1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
|
/* Copyright (C) 2004-2013 Free Software Foundation, Inc.
Contributed by Apple, Inc.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3, or (at your option)
any later version.
GCC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
Under Section 7 of GPL version 3, you are granted additional
permissions described in the GCC Runtime Library Exception, version
3.1, as published by the Free Software Foundation.
You should have received a copy of the GNU General Public License and
a copy of the GCC Runtime Library Exception along with this program;
see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
<http://www.gnu.org/licenses/>. */
/*
* ISO C Standard: 7.22 Type-generic math <tgmath.h>
*/
#ifndef _TGMATH_H
#define _TGMATH_H
#include <math.h>
#ifndef __cplusplus
#include <complex.h>
/* Naming convention: generic macros are defining using
__TGMATH_CPLX*, __TGMATH_REAL*, and __TGMATH_CPLX_ONLY. _CPLX
means the generic argument(s) may be real or complex, _REAL means
real only, _CPLX means complex only. If there is no suffix, we are
defining a function of one generic argument. If the suffix is _n
it is a function of n generic arguments. If the suffix is _m_n it
is a function of n arguments, the first m of which are generic. We
only define these macros for values of n and/or m that are needed. */
/* The general rules for generic macros are given in 7.22 paragraphs 1 and 2.
If any generic parameter is complex, we use a complex version. Otherwise
we use a real version. If the real part of any generic parameter is long
double, we use the long double version. Otherwise if the real part of any
generic parameter is double or of integer type, we use the double version.
Otherwise we use the float version. */
#define __tg_cplx(expr) \
__builtin_classify_type(expr) == 9
#define __tg_ldbl(expr) \
__builtin_types_compatible_p(__typeof__(expr), long double)
#define __tg_dbl(expr) \
(__builtin_types_compatible_p(__typeof__(expr), double) \
|| __builtin_classify_type(expr) == 1)
#define __tg_choose(x,f,d,l) \
__builtin_choose_expr(__tg_ldbl(x), l, \
__builtin_choose_expr(__tg_dbl(x), d, \
f))
#define __tg_choose_2(x,y,f,d,l) \
__builtin_choose_expr(__tg_ldbl(x) || __tg_ldbl(y), l, \
__builtin_choose_expr(__tg_dbl(x) || __tg_dbl(y), d, \
f))
#define __tg_choose_3(x,y,z,f,d,l) \
__builtin_choose_expr(__tg_ldbl(x) || __tg_ldbl(y) || __tg_ldbl(z), l, \
__builtin_choose_expr(__tg_dbl(x) || __tg_dbl(y) \
|| __tg_dbl(z), d, \
f))
#define __TGMATH_CPLX(z,R,C) \
__builtin_choose_expr (__tg_cplx(z), \
__tg_choose (__real__(z), C##f(z), (C)(z), C##l(z)), \
__tg_choose (z, R##f(z), (R)(z), R##l(z)))
#define __TGMATH_CPLX_2(z1,z2,R,C) \
__builtin_choose_expr (__tg_cplx(z1) || __tg_cplx(z2), \
__tg_choose_2 (__real__(z1), __real__(z2), \
C##f(z1,z2), (C)(z1,z2), C##l(z1,z2)), \
__tg_choose_2 (z1, z2, \
R##f(z1,z2), (R)(z1,z2), R##l(z1,z2)))
#define __TGMATH_REAL(x,R) \
__tg_choose (x, R##f(x), (R)(x), R##l(x))
#define __TGMATH_REAL_2(x,y,R) \
__tg_choose_2 (x, y, R##f(x,y), (R)(x,y), R##l(x,y))
#define __TGMATH_REAL_3(x,y,z,R) \
__tg_choose_3 (x, y, z, R##f(x,y,z), (R)(x,y,z), R##l(x,y,z))
#define __TGMATH_REAL_1_2(x,y,R) \
__tg_choose (x, R##f(x,y), (R)(x,y), R##l(x,y))
#define __TGMATH_REAL_2_3(x,y,z,R) \
__tg_choose_2 (x, y, R##f(x,y,z), (R)(x,y,z), R##l(x,y,z))
#define __TGMATH_CPLX_ONLY(z,C) \
__tg_choose (__real__(z), C##f(z), (C)(z), C##l(z))
/* Functions defined in both <math.h> and <complex.h> (7.22p4) */
#define acos(z) __TGMATH_CPLX(z, acos, cacos)
#define asin(z) __TGMATH_CPLX(z, asin, casin)
#define atan(z) __TGMATH_CPLX(z, atan, catan)
#define acosh(z) __TGMATH_CPLX(z, acosh, cacosh)
#define asinh(z) __TGMATH_CPLX(z, asinh, casinh)
#define atanh(z) __TGMATH_CPLX(z, atanh, catanh)
#define cos(z) __TGMATH_CPLX(z, cos, ccos)
#define sin(z) __TGMATH_CPLX(z, sin, csin)
#define tan(z) __TGMATH_CPLX(z, tan, ctan)
#define cosh(z) __TGMATH_CPLX(z, cosh, ccosh)
#define sinh(z) __TGMATH_CPLX(z, sinh, csinh)
#define tanh(z) __TGMATH_CPLX(z, tanh, ctanh)
#define exp(z) __TGMATH_CPLX(z, exp, cexp)
#define log(z) __TGMATH_CPLX(z, log, clog)
#define pow(z1,z2) __TGMATH_CPLX_2(z1, z2, pow, cpow)
#define sqrt(z) __TGMATH_CPLX(z, sqrt, csqrt)
#define fabs(z) __TGMATH_CPLX(z, fabs, cabs)
/* Functions defined in <math.h> only (7.22p5) */
#define atan2(x,y) __TGMATH_REAL_2(x, y, atan2)
#define cbrt(x) __TGMATH_REAL(x, cbrt)
#define ceil(x) __TGMATH_REAL(x, ceil)
#define copysign(x,y) __TGMATH_REAL_2(x, y, copysign)
#define erf(x) __TGMATH_REAL(x, erf)
#define erfc(x) __TGMATH_REAL(x, erfc)
#define exp2(x) __TGMATH_REAL(x, exp2)
#define expm1(x) __TGMATH_REAL(x, expm1)
#define fdim(x,y) __TGMATH_REAL_2(x, y, fdim)
#define floor(x) __TGMATH_REAL(x, floor)
#define fma(x,y,z) __TGMATH_REAL_3(x, y, z, fma)
#define fmax(x,y) __TGMATH_REAL_2(x, y, fmax)
#define fmin(x,y) __TGMATH_REAL_2(x, y, fmin)
#define fmod(x,y) __TGMATH_REAL_2(x, y, fmod)
#define frexp(x,y) __TGMATH_REAL_1_2(x, y, frexp)
#define hypot(x,y) __TGMATH_REAL_2(x, y, hypot)
#define ilogb(x) __TGMATH_REAL(x, ilogb)
#define ldexp(x,y) __TGMATH_REAL_1_2(x, y, ldexp)
#define lgamma(x) __TGMATH_REAL(x, lgamma)
#define llrint(x) __TGMATH_REAL(x, llrint)
#define llround(x) __TGMATH_REAL(x, llround)
#define log10(x) __TGMATH_REAL(x, log10)
#define log1p(x) __TGMATH_REAL(x, log1p)
#define log2(x) __TGMATH_REAL(x, log2)
#define logb(x) __TGMATH_REAL(x, logb)
#define lrint(x) __TGMATH_REAL(x, lrint)
#define lround(x) __TGMATH_REAL(x, lround)
#define nearbyint(x) __TGMATH_REAL(x, nearbyint)
#define nextafter(x,y) __TGMATH_REAL_2(x, y, nextafter)
#define nexttoward(x,y) __TGMATH_REAL_1_2(x, y, nexttoward)
#define remainder(x,y) __TGMATH_REAL_2(x, y, remainder)
#define remquo(x,y,z) __TGMATH_REAL_2_3(x, y, z, remquo)
#define rint(x) __TGMATH_REAL(x, rint)
#define round(x) __TGMATH_REAL(x, round)
#define scalbn(x,y) __TGMATH_REAL_1_2(x, y, scalbn)
#define scalbln(x,y) __TGMATH_REAL_1_2(x, y, scalbln)
#define tgamma(x) __TGMATH_REAL(x, tgamma)
#define trunc(x) __TGMATH_REAL(x, trunc)
/* Functions defined in <complex.h> only (7.22p6) */
#define carg(z) __TGMATH_CPLX_ONLY(z, carg)
#define cimag(z) __TGMATH_CPLX_ONLY(z, cimag)
#define conj(z) __TGMATH_CPLX_ONLY(z, conj)
#define cproj(z) __TGMATH_CPLX_ONLY(z, cproj)
#define creal(z) __TGMATH_CPLX_ONLY(z, creal)
#endif /* __cplusplus */
#endif /* _TGMATH_H */
|