
      break;

    case DT_veclen:
      printf ("XVECLEN (x%d, 0) == %d", depth, p->u.veclen);
      break;

    case DT_elt_zero_int:
      printf ("XINT (x%d, 0) == %d", depth, (int) p->u.intval);
      break;

    case DT_elt_one_int:
      printf ("XINT (x%d, 1) == %d", depth, (int) p->u.intval);
      break;

    case DT_elt_zero_wide:
      printf ("XWINT (x%d, 0) == ", depth);
      printf (HOST_WIDE_INT_PRINT_DEC, p->u.intval);
      break;

    case DT_dup:
      printf ("rtx_equal_p (x%d, operands[%d])", depth, p->u.dup);
      break;

    case DT_pred:
      printf ("%s (x%d, %smode)", p->u.pred.name, depth,
	      GET_MODE_NAME (p->u.pred.mode));
      break;

    case DT_c_test:
      printf ("(%s)", p->u.c_test);
      break;

    case DT_accept_insn:
      switch (subroutine_type)
	{
	case RECOG:
	  if (p->u.insn.num_clobbers_to_add == 0)
	    abort ();
	  printf ("pnum_clobbers != NULL");
	  break;

	default:
	  abort ();
	}
      break;

    default:
      abort ();
    }
}

/* Emit code for one action.  The previous tests have succeeded;
   TEST is the last of the chain.  In the normal case we simply
   perform a state change.  For the `accept' tests we must do more work.  */

static void
write_action (test, depth, uncond, success, subroutine_type)
     struct decision_test *test;
     int depth, uncond;
     struct decision *success;
     enum routine_type subroutine_type;
{
  const char *indent;
  int want_close = 0;

  if (uncond)
    indent = "  ";
  else if (test->type == DT_accept_op || test->type == DT_accept_insn)
    {
      fputs ("    {\n", stdout);
      indent = "      ";
      want_close = 1;
    }
  else
    indent = "    ";

  if (test->type == DT_accept_op)
    {
      printf("%soperands[%d] = x%d;\n", indent, test->u.opno, depth);

      /* Only allow DT_accept_insn to follow.  */
      if (test->next)
	{
	  test = test->next;
	  if (test->type != DT_accept_insn)
	    abort ();
	}
    }

  /* Sanity check that we're now at the end of the list of tests.  */
  if (test->next)
    abort ();

  if (test->type == DT_accept_insn)
    {
      switch (subroutine_type)
	{
	case RECOG:
	  if (test->u.insn.num_clobbers_to_add != 0)
	    printf ("%s*pnum_clobbers = %d;\n",
		    indent, test->u.insn.num_clobbers_to_add);
	  printf ("%sreturn %d;\n", indent, test->u.insn.code_number);
	  break;

	case SPLIT:
	  printf ("%sreturn gen_split_%d (operands);\n",
		  indent, test->u.insn.code_number);
	  break;

	case PEEPHOLE2:
	  printf ("%stem = gen_peephole2_%d (insn, operands);\n",
		  indent, test->u.insn.code_number);
	  printf ("%sif (tem != 0)\n%s  goto ret1;\n", indent, indent);
	  break;

	default:
	  abort ();
	}
    }
  else
    {
      printf("%sgoto L%d;\n", indent, success->number);
      success->need_label = 1;
    }

  if (want_close)
    fputs ("    }\n", stdout);
}

/* Return 1 if the test is always true and has no fallthru path.  Return -1
   if the test does have a fallthru path, but requires that the condition be
   terminated.  Otherwise return 0 for a normal test.  */
/* ??? is_unconditional is a stupid name for a tri-state function.  */

static int
is_unconditional (t, subroutine_type)
     struct decision_test *t;
     enum routine_type subroutine_type;
{
  if (t->type == DT_accept_op)
    return 1;

  if (t->type == DT_accept_insn)
    {
      switch (subroutine_type)
	{
	case RECOG:
	  return (t->u.insn.num_clobbers_to_add == 0);
	case SPLIT:
	  return 1;
	case PEEPHOLE2:
	  return -1;
	default:
	  abort ();
	}
    }

  return 0;
}

/* Emit code for one node -- the conditional and the accompanying action.
   Return true if there is no fallthru path.  */

static int
write_node (p, depth, subroutine_type)
     struct decision *p;
     int depth;
     enum routine_type subroutine_type;
{
  struct decision_test *test, *last_test;
  int uncond;

  last_test = test = p->tests;
  uncond = is_unconditional (test, subroutine_type);
  if (uncond == 0)
    {
      printf ("  if (");
      write_cond (test, depth, subroutine_type);

      while ((test = test->next) != NULL)
	{
	  int uncond2;

	  last_test = test;
	  uncond2 = is_unconditional (test, subroutine_type);
	  if (uncond2 != 0)
	    break;

	  printf ("\n      && ");
	  write_cond (test, depth, subroutine_type);
	}

      printf (")\n");
    }

  write_action (last_test, depth, uncond, p->success.first, subroutine_type);

  return uncond > 0;
}

/* Emit code for all of the sibling nodes of HEAD.  */

static void
write_tree_1 (head, depth, subroutine_type)
     struct decision_head *head;
     int depth;
     enum routine_type subroutine_type;
{
  struct decision *p, *next;
  int uncond = 0;

  for (p = head->first; p ; p = next)
    {
      /* The label for the first element was printed in write_tree.  */
      if (p != head->first && p->need_label)
	OUTPUT_LABEL (" ", p->number);

      /* Attempt to write a switch statement for a whole sequence.  */
      next = write_switch (p, depth);
      if (p != next)
	uncond = 0;
      else
	{
	  /* Failed -- fall back and write one node.  */
	  uncond = write_node (p, depth, subroutine_type);
	  next = p->next;
	}
    }

  /* Finished with this chain.  Close a fallthru path by branching
     to the afterward node.  */
  if (! uncond)
    write_afterward (head->last, head->last->afterward, "  ");
}

/* Write out the decision tree starting at HEAD.  PREVPOS is the
   position at the node that branched to this node.  */

static void
write_tree (head, prevpos, type, initial)
     struct decision_head *head;
     const char *prevpos;
     enum routine_type type;
     int initial;
{
  register struct decision *p = head->first;

  putchar ('\n');
  if (p->need_label)
    OUTPUT_LABEL (" ", p->number);

  if (! initial && p->subroutine_number > 0)
    {
      static const char * const name_prefix[] = {
	  "recog", "split", "peephole2"
      };

      static const char * const call_suffix[] = {
	  ", pnum_clobbers", "", ", _plast_insn"
      };

      /* This node has been broken out into a separate subroutine.
	 Call it, test the result, and branch accordingly.  */

      if (p->afterward)
	{
	  printf ("  tem = %s_%d (x0, insn%s);\n",
		  name_prefix[type], p->subroutine_number, call_suffix[type]);
	  if (IS_SPLIT (type))
	    printf ("  if (tem != 0)\n    return tem;\n");
	  else
	    printf ("  if (tem >= 0)\n    return tem;\n");

	  change_state (p->position, p->afterward->position, NULL, "  ");
	  printf ("  goto L%d;\n", p->afterward->number);
	}
      else
	{
	  printf ("  return %s_%d (x0, insn%s);\n",
		  name_prefix[type], p->subroutine_number, call_suffix[type]);
	}
    }
  else
    {
      int depth = strlen (p->position);

      change_state (prevpos, p->position, head->last->afterward, "  ");
      write_tree_1 (head, depth, type);

      for (p = head->first; p; p = p->next)
        if (p->success.first)
          write_tree (&p->success, p->position, type, 0);
    }
}

/* Write out a subroutine of type TYPE to do comparisons starting at
   node TREE.  */

static void
write_subroutine (head, type)
     struct decision_head *head;
     enum routine_type type;
{
  static const char * const proto_pattern[] = {
    "%sint recog%s PROTO ((rtx, rtx, int *));\n",
    "%srtx split%s PROTO ((rtx, rtx));\n",
    "%srtx peephole2%s PROTO ((rtx, rtx, rtx *));\n"
  };

  static const char * const decl_pattern[] = {
"%sint\n\
recog%s (x0, insn, pnum_clobbers)\n\
     register rtx x0;\n\
     rtx insn ATTRIBUTE_UNUSED;\n\
     int *pnum_clobbers ATTRIBUTE_UNUSED;\n",

"%srtx\n\
split%s (x0, insn)\n\
     register rtx x0;\n\
     rtx insn ATTRIBUTE_UNUSED;\n",

"%srtx\n\
peephole2%s (x0, insn, _plast_insn)\n\
     register rtx x0;\n\
     rtx insn ATTRIBUTE_UNUSED;\n\
     rtx *_plast_insn ATTRIBUTE_UNUSED;\n"
  };
     
  int subfunction = head->first ? head->first->subroutine_number : 0;
  const char *s_or_e;
  char extension[32];
  int i;
  
  s_or_e = subfunction ? "static " : "";

  if (subfunction)
    sprintf (extension, "_%d", subfunction);
  else if (type == RECOG)
    extension[0] = '\0';
  else
    strcpy (extension, "_insns");

  printf (proto_pattern[type], s_or_e, extension);
  printf (decl_pattern[type], s_or_e, extension);

  printf ("{\n  register rtx * const operands = &recog_data.operand[0];\n");
  for (i = 1; i <= max_depth; i++)
    printf ("  register rtx x%d ATTRIBUTE_UNUSED;\n", i);

  if (type == PEEPHOLE2)
    printf ("  register rtx _last_insn = insn;\n");
  printf ("  %s tem ATTRIBUTE_UNUSED;\n", IS_SPLIT (type) ? "rtx" : "int");

  if (head->first)
    write_tree (head, "", type, 1);
  else
    printf ("  goto ret0;\n");

  if (type == PEEPHOLE2)
    printf (" ret1:\n  *_plast_insn = _last_insn;\n  return tem;\n");
  printf (" ret0:\n  return %d;\n}\n\n", IS_SPLIT (type) ? 0 : -1);
}

/* In break_out_subroutines, we discovered the boundaries for the
   subroutines, but did not write them out.  Do so now.  */

static void
write_subroutines (head, type)
     struct decision_head *head;
     enum routine_type type;
{
  struct decision *p;

  for (p = head->first; p ; p = p->next)
    if (p->success.first)
      write_subroutines (&p->success, type);

  if (head->first->subroutine_number > 0)
    write_subroutine (head, type);
}

/* Begin the output file.  */

static void
write_header ()
{
  puts ("\
/* Generated automatically by the program `genrecog' from the target\n\
   machine description file.  */\n\
\n\
#include \"config.h\"\n\
#include \"system.h\"\n\
#include \"rtl.h\"\n\
#include \"tm_p.h\"\n\
#include \"function.h\"\n\
#include \"insn-config.h\"\n\
#include \"recog.h\"\n\
#include \"real.h\"\n\
#include \"output.h\"\n\
#include \"flags.h\"\n\
#include \"hard-reg-set.h\"\n\
#include \"resource.h\"\n\
\n");

  puts ("\n\
/* `recog' contains a decision tree that recognizes whether the rtx\n\
   X0 is a valid instruction.\n\
\n\
   recog returns -1 if the rtx is not valid.  If the rtx is valid, recog\n\
   returns a nonnegative number which is the insn code number for the\n\
   pattern that matched.  This is the same as the order in the machine\n\
   description of the entry that matched.  This number can be used as an\n\
   index into `insn_data' and other tables.\n\
\n\
   The third argument to recog is an optional pointer to an int.  If\n\
   present, recog will accept a pattern if it matches except for missing\n\
   CLOBBER expressions at the end.  In that case, the value pointed to by\n\
   the optional pointer will be set to the number of CLOBBERs that need\n\
   to be added (it should be initialized to zero by the caller).  If it\n\
   is set nonzero, the caller should allocate a PARALLEL of the\n\
   appropriate size, copy the initial entries, and call add_clobbers\n\
   (found in insn-emit.c) to fill in the CLOBBERs.\n\
");

  puts ("\n\
   The function split_insns returns 0 if the rtl could not\n\
   be split or the split rtl in a SEQUENCE if it can be.\n\
\n\
   The function peephole2_insns returns 0 if the rtl could not\n\
   be matched. If there was a match, the new rtl is returned in a SEQUENCE,\n\
   and LAST_INSN will point to the last recognized insn in the old sequence.\n\
*/\n\n");
}


/* Construct and return a sequence of decisions
   that will recognize INSN.

   TYPE says what type of routine we are recognizing (RECOG or SPLIT).  */

static struct decision_head
make_insn_sequence (insn, type)
     rtx insn;
     enum routine_type type;
{
  rtx x;
  const char *c_test = XSTR (insn, type == RECOG ? 2 : 1);
  struct decision *last;
  struct decision_test *test, **place;
  struct decision_head head;

  record_insn_name (next_insn_code, (type == RECOG ? XSTR (insn, 0) : NULL));

  if (type == PEEPHOLE2)
    {
      int i, j;

      /* peephole2 gets special treatment:
	 - X always gets an outer parallel even if it's only one entry
	 - we remove all traces of outer-level match_scratch and match_dup
           expressions here.  */
      x = rtx_alloc (PARALLEL);
      PUT_MODE (x, VOIDmode);
      XVEC (x, 0) = rtvec_alloc (XVECLEN (insn, 0));
      for (i = j = 0; i < XVECLEN (insn, 0); i++)
	{
	  rtx tmp = XVECEXP (insn, 0, i);
	  if (GET_CODE (tmp) != MATCH_SCRATCH && GET_CODE (tmp) != MATCH_DUP)
	    {
	      XVECEXP (x, 0, j) = tmp;
	      j++;
	    }
	}
      XVECLEN (x, 0) = j;
    }
  else if (XVECLEN (insn, type == RECOG) == 1)
    x = XVECEXP (insn, type == RECOG, 0);
  else
    {
      x = rtx_alloc (PARALLEL);
      XVEC (x, 0) = XVEC (insn, type == RECOG);
      PUT_MODE (x, VOIDmode);
    }

  validate_pattern (x, insn, 0);

  memset(&head, 0, sizeof(head));
  last = add_to_sequence (x, &head, "", type, 1);

  /* Find the end of the test chain on the last node.  */
  for (test = last->tests; test->next; test = test->next)
    continue;
  place = &test->next;

  if (c_test[0])
    {
      /* Need a new node if we have another test to add.  */
      if (test->type == DT_accept_op)
	{
	  last = new_decision ("", &last->success);
	  place = &last->tests;
	}
      test = new_decision_test (DT_c_test, &place);
      test->u.c_test = c_test;
    }

  test = new_decision_test (DT_accept_insn, &place);
  test->u.insn.code_number = next_insn_code;
  test->u.insn.lineno = pattern_lineno;
  test->u.insn.num_clobbers_to_add = 0;

  switch (type)
    {
    case RECOG:
      /* If this is an DEFINE_INSN and X is a PARALLEL, see if it ends
	 with a group of CLOBBERs of (hard) registers or MATCH_SCRATCHes.
	 If so, set up to recognize the pattern without these CLOBBERs.  */

      if (GET_CODE (x) == PARALLEL)
	{
	  int i;

	  /* Find the last non-clobber in the parallel.  */
	  for (i = XVECLEN (x, 0); i > 0; i--)
	    {
	      rtx y = XVECEXP (x, 0, i - 1);
	      if (GET_CODE (y) != CLOBBER
		  || (GET_CODE (XEXP (y, 0)) != REG
		      && GET_CODE (XEXP (y, 0)) != MATCH_SCRATCH))
		break;
	    }

	  if (i != XVECLEN (x, 0))
	    {
	      rtx new;
	      struct decision_head clobber_head;

	      /* Build a similar insn without the clobbers.  */
	      if (i == 1)
		new = XVECEXP (x, 0, 0);
	      else
		{
		  int j;

		  new = rtx_alloc (PARALLEL);
		  XVEC (new, 0) = rtvec_alloc (i);
		  for (j = i - 1; j >= 0; j--)
		    XVECEXP (new, 0, j) = XVECEXP (x, 0, j);
		}

	      /* Recognize it.  */
	      memset (&clobber_head, 0, sizeof(clobber_head));
	      last = add_to_sequence (new, &clobber_head, "", type, 1);

	      /* Find the end of the test chain on the last node.  */
	      for (test = last->tests; test->next; test = test->next)
		continue;

	      /* We definitely have a new test to add -- create a new
		 node if needed.  */
	      place = &test->next;
	      if (test->type == DT_accept_op)
		{
		  last = new_decision ("", &last->success);
		  place = &last->tests;
		}

	      if (c_test[0])
		{
		  test = new_decision_test (DT_c_test, &place);
		  test->u.c_test = c_test;
		}

	      test = new_decision_test (DT_accept_insn, &place);
	      test->u.insn.code_number = next_insn_code;
	      test->u.insn.lineno = pattern_lineno;
	      test->u.insn.num_clobbers_to_add = XVECLEN (x, 0) - i;

	      merge_trees (&head, &clobber_head);
	    }
	}
      break;

    case SPLIT:
      /* Define the subroutine we will call below and emit in genemit.  */
      printf ("extern rtx gen_split_%d PROTO ((rtx *));\n", next_insn_code);
      break;

    case PEEPHOLE2:
      /* Define the subroutine we will call below and emit in genemit.  */
      printf ("extern rtx gen_peephole2_%d PROTO ((rtx, rtx *));\n",
	      next_insn_code);
      break;
    }
  next_insn_code++;

  return head;
}

static void
process_tree (head, subroutine_type)
     struct decision_head *head;
     enum routine_type subroutine_type;
{
  if (head->first == NULL)
    {
      /* We can elide peephole2_insns, but not recog or split_insns.  */
      if (subroutine_type == PEEPHOLE2)
	return;
    }
  else
    {
      factor_tests (head);

      next_subroutine_number = 0;
      break_out_subroutines (head, 1);
      find_afterward (head, NULL);

      /* We run this after find_afterward, because find_afterward needs
	 the redundant DT_mode tests on predicates to determine whether
	 two tests can both be true or not.  */
      simplify_tests(head);

      write_subroutines (head, subroutine_type);
    }

  write_subroutine (head, subroutine_type);
}

int
main (argc, argv)
     int argc;
     char **argv;
{
  rtx desc;
  struct decision_head recog_tree, split_tree, peephole2_tree, h;
  FILE *infile;
  register int c;

  progname = "genrecog";
  obstack_init (rtl_obstack);

  memset (&recog_tree, 0, sizeof recog_tree);
  memset (&split_tree, 0, sizeof split_tree);
  memset (&peephole2_tree, 0, sizeof peephole2_tree);

  if (argc <= 1)
    fatal ("No input file name.");

  infile = fopen (argv[1], "r");
  if (infile == 0)
    {
      perror (argv[1]);
      return FATAL_EXIT_CODE;
    }
  read_rtx_filename = argv[1];

  next_insn_code = 0;
  next_index = 0;

  write_header ();

  /* Read the machine description.  */

  while (1)
    {
      c = read_skip_spaces (infile);
      if (c == EOF)
	break;
      ungetc (c, infile);
      pattern_lineno = read_rtx_lineno;

      desc = read_rtx (infile);
      if (GET_CODE (desc) == DEFINE_INSN)
	{
	  h = make_insn_sequence (desc, RECOG);
	  merge_trees (&recog_tree, &h);
	}
      else if (GET_CODE (desc) == DEFINE_SPLIT)
	{
	  h = make_insn_sequence (desc, SPLIT);
	  merge_trees (&split_tree, &h);
	}
      else if (GET_CODE (desc) == DEFINE_PEEPHOLE2)
	{
	  h = make_insn_sequence (desc, PEEPHOLE2);
	  merge_trees (&peephole2_tree, &h);
	}
	
      if (GET_CODE (desc) == DEFINE_PEEPHOLE
	  || GET_CODE (desc) == DEFINE_EXPAND)
	next_insn_code++;
      next_index++;
    }

  if (error_count)
    return FATAL_EXIT_CODE;

  puts ("\n\n");

  process_tree (&recog_tree, RECOG);
  process_tree (&split_tree, SPLIT);
  process_tree (&peephole2_tree, PEEPHOLE2);

  fflush (stdout);
  return (ferror (stdout) != 0 ? FATAL_EXIT_CODE : SUCCESS_EXIT_CODE);
}

/* Define this so we can link with print-rtl.o to get debug_rtx function.  */
const char *
get_insn_name (code)
     int code;
{
  if (code < insn_name_ptr_size)
    return insn_name_ptr[code];
  else
    return NULL;
}

static void
record_insn_name (code, name)
     int code;
     const char *name;
{
  static const char *last_real_name = "insn";
  static int last_real_code = 0;
  char *new;

  if (insn_name_ptr_size <= code)
    {
      int new_size;
      new_size = (insn_name_ptr_size ? insn_name_ptr_size * 2 : 512);
      insn_name_ptr =
	(char **) xrealloc (insn_name_ptr, sizeof(char *) * new_size);
      memset (insn_name_ptr + insn_name_ptr_size, 0, 
	      sizeof(char *) * (new_size - insn_name_ptr_size));
      insn_name_ptr_size = new_size;
    }

  if (!name || name[0] == '\0')
    {
      new = xmalloc (strlen (last_real_name) + 10);
      sprintf (new, "%s+%d", last_real_name, code - last_real_code);
    }
  else
    {
      last_real_name = new = xstrdup (name);
      last_real_code = code;
    }
  
  insn_name_ptr[code] = new;
}  

char *
xstrdup (input)
  const char *input;
{
  register size_t len = strlen (input) + 1;
  register char *output = xmalloc (len);
  memcpy (output, input, len);
  return output;
}

PTR
xrealloc (old, size)
  PTR old;
  size_t size;
{
  register PTR ptr;
  if (old)
    ptr = (PTR) realloc (old, size);
  else
    ptr = (PTR) malloc (size);
  if (!ptr)
    fatal ("virtual memory exhausted");
  return ptr;
}

PTR
xmalloc (size)
  size_t size;
{
  register PTR val = (PTR) malloc (size);

  if (val == 0)
    fatal ("virtual memory exhausted");
  return val;
}

static void
debug_decision_2 (test)
     struct decision_test *test;
{
  switch (test->type)
    {
    case DT_mode:
      fprintf (stderr, "mode=%s", GET_MODE_NAME (test->u.mode));
      break;
    case DT_code:
      fprintf (stderr, "code=%s", GET_RTX_NAME (test->u.code));
      break;
    case DT_veclen:
      fprintf (stderr, "veclen=%d", test->u.veclen);
      break;
    case DT_elt_zero_int:
      fprintf (stderr, "elt0_i=%d", (int) test->u.intval);
      break;
    case DT_elt_one_int:
      fprintf (stderr, "elt1_i=%d", (int) test->u.intval);
      break;
    case DT_elt_zero_wide:
      fprintf (stderr, "elt0_w=");
      fprintf (stderr, HOST_WIDE_INT_PRINT_DEC, test->u.intval);
      break;
    case DT_dup:
      fprintf (stderr, "dup=%d", test->u.dup);
      break;
    case DT_pred:
      fprintf (stderr, "pred=(%s,%s)",
	       test->u.pred.name, GET_MODE_NAME(test->u.pred.mode));
      break;
    case DT_c_test:
      {
	char sub[16+4];
	strncpy (sub, test->u.c_test, sizeof(sub));
	memcpy (sub+16, "...", 4);
	fprintf (stderr, "c_test=\"%s\"", sub);
      }
      break;
    case DT_accept_op:
      fprintf (stderr, "A_op=%d", test->u.opno);
      break;
    case DT_accept_insn:
      fprintf (stderr, "A_insn=(%d,%d)", 
	       test->u.insn.code_number, test->u.insn.num_clobbers_to_add);
      break;

    default:
      abort ();
    }
}

static void
debug_decision_1 (d, indent)
     struct decision *d;
     int indent;
{
  int i;
  struct decision_test *test;

  if (d == NULL)
    {
      for (i = 0; i < indent; ++i)
	putc (' ', stderr);
      fputs ("(nil)\n", stderr);
      return;
    }

  for (i = 0; i < indent; ++i)
    putc (' ', stderr);

  putc ('{', stderr);
  test = d->tests;
  if (test)
    {
      debug_decision_2 (test);
      while ((test = test->next) != NULL)
	{
	  fputs (" + ", stderr);
	  debug_decision_2 (test);
	}
    }
  fprintf (stderr, "} %d n %d a %d\n", d->number,
	   (d->next ? d->next->number : -1),
	   (d->afterward ? d->afterward->number : -1));
}

static void
debug_decision_0 (d, indent, maxdepth)
     struct decision *d;
     int indent, maxdepth;
{
  struct decision *n;
  int i;

  if (maxdepth < 0)
    return;
  if (d == NULL)
    {
      for (i = 0; i < indent; ++i)
	putc (' ', stderr);
      fputs ("(nil)\n", stderr);
      return;
    }

  debug_decision_1 (d, indent);
  for (n = d->success.first; n ; n = n->next)
    debug_decision_0 (n, indent + 2, maxdepth - 1);
}

void
debug_decision (d)
     struct decision *d;
{
  debug_decision_0 (d, 0, 1000000);
}

void
debug_decision_list (d)
     struct decision *d;
{
  while (d)
    {
      debug_decision_0 (d, 0, 0);
      d = d->next;
    }
}