1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
|
/* Gimple decl, type, and expression support functions.
Copyright (C) 2007-2015 Free Software Foundation, Inc.
Contributed by Aldy Hernandez <aldyh@redhat.com>
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "backend.h"
#include "hard-reg-set.h"
#include "tree.h"
#include "gimple.h"
#include "stringpool.h"
#include "gimple-ssa.h"
#include "alias.h"
#include "fold-const.h"
#include "internal-fn.h"
#include "tree-eh.h"
#include "gimplify.h"
#include "stor-layout.h"
#include "demangle.h"
/* ----- Type related ----- */
/* Return true if the conversion from INNER_TYPE to OUTER_TYPE is a
useless type conversion, otherwise return false.
This function implicitly defines the middle-end type system. With
the notion of 'a < b' meaning that useless_type_conversion_p (a, b)
holds and 'a > b' meaning that useless_type_conversion_p (b, a) holds,
the following invariants shall be fulfilled:
1) useless_type_conversion_p is transitive.
If a < b and b < c then a < c.
2) useless_type_conversion_p is not symmetric.
From a < b does not follow a > b.
3) Types define the available set of operations applicable to values.
A type conversion is useless if the operations for the target type
is a subset of the operations for the source type. For example
casts to void* are useless, casts from void* are not (void* can't
be dereferenced or offsetted, but copied, hence its set of operations
is a strict subset of that of all other data pointer types). Casts
to const T* are useless (can't be written to), casts from const T*
to T* are not. */
bool
useless_type_conversion_p (tree outer_type, tree inner_type)
{
/* Do the following before stripping toplevel qualifiers. */
if (POINTER_TYPE_P (inner_type)
&& POINTER_TYPE_P (outer_type))
{
/* Do not lose casts between pointers to different address spaces. */
if (TYPE_ADDR_SPACE (TREE_TYPE (outer_type))
!= TYPE_ADDR_SPACE (TREE_TYPE (inner_type)))
return false;
/* Do not lose casts to function pointer types. */
if ((TREE_CODE (TREE_TYPE (outer_type)) == FUNCTION_TYPE
|| TREE_CODE (TREE_TYPE (outer_type)) == METHOD_TYPE)
&& !(TREE_CODE (TREE_TYPE (inner_type)) == FUNCTION_TYPE
|| TREE_CODE (TREE_TYPE (inner_type)) == METHOD_TYPE))
return false;
}
/* From now on qualifiers on value types do not matter. */
inner_type = TYPE_MAIN_VARIANT (inner_type);
outer_type = TYPE_MAIN_VARIANT (outer_type);
if (inner_type == outer_type)
return true;
/* Changes in machine mode are never useless conversions unless. */
if (TYPE_MODE (inner_type) != TYPE_MODE (outer_type))
return false;
/* If both the inner and outer types are integral types, then the
conversion is not necessary if they have the same mode and
signedness and precision, and both or neither are boolean. */
if (INTEGRAL_TYPE_P (inner_type)
&& INTEGRAL_TYPE_P (outer_type))
{
/* Preserve changes in signedness or precision. */
if (TYPE_UNSIGNED (inner_type) != TYPE_UNSIGNED (outer_type)
|| TYPE_PRECISION (inner_type) != TYPE_PRECISION (outer_type))
return false;
/* Preserve conversions to/from BOOLEAN_TYPE if types are not
of precision one. */
if (((TREE_CODE (inner_type) == BOOLEAN_TYPE)
!= (TREE_CODE (outer_type) == BOOLEAN_TYPE))
&& TYPE_PRECISION (outer_type) != 1)
return false;
/* We don't need to preserve changes in the types minimum or
maximum value in general as these do not generate code
unless the types precisions are different. */
return true;
}
/* Scalar floating point types with the same mode are compatible. */
else if (SCALAR_FLOAT_TYPE_P (inner_type)
&& SCALAR_FLOAT_TYPE_P (outer_type))
return true;
/* Fixed point types with the same mode are compatible. */
else if (FIXED_POINT_TYPE_P (inner_type)
&& FIXED_POINT_TYPE_P (outer_type))
return true;
/* We need to take special care recursing to pointed-to types. */
else if (POINTER_TYPE_P (inner_type)
&& POINTER_TYPE_P (outer_type))
{
/* We do not care for const qualification of the pointed-to types
as const qualification has no semantic value to the middle-end. */
/* Otherwise pointers/references are equivalent. */
return true;
}
/* Recurse for complex types. */
else if (TREE_CODE (inner_type) == COMPLEX_TYPE
&& TREE_CODE (outer_type) == COMPLEX_TYPE)
return useless_type_conversion_p (TREE_TYPE (outer_type),
TREE_TYPE (inner_type));
/* Recurse for vector types with the same number of subparts. */
else if (TREE_CODE (inner_type) == VECTOR_TYPE
&& TREE_CODE (outer_type) == VECTOR_TYPE
&& TYPE_PRECISION (inner_type) == TYPE_PRECISION (outer_type))
return useless_type_conversion_p (TREE_TYPE (outer_type),
TREE_TYPE (inner_type));
else if (TREE_CODE (inner_type) == ARRAY_TYPE
&& TREE_CODE (outer_type) == ARRAY_TYPE)
{
/* Preserve string attributes. */
if (TYPE_STRING_FLAG (inner_type) != TYPE_STRING_FLAG (outer_type))
return false;
/* Conversions from array types with unknown extent to
array types with known extent are not useless. */
if (!TYPE_DOMAIN (inner_type)
&& TYPE_DOMAIN (outer_type))
return false;
/* Nor are conversions from array types with non-constant size to
array types with constant size or to different size. */
if (TYPE_SIZE (outer_type)
&& TREE_CODE (TYPE_SIZE (outer_type)) == INTEGER_CST
&& (!TYPE_SIZE (inner_type)
|| TREE_CODE (TYPE_SIZE (inner_type)) != INTEGER_CST
|| !tree_int_cst_equal (TYPE_SIZE (outer_type),
TYPE_SIZE (inner_type))))
return false;
/* Check conversions between arrays with partially known extents.
If the array min/max values are constant they have to match.
Otherwise allow conversions to unknown and variable extents.
In particular this declares conversions that may change the
mode to BLKmode as useless. */
if (TYPE_DOMAIN (inner_type)
&& TYPE_DOMAIN (outer_type)
&& TYPE_DOMAIN (inner_type) != TYPE_DOMAIN (outer_type))
{
tree inner_min = TYPE_MIN_VALUE (TYPE_DOMAIN (inner_type));
tree outer_min = TYPE_MIN_VALUE (TYPE_DOMAIN (outer_type));
tree inner_max = TYPE_MAX_VALUE (TYPE_DOMAIN (inner_type));
tree outer_max = TYPE_MAX_VALUE (TYPE_DOMAIN (outer_type));
/* After gimplification a variable min/max value carries no
additional information compared to a NULL value. All that
matters has been lowered to be part of the IL. */
if (inner_min && TREE_CODE (inner_min) != INTEGER_CST)
inner_min = NULL_TREE;
if (outer_min && TREE_CODE (outer_min) != INTEGER_CST)
outer_min = NULL_TREE;
if (inner_max && TREE_CODE (inner_max) != INTEGER_CST)
inner_max = NULL_TREE;
if (outer_max && TREE_CODE (outer_max) != INTEGER_CST)
outer_max = NULL_TREE;
/* Conversions NULL / variable <- cst are useless, but not
the other way around. */
if (outer_min
&& (!inner_min
|| !tree_int_cst_equal (inner_min, outer_min)))
return false;
if (outer_max
&& (!inner_max
|| !tree_int_cst_equal (inner_max, outer_max)))
return false;
}
/* Recurse on the element check. */
return useless_type_conversion_p (TREE_TYPE (outer_type),
TREE_TYPE (inner_type));
}
else if ((TREE_CODE (inner_type) == FUNCTION_TYPE
|| TREE_CODE (inner_type) == METHOD_TYPE)
&& TREE_CODE (inner_type) == TREE_CODE (outer_type))
{
tree outer_parm, inner_parm;
/* If the return types are not compatible bail out. */
if (!useless_type_conversion_p (TREE_TYPE (outer_type),
TREE_TYPE (inner_type)))
return false;
/* Method types should belong to a compatible base class. */
if (TREE_CODE (inner_type) == METHOD_TYPE
&& !useless_type_conversion_p (TYPE_METHOD_BASETYPE (outer_type),
TYPE_METHOD_BASETYPE (inner_type)))
return false;
/* A conversion to an unprototyped argument list is ok. */
if (!prototype_p (outer_type))
return true;
/* If the unqualified argument types are compatible the conversion
is useless. */
if (TYPE_ARG_TYPES (outer_type) == TYPE_ARG_TYPES (inner_type))
return true;
for (outer_parm = TYPE_ARG_TYPES (outer_type),
inner_parm = TYPE_ARG_TYPES (inner_type);
outer_parm && inner_parm;
outer_parm = TREE_CHAIN (outer_parm),
inner_parm = TREE_CHAIN (inner_parm))
if (!useless_type_conversion_p
(TYPE_MAIN_VARIANT (TREE_VALUE (outer_parm)),
TYPE_MAIN_VARIANT (TREE_VALUE (inner_parm))))
return false;
/* If there is a mismatch in the number of arguments the functions
are not compatible. */
if (outer_parm || inner_parm)
return false;
/* Defer to the target if necessary. */
if (TYPE_ATTRIBUTES (inner_type) || TYPE_ATTRIBUTES (outer_type))
return comp_type_attributes (outer_type, inner_type) != 0;
return true;
}
/* For aggregates compare only the size. Accesses to fields do have
a type information by themselves and thus we only care if we can i.e.
use the types in move operations. */
else if (AGGREGATE_TYPE_P (inner_type)
&& TREE_CODE (inner_type) == TREE_CODE (outer_type))
return (TYPE_MODE (outer_type) != BLKmode
|| operand_equal_p (TYPE_SIZE (inner_type),
TYPE_SIZE (outer_type), 0));
else if (TREE_CODE (inner_type) == OFFSET_TYPE
&& TREE_CODE (outer_type) == OFFSET_TYPE)
return useless_type_conversion_p (TREE_TYPE (outer_type),
TREE_TYPE (inner_type))
&& useless_type_conversion_p
(TYPE_OFFSET_BASETYPE (outer_type),
TYPE_OFFSET_BASETYPE (inner_type));
return false;
}
/* ----- Decl related ----- */
/* Set sequence SEQ to be the GIMPLE body for function FN. */
void
gimple_set_body (tree fndecl, gimple_seq seq)
{
struct function *fn = DECL_STRUCT_FUNCTION (fndecl);
if (fn == NULL)
{
/* If FNDECL still does not have a function structure associated
with it, then it does not make sense for it to receive a
GIMPLE body. */
gcc_assert (seq == NULL);
}
else
fn->gimple_body = seq;
}
/* Return the body of GIMPLE statements for function FN. After the
CFG pass, the function body doesn't exist anymore because it has
been split up into basic blocks. In this case, it returns
NULL. */
gimple_seq
gimple_body (tree fndecl)
{
struct function *fn = DECL_STRUCT_FUNCTION (fndecl);
return fn ? fn->gimple_body : NULL;
}
/* Return true when FNDECL has Gimple body either in unlowered
or CFG form. */
bool
gimple_has_body_p (tree fndecl)
{
struct function *fn = DECL_STRUCT_FUNCTION (fndecl);
return (gimple_body (fndecl) || (fn && fn->cfg));
}
/* Return a printable name for symbol DECL. */
const char *
gimple_decl_printable_name (tree decl, int verbosity)
{
if (!DECL_NAME (decl))
return NULL;
if (DECL_ASSEMBLER_NAME_SET_P (decl))
{
const char *str, *mangled_str;
int dmgl_opts = DMGL_NO_OPTS;
if (verbosity >= 2)
{
dmgl_opts = DMGL_VERBOSE
| DMGL_ANSI
| DMGL_GNU_V3
| DMGL_RET_POSTFIX;
if (TREE_CODE (decl) == FUNCTION_DECL)
dmgl_opts |= DMGL_PARAMS;
}
mangled_str = IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (decl));
str = cplus_demangle_v3 (mangled_str, dmgl_opts);
return (str) ? str : mangled_str;
}
return IDENTIFIER_POINTER (DECL_NAME (decl));
}
/* Create a new VAR_DECL and copy information from VAR to it. */
tree
copy_var_decl (tree var, tree name, tree type)
{
tree copy = build_decl (DECL_SOURCE_LOCATION (var), VAR_DECL, name, type);
TREE_ADDRESSABLE (copy) = TREE_ADDRESSABLE (var);
TREE_THIS_VOLATILE (copy) = TREE_THIS_VOLATILE (var);
DECL_GIMPLE_REG_P (copy) = DECL_GIMPLE_REG_P (var);
DECL_ARTIFICIAL (copy) = DECL_ARTIFICIAL (var);
DECL_IGNORED_P (copy) = DECL_IGNORED_P (var);
DECL_CONTEXT (copy) = DECL_CONTEXT (var);
TREE_NO_WARNING (copy) = TREE_NO_WARNING (var);
TREE_USED (copy) = 1;
DECL_SEEN_IN_BIND_EXPR_P (copy) = 1;
DECL_ATTRIBUTES (copy) = DECL_ATTRIBUTES (var);
return copy;
}
/* Strip off a legitimate source ending from the input string NAME of
length LEN. Rather than having to know the names used by all of
our front ends, we strip off an ending of a period followed by
up to five characters. (Java uses ".class".) */
static inline void
remove_suffix (char *name, int len)
{
int i;
for (i = 2; i < 8 && len > i; i++)
{
if (name[len - i] == '.')
{
name[len - i] = '\0';
break;
}
}
}
/* Create a new temporary name with PREFIX. Return an identifier. */
static GTY(()) unsigned int tmp_var_id_num;
tree
create_tmp_var_name (const char *prefix)
{
char *tmp_name;
if (prefix)
{
char *preftmp = ASTRDUP (prefix);
remove_suffix (preftmp, strlen (preftmp));
clean_symbol_name (preftmp);
prefix = preftmp;
}
ASM_FORMAT_PRIVATE_NAME (tmp_name, prefix ? prefix : "T", tmp_var_id_num++);
return get_identifier (tmp_name);
}
/* Create a new temporary variable declaration of type TYPE.
Do NOT push it into the current binding. */
tree
create_tmp_var_raw (tree type, const char *prefix)
{
tree tmp_var;
tmp_var = build_decl (input_location,
VAR_DECL, prefix ? create_tmp_var_name (prefix) : NULL,
type);
/* The variable was declared by the compiler. */
DECL_ARTIFICIAL (tmp_var) = 1;
/* And we don't want debug info for it. */
DECL_IGNORED_P (tmp_var) = 1;
/* Make the variable writable. */
TREE_READONLY (tmp_var) = 0;
DECL_EXTERNAL (tmp_var) = 0;
TREE_STATIC (tmp_var) = 0;
TREE_USED (tmp_var) = 1;
return tmp_var;
}
/* Create a new temporary variable declaration of type TYPE. DO push the
variable into the current binding. Further, assume that this is called
only from gimplification or optimization, at which point the creation of
certain types are bugs. */
tree
create_tmp_var (tree type, const char *prefix)
{
tree tmp_var;
/* We don't allow types that are addressable (meaning we can't make copies),
or incomplete. We also used to reject every variable size objects here,
but now support those for which a constant upper bound can be obtained.
The processing for variable sizes is performed in gimple_add_tmp_var,
point at which it really matters and possibly reached via paths not going
through this function, e.g. after direct calls to create_tmp_var_raw. */
gcc_assert (!TREE_ADDRESSABLE (type) && COMPLETE_TYPE_P (type));
tmp_var = create_tmp_var_raw (type, prefix);
gimple_add_tmp_var (tmp_var);
return tmp_var;
}
/* Create a new temporary variable declaration of type TYPE by calling
create_tmp_var and if TYPE is a vector or a complex number, mark the new
temporary as gimple register. */
tree
create_tmp_reg (tree type, const char *prefix)
{
tree tmp;
tmp = create_tmp_var (type, prefix);
if (TREE_CODE (type) == COMPLEX_TYPE
|| TREE_CODE (type) == VECTOR_TYPE)
DECL_GIMPLE_REG_P (tmp) = 1;
return tmp;
}
/* Create a new temporary variable declaration of type TYPE by calling
create_tmp_var and if TYPE is a vector or a complex number, mark the new
temporary as gimple register. */
tree
create_tmp_reg_fn (struct function *fn, tree type, const char *prefix)
{
tree tmp;
tmp = create_tmp_var_raw (type, prefix);
gimple_add_tmp_var_fn (fn, tmp);
if (TREE_CODE (type) == COMPLEX_TYPE
|| TREE_CODE (type) == VECTOR_TYPE)
DECL_GIMPLE_REG_P (tmp) = 1;
return tmp;
}
/* ----- Expression related ----- */
/* Extract the operands and code for expression EXPR into *SUBCODE_P,
*OP1_P, *OP2_P and *OP3_P respectively. */
void
extract_ops_from_tree_1 (tree expr, enum tree_code *subcode_p, tree *op1_p,
tree *op2_p, tree *op3_p)
{
enum gimple_rhs_class grhs_class;
*subcode_p = TREE_CODE (expr);
grhs_class = get_gimple_rhs_class (*subcode_p);
if (grhs_class == GIMPLE_TERNARY_RHS)
{
*op1_p = TREE_OPERAND (expr, 0);
*op2_p = TREE_OPERAND (expr, 1);
*op3_p = TREE_OPERAND (expr, 2);
}
else if (grhs_class == GIMPLE_BINARY_RHS)
{
*op1_p = TREE_OPERAND (expr, 0);
*op2_p = TREE_OPERAND (expr, 1);
*op3_p = NULL_TREE;
}
else if (grhs_class == GIMPLE_UNARY_RHS)
{
*op1_p = TREE_OPERAND (expr, 0);
*op2_p = NULL_TREE;
*op3_p = NULL_TREE;
}
else if (grhs_class == GIMPLE_SINGLE_RHS)
{
*op1_p = expr;
*op2_p = NULL_TREE;
*op3_p = NULL_TREE;
}
else
gcc_unreachable ();
}
/* Extract operands for a GIMPLE_COND statement out of COND_EXPR tree COND. */
void
gimple_cond_get_ops_from_tree (tree cond, enum tree_code *code_p,
tree *lhs_p, tree *rhs_p)
{
gcc_assert (COMPARISON_CLASS_P (cond)
|| TREE_CODE (cond) == TRUTH_NOT_EXPR
|| is_gimple_min_invariant (cond)
|| SSA_VAR_P (cond));
extract_ops_from_tree (cond, code_p, lhs_p, rhs_p);
/* Canonicalize conditionals of the form 'if (!VAL)'. */
if (*code_p == TRUTH_NOT_EXPR)
{
*code_p = EQ_EXPR;
gcc_assert (*lhs_p && *rhs_p == NULL_TREE);
*rhs_p = build_zero_cst (TREE_TYPE (*lhs_p));
}
/* Canonicalize conditionals of the form 'if (VAL)' */
else if (TREE_CODE_CLASS (*code_p) != tcc_comparison)
{
*code_p = NE_EXPR;
gcc_assert (*lhs_p && *rhs_p == NULL_TREE);
*rhs_p = build_zero_cst (TREE_TYPE (*lhs_p));
}
}
/* Return true if T is a valid LHS for a GIMPLE assignment expression. */
bool
is_gimple_lvalue (tree t)
{
return (is_gimple_addressable (t)
|| TREE_CODE (t) == WITH_SIZE_EXPR
/* These are complex lvalues, but don't have addresses, so they
go here. */
|| TREE_CODE (t) == BIT_FIELD_REF);
}
/* Return true if T is a GIMPLE condition. */
bool
is_gimple_condexpr (tree t)
{
return (is_gimple_val (t) || (COMPARISON_CLASS_P (t)
&& !tree_could_throw_p (t)
&& is_gimple_val (TREE_OPERAND (t, 0))
&& is_gimple_val (TREE_OPERAND (t, 1))));
}
/* Return true if T is a gimple address. */
bool
is_gimple_address (const_tree t)
{
tree op;
if (TREE_CODE (t) != ADDR_EXPR)
return false;
op = TREE_OPERAND (t, 0);
while (handled_component_p (op))
{
if ((TREE_CODE (op) == ARRAY_REF
|| TREE_CODE (op) == ARRAY_RANGE_REF)
&& !is_gimple_val (TREE_OPERAND (op, 1)))
return false;
op = TREE_OPERAND (op, 0);
}
if (CONSTANT_CLASS_P (op) || TREE_CODE (op) == MEM_REF)
return true;
switch (TREE_CODE (op))
{
case PARM_DECL:
case RESULT_DECL:
case LABEL_DECL:
case FUNCTION_DECL:
case VAR_DECL:
case CONST_DECL:
return true;
default:
return false;
}
}
/* Return true if T is a gimple invariant address. */
bool
is_gimple_invariant_address (const_tree t)
{
const_tree op;
if (TREE_CODE (t) != ADDR_EXPR)
return false;
op = strip_invariant_refs (TREE_OPERAND (t, 0));
if (!op)
return false;
if (TREE_CODE (op) == MEM_REF)
{
const_tree op0 = TREE_OPERAND (op, 0);
return (TREE_CODE (op0) == ADDR_EXPR
&& (CONSTANT_CLASS_P (TREE_OPERAND (op0, 0))
|| decl_address_invariant_p (TREE_OPERAND (op0, 0))));
}
return CONSTANT_CLASS_P (op) || decl_address_invariant_p (op);
}
/* Return true if T is a gimple invariant address at IPA level
(so addresses of variables on stack are not allowed). */
bool
is_gimple_ip_invariant_address (const_tree t)
{
const_tree op;
if (TREE_CODE (t) != ADDR_EXPR)
return false;
op = strip_invariant_refs (TREE_OPERAND (t, 0));
if (!op)
return false;
if (TREE_CODE (op) == MEM_REF)
{
const_tree op0 = TREE_OPERAND (op, 0);
return (TREE_CODE (op0) == ADDR_EXPR
&& (CONSTANT_CLASS_P (TREE_OPERAND (op0, 0))
|| decl_address_ip_invariant_p (TREE_OPERAND (op0, 0))));
}
return CONSTANT_CLASS_P (op) || decl_address_ip_invariant_p (op);
}
/* Return true if T is a GIMPLE minimal invariant. It's a restricted
form of function invariant. */
bool
is_gimple_min_invariant (const_tree t)
{
if (TREE_CODE (t) == ADDR_EXPR)
return is_gimple_invariant_address (t);
return is_gimple_constant (t);
}
/* Return true if T is a GIMPLE interprocedural invariant. It's a restricted
form of gimple minimal invariant. */
bool
is_gimple_ip_invariant (const_tree t)
{
if (TREE_CODE (t) == ADDR_EXPR)
return is_gimple_ip_invariant_address (t);
return is_gimple_constant (t);
}
/* Return true if T is a non-aggregate register variable. */
bool
is_gimple_reg (tree t)
{
if (virtual_operand_p (t))
return false;
if (TREE_CODE (t) == SSA_NAME)
return true;
if (!is_gimple_variable (t))
return false;
if (!is_gimple_reg_type (TREE_TYPE (t)))
return false;
/* A volatile decl is not acceptable because we can't reuse it as
needed. We need to copy it into a temp first. */
if (TREE_THIS_VOLATILE (t))
return false;
/* We define "registers" as things that can be renamed as needed,
which with our infrastructure does not apply to memory. */
if (needs_to_live_in_memory (t))
return false;
/* Hard register variables are an interesting case. For those that
are call-clobbered, we don't know where all the calls are, since
we don't (want to) take into account which operations will turn
into libcalls at the rtl level. For those that are call-saved,
we don't currently model the fact that calls may in fact change
global hard registers, nor do we examine ASM_CLOBBERS at the tree
level, and so miss variable changes that might imply. All around,
it seems safest to not do too much optimization with these at the
tree level at all. We'll have to rely on the rtl optimizers to
clean this up, as there we've got all the appropriate bits exposed. */
if (TREE_CODE (t) == VAR_DECL && DECL_HARD_REGISTER (t))
return false;
/* Complex and vector values must have been put into SSA-like form.
That is, no assignments to the individual components. */
if (TREE_CODE (TREE_TYPE (t)) == COMPLEX_TYPE
|| TREE_CODE (TREE_TYPE (t)) == VECTOR_TYPE)
return DECL_GIMPLE_REG_P (t);
return true;
}
/* Return true if T is a GIMPLE rvalue, i.e. an identifier or a constant. */
bool
is_gimple_val (tree t)
{
/* Make loads from volatiles and memory vars explicit. */
if (is_gimple_variable (t)
&& is_gimple_reg_type (TREE_TYPE (t))
&& !is_gimple_reg (t))
return false;
return (is_gimple_variable (t) || is_gimple_min_invariant (t));
}
/* Similarly, but accept hard registers as inputs to asm statements. */
bool
is_gimple_asm_val (tree t)
{
if (TREE_CODE (t) == VAR_DECL && DECL_HARD_REGISTER (t))
return true;
return is_gimple_val (t);
}
/* Return true if T is a GIMPLE minimal lvalue. */
bool
is_gimple_min_lval (tree t)
{
if (!(t = CONST_CAST_TREE (strip_invariant_refs (t))))
return false;
return (is_gimple_id (t) || TREE_CODE (t) == MEM_REF);
}
/* Return true if T is a valid function operand of a CALL_EXPR. */
bool
is_gimple_call_addr (tree t)
{
return (TREE_CODE (t) == OBJ_TYPE_REF || is_gimple_val (t));
}
/* Return true if T is a valid address operand of a MEM_REF. */
bool
is_gimple_mem_ref_addr (tree t)
{
return (is_gimple_reg (t)
|| TREE_CODE (t) == INTEGER_CST
|| (TREE_CODE (t) == ADDR_EXPR
&& (CONSTANT_CLASS_P (TREE_OPERAND (t, 0))
|| decl_address_invariant_p (TREE_OPERAND (t, 0)))));
}
/* Mark X addressable. Unlike the langhook we expect X to be in gimple
form and we don't do any syntax checking. */
void
mark_addressable (tree x)
{
while (handled_component_p (x))
x = TREE_OPERAND (x, 0);
if (TREE_CODE (x) == MEM_REF
&& TREE_CODE (TREE_OPERAND (x, 0)) == ADDR_EXPR)
x = TREE_OPERAND (TREE_OPERAND (x, 0), 0);
if (TREE_CODE (x) != VAR_DECL
&& TREE_CODE (x) != PARM_DECL
&& TREE_CODE (x) != RESULT_DECL)
return;
TREE_ADDRESSABLE (x) = 1;
/* Also mark the artificial SSA_NAME that points to the partition of X. */
if (TREE_CODE (x) == VAR_DECL
&& !DECL_EXTERNAL (x)
&& !TREE_STATIC (x)
&& cfun->gimple_df != NULL
&& cfun->gimple_df->decls_to_pointers != NULL)
{
tree *namep = cfun->gimple_df->decls_to_pointers->get (x);
if (namep)
TREE_ADDRESSABLE (*namep) = 1;
}
}
/* Returns true iff T is a valid RHS for an assignment to a renamed
user -- or front-end generated artificial -- variable. */
bool
is_gimple_reg_rhs (tree t)
{
return get_gimple_rhs_class (TREE_CODE (t)) != GIMPLE_INVALID_RHS;
}
#include "gt-gimple-expr.h"
|