summaryrefslogtreecommitdiff
path: root/gcc/gimple-fold.c
blob: 969cfeb582929315cdaeeb2c89ebc78fba2e8556 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
/* Statement simplification on GIMPLE.
   Copyright (C) 2010, 2011, 2012 Free Software Foundation, Inc.
   Split out from tree-ssa-ccp.c.

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 3, or (at your option) any
later version.

GCC is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3.  If not see
<http://www.gnu.org/licenses/>.  */

#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "tree.h"
#include "flags.h"
#include "function.h"
#include "dumpfile.h"
#include "tree-flow.h"
#include "tree-ssa-propagate.h"
#include "target.h"
#include "gimple-fold.h"

/* Return true when DECL can be referenced from current unit.
   FROM_DECL (if non-null) specify constructor of variable DECL was taken from.
   We can get declarations that are not possible to reference for various
   reasons:

     1) When analyzing C++ virtual tables.
	C++ virtual tables do have known constructors even
	when they are keyed to other compilation unit.
	Those tables can contain pointers to methods and vars
	in other units.  Those methods have both STATIC and EXTERNAL
	set.
     2) In WHOPR mode devirtualization might lead to reference
	to method that was partitioned elsehwere.
	In this case we have static VAR_DECL or FUNCTION_DECL
	that has no corresponding callgraph/varpool node
	declaring the body.  
     3) COMDAT functions referred by external vtables that
        we devirtualize only during final copmilation stage.
        At this time we already decided that we will not output
        the function body and thus we can't reference the symbol
        directly.  */

static bool
can_refer_decl_in_current_unit_p (tree decl, tree from_decl)
{
  struct varpool_node *vnode;
  struct cgraph_node *node;
  symtab_node snode;

  /* We will later output the initializer, so we can refer to it.
     So we are concerned only when DECL comes from initializer of
     external var.  */
  if (!from_decl
      || TREE_CODE (from_decl) != VAR_DECL
      || !DECL_EXTERNAL (from_decl)
      || (flag_ltrans
	  && symtab_get_node (from_decl)->symbol.in_other_partition))
    return true;
  /* We are concerned only about static/external vars and functions.  */
  if ((!TREE_STATIC (decl) && !DECL_EXTERNAL (decl))
      || (TREE_CODE (decl) != VAR_DECL && TREE_CODE (decl) != FUNCTION_DECL))
    return true;
  /* Weakrefs have somewhat confusing DECL_EXTERNAL flag set; they
     are always safe.  */
  if (DECL_EXTERNAL (decl)
      && lookup_attribute ("weakref", DECL_ATTRIBUTES (decl)))
    return true;
  /* We are folding reference from external vtable.  The vtable may reffer
     to a symbol keyed to other compilation unit.  The other compilation
     unit may be in separate DSO and the symbol may be hidden.  */
  if (DECL_VISIBILITY_SPECIFIED (decl)
      && DECL_EXTERNAL (decl)
      && (!(snode = symtab_get_node (decl)) || !snode->symbol.in_other_partition))
    return false;
  /* When function is public, we always can introduce new reference.
     Exception are the COMDAT functions where introducing a direct
     reference imply need to include function body in the curren tunit.  */
  if (TREE_PUBLIC (decl) && !DECL_COMDAT (decl))
    return true;
  /* We are not at ltrans stage; so don't worry about WHOPR.
     Also when still gimplifying all referred comdat functions will be
     produced.

     As observed in PR20991 for already optimized out comdat virtual functions
     it may be tempting to not necessarily give up because the copy will be
     output elsewhere when corresponding vtable is output.  
     This is however not possible - ABI specify that COMDATs are output in
     units where they are used and when the other unit was compiled with LTO
     it is possible that vtable was kept public while the function itself
     was privatized. */
  if (!flag_ltrans && (!DECL_COMDAT (decl) || !cgraph_function_flags_ready))
    return true;

  /* OK we are seeing either COMDAT or static variable.  In this case we must
     check that the definition is still around so we can refer it.  */
  if (TREE_CODE (decl) == FUNCTION_DECL)
    {
      node = cgraph_get_node (decl);
      /* Check that we still have function body and that we didn't took
         the decision to eliminate offline copy of the function yet.
         The second is important when devirtualization happens during final
         compilation stage when making a new reference no longer makes callee
         to be compiled.  */
      if (!node || !node->analyzed || node->global.inlined_to)
	{
	  gcc_checking_assert (!TREE_ASM_WRITTEN (decl));
	  return false;
	}
    }
  else if (TREE_CODE (decl) == VAR_DECL)
    {
      vnode = varpool_get_node (decl);
      if (!vnode || !vnode->analyzed)
	{
	  gcc_checking_assert (!TREE_ASM_WRITTEN (decl));
	  return false;
	}
    }
  return true;
}

/* CVAL is value taken from DECL_INITIAL of variable.  Try to transform it into
   acceptable form for is_gimple_min_invariant.
   FROM_DECL (if non-NULL) specify variable whose constructor contains CVAL.  */

tree
canonicalize_constructor_val (tree cval, tree from_decl)
{
  tree orig_cval = cval;
  STRIP_NOPS (cval);
  if (TREE_CODE (cval) == POINTER_PLUS_EXPR
      && TREE_CODE (TREE_OPERAND (cval, 1)) == INTEGER_CST)
    {
      tree ptr = TREE_OPERAND (cval, 0);
      if (is_gimple_min_invariant (ptr))
	cval = build1_loc (EXPR_LOCATION (cval),
			   ADDR_EXPR, TREE_TYPE (ptr),
			   fold_build2 (MEM_REF, TREE_TYPE (TREE_TYPE (ptr)),
					ptr,
					fold_convert (ptr_type_node,
						      TREE_OPERAND (cval, 1))));
    }
  if (TREE_CODE (cval) == ADDR_EXPR)
    {
      tree base = NULL_TREE;
      if (TREE_CODE (TREE_OPERAND (cval, 0)) == COMPOUND_LITERAL_EXPR)
	{
	  base = COMPOUND_LITERAL_EXPR_DECL (TREE_OPERAND (cval, 0));
	  if (base)
	    TREE_OPERAND (cval, 0) = base;
	}
      else
	base = get_base_address (TREE_OPERAND (cval, 0));
      if (!base)
	return NULL_TREE;

      if ((TREE_CODE (base) == VAR_DECL
	   || TREE_CODE (base) == FUNCTION_DECL)
	  && !can_refer_decl_in_current_unit_p (base, from_decl))
	return NULL_TREE;
      if (TREE_CODE (base) == VAR_DECL)
	TREE_ADDRESSABLE (base) = 1;
      else if (TREE_CODE (base) == FUNCTION_DECL)
	{
	  /* Make sure we create a cgraph node for functions we'll reference.
	     They can be non-existent if the reference comes from an entry
	     of an external vtable for example.  */
	  cgraph_get_create_node (base);
	}
      /* Fixup types in global initializers.  */
      if (TREE_TYPE (TREE_TYPE (cval)) != TREE_TYPE (TREE_OPERAND (cval, 0)))
	cval = build_fold_addr_expr (TREE_OPERAND (cval, 0));

      if (!useless_type_conversion_p (TREE_TYPE (orig_cval), TREE_TYPE (cval)))
	cval = fold_convert (TREE_TYPE (orig_cval), cval);
      return cval;
    }
  return orig_cval;
}

/* If SYM is a constant variable with known value, return the value.
   NULL_TREE is returned otherwise.  */

tree
get_symbol_constant_value (tree sym)
{
  if (const_value_known_p (sym))
    {
      tree val = DECL_INITIAL (sym);
      if (val)
	{
	  val = canonicalize_constructor_val (val, sym);
	  if (val && is_gimple_min_invariant (val))
	    return val;
	  else
	    return NULL_TREE;
	}
      /* Variables declared 'const' without an initializer
	 have zero as the initializer if they may not be
	 overridden at link or run time.  */
      if (!val
          && (INTEGRAL_TYPE_P (TREE_TYPE (sym))
	       || SCALAR_FLOAT_TYPE_P (TREE_TYPE (sym))))
	return build_zero_cst (TREE_TYPE (sym));
    }

  return NULL_TREE;
}



/* Subroutine of fold_stmt.  We perform several simplifications of the
   memory reference tree EXPR and make sure to re-gimplify them properly
   after propagation of constant addresses.  IS_LHS is true if the
   reference is supposed to be an lvalue.  */

static tree
maybe_fold_reference (tree expr, bool is_lhs)
{
  tree *t = &expr;
  tree result;

  if ((TREE_CODE (expr) == VIEW_CONVERT_EXPR
       || TREE_CODE (expr) == REALPART_EXPR
       || TREE_CODE (expr) == IMAGPART_EXPR)
      && CONSTANT_CLASS_P (TREE_OPERAND (expr, 0)))
    return fold_unary_loc (EXPR_LOCATION (expr),
			   TREE_CODE (expr),
			   TREE_TYPE (expr),
			   TREE_OPERAND (expr, 0));
  else if (TREE_CODE (expr) == BIT_FIELD_REF
	   && CONSTANT_CLASS_P (TREE_OPERAND (expr, 0)))
    return fold_ternary_loc (EXPR_LOCATION (expr),
			     TREE_CODE (expr),
			     TREE_TYPE (expr),
			     TREE_OPERAND (expr, 0),
			     TREE_OPERAND (expr, 1),
			     TREE_OPERAND (expr, 2));

  while (handled_component_p (*t))
    t = &TREE_OPERAND (*t, 0);

  /* Canonicalize MEM_REFs invariant address operand.  Do this first
     to avoid feeding non-canonical MEM_REFs elsewhere.  */
  if (TREE_CODE (*t) == MEM_REF
      && !is_gimple_mem_ref_addr (TREE_OPERAND (*t, 0)))
    {
      bool volatile_p = TREE_THIS_VOLATILE (*t);
      tree tem = fold_binary (MEM_REF, TREE_TYPE (*t),
			      TREE_OPERAND (*t, 0),
			      TREE_OPERAND (*t, 1));
      if (tem)
	{
	  TREE_THIS_VOLATILE (tem) = volatile_p;
	  *t = tem;
	  tem = maybe_fold_reference (expr, is_lhs);
	  if (tem)
	    return tem;
	  return expr;
	}
    }

  if (!is_lhs
      && (result = fold_const_aggregate_ref (expr))
      && is_gimple_min_invariant (result))
    return result;

  /* Fold back MEM_REFs to reference trees.  */
  if (TREE_CODE (*t) == MEM_REF
      && TREE_CODE (TREE_OPERAND (*t, 0)) == ADDR_EXPR
      && integer_zerop (TREE_OPERAND (*t, 1))
      && (TREE_THIS_VOLATILE (*t)
	  == TREE_THIS_VOLATILE (TREE_OPERAND (TREE_OPERAND (*t, 0), 0)))
      && !TYPE_REF_CAN_ALIAS_ALL (TREE_TYPE (TREE_OPERAND (*t, 1)))
      && (TYPE_MAIN_VARIANT (TREE_TYPE (*t))
	  == TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (TREE_OPERAND (*t, 1)))))
      /* We have to look out here to not drop a required conversion
	 from the rhs to the lhs if is_lhs, but we don't have the
	 rhs here to verify that.  Thus require strict type
	 compatibility.  */
      && types_compatible_p (TREE_TYPE (*t),
			     TREE_TYPE (TREE_OPERAND
					(TREE_OPERAND (*t, 0), 0))))
    {
      tree tem;
      *t = TREE_OPERAND (TREE_OPERAND (*t, 0), 0);
      tem = maybe_fold_reference (expr, is_lhs);
      if (tem)
	return tem;
      return expr;
    }
  else if (TREE_CODE (*t) == TARGET_MEM_REF)
    {
      tree tem = maybe_fold_tmr (*t);
      if (tem)
	{
	  *t = tem;
	  tem = maybe_fold_reference (expr, is_lhs);
	  if (tem)
	    return tem;
	  return expr;
	}
    }

  return NULL_TREE;
}


/* Attempt to fold an assignment statement pointed-to by SI.  Returns a
   replacement rhs for the statement or NULL_TREE if no simplification
   could be made.  It is assumed that the operands have been previously
   folded.  */

static tree
fold_gimple_assign (gimple_stmt_iterator *si)
{
  gimple stmt = gsi_stmt (*si);
  enum tree_code subcode = gimple_assign_rhs_code (stmt);
  location_t loc = gimple_location (stmt);

  tree result = NULL_TREE;

  switch (get_gimple_rhs_class (subcode))
    {
    case GIMPLE_SINGLE_RHS:
      {
        tree rhs = gimple_assign_rhs1 (stmt);

	if (REFERENCE_CLASS_P (rhs))
	  return maybe_fold_reference (rhs, false);

	else if (TREE_CODE (rhs) == ADDR_EXPR)
	  {
	    tree ref = TREE_OPERAND (rhs, 0);
	    tree tem = maybe_fold_reference (ref, true);
	    if (tem
		&& TREE_CODE (tem) == MEM_REF
		&& integer_zerop (TREE_OPERAND (tem, 1)))
	      result = fold_convert (TREE_TYPE (rhs), TREE_OPERAND (tem, 0));
	    else if (tem)
	      result = fold_convert (TREE_TYPE (rhs),
				     build_fold_addr_expr_loc (loc, tem));
	    else if (TREE_CODE (ref) == MEM_REF
		     && integer_zerop (TREE_OPERAND (ref, 1)))
	      result = fold_convert (TREE_TYPE (rhs), TREE_OPERAND (ref, 0));
	  }

	else if (TREE_CODE (rhs) == CONSTRUCTOR
		 && TREE_CODE (TREE_TYPE (rhs)) == VECTOR_TYPE
		 && (CONSTRUCTOR_NELTS (rhs)
		     == TYPE_VECTOR_SUBPARTS (TREE_TYPE (rhs))))
	  {
	    /* Fold a constant vector CONSTRUCTOR to VECTOR_CST.  */
	    unsigned i;
	    tree val;

	    FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (rhs), i, val)
	      if (TREE_CODE (val) != INTEGER_CST
		  && TREE_CODE (val) != REAL_CST
		  && TREE_CODE (val) != FIXED_CST)
		return NULL_TREE;

	    return build_vector_from_ctor (TREE_TYPE (rhs),
					   CONSTRUCTOR_ELTS (rhs));
	  }

	else if (DECL_P (rhs))
	  return unshare_expr (get_symbol_constant_value (rhs));

        /* If we couldn't fold the RHS, hand over to the generic
           fold routines.  */
        if (result == NULL_TREE)
          result = fold (rhs);

        /* Strip away useless type conversions.  Both the NON_LVALUE_EXPR
           that may have been added by fold, and "useless" type
           conversions that might now be apparent due to propagation.  */
        STRIP_USELESS_TYPE_CONVERSION (result);

        if (result != rhs && valid_gimple_rhs_p (result))
	  return result;

	return NULL_TREE;
      }
      break;

    case GIMPLE_UNARY_RHS:
      {
	tree rhs = gimple_assign_rhs1 (stmt);

	result = fold_unary_loc (loc, subcode, gimple_expr_type (stmt), rhs);
	if (result)
	  {
	    /* If the operation was a conversion do _not_ mark a
	       resulting constant with TREE_OVERFLOW if the original
	       constant was not.  These conversions have implementation
	       defined behavior and retaining the TREE_OVERFLOW flag
	       here would confuse later passes such as VRP.  */
	    if (CONVERT_EXPR_CODE_P (subcode)
		&& TREE_CODE (result) == INTEGER_CST
		&& TREE_CODE (rhs) == INTEGER_CST)
	      TREE_OVERFLOW (result) = TREE_OVERFLOW (rhs);

	    STRIP_USELESS_TYPE_CONVERSION (result);
	    if (valid_gimple_rhs_p (result))
	      return result;
	  }
      }
      break;

    case GIMPLE_BINARY_RHS:
      /* Try to canonicalize for boolean-typed X the comparisons
	 X == 0, X == 1, X != 0, and X != 1.  */
      if (gimple_assign_rhs_code (stmt) == EQ_EXPR
	  || gimple_assign_rhs_code (stmt) == NE_EXPR)
        {
	  tree lhs = gimple_assign_lhs (stmt);
	  tree op1 = gimple_assign_rhs1 (stmt);
	  tree op2 = gimple_assign_rhs2 (stmt);
	  tree type = TREE_TYPE (op1);

	  /* Check whether the comparison operands are of the same boolean
	     type as the result type is.
	     Check that second operand is an integer-constant with value
	     one or zero.  */
	  if (TREE_CODE (op2) == INTEGER_CST
	      && (integer_zerop (op2) || integer_onep (op2))
	      && useless_type_conversion_p (TREE_TYPE (lhs), type))
	    {
	      enum tree_code cmp_code = gimple_assign_rhs_code (stmt);
	      bool is_logical_not = false;

	      /* X == 0 and X != 1 is a logical-not.of X
	         X == 1 and X != 0 is X  */
	      if ((cmp_code == EQ_EXPR && integer_zerop (op2))
	          || (cmp_code == NE_EXPR && integer_onep (op2)))
	        is_logical_not = true;

	      if (is_logical_not == false)
	        result = op1;
	      /* Only for one-bit precision typed X the transformation
	         !X -> ~X is valied.  */
	      else if (TYPE_PRECISION (type) == 1)
		result = build1_loc (gimple_location (stmt), BIT_NOT_EXPR,
				     type, op1);
	      /* Otherwise we use !X -> X ^ 1.  */
	      else
	        result = build2_loc (gimple_location (stmt), BIT_XOR_EXPR,
				     type, op1, build_int_cst (type, 1));
	     
	    }
	}

      if (!result)
        result = fold_binary_loc (loc, subcode,
				  TREE_TYPE (gimple_assign_lhs (stmt)),
				  gimple_assign_rhs1 (stmt),
				  gimple_assign_rhs2 (stmt));

      if (result)
        {
          STRIP_USELESS_TYPE_CONVERSION (result);
          if (valid_gimple_rhs_p (result))
	    return result;
        }
      break;

    case GIMPLE_TERNARY_RHS:
      /* Try to fold a conditional expression.  */
      if (gimple_assign_rhs_code (stmt) == COND_EXPR)
	{
	  tree op0 = gimple_assign_rhs1 (stmt);
	  tree tem;
	  bool set = false;
	  location_t cond_loc = gimple_location (stmt);

	  if (COMPARISON_CLASS_P (op0))
	    {
	      fold_defer_overflow_warnings ();
	      tem = fold_binary_loc (cond_loc,
				     TREE_CODE (op0), TREE_TYPE (op0),
				     TREE_OPERAND (op0, 0),
				     TREE_OPERAND (op0, 1));
	      /* This is actually a conditional expression, not a GIMPLE
		 conditional statement, however, the valid_gimple_rhs_p
		 test still applies.  */
	      set = (tem && is_gimple_condexpr (tem)
		     && valid_gimple_rhs_p (tem));
	      fold_undefer_overflow_warnings (set, stmt, 0);
	    }
	  else if (is_gimple_min_invariant (op0))
	    {
	      tem = op0;
	      set = true;
	    }
	  else
	    return NULL_TREE;

	  if (set)
	    result = fold_build3_loc (cond_loc, COND_EXPR,
				      TREE_TYPE (gimple_assign_lhs (stmt)), tem,
				      gimple_assign_rhs2 (stmt),
				      gimple_assign_rhs3 (stmt));
	}

      if (!result)
	result = fold_ternary_loc (loc, subcode,
				   TREE_TYPE (gimple_assign_lhs (stmt)),
				   gimple_assign_rhs1 (stmt),
				   gimple_assign_rhs2 (stmt),
				   gimple_assign_rhs3 (stmt));

      if (result)
        {
          STRIP_USELESS_TYPE_CONVERSION (result);
          if (valid_gimple_rhs_p (result))
	    return result;
        }
      break;

    case GIMPLE_INVALID_RHS:
      gcc_unreachable ();
    }

  return NULL_TREE;
}

/* Attempt to fold a conditional statement. Return true if any changes were
   made. We only attempt to fold the condition expression, and do not perform
   any transformation that would require alteration of the cfg.  It is
   assumed that the operands have been previously folded.  */

static bool
fold_gimple_cond (gimple stmt)
{
  tree result = fold_binary_loc (gimple_location (stmt),
			     gimple_cond_code (stmt),
                             boolean_type_node,
                             gimple_cond_lhs (stmt),
                             gimple_cond_rhs (stmt));

  if (result)
    {
      STRIP_USELESS_TYPE_CONVERSION (result);
      if (is_gimple_condexpr (result) && valid_gimple_rhs_p (result))
        {
          gimple_cond_set_condition_from_tree (stmt, result);
          return true;
        }
    }

  return false;
}

/* Convert EXPR into a GIMPLE value suitable for substitution on the
   RHS of an assignment.  Insert the necessary statements before
   iterator *SI_P.  The statement at *SI_P, which must be a GIMPLE_CALL
   is replaced.  If the call is expected to produces a result, then it
   is replaced by an assignment of the new RHS to the result variable.
   If the result is to be ignored, then the call is replaced by a
   GIMPLE_NOP.  A proper VDEF chain is retained by making the first
   VUSE and the last VDEF of the whole sequence be the same as the replaced
   statement and using new SSA names for stores in between.  */

void
gimplify_and_update_call_from_tree (gimple_stmt_iterator *si_p, tree expr)
{
  tree lhs;
  gimple stmt, new_stmt;
  gimple_stmt_iterator i;
  gimple_seq stmts = NULL;
  struct gimplify_ctx gctx;
  gimple laststore;
  tree reaching_vuse;

  stmt = gsi_stmt (*si_p);

  gcc_assert (is_gimple_call (stmt));

  push_gimplify_context (&gctx);
  gctx.into_ssa = gimple_in_ssa_p (cfun);

  lhs = gimple_call_lhs (stmt);
  if (lhs == NULL_TREE)
    {
      gimplify_and_add (expr, &stmts);
      /* We can end up with folding a memcpy of an empty class assignment
	 which gets optimized away by C++ gimplification.  */
      if (gimple_seq_empty_p (stmts))
	{
	  pop_gimplify_context (NULL);
	  if (gimple_in_ssa_p (cfun))
	    {
	      unlink_stmt_vdef (stmt);
	      release_defs (stmt);
	    }
	  gsi_remove (si_p, true);
	  return;
	}
    }
  else
    {
      tree tmp = get_initialized_tmp_var (expr, &stmts, NULL);
      new_stmt = gimple_build_assign (lhs, tmp);
      i = gsi_last (stmts);
      gsi_insert_after_without_update (&i, new_stmt,
				       GSI_CONTINUE_LINKING);
    }

  pop_gimplify_context (NULL);

  if (gimple_has_location (stmt))
    annotate_all_with_location (stmts, gimple_location (stmt));

  /* First iterate over the replacement statements backward, assigning
     virtual operands to their defining statements.  */
  laststore = NULL;
  for (i = gsi_last (stmts); !gsi_end_p (i); gsi_prev (&i))
    {
      new_stmt = gsi_stmt (i);
      if ((gimple_assign_single_p (new_stmt)
	   && !is_gimple_reg (gimple_assign_lhs (new_stmt)))
	  || (is_gimple_call (new_stmt)
	      && (gimple_call_flags (new_stmt)
		  & (ECF_NOVOPS | ECF_PURE | ECF_CONST | ECF_NORETURN)) == 0))
	{
	  tree vdef;
	  if (!laststore)
	    vdef = gimple_vdef (stmt);
	  else
	    vdef = make_ssa_name (gimple_vop (cfun), new_stmt);
	  gimple_set_vdef (new_stmt, vdef);
	  if (vdef && TREE_CODE (vdef) == SSA_NAME)
	    SSA_NAME_DEF_STMT (vdef) = new_stmt;
	  laststore = new_stmt;
	}
    }

  /* Second iterate over the statements forward, assigning virtual
     operands to their uses.  */
  reaching_vuse = gimple_vuse (stmt);
  for (i = gsi_start (stmts); !gsi_end_p (i); gsi_next (&i))
    {
      new_stmt = gsi_stmt (i);
      /* If the new statement possibly has a VUSE, update it with exact SSA
	 name we know will reach this one.  */
      if (gimple_has_mem_ops (new_stmt))
	gimple_set_vuse (new_stmt, reaching_vuse);
      gimple_set_modified (new_stmt, true);
      if (gimple_vdef (new_stmt))
	reaching_vuse = gimple_vdef (new_stmt);
    }

  /* If the new sequence does not do a store release the virtual
     definition of the original statement.  */
  if (reaching_vuse
      && reaching_vuse == gimple_vuse (stmt))
    {
      tree vdef = gimple_vdef (stmt);
      if (vdef
	  && TREE_CODE (vdef) == SSA_NAME)
	{
	  unlink_stmt_vdef (stmt);
	  release_ssa_name (vdef);
	}
    }

  /* Finally replace the original statement with the sequence.  */
  gsi_replace_with_seq (si_p, stmts, false);
}

/* Return the string length, maximum string length or maximum value of
   ARG in LENGTH.
   If ARG is an SSA name variable, follow its use-def chains.  If LENGTH
   is not NULL and, for TYPE == 0, its value is not equal to the length
   we determine or if we are unable to determine the length or value,
   return false.  VISITED is a bitmap of visited variables.
   TYPE is 0 if string length should be returned, 1 for maximum string
   length and 2 for maximum value ARG can have.  */

static bool
get_maxval_strlen (tree arg, tree *length, bitmap visited, int type)
{
  tree var, val;
  gimple def_stmt;

  if (TREE_CODE (arg) != SSA_NAME)
    {
      /* We can end up with &(*iftmp_1)[0] here as well, so handle it.  */
      if (TREE_CODE (arg) == ADDR_EXPR
	  && TREE_CODE (TREE_OPERAND (arg, 0)) == ARRAY_REF
	  && integer_zerop (TREE_OPERAND (TREE_OPERAND (arg, 0), 1)))
	{
	  tree aop0 = TREE_OPERAND (TREE_OPERAND (arg, 0), 0);
	  if (TREE_CODE (aop0) == INDIRECT_REF
	      && TREE_CODE (TREE_OPERAND (aop0, 0)) == SSA_NAME)
	    return get_maxval_strlen (TREE_OPERAND (aop0, 0),
				      length, visited, type);
	}

      if (type == 2)
	{
	  val = arg;
	  if (TREE_CODE (val) != INTEGER_CST
	      || tree_int_cst_sgn (val) < 0)
	    return false;
	}
      else
	val = c_strlen (arg, 1);
      if (!val)
	return false;

      if (*length)
	{
	  if (type > 0)
	    {
	      if (TREE_CODE (*length) != INTEGER_CST
		  || TREE_CODE (val) != INTEGER_CST)
		return false;

	      if (tree_int_cst_lt (*length, val))
		*length = val;
	      return true;
	    }
	  else if (simple_cst_equal (val, *length) != 1)
	    return false;
	}

      *length = val;
      return true;
    }

  /* If ARG is registered for SSA update we cannot look at its defining
     statement.  */
  if (name_registered_for_update_p (arg))
    return false;

  /* If we were already here, break the infinite cycle.  */
  if (!bitmap_set_bit (visited, SSA_NAME_VERSION (arg)))
    return true;

  var = arg;
  def_stmt = SSA_NAME_DEF_STMT (var);

  switch (gimple_code (def_stmt))
    {
      case GIMPLE_ASSIGN:
        /* The RHS of the statement defining VAR must either have a
           constant length or come from another SSA_NAME with a constant
           length.  */
        if (gimple_assign_single_p (def_stmt)
            || gimple_assign_unary_nop_p (def_stmt))
          {
            tree rhs = gimple_assign_rhs1 (def_stmt);
            return get_maxval_strlen (rhs, length, visited, type);
          }
	else if (gimple_assign_rhs_code (def_stmt) == COND_EXPR)
	  {
	    tree op2 = gimple_assign_rhs2 (def_stmt);
	    tree op3 = gimple_assign_rhs3 (def_stmt);
	    return get_maxval_strlen (op2, length, visited, type)
		   && get_maxval_strlen (op3, length, visited, type);
          }
        return false;

      case GIMPLE_PHI:
	{
	  /* All the arguments of the PHI node must have the same constant
	     length.  */
	  unsigned i;

	  for (i = 0; i < gimple_phi_num_args (def_stmt); i++)
          {
            tree arg = gimple_phi_arg (def_stmt, i)->def;

            /* If this PHI has itself as an argument, we cannot
               determine the string length of this argument.  However,
               if we can find a constant string length for the other
               PHI args then we can still be sure that this is a
               constant string length.  So be optimistic and just
               continue with the next argument.  */
            if (arg == gimple_phi_result (def_stmt))
              continue;

            if (!get_maxval_strlen (arg, length, visited, type))
              return false;
          }
        }
        return true;

      default:
        return false;
    }
}


/* Fold builtin call in statement STMT.  Returns a simplified tree.
   We may return a non-constant expression, including another call
   to a different function and with different arguments, e.g.,
   substituting memcpy for strcpy when the string length is known.
   Note that some builtins expand into inline code that may not
   be valid in GIMPLE.  Callers must take care.  */

tree
gimple_fold_builtin (gimple stmt)
{
  tree result, val[3];
  tree callee, a;
  int arg_idx, type;
  bitmap visited;
  bool ignore;
  int nargs;
  location_t loc = gimple_location (stmt);

  gcc_assert (is_gimple_call (stmt));

  ignore = (gimple_call_lhs (stmt) == NULL);

  /* First try the generic builtin folder.  If that succeeds, return the
     result directly.  */
  result = fold_call_stmt (stmt, ignore);
  if (result)
    {
      if (ignore)
	STRIP_NOPS (result);
      return result;
    }

  /* Ignore MD builtins.  */
  callee = gimple_call_fndecl (stmt);
  if (DECL_BUILT_IN_CLASS (callee) == BUILT_IN_MD)
    return NULL_TREE;

  /* Give up for always_inline inline builtins until they are
     inlined.  */
  if (avoid_folding_inline_builtin (callee))
    return NULL_TREE;

  /* If the builtin could not be folded, and it has no argument list,
     we're done.  */
  nargs = gimple_call_num_args (stmt);
  if (nargs == 0)
    return NULL_TREE;

  /* Limit the work only for builtins we know how to simplify.  */
  switch (DECL_FUNCTION_CODE (callee))
    {
    case BUILT_IN_STRLEN:
    case BUILT_IN_FPUTS:
    case BUILT_IN_FPUTS_UNLOCKED:
      arg_idx = 0;
      type = 0;
      break;
    case BUILT_IN_STRCPY:
    case BUILT_IN_STRNCPY:
      arg_idx = 1;
      type = 0;
      break;
    case BUILT_IN_MEMCPY_CHK:
    case BUILT_IN_MEMPCPY_CHK:
    case BUILT_IN_MEMMOVE_CHK:
    case BUILT_IN_MEMSET_CHK:
    case BUILT_IN_STRNCPY_CHK:
    case BUILT_IN_STPNCPY_CHK:
      arg_idx = 2;
      type = 2;
      break;
    case BUILT_IN_STRCPY_CHK:
    case BUILT_IN_STPCPY_CHK:
      arg_idx = 1;
      type = 1;
      break;
    case BUILT_IN_SNPRINTF_CHK:
    case BUILT_IN_VSNPRINTF_CHK:
      arg_idx = 1;
      type = 2;
      break;
    default:
      return NULL_TREE;
    }

  if (arg_idx >= nargs)
    return NULL_TREE;

  /* Try to use the dataflow information gathered by the CCP process.  */
  visited = BITMAP_ALLOC (NULL);
  bitmap_clear (visited);

  memset (val, 0, sizeof (val));
  a = gimple_call_arg (stmt, arg_idx);
  if (!get_maxval_strlen (a, &val[arg_idx], visited, type))
    val[arg_idx] = NULL_TREE;

  BITMAP_FREE (visited);

  result = NULL_TREE;
  switch (DECL_FUNCTION_CODE (callee))
    {
    case BUILT_IN_STRLEN:
      if (val[0] && nargs == 1)
	{
	  tree new_val =
              fold_convert (TREE_TYPE (gimple_call_lhs (stmt)), val[0]);

	  /* If the result is not a valid gimple value, or not a cast
	     of a valid gimple value, then we cannot use the result.  */
	  if (is_gimple_val (new_val)
	      || (CONVERT_EXPR_P (new_val)
		  && is_gimple_val (TREE_OPERAND (new_val, 0))))
	    return new_val;
	}
      break;

    case BUILT_IN_STRCPY:
      if (val[1] && is_gimple_val (val[1]) && nargs == 2)
	result = fold_builtin_strcpy (loc, callee,
                                      gimple_call_arg (stmt, 0),
                                      gimple_call_arg (stmt, 1),
				      val[1]);
      break;

    case BUILT_IN_STRNCPY:
      if (val[1] && is_gimple_val (val[1]) && nargs == 3)
	result = fold_builtin_strncpy (loc, callee,
                                       gimple_call_arg (stmt, 0),
                                       gimple_call_arg (stmt, 1),
                                       gimple_call_arg (stmt, 2),
				       val[1]);
      break;

    case BUILT_IN_FPUTS:
      if (nargs == 2)
	result = fold_builtin_fputs (loc, gimple_call_arg (stmt, 0),
				     gimple_call_arg (stmt, 1),
				     ignore, false, val[0]);
      break;

    case BUILT_IN_FPUTS_UNLOCKED:
      if (nargs == 2)
	result = fold_builtin_fputs (loc, gimple_call_arg (stmt, 0),
				     gimple_call_arg (stmt, 1),
				     ignore, true, val[0]);
      break;

    case BUILT_IN_MEMCPY_CHK:
    case BUILT_IN_MEMPCPY_CHK:
    case BUILT_IN_MEMMOVE_CHK:
    case BUILT_IN_MEMSET_CHK:
      if (val[2] && is_gimple_val (val[2]) && nargs == 4)
	result = fold_builtin_memory_chk (loc, callee,
                                          gimple_call_arg (stmt, 0),
                                          gimple_call_arg (stmt, 1),
                                          gimple_call_arg (stmt, 2),
                                          gimple_call_arg (stmt, 3),
					  val[2], ignore,
					  DECL_FUNCTION_CODE (callee));
      break;

    case BUILT_IN_STRCPY_CHK:
    case BUILT_IN_STPCPY_CHK:
      if (val[1] && is_gimple_val (val[1]) && nargs == 3)
	result = fold_builtin_stxcpy_chk (loc, callee,
                                          gimple_call_arg (stmt, 0),
                                          gimple_call_arg (stmt, 1),
                                          gimple_call_arg (stmt, 2),
					  val[1], ignore,
					  DECL_FUNCTION_CODE (callee));
      break;

    case BUILT_IN_STRNCPY_CHK:
    case BUILT_IN_STPNCPY_CHK:
      if (val[2] && is_gimple_val (val[2]) && nargs == 4)
	result = fold_builtin_stxncpy_chk (loc, gimple_call_arg (stmt, 0),
                                           gimple_call_arg (stmt, 1),
                                           gimple_call_arg (stmt, 2),
                                           gimple_call_arg (stmt, 3),
					   val[2], ignore,
					   DECL_FUNCTION_CODE (callee));
      break;

    case BUILT_IN_SNPRINTF_CHK:
    case BUILT_IN_VSNPRINTF_CHK:
      if (val[1] && is_gimple_val (val[1]))
	result = gimple_fold_builtin_snprintf_chk (stmt, val[1],
                                                   DECL_FUNCTION_CODE (callee));
      break;

    default:
      gcc_unreachable ();
    }

  if (result && ignore)
    result = fold_ignored_result (result);
  return result;
}


/* Return a binfo to be used for devirtualization of calls based on an object
   represented by a declaration (i.e. a global or automatically allocated one)
   or NULL if it cannot be found or is not safe.  CST is expected to be an
   ADDR_EXPR of such object or the function will return NULL.  Currently it is
   safe to use such binfo only if it has no base binfo (i.e. no ancestors).  */

tree
gimple_extract_devirt_binfo_from_cst (tree cst)
{
  HOST_WIDE_INT offset, size, max_size;
  tree base, type, expected_type, binfo;
  bool last_artificial = false;

  if (!flag_devirtualize
      || TREE_CODE (cst) != ADDR_EXPR
      || TREE_CODE (TREE_TYPE (TREE_TYPE (cst))) != RECORD_TYPE)
    return NULL_TREE;

  cst = TREE_OPERAND (cst, 0);
  expected_type = TREE_TYPE (cst);
  base = get_ref_base_and_extent (cst, &offset, &size, &max_size);
  type = TREE_TYPE (base);
  if (!DECL_P (base)
      || max_size == -1
      || max_size != size
      || TREE_CODE (type) != RECORD_TYPE)
    return NULL_TREE;

  /* Find the sub-object the constant actually refers to and mark whether it is
     an artificial one (as opposed to a user-defined one).  */
  while (true)
    {
      HOST_WIDE_INT pos, size;
      tree fld;

      if (TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (expected_type))
	break;
      if (offset < 0)
	return NULL_TREE;

      for (fld = TYPE_FIELDS (type); fld; fld = DECL_CHAIN (fld))
	{
	  if (TREE_CODE (fld) != FIELD_DECL)
	    continue;

	  pos = int_bit_position (fld);
	  size = tree_low_cst (DECL_SIZE (fld), 1);
	  if (pos <= offset && (pos + size) > offset)
	    break;
	}
      if (!fld || TREE_CODE (TREE_TYPE (fld)) != RECORD_TYPE)
	return NULL_TREE;

      last_artificial = DECL_ARTIFICIAL (fld);
      type = TREE_TYPE (fld);
      offset -= pos;
    }
  /* Artificial sub-objects are ancestors, we do not want to use them for
     devirtualization, at least not here.  */
  if (last_artificial)
    return NULL_TREE;
  binfo = TYPE_BINFO (type);
  if (!binfo || BINFO_N_BASE_BINFOS (binfo) > 0)
    return NULL_TREE;
  else
    return binfo;
}

/* Attempt to fold a call statement referenced by the statement iterator GSI.
   The statement may be replaced by another statement, e.g., if the call
   simplifies to a constant value. Return true if any changes were made.
   It is assumed that the operands have been previously folded.  */

static bool
gimple_fold_call (gimple_stmt_iterator *gsi, bool inplace)
{
  gimple stmt = gsi_stmt (*gsi);
  tree callee;
  bool changed = false;
  unsigned i;

  /* Fold *& in call arguments.  */
  for (i = 0; i < gimple_call_num_args (stmt); ++i)
    if (REFERENCE_CLASS_P (gimple_call_arg (stmt, i)))
      {
	tree tmp = maybe_fold_reference (gimple_call_arg (stmt, i), false);
	if (tmp)
	  {
	    gimple_call_set_arg (stmt, i, tmp);
	    changed = true;
	  }
      }

  /* Check for virtual calls that became direct calls.  */
  callee = gimple_call_fn (stmt);
  if (callee && TREE_CODE (callee) == OBJ_TYPE_REF)
    {
      if (gimple_call_addr_fndecl (OBJ_TYPE_REF_EXPR (callee)) != NULL_TREE)
	{
	  gimple_call_set_fn (stmt, OBJ_TYPE_REF_EXPR (callee));
	  changed = true;
	}
      else
	{
	  tree obj = OBJ_TYPE_REF_OBJECT (callee);
	  tree binfo = gimple_extract_devirt_binfo_from_cst (obj);
	  if (binfo)
	    {
	      HOST_WIDE_INT token
		= TREE_INT_CST_LOW (OBJ_TYPE_REF_TOKEN (callee));
	      tree fndecl = gimple_get_virt_method_for_binfo (token, binfo);
	      if (fndecl)
		{
		  gimple_call_set_fndecl (stmt, fndecl);
		  changed = true;
		}
	    }
	}
    }

  if (inplace)
    return changed;

  /* Check for builtins that CCP can handle using information not
     available in the generic fold routines.  */
  callee = gimple_call_fndecl (stmt);
  if (callee && DECL_BUILT_IN (callee))
    {
      tree result = gimple_fold_builtin (stmt);
      if (result)
	{
          if (!update_call_from_tree (gsi, result))
	    gimplify_and_update_call_from_tree (gsi, result);
	  changed = true;
	}
    }

  return changed;
}

/* Worker for both fold_stmt and fold_stmt_inplace.  The INPLACE argument
   distinguishes both cases.  */

static bool
fold_stmt_1 (gimple_stmt_iterator *gsi, bool inplace)
{
  bool changed = false;
  gimple stmt = gsi_stmt (*gsi);
  unsigned i;
  gimple_stmt_iterator gsinext = *gsi;
  gimple next_stmt;

  gsi_next (&gsinext);
  next_stmt = gsi_end_p (gsinext) ? NULL : gsi_stmt (gsinext);

  /* Fold the main computation performed by the statement.  */
  switch (gimple_code (stmt))
    {
    case GIMPLE_ASSIGN:
      {
	unsigned old_num_ops = gimple_num_ops (stmt);
	enum tree_code subcode = gimple_assign_rhs_code (stmt);
	tree lhs = gimple_assign_lhs (stmt);
	tree new_rhs;
	/* First canonicalize operand order.  This avoids building new
	   trees if this is the only thing fold would later do.  */
	if ((commutative_tree_code (subcode)
	     || commutative_ternary_tree_code (subcode))
	    && tree_swap_operands_p (gimple_assign_rhs1 (stmt),
				     gimple_assign_rhs2 (stmt), false))
	  {
	    tree tem = gimple_assign_rhs1 (stmt);
	    gimple_assign_set_rhs1 (stmt, gimple_assign_rhs2 (stmt));
	    gimple_assign_set_rhs2 (stmt, tem);
	    changed = true;
	  }
	new_rhs = fold_gimple_assign (gsi);
	if (new_rhs
	    && !useless_type_conversion_p (TREE_TYPE (lhs),
					   TREE_TYPE (new_rhs)))
	  new_rhs = fold_convert (TREE_TYPE (lhs), new_rhs);
	if (new_rhs
	    && (!inplace
		|| get_gimple_rhs_num_ops (TREE_CODE (new_rhs)) < old_num_ops))
	  {
	    gimple_assign_set_rhs_from_tree (gsi, new_rhs);
	    changed = true;
	  }
	break;
      }

    case GIMPLE_COND:
      changed |= fold_gimple_cond (stmt);
      break;

    case GIMPLE_CALL:
      changed |= gimple_fold_call (gsi, inplace);
      break;

    case GIMPLE_ASM:
      /* Fold *& in asm operands.  */
      {
	size_t noutputs;
	const char **oconstraints;
	const char *constraint;
	bool allows_mem, allows_reg;

	noutputs = gimple_asm_noutputs (stmt);
	oconstraints = XALLOCAVEC (const char *, noutputs);

	for (i = 0; i < gimple_asm_noutputs (stmt); ++i)
	  {
	    tree link = gimple_asm_output_op (stmt, i);
	    tree op = TREE_VALUE (link);
	    oconstraints[i]
	      = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (link)));
	    if (REFERENCE_CLASS_P (op)
		&& (op = maybe_fold_reference (op, true)) != NULL_TREE)
	      {
		TREE_VALUE (link) = op;
		changed = true;
	      }
	  }
	for (i = 0; i < gimple_asm_ninputs (stmt); ++i)
	  {
	    tree link = gimple_asm_input_op (stmt, i);
	    tree op = TREE_VALUE (link);
	    constraint
	      = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (link)));
	    parse_input_constraint (&constraint, 0, 0, noutputs, 0,
				    oconstraints, &allows_mem, &allows_reg);
	    if (REFERENCE_CLASS_P (op)
		&& (op = maybe_fold_reference (op, !allows_reg && allows_mem))
		   != NULL_TREE)
	      {
		TREE_VALUE (link) = op;
		changed = true;
	      }
	  }
      }
      break;

    case GIMPLE_DEBUG:
      if (gimple_debug_bind_p (stmt))
	{
	  tree val = gimple_debug_bind_get_value (stmt);
	  if (val
	      && REFERENCE_CLASS_P (val))
	    {
	      tree tem = maybe_fold_reference (val, false);
	      if (tem)
		{
		  gimple_debug_bind_set_value (stmt, tem);
		  changed = true;
		}
	    }
	  else if (val
		   && TREE_CODE (val) == ADDR_EXPR)
	    {
	      tree ref = TREE_OPERAND (val, 0);
	      tree tem = maybe_fold_reference (ref, false);
	      if (tem)
		{
		  tem = build_fold_addr_expr_with_type (tem, TREE_TYPE (val));
		  gimple_debug_bind_set_value (stmt, tem);
		  changed = true;
		}
	    }
	}
      break;

    default:;
    }

  /* If stmt folds into nothing and it was the last stmt in a bb,
     don't call gsi_stmt.  */
  if (gsi_end_p (*gsi))
    {
      gcc_assert (next_stmt == NULL);
      return changed;
    }

  stmt = gsi_stmt (*gsi);

  /* Fold *& on the lhs.  Don't do this if stmt folded into nothing,
     as we'd changing the next stmt.  */
  if (gimple_has_lhs (stmt) && stmt != next_stmt)
    {
      tree lhs = gimple_get_lhs (stmt);
      if (lhs && REFERENCE_CLASS_P (lhs))
	{
	  tree new_lhs = maybe_fold_reference (lhs, true);
	  if (new_lhs)
	    {
	      gimple_set_lhs (stmt, new_lhs);
	      changed = true;
	    }
	}
    }

  return changed;
}

/* Fold the statement pointed to by GSI.  In some cases, this function may
   replace the whole statement with a new one.  Returns true iff folding
   makes any changes.
   The statement pointed to by GSI should be in valid gimple form but may
   be in unfolded state as resulting from for example constant propagation
   which can produce *&x = 0.  */

bool
fold_stmt (gimple_stmt_iterator *gsi)
{
  return fold_stmt_1 (gsi, false);
}

/* Perform the minimal folding on statement *GSI.  Only operations like
   *&x created by constant propagation are handled.  The statement cannot
   be replaced with a new one.  Return true if the statement was
   changed, false otherwise.
   The statement *GSI should be in valid gimple form but may
   be in unfolded state as resulting from for example constant propagation
   which can produce *&x = 0.  */

bool
fold_stmt_inplace (gimple_stmt_iterator *gsi)
{
  gimple stmt = gsi_stmt (*gsi);
  bool changed = fold_stmt_1 (gsi, true);
  gcc_assert (gsi_stmt (*gsi) == stmt);
  return changed;
}

/* Canonicalize and possibly invert the boolean EXPR; return NULL_TREE 
   if EXPR is null or we don't know how.
   If non-null, the result always has boolean type.  */

static tree
canonicalize_bool (tree expr, bool invert)
{
  if (!expr)
    return NULL_TREE;
  else if (invert)
    {
      if (integer_nonzerop (expr))
	return boolean_false_node;
      else if (integer_zerop (expr))
	return boolean_true_node;
      else if (TREE_CODE (expr) == SSA_NAME)
	return fold_build2 (EQ_EXPR, boolean_type_node, expr,
			    build_int_cst (TREE_TYPE (expr), 0));
      else if (TREE_CODE_CLASS (TREE_CODE (expr)) == tcc_comparison)
	return fold_build2 (invert_tree_comparison (TREE_CODE (expr), false),
			    boolean_type_node,
			    TREE_OPERAND (expr, 0),
			    TREE_OPERAND (expr, 1));
      else
	return NULL_TREE;
    }
  else
    {
      if (TREE_CODE (TREE_TYPE (expr)) == BOOLEAN_TYPE)
	return expr;
      if (integer_nonzerop (expr))
	return boolean_true_node;
      else if (integer_zerop (expr))
	return boolean_false_node;
      else if (TREE_CODE (expr) == SSA_NAME)
	return fold_build2 (NE_EXPR, boolean_type_node, expr,
			    build_int_cst (TREE_TYPE (expr), 0));
      else if (TREE_CODE_CLASS (TREE_CODE (expr)) == tcc_comparison)
	return fold_build2 (TREE_CODE (expr),
			    boolean_type_node,
			    TREE_OPERAND (expr, 0),
			    TREE_OPERAND (expr, 1));
      else
	return NULL_TREE;
    }
}

/* Check to see if a boolean expression EXPR is logically equivalent to the
   comparison (OP1 CODE OP2).  Check for various identities involving
   SSA_NAMEs.  */

static bool
same_bool_comparison_p (const_tree expr, enum tree_code code,
			const_tree op1, const_tree op2)
{
  gimple s;

  /* The obvious case.  */
  if (TREE_CODE (expr) == code
      && operand_equal_p (TREE_OPERAND (expr, 0), op1, 0)
      && operand_equal_p (TREE_OPERAND (expr, 1), op2, 0))
    return true;

  /* Check for comparing (name, name != 0) and the case where expr
     is an SSA_NAME with a definition matching the comparison.  */
  if (TREE_CODE (expr) == SSA_NAME
      && TREE_CODE (TREE_TYPE (expr)) == BOOLEAN_TYPE)
    {
      if (operand_equal_p (expr, op1, 0))
	return ((code == NE_EXPR && integer_zerop (op2))
		|| (code == EQ_EXPR && integer_nonzerop (op2)));
      s = SSA_NAME_DEF_STMT (expr);
      if (is_gimple_assign (s)
	  && gimple_assign_rhs_code (s) == code
	  && operand_equal_p (gimple_assign_rhs1 (s), op1, 0)
	  && operand_equal_p (gimple_assign_rhs2 (s), op2, 0))
	return true;
    }

  /* If op1 is of the form (name != 0) or (name == 0), and the definition
     of name is a comparison, recurse.  */
  if (TREE_CODE (op1) == SSA_NAME
      && TREE_CODE (TREE_TYPE (op1)) == BOOLEAN_TYPE)
    {
      s = SSA_NAME_DEF_STMT (op1);
      if (is_gimple_assign (s)
	  && TREE_CODE_CLASS (gimple_assign_rhs_code (s)) == tcc_comparison)
	{
	  enum tree_code c = gimple_assign_rhs_code (s);
	  if ((c == NE_EXPR && integer_zerop (op2))
	      || (c == EQ_EXPR && integer_nonzerop (op2)))
	    return same_bool_comparison_p (expr, c,
					   gimple_assign_rhs1 (s),
					   gimple_assign_rhs2 (s));
	  if ((c == EQ_EXPR && integer_zerop (op2))
	      || (c == NE_EXPR && integer_nonzerop (op2)))
	    return same_bool_comparison_p (expr,
					   invert_tree_comparison (c, false),
					   gimple_assign_rhs1 (s),
					   gimple_assign_rhs2 (s));
	}
    }
  return false;
}

/* Check to see if two boolean expressions OP1 and OP2 are logically
   equivalent.  */

static bool
same_bool_result_p (const_tree op1, const_tree op2)
{
  /* Simple cases first.  */
  if (operand_equal_p (op1, op2, 0))
    return true;

  /* Check the cases where at least one of the operands is a comparison.
     These are a bit smarter than operand_equal_p in that they apply some
     identifies on SSA_NAMEs.  */
  if (TREE_CODE_CLASS (TREE_CODE (op2)) == tcc_comparison
      && same_bool_comparison_p (op1, TREE_CODE (op2),
				 TREE_OPERAND (op2, 0),
				 TREE_OPERAND (op2, 1)))
    return true;
  if (TREE_CODE_CLASS (TREE_CODE (op1)) == tcc_comparison
      && same_bool_comparison_p (op2, TREE_CODE (op1),
				 TREE_OPERAND (op1, 0),
				 TREE_OPERAND (op1, 1)))
    return true;

  /* Default case.  */
  return false;
}

/* Forward declarations for some mutually recursive functions.  */

static tree
and_comparisons_1 (enum tree_code code1, tree op1a, tree op1b,
		   enum tree_code code2, tree op2a, tree op2b);
static tree
and_var_with_comparison (tree var, bool invert,
			 enum tree_code code2, tree op2a, tree op2b);
static tree
and_var_with_comparison_1 (gimple stmt, 
			   enum tree_code code2, tree op2a, tree op2b);
static tree
or_comparisons_1 (enum tree_code code1, tree op1a, tree op1b,
		  enum tree_code code2, tree op2a, tree op2b);
static tree
or_var_with_comparison (tree var, bool invert,
			enum tree_code code2, tree op2a, tree op2b);
static tree
or_var_with_comparison_1 (gimple stmt, 
			  enum tree_code code2, tree op2a, tree op2b);

/* Helper function for and_comparisons_1:  try to simplify the AND of the
   ssa variable VAR with the comparison specified by (OP2A CODE2 OP2B).
   If INVERT is true, invert the value of the VAR before doing the AND.
   Return NULL_EXPR if we can't simplify this to a single expression.  */

static tree
and_var_with_comparison (tree var, bool invert,
			 enum tree_code code2, tree op2a, tree op2b)
{
  tree t;
  gimple stmt = SSA_NAME_DEF_STMT (var);

  /* We can only deal with variables whose definitions are assignments.  */
  if (!is_gimple_assign (stmt))
    return NULL_TREE;
  
  /* If we have an inverted comparison, apply DeMorgan's law and rewrite
     !var AND (op2a code2 op2b) => !(var OR !(op2a code2 op2b))
     Then we only have to consider the simpler non-inverted cases.  */
  if (invert)
    t = or_var_with_comparison_1 (stmt, 
				  invert_tree_comparison (code2, false),
				  op2a, op2b);
  else
    t = and_var_with_comparison_1 (stmt, code2, op2a, op2b);
  return canonicalize_bool (t, invert);
}

/* Try to simplify the AND of the ssa variable defined by the assignment
   STMT with the comparison specified by (OP2A CODE2 OP2B).
   Return NULL_EXPR if we can't simplify this to a single expression.  */

static tree
and_var_with_comparison_1 (gimple stmt,
			   enum tree_code code2, tree op2a, tree op2b)
{
  tree var = gimple_assign_lhs (stmt);
  tree true_test_var = NULL_TREE;
  tree false_test_var = NULL_TREE;
  enum tree_code innercode = gimple_assign_rhs_code (stmt);

  /* Check for identities like (var AND (var == 0)) => false.  */
  if (TREE_CODE (op2a) == SSA_NAME
      && TREE_CODE (TREE_TYPE (var)) == BOOLEAN_TYPE)
    {
      if ((code2 == NE_EXPR && integer_zerop (op2b))
	  || (code2 == EQ_EXPR && integer_nonzerop (op2b)))
	{
	  true_test_var = op2a;
	  if (var == true_test_var)
	    return var;
	}
      else if ((code2 == EQ_EXPR && integer_zerop (op2b))
	       || (code2 == NE_EXPR && integer_nonzerop (op2b)))
	{
	  false_test_var = op2a;
	  if (var == false_test_var)
	    return boolean_false_node;
	}
    }

  /* If the definition is a comparison, recurse on it.  */
  if (TREE_CODE_CLASS (innercode) == tcc_comparison)
    {
      tree t = and_comparisons_1 (innercode,
				  gimple_assign_rhs1 (stmt),
				  gimple_assign_rhs2 (stmt),
				  code2,
				  op2a,
				  op2b);
      if (t)
	return t;
    }

  /* If the definition is an AND or OR expression, we may be able to
     simplify by reassociating.  */
  if (TREE_CODE (TREE_TYPE (var)) == BOOLEAN_TYPE
      && (innercode == BIT_AND_EXPR || innercode == BIT_IOR_EXPR))
    {
      tree inner1 = gimple_assign_rhs1 (stmt);
      tree inner2 = gimple_assign_rhs2 (stmt);
      gimple s;
      tree t;
      tree partial = NULL_TREE;
      bool is_and = (innercode == BIT_AND_EXPR);
      
      /* Check for boolean identities that don't require recursive examination
	 of inner1/inner2:
	 inner1 AND (inner1 AND inner2) => inner1 AND inner2 => var
	 inner1 AND (inner1 OR inner2) => inner1
	 !inner1 AND (inner1 AND inner2) => false
	 !inner1 AND (inner1 OR inner2) => !inner1 AND inner2
         Likewise for similar cases involving inner2.  */
      if (inner1 == true_test_var)
	return (is_and ? var : inner1);
      else if (inner2 == true_test_var)
	return (is_and ? var : inner2);
      else if (inner1 == false_test_var)
	return (is_and
		? boolean_false_node
		: and_var_with_comparison (inner2, false, code2, op2a, op2b));
      else if (inner2 == false_test_var)
	return (is_and
		? boolean_false_node
		: and_var_with_comparison (inner1, false, code2, op2a, op2b));

      /* Next, redistribute/reassociate the AND across the inner tests.
	 Compute the first partial result, (inner1 AND (op2a code op2b))  */
      if (TREE_CODE (inner1) == SSA_NAME
	  && is_gimple_assign (s = SSA_NAME_DEF_STMT (inner1))
	  && TREE_CODE_CLASS (gimple_assign_rhs_code (s)) == tcc_comparison
	  && (t = maybe_fold_and_comparisons (gimple_assign_rhs_code (s),
					      gimple_assign_rhs1 (s),
					      gimple_assign_rhs2 (s),
					      code2, op2a, op2b)))
	{
	  /* Handle the AND case, where we are reassociating:
	     (inner1 AND inner2) AND (op2a code2 op2b)
	     => (t AND inner2)
	     If the partial result t is a constant, we win.  Otherwise
	     continue on to try reassociating with the other inner test.  */
	  if (is_and)
	    {
	      if (integer_onep (t))
		return inner2;
	      else if (integer_zerop (t))
		return boolean_false_node;
	    }

	  /* Handle the OR case, where we are redistributing:
	     (inner1 OR inner2) AND (op2a code2 op2b)
	     => (t OR (inner2 AND (op2a code2 op2b)))  */
	  else if (integer_onep (t))
	    return boolean_true_node;

	  /* Save partial result for later.  */
	  partial = t;
	}
      
      /* Compute the second partial result, (inner2 AND (op2a code op2b)) */
      if (TREE_CODE (inner2) == SSA_NAME
	  && is_gimple_assign (s = SSA_NAME_DEF_STMT (inner2))
	  && TREE_CODE_CLASS (gimple_assign_rhs_code (s)) == tcc_comparison
	  && (t = maybe_fold_and_comparisons (gimple_assign_rhs_code (s),
					      gimple_assign_rhs1 (s),
					      gimple_assign_rhs2 (s),
					      code2, op2a, op2b)))
	{
	  /* Handle the AND case, where we are reassociating:
	     (inner1 AND inner2) AND (op2a code2 op2b)
	     => (inner1 AND t)  */
	  if (is_and)
	    {
	      if (integer_onep (t))
		return inner1;
	      else if (integer_zerop (t))
		return boolean_false_node;
	      /* If both are the same, we can apply the identity
		 (x AND x) == x.  */
	      else if (partial && same_bool_result_p (t, partial))
		return t;
	    }

	  /* Handle the OR case. where we are redistributing:
	     (inner1 OR inner2) AND (op2a code2 op2b)
	     => (t OR (inner1 AND (op2a code2 op2b)))
	     => (t OR partial)  */
	  else
	    {
	      if (integer_onep (t))
		return boolean_true_node;
	      else if (partial)
		{
		  /* We already got a simplification for the other
		     operand to the redistributed OR expression.  The
		     interesting case is when at least one is false.
		     Or, if both are the same, we can apply the identity
		     (x OR x) == x.  */
		  if (integer_zerop (partial))
		    return t;
		  else if (integer_zerop (t))
		    return partial;
		  else if (same_bool_result_p (t, partial))
		    return t;
		}
	    }
	}
    }
  return NULL_TREE;
}

/* Try to simplify the AND of two comparisons defined by
   (OP1A CODE1 OP1B) and (OP2A CODE2 OP2B), respectively.
   If this can be done without constructing an intermediate value,
   return the resulting tree; otherwise NULL_TREE is returned.
   This function is deliberately asymmetric as it recurses on SSA_DEFs
   in the first comparison but not the second.  */

static tree
and_comparisons_1 (enum tree_code code1, tree op1a, tree op1b,
		   enum tree_code code2, tree op2a, tree op2b)
{
  tree truth_type = truth_type_for (TREE_TYPE (op1a));

  /* First check for ((x CODE1 y) AND (x CODE2 y)).  */
  if (operand_equal_p (op1a, op2a, 0)
      && operand_equal_p (op1b, op2b, 0))
    {
      /* Result will be either NULL_TREE, or a combined comparison.  */
      tree t = combine_comparisons (UNKNOWN_LOCATION,
				    TRUTH_ANDIF_EXPR, code1, code2,
				    truth_type, op1a, op1b);
      if (t)
	return t;
    }

  /* Likewise the swapped case of the above.  */
  if (operand_equal_p (op1a, op2b, 0)
      && operand_equal_p (op1b, op2a, 0))
    {
      /* Result will be either NULL_TREE, or a combined comparison.  */
      tree t = combine_comparisons (UNKNOWN_LOCATION,
				    TRUTH_ANDIF_EXPR, code1,
				    swap_tree_comparison (code2),
				    truth_type, op1a, op1b);
      if (t)
	return t;
    }

  /* If both comparisons are of the same value against constants, we might
     be able to merge them.  */
  if (operand_equal_p (op1a, op2a, 0)
      && TREE_CODE (op1b) == INTEGER_CST
      && TREE_CODE (op2b) == INTEGER_CST)
    {
      int cmp = tree_int_cst_compare (op1b, op2b);

      /* If we have (op1a == op1b), we should either be able to
	 return that or FALSE, depending on whether the constant op1b
	 also satisfies the other comparison against op2b.  */
      if (code1 == EQ_EXPR)
	{
	  bool done = true;
	  bool val;
	  switch (code2)
	    {
	    case EQ_EXPR: val = (cmp == 0); break;
	    case NE_EXPR: val = (cmp != 0); break;
	    case LT_EXPR: val = (cmp < 0); break;
	    case GT_EXPR: val = (cmp > 0); break;
	    case LE_EXPR: val = (cmp <= 0); break;
	    case GE_EXPR: val = (cmp >= 0); break;
	    default: done = false;
	    }
	  if (done)
	    {
	      if (val)
		return fold_build2 (code1, boolean_type_node, op1a, op1b);
	      else
		return boolean_false_node;
	    }
	}
      /* Likewise if the second comparison is an == comparison.  */
      else if (code2 == EQ_EXPR)
	{
	  bool done = true;
	  bool val;
	  switch (code1)
	    {
	    case EQ_EXPR: val = (cmp == 0); break;
	    case NE_EXPR: val = (cmp != 0); break;
	    case LT_EXPR: val = (cmp > 0); break;
	    case GT_EXPR: val = (cmp < 0); break;
	    case LE_EXPR: val = (cmp >= 0); break;
	    case GE_EXPR: val = (cmp <= 0); break;
	    default: done = false;
	    }
	  if (done)
	    {
	      if (val)
		return fold_build2 (code2, boolean_type_node, op2a, op2b);
	      else
		return boolean_false_node;
	    }
	}

      /* Same business with inequality tests.  */
      else if (code1 == NE_EXPR)
	{
	  bool val;
	  switch (code2)
	    {
	    case EQ_EXPR: val = (cmp != 0); break;
	    case NE_EXPR: val = (cmp == 0); break;
	    case LT_EXPR: val = (cmp >= 0); break;
	    case GT_EXPR: val = (cmp <= 0); break;
	    case LE_EXPR: val = (cmp > 0); break;
	    case GE_EXPR: val = (cmp < 0); break;
	    default:
	      val = false;
	    }
	  if (val)
	    return fold_build2 (code2, boolean_type_node, op2a, op2b);
	}
      else if (code2 == NE_EXPR)
	{
	  bool val;
	  switch (code1)
	    {
	    case EQ_EXPR: val = (cmp == 0); break;
	    case NE_EXPR: val = (cmp != 0); break;
	    case LT_EXPR: val = (cmp <= 0); break;
	    case GT_EXPR: val = (cmp >= 0); break;
	    case LE_EXPR: val = (cmp < 0); break;
	    case GE_EXPR: val = (cmp > 0); break;
	    default:
	      val = false;
	    }
	  if (val)
	    return fold_build2 (code1, boolean_type_node, op1a, op1b);
	}

      /* Chose the more restrictive of two < or <= comparisons.  */
      else if ((code1 == LT_EXPR || code1 == LE_EXPR)
	       && (code2 == LT_EXPR || code2 == LE_EXPR))
	{
	  if ((cmp < 0) || (cmp == 0 && code1 == LT_EXPR))
	    return fold_build2 (code1, boolean_type_node, op1a, op1b);
	  else
	    return fold_build2 (code2, boolean_type_node, op2a, op2b);
	}

      /* Likewise chose the more restrictive of two > or >= comparisons.  */
      else if ((code1 == GT_EXPR || code1 == GE_EXPR)
	       && (code2 == GT_EXPR || code2 == GE_EXPR))
	{
	  if ((cmp > 0) || (cmp == 0 && code1 == GT_EXPR))
	    return fold_build2 (code1, boolean_type_node, op1a, op1b);
	  else
	    return fold_build2 (code2, boolean_type_node, op2a, op2b);
	}

      /* Check for singleton ranges.  */
      else if (cmp == 0
	       && ((code1 == LE_EXPR && code2 == GE_EXPR)
		   || (code1 == GE_EXPR && code2 == LE_EXPR)))
	return fold_build2 (EQ_EXPR, boolean_type_node, op1a, op2b);

      /* Check for disjoint ranges. */
      else if (cmp <= 0
	       && (code1 == LT_EXPR || code1 == LE_EXPR)
	       && (code2 == GT_EXPR || code2 == GE_EXPR))
	return boolean_false_node;
      else if (cmp >= 0
	       && (code1 == GT_EXPR || code1 == GE_EXPR)
	       && (code2 == LT_EXPR || code2 == LE_EXPR))
	return boolean_false_node;
    }

  /* Perhaps the first comparison is (NAME != 0) or (NAME == 1) where
     NAME's definition is a truth value.  See if there are any simplifications
     that can be done against the NAME's definition.  */
  if (TREE_CODE (op1a) == SSA_NAME
      && (code1 == NE_EXPR || code1 == EQ_EXPR)
      && (integer_zerop (op1b) || integer_onep (op1b)))
    {
      bool invert = ((code1 == EQ_EXPR && integer_zerop (op1b))
		     || (code1 == NE_EXPR && integer_onep (op1b)));
      gimple stmt = SSA_NAME_DEF_STMT (op1a);
      switch (gimple_code (stmt))
	{
	case GIMPLE_ASSIGN:
	  /* Try to simplify by copy-propagating the definition.  */
	  return and_var_with_comparison (op1a, invert, code2, op2a, op2b);

	case GIMPLE_PHI:
	  /* If every argument to the PHI produces the same result when
	     ANDed with the second comparison, we win.
	     Do not do this unless the type is bool since we need a bool
	     result here anyway.  */
	  if (TREE_CODE (TREE_TYPE (op1a)) == BOOLEAN_TYPE)
	    {
	      tree result = NULL_TREE;
	      unsigned i;
	      for (i = 0; i < gimple_phi_num_args (stmt); i++)
		{
		  tree arg = gimple_phi_arg_def (stmt, i);
		  
		  /* If this PHI has itself as an argument, ignore it.
		     If all the other args produce the same result,
		     we're still OK.  */
		  if (arg == gimple_phi_result (stmt))
		    continue;
		  else if (TREE_CODE (arg) == INTEGER_CST)
		    {
		      if (invert ? integer_nonzerop (arg) : integer_zerop (arg))
			{
			  if (!result)
			    result = boolean_false_node;
			  else if (!integer_zerop (result))
			    return NULL_TREE;
			}
		      else if (!result)
			result = fold_build2 (code2, boolean_type_node,
					      op2a, op2b);
		      else if (!same_bool_comparison_p (result,
							code2, op2a, op2b))
			return NULL_TREE;
		    }
		  else if (TREE_CODE (arg) == SSA_NAME
			   && !SSA_NAME_IS_DEFAULT_DEF (arg))
		    {
		      tree temp;
		      gimple def_stmt = SSA_NAME_DEF_STMT (arg);
		      /* In simple cases we can look through PHI nodes,
			 but we have to be careful with loops.
			 See PR49073.  */
		      if (! dom_info_available_p (CDI_DOMINATORS)
			  || gimple_bb (def_stmt) == gimple_bb (stmt)
			  || dominated_by_p (CDI_DOMINATORS,
					     gimple_bb (def_stmt),
					     gimple_bb (stmt)))
			return NULL_TREE;
		      temp = and_var_with_comparison (arg, invert, code2,
						      op2a, op2b);
		      if (!temp)
			return NULL_TREE;
		      else if (!result)
			result = temp;
		      else if (!same_bool_result_p (result, temp))
			return NULL_TREE;
		    }
		  else
		    return NULL_TREE;
		}
	      return result;
	    }

	default:
	  break;
	}
    }
  return NULL_TREE;
}

/* Try to simplify the AND of two comparisons, specified by
   (OP1A CODE1 OP1B) and (OP2B CODE2 OP2B), respectively.
   If this can be simplified to a single expression (without requiring
   introducing more SSA variables to hold intermediate values),
   return the resulting tree.  Otherwise return NULL_TREE.
   If the result expression is non-null, it has boolean type.  */

tree
maybe_fold_and_comparisons (enum tree_code code1, tree op1a, tree op1b,
			    enum tree_code code2, tree op2a, tree op2b)
{
  tree t = and_comparisons_1 (code1, op1a, op1b, code2, op2a, op2b);
  if (t)
    return t;
  else
    return and_comparisons_1 (code2, op2a, op2b, code1, op1a, op1b);
}

/* Helper function for or_comparisons_1:  try to simplify the OR of the
   ssa variable VAR with the comparison specified by (OP2A CODE2 OP2B).
   If INVERT is true, invert the value of VAR before doing the OR.
   Return NULL_EXPR if we can't simplify this to a single expression.  */

static tree
or_var_with_comparison (tree var, bool invert,
			enum tree_code code2, tree op2a, tree op2b)
{
  tree t;
  gimple stmt = SSA_NAME_DEF_STMT (var);

  /* We can only deal with variables whose definitions are assignments.  */
  if (!is_gimple_assign (stmt))
    return NULL_TREE;
  
  /* If we have an inverted comparison, apply DeMorgan's law and rewrite
     !var OR (op2a code2 op2b) => !(var AND !(op2a code2 op2b))
     Then we only have to consider the simpler non-inverted cases.  */
  if (invert)
    t = and_var_with_comparison_1 (stmt, 
				   invert_tree_comparison (code2, false),
				   op2a, op2b);
  else
    t = or_var_with_comparison_1 (stmt, code2, op2a, op2b);
  return canonicalize_bool (t, invert);
}

/* Try to simplify the OR of the ssa variable defined by the assignment
   STMT with the comparison specified by (OP2A CODE2 OP2B).
   Return NULL_EXPR if we can't simplify this to a single expression.  */

static tree
or_var_with_comparison_1 (gimple stmt,
			  enum tree_code code2, tree op2a, tree op2b)
{
  tree var = gimple_assign_lhs (stmt);
  tree true_test_var = NULL_TREE;
  tree false_test_var = NULL_TREE;
  enum tree_code innercode = gimple_assign_rhs_code (stmt);

  /* Check for identities like (var OR (var != 0)) => true .  */
  if (TREE_CODE (op2a) == SSA_NAME
      && TREE_CODE (TREE_TYPE (var)) == BOOLEAN_TYPE)
    {
      if ((code2 == NE_EXPR && integer_zerop (op2b))
	  || (code2 == EQ_EXPR && integer_nonzerop (op2b)))
	{
	  true_test_var = op2a;
	  if (var == true_test_var)
	    return var;
	}
      else if ((code2 == EQ_EXPR && integer_zerop (op2b))
	       || (code2 == NE_EXPR && integer_nonzerop (op2b)))
	{
	  false_test_var = op2a;
	  if (var == false_test_var)
	    return boolean_true_node;
	}
    }

  /* If the definition is a comparison, recurse on it.  */
  if (TREE_CODE_CLASS (innercode) == tcc_comparison)
    {
      tree t = or_comparisons_1 (innercode,
				 gimple_assign_rhs1 (stmt),
				 gimple_assign_rhs2 (stmt),
				 code2,
				 op2a,
				 op2b);
      if (t)
	return t;
    }
  
  /* If the definition is an AND or OR expression, we may be able to
     simplify by reassociating.  */
  if (TREE_CODE (TREE_TYPE (var)) == BOOLEAN_TYPE
      && (innercode == BIT_AND_EXPR || innercode == BIT_IOR_EXPR))
    {
      tree inner1 = gimple_assign_rhs1 (stmt);
      tree inner2 = gimple_assign_rhs2 (stmt);
      gimple s;
      tree t;
      tree partial = NULL_TREE;
      bool is_or = (innercode == BIT_IOR_EXPR);
      
      /* Check for boolean identities that don't require recursive examination
	 of inner1/inner2:
	 inner1 OR (inner1 OR inner2) => inner1 OR inner2 => var
	 inner1 OR (inner1 AND inner2) => inner1
	 !inner1 OR (inner1 OR inner2) => true
	 !inner1 OR (inner1 AND inner2) => !inner1 OR inner2
      */
      if (inner1 == true_test_var)
	return (is_or ? var : inner1);
      else if (inner2 == true_test_var)
	return (is_or ? var : inner2);
      else if (inner1 == false_test_var)
	return (is_or
		? boolean_true_node
		: or_var_with_comparison (inner2, false, code2, op2a, op2b));
      else if (inner2 == false_test_var)
	return (is_or
		? boolean_true_node
		: or_var_with_comparison (inner1, false, code2, op2a, op2b));
      
      /* Next, redistribute/reassociate the OR across the inner tests.
	 Compute the first partial result, (inner1 OR (op2a code op2b))  */
      if (TREE_CODE (inner1) == SSA_NAME
	  && is_gimple_assign (s = SSA_NAME_DEF_STMT (inner1))
	  && TREE_CODE_CLASS (gimple_assign_rhs_code (s)) == tcc_comparison
	  && (t = maybe_fold_or_comparisons (gimple_assign_rhs_code (s),
					     gimple_assign_rhs1 (s),
					     gimple_assign_rhs2 (s),
					     code2, op2a, op2b)))
	{
	  /* Handle the OR case, where we are reassociating:
	     (inner1 OR inner2) OR (op2a code2 op2b)
	     => (t OR inner2)
	     If the partial result t is a constant, we win.  Otherwise
	     continue on to try reassociating with the other inner test.  */
	  if (is_or)
	    {
	      if (integer_onep (t))
		return boolean_true_node;
	      else if (integer_zerop (t))
		return inner2;
	    }
	  
	  /* Handle the AND case, where we are redistributing:
	     (inner1 AND inner2) OR (op2a code2 op2b)
	     => (t AND (inner2 OR (op2a code op2b)))  */
	  else if (integer_zerop (t))
	    return boolean_false_node;

	  /* Save partial result for later.  */
	  partial = t;
	}
      
      /* Compute the second partial result, (inner2 OR (op2a code op2b)) */
      if (TREE_CODE (inner2) == SSA_NAME
	  && is_gimple_assign (s = SSA_NAME_DEF_STMT (inner2))
	  && TREE_CODE_CLASS (gimple_assign_rhs_code (s)) == tcc_comparison
	  && (t = maybe_fold_or_comparisons (gimple_assign_rhs_code (s),
					     gimple_assign_rhs1 (s),
					     gimple_assign_rhs2 (s),
					     code2, op2a, op2b)))
	{
	  /* Handle the OR case, where we are reassociating:
	     (inner1 OR inner2) OR (op2a code2 op2b)
	     => (inner1 OR t)
	     => (t OR partial)  */
	  if (is_or)
	    {
	      if (integer_zerop (t))
		return inner1;
	      else if (integer_onep (t))
		return boolean_true_node;
	      /* If both are the same, we can apply the identity
		 (x OR x) == x.  */
	      else if (partial && same_bool_result_p (t, partial))
		return t;
	    }
	  
	  /* Handle the AND case, where we are redistributing:
	     (inner1 AND inner2) OR (op2a code2 op2b)
	     => (t AND (inner1 OR (op2a code2 op2b)))
	     => (t AND partial)  */
	  else 
	    {
	      if (integer_zerop (t))
		return boolean_false_node;
	      else if (partial)
		{
		  /* We already got a simplification for the other
		     operand to the redistributed AND expression.  The
		     interesting case is when at least one is true.
		     Or, if both are the same, we can apply the identity
		     (x AND x) == x.  */
		  if (integer_onep (partial))
		    return t;
		  else if (integer_onep (t))
		    return partial;
		  else if (same_bool_result_p (t, partial))
		    return t;
		}
	    }
	}
    }
  return NULL_TREE;
}

/* Try to simplify the OR of two comparisons defined by
   (OP1A CODE1 OP1B) and (OP2A CODE2 OP2B), respectively.
   If this can be done without constructing an intermediate value,
   return the resulting tree; otherwise NULL_TREE is returned.
   This function is deliberately asymmetric as it recurses on SSA_DEFs
   in the first comparison but not the second.  */

static tree
or_comparisons_1 (enum tree_code code1, tree op1a, tree op1b,
		  enum tree_code code2, tree op2a, tree op2b)
{
  tree truth_type = truth_type_for (TREE_TYPE (op1a));

  /* First check for ((x CODE1 y) OR (x CODE2 y)).  */
  if (operand_equal_p (op1a, op2a, 0)
      && operand_equal_p (op1b, op2b, 0))
    {
      /* Result will be either NULL_TREE, or a combined comparison.  */
      tree t = combine_comparisons (UNKNOWN_LOCATION,
				    TRUTH_ORIF_EXPR, code1, code2,
				    truth_type, op1a, op1b);
      if (t)
	return t;
    }

  /* Likewise the swapped case of the above.  */
  if (operand_equal_p (op1a, op2b, 0)
      && operand_equal_p (op1b, op2a, 0))
    {
      /* Result will be either NULL_TREE, or a combined comparison.  */
      tree t = combine_comparisons (UNKNOWN_LOCATION,
				    TRUTH_ORIF_EXPR, code1,
				    swap_tree_comparison (code2),
				    truth_type, op1a, op1b);
      if (t)
	return t;
    }

  /* If both comparisons are of the same value against constants, we might
     be able to merge them.  */
  if (operand_equal_p (op1a, op2a, 0)
      && TREE_CODE (op1b) == INTEGER_CST
      && TREE_CODE (op2b) == INTEGER_CST)
    {
      int cmp = tree_int_cst_compare (op1b, op2b);

      /* If we have (op1a != op1b), we should either be able to
	 return that or TRUE, depending on whether the constant op1b
	 also satisfies the other comparison against op2b.  */
      if (code1 == NE_EXPR)
	{
	  bool done = true;
	  bool val;
	  switch (code2)
	    {
	    case EQ_EXPR: val = (cmp == 0); break;
	    case NE_EXPR: val = (cmp != 0); break;
	    case LT_EXPR: val = (cmp < 0); break;
	    case GT_EXPR: val = (cmp > 0); break;
	    case LE_EXPR: val = (cmp <= 0); break;
	    case GE_EXPR: val = (cmp >= 0); break;
	    default: done = false;
	    }
	  if (done)
	    {
	      if (val)
		return boolean_true_node;
	      else
		return fold_build2 (code1, boolean_type_node, op1a, op1b);
	    }
	}
      /* Likewise if the second comparison is a != comparison.  */
      else if (code2 == NE_EXPR)
	{
	  bool done = true;
	  bool val;
	  switch (code1)
	    {
	    case EQ_EXPR: val = (cmp == 0); break;
	    case NE_EXPR: val = (cmp != 0); break;
	    case LT_EXPR: val = (cmp > 0); break;
	    case GT_EXPR: val = (cmp < 0); break;
	    case LE_EXPR: val = (cmp >= 0); break;
	    case GE_EXPR: val = (cmp <= 0); break;
	    default: done = false;
	    }
	  if (done)
	    {
	      if (val)
		return boolean_true_node;
	      else
		return fold_build2 (code2, boolean_type_node, op2a, op2b);
	    }
	}

      /* See if an equality test is redundant with the other comparison.  */
      else if (code1 == EQ_EXPR)
	{
	  bool val;
	  switch (code2)
	    {
	    case EQ_EXPR: val = (cmp == 0); break;
	    case NE_EXPR: val = (cmp != 0); break;
	    case LT_EXPR: val = (cmp < 0); break;
	    case GT_EXPR: val = (cmp > 0); break;
	    case LE_EXPR: val = (cmp <= 0); break;
	    case GE_EXPR: val = (cmp >= 0); break;
	    default:
	      val = false;
	    }
	  if (val)
	    return fold_build2 (code2, boolean_type_node, op2a, op2b);
	}
      else if (code2 == EQ_EXPR)
	{
	  bool val;
	  switch (code1)
	    {
	    case EQ_EXPR: val = (cmp == 0); break;
	    case NE_EXPR: val = (cmp != 0); break;
	    case LT_EXPR: val = (cmp > 0); break;
	    case GT_EXPR: val = (cmp < 0); break;
	    case LE_EXPR: val = (cmp >= 0); break;
	    case GE_EXPR: val = (cmp <= 0); break;
	    default:
	      val = false;
	    }
	  if (val)
	    return fold_build2 (code1, boolean_type_node, op1a, op1b);
	}

      /* Chose the less restrictive of two < or <= comparisons.  */
      else if ((code1 == LT_EXPR || code1 == LE_EXPR)
	       && (code2 == LT_EXPR || code2 == LE_EXPR))
	{
	  if ((cmp < 0) || (cmp == 0 && code1 == LT_EXPR))
	    return fold_build2 (code2, boolean_type_node, op2a, op2b);
	  else
	    return fold_build2 (code1, boolean_type_node, op1a, op1b);
	}

      /* Likewise chose the less restrictive of two > or >= comparisons.  */
      else if ((code1 == GT_EXPR || code1 == GE_EXPR)
	       && (code2 == GT_EXPR || code2 == GE_EXPR))
	{
	  if ((cmp > 0) || (cmp == 0 && code1 == GT_EXPR))
	    return fold_build2 (code2, boolean_type_node, op2a, op2b);
	  else
	    return fold_build2 (code1, boolean_type_node, op1a, op1b);
	}

      /* Check for singleton ranges.  */
      else if (cmp == 0
	       && ((code1 == LT_EXPR && code2 == GT_EXPR)
		   || (code1 == GT_EXPR && code2 == LT_EXPR)))
	return fold_build2 (NE_EXPR, boolean_type_node, op1a, op2b);

      /* Check for less/greater pairs that don't restrict the range at all.  */
      else if (cmp >= 0
	       && (code1 == LT_EXPR || code1 == LE_EXPR)
	       && (code2 == GT_EXPR || code2 == GE_EXPR))
	return boolean_true_node;
      else if (cmp <= 0
	       && (code1 == GT_EXPR || code1 == GE_EXPR)
	       && (code2 == LT_EXPR || code2 == LE_EXPR))
	return boolean_true_node;
    }

  /* Perhaps the first comparison is (NAME != 0) or (NAME == 1) where
     NAME's definition is a truth value.  See if there are any simplifications
     that can be done against the NAME's definition.  */
  if (TREE_CODE (op1a) == SSA_NAME
      && (code1 == NE_EXPR || code1 == EQ_EXPR)
      && (integer_zerop (op1b) || integer_onep (op1b)))
    {
      bool invert = ((code1 == EQ_EXPR && integer_zerop (op1b))
		     || (code1 == NE_EXPR && integer_onep (op1b)));
      gimple stmt = SSA_NAME_DEF_STMT (op1a);
      switch (gimple_code (stmt))
	{
	case GIMPLE_ASSIGN:
	  /* Try to simplify by copy-propagating the definition.  */
	  return or_var_with_comparison (op1a, invert, code2, op2a, op2b);

	case GIMPLE_PHI:
	  /* If every argument to the PHI produces the same result when
	     ORed with the second comparison, we win.
	     Do not do this unless the type is bool since we need a bool
	     result here anyway.  */
	  if (TREE_CODE (TREE_TYPE (op1a)) == BOOLEAN_TYPE)
	    {
	      tree result = NULL_TREE;
	      unsigned i;
	      for (i = 0; i < gimple_phi_num_args (stmt); i++)
		{
		  tree arg = gimple_phi_arg_def (stmt, i);
		  
		  /* If this PHI has itself as an argument, ignore it.
		     If all the other args produce the same result,
		     we're still OK.  */
		  if (arg == gimple_phi_result (stmt))
		    continue;
		  else if (TREE_CODE (arg) == INTEGER_CST)
		    {
		      if (invert ? integer_zerop (arg) : integer_nonzerop (arg))
			{
			  if (!result)
			    result = boolean_true_node;
			  else if (!integer_onep (result))
			    return NULL_TREE;
			}
		      else if (!result)
			result = fold_build2 (code2, boolean_type_node,
					      op2a, op2b);
		      else if (!same_bool_comparison_p (result,
							code2, op2a, op2b))
			return NULL_TREE;
		    }
		  else if (TREE_CODE (arg) == SSA_NAME
			   && !SSA_NAME_IS_DEFAULT_DEF (arg))
		    {
		      tree temp;
		      gimple def_stmt = SSA_NAME_DEF_STMT (arg);
		      /* In simple cases we can look through PHI nodes,
			 but we have to be careful with loops.
			 See PR49073.  */
		      if (! dom_info_available_p (CDI_DOMINATORS)
			  || gimple_bb (def_stmt) == gimple_bb (stmt)
			  || dominated_by_p (CDI_DOMINATORS,
					     gimple_bb (def_stmt),
					     gimple_bb (stmt)))
			return NULL_TREE;
		      temp = or_var_with_comparison (arg, invert, code2,
						     op2a, op2b);
		      if (!temp)
			return NULL_TREE;
		      else if (!result)
			result = temp;
		      else if (!same_bool_result_p (result, temp))
			return NULL_TREE;
		    }
		  else
		    return NULL_TREE;
		}
	      return result;
	    }

	default:
	  break;
	}
    }
  return NULL_TREE;
}

/* Try to simplify the OR of two comparisons, specified by
   (OP1A CODE1 OP1B) and (OP2B CODE2 OP2B), respectively.
   If this can be simplified to a single expression (without requiring
   introducing more SSA variables to hold intermediate values),
   return the resulting tree.  Otherwise return NULL_TREE.
   If the result expression is non-null, it has boolean type.  */

tree
maybe_fold_or_comparisons (enum tree_code code1, tree op1a, tree op1b,
			   enum tree_code code2, tree op2a, tree op2b)
{
  tree t = or_comparisons_1 (code1, op1a, op1b, code2, op2a, op2b);
  if (t)
    return t;
  else
    return or_comparisons_1 (code2, op2a, op2b, code1, op1a, op1b);
}


/* Fold STMT to a constant using VALUEIZE to valueize SSA names.

   Either NULL_TREE, a simplified but non-constant or a constant
   is returned.

   ???  This should go into a gimple-fold-inline.h file to be eventually
   privatized with the single valueize function used in the various TUs
   to avoid the indirect function call overhead.  */

tree
gimple_fold_stmt_to_constant_1 (gimple stmt, tree (*valueize) (tree))
{
  location_t loc = gimple_location (stmt);
  switch (gimple_code (stmt))
    {
    case GIMPLE_ASSIGN:
      {
        enum tree_code subcode = gimple_assign_rhs_code (stmt);

        switch (get_gimple_rhs_class (subcode))
          {
          case GIMPLE_SINGLE_RHS:
            {
              tree rhs = gimple_assign_rhs1 (stmt);
              enum tree_code_class kind = TREE_CODE_CLASS (subcode);

              if (TREE_CODE (rhs) == SSA_NAME)
                {
                  /* If the RHS is an SSA_NAME, return its known constant value,
                     if any.  */
                  return (*valueize) (rhs);
                }
	      /* Handle propagating invariant addresses into address
		 operations.  */
	      else if (TREE_CODE (rhs) == ADDR_EXPR
		       && !is_gimple_min_invariant (rhs))
		{
		  HOST_WIDE_INT offset = 0;
		  tree base;
		  base = get_addr_base_and_unit_offset_1 (TREE_OPERAND (rhs, 0),
							  &offset,
							  valueize);
		  if (base
		      && (CONSTANT_CLASS_P (base)
			  || decl_address_invariant_p (base)))
		    return build_invariant_address (TREE_TYPE (rhs),
						    base, offset);
		}
	      else if (TREE_CODE (rhs) == CONSTRUCTOR
		       && TREE_CODE (TREE_TYPE (rhs)) == VECTOR_TYPE
		       && (CONSTRUCTOR_NELTS (rhs)
			   == TYPE_VECTOR_SUBPARTS (TREE_TYPE (rhs))))
		{
		  unsigned i;
		  tree val, *vec;

		  vec = XALLOCAVEC (tree,
				    TYPE_VECTOR_SUBPARTS (TREE_TYPE (rhs)));
		  FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (rhs), i, val)
		    {
		      val = (*valueize) (val);
		      if (TREE_CODE (val) == INTEGER_CST
			  || TREE_CODE (val) == REAL_CST
			  || TREE_CODE (val) == FIXED_CST)
			vec[i] = val;
		      else
			return NULL_TREE;
		    }

		  return build_vector (TREE_TYPE (rhs), vec);
		}

              if (kind == tcc_reference)
		{
		  if ((TREE_CODE (rhs) == VIEW_CONVERT_EXPR
		       || TREE_CODE (rhs) == REALPART_EXPR
		       || TREE_CODE (rhs) == IMAGPART_EXPR)
		      && TREE_CODE (TREE_OPERAND (rhs, 0)) == SSA_NAME)
		    {
		      tree val = (*valueize) (TREE_OPERAND (rhs, 0));
		      return fold_unary_loc (EXPR_LOCATION (rhs),
					     TREE_CODE (rhs),
					     TREE_TYPE (rhs), val);
		    }
		  else if (TREE_CODE (rhs) == BIT_FIELD_REF
			   && TREE_CODE (TREE_OPERAND (rhs, 0)) == SSA_NAME)
		    {
		      tree val = (*valueize) (TREE_OPERAND (rhs, 0));
		      return fold_ternary_loc (EXPR_LOCATION (rhs),
					       TREE_CODE (rhs),
					       TREE_TYPE (rhs), val,
					       TREE_OPERAND (rhs, 1),
					       TREE_OPERAND (rhs, 2));
		    }
		  else if (TREE_CODE (rhs) == MEM_REF
			   && TREE_CODE (TREE_OPERAND (rhs, 0)) == SSA_NAME)
		    {
		      tree val = (*valueize) (TREE_OPERAND (rhs, 0));
		      if (TREE_CODE (val) == ADDR_EXPR
			  && is_gimple_min_invariant (val))
			{
			  tree tem = fold_build2 (MEM_REF, TREE_TYPE (rhs),
						  unshare_expr (val),
						  TREE_OPERAND (rhs, 1));
			  if (tem)
			    rhs = tem;
			}
		    }
		  return fold_const_aggregate_ref_1 (rhs, valueize);
		}
              else if (kind == tcc_declaration)
                return get_symbol_constant_value (rhs);
              return rhs;
            }

          case GIMPLE_UNARY_RHS:
            {
              /* Handle unary operators that can appear in GIMPLE form.
                 Note that we know the single operand must be a constant,
                 so this should almost always return a simplified RHS.  */
	      tree lhs = gimple_assign_lhs (stmt);
              tree op0 = (*valueize) (gimple_assign_rhs1 (stmt));

	      /* Conversions are useless for CCP purposes if they are
		 value-preserving.  Thus the restrictions that
		 useless_type_conversion_p places for restrict qualification
		 of pointer types should not apply here.
		 Substitution later will only substitute to allowed places.  */
	      if (CONVERT_EXPR_CODE_P (subcode)
		  && POINTER_TYPE_P (TREE_TYPE (lhs))
		  && POINTER_TYPE_P (TREE_TYPE (op0))
		  && TYPE_ADDR_SPACE (TREE_TYPE (lhs))
		     == TYPE_ADDR_SPACE (TREE_TYPE (op0))
		  && TYPE_MODE (TREE_TYPE (lhs))
		     == TYPE_MODE (TREE_TYPE (op0)))
		return op0;

              return
		fold_unary_ignore_overflow_loc (loc, subcode,
						gimple_expr_type (stmt), op0);
            }

          case GIMPLE_BINARY_RHS:
            {
              /* Handle binary operators that can appear in GIMPLE form.  */
              tree op0 = (*valueize) (gimple_assign_rhs1 (stmt));
              tree op1 = (*valueize) (gimple_assign_rhs2 (stmt));

	      /* Translate &x + CST into an invariant form suitable for
	         further propagation.  */
	      if (gimple_assign_rhs_code (stmt) == POINTER_PLUS_EXPR
		  && TREE_CODE (op0) == ADDR_EXPR
		  && TREE_CODE (op1) == INTEGER_CST)
		{
		  tree off = fold_convert (ptr_type_node, op1);
		  return build_fold_addr_expr_loc
			   (loc,
			    fold_build2 (MEM_REF,
					 TREE_TYPE (TREE_TYPE (op0)),
					 unshare_expr (op0), off));
		}

              return fold_binary_loc (loc, subcode,
				      gimple_expr_type (stmt), op0, op1);
            }

          case GIMPLE_TERNARY_RHS:
            {
              /* Handle ternary operators that can appear in GIMPLE form.  */
              tree op0 = (*valueize) (gimple_assign_rhs1 (stmt));
              tree op1 = (*valueize) (gimple_assign_rhs2 (stmt));
              tree op2 = (*valueize) (gimple_assign_rhs3 (stmt));

	      /* Fold embedded expressions in ternary codes.  */
	      if ((subcode == COND_EXPR
		   || subcode == VEC_COND_EXPR)
		  && COMPARISON_CLASS_P (op0))
		{
		  tree op00 = (*valueize) (TREE_OPERAND (op0, 0));
		  tree op01 = (*valueize) (TREE_OPERAND (op0, 1));
		  tree tem = fold_binary_loc (loc, TREE_CODE (op0),
					      TREE_TYPE (op0), op00, op01);
		  if (tem)
		    op0 = tem;
		}

              return fold_ternary_loc (loc, subcode,
				       gimple_expr_type (stmt), op0, op1, op2);
            }

          default:
            gcc_unreachable ();
          }
      }

    case GIMPLE_CALL:
      {
	tree fn;

	if (gimple_call_internal_p (stmt))
	  /* No folding yet for these functions.  */
	  return NULL_TREE;

	fn = (*valueize) (gimple_call_fn (stmt));
	if (TREE_CODE (fn) == ADDR_EXPR
	    && TREE_CODE (TREE_OPERAND (fn, 0)) == FUNCTION_DECL
	    && DECL_BUILT_IN (TREE_OPERAND (fn, 0)))
	  {
	    tree *args = XALLOCAVEC (tree, gimple_call_num_args (stmt));
	    tree call, retval;
	    unsigned i;
	    for (i = 0; i < gimple_call_num_args (stmt); ++i)
	      args[i] = (*valueize) (gimple_call_arg (stmt, i));
	    call = build_call_array_loc (loc,
					 gimple_call_return_type (stmt),
					 fn, gimple_call_num_args (stmt), args);
	    retval = fold_call_expr (EXPR_LOCATION (call), call, false);
	    if (retval)
	      /* fold_call_expr wraps the result inside a NOP_EXPR.  */
	      STRIP_NOPS (retval);
	    return retval;
	  }
	return NULL_TREE;
      }

    default:
      return NULL_TREE;
    }
}

/* Fold STMT to a constant using VALUEIZE to valueize SSA names.
   Returns NULL_TREE if folding to a constant is not possible, otherwise
   returns a constant according to is_gimple_min_invariant.  */

tree
gimple_fold_stmt_to_constant (gimple stmt, tree (*valueize) (tree))
{
  tree res = gimple_fold_stmt_to_constant_1 (stmt, valueize);
  if (res && is_gimple_min_invariant (res))
    return res;
  return NULL_TREE;
}


/* The following set of functions are supposed to fold references using
   their constant initializers.  */

static tree fold_ctor_reference (tree type, tree ctor,
				 unsigned HOST_WIDE_INT offset,
				 unsigned HOST_WIDE_INT size, tree);

/* See if we can find constructor defining value of BASE.
   When we know the consructor with constant offset (such as
   base is array[40] and we do know constructor of array), then
   BIT_OFFSET is adjusted accordingly.

   As a special case, return error_mark_node when constructor
   is not explicitly available, but it is known to be zero
   such as 'static const int a;'.  */
static tree
get_base_constructor (tree base, HOST_WIDE_INT *bit_offset,
		      tree (*valueize)(tree))
{
  HOST_WIDE_INT bit_offset2, size, max_size;
  if (TREE_CODE (base) == MEM_REF)
    {
      if (!integer_zerop (TREE_OPERAND (base, 1)))
	{
	  if (!host_integerp (TREE_OPERAND (base, 1), 0))
	    return NULL_TREE;
	  *bit_offset += (mem_ref_offset (base).low
			  * BITS_PER_UNIT);
	}

      if (valueize
	  && TREE_CODE (TREE_OPERAND (base, 0)) == SSA_NAME)
	base = valueize (TREE_OPERAND (base, 0));
      if (!base || TREE_CODE (base) != ADDR_EXPR)
        return NULL_TREE;
      base = TREE_OPERAND (base, 0);
    }

  /* Get a CONSTRUCTOR.  If BASE is a VAR_DECL, get its
     DECL_INITIAL.  If BASE is a nested reference into another
     ARRAY_REF or COMPONENT_REF, make a recursive call to resolve
     the inner reference.  */
  switch (TREE_CODE (base))
    {
    case VAR_DECL:
      if (!const_value_known_p (base))
	return NULL_TREE;

      /* Fallthru.  */
    case CONST_DECL:
      if (!DECL_INITIAL (base)
	  && (TREE_STATIC (base) || DECL_EXTERNAL (base)))
        return error_mark_node;
      /* Do not return an error_mark_node DECL_INITIAL.  LTO uses this
         as special marker (_not_ zero ...) for its own purposes.  */
      if (DECL_INITIAL (base) == error_mark_node)
	return NULL_TREE;
      return DECL_INITIAL (base);

    case ARRAY_REF:
    case COMPONENT_REF:
      base = get_ref_base_and_extent (base, &bit_offset2, &size, &max_size);
      if (max_size == -1 || size != max_size)
	return NULL_TREE;
      *bit_offset +=  bit_offset2;
      return get_base_constructor (base, bit_offset, valueize);

    case STRING_CST:
    case CONSTRUCTOR:
      return base;

    default:
      return NULL_TREE;
    }
}

/* CTOR is STRING_CST.  Fold reference of type TYPE and size SIZE
   to the memory at bit OFFSET.

   We do only simple job of folding byte accesses.  */

static tree
fold_string_cst_ctor_reference (tree type, tree ctor,
				unsigned HOST_WIDE_INT offset,
				unsigned HOST_WIDE_INT size)
{
  if (INTEGRAL_TYPE_P (type)
      && (TYPE_MODE (type)
	  == TYPE_MODE (TREE_TYPE (TREE_TYPE (ctor))))
      && (GET_MODE_CLASS (TYPE_MODE (TREE_TYPE (TREE_TYPE (ctor))))
	  == MODE_INT)
      && GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (TREE_TYPE (ctor)))) == 1
      && size == BITS_PER_UNIT
      && !(offset % BITS_PER_UNIT))
    {
      offset /= BITS_PER_UNIT;
      if (offset < (unsigned HOST_WIDE_INT) TREE_STRING_LENGTH (ctor))
	return build_int_cst_type (type, (TREE_STRING_POINTER (ctor)
				   [offset]));
      /* Folding
	 const char a[20]="hello";
	 return a[10];

	 might lead to offset greater than string length.  In this case we
	 know value is either initialized to 0 or out of bounds.  Return 0
	 in both cases.  */
      return build_zero_cst (type);
    }
  return NULL_TREE;
}

/* CTOR is CONSTRUCTOR of an array type.  Fold reference of type TYPE and size
   SIZE to the memory at bit OFFSET.  */

static tree
fold_array_ctor_reference (tree type, tree ctor,
			   unsigned HOST_WIDE_INT offset,
			   unsigned HOST_WIDE_INT size,
			   tree from_decl)
{
  unsigned HOST_WIDE_INT cnt;
  tree cfield, cval;
  double_int low_bound, elt_size;
  double_int index, max_index;
  double_int access_index;
  tree domain_type = NULL_TREE, index_type = NULL_TREE;
  HOST_WIDE_INT inner_offset;

  /* Compute low bound and elt size.  */
  if (TREE_CODE (TREE_TYPE (ctor)) == ARRAY_TYPE)
    domain_type = TYPE_DOMAIN (TREE_TYPE (ctor));
  if (domain_type && TYPE_MIN_VALUE (domain_type))
    {
      /* Static constructors for variably sized objects makes no sense.  */
      gcc_assert (TREE_CODE (TYPE_MIN_VALUE (domain_type)) == INTEGER_CST);
      index_type = TREE_TYPE (TYPE_MIN_VALUE (domain_type));
      low_bound = tree_to_double_int (TYPE_MIN_VALUE (domain_type));
    }
  else
    low_bound = double_int_zero;
  /* Static constructors for variably sized objects makes no sense.  */
  gcc_assert (TREE_CODE(TYPE_SIZE_UNIT (TREE_TYPE (TREE_TYPE (ctor))))
	      == INTEGER_CST);
  elt_size =
    tree_to_double_int (TYPE_SIZE_UNIT (TREE_TYPE (TREE_TYPE (ctor))));


  /* We can handle only constantly sized accesses that are known to not
     be larger than size of array element.  */
  if (!TYPE_SIZE_UNIT (type)
      || TREE_CODE (TYPE_SIZE_UNIT (type)) != INTEGER_CST
      || elt_size.slt (tree_to_double_int (TYPE_SIZE_UNIT (type))))
    return NULL_TREE;

  /* Compute the array index we look for.  */
  access_index = double_int::from_uhwi (offset / BITS_PER_UNIT)
		 .udiv (elt_size, TRUNC_DIV_EXPR);
  access_index += low_bound;
  if (index_type)
    access_index = access_index.ext (TYPE_PRECISION (index_type),
				     TYPE_UNSIGNED (index_type));

  /* And offset within the access.  */
  inner_offset = offset % (elt_size.to_uhwi () * BITS_PER_UNIT);

  /* See if the array field is large enough to span whole access.  We do not
     care to fold accesses spanning multiple array indexes.  */
  if (inner_offset + size > elt_size.to_uhwi () * BITS_PER_UNIT)
    return NULL_TREE;

  index = low_bound - double_int_one;
  if (index_type)
    index = index.ext (TYPE_PRECISION (index_type), TYPE_UNSIGNED (index_type));

  FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (ctor), cnt, cfield, cval)
    {
      /* Array constructor might explicitely set index, or specify range
	 or leave index NULL meaning that it is next index after previous
	 one.  */
      if (cfield)
	{
	  if (TREE_CODE (cfield) == INTEGER_CST)
	    max_index = index = tree_to_double_int (cfield);
	  else
	    {
	      gcc_assert (TREE_CODE (cfield) == RANGE_EXPR);
	      index = tree_to_double_int (TREE_OPERAND (cfield, 0));
	      max_index = tree_to_double_int (TREE_OPERAND (cfield, 1));
	    }
	}
      else
	{
	  index += double_int_one;
	  if (index_type)
	    index = index.ext (TYPE_PRECISION (index_type),
			       TYPE_UNSIGNED (index_type));
	  max_index = index;
	}

      /* Do we have match?  */
      if (access_index.cmp (index, 1) >= 0
	  && access_index.cmp (max_index, 1) <= 0)
	return fold_ctor_reference (type, cval, inner_offset, size,
				    from_decl);
    }
  /* When memory is not explicitely mentioned in constructor,
     it is 0 (or out of range).  */
  return build_zero_cst (type);
}

/* CTOR is CONSTRUCTOR of an aggregate or vector.
   Fold reference of type TYPE and size SIZE to the memory at bit OFFSET.  */

static tree
fold_nonarray_ctor_reference (tree type, tree ctor,
			      unsigned HOST_WIDE_INT offset,
			      unsigned HOST_WIDE_INT size,
			      tree from_decl)
{
  unsigned HOST_WIDE_INT cnt;
  tree cfield, cval;

  FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (ctor), cnt, cfield,
			    cval)
    {
      tree byte_offset = DECL_FIELD_OFFSET (cfield);
      tree field_offset = DECL_FIELD_BIT_OFFSET (cfield);
      tree field_size = DECL_SIZE (cfield);
      double_int bitoffset;
      double_int byte_offset_cst = tree_to_double_int (byte_offset);
      double_int bits_per_unit_cst = double_int::from_uhwi (BITS_PER_UNIT);
      double_int bitoffset_end, access_end;

      /* Variable sized objects in static constructors makes no sense,
	 but field_size can be NULL for flexible array members.  */
      gcc_assert (TREE_CODE (field_offset) == INTEGER_CST
		  && TREE_CODE (byte_offset) == INTEGER_CST
		  && (field_size != NULL_TREE
		      ? TREE_CODE (field_size) == INTEGER_CST
		      : TREE_CODE (TREE_TYPE (cfield)) == ARRAY_TYPE));

      /* Compute bit offset of the field.  */
      bitoffset = tree_to_double_int (field_offset)
		  + byte_offset_cst * bits_per_unit_cst;
      /* Compute bit offset where the field ends.  */
      if (field_size != NULL_TREE)
	bitoffset_end = bitoffset + tree_to_double_int (field_size);
      else
	bitoffset_end = double_int_zero;

      access_end = double_int::from_uhwi (offset)
		   + double_int::from_uhwi (size);

      /* Is there any overlap between [OFFSET, OFFSET+SIZE) and
	 [BITOFFSET, BITOFFSET_END)?  */
      if (access_end.cmp (bitoffset, 0) > 0
	  && (field_size == NULL_TREE
	      || double_int::from_uhwi (offset).slt (bitoffset_end)))
	{
	  double_int inner_offset = double_int::from_uhwi (offset) - bitoffset;
	  /* We do have overlap.  Now see if field is large enough to
	     cover the access.  Give up for accesses spanning multiple
	     fields.  */
	  if (access_end.cmp (bitoffset_end, 0) > 0)
	    return NULL_TREE;
	  if (double_int::from_uhwi (offset).slt (bitoffset))
	    return NULL_TREE;
	  return fold_ctor_reference (type, cval,
				      inner_offset.to_uhwi (), size,
				      from_decl);
	}
    }
  /* When memory is not explicitely mentioned in constructor, it is 0.  */
  return build_zero_cst (type);
}

/* CTOR is value initializing memory, fold reference of type TYPE and size SIZE
   to the memory at bit OFFSET.  */

static tree
fold_ctor_reference (tree type, tree ctor, unsigned HOST_WIDE_INT offset,
		     unsigned HOST_WIDE_INT size, tree from_decl)
{
  tree ret;

  /* We found the field with exact match.  */
  if (useless_type_conversion_p (type, TREE_TYPE (ctor))
      && !offset)
    return canonicalize_constructor_val (ctor, from_decl);

  /* We are at the end of walk, see if we can view convert the
     result.  */
  if (!AGGREGATE_TYPE_P (TREE_TYPE (ctor)) && !offset
      /* VIEW_CONVERT_EXPR is defined only for matching sizes.  */
      && operand_equal_p (TYPE_SIZE (type),
			  TYPE_SIZE (TREE_TYPE (ctor)), 0))
    {
      ret = canonicalize_constructor_val (ctor, from_decl);
      ret = fold_unary (VIEW_CONVERT_EXPR, type, ret);
      if (ret)
	STRIP_NOPS (ret);
      return ret;
    }
  if (TREE_CODE (ctor) == STRING_CST)
    return fold_string_cst_ctor_reference (type, ctor, offset, size);
  if (TREE_CODE (ctor) == CONSTRUCTOR)
    {

      if (TREE_CODE (TREE_TYPE (ctor)) == ARRAY_TYPE
	  || TREE_CODE (TREE_TYPE (ctor)) == VECTOR_TYPE)
	return fold_array_ctor_reference (type, ctor, offset, size,
					  from_decl);
      else
	return fold_nonarray_ctor_reference (type, ctor, offset, size,
					     from_decl);
    }

  return NULL_TREE;
}

/* Return the tree representing the element referenced by T if T is an
   ARRAY_REF or COMPONENT_REF into constant aggregates valuezing SSA
   names using VALUEIZE.  Return NULL_TREE otherwise.  */

tree
fold_const_aggregate_ref_1 (tree t, tree (*valueize) (tree))
{
  tree ctor, idx, base;
  HOST_WIDE_INT offset, size, max_size;
  tree tem;

  if (TREE_THIS_VOLATILE (t))
    return NULL_TREE;

  if (TREE_CODE_CLASS (TREE_CODE (t)) == tcc_declaration)
    return get_symbol_constant_value (t);

  tem = fold_read_from_constant_string (t);
  if (tem)
    return tem;

  switch (TREE_CODE (t))
    {
    case ARRAY_REF:
    case ARRAY_RANGE_REF:
      /* Constant indexes are handled well by get_base_constructor.
	 Only special case variable offsets.
	 FIXME: This code can't handle nested references with variable indexes
	 (they will be handled only by iteration of ccp).  Perhaps we can bring
	 get_ref_base_and_extent here and make it use a valueize callback.  */
      if (TREE_CODE (TREE_OPERAND (t, 1)) == SSA_NAME
	  && valueize
	  && (idx = (*valueize) (TREE_OPERAND (t, 1)))
	  && TREE_CODE (idx) == INTEGER_CST)
	{
	  tree low_bound, unit_size;
	  double_int doffset;

	  /* If the resulting bit-offset is constant, track it.  */
	  if ((low_bound = array_ref_low_bound (t),
	       TREE_CODE (low_bound) == INTEGER_CST)
	      && (unit_size = array_ref_element_size (t),
		  host_integerp (unit_size, 1))
	      && (doffset = (TREE_INT_CST (idx) - TREE_INT_CST (low_bound))
			    .sext (TYPE_PRECISION (TREE_TYPE (idx))),
		  doffset.fits_shwi ()))
	    {
	      offset = doffset.to_shwi ();
	      offset *= TREE_INT_CST_LOW (unit_size);
	      offset *= BITS_PER_UNIT;

	      base = TREE_OPERAND (t, 0);
	      ctor = get_base_constructor (base, &offset, valueize);
	      /* Empty constructor.  Always fold to 0.  */
	      if (ctor == error_mark_node)
		return build_zero_cst (TREE_TYPE (t));
	      /* Out of bound array access.  Value is undefined,
		 but don't fold.  */
	      if (offset < 0)
		return NULL_TREE;
	      /* We can not determine ctor.  */
	      if (!ctor)
		return NULL_TREE;
	      return fold_ctor_reference (TREE_TYPE (t), ctor, offset,
					  TREE_INT_CST_LOW (unit_size)
					  * BITS_PER_UNIT,
					  base);
	    }
	}
      /* Fallthru.  */

    case COMPONENT_REF:
    case BIT_FIELD_REF:
    case TARGET_MEM_REF:
    case MEM_REF:
      base = get_ref_base_and_extent (t, &offset, &size, &max_size);
      ctor = get_base_constructor (base, &offset, valueize);

      /* Empty constructor.  Always fold to 0.  */
      if (ctor == error_mark_node)
	return build_zero_cst (TREE_TYPE (t));
      /* We do not know precise address.  */
      if (max_size == -1 || max_size != size)
	return NULL_TREE;
      /* We can not determine ctor.  */
      if (!ctor)
	return NULL_TREE;

      /* Out of bound array access.  Value is undefined, but don't fold.  */
      if (offset < 0)
	return NULL_TREE;

      return fold_ctor_reference (TREE_TYPE (t), ctor, offset, size,
				  base);

    case REALPART_EXPR:
    case IMAGPART_EXPR:
      {
	tree c = fold_const_aggregate_ref_1 (TREE_OPERAND (t, 0), valueize);
	if (c && TREE_CODE (c) == COMPLEX_CST)
	  return fold_build1_loc (EXPR_LOCATION (t),
			      TREE_CODE (t), TREE_TYPE (t), c);
	break;
      }

    default:
      break;
    }

  return NULL_TREE;
}

tree
fold_const_aggregate_ref (tree t)
{
  return fold_const_aggregate_ref_1 (t, NULL);
}

/* Return a declaration of a function which an OBJ_TYPE_REF references. TOKEN
   is integer form of OBJ_TYPE_REF_TOKEN of the reference expression.
   KNOWN_BINFO carries the binfo describing the true type of
   OBJ_TYPE_REF_OBJECT(REF).  */

tree
gimple_get_virt_method_for_binfo (HOST_WIDE_INT token, tree known_binfo)
{
  unsigned HOST_WIDE_INT offset, size;
  tree v, fn, vtable;

  vtable = v = BINFO_VTABLE (known_binfo);
  /* If there is no virtual methods table, leave the OBJ_TYPE_REF alone.  */
  if (!v)
    return NULL_TREE;

  if (TREE_CODE (v) == POINTER_PLUS_EXPR)
    {
      offset = tree_low_cst (TREE_OPERAND (v, 1), 1) * BITS_PER_UNIT;
      v = TREE_OPERAND (v, 0);
    }
  else
    offset = 0;

  if (TREE_CODE (v) != ADDR_EXPR)
    return NULL_TREE;
  v = TREE_OPERAND (v, 0);

  if (TREE_CODE (v) != VAR_DECL
      || !DECL_VIRTUAL_P (v)
      || !DECL_INITIAL (v)
      || DECL_INITIAL (v) == error_mark_node)
    return NULL_TREE;
  gcc_checking_assert (TREE_CODE (TREE_TYPE (v)) == ARRAY_TYPE);
  size = tree_low_cst (TYPE_SIZE (TREE_TYPE (TREE_TYPE (v))), 1);
  offset += token * size;
  fn = fold_ctor_reference (TREE_TYPE (TREE_TYPE (v)), DECL_INITIAL (v),
			    offset, size, vtable);
  if (!fn || integer_zerop (fn))
    return NULL_TREE;
  gcc_assert (TREE_CODE (fn) == ADDR_EXPR
	      || TREE_CODE (fn) == FDESC_EXPR);
  fn = TREE_OPERAND (fn, 0);
  gcc_assert (TREE_CODE (fn) == FUNCTION_DECL);

  /* When cgraph node is missing and function is not public, we cannot
     devirtualize.  This can happen in WHOPR when the actual method
     ends up in other partition, because we found devirtualization
     possibility too late.  */
  if (!can_refer_decl_in_current_unit_p (fn, vtable))
    return NULL_TREE;

  /* Make sure we create a cgraph node for functions we'll reference.
     They can be non-existent if the reference comes from an entry
     of an external vtable for example.  */
  cgraph_get_create_node (fn);

  return fn;
}

/* Return true iff VAL is a gimple expression that is known to be
   non-negative.  Restricted to floating-point inputs.  */

bool
gimple_val_nonnegative_real_p (tree val)
{
  gimple def_stmt;

  gcc_assert (val && SCALAR_FLOAT_TYPE_P (TREE_TYPE (val)));

  /* Use existing logic for non-gimple trees.  */
  if (tree_expr_nonnegative_p (val))
    return true;

  if (TREE_CODE (val) != SSA_NAME)
    return false;

  /* Currently we look only at the immediately defining statement
     to make this determination, since recursion on defining 
     statements of operands can lead to quadratic behavior in the
     worst case.  This is expected to catch almost all occurrences
     in practice.  It would be possible to implement limited-depth
     recursion if important cases are lost.  Alternatively, passes
     that need this information (such as the pow/powi lowering code
     in the cse_sincos pass) could be revised to provide it through
     dataflow propagation.  */

  def_stmt = SSA_NAME_DEF_STMT (val);

  if (is_gimple_assign (def_stmt))
    {
      tree op0, op1;

      /* See fold-const.c:tree_expr_nonnegative_p for additional
	 cases that could be handled with recursion.  */

      switch (gimple_assign_rhs_code (def_stmt))
	{
	case ABS_EXPR:
	  /* Always true for floating-point operands.  */
	  return true;

	case MULT_EXPR:
	  /* True if the two operands are identical (since we are
	     restricted to floating-point inputs).  */
	  op0 = gimple_assign_rhs1 (def_stmt);
	  op1 = gimple_assign_rhs2 (def_stmt);

	  if (op0 == op1
	      || operand_equal_p (op0, op1, 0))
	    return true;

	default:
	  return false;
	}
    }
  else if (is_gimple_call (def_stmt))
    {
      tree fndecl = gimple_call_fndecl (def_stmt);
      if (fndecl
	  && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
	{
	  tree arg1;

	  switch (DECL_FUNCTION_CODE (fndecl))
	    {
	    CASE_FLT_FN (BUILT_IN_ACOS):
	    CASE_FLT_FN (BUILT_IN_ACOSH):
	    CASE_FLT_FN (BUILT_IN_CABS):
	    CASE_FLT_FN (BUILT_IN_COSH):
	    CASE_FLT_FN (BUILT_IN_ERFC):
	    CASE_FLT_FN (BUILT_IN_EXP):
	    CASE_FLT_FN (BUILT_IN_EXP10):
	    CASE_FLT_FN (BUILT_IN_EXP2):
	    CASE_FLT_FN (BUILT_IN_FABS):
	    CASE_FLT_FN (BUILT_IN_FDIM):
	    CASE_FLT_FN (BUILT_IN_HYPOT):
	    CASE_FLT_FN (BUILT_IN_POW10):
	      return true;

	    CASE_FLT_FN (BUILT_IN_SQRT):
	      /* sqrt(-0.0) is -0.0, and sqrt is not defined over other
		 nonnegative inputs.  */
	      if (!HONOR_SIGNED_ZEROS (TYPE_MODE (TREE_TYPE (val))))
		return true;

	      break;

	    CASE_FLT_FN (BUILT_IN_POWI):
	      /* True if the second argument is an even integer.  */
	      arg1 = gimple_call_arg (def_stmt, 1);

	      if (TREE_CODE (arg1) == INTEGER_CST
		  && (TREE_INT_CST_LOW (arg1) & 1) == 0)
		return true;

	      break;
	      
	    CASE_FLT_FN (BUILT_IN_POW):
	      /* True if the second argument is an even integer-valued
		 real.  */
	      arg1 = gimple_call_arg (def_stmt, 1);

	      if (TREE_CODE (arg1) == REAL_CST)
		{
		  REAL_VALUE_TYPE c;
		  HOST_WIDE_INT n;

		  c = TREE_REAL_CST (arg1);
		  n = real_to_integer (&c);

		  if ((n & 1) == 0)
		    {
		      REAL_VALUE_TYPE cint;
		      real_from_integer (&cint, VOIDmode, n, n < 0 ? -1 : 0, 0);
		      if (real_identical (&c, &cint))
			return true;
		    }
		}

	      break;

	    default:
	      return false;
	    }
	}
    }

  return false;
}