summaryrefslogtreecommitdiff
path: root/gcc/ggc-page.c
blob: 7a5cec243ff7c3456d0b9ee6bbb511fc428bf2f3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
/* "Bag-of-pages" garbage collector for the GNU compiler.
   Copyright (C) 1999 Free Software Foundation, Inc.

   This file is part of GNU CC.

   GNU CC is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 2, or (at your option)
   any later version.

   GNU CC is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with GNU CC; see the file COPYING.  If not, write to
   the Free Software Foundation, 59 Temple Place - Suite 330,
   Boston, MA 02111-1307, USA.  */

#include "config.h"
#include "system.h"
#include "tree.h"
#include "rtl.h"
#include "tm_p.h"
#include "varray.h"
#include "flags.h"
#include "ggc.h"

#ifdef HAVE_MMAP
#include <sys/mman.h>
#endif

#ifndef MAP_FAILED
#define MAP_FAILED -1
#endif

#if !defined (MAP_ANONYMOUS) && defined (MAP_ANON)
#define MAP_ANONYMOUS MAP_ANON
#endif

/* Stategy: 

   This garbage-collecting allocator allocates objects on one of a set
   of pages.  Each page can allocate objects of a single size only;
   available sizes are powers of two starting at four bytes.  The size
   of an allocation request is rounded up to the next power of two
   (`order'), and satisfied from the appropriate page.

   Each page is recorded in a page-entry, which also maintains an
   in-use bitmap of object positions on the page.  This allows the
   allocation state of a particular object to be flipped without
   touching the page itself.

   Each page-entry also has a context depth, which is used to track
   pushing and popping of allocation contexts.  Only objects allocated
   in the current (highest-numbered) context may be collected.  

   Page entries are arranged in an array of singly-linked lists.  The
   array is indexed by the allocation size, in bits, of the pages on
   it; i.e. all pages on a list allocate objects of the same size.
   Pages are ordered on the list such that all non-full pages precede
   all full pages, with non-full pages arranged in order of decreasing
   context depth.

   Empty pages (of all orders) are kept on a single page cache list,
   and are considered first when new pages are required; they are
   deallocated at the start of the next collection if they haven't
   been recycled by then.  */


/* Define GGC_POISON to poison memory marked unused by the collector.  */
#undef GGC_POISON

/* Define GGC_ALWAYS_COLLECT to perform collection every time
   ggc_collect is invoked.  Otherwise, collection is performed only
   when a significant amount of memory has been allocated since the
   last collection.  */
#undef GGC_ALWAYS_COLLECT

#ifdef ENABLE_GC_CHECKING
#define GGC_POISON
#endif
#ifdef ENABLE_GC_ALWAYS_COLLECT
#define GGC_ALWAYS_COLLECT
#endif

/* Define GGC_DEBUG_LEVEL to print debugging information.
     0: No debugging output.
     1: GC statistics only.
     2: Page-entry allocations/deallocations as well.
     3: Object allocations as well.
     4: Object marks as well.   */
#define GGC_DEBUG_LEVEL (0)

#ifndef HOST_BITS_PER_PTR
#define HOST_BITS_PER_PTR  HOST_BITS_PER_LONG
#endif

/* Timing information for collect execution goes into here.  */
extern int gc_time;

/* The "" allocated string.  */
char *empty_string;

/* A two-level tree is used to look up the page-entry for a given
   pointer.  Two chunks of the pointer's bits are extracted to index
   the first and second levels of the tree, as follows:

				   HOST_PAGE_SIZE_BITS
			   32		|      |
       msb +----------------+----+------+------+ lsb
			    |    |      |
			 PAGE_L1_BITS   |
				 |      |
			       PAGE_L2_BITS

   The bottommost HOST_PAGE_SIZE_BITS are ignored, since page-entry
   pages are aligned on system page boundaries.  The next most
   significant PAGE_L2_BITS and PAGE_L1_BITS are the second and first
   index values in the lookup table, respectively.  

   For 32-bit architectures and the settings below, there are no
   leftover bits.  For architectures with wider pointers, the lookup
   tree points to a list of pages, which must be scanned to find the
   correct one.  */

#define PAGE_L1_BITS	(8)
#define PAGE_L2_BITS	(32 - PAGE_L1_BITS - G.lg_pagesize)
#define PAGE_L1_SIZE	((size_t) 1 << PAGE_L1_BITS)
#define PAGE_L2_SIZE	((size_t) 1 << PAGE_L2_BITS)

#define LOOKUP_L1(p) \
  (((size_t) (p) >> (32 - PAGE_L1_BITS)) & ((1 << PAGE_L1_BITS) - 1))

#define LOOKUP_L2(p) \
  (((size_t) (p) >> G.lg_pagesize) & ((1 << PAGE_L2_BITS) - 1))


/* A page_entry records the status of an allocation page.  This
   structure is dynamically sized to fit the bitmap in_use_p.  */
typedef struct page_entry 
{
  /* The next page-entry with objects of the same size, or NULL if
     this is the last page-entry.  */
  struct page_entry *next;

  /* The number of bytes allocated.  (This will always be a multiple
     of the host system page size.)  */
  size_t bytes;

  /* The address at which the memory is allocated.  */
  char *page;

  /* Saved in-use bit vector for pages that aren't in the topmost
     context during collection.  */
  unsigned long *save_in_use_p;

  /* Context depth of this page.  */
  unsigned char context_depth;

  /* The lg of size of objects allocated from this page.  */
  unsigned char order;

  /* The number of free objects remaining on this page.  */
  unsigned short num_free_objects;

  /* A likely candidate for the bit position of a free object for the
     next allocation from this page.  */
  unsigned short next_bit_hint;

  /* A bit vector indicating whether or not objects are in use.  The
     Nth bit is one if the Nth object on this page is allocated.  This
     array is dynamically sized.  */
  unsigned long in_use_p[1];
} page_entry;


#if HOST_BITS_PER_PTR <= 32

/* On 32-bit hosts, we use a two level page table, as pictured above.  */
typedef page_entry **page_table[PAGE_L1_SIZE];

#else

/* On 64-bit hosts, we use the same two level page tables plus a linked
   list that disambiguates the top 32-bits.  There will almost always be
   exactly one entry in the list.  */
typedef struct page_table_chain
{
  struct page_table_chain *next;
  size_t high_bits;
  page_entry **table[PAGE_L1_SIZE];
} *page_table;

#endif

/* The rest of the global variables.  */
static struct globals
{
  /* The Nth element in this array is a page with objects of size 2^N.
     If there are any pages with free objects, they will be at the
     head of the list.  NULL if there are no page-entries for this
     object size.  */
  page_entry *pages[HOST_BITS_PER_PTR];

  /* The Nth element in this array is the last page with objects of
     size 2^N.  NULL if there are no page-entries for this object
     size.  */
  page_entry *page_tails[HOST_BITS_PER_PTR];

  /* Lookup table for associating allocation pages with object addresses.  */
  page_table lookup;

  /* The system's page size.  */
  size_t pagesize;
  size_t lg_pagesize;

  /* Bytes currently allocated.  */
  size_t allocated;

  /* Bytes currently allocated at the end of the last collection.  */
  size_t allocated_last_gc;

  /* Total amount of memory mapped.  */
  size_t bytes_mapped;

  /* The current depth in the context stack.  */
  unsigned char context_depth;

  /* A file descriptor open to /dev/zero for reading.  */
#if defined (HAVE_MMAP) && !defined(MAP_ANONYMOUS)
  int dev_zero_fd;
#endif

  /* A cache of free system pages.  */
  page_entry *free_pages;

  /* The file descriptor for debugging output.  */
  FILE *debug_file;
} G;


/* Compute DIVIDEND / DIVISOR, rounded up.  */
#define DIV_ROUND_UP(Dividend, Divisor) \
  (((Dividend) + (Divisor) - 1) / (Divisor))

/* The number of objects per allocation page, for objects of size
   2^ORDER.  */
#define OBJECTS_PER_PAGE(Order) \
  ((Order) >= G.lg_pagesize ? 1 : G.pagesize / ((size_t)1 << (Order)))

/* The size in bytes required to maintain a bitmap for the objects
   on a page-entry.  */
#define BITMAP_SIZE(Num_objects) \
  (DIV_ROUND_UP ((Num_objects), HOST_BITS_PER_LONG) * sizeof(long))

/* Skip garbage collection if the current allocation is not at least
   this factor times the allocation at the end of the last collection.
   In other words, total allocation must expand by (this factor minus
   one) before collection is performed.  */
#define GGC_MIN_EXPAND_FOR_GC (1.3)

/* Bound `allocated_last_gc' to 4MB, to prevent the memory expansion
   test from triggering too often when the heap is small.  */
#define GGC_MIN_LAST_ALLOCATED (4 * 1024 * 1024)


static int ggc_allocated_p PROTO ((const void *));
static page_entry *lookup_page_table_entry PROTO ((const void *));
static void set_page_table_entry PROTO ((void *, page_entry *));
static char *alloc_anon PROTO ((char *, size_t));
static struct page_entry * alloc_page PROTO ((unsigned));
static void free_page PROTO ((struct page_entry *));
static void release_pages PROTO ((void));
static void clear_marks PROTO ((void));
static void sweep_pages PROTO ((void));
static void ggc_recalculate_in_use_p PROTO ((page_entry *));

#ifdef GGC_POISON
static void poison_pages PROTO ((void));
#endif

void debug_print_page_list PROTO ((int));

/* Returns non-zero if P was allocated in GC'able memory.  */

static inline int
ggc_allocated_p (p)
     const void *p;
{
  page_entry ***base;
  size_t L1, L2;

#if HOST_BITS_PER_PTR <= 32
  base = &G.lookup[0];
#else
  page_table table = G.lookup;
  size_t high_bits = (size_t) p & ~ (size_t) 0xffffffff;
  while (1)
    {
      if (table == NULL)
	return 0;
      if (table->high_bits == high_bits)
	break;
      table = table->next;
    }
  base = &table->table[0];
#endif

  /* Extract the level 1 and 2 indicies.  */
  L1 = LOOKUP_L1 (p);
  L2 = LOOKUP_L2 (p);

  return base[L1] && base[L1][L2];
}

/* Traverse the page table and find the entry for a page. 
   Die (probably) if the object wasn't allocated via GC.  */

static inline page_entry *
lookup_page_table_entry(p)
     const void *p;
{
  page_entry ***base;
  size_t L1, L2;

#if HOST_BITS_PER_PTR <= 32
  base = &G.lookup[0];
#else
  page_table table = G.lookup;
  size_t high_bits = (size_t) p & ~ (size_t) 0xffffffff;
  while (table->high_bits != high_bits)
    table = table->next;
  base = &table->table[0];
#endif

  /* Extract the level 1 and 2 indicies.  */
  L1 = LOOKUP_L1 (p);
  L2 = LOOKUP_L2 (p);

  return base[L1][L2];
}

/* Set the page table entry for a page.  */

static void
set_page_table_entry(p, entry)
     void *p;
     page_entry *entry;
{
  page_entry ***base;
  size_t L1, L2;

#if HOST_BITS_PER_PTR <= 32
  base = &G.lookup[0];
#else
  page_table table;
  size_t high_bits = (size_t) p & ~ (size_t) 0xffffffff;
  for (table = G.lookup; table; table = table->next)
    if (table->high_bits == high_bits)
      goto found;

  /* Not found -- allocate a new table.  */
  table = (page_table) xcalloc (1, sizeof(*table));
  table->next = G.lookup;
  table->high_bits = high_bits;
  G.lookup = table;
found:
  base = &table->table[0];
#endif

  /* Extract the level 1 and 2 indicies.  */
  L1 = LOOKUP_L1 (p);
  L2 = LOOKUP_L2 (p);

  if (base[L1] == NULL)
    base[L1] = (page_entry **) xcalloc (PAGE_L2_SIZE, sizeof (page_entry *));

  base[L1][L2] = entry;
}

/* Prints the page-entry for object size ORDER, for debugging.  */

void
debug_print_page_list (order)
     int order;
{
  page_entry *p;
  printf ("Head=%p, Tail=%p:\n", G.pages[order], G.page_tails[order]);
  p = G.pages[order];
  while (p != NULL)
    {
      printf ("%p(%1d|%3d) -> ", p, p->context_depth, p->num_free_objects);
      p = p->next;
    }
  printf ("NULL\n");
  fflush (stdout);
}

/* Allocate SIZE bytes of anonymous memory, preferably near PREF,
   (if non-null).  */

static inline char *
alloc_anon (pref, size)
     char *pref ATTRIBUTE_UNUSED;
     size_t size;
{
  char *page;

#ifdef HAVE_MMAP
#ifdef MAP_ANONYMOUS
  page = (char *) mmap (pref, size, PROT_READ | PROT_WRITE,
			MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
#else
  page = (char *) mmap (pref, size, PROT_READ | PROT_WRITE,
			MAP_PRIVATE, G.dev_zero_fd, 0);
#endif
  if (page == (char *) MAP_FAILED)
    {
      fputs ("Virtual memory exhausted!\n", stderr);
      exit(1);
    }
#else
#ifdef HAVE_VALLOC
  page = (char *) valloc (size);
  if (!page)
    {
      fputs ("Virtual memory exhausted!\n", stderr);
      exit(1);
    }
#endif /* HAVE_VALLOC */
#endif /* HAVE_MMAP */

  /* Remember that we allocated this memory.  */
  G.bytes_mapped += size;

  return page;
}

/* Allocate a new page for allocating objects of size 2^ORDER,
   and return an entry for it.  The entry is not added to the
   appropriate page_table list.  */

static inline struct page_entry *
alloc_page (order)
     unsigned order;
{
  struct page_entry *entry, *p, **pp;
  char *page;
  size_t num_objects;
  size_t bitmap_size;
  size_t page_entry_size;
  size_t entry_size;

  num_objects = OBJECTS_PER_PAGE (order);
  bitmap_size = BITMAP_SIZE (num_objects + 1);
  page_entry_size = sizeof (page_entry) - sizeof (long) + bitmap_size;
  entry_size = num_objects * (1 << order);

  entry = NULL;
  page = NULL;

  /* Check the list of free pages for one we can use.  */
  for (pp = &G.free_pages, p = *pp; p ; pp = &p->next, p = *pp)
    if (p->bytes == entry_size)
      break;

  if (p != NULL)
    {
      /* Recycle the allocated memory from this page ... */
      *pp = p->next;
      page = p->page;
      /* ... and, if possible, the page entry itself.  */
      if (p->order == order)
	{
	  entry = p;
	  memset (entry, 0, page_entry_size);
	}
      else
	free (p);
    }
  else
    {
      /* Actually allocate the memory.  */
      page = alloc_anon (NULL, entry_size);
    }

  if (entry == NULL)
    entry = (struct page_entry *) xcalloc (1, page_entry_size);

  entry->bytes = entry_size;
  entry->page = page;
  entry->context_depth = G.context_depth;
  entry->order = order;
  entry->num_free_objects = num_objects;
  entry->next_bit_hint = 1;

  /* Set the one-past-the-end in-use bit.  This acts as a sentry as we
     increment the hint.  */
  entry->in_use_p[num_objects / HOST_BITS_PER_LONG]
    = (unsigned long) 1 << (num_objects % HOST_BITS_PER_LONG);

  set_page_table_entry (page, entry);

  if (GGC_DEBUG_LEVEL >= 2)
    fprintf (G.debug_file, 
	     "Allocating page at %p, object size=%d, data %p-%p\n", entry,
	     1 << order, page, page + entry_size - 1);

  return entry;
}

/* For a page that is no longer needed, put it on the free page list.  */

static inline void
free_page (entry)
     page_entry *entry;
{
  if (GGC_DEBUG_LEVEL >= 2)
    fprintf (G.debug_file, 
	     "Deallocating page at %p, data %p-%p\n", entry,
	     entry->page, entry->page + entry->bytes - 1);

  set_page_table_entry (entry->page, NULL);

  entry->next = G.free_pages;
  G.free_pages = entry;
}

/* Release the free page cache to the system.  */

static void
release_pages ()
{
#ifdef HAVE_MMAP
  page_entry *p, *next;
  char *start;
  size_t len;

  p = G.free_pages;
  if (p == NULL)
    return;

  next = p->next;
  start = p->page;
  len = p->bytes;
  free (p);
  p = next;

  while (p)
    {
      next = p->next;
      /* Gather up adjacent pages so they are unmapped together.  */
      if (p->page == start + len)
	len += p->bytes;
      else
	{
	  munmap (start, len);
	  G.bytes_mapped -= len;
	  start = p->page;
	  len = p->bytes;
	}
      free (p);
      p = next;
    }

  munmap (start, len);
  G.bytes_mapped -= len;
#else
#ifdef HAVE_VALLOC
  page_entry *p, *next;

  for (p = G.free_pages; p ; p = next)
    {
      next = p->next;
      free (p->page);
      G.bytes_mapped -= p->bytes;
      free (p);
    }
#endif /* HAVE_VALLOC */
#endif /* HAVE_MMAP */

  G.free_pages = NULL;
}

/* This table provides a fast way to determine ceil(log_2(size)) for
   allocation requests.  The minimum allocation size is four bytes.  */

static unsigned char const size_lookup[257] = 
{ 
  2, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 
  4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 
  5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 
  6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 
  6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 
  7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 
  7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
  7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 
  7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
  8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
  8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
  8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
  8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
  8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
  8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
  8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
  8
};

/* Allocate a chunk of memory of SIZE bytes.  If ZERO is non-zero, the
   memory is zeroed; otherwise, its contents are undefined.  */

void *
ggc_alloc_obj (size, zero)
     size_t size;
     int zero;
{
  unsigned order, word, bit, object_offset;
  struct page_entry *entry;
  void *result;

  if (size <= 256)
    order = size_lookup[size];
  else
    {
      order = 9;
      while (size > ((size_t) 1 << order))
	order++;
    }

  /* If there are non-full pages for this size allocation, they are at
     the head of the list.  */
  entry = G.pages[order];

  /* If there is no page for this object size, or all pages in this
     context are full, allocate a new page.  */
  if (entry == NULL || entry->num_free_objects == 0)
    {
      struct page_entry *new_entry;
      new_entry = alloc_page (order);
      
      /* If this is the only entry, it's also the tail.  */
      if (entry == NULL)
	G.page_tails[order] = new_entry;
     
      /* Put new pages at the head of the page list.  */
      new_entry->next = entry;
      entry = new_entry;
      G.pages[order] = new_entry;

      /* For a new page, we know the word and bit positions (in the
	 in_use bitmap) of the first available object -- they're zero.  */
      new_entry->next_bit_hint = 1;
      word = 0;
      bit = 0;
      object_offset = 0;
    }
  else
    {
      /* First try to use the hint left from the previous allocation
	 to locate a clear bit in the in-use bitmap.  We've made sure
	 that the one-past-the-end bit is always set, so if the hint
	 has run over, this test will fail.  */
      unsigned hint = entry->next_bit_hint;
      word = hint / HOST_BITS_PER_LONG;
      bit = hint % HOST_BITS_PER_LONG;
      
      /* If the hint didn't work, scan the bitmap from the beginning.  */
      if ((entry->in_use_p[word] >> bit) & 1)
	{
	  word = bit = 0;
	  while (~entry->in_use_p[word] == 0)
	    ++word;
	  while ((entry->in_use_p[word] >> bit) & 1)
	    ++bit;
	  hint = word * HOST_BITS_PER_LONG + bit;
	}

      /* Next time, try the next bit.  */
      entry->next_bit_hint = hint + 1;

      object_offset = hint << order;
    }

  /* Set the in-use bit.  */
  entry->in_use_p[word] |= ((unsigned long) 1 << bit);

  /* Keep a running total of the number of free objects.  If this page
     fills up, we may have to move it to the end of the list if the
     next page isn't full.  If the next page is full, all subsequent
     pages are full, so there's no need to move it.  */
  if (--entry->num_free_objects == 0
      && entry->next != NULL
      && entry->next->num_free_objects > 0)
    {
      G.pages[order] = entry->next;
      entry->next = NULL;
      G.page_tails[order]->next = entry;
      G.page_tails[order] = entry;
    }

  /* Calculate the object's address.  */
  result = entry->page + object_offset;

#ifdef GGC_POISON
  /* `Poison' the entire allocated object before zeroing the requested area,
     so that bytes beyond the end, if any, will not necessarily be zero.  */
  memset (result, 0xaf, 1 << order);
#endif

  if (zero)
    memset (result, 0, size);

  /* Keep track of how many bytes are being allocated.  This
     information is used in deciding when to collect.  */
  G.allocated += (size_t) 1 << order;

  if (GGC_DEBUG_LEVEL >= 3)
    fprintf (G.debug_file, 
	     "Allocating object, requested size=%d, actual=%d at %p on %p\n",
	     (int) size, 1 << order, result, entry);

  return result;
}

/* If P is not marked, marks it and return false.  Otherwise return true.
   P must have been allocated by the GC allocator; it mustn't point to
   static objects, stack variables, or memory allocated with malloc.  */

int
ggc_set_mark (p)
     void *p;
{
  page_entry *entry;
  unsigned bit, word;
  unsigned long mask;

  /* Look up the page on which the object is alloced.  If the object
     wasn't allocated by the collector, we'll probably die.  */
  entry = lookup_page_table_entry (p);
#ifdef ENABLE_CHECKING
  if (entry == NULL)
    abort ();
#endif

  /* Calculate the index of the object on the page; this is its bit
     position in the in_use_p bitmap.  */
  bit = (((char *) p) - entry->page) >> entry->order;
  word = bit / HOST_BITS_PER_LONG;
  mask = (unsigned long) 1 << (bit % HOST_BITS_PER_LONG);
  
  /* If the bit was previously set, skip it. */
  if (entry->in_use_p[word] & mask)
    return 1;

  /* Otherwise set it, and decrement the free object count.  */
  entry->in_use_p[word] |= mask;
  entry->num_free_objects -= 1;

  G.allocated += (size_t) 1 << entry->order;

  if (GGC_DEBUG_LEVEL >= 4)
    fprintf (G.debug_file, "Marking %p\n", p);

  return 0;
}

/* Mark P, but check first that it was allocated by the collector.  */

void
ggc_mark_if_gcable (p)
     void *p;
{
  if (p && ggc_allocated_p (p))
    ggc_set_mark (p);
}

/* Return the size of the gc-able object P.  */

size_t
ggc_get_size (p)
     void *p;
{
  page_entry *pe = lookup_page_table_entry (p);
  return 1 << pe->order;
}

/* Initialize the ggc-mmap allocator.  */

void
init_ggc ()
{
  G.pagesize = getpagesize();
  G.lg_pagesize = exact_log2 (G.pagesize);

#if defined (HAVE_MMAP) && !defined(MAP_ANONYMOUS)
  G.dev_zero_fd = open ("/dev/zero", O_RDONLY);
  if (G.dev_zero_fd == -1)
    abort ();
#endif

#if 0
  G.debug_file = fopen ("ggc-mmap.debug", "w");
#else
  G.debug_file = stdout;
#endif

  G.allocated_last_gc = GGC_MIN_LAST_ALLOCATED;

#ifdef HAVE_MMAP
  /* StunOS has an amazing off-by-one error for the first mmap allocation
     after fiddling with RLIMIT_STACK.  The result, as hard as it is to
     believe, is an unaligned page allocation, which would cause us to
     hork badly if we tried to use it.  */
  {
    char *p = alloc_anon (NULL, G.pagesize);
    if ((size_t)p & (G.pagesize - 1))
      {
	/* How losing.  Discard this one and try another.  If we still
	   can't get something useful, give up.  */

	p = alloc_anon (NULL, G.pagesize);
	if ((size_t)p & (G.pagesize - 1))
	  abort ();
      }
    munmap (p, G.pagesize);
  }
#endif

  empty_string = ggc_alloc_string ("", 0);
  ggc_add_string_root (&empty_string, 1);
}

/* Increment the `GC context'.  Objects allocated in an outer context
   are never freed, eliminating the need to register their roots.  */

void
ggc_push_context ()
{
  ++G.context_depth;

  /* Die on wrap.  */
  if (G.context_depth == 0)
    abort ();
}

/* Merge the SAVE_IN_USE_P and IN_USE_P arrays in P so that IN_USE_P
   reflects reality.  Recalculate NUM_FREE_OBJECTS as well.  */

static void
ggc_recalculate_in_use_p (p)
     page_entry *p;
{
  unsigned int i;
  size_t num_objects;

  /* Because the past-the-end bit in in_use_p is always set, we 
     pretend there is one additional object.  */
  num_objects = OBJECTS_PER_PAGE (p->order) + 1;

  /* Reset the free object count.  */
  p->num_free_objects = num_objects;

  /* Combine the IN_USE_P and SAVE_IN_USE_P arrays.  */
  for (i = 0; 
       i < DIV_ROUND_UP (BITMAP_SIZE (num_objects),
			 sizeof (*p->in_use_p));
       ++i)
    {
      unsigned long j;

      /* Something is in use if it is marked, or if it was in use in a
	 context further down the context stack.  */
      p->in_use_p[i] |= p->save_in_use_p[i];

      /* Decrement the free object count for every object allocated.  */
      for (j = p->in_use_p[i]; j; j >>= 1)
	p->num_free_objects -= (j & 1);
    }

  if (p->num_free_objects >= num_objects)
    abort ();
}

/* Decrement the `GC context'.  All objects allocated since the 
   previous ggc_push_context are migrated to the outer context.  */

void
ggc_pop_context ()
{
  unsigned order, depth;

  depth = --G.context_depth;

  /* Any remaining pages in the popped context are lowered to the new
     current context; i.e. objects allocated in the popped context and
     left over are imported into the previous context.  */
  for (order = 2; order < HOST_BITS_PER_PTR; order++)
    {
      page_entry *p;

      for (p = G.pages[order]; p != NULL; p = p->next)
	{
	  if (p->context_depth > depth)
	    p->context_depth = depth;

	  /* If this page is now in the topmost context, and we'd
	     saved its allocation state, restore it.  */
	  else if (p->context_depth == depth && p->save_in_use_p)
	    {
	      ggc_recalculate_in_use_p (p);
	      free (p->save_in_use_p);
	      p->save_in_use_p = 0;
	    }
	}
    }
}

/* Unmark all objects.  */

static inline void
clear_marks ()
{
  unsigned order;

  for (order = 2; order < HOST_BITS_PER_PTR; order++)
    {
      size_t num_objects = OBJECTS_PER_PAGE (order);
      size_t bitmap_size = BITMAP_SIZE (num_objects + 1);
      page_entry *p;

      for (p = G.pages[order]; p != NULL; p = p->next)
	{
#ifdef ENABLE_CHECKING
	  /* The data should be page-aligned.  */
	  if ((size_t) p->page & (G.pagesize - 1))
	    abort ();
#endif

	  /* Pages that aren't in the topmost context are not collected;
	     nevertheless, we need their in-use bit vectors to store GC
	     marks.  So, back them up first.  */
	  if (p->context_depth < G.context_depth)
	    {
	      if (! p->save_in_use_p)
		p->save_in_use_p = xmalloc (bitmap_size);
	      memcpy (p->save_in_use_p, p->in_use_p, bitmap_size);
	    }

	  /* Reset reset the number of free objects and clear the
             in-use bits.  These will be adjusted by mark_obj.  */
	  p->num_free_objects = num_objects;
	  memset (p->in_use_p, 0, bitmap_size);

	  /* Make sure the one-past-the-end bit is always set.  */
	  p->in_use_p[num_objects / HOST_BITS_PER_LONG] 
	    = ((unsigned long) 1 << (num_objects % HOST_BITS_PER_LONG));
	}
    }
}

/* Free all empty pages.  Partially empty pages need no attention
   because the `mark' bit doubles as an `unused' bit.  */

static inline void
sweep_pages ()
{
  unsigned order;

  for (order = 2; order < HOST_BITS_PER_PTR; order++)
    {
      /* The last page-entry to consider, regardless of entries
	 placed at the end of the list.  */
      page_entry * const last = G.page_tails[order];

      size_t num_objects = OBJECTS_PER_PAGE (order);
      page_entry *p, *previous;
      int done;
	
      p = G.pages[order];
      if (p == NULL)
	continue;

      previous = NULL;
      do
	{
	  page_entry *next = p->next;

	  /* Loop until all entries have been examined.  */
	  done = (p == last);

	  /* Only objects on pages in the topmost context should get
	     collected.  */
	  if (p->context_depth < G.context_depth)
	    ;

	  /* Remove the page if it's empty.  */
	  else if (p->num_free_objects == num_objects)
	    {
	      if (! previous)
		G.pages[order] = next;
	      else
		previous->next = next;

	      /* Are we removing the last element?  */
	      if (p == G.page_tails[order])
		G.page_tails[order] = previous;
	      free_page (p);
	      p = previous;
	    }

	  /* If the page is full, move it to the end.  */
	  else if (p->num_free_objects == 0)
	    {
	      /* Don't move it if it's already at the end.  */
	      if (p != G.page_tails[order])
		{
		  /* Move p to the end of the list.  */
		  p->next = NULL;
		  G.page_tails[order]->next = p;

		  /* Update the tail pointer...  */
		  G.page_tails[order] = p;

		  /* ... and the head pointer, if necessary.  */
		  if (! previous)
		    G.pages[order] = next;
		  else
		    previous->next = next;
		  p = previous;
		}
	    }

	  /* If we've fallen through to here, it's a page in the
	     topmost context that is neither full nor empty.  Such a
	     page must precede pages at lesser context depth in the
	     list, so move it to the head.  */
	  else if (p != G.pages[order])
	    {
	      previous->next = p->next;
	      p->next = G.pages[order];
	      G.pages[order] = p;
	      /* Are we moving the last element?  */
	      if (G.page_tails[order] == p)
	        G.page_tails[order] = previous;
	      p = previous;
	    }

	  previous = p;
	  p = next;
	} 
      while (! done);

      /* Now, restore the in_use_p vectors for any pages from contexts
         other than the current one.  */
      for (p = G.pages[order]; p; p = p->next)
	if (p->context_depth != G.context_depth)
	  ggc_recalculate_in_use_p (p);
    }
}

#ifdef GGC_POISON
/* Clobber all free objects.  */

static inline void
poison_pages ()
{
  unsigned order;

  for (order = 2; order < HOST_BITS_PER_PTR; order++)
    {
      size_t num_objects = OBJECTS_PER_PAGE (order);
      size_t size = (size_t) 1 << order;
      page_entry *p;

      for (p = G.pages[order]; p != NULL; p = p->next)
	{
	  size_t i;

	  if (p->context_depth != G.context_depth)
	    /* Since we don't do any collection for pages in pushed
	       contexts, there's no need to do any poisoning.  And
	       besides, the IN_USE_P array isn't valid until we pop
	       contexts.  */
	    continue;

	  for (i = 0; i < num_objects; i++)
	    {
	      size_t word, bit;
	      word = i / HOST_BITS_PER_LONG;
	      bit = i % HOST_BITS_PER_LONG;
	      if (((p->in_use_p[word] >> bit) & 1) == 0)
		memset (p->page + i * size, 0xa5, size);
	    }
	}
    }
}
#endif

/* Top level mark-and-sweep routine.  */

void
ggc_collect ()
{
  int time;

  /* Avoid frequent unnecessary work by skipping collection if the
     total allocations haven't expanded much since the last
     collection.  */
#ifndef GGC_ALWAYS_COLLECT
  if (G.allocated < GGC_MIN_EXPAND_FOR_GC * G.allocated_last_gc)
    return;
#endif

  time = get_run_time ();
  if (!quiet_flag)
    fprintf (stderr, " {GC %luk -> ", (unsigned long)G.allocated / 1024);

  /* Zero the total allocated bytes.  We'll reaccumulate this while
     marking.  */
  G.allocated = 0;

  /* Release the pages we freed the last time we collected, but didn't 
     reuse in the interim.  */
  release_pages ();

  clear_marks ();
  ggc_mark_roots ();
  
#ifdef GGC_POISON
  poison_pages ();
#endif

  sweep_pages ();

  G.allocated_last_gc = G.allocated;
  if (G.allocated_last_gc < GGC_MIN_LAST_ALLOCATED)
    G.allocated_last_gc = GGC_MIN_LAST_ALLOCATED;

  time = get_run_time () - time;
  gc_time += time;

  if (!quiet_flag)
    {
      fprintf (stderr, "%luk in %.3f}", 
	       (unsigned long) G.allocated / 1024, time * 1e-6);
    }
}

/* Print allocation statistics.  */

void
ggc_page_print_statistics ()
{
  struct ggc_statistics stats;
  unsigned int i;

  /* Clear the statistics.  */
  bzero (&stats, sizeof (stats));
  
  /* Make sure collection will really occur.  */
  G.allocated_last_gc = 0;

  /* Collect and print the statistics common across collectors.  */
  ggc_print_statistics (stderr, &stats);

  /* Release free pages so that we will not count the bytes allocated
     there as part of the total allocated memory.  */
  release_pages ();

  /* Collect some information about the various sizes of 
     allocation.  */
  fprintf (stderr, "\n%-4s%-16s%-16s\n", "Log", "Allocated", "Used");
  for (i = 0; i < HOST_BITS_PER_PTR; ++i)
    {
      page_entry *p;
      size_t allocated;
      size_t in_use;

      /* Skip empty entries.  */
      if (!G.pages[i])
	continue;

      allocated = in_use = 0;

      /* Figure out the total number of bytes allocated for objects of
	 this size, and how many of them are actually in use.  */
      for (p = G.pages[i]; p; p = p->next)
	{
	  allocated += p->bytes;
	  in_use += 
	    (OBJECTS_PER_PAGE (i) - p->num_free_objects) * (1 << i);
	}
      fprintf (stderr, "%-3d %-15lu %-15lu\n", i, 
	       (unsigned long) allocated, (unsigned long) in_use);
    }

  /* Print out some global information.  */
  fprintf (stderr, "\nTotal bytes marked: %lu\n", 
	   (unsigned long) G.allocated);
  fprintf (stderr, "Total bytes mapped: %lu\n", 
	   (unsigned long) G.bytes_mapped);
}