1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
|
/* Straight-line strength reduction.
Copyright (C) 2012 Free Software Foundation, Inc.
Contributed by Bill Schmidt, IBM <wschmidt@linux.ibm.com>
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
/* There are many algorithms for performing strength reduction on
loops. This is not one of them. IVOPTS handles strength reduction
of induction variables just fine. This pass is intended to pick
up the crumbs it leaves behind, by considering opportunities for
strength reduction along dominator paths.
Strength reduction will be implemented in four stages, gradually
adding more complex candidates:
1) Explicit multiplies, known constant multipliers, no
conditional increments. (complete)
2) Explicit multiplies, unknown constant multipliers,
no conditional increments. (data gathering complete,
replacements pending)
3) Implicit multiplies in addressing expressions. (pending)
4) Explicit multiplies, conditional increments. (pending)
It would also be possible to apply strength reduction to divisions
and modulos, but such opportunities are relatively uncommon.
Strength reduction is also currently restricted to integer operations.
If desired, it could be extended to floating-point operations under
control of something like -funsafe-math-optimizations. */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tree.h"
#include "gimple.h"
#include "basic-block.h"
#include "tree-pass.h"
#include "cfgloop.h"
#include "gimple-pretty-print.h"
#include "tree-flow.h"
#include "domwalk.h"
#include "pointer-set.h"
/* Information about a strength reduction candidate. Each statement
in the candidate table represents an expression of one of the
following forms (the special case of CAND_REF will be described
later):
(CAND_MULT) S1: X = (B + i) * S
(CAND_ADD) S1: X = B + (i * S)
Here X and B are SSA names, i is an integer constant, and S is
either an SSA name or a constant. We call B the "base," i the
"index", and S the "stride."
Any statement S0 that dominates S1 and is of the form:
(CAND_MULT) S0: Y = (B + i') * S
(CAND_ADD) S0: Y = B + (i' * S)
is called a "basis" for S1. In both cases, S1 may be replaced by
S1': X = Y + (i - i') * S,
where (i - i') * S is folded to the extent possible.
All gimple statements are visited in dominator order, and each
statement that may contribute to one of the forms of S1 above is
given at least one entry in the candidate table. Such statements
include addition, pointer addition, subtraction, multiplication,
negation, copies, and nontrivial type casts. If a statement may
represent more than one expression of the forms of S1 above,
multiple "interpretations" are stored in the table and chained
together. Examples:
* An add of two SSA names may treat either operand as the base.
* A multiply of two SSA names, likewise.
* A copy or cast may be thought of as either a CAND_MULT with
i = 0 and S = 1, or as a CAND_ADD with i = 0 or S = 0.
Candidate records are allocated from an obstack. They are addressed
both from a hash table keyed on S1, and from a vector of candidate
pointers arranged in predominator order.
Opportunity note
----------------
Currently we don't recognize:
S0: Y = (S * i') - B
S1: X = (S * i) - B
as a strength reduction opportunity, even though this S1 would
also be replaceable by the S1' above. This can be added if it
comes up in practice. */
/* Index into the candidate vector, offset by 1. VECs are zero-based,
while cand_idx's are one-based, with zero indicating null. */
typedef unsigned cand_idx;
/* The kind of candidate. */
enum cand_kind
{
CAND_MULT,
CAND_ADD
};
struct slsr_cand_d
{
/* The candidate statement S1. */
gimple cand_stmt;
/* The base SSA name B. */
tree base_name;
/* The stride S. */
tree stride;
/* The index constant i. */
double_int index;
/* The type of the candidate. This is normally the type of base_name,
but casts may have occurred when combining feeding instructions.
A candidate can only be a basis for candidates of the same final type. */
tree cand_type;
/* The kind of candidate (CAND_MULT, etc.). */
enum cand_kind kind;
/* Index of this candidate in the candidate vector. */
cand_idx cand_num;
/* Index of the next candidate record for the same statement.
A statement may be useful in more than one way (e.g., due to
commutativity). So we can have multiple "interpretations"
of a statement. */
cand_idx next_interp;
/* Index of the basis statement S0, if any, in the candidate vector. */
cand_idx basis;
/* First candidate for which this candidate is a basis, if one exists. */
cand_idx dependent;
/* Next candidate having the same basis as this one. */
cand_idx sibling;
/* If this is a conditional candidate, the defining PHI statement
for the base SSA name B. For future use; always NULL for now. */
gimple def_phi;
/* Savings that can be expected from eliminating dead code if this
candidate is replaced. */
int dead_savings;
};
typedef struct slsr_cand_d slsr_cand, *slsr_cand_t;
typedef const struct slsr_cand_d *const_slsr_cand_t;
/* Pointers to candidates are chained together as part of a mapping
from SSA names to the candidates that use them as a base name. */
struct cand_chain_d
{
/* SSA name that serves as a base name for the chain of candidates. */
tree base_name;
/* Pointer to a candidate. */
slsr_cand_t cand;
/* Chain pointer. */
struct cand_chain_d *next;
};
typedef struct cand_chain_d cand_chain, *cand_chain_t;
typedef const struct cand_chain_d *const_cand_chain_t;
/* Candidates are maintained in a vector. If candidate X dominates
candidate Y, then X appears before Y in the vector; but the
converse does not necessarily hold. */
DEF_VEC_P (slsr_cand_t);
DEF_VEC_ALLOC_P (slsr_cand_t, heap);
static VEC (slsr_cand_t, heap) *cand_vec;
enum cost_consts
{
COST_NEUTRAL = 0,
COST_INFINITE = 1000
};
/* Pointer map embodying a mapping from statements to candidates. */
static struct pointer_map_t *stmt_cand_map;
/* Obstack for candidates. */
static struct obstack cand_obstack;
/* Array mapping from base SSA names to chains of candidates. */
static cand_chain_t *base_cand_map;
/* Obstack for candidate chains. */
static struct obstack chain_obstack;
/* Produce a pointer to the IDX'th candidate in the candidate vector. */
static slsr_cand_t
lookup_cand (cand_idx idx)
{
return VEC_index (slsr_cand_t, cand_vec, idx - 1);
}
/* Use the base name from candidate C to look for possible candidates
that can serve as a basis for C. Each potential basis must also
appear in a block that dominates the candidate statement and have
the same stride and type. If more than one possible basis exists,
the one with highest index in the vector is chosen; this will be
the most immediately dominating basis. */
static int
find_basis_for_candidate (slsr_cand_t c)
{
cand_chain_t chain;
slsr_cand_t basis = NULL;
gcc_assert (TREE_CODE (c->base_name) == SSA_NAME);
chain = base_cand_map[SSA_NAME_VERSION (c->base_name)];
for (; chain; chain = chain->next)
{
slsr_cand_t one_basis = chain->cand;
if (one_basis->kind != c->kind
|| !operand_equal_p (one_basis->stride, c->stride, 0)
|| !types_compatible_p (one_basis->cand_type, c->cand_type)
|| !dominated_by_p (CDI_DOMINATORS,
gimple_bb (c->cand_stmt),
gimple_bb (one_basis->cand_stmt)))
continue;
if (!basis || basis->cand_num < one_basis->cand_num)
basis = one_basis;
}
if (basis)
{
c->sibling = basis->dependent;
basis->dependent = c->cand_num;
return basis->cand_num;
}
return 0;
}
/* Record a mapping from the base name of C to C itself, indicating that
C may potentially serve as a basis using that base name. */
static void
record_potential_basis (slsr_cand_t c)
{
cand_chain_t node, head;
int index;
node = (cand_chain_t) obstack_alloc (&chain_obstack, sizeof (cand_chain));
node->base_name = c->base_name;
node->cand = c;
node->next = NULL;
index = SSA_NAME_VERSION (c->base_name);
head = base_cand_map[index];
if (head)
{
node->next = head->next;
head->next = node;
}
else
base_cand_map[index] = node;
}
/* Allocate storage for a new candidate and initialize its fields.
Attempt to find a basis for the candidate. */
static slsr_cand_t
alloc_cand_and_find_basis (enum cand_kind kind, gimple gs, tree base,
double_int index, tree stride, tree ctype,
unsigned savings)
{
slsr_cand_t c = (slsr_cand_t) obstack_alloc (&cand_obstack,
sizeof (slsr_cand));
c->cand_stmt = gs;
c->base_name = base;
c->stride = stride;
c->index = index;
c->cand_type = ctype;
c->kind = kind;
c->cand_num = VEC_length (slsr_cand_t, cand_vec) + 1;
c->next_interp = 0;
c->dependent = 0;
c->sibling = 0;
c->def_phi = NULL;
c->dead_savings = savings;
VEC_safe_push (slsr_cand_t, heap, cand_vec, c);
c->basis = find_basis_for_candidate (c);
record_potential_basis (c);
return c;
}
/* Determine the target cost of statement GS when compiling according
to SPEED. */
static int
stmt_cost (gimple gs, bool speed)
{
tree lhs, rhs1, rhs2;
enum machine_mode lhs_mode;
gcc_assert (is_gimple_assign (gs));
lhs = gimple_assign_lhs (gs);
rhs1 = gimple_assign_rhs1 (gs);
lhs_mode = TYPE_MODE (TREE_TYPE (lhs));
switch (gimple_assign_rhs_code (gs))
{
case MULT_EXPR:
rhs2 = gimple_assign_rhs2 (gs);
if (host_integerp (rhs2, 0))
return multiply_by_const_cost (TREE_INT_CST_LOW (rhs2), lhs_mode,
speed);
gcc_assert (TREE_CODE (rhs1) != INTEGER_CST);
return multiply_regs_cost (TYPE_MODE (TREE_TYPE (lhs)), speed);
case PLUS_EXPR:
case POINTER_PLUS_EXPR:
case MINUS_EXPR:
rhs2 = gimple_assign_rhs2 (gs);
if (host_integerp (rhs2, 0))
return add_const_cost (TYPE_MODE (TREE_TYPE (rhs1)), speed);
gcc_assert (TREE_CODE (rhs1) != INTEGER_CST);
return add_regs_cost (lhs_mode, speed);
case NEGATE_EXPR:
return negate_reg_cost (lhs_mode, speed);
case NOP_EXPR:
return extend_or_trunc_reg_cost (TREE_TYPE (lhs), TREE_TYPE (rhs1),
speed);
/* Note that we don't assign costs to copies that in most cases
will go away. */
default:
;
}
gcc_unreachable ();
return 0;
}
/* Look up the defining statement for BASE_IN and return a pointer
to its candidate in the candidate table, if any; otherwise NULL.
Only CAND_ADD and CAND_MULT candidates are returned. */
static slsr_cand_t
base_cand_from_table (tree base_in)
{
slsr_cand_t *result;
gimple def = SSA_NAME_DEF_STMT (base_in);
if (!def)
return (slsr_cand_t) NULL;
result = (slsr_cand_t *) pointer_map_contains (stmt_cand_map, def);
if (!result)
return (slsr_cand_t) NULL;
return *result;
}
/* Add an entry to the statement-to-candidate mapping. */
static void
add_cand_for_stmt (gimple gs, slsr_cand_t c)
{
void **slot = pointer_map_insert (stmt_cand_map, gs);
gcc_assert (!*slot);
*slot = c;
}
/* Create a candidate entry for a statement GS, where GS multiplies
two SSA names BASE_IN and STRIDE_IN. Propagate any known information
about the two SSA names into the new candidate. Return the new
candidate. */
static slsr_cand_t
create_mul_ssa_cand (gimple gs, tree base_in, tree stride_in, bool speed)
{
tree base = NULL_TREE, stride = NULL_TREE, ctype = NULL_TREE;
double_int index;
unsigned savings = 0;
slsr_cand_t c;
slsr_cand_t base_cand = base_cand_from_table (base_in);
/* Look at all interpretations of the base candidate, if necessary,
to find information to propagate into this candidate. */
while (base_cand && !base)
{
if (base_cand->kind == CAND_MULT
&& operand_equal_p (base_cand->stride, integer_one_node, 0))
{
/* Y = (B + i') * 1
X = Y * Z
================
X = (B + i') * Z */
base = base_cand->base_name;
index = base_cand->index;
stride = stride_in;
ctype = base_cand->cand_type;
if (has_single_use (base_in))
savings = (base_cand->dead_savings
+ stmt_cost (base_cand->cand_stmt, speed));
}
else if (base_cand->kind == CAND_ADD
&& TREE_CODE (base_cand->stride) == INTEGER_CST)
{
/* Y = B + (i' * S), S constant
X = Y * Z
============================
X = B + ((i' * S) * Z) */
base = base_cand->base_name;
index = double_int_mul (base_cand->index,
tree_to_double_int (base_cand->stride));
stride = stride_in;
ctype = base_cand->cand_type;
if (has_single_use (base_in))
savings = (base_cand->dead_savings
+ stmt_cost (base_cand->cand_stmt, speed));
}
if (base_cand->next_interp)
base_cand = lookup_cand (base_cand->next_interp);
else
base_cand = NULL;
}
if (!base)
{
/* No interpretations had anything useful to propagate, so
produce X = (Y + 0) * Z. */
base = base_in;
index = double_int_zero;
stride = stride_in;
ctype = TREE_TYPE (SSA_NAME_VAR (base_in));
}
c = alloc_cand_and_find_basis (CAND_MULT, gs, base, index, stride,
ctype, savings);
return c;
}
/* Create a candidate entry for a statement GS, where GS multiplies
SSA name BASE_IN by constant STRIDE_IN. Propagate any known
information about BASE_IN into the new candidate. Return the new
candidate. */
static slsr_cand_t
create_mul_imm_cand (gimple gs, tree base_in, tree stride_in, bool speed)
{
tree base = NULL_TREE, stride = NULL_TREE, ctype = NULL_TREE;
double_int index, temp;
unsigned savings = 0;
slsr_cand_t c;
slsr_cand_t base_cand = base_cand_from_table (base_in);
/* Look at all interpretations of the base candidate, if necessary,
to find information to propagate into this candidate. */
while (base_cand && !base)
{
if (base_cand->kind == CAND_MULT
&& TREE_CODE (base_cand->stride) == INTEGER_CST)
{
/* Y = (B + i') * S, S constant
X = Y * c
============================
X = (B + i') * (S * c) */
base = base_cand->base_name;
index = base_cand->index;
temp = double_int_mul (tree_to_double_int (base_cand->stride),
tree_to_double_int (stride_in));
stride = double_int_to_tree (TREE_TYPE (stride_in), temp);
ctype = base_cand->cand_type;
if (has_single_use (base_in))
savings = (base_cand->dead_savings
+ stmt_cost (base_cand->cand_stmt, speed));
}
else if (base_cand->kind == CAND_ADD
&& operand_equal_p (base_cand->stride, integer_one_node, 0))
{
/* Y = B + (i' * 1)
X = Y * c
===========================
X = (B + i') * c */
base = base_cand->base_name;
index = base_cand->index;
stride = stride_in;
ctype = base_cand->cand_type;
if (has_single_use (base_in))
savings = (base_cand->dead_savings
+ stmt_cost (base_cand->cand_stmt, speed));
}
else if (base_cand->kind == CAND_ADD
&& double_int_one_p (base_cand->index)
&& TREE_CODE (base_cand->stride) == INTEGER_CST)
{
/* Y = B + (1 * S), S constant
X = Y * c
===========================
X = (B + S) * c */
base = base_cand->base_name;
index = tree_to_double_int (base_cand->stride);
stride = stride_in;
ctype = base_cand->cand_type;
if (has_single_use (base_in))
savings = (base_cand->dead_savings
+ stmt_cost (base_cand->cand_stmt, speed));
}
if (base_cand->next_interp)
base_cand = lookup_cand (base_cand->next_interp);
else
base_cand = NULL;
}
if (!base)
{
/* No interpretations had anything useful to propagate, so
produce X = (Y + 0) * c. */
base = base_in;
index = double_int_zero;
stride = stride_in;
ctype = TREE_TYPE (SSA_NAME_VAR (base_in));
}
c = alloc_cand_and_find_basis (CAND_MULT, gs, base, index, stride,
ctype, savings);
return c;
}
/* Given GS which is a multiply of scalar integers, make an appropriate
entry in the candidate table. If this is a multiply of two SSA names,
create two CAND_MULT interpretations and attempt to find a basis for
each of them. Otherwise, create a single CAND_MULT and attempt to
find a basis. */
static void
slsr_process_mul (gimple gs, tree rhs1, tree rhs2, bool speed)
{
slsr_cand_t c, c2;
/* If this is a multiply of an SSA name with itself, it is highly
unlikely that we will get a strength reduction opportunity, so
don't record it as a candidate. This simplifies the logic for
finding a basis, so if this is removed that must be considered. */
if (rhs1 == rhs2)
return;
if (TREE_CODE (rhs2) == SSA_NAME)
{
/* Record an interpretation of this statement in the candidate table
assuming RHS1 is the base name and RHS2 is the stride. */
c = create_mul_ssa_cand (gs, rhs1, rhs2, speed);
/* Add the first interpretation to the statement-candidate mapping. */
add_cand_for_stmt (gs, c);
/* Record another interpretation of this statement assuming RHS1
is the stride and RHS2 is the base name. */
c2 = create_mul_ssa_cand (gs, rhs2, rhs1, speed);
c->next_interp = c2->cand_num;
}
else
{
/* Record an interpretation for the multiply-immediate. */
c = create_mul_imm_cand (gs, rhs1, rhs2, speed);
/* Add the interpretation to the statement-candidate mapping. */
add_cand_for_stmt (gs, c);
}
}
/* Create a candidate entry for a statement GS, where GS adds two
SSA names BASE_IN and ADDEND_IN if SUBTRACT_P is false, and
subtracts ADDEND_IN from BASE_IN otherwise. Propagate any known
information about the two SSA names into the new candidate.
Return the new candidate. */
static slsr_cand_t
create_add_ssa_cand (gimple gs, tree base_in, tree addend_in,
bool subtract_p, bool speed)
{
tree base = NULL_TREE, stride = NULL_TREE, ctype = NULL;
double_int index;
unsigned savings = 0;
slsr_cand_t c;
slsr_cand_t base_cand = base_cand_from_table (base_in);
slsr_cand_t addend_cand = base_cand_from_table (addend_in);
/* The most useful transformation is a multiply-immediate feeding
an add or subtract. Look for that first. */
while (addend_cand && !base)
{
if (addend_cand->kind == CAND_MULT
&& double_int_zero_p (addend_cand->index)
&& TREE_CODE (addend_cand->stride) == INTEGER_CST)
{
/* Z = (B + 0) * S, S constant
X = Y +/- Z
===========================
X = Y + ((+/-1 * S) * B) */
base = base_in;
index = tree_to_double_int (addend_cand->stride);
if (subtract_p)
index = double_int_neg (index);
stride = addend_cand->base_name;
ctype = TREE_TYPE (SSA_NAME_VAR (base_in));
if (has_single_use (addend_in))
savings = (addend_cand->dead_savings
+ stmt_cost (addend_cand->cand_stmt, speed));
}
if (addend_cand->next_interp)
addend_cand = lookup_cand (addend_cand->next_interp);
else
addend_cand = NULL;
}
while (base_cand && !base)
{
if (base_cand->kind == CAND_ADD
&& (double_int_zero_p (base_cand->index)
|| operand_equal_p (base_cand->stride,
integer_zero_node, 0)))
{
/* Y = B + (i' * S), i' * S = 0
X = Y +/- Z
============================
X = B + (+/-1 * Z) */
base = base_cand->base_name;
index = subtract_p ? double_int_minus_one : double_int_one;
stride = addend_in;
ctype = base_cand->cand_type;
if (has_single_use (base_in))
savings = (base_cand->dead_savings
+ stmt_cost (base_cand->cand_stmt, speed));
}
else if (subtract_p)
{
slsr_cand_t subtrahend_cand = base_cand_from_table (addend_in);
while (subtrahend_cand && !base)
{
if (subtrahend_cand->kind == CAND_MULT
&& double_int_zero_p (subtrahend_cand->index)
&& TREE_CODE (subtrahend_cand->stride) == INTEGER_CST)
{
/* Z = (B + 0) * S, S constant
X = Y - Z
===========================
Value: X = Y + ((-1 * S) * B) */
base = base_in;
index = tree_to_double_int (subtrahend_cand->stride);
index = double_int_neg (index);
stride = subtrahend_cand->base_name;
ctype = TREE_TYPE (SSA_NAME_VAR (base_in));
if (has_single_use (addend_in))
savings = (subtrahend_cand->dead_savings
+ stmt_cost (subtrahend_cand->cand_stmt, speed));
}
if (subtrahend_cand->next_interp)
subtrahend_cand = lookup_cand (subtrahend_cand->next_interp);
else
subtrahend_cand = NULL;
}
}
if (base_cand->next_interp)
base_cand = lookup_cand (base_cand->next_interp);
else
base_cand = NULL;
}
if (!base)
{
/* No interpretations had anything useful to propagate, so
produce X = Y + (1 * Z). */
base = base_in;
index = subtract_p ? double_int_minus_one : double_int_one;
stride = addend_in;
ctype = TREE_TYPE (SSA_NAME_VAR (base_in));
}
c = alloc_cand_and_find_basis (CAND_ADD, gs, base, index, stride,
ctype, savings);
return c;
}
/* Create a candidate entry for a statement GS, where GS adds SSA
name BASE_IN to constant INDEX_IN. Propagate any known information
about BASE_IN into the new candidate. Return the new candidate. */
static slsr_cand_t
create_add_imm_cand (gimple gs, tree base_in, double_int index_in, bool speed)
{
enum cand_kind kind = CAND_ADD;
tree base = NULL_TREE, stride = NULL_TREE, ctype = NULL_TREE;
double_int index, multiple;
unsigned savings = 0;
slsr_cand_t c;
slsr_cand_t base_cand = base_cand_from_table (base_in);
while (base_cand && !base)
{
bool unsigned_p = TYPE_UNSIGNED (TREE_TYPE (base_cand->stride));
if (TREE_CODE (base_cand->stride) == INTEGER_CST
&& double_int_multiple_of (index_in,
tree_to_double_int (base_cand->stride),
unsigned_p,
&multiple))
{
/* Y = (B + i') * S, S constant, c = kS for some integer k
X = Y + c
============================
X = (B + (i'+ k)) * S
OR
Y = B + (i' * S), S constant, c = kS for some integer k
X = Y + c
============================
X = (B + (i'+ k)) * S */
kind = base_cand->kind;
base = base_cand->base_name;
index = double_int_add (base_cand->index, multiple);
stride = base_cand->stride;
ctype = base_cand->cand_type;
if (has_single_use (base_in))
savings = (base_cand->dead_savings
+ stmt_cost (base_cand->cand_stmt, speed));
}
if (base_cand->next_interp)
base_cand = lookup_cand (base_cand->next_interp);
else
base_cand = NULL;
}
if (!base)
{
/* No interpretations had anything useful to propagate, so
produce X = Y + (c * 1). */
kind = CAND_ADD;
base = base_in;
index = index_in;
stride = integer_one_node;
ctype = TREE_TYPE (SSA_NAME_VAR (base_in));
}
c = alloc_cand_and_find_basis (kind, gs, base, index, stride,
ctype, savings);
return c;
}
/* Given GS which is an add or subtract of scalar integers or pointers,
make at least one appropriate entry in the candidate table. */
static void
slsr_process_add (gimple gs, tree rhs1, tree rhs2, bool speed)
{
bool subtract_p = gimple_assign_rhs_code (gs) == MINUS_EXPR;
slsr_cand_t c = NULL, c2;
if (TREE_CODE (rhs2) == SSA_NAME)
{
/* First record an interpretation assuming RHS1 is the base name
and RHS2 is the stride. But it doesn't make sense for the
stride to be a pointer, so don't record a candidate in that case. */
if (!POINTER_TYPE_P (TREE_TYPE (SSA_NAME_VAR (rhs2))))
{
c = create_add_ssa_cand (gs, rhs1, rhs2, subtract_p, speed);
/* Add the first interpretation to the statement-candidate
mapping. */
add_cand_for_stmt (gs, c);
}
/* If the two RHS operands are identical, or this is a subtract,
we're done. */
if (operand_equal_p (rhs1, rhs2, 0) || subtract_p)
return;
/* Otherwise, record another interpretation assuming RHS2 is the
base name and RHS1 is the stride, again provided that the
stride is not a pointer. */
if (!POINTER_TYPE_P (TREE_TYPE (SSA_NAME_VAR (rhs1))))
{
c2 = create_add_ssa_cand (gs, rhs2, rhs1, false, speed);
if (c)
c->next_interp = c2->cand_num;
else
add_cand_for_stmt (gs, c2);
}
}
else
{
double_int index;
/* Record an interpretation for the add-immediate. */
index = tree_to_double_int (rhs2);
if (subtract_p)
index = double_int_neg (index);
c = create_add_imm_cand (gs, rhs1, index, speed);
/* Add the interpretation to the statement-candidate mapping. */
add_cand_for_stmt (gs, c);
}
}
/* Given GS which is a negate of a scalar integer, make an appropriate
entry in the candidate table. A negate is equivalent to a multiply
by -1. */
static void
slsr_process_neg (gimple gs, tree rhs1, bool speed)
{
/* Record a CAND_MULT interpretation for the multiply by -1. */
slsr_cand_t c = create_mul_imm_cand (gs, rhs1, integer_minus_one_node, speed);
/* Add the interpretation to the statement-candidate mapping. */
add_cand_for_stmt (gs, c);
}
/* Return TRUE if GS is a statement that defines an SSA name from
a conversion and is legal for us to combine with an add and multiply
in the candidate table. For example, suppose we have:
A = B + i;
C = (type) A;
D = C * S;
Without the type-cast, we would create a CAND_MULT for D with base B,
index i, and stride S. We want to record this candidate only if it
is equivalent to apply the type cast following the multiply:
A = B + i;
E = A * S;
D = (type) E;
We will record the type with the candidate for D. This allows us
to use a similar previous candidate as a basis. If we have earlier seen
A' = B + i';
C' = (type) A';
D' = C' * S;
we can replace D with
D = D' + (i - i') * S;
But if moving the type-cast would change semantics, we mustn't do this.
This is legitimate for casts from a non-wrapping integral type to
any integral type of the same or larger size. It is not legitimate
to convert a wrapping type to a non-wrapping type, or to a wrapping
type of a different size. I.e., with a wrapping type, we must
assume that the addition B + i could wrap, in which case performing
the multiply before or after one of the "illegal" type casts will
have different semantics. */
static bool
legal_cast_p (gimple gs, tree rhs)
{
tree lhs, lhs_type, rhs_type;
unsigned lhs_size, rhs_size;
bool lhs_wraps, rhs_wraps;
if (!is_gimple_assign (gs)
|| !CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (gs)))
return false;
lhs = gimple_assign_lhs (gs);
lhs_type = TREE_TYPE (lhs);
rhs_type = TREE_TYPE (rhs);
lhs_size = TYPE_PRECISION (lhs_type);
rhs_size = TYPE_PRECISION (rhs_type);
lhs_wraps = TYPE_OVERFLOW_WRAPS (lhs_type);
rhs_wraps = TYPE_OVERFLOW_WRAPS (rhs_type);
if (lhs_size < rhs_size
|| (rhs_wraps && !lhs_wraps)
|| (rhs_wraps && lhs_wraps && rhs_size != lhs_size))
return false;
return true;
}
/* Given GS which is a cast to a scalar integer type, determine whether
the cast is legal for strength reduction. If so, make at least one
appropriate entry in the candidate table. */
static void
slsr_process_cast (gimple gs, tree rhs1, bool speed)
{
tree lhs, ctype;
slsr_cand_t base_cand, c, c2;
unsigned savings = 0;
if (!legal_cast_p (gs, rhs1))
return;
lhs = gimple_assign_lhs (gs);
base_cand = base_cand_from_table (rhs1);
ctype = TREE_TYPE (lhs);
if (base_cand)
{
while (base_cand)
{
/* Propagate all data from the base candidate except the type,
which comes from the cast, and the base candidate's cast,
which is no longer applicable. */
if (has_single_use (rhs1))
savings = (base_cand->dead_savings
+ stmt_cost (base_cand->cand_stmt, speed));
c = alloc_cand_and_find_basis (base_cand->kind, gs,
base_cand->base_name,
base_cand->index, base_cand->stride,
ctype, savings);
if (base_cand->next_interp)
base_cand = lookup_cand (base_cand->next_interp);
else
base_cand = NULL;
}
}
else
{
/* If nothing is known about the RHS, create fresh CAND_ADD and
CAND_MULT interpretations:
X = Y + (0 * 1)
X = (Y + 0) * 1
The first of these is somewhat arbitrary, but the choice of
1 for the stride simplifies the logic for propagating casts
into their uses. */
c = alloc_cand_and_find_basis (CAND_ADD, gs, rhs1, double_int_zero,
integer_one_node, ctype, 0);
c2 = alloc_cand_and_find_basis (CAND_MULT, gs, rhs1, double_int_zero,
integer_one_node, ctype, 0);
c->next_interp = c2->cand_num;
}
/* Add the first (or only) interpretation to the statement-candidate
mapping. */
add_cand_for_stmt (gs, c);
}
/* Given GS which is a copy of a scalar integer type, make at least one
appropriate entry in the candidate table.
This interface is included for completeness, but is unnecessary
if this pass immediately follows a pass that performs copy
propagation, such as DOM. */
static void
slsr_process_copy (gimple gs, tree rhs1, bool speed)
{
slsr_cand_t base_cand, c, c2;
unsigned savings = 0;
base_cand = base_cand_from_table (rhs1);
if (base_cand)
{
while (base_cand)
{
/* Propagate all data from the base candidate. */
if (has_single_use (rhs1))
savings = (base_cand->dead_savings
+ stmt_cost (base_cand->cand_stmt, speed));
c = alloc_cand_and_find_basis (base_cand->kind, gs,
base_cand->base_name,
base_cand->index, base_cand->stride,
base_cand->cand_type, savings);
if (base_cand->next_interp)
base_cand = lookup_cand (base_cand->next_interp);
else
base_cand = NULL;
}
}
else
{
/* If nothing is known about the RHS, create fresh CAND_ADD and
CAND_MULT interpretations:
X = Y + (0 * 1)
X = (Y + 0) * 1
The first of these is somewhat arbitrary, but the choice of
1 for the stride simplifies the logic for propagating casts
into their uses. */
c = alloc_cand_and_find_basis (CAND_ADD, gs, rhs1, double_int_zero,
integer_one_node, TREE_TYPE (rhs1), 0);
c2 = alloc_cand_and_find_basis (CAND_MULT, gs, rhs1, double_int_zero,
integer_one_node, TREE_TYPE (rhs1), 0);
c->next_interp = c2->cand_num;
}
/* Add the first (or only) interpretation to the statement-candidate
mapping. */
add_cand_for_stmt (gs, c);
}
/* Find strength-reduction candidates in block BB. */
static void
find_candidates_in_block (struct dom_walk_data *walk_data ATTRIBUTE_UNUSED,
basic_block bb)
{
bool speed = optimize_bb_for_speed_p (bb);
gimple_stmt_iterator gsi;
for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
{
gimple gs = gsi_stmt (gsi);
if (is_gimple_assign (gs)
&& SCALAR_INT_MODE_P (TYPE_MODE (TREE_TYPE (gimple_assign_lhs (gs)))))
{
tree rhs1 = NULL_TREE, rhs2 = NULL_TREE;
switch (gimple_assign_rhs_code (gs))
{
case MULT_EXPR:
case PLUS_EXPR:
rhs1 = gimple_assign_rhs1 (gs);
rhs2 = gimple_assign_rhs2 (gs);
/* Should never happen, but currently some buggy situations
in earlier phases put constants in rhs1. */
if (TREE_CODE (rhs1) != SSA_NAME)
continue;
break;
/* Possible future opportunity: rhs1 of a ptr+ can be
an ADDR_EXPR. */
case POINTER_PLUS_EXPR:
case MINUS_EXPR:
rhs2 = gimple_assign_rhs2 (gs);
/* Fall-through. */
case NOP_EXPR:
case MODIFY_EXPR:
case NEGATE_EXPR:
rhs1 = gimple_assign_rhs1 (gs);
if (TREE_CODE (rhs1) != SSA_NAME)
continue;
break;
default:
;
}
switch (gimple_assign_rhs_code (gs))
{
case MULT_EXPR:
slsr_process_mul (gs, rhs1, rhs2, speed);
break;
case PLUS_EXPR:
case POINTER_PLUS_EXPR:
case MINUS_EXPR:
slsr_process_add (gs, rhs1, rhs2, speed);
break;
case NEGATE_EXPR:
slsr_process_neg (gs, rhs1, speed);
break;
case NOP_EXPR:
slsr_process_cast (gs, rhs1, speed);
break;
case MODIFY_EXPR:
slsr_process_copy (gs, rhs1, speed);
break;
default:
;
}
}
}
}
/* Dump a candidate for debug. */
static void
dump_candidate (slsr_cand_t c)
{
fprintf (dump_file, "%3d [%d] ", c->cand_num,
gimple_bb (c->cand_stmt)->index);
print_gimple_stmt (dump_file, c->cand_stmt, 0, 0);
switch (c->kind)
{
case CAND_MULT:
fputs (" MULT : (", dump_file);
print_generic_expr (dump_file, c->base_name, 0);
fputs (" + ", dump_file);
dump_double_int (dump_file, c->index, false);
fputs (") * ", dump_file);
print_generic_expr (dump_file, c->stride, 0);
fputs (" : ", dump_file);
break;
case CAND_ADD:
fputs (" ADD : ", dump_file);
print_generic_expr (dump_file, c->base_name, 0);
fputs (" + (", dump_file);
dump_double_int (dump_file, c->index, false);
fputs (" * ", dump_file);
print_generic_expr (dump_file, c->stride, 0);
fputs (") : ", dump_file);
break;
default:
gcc_unreachable ();
}
print_generic_expr (dump_file, c->cand_type, 0);
fprintf (dump_file, "\n basis: %d dependent: %d sibling: %d\n",
c->basis, c->dependent, c->sibling);
fprintf (dump_file, " next-interp: %d dead-savings: %d\n",
c->next_interp, c->dead_savings);
if (c->def_phi)
{
fputs (" phi: ", dump_file);
print_gimple_stmt (dump_file, c->def_phi, 0, 0);
}
fputs ("\n", dump_file);
}
/* Dump the candidate vector for debug. */
static void
dump_cand_vec (void)
{
unsigned i;
slsr_cand_t c;
fprintf (dump_file, "\nStrength reduction candidate vector:\n\n");
FOR_EACH_VEC_ELT (slsr_cand_t, cand_vec, i, c)
dump_candidate (c);
}
/* Dump the candidate chains. */
static void
dump_cand_chains (void)
{
unsigned i;
fprintf (dump_file, "\nStrength reduction candidate chains:\n\n");
for (i = 0; i < num_ssa_names; i++)
{
const_cand_chain_t chain = base_cand_map[i];
if (chain)
{
cand_chain_t p;
print_generic_expr (dump_file, chain->base_name, 0);
fprintf (dump_file, " -> %d", chain->cand->cand_num);
for (p = chain->next; p; p = p->next)
fprintf (dump_file, " -> %d", p->cand->cand_num);
fputs ("\n", dump_file);
}
}
fputs ("\n", dump_file);
}
/* Recursive helper for unconditional_cands_with_known_stride_p.
Returns TRUE iff C, its siblings, and its dependents are all
unconditional candidates. */
static bool
unconditional_cands (slsr_cand_t c)
{
if (c->def_phi)
return false;
if (c->sibling && !unconditional_cands (lookup_cand (c->sibling)))
return false;
if (c->dependent && !unconditional_cands (lookup_cand (c->dependent)))
return false;
return true;
}
/* Determine whether or not the tree of candidates rooted at
ROOT consists entirely of unconditional increments with
an INTEGER_CST stride. */
static bool
unconditional_cands_with_known_stride_p (slsr_cand_t root)
{
/* The stride is identical for all related candidates, so
check it once. */
if (TREE_CODE (root->stride) != INTEGER_CST)
return false;
return unconditional_cands (lookup_cand (root->dependent));
}
/* Calculate the increment required for candidate C relative to
its basis. */
static double_int
cand_increment (slsr_cand_t c)
{
slsr_cand_t basis;
/* If the candidate doesn't have a basis, just return its own
index. This is useful in record_increments to help us find
an existing initializer. */
if (!c->basis)
return c->index;
basis = lookup_cand (c->basis);
gcc_assert (operand_equal_p (c->base_name, basis->base_name, 0));
return double_int_sub (c->index, basis->index);
}
/* Return TRUE iff candidate C has already been replaced under
another interpretation. */
static inline bool
cand_already_replaced (slsr_cand_t c)
{
return (gimple_bb (c->cand_stmt) == 0);
}
/* Helper routine for replace_dependents, doing the work for a
single candidate C. */
static void
replace_dependent (slsr_cand_t c, enum tree_code cand_code)
{
double_int stride = tree_to_double_int (c->stride);
double_int bump = double_int_mul (cand_increment (c), stride);
gimple stmt_to_print = NULL;
slsr_cand_t basis;
tree basis_name, incr_type, bump_tree;
enum tree_code code;
/* It is highly unlikely, but possible, that the resulting
bump doesn't fit in a HWI. Abandon the replacement
in this case. Restriction to signed HWI is conservative
for unsigned types but allows for safe negation without
twisted logic. */
if (!double_int_fits_in_shwi_p (bump))
return;
basis = lookup_cand (c->basis);
basis_name = gimple_assign_lhs (basis->cand_stmt);
incr_type = TREE_TYPE (gimple_assign_rhs1 (c->cand_stmt));
code = PLUS_EXPR;
if (double_int_negative_p (bump))
{
code = MINUS_EXPR;
bump = double_int_neg (bump);
}
bump_tree = double_int_to_tree (incr_type, bump);
if (dump_file && (dump_flags & TDF_DETAILS))
{
fputs ("Replacing: ", dump_file);
print_gimple_stmt (dump_file, c->cand_stmt, 0, 0);
}
if (double_int_zero_p (bump))
{
tree lhs = gimple_assign_lhs (c->cand_stmt);
gimple copy_stmt = gimple_build_assign (lhs, basis_name);
gimple_stmt_iterator gsi = gsi_for_stmt (c->cand_stmt);
gimple_set_location (copy_stmt, gimple_location (c->cand_stmt));
gsi_replace (&gsi, copy_stmt, false);
if (dump_file && (dump_flags & TDF_DETAILS))
stmt_to_print = copy_stmt;
}
else
{
tree rhs1 = gimple_assign_rhs1 (c->cand_stmt);
tree rhs2 = gimple_assign_rhs2 (c->cand_stmt);
if (cand_code != NEGATE_EXPR
&& ((operand_equal_p (rhs1, basis_name, 0)
&& operand_equal_p (rhs2, bump_tree, 0))
|| (operand_equal_p (rhs1, bump_tree, 0)
&& operand_equal_p (rhs2, basis_name, 0))))
{
if (dump_file && (dump_flags & TDF_DETAILS))
{
fputs ("(duplicate, not actually replacing)", dump_file);
stmt_to_print = c->cand_stmt;
}
}
else
{
gimple_stmt_iterator gsi = gsi_for_stmt (c->cand_stmt);
gimple_assign_set_rhs_with_ops (&gsi, code, basis_name, bump_tree);
update_stmt (gsi_stmt (gsi));
if (dump_file && (dump_flags & TDF_DETAILS))
stmt_to_print = gsi_stmt (gsi);
}
}
if (dump_file && (dump_flags & TDF_DETAILS))
{
fputs ("With: ", dump_file);
print_gimple_stmt (dump_file, stmt_to_print, 0, 0);
fputs ("\n", dump_file);
}
}
/* Replace candidate C, each sibling of candidate C, and each
dependent of candidate C with an add or subtract. Note that we
only operate on CAND_MULTs with known strides, so we will never
generate a POINTER_PLUS_EXPR. Each candidate X = (B + i) * S is
replaced by X = Y + ((i - i') * S), as described in the module
commentary. The folded value ((i - i') * S) is referred to here
as the "bump." */
static void
replace_dependents (slsr_cand_t c)
{
enum tree_code cand_code = gimple_assign_rhs_code (c->cand_stmt);
/* It is not useful to replace casts, copies, or adds of an SSA name
and a constant. Also skip candidates that have already been
replaced under another interpretation. */
if (cand_code != MODIFY_EXPR
&& cand_code != NOP_EXPR
&& c->kind == CAND_MULT
&& !cand_already_replaced (c))
replace_dependent (c, cand_code);
if (c->sibling)
replace_dependents (lookup_cand (c->sibling));
if (c->dependent)
replace_dependents (lookup_cand (c->dependent));
}
/* Analyze costs of related candidates in the candidate vector,
and make beneficial replacements. */
static void
analyze_candidates_and_replace (void)
{
unsigned i;
slsr_cand_t c;
/* Each candidate that has a null basis and a non-null
dependent is the root of a tree of related statements.
Analyze each tree to determine a subset of those
statements that can be replaced with maximum benefit. */
FOR_EACH_VEC_ELT (slsr_cand_t, cand_vec, i, c)
{
slsr_cand_t first_dep;
if (c->basis != 0 || c->dependent == 0)
continue;
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file, "\nProcessing dependency tree rooted at %d.\n",
c->cand_num);
first_dep = lookup_cand (c->dependent);
/* If the common stride of all related candidates is a
known constant, and none of these has a phi-dependence,
then all replacements are considered profitable.
Each replaces a multiply by a single add, with the
possibility that a feeding add also goes dead as a
result. */
if (unconditional_cands_with_known_stride_p (c))
replace_dependents (first_dep);
/* TODO: When the stride is an SSA name, it may still be
profitable to replace some or all of the dependent
candidates, depending on whether the introduced increments
can be reused, or are less expensive to calculate than
the replaced statements. */
/* TODO: Strength-reduce data references with implicit
multiplication in their addressing expressions. */
/* TODO: When conditional increments occur so that a
candidate is dependent upon a phi-basis, the cost of
introducing a temporary must be accounted for. */
}
}
static unsigned
execute_strength_reduction (void)
{
struct dom_walk_data walk_data;
/* Create the obstack where candidates will reside. */
gcc_obstack_init (&cand_obstack);
/* Allocate the candidate vector. */
cand_vec = VEC_alloc (slsr_cand_t, heap, 128);
/* Allocate the mapping from statements to candidate indices. */
stmt_cand_map = pointer_map_create ();
/* Create the obstack where candidate chains will reside. */
gcc_obstack_init (&chain_obstack);
/* Allocate the mapping from base names to candidate chains. */
base_cand_map = XNEWVEC (cand_chain_t, num_ssa_names);
memset (base_cand_map, 0, num_ssa_names * sizeof (cand_chain_t));
/* Initialize the loop optimizer. We need to detect flow across
back edges, and this gives us dominator information as well. */
loop_optimizer_init (AVOID_CFG_MODIFICATIONS);
/* Initialize costs tables in IVOPTS. */
initialize_costs ();
/* Set up callbacks for the generic dominator tree walker. */
walk_data.dom_direction = CDI_DOMINATORS;
walk_data.initialize_block_local_data = NULL;
walk_data.before_dom_children = find_candidates_in_block;
walk_data.after_dom_children = NULL;
walk_data.global_data = NULL;
walk_data.block_local_data_size = 0;
init_walk_dominator_tree (&walk_data);
/* Walk the CFG in predominator order looking for strength reduction
candidates. */
walk_dominator_tree (&walk_data, ENTRY_BLOCK_PTR);
if (dump_file && (dump_flags & TDF_DETAILS))
{
dump_cand_vec ();
dump_cand_chains ();
}
/* Analyze costs and make appropriate replacements. */
analyze_candidates_and_replace ();
/* Free resources. */
fini_walk_dominator_tree (&walk_data);
loop_optimizer_finalize ();
free (base_cand_map);
obstack_free (&chain_obstack, NULL);
pointer_map_destroy (stmt_cand_map);
VEC_free (slsr_cand_t, heap, cand_vec);
obstack_free (&cand_obstack, NULL);
finalize_costs ();
return 0;
}
static bool
gate_strength_reduction (void)
{
return flag_tree_slsr;
}
struct gimple_opt_pass pass_strength_reduction =
{
{
GIMPLE_PASS,
"slsr", /* name */
gate_strength_reduction, /* gate */
execute_strength_reduction, /* execute */
NULL, /* sub */
NULL, /* next */
0, /* static_pass_number */
TV_GIMPLE_SLSR, /* tv_id */
PROP_cfg | PROP_ssa, /* properties_required */
0, /* properties_provided */
0, /* properties_destroyed */
0, /* todo_flags_start */
TODO_verify_ssa /* todo_flags_finish */
}
};
|